[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015172555A1 - 一种环形振荡器的频率控制方法及电路 - Google Patents

一种环形振荡器的频率控制方法及电路 Download PDF

Info

Publication number
WO2015172555A1
WO2015172555A1 PCT/CN2014/093455 CN2014093455W WO2015172555A1 WO 2015172555 A1 WO2015172555 A1 WO 2015172555A1 CN 2014093455 W CN2014093455 W CN 2014093455W WO 2015172555 A1 WO2015172555 A1 WO 2015172555A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
current
temperature coefficient
positive temperature
circuit
Prior art date
Application number
PCT/CN2014/093455
Other languages
English (en)
French (fr)
Inventor
李振国
原义栋
胡毅
杨小坤
王敏
马永旺
Original Assignee
国家电网公司
北京南瑞智芯微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 北京南瑞智芯微电子科技有限公司 filed Critical 国家电网公司
Publication of WO2015172555A1 publication Critical patent/WO2015172555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only

Definitions

  • the present invention relates to the field of control circuit technologies, and in particular, to a frequency control method and circuit for a ring oscillator.
  • the clock circuit is an indispensable module in modern chip systems, providing an accurate clock for the system.
  • the implementation of the clock circuit mainly includes a crystal oscillator, a phase locked loop clock circuit, a relaxation oscillator, a ring oscillator, and the like. Due to its simple structure and low power consumption, the ring oscillator has been widely used in applications where frequency accuracy is not high. However, the ordinary ring oscillator is greatly affected by external factors such as power supply and ambient temperature, and is greatly affected by the manufacturing process. Therefore, the output frequency accuracy of the ordinary ring oscillator is poor, which affects the performance of the chip system.
  • a more common structure is to form a ring oscillator through a current-limited inverter, so the oscillation frequency of the oscillator is related to the current, and the reference current generating unit is improved to improve the ambient temperature characteristic of the output frequency. .
  • the accuracy of the final output frequency of such a scheme mainly depends on whether the reference current generating unit design can exactly offset the corresponding temperature coefficient; and because the oscillator is directly powered by the power supply voltage, the output frequency is greatly affected by the external power supply voltage.
  • the output frequency of the ordinary ring oscillator is greatly affected by the manufacturing process, the power supply voltage, and the ambient temperature, so that the frequency accuracy of the output clock cannot meet the requirements of the system.
  • a reasonable current design circuit needs to be configured to compensate for the appropriate temperature coefficient and the temperature characteristics of the subsequent oscillator. Since the design does not consider the oscillator to be affected by the power supply voltage and the device manufacturing process, the accuracy of the output frequency of the ring oscillator is limited, and the system's clock requirements are not well met.
  • the invention provides a frequency control method and a circuit for a ring oscillator, which are used to solve the defects of low output frequency precision of the existing ring oscillator.
  • the present invention provides a frequency control method for a ring oscillator, the method comprising the following steps:
  • the current having a positive temperature coefficient obtained by the current bias circuit is specifically:
  • the current bias circuit causes a current generated by the external power source in the current bias circuit to flow through a device having a positive temperature coefficient; a parameter of the device having a positive temperature coefficient is set to obtain a current having a positive temperature coefficient.
  • the current bias circuit causes a current generated by the external power source in the current bias circuit to flow through a device having a positive temperature coefficient, specifically:
  • the current bias circuit through the current mirror circuit causes the external power source to generate a current in the current bias circuit that is not controlled by the external power source; the current that is not controlled by the external power source passes through a device having a positive temperature coefficient.
  • a current having a positive temperature coefficient to obtain a set voltage having a positive temperature coefficient and a current having a positive temperature coefficient is specifically:
  • a current having a positive temperature coefficient is connected to the voltage generating circuit; the device parameters in the voltage generating circuit are set to obtain a voltage having a positive temperature coefficient in a set ratio with a current having a positive temperature coefficient.
  • the invention also provides a frequency control circuit for a ring oscillator, the circuit comprising:
  • a voltage generating circuit for obtaining a voltage having a positive temperature coefficient in a set ratio with a current having a positive temperature coefficient by using a current having a positive temperature coefficient
  • a ring oscillator for obtaining a stable output frequency using a voltage having a positive temperature coefficient.
  • the current biasing circuit comprises:
  • the first current mirror circuit includes a first transistor MP1 and a second transistor MP2; a source of the first transistor MP1 and a source of the second transistor MP2 are respectively connected to an external power source; a gate of the first transistor MP1 and a second transistor MP2 a gate connection; a gate and a drain of the second transistor MP2 are connected;
  • the second current mirror circuit includes a third transistor MN1 and a fourth transistor MN2; a gate of the third transistor MN1 and a gate of the fourth transistor MN2 are connected; a gate and a drain of the third transistor MN1 are respectively connected to the first transistor MP1 a drain connection; a source of the third transistor MN1 is grounded; a drain of the fourth transistor MN2 is connected to a drain of the second transistor MP2; a source of the fourth transistor MN2 is connected to one end of the first resistor R1; The second end of R1 is grounded.
  • the voltage generating circuit comprises:
  • the gate of the fifth transistor MP3 and the gate of the sixth transistor MP4 are respectively connected to the gate of the first transistor MP1; the source of the fifth transistor MP3 and the source of the sixth transistor MP4 are respectively connected to an external power source; the fifth transistor The drain of the MP3 is respectively connected to the gate of the seventh transistor MP5 and the first end of the second resistor R2; the second end of the second resistor R2 is grounded; the drain of the sixth transistor MP4 is respectively connected to the source of the seventh transistor MP5 Connected to the drain of the eighth transistor MN3; the drain of the seventh transistor MP5 is respectively connected to the gate of the eighth transistor MN3 and the anode of the current source; the cathode of the current source is grounded; and the source of the eighth transistor MN3 is grounded.
  • the ring oscillator comprises K input and output terminals connected in sequence, K is an odd number greater than or equal to 3; the power supply terminal of the inverter is respectively connected to the drain of the sixth transistor MP4; Ground the ground.
  • a current having a positive temperature coefficient is generated by a current bias circuit, thereby obtaining a voltage having a positive temperature coefficient, and by setting a device parameter, the output frequency of the ring oscillator can be prevented from being affected by temperature, greatly Provides stability of the output frequency; provides voltage to the ring oscillator through the voltage generating circuit, avoids the influence of the external power supply on the output frequency of the ring oscillator, has good power supply rejection; when the current bias circuit, the voltage generating circuit and Ring When each device of the oscillator is in the same manufacturing process, the threshold voltage of each device varies with temperature, which can compensate for the influence of the manufacturing process on the output frequency of the ring oscillator.
  • FIG. 2 is a schematic diagram of a ring oscillator frequency control circuit of Embodiment 3.
  • the present invention provides a frequency control method and circuit for a ring oscillator.
  • the present embodiment provides a frequency control method for a ring oscillator.
  • the flowchart of the method in this embodiment is as shown in FIG. 1 , and the method includes the following steps:
  • a current having a positive temperature coefficient is generated by a current bias circuit, thereby obtaining a voltage having a positive temperature coefficient.
  • the output frequency of the ring oscillator can be prevented from being affected by temperature, which greatly provides The stability of the output frequency; the voltage is generated by the voltage generating circuit for the ring oscillator, which avoids the influence of the external power supply on the output frequency of the ring oscillator, and has good power supply rejection; when the current bias circuit, the voltage generating circuit and the ring oscillation
  • the threshold voltage of each device varies with temperature. The same change is made to compensate for the effect of the manufacturing process on the output frequency of the ring oscillator.
  • step S1 obtains a current having a positive temperature coefficient through the current bias circuit:
  • the current bias circuit through the current mirror circuit causes the external power source to generate a current in the current bias circuit that is not controlled by the external power source; the current that is not controlled by the external power source passes through a device having a positive temperature coefficient.
  • the positive temperature coefficient means that as the temperature increases, the electrical properties (voltage, current, or resistance) of the device also increase.
  • the negative temperature coefficient refers to the electrical properties of the device as the temperature decreases. Performance (voltage, current, or resistance, etc.) is also reduced.
  • the CMOS inverter used in the ring oscillator has a negative temperature coefficient.
  • the parameters of the devices in the circuit need to be selected or adjusted.
  • the parameters of the device having a positive temperature coefficient are set to obtain a current having a positive temperature coefficient.
  • Step S2 of this embodiment uses a current having a positive temperature coefficient to obtain a voltage having a positive temperature coefficient and a set ratio of a current having a positive temperature coefficient, specifically:
  • a current having a positive temperature coefficient is connected to the voltage generating circuit, so that a voltage having a positive temperature coefficient can be obtained on the resistor or other device; by setting the device parameters in the voltage generating circuit It is possible to obtain a voltage having a positive temperature coefficient in a set ratio with a current having a positive temperature coefficient. Setting the ratio means that the parameters of the device are set according to the influence of the temperature received by the output frequency of the ring oscillator and the influence of the voltage, so that the effects of temperature and voltage on the output frequency of the ring oscillator cancel each other out, thereby Achieve a stable frequency.
  • the embodiment provides a frequency control circuit for a ring oscillator, and the circuit includes:
  • a voltage generating circuit for obtaining a voltage having a positive temperature coefficient in a set ratio with a current having a positive temperature coefficient by using a current having a positive temperature coefficient
  • a ring oscillator for obtaining a stable output frequency using a voltage having a positive temperature coefficient.
  • the current bias circuit comprises:
  • the first current mirror circuit includes a first transistor MP1 and a second transistor MP2; a source of the first transistor MP1 and a source of the second transistor MP2 are respectively connected to an external power source; a gate of the first transistor MP1 and a second transistor MP2 a gate connection; a gate and a drain of the second transistor MP2 are connected;
  • the second current mirror circuit includes a third transistor MN1 and a fourth transistor MN2; a gate of the third transistor MN1 and a gate of the fourth transistor MN2 are connected; a gate and a drain of the third transistor MN1 are respectively connected to the first transistor MP1 a drain connection; a source of the third transistor MN1 is grounded; a drain of the fourth transistor MN2 is connected to a drain of the second transistor MP2; a source of the fourth transistor MN2 is connected to one end of the first resistor; The second end is grounded.
  • the voltage generating circuit includes:
  • the gate of the fifth transistor MP3 and the gate of the sixth transistor MP4 are respectively connected to the gate of the first transistor MP1; the source of the fifth transistor MP3 and the source of the sixth transistor MP4 are respectively connected to an external power source; the fifth transistor The drain of the MP3 is respectively connected to the gate of the seventh transistor MP5 and the first end of the second resistor; the second end of the second resistor is grounded; the drain of the sixth transistor MP4 and the source of the seventh transistor MP5 and the The drain of the eighth transistor MN3 is connected; the drain of the seventh transistor MP5 is respectively connected to the gate of the eighth transistor MN3 and the anode of the current source; the cathode of the current source is grounded; and the source of the eighth transistor MN3 is grounded.
  • the ring oscillator of this embodiment adopts a common ring oscillator structure, including K input and output terminals connected in sequence, K is an odd number greater than or equal to 3; the power supply end of the inverter and the sixth transistor MP4 respectively The drain connection; the ground terminal of the inverter is grounded.
  • the inverters form a ring shape, and the devices are connected end to end to form a ring oscillator.
  • a current having a positive temperature coefficient is generated by a current bias circuit, thereby obtaining a voltage having a positive temperature coefficient.
  • the output frequency of the ring oscillator can be prevented from being affected by temperature, which greatly provides Output frequency stability; electricity generated by voltage
  • the circuit supplies voltage to the ring oscillator, which avoids the influence of the external power supply on the output frequency of the ring oscillator, and has good power supply rejection; when each device of the current bias circuit, the voltage generating circuit and the ring oscillator is manufactured by the same During the process, the threshold voltage of each device varies with temperature, which can compensate for the influence of the manufacturing process on the output frequency of the ring oscillator.
  • This embodiment describes the present invention in detail through an actual scenario.
  • the schematic diagram of the ring oscillator frequency control circuit of this embodiment is shown in FIG. 2.
  • the embodiment includes a PTAT (proportional to absolute temperature, proportional to absolute temperature) current bias generating circuit (corresponding to the current bias circuit described above), a ring oscillator control voltage VOSC (V indicates voltage; OSC is oscillator, oscillator)
  • the generating circuit (corresponding to the above voltage generating circuit) and a ring oscillator are three parts.
  • the current bias generating circuit is composed of a first transistor MP1, a second transistor MP2, a third transistor MN1, a fourth transistor MN2, and a first resistor R1.
  • the gates of the first transistor MP1 and the second transistor MP2 are connected together to form a current mirror, while the gate of the second transistor MP2 is connected to the drain thereof, and the gate and the drain of the third transistor MN1 are connected together and the first transistor
  • the drain of the MP1 is connected
  • the gate of the fourth transistor MN2 is connected to the gate of the third transistor MN1
  • the drain of the fourth transistor MN2 is connected to the drain of the second transistor MP2, and the source of the third transistor MN1 Grounding
  • the source of the fourth transistor MN2 is connected to one end of the first resistor R1, and the other end of the first resistor R1 is connected to the ground.
  • the ring oscillator control voltage VOSC generating circuit is composed of a fifth transistor MP3, a sixth transistor MP4, a seventh transistor MP5, an eighth transistor MN3, a second resistor R2, and a current source IO.
  • the gates of the fifth transistor MP3 and the sixth transistor MP4 are connected to the gates of the first transistor MP1 and the second transistor MP2, and the drains of the fifth transistor MP3 and the one end of the second resistor R2 and the gate of the seventh transistor MP5 are respectively The pole is connected, the other end of the second resistor R2 is grounded, the drain of the sixth transistor MP4 is connected to the drain of the eighth transistor MN3 and the source of the seventh transistor MP5, and the drain of the seventh transistor MP5 and the current source IO
  • the gate of the eighth transistor MN3 is connected, and the source of the eighth transistor MN3 is grounded.
  • the fifth transistor MP3 supplies a current of a positive temperature coefficient to the second resistor R2, and obtains a voltage of a positive temperature coefficient on the second resistor R2, and the current source IO is used to determine the quiescent current in the seventh transistor MP5, thereby determining the seventh a voltage between the gate and the source of the transistor MP5;
  • the sixth transistor MP4 is for supplying an operating current to the seventh transistor MP5, the eighth transistor MN3, and the ring oscillator;
  • the source voltage of the seventh transistor MP5 is the seventh transistor MP5
  • the eighth transistor MN3 is used to adjust and stabilize the VOSC size; when the VOSC is increased, the drain voltage of the seventh transistor MP5,
  • the gate voltage of the eighth transistor MN3 increases, and the eighth transistor MN3 pulls down the VOSC to suppress the increase of the VOSC; on the contrary, when the VOSC decrease
  • the ring oscillator circuit is composed of a K-stage inverter, and the power of the CMOS inverter is connected to the drain of the eighth transistor MN3, that is, the VOSC node.
  • the output of the first stage inverter is connected to the input of the second stage inverter, the output of the second stage inverter is connected to the input of the third stage, and so on, and the output of the K-1 stage inverter is connected to the Kth
  • the input of the stage inverter, the output of the Kth stage inverter is connected to the input of the first stage inverter.
  • the ring oscillator consists of a conventional CMOS inverter.
  • the output frequency of this type of ring oscillator decreases with increasing temperature, while the output frequency increases as the supply voltage of the ring oscillator increases.
  • the power supply voltage of the ring oscillator needs to rise with the increase of temperature, so that the output frequency of the ring oscillator does not change with temperature.
  • the power supply voltage of the inverter chain in the ring oscillator is not affected by the external power supply voltage.
  • the output frequency of the ring oscillator varies with the process, mainly caused by the threshold voltage variation of the device in the inverter.
  • the control voltage of the ring oscillator needs to change with the process to compensate. Output frequency changes due to process variations.
  • the output current I of the PTAT current bias generating circuit is:
  • V gs, MN1 is the voltage difference between the gate and the source of the third transistor MN1;
  • V gs, MN2 is the voltage difference between the gate and the source of the fourth transistor MN2;
  • ⁇ V GS is V gs, The voltage difference between MN1 and Vgs, MN2 .
  • N is the ratio of the aspect ratio of the fourth transistor MN2 to the third transistor MN1;
  • V T is a thermal voltage having a positive temperature coefficient;
  • n is a subthreshold slope factor.
  • the resistor When the resistor is a low temperature coefficient poly resistor, the current has a positive temperature coefficient.
  • the PMOS current mirror a voltage proportional to the temperature is generated on the second resistor R2, and the threshold voltage of the seventh transistor MP5 is a negative temperature coefficient voltage.
  • a positive temperature coefficient By appropriately adjusting the magnitude of the second resistor R2, a positive temperature coefficient can be obtained.
  • Voltage VOSC Voltage VOSC:
  • V th is the threshold voltage of the MOS transistor
  • VOSC is a voltage independent of the external power supply voltage. Therefore, it can ensure that the ring oscillator is not affected by the external power supply voltage and has high power supply rejection characteristics.
  • VOSC is a positive temperature coefficient voltage, which just compensates. The negative temperature characteristic of the output frequency of the CMOS ring oscillator ensures that the output frequency is not affected by the ambient temperature.
  • VOSC is a voltage that varies with the threshold voltage of the device, compensating for the voltage difference caused by the process characteristics of the CMOS ring oscillator. .
  • the output frequency of the CMOS ring oscillator decreases with increasing temperature.
  • a set of actual data is: at a supply voltage of 1.2V for the ring oscillator, the output frequency is 35MHz at a temperature of -40°; At 25°, the output frequency of the oscillator is 30MHz; at 90°, the output frequency is 25MHz.
  • the supply voltage of the ring oscillator is required to have a positive temperature characteristic.
  • the ring oscillator output frequency is 25MHz; when the power supply voltage is 1.2V, the output frequency is 30MHz; when the power supply voltage is 1.3V, the output frequency is 35MHz.
  • the positive temperature characteristic of the ring oscillator's supply voltage is just able to compensate for its own negative temperature characteristics, so that the output frequency of the ring oscillator does not change with temperature.
  • the output frequency of the ring oscillator is the same.
  • the voltage change and the temperature change are set to a ratio, which can simultaneously cancel the interference of the change of the change and the temperature on the output frequency of the ring oscillator.
  • the method of adjusting the flat rate is similar to the above, and will not be described here.
  • the invention has the characteristics of process compensation and temperature compensation, and has high power supply suppression characteristics, and can ensure high precision of the output frequency of the oscillator.
  • the ring oscillator proposed by the present invention comprises at least one current generating circuit, an oscillator control voltage generating circuit and a ring oscillator circuit.
  • the ring oscillator control voltage generating circuit of the present invention can generate a positive temperature coefficient voltage to compensate the negative temperature characteristic of a common CMOS inverter type ring oscillator; the control voltage of the ring oscillator can compensate the oscillation with the process variation of the device.
  • the frequency fluctuation caused by the process variation of the device; and the control voltage is not affected by the external power supply, ensuring the high power supply rejection characteristic of the ring oscillator.
  • the ring oscillator control voltage generating circuit generates a control voltage of the oscillator, and the voltage does not need to be modified by a process, and the magnitude of the voltage is independent of the absolute values of the first resistor R1 and the second resistor R2, and only the first resistor R1 and the second The ratio between the resistors R2 is related.
  • the third transistor MN1, the fourth transistor MN2, the first transistor MP1, the second transistor MP2, the fifth transistor MP3, and the sixth transistor MP4 in the current generating circuit may use a field effect transistor MOSFET or a bipolar transistor BJT.
  • the output frequency has high power supply rejection characteristics; the voltage generation circuit generates a control voltage independent of the power supply voltage, achieving high power supply rejection of the ring oscillator output frequency.
  • control voltage of the ring oscillator varies with the manufacturing process of the device, and the process compensation for the output frequency of the ring oscillator is realized.
  • the output frequency of the ring oscillator realizes the process compensation, and does not need to
  • a high-precision oscillator can be realized by correcting the size and size of a resistor R1 and a second resistor R2.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

提供一种环形振荡器的频率控制方法及电路。该方法包括以下步骤:通过电流偏置电路得到一具有正温度系数的电流;利用所述具有正温度系数的电流得到一和所述具有正温度系数的电流成设定比例的具有正温度系数的电压;将所述具有正温度系数的电压施加到环形振荡器上,得到稳定的输出频率。该方法能够使得环形振荡器的输出频率不受温度影响,极大地提供了输出频率的稳定性;该方法避免了外部电源对环形振荡器输出频率的影响,具有很好的电源抑制性;当电流偏置电路、电压产生电路和环形振荡器的每个器件都采用同一制造工艺时,每个器件的阈值电压的大小随温度的变化也相同,能够补偿制造工艺对环形振荡器输出频率的影响。

Description

一种环形振荡器的频率控制方法及电路 技术领域
本发明涉及控制电路技术领域,具体地,涉及一种环形振荡器的频率控制方法及电路。
背景技术
时钟电路是现代芯片系统中必不可少的模块,为系统提供精确的时钟。时钟电路的实现方式主要有晶体振荡器、锁相环时钟电路、弛张振荡器、环形振荡器等。环形振荡器因结构简单和低功耗的特性,在频率精度要求不高的场合得到了广泛的应用。然而,普通的环形振荡器受电源、环境温度等外部因素影响较大,同时受制造工艺的影响较大,因此,普通的环形振荡器的输出频率精度较差,影响芯片系统的性能。
当前有多种方案对环形振荡器进行了结构上的优化设计。其中,一种较为常见的结构为通过电流受限的反相器组成环形振荡器,因此振荡器的振荡频率与电流相关,通过对参考电流生成单元进行改进,从而提高了输出频率的环境温度特性。
然而这类方案最后输出频率的精度主要取决于参考电流生成单元设计是否能正好抵消相应的温度系数;同时因为振荡器直接由电源电压供电,输出频率受外部电源电压影响较大。
如上所述,普通环形振荡器的输出频率受制造工艺、电源电压及环境温度的影响较大,致使输出时钟的频率精度无法满足系统的要求。
对于通过电流受限的反相器组成的环形振荡器方案来说,需要合理设计电流生成电路,配置合适的温度系数与后面的振荡器的温度特性进行补偿。由于设计没有考虑振荡器受电源电压、器件制造工艺的影响,因此,环形振荡器的输出频率的精度受到限制,不能较好满足系统对时钟的要求。
发明内容
本发明提供一种环形振荡器的频率控制方法及电路,用以解决现有环形振荡器存在的输出频率精度低等不足。
为解决上述技术问题,本发明提供一种环形振荡器的频率控制方法,该方法包括以下步骤:
通过电流偏置电路得到一具有正温度系数的电流;
利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压;
将具有正温度系数的电压施加到环形振荡器上,得到稳定的输出频率。
优选地,通过电流偏置电路得到一具有正温度系数的电流具体为:
电流偏置电路使得外部电源在电流偏置电路内产生的电流流过一具有正温度系数的器件;对具有正温度系数的器件的参数进行设定,得到一具有正温度系数的电流。
优选地,电流偏置电路使得外部电源在电流偏置电路内产生的电流流过一具有正温度系数的器件具体为:
电流偏置电路通过电流镜电路使得外部电源在电流偏置电路内产生一路不受外部电源控制的电流;将不受外部电源控制的电流通过一具有正温度系数的器件。
优选地,利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压具体为:
将具有正温度系数的电流接入电压产生电路;对电压产生电路内的器件参数进行设定,得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压。
本发明还提供了一种环形振荡器的频率控制电路,该电路包括:
电流偏置电路,用于得到一具有正温度系数的电流;
电压产生电路;用于利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压;
环形振荡器,用于利用具有正温度系数的电压得到稳定的输出频率。
优选地,电流偏置电路包括:
第一电流镜电路、第二电流镜电路和第一电阻R1;
第一电流镜电路包括第一晶体管MP1和第二晶体管MP2;第一晶体管MP1的源极和第二晶体管MP2的源极分别与外部电源连接;第一晶体管MP1的栅极和第二晶体管MP2的栅极连接;第二晶体管MP2的栅极和漏极连接;
第二电流镜电路包括第三晶体管MN1和第四晶体管MN2;第三晶体管MN1的栅极和第四晶体管MN2的栅极连接;第三晶体管MN1的栅极和漏极分别与第一晶体管MP1的漏极连接;三晶体管MN1的源极接地;所属第四晶体管MN2的漏极和第二晶体管MP2的漏极连接;所属第四晶体管MN2的源极和第一电阻R1的一端连接;第一电阻R1的第二端接地。
优选地,电压产生电路包括:
第五晶体管MP3、第六晶体管MP4、第七晶体管MP5、第八晶体管MN3、电流源和第二电阻R2;
第五晶体管MP3的栅极和第六晶体管MP4的栅极分别与第一晶体管MP1的栅极连接;第五晶体管MP3的源极和第六晶体管MP4的源极分别与外部电源连接;第五晶体管MP3的漏极分别与第七晶体管MP5的栅极和第二电阻R2的第一端连接;第二电阻R2的第二端接地;第六晶体管MP4的漏极分别与第七晶体管MP5的源极和第八晶体管MN3的漏极连接;第七晶体管MP5的漏极分别与第八晶体管MN3的栅极和电流源的正极连接;电流源的负极接地;第八晶体管MN3的源极接地。
优选地,环形振荡器包括K个输入端和输出端依次相连的反相器,K为大于等于3的奇数;反相器的电源端分别与第六晶体管MP4的漏极连接;反相器的接地端接地。
本发明的上述技术方案的有益效果如下:
上述技术方案中,通过电流偏置电路产生具有正温度系数的电流,进而得到具有正温度系数的电压,通过对器件参数的设定,能够使得环形振荡器的输出频率不受温度影响,极大地提供了输出频率的稳定性;通过电压产生电路为环形振荡器提供电压,避免了外部电源对环形振荡器输出频率的影响,具有很好的电源抑制性;当电流偏置电路、电压产生电路和环 形振荡器的每个器件都采用同一制造工艺时,每个器件的阈值电压的大小随温度的变化也相同,能够补偿制造工艺对环形振荡器输出频率的影响。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为实施例1的方法流程图;
图2为实施例3的环形振荡器频率控制电路的原理图。
具体实施方式
下面将结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
为了解决现有环形振荡器存在的输出频率精度低等不足,本发明提供了一种环形振荡器的频率控制方法及电路。
实施例1
本实施例提供了一种环形振荡器的频率控制方法,本实施例方法的流程图如图1所示,该方法包括以下步骤:
S1:通过电流偏置电路得到一具有正温度系数的电流;
S2:利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压;
S3:将具有正温度系数的电压施加到环形振荡器上,得到稳定的输出频率。
本实施例通过电流偏置电路产生具有正温度系数的电流,进而得到具有正温度系数的电压,通过对器件参数的设定,能够使得环形振荡器的输出频率不受温度影响,极大地提供了输出频率的稳定性;通过电压产生电路为环形振荡器提供电压,避免了外部电源对环形振荡器输出频率的影响,具有很好的电源抑制性;当电流偏置电路、电压产生电路和环形振荡器的每个器件都采用同一制造工艺时,每个器件的阈值电压的大小随温度 的变化也相同,能够补偿制造工艺对环形振荡器输出频率的影响。
为了避免外部电源的电压波动对本实施例中器件的影响,本实施例采用电流镜实现对电流的单独控制。故步骤S1通过电流偏置电路得到一具有正温度系数的电流具体为:
电流偏置电路通过电流镜电路使得外部电源在电流偏置电路内产生一路不受外部电源控制的电流;将不受外部电源控制的电流通过一具有正温度系数的器件。正温度系数指的是随着温度的升高,器件的电学性能(电压值、电流值或电阻值等)也升高;同理,负温度系数指的是随着温度的降低,器件的电学性能(电压值、电流值或电阻值等)也降低。如,环形振荡器采用的CMOS反相器就具有负温度系数。
由于一个电路通常包含多个用电器件,每个器件随温度变化其电学性能可能不同,所以需要对电路中的器件的参数进行选择或调整。本实施例则是对具有正温度系数的器件的参数进行设定,得到一具有正温度系数的电流。
本实施例的步骤S2利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压具体为:
得到具有正温度系数的电流后,将具有正温度系数的电流接入电压产生电路,就能够在电阻或其他器件上得到具有正温度系数的电压;通过对电压产生电路内的器件参数进行设定,就能够得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压。设定比例的意思是:根据环形振荡器的输出频率受到的温度的影响和电压的影响,对器件的参数进行设定,使得温度和电压对环形振荡器的输出频率的影响相互抵消掉,从而达到稳定频率的目的。
实施例2
本实施例和实施例1属于相同的发明构思,本实施例提供了一种环形振荡器的频率控制电路,该电路包括:
电流偏置电路,用于得到一具有正温度系数的电流;
电压产生电路;用于利用具有正温度系数的电流得到一和具有正温度系数的电流成设定比例的具有正温度系数的电压;
环形振荡器,用于利用具有正温度系数的电压得到稳定的输出频率。
其中,电流偏置电路包括:
第一电流镜电路、第二电流镜电路和第一电阻R1;
第一电流镜电路包括第一晶体管MP1和第二晶体管MP2;第一晶体管MP1的源极和第二晶体管MP2的源极分别与外部电源连接;第一晶体管MP1的栅极和第二晶体管MP2的栅极连接;第二晶体管MP2的栅极和漏极连接;
第二电流镜电路包括第三晶体管MN1和第四晶体管MN2;第三晶体管MN1的栅极和第四晶体管MN2的栅极连接;第三晶体管MN1的栅极和漏极分别与第一晶体管MP1的漏极连接;第三晶体管MN1的源极接地;所属第四晶体管MN2的漏极和第二晶体管MP2的漏极连接;所属第四晶体管MN2的源极和第一电阻的一端连接;第一电阻的第二端接地。
电压产生电路包括:
第五晶体管MP3、第六晶体管MP4、第七晶体管MP5、第八晶体管MN3、电流源和第二电阻R2;
第五晶体管MP3的栅极和第六晶体管MP4的栅极分别与第一晶体管MP1的栅极连接;第五晶体管MP3的源极和第六晶体管MP4的源极分别与外部电源连接;第五晶体管MP3的漏极分别与第七晶体管MP5的栅极和第二电阻的第一端连接;第二电阻的第二端接地;第六晶体管MP4的漏极分别与第七晶体管MP5的源极和第八晶体管MN3的漏极连接;第七晶体管MP5的漏极分别与第八晶体管MN3的栅极和电流源的正极连接;电流源的负极接地;第八晶体管MN3的源极接地。
本实施例的环形振荡器采用常见的环形振荡器结构,包括K个输入端和输出端依次相连的反相器,K为大于等于3的奇数;反相器的电源端分别与第六晶体管MP4的漏极连接;反相器的接地端接地。反相器组成环状,器件之间首尾相连构成环形振荡器。
本实施例通过电流偏置电路产生具有正温度系数的电流,进而得到具有正温度系数的电压,通过对器件参数的设定,能够使得环形振荡器的输出频率不受温度影响,极大地提供了输出频率的稳定性;通过电压产生电 路为环形振荡器提供电压,避免了外部电源对环形振荡器输出频率的影响,具有很好的电源抑制性;当电流偏置电路、电压产生电路和环形振荡器的每个器件都采用同一制造工艺时,每个器件的阈值电压的大小随温度的变化也相同,能够补偿制造工艺对环形振荡器输出频率的影响。
实施例3
本实施例通过一个实际的场景对本发明进行详细说明。本实施例的环形振荡器频率控制电路的原理图如图2所示。
本实施例包括一个PTAT(proportional to absolute temperature,与绝对温度成正比的)电流偏置产生电路(对应上述电流偏置电路)、环形振荡器控制电压VOSC(V表示电压;OSC为oscillator,振荡器)产生电路(对应上述电压产生电路)和一个环形振荡器三部分。其中,环形振荡器级包括K级CMOS反相器(K>=3,为奇数)。图2中给出了一个K级环形振荡器的电路图。
电流偏置产生电路由第一晶体管MP1、第二晶体管MP2、第三晶体管MN1、第四晶体管MN2和第一电阻R1构成。第一晶体管MP1和第二晶体管MP2的栅极连接在一起构成电流镜,同时第二晶体管MP2的栅极连接其漏极,第三晶体管MN1的栅极和漏极连接在一起并与第一晶体管MP1的漏极相连接,第四晶体管MN2的栅极与第三晶体管MN1的栅极连接一起,第四晶体管MN2的漏极与第二晶体管MP2的漏极相连接,第三晶体管MN1的源极接地,第四晶体管MN2的源极连接第一电阻R1的一端,第一电阻R1的另外一端连接到地。
环形振荡器控制电压VOSC产生电路由第五晶体管MP3、第六晶体管MP4、第七晶体管MP5、第八晶体管MN3、第二电阻R2和电流源IO构成。第五晶体管MP3、第六晶体管MP4的栅极与第一晶体管MP1和第二晶体管MP2的栅极相连接,第五晶体管MP3的漏极分别与第二电阻R2的一端、第七晶体管MP5的栅极相连接,第二电阻R2的另一端接地,第六晶体管MP4的漏极与第八晶体管MN3的漏极和第七晶体管MP5的源极相连接,第七晶体管MP5的漏极与电流源IO、第八晶体管MN3的栅极相连接,第八晶体管MN3的源极接地。
第五晶体管MP3向第二电阻R2提供正温度系数的电流,并在第二电阻R2上得到一个正温度系数的电压,电流源IO用来确定第七晶体管MP5中的静态电流,从而确定第七晶体管MP5的栅极和源极之间的电压;第六晶体管MP4用来向第七晶体管MP5、第八晶体管MN3和环形振荡器提供工作电流;第七晶体管MP5的源极电压为第七晶体管MP5的栅源电压和第二电阻R2的电压之和,即环形振荡器的控制电压VOSC;第八晶体管MN3用来调节并稳定VOSC大小;当VOSC增大时,第七晶体管MP5的漏极电压、第八晶体管MN3的栅极电压增大,第八晶体管MN3对VOSC下拉,抑制VOSC的增大;相反,当VOSC减小时,第八晶体管MN3的导通电流减小,抑制VOSC的减小。
环形振荡器电路由K级反相器构成,CMOS反相器的电源连接第八晶体管MN3的漏极,即VOSC节点。第一级反相器的输出接第二级反相器的输入,第二级反相器的输出接第三级的输入,以此类推,第K-1级反相器的输出连接第K级反相器的输入,第K级反相器的输出连接第一级反相器的输入端。
环形振荡器由普通的CMOS反相器构成。该类型的环形振荡器的输出频率随温度的升高而减小,同时,输出频率随环形振荡器的电源电压的升高而增大。为了保证环形振荡器的输出频率不受温度影响,需要环形振荡器的电源电压随温度的升高而升高,保证环形振荡器的输出频率不随温度变化。为了保证环形振荡器的输出频率不受电源电压的影响,需要环形振荡器中反相器链的电源电压不受外部电源电压的影响。环形振荡器的输出频率随着工艺的变化而变化,主要是由反相器中器件的阈值电压变化引起,为了补偿工艺的变化,需要环形振荡器的控制电压随工艺的变化而变化,来补偿因工艺变化引起的输出频率变化。
其中,PTAT电流偏置产生电路的输出电流I为:
Figure PCTCN2014093455-appb-000001
其中,Vgs,MN1为第三晶体管MN1的栅极和源极之间的电压差;Vgs,MN2为第四晶体管MN2的栅极和源极之间的电压差;ΔVGS为Vgs,MN1和Vgs,MN2的电压 差。
由于第三晶体管MN1和第四晶体管MN2工作在亚阈值区,因此,公式(1)可以进一步写为:
Figure PCTCN2014093455-appb-000002
其中,N为第四晶体管MN2与第三晶体管MN1的宽长比的比值;VT为热电压,其具有正温度系数;n为亚阈值斜率因子。
当电阻采用低温度系数的poly电阻时,该电流具有正温度系数。通过PMOS电流镜,在第二电阻R2上产生一个与温度成正比的电压,第七晶体管MP5的阈值电压为负温度系数电压,通过适当调整第二电阻R2的大小,可以得到一个正温度系数的电压VOSC:
Figure PCTCN2014093455-appb-000003
其中,Vth为MOS管的阈值电压
第一,VOSC是一个与外部电源电压无关的电压,因此,能够保证环形振荡器不受外部电源电压的影响,具有高电源抑制特性;第二,VOSC是一个正温度系数的电压,正好补偿了CMOS环形振荡器输出频率的负温度特性,保证了输出频率不受环境温度的影响;第三,VOSC是一个随器件阈值电压变化的电压,补偿了CMOS环形振荡器的工艺特性带来的压差。
CMOS环形振荡器的输出频率随温度的升高而减小,一组实际中的数据为:在环形振荡器的电源电压为1.2V条件下,温度为-40°时,输出频率为35MHz;温度为25°时,振荡器的输出频率为30MHz;温度为90°时,输出频率为25MHz。
为了补偿环形振荡器输出频率的负温度特性,需要环形振荡器的电源电压具有正温度特性。在环境温度为25°时,电源电压为1.1V时,环形振荡器输出频率为25MHz;电源电压为1.2V时,输出频率为30MHz;电源电压为1.3V时,输出频率为35MHz。环形振荡器的电源电压的正温度特性正好能够补偿自身的负温度特性,使得环形振荡器的输出频率不随温度的变化而变化。
由上述数据可知,当温度变化为±Δ65°,且电压变化为±Δ0.1V时,环形振荡器的输出频率相同。同理,可以通过对器件参数的调整,使得电压的变化和温度的变化为设定比例,能够同时抵消变化和温度的变化对环形振荡器的输出频率的干扰。当器件、环境温度或其他因素发生变化时,对平率调整的方法和上述类似,此处不再赘述。
可见,本发明具有工艺补偿、温度补偿特性,同时具有较高的电源抑制特性,可以保证振荡器输出频率的高精度。
本发明提出的环形振荡器,包含至少一个电流产生电路、振荡器控制电压产生电路和环形振荡器电路。本发明的环形振荡器控制电压产生电路能够产生一个正温度系数的电压,来补偿普通CMOS反相器型环形振荡器的负温度特性;环形振荡器的控制电压能够随器件的工艺变化来补偿振荡器的工艺变化带来的频率波动;并且控制电压不受外部电源影响,保证了环形振荡器的高电源抑制特性。环形振荡器控制电压产生电路生成振荡器的控制电压,该电压不需要进行工艺修正,该电压的大小与第一电阻R1和第二电阻R2的绝对值无关,仅与第一电阻R1和第二电阻R2之间的比值相关。电流产生电路中第三晶体管MN1、第四晶体管MN2、第一晶体管MP1、第二晶体管MP2及第五晶体管MP3、第六晶体管MP4可以使用场效应晶体管MOSFET,也可以使用双极型晶体管BJT。
本发明具有如下技术优势:
技术优点一:采用正温度系数电压来补偿环形振荡器的负温度特性,利用两个电阻的比值可以得到一个精确的正温度系数电压;
技术优点二:输出频率的电源抑制特性较高;利用电压产生电路产生一个与电源电压无关的控制电压,实现了环形振荡器输出频率的高电源抑制。
技术优点三:环形振荡器的控制电压随器件制造工艺的变化而变化,实现了对环形振荡器输出频率的工艺补偿。
技术优点四:低功耗,电流偏置电路由于工作在亚阈值区,因此工作电流较小,功耗较低。
技术优点五:环形振荡器的输出频率实现工艺补偿,并且不需要对第 一电阻R1和第二电阻R2的尺寸、大小进行修正,就可实现高精度的振荡器。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种环形振荡器的频率控制方法,其特征是,该方法包括以下步骤:
    通过电流偏置电路得到一具有正温度系数的电流;
    利用所述具有正温度系数的电流得到一和所述具有正温度系数的电流成设定比例的具有正温度系数的电压;
    将所述具有正温度系数的电压施加到环形振荡器上,得到稳定的输出频率。
  2. 如权利要求1所述的方法,其特征是,所述通过电流偏置电路得到一具有正温度系数的电流具体为:
    所述电流偏置电路使得外部电源在所述电流偏置电路内产生的电流流过一具有正温度系数的器件;对所述具有正温度系数的器件的参数进行设定,得到一具有正温度系数的电流。
  3. 如权利要求2所述的方法,其特征是,所述电流偏置电路使得外部电源在所述电流偏置电路内产生的电流流过一具有正温度系数的器件具体为:
    所述电流偏置电路通过电流镜电路使得外部电源在所述电流偏置电路内产生一路不受外部电源控制的电流;将所述不受外部电源控制的电流通过一具有正温度系数的器件。
  4. 如权利要求3所述的方法,其特征是,所述利用所述具有正温度系数的电流得到一和所述具有正温度系数的电流成设定比例的具有正温度系数的电压具体为:
    将所述具有正温度系数的电流接入电压产生电路;对所述电压产生电路内的器件参数进行设定,得到一和所述具有正温度系数的电流成设定比例的具有正温度系数的电压。
  5. 一种环形振荡器的频率控制电路,其特征是,该电路包括:
    电流偏置电路,用于得到一具有正温度系数的电流;
    电压产生电路,用于利用所述具有正温度系数的电流得到一和所述具 有正温度系数的电流成设定比例的具有正温度系数的电压;
    环形振荡器,用于利用所述具有正温度系数的电压得到稳定的输出频率。
  6. 如权利要求5所述的电路,其特征是,所述电流偏置电路包括:
    第一电流镜电路、第二电流镜电路和第一电阻R1;
    所述第一电流镜电路包括第一晶体管MP1和第二晶体管MP2;所述第一晶体管MP1的源极和第二晶体管MP2的源极分别与外部电源连接;所述第一晶体管MP1的栅极和第二晶体管MP2的栅极连接;所述第二晶体管MP2的栅极和漏极连接;
    所述第二电流镜电路包括第三晶体管MN1和第四晶体管MN2;所述第三晶体管MN1的栅极和第四晶体管MN2的栅极连接;所述第三晶体管MN1的栅极和漏极分别与所述第一晶体管MP1的漏极连接;所述第三晶体管MN1的源极接地;所属第四晶体管MN2的漏极和所述第二晶体管MP2的漏极连接;所属第四晶体管MN2的源极和所述第一电阻R1的一端连接;所述第一电阻R1的第二端接地。
  7. 如权利要求5或6所述的电路,其特征是,所述电压产生电路包括:
    第五晶体管MP3、第六晶体管MP4、第七晶体管MP5、第八晶体管MN3、电流源和第二电阻R2;
    所述第五晶体管MP3的栅极和第六晶体管MP4的栅极分别与所述第一晶体管MP1的栅极连接;所述第五晶体管MP3的源极和第六晶体管MP4的源极分别与外部电源连接;所述第五晶体管MP3的漏极分别与所述第七晶体管MP5的栅极和第二电阻R2的第一端连接;所述第二电阻R2的第二端接地;所述第六晶体管MP4的漏极分别与所述第七晶体管MP5的源极和第八晶体管MN3的漏极连接;所述第七晶体管MP5的漏极分别与所述第八晶体管MN3的栅极和电流源的正极连接;所述电流源的负极接地;所述第八晶体管MN3的源极接地。
  8. 如权利要求7所述的电路,其特征是,所述环形振荡器包括K个输入端和输出端依次相连的反相器,K为大于等于3的奇数;所述反相器的电源端分别与所述第六晶体管MP4的漏极连接;所述反相器的接地端 接地。
PCT/CN2014/093455 2014-05-12 2014-12-10 一种环形振荡器的频率控制方法及电路 WO2015172555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410197224.6A CN105099445B (zh) 2014-05-12 2014-05-12 一种环形振荡器的频率控制方法及电路
CN201410197224.6 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015172555A1 true WO2015172555A1 (zh) 2015-11-19

Family

ID=54479272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093455 WO2015172555A1 (zh) 2014-05-12 2014-12-10 一种环形振荡器的频率控制方法及电路

Country Status (2)

Country Link
CN (1) CN105099445B (zh)
WO (1) WO2015172555A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026984A (zh) * 2016-06-17 2016-10-12 广州中大微电子有限公司 一种无源rfid标签电容式传感器的接口电路
CN107465400A (zh) * 2017-09-12 2017-12-12 深圳市博巨兴实业发展有限公司 一种温度系数可调的张驰振荡器
CN111313891A (zh) * 2018-12-12 2020-06-19 上海川土微电子有限公司 一种环形压控振荡器
CN111781984A (zh) * 2020-08-29 2020-10-16 深圳市爱协生科技有限公司 一种por电路及其设计方法
CN113271085A (zh) * 2020-02-14 2021-08-17 瑞昱半导体股份有限公司 环形振荡器及其方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365844B (zh) * 2018-05-10 2023-08-01 厦门华厦学院 一种可单片集成的负温度系数补偿振荡器电路
CN108631728B (zh) * 2018-05-10 2023-08-11 厦门华厦学院 一种可单片集成的正温度系数补偿振荡器电路
CN110557103B (zh) * 2018-06-04 2024-07-30 江西指芯智能科技有限公司 一种振荡电路
CN109286370B (zh) * 2018-09-03 2022-04-12 宁波芯涌微电子有限公司 时钟振荡器及其控制方法
CN109274353A (zh) * 2018-09-29 2019-01-25 上海华虹宏力半导体制造有限公司 环形振荡器
CN110011644B (zh) * 2019-04-18 2023-03-14 成都启英泰伦科技有限公司 一种环形振荡器
EP4044434B1 (en) 2020-10-28 2024-01-10 Changxin Memory Technologies, Inc. Clock generation circuit, memory, and clock duty cycle calibration method
CN114499506A (zh) 2020-10-28 2022-05-13 长鑫存储技术有限公司 振荡器及时钟产生电路
CN114421958A (zh) * 2020-10-28 2022-04-29 长鑫存储技术有限公司 振荡电路
US11424745B2 (en) 2020-10-28 2022-08-23 Changxin Memory Technologies, Inc. Oscillation circuit and clock generation circuit
KR102719259B1 (ko) 2020-10-28 2024-10-21 창신 메모리 테크놀로지즈 아이엔씨 교정 회로, 메모리 및 교정 방법
CN114417772A (zh) 2020-10-28 2022-04-29 长鑫存储技术有限公司 振荡器版图
CN113794446B (zh) * 2021-09-17 2023-10-27 上海磐启微电子有限公司 一种频率不随温度和电源电压变化的rc振荡器
CN114608622B (zh) * 2022-03-17 2023-10-13 电子科技大学 一种集成温度校准的片上电磁传感器
CN115664382B (zh) * 2022-10-12 2023-09-19 北京博瑞微电子科技有限公司 振荡器电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180995A (en) * 1991-09-13 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Temperature-compensated ring oscillator circuit formed on a semiconductor substrate
US5465063A (en) * 1992-08-07 1995-11-07 Mitsubishi Denki Kabushiki Kaisha Pulse generating circuit with temperature compensation
US20060097805A1 (en) * 2004-09-14 2006-05-11 Stmicroelectronics Sas Temperature compensation for a voltage-controlled oscillator
US20090051443A1 (en) * 2007-08-24 2009-02-26 Illegems Paul F Oscillator Stabilized for Temperature and Power Supply Variations
CN101751062A (zh) * 2008-12-01 2010-06-23 芯光飞株式会社 用于改善环形振荡器频率变动的低噪声基准电压产生电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684354B (zh) * 2013-05-21 2015-01-07 国家电网公司 一种环形振荡电路、环形振荡器及其实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180995A (en) * 1991-09-13 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Temperature-compensated ring oscillator circuit formed on a semiconductor substrate
US5465063A (en) * 1992-08-07 1995-11-07 Mitsubishi Denki Kabushiki Kaisha Pulse generating circuit with temperature compensation
US20060097805A1 (en) * 2004-09-14 2006-05-11 Stmicroelectronics Sas Temperature compensation for a voltage-controlled oscillator
US20090051443A1 (en) * 2007-08-24 2009-02-26 Illegems Paul F Oscillator Stabilized for Temperature and Power Supply Variations
CN101751062A (zh) * 2008-12-01 2010-06-23 芯光飞株式会社 用于改善环形振荡器频率变动的低噪声基准电压产生电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026984A (zh) * 2016-06-17 2016-10-12 广州中大微电子有限公司 一种无源rfid标签电容式传感器的接口电路
CN107465400A (zh) * 2017-09-12 2017-12-12 深圳市博巨兴实业发展有限公司 一种温度系数可调的张驰振荡器
CN107465400B (zh) * 2017-09-12 2023-04-28 深圳市博巨兴微电子科技有限公司 一种温度系数可调的张驰振荡器
CN111313891A (zh) * 2018-12-12 2020-06-19 上海川土微电子有限公司 一种环形压控振荡器
CN111313891B (zh) * 2018-12-12 2023-08-08 上海川土微电子有限公司 一种环形压控振荡器
CN113271085A (zh) * 2020-02-14 2021-08-17 瑞昱半导体股份有限公司 环形振荡器及其方法
CN111781984A (zh) * 2020-08-29 2020-10-16 深圳市爱协生科技有限公司 一种por电路及其设计方法
CN111781984B (zh) * 2020-08-29 2024-11-08 深圳市爱协生科技股份有限公司 一种por电路及其设计方法

Also Published As

Publication number Publication date
CN105099445B (zh) 2018-02-23
CN105099445A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015172555A1 (zh) 一种环形振荡器的频率控制方法及电路
CN103513689B (zh) 一种低功耗基准源电路
CN107305403B (zh) 一种低功耗电压产生电路
CN103105883A (zh) 具有负载检测电路及动态零点补偿电路的线性稳压器
CN105320205A (zh) 一种具有低失调电压高psrr的带隙基准源
US11175686B2 (en) Low-temperature drift ultra-low-power linear regulator
CN104111688B (zh) 一种具有温度监测功能的BiCMOS无运放带隙电压基准源
EP2706427B1 (en) Chopper based relaxation oscillator
CN103412610B (zh) 低功耗无电阻全cmos电压基准电路
TW202008100A (zh) 具製程及溫度追蹤機制的參考電壓產生器
CN103440009B (zh) 一种启动电路及带该启动电路的稳压电路
TWI700571B (zh) 參考電壓產生裝置
CN101149628A (zh) 一种基准电压源电路
CN102545779B (zh) 一种无晶振时钟电路
CN107450652A (zh) 一种电压基准源电路
CN106155171A (zh) 线性温度系数补偿的带隙电压基准电路
CN105739596B (zh) 一种应用二次正温度系数补偿的高精度基准电压源电路
TWI396063B (zh) 無esr電阻補償之低壓降線性穩壓器
CN105656481B (zh) 振荡频率具有极低温度离散的尾电流型环形振荡电路
CN115021746B (zh) 环形振荡器补偿电路、cdr控制环路和接收器
CN102890526B (zh) 一种cmos带隙基准电压源
CN103135642B (zh) 一种环路补偿电路
CN211827062U (zh) 一种高精度高电源抑制比耗尽型电压基准电路
CN110365293B (zh) 振荡装置
TW202223583A (zh) 全金屬氧化物半導體場效應電晶體的電壓參考電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892058

Country of ref document: EP

Kind code of ref document: A1