[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015166627A1 - Transmission terminal apparatus, reception terminal apparatus, and communication system - Google Patents

Transmission terminal apparatus, reception terminal apparatus, and communication system Download PDF

Info

Publication number
WO2015166627A1
WO2015166627A1 PCT/JP2015/001834 JP2015001834W WO2015166627A1 WO 2015166627 A1 WO2015166627 A1 WO 2015166627A1 JP 2015001834 W JP2015001834 W JP 2015001834W WO 2015166627 A1 WO2015166627 A1 WO 2015166627A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal device
reception
transmission rate
training signal
Prior art date
Application number
PCT/JP2015/001834
Other languages
French (fr)
Japanese (ja)
Inventor
友昭 水田
貴之 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016515848A priority Critical patent/JP6238036B2/en
Publication of WO2015166627A1 publication Critical patent/WO2015166627A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to a transmission terminal device, a reception terminal device, and a communication system for a communication system that adaptively selects a transmission rate in accordance with the condition of a transmission path in a transmission method having multirate.
  • the power line communication (hereinafter referred to as PLC (Power Line Communication)) method uses a spread spectrum method for low-speed PLC (10 kHz to 450 kHz) communication, and the primary modulation method is BPSK (Binary Phase Shift Keying) or QPSK (Quadrature). A plurality of modulation schemes such as Phase Shift Keying and QAM (Quadrature Amplitude Modulation) are used.
  • the PLC method requires a transmission rate control method in which the noise level in the power line that is a communication path varies depending on the usage status of home appliances and follows the variation in the noise level. It was mainly developed by LAN (Local Area Network) method.
  • data frame transmission is performed by receiving a radio base station that has transmitted a data frame and an ACK frame that is an acknowledgment for the data transmission from the destination radio terminal apparatus or radio base station.
  • ACK frame that is an acknowledgment for the data transmission from the destination radio terminal apparatus or radio base station.
  • data frame transmission is “transmission failure” when no ACK frame is received.
  • transmission rate R1 when there are a plurality of transmission rates R1, R2, and R3 (ascending order) and transmission is performed at the transmission rate R1, transmission is performed when a plurality of consecutive transmission failures occur. Transmission is performed at a transmission rate R2 lower than the rate R1. On the other hand, when transmission is performed at a transmission rate R2, when transmission is successful a plurality of times, transmission is performed at a transmission rate R1, which is faster than the transmission rate R2, thereby improving efficiency. As described above, in the conventional multi-rate control, the transmission rate is adaptively controlled according to the state of the transmission path based on the success / failure of transmission.
  • An object of the present invention is to solve the above-described problems and to provide a transmission terminal device, a reception terminal device, and a communication system including them that can perform adaptive control of a transmission rate efficiently with a small traffic load as compared with the prior art. It is to provide.
  • the transmission terminal device and the reception terminal device are connected via a transmission path, a plurality of transmission rates can be selected, and training is transmitted from the transmission terminal device to the reception terminal device.
  • a transmission terminal device for a communication system that adaptively controls a transmission rate using signal reception success / failure information, transmits a training signal at a transmission rate higher than a transmission rate set next time, and receives the training signal from the reception terminal device.
  • a control circuit that determines and selects a transmission rate based on the reception success / failure information.
  • the control circuit sets the data size of the training signal to the number of data that can be detected as a bit error rate to be guaranteed at least according to the transmission rate.
  • control circuit widens the transmission interval of the training signal when the reception success / failure information from the reception terminal device fails to receive a plurality of times in succession.
  • the reception success / failure information from the reception terminal device includes reception quality
  • the control circuit has a reception quality difference obtained by subtracting the previous reception quality from the reception quality is a predetermined threshold value. In this case, the transmission interval of the training signal is shortened.
  • the reception success / failure information from the reception terminal device includes reception quality
  • the control circuit has a reception threshold value obtained by subtracting the previous reception quality from the reception quality at a predetermined threshold.
  • the transmission rate of the training signal is increased by a transmission rate difference higher than the normal transmission rate difference.
  • the control circuit transmits a plurality of training signals to the receiving terminal apparatus, and determines a transmission rate based on statistical information on the plurality of reception success / failure information from the receiving terminal apparatus. It is characterized by selecting.
  • the reception success / failure information from the reception terminal device includes reception quality
  • the control circuit transmits a training signal including data of a plurality of different transmission rates to the reception terminal device.
  • An error rate is estimated based on a plurality of reception qualities for data of a plurality of different transmission rates from the receiving terminal apparatus, and a transmission rate is judged and selected based on the estimated error rate.
  • the transmitting terminal device and the receiving terminal device are connected via a transmission path, a plurality of transmission rates can be selected, and training is sent from the transmitting terminal device to the receiving terminal device.
  • a reception terminal device for a communication system that adaptively controls a transmission rate using signal reception success / failure information, wherein control is performed so as to transmit reception success / failure information in response to a training signal from the transmission terminal device. It is characterized by comprising a control circuit.
  • a communication system includes the transmission terminal device and the reception terminal device.
  • the training signal is transmitted at a transmission rate higher than the transmission rate set next time, and the transmission rate is determined based on the reception success / failure information from the reception terminal device. select. Therefore, adaptive control of the transmission rate can be performed efficiently with a small traffic load as compared with the prior art.
  • FIG. 1 is a block diagram showing the configuration of the PLC communication system according to the first embodiment.
  • FIG. 2 is a table showing an example of a required SNR table for the transmission rate in the PLC communication system of FIG.
  • FIG. 3 is a diagram illustrating a packet format of a packet signal transmitted from the receiving terminal device of FIG. 1 toward the transmitting terminal device.
  • FIG. 4 is a graph showing a characteristic example of FER (no retransmission) with respect to SNR using the transmission rate used in PLC communication according to Embodiment 1 as a parameter.
  • FIG. 5 is a graph showing a characteristic example of a success rate with respect to an SNR using a transmission rate as a parameter when the spread spectrum method is used in the PLC communication according to the first embodiment.
  • FIG. 1 is a block diagram showing the configuration of the PLC communication system according to the first embodiment.
  • FIG. 2 is a table showing an example of a required SNR table for the transmission rate in the PLC communication system of FIG.
  • FIG. 6A is a timing chart illustrating an example of PLC communication according to Example 1-1.
  • FIG. 6B is a timing chart illustrating an example of PLC communication according to the embodiment 1-2.
  • FIG. 7 is a timing chart illustrating an example of PLC communication according to the embodiment 1-3.
  • FIG. 8 is a flowchart illustrating the training signal control process performed by the transmission terminal apparatus according to Embodiment 1-4.
  • FIG. 9 is a flowchart illustrating the training signal control process performed by the transmission terminal apparatus according to Embodiment 1-5.
  • FIG. 10 is a timing chart illustrating transmission rate adaptive control processing using a plurality of training signals according to Embodiment 1-6.
  • FIG. 11 is a timing chart illustrating transmission rate adaptive control processing using a training signal including a plurality of transmission rates according to Embodiment 1-7.
  • FIG. 12 is a block diagram illustrating a configuration of a wireless communication system according to a modification.
  • the PLC communication system according to the embodiment of the present invention can also be realized as a PLC communication method or program.
  • FIG. 1 is a block diagram showing a configuration of a PLC communication system according to the present embodiment.
  • the PLC communication system according to the present embodiment is configured to include a transmission terminal device 1A, a reception terminal device 2A, and a power line 3 that connects them, and the transmission terminal device 1A, the reception terminal device 2A, Packet communication between the two.
  • the transmission terminal apparatus 1A includes a transmission rate control circuit 10A, a transmission frame generation circuit 11, a modulator 12, a PLC transmission circuit 13, a combiner 14, a PLC reception circuit 15, a demodulator 16, And a separation circuit 17.
  • the reception terminal device 2A includes a transmission rate control circuit 20A, a transmission frame generation circuit 21, a modulator 22, a PLC transmission circuit 23, a combiner 24, a PLC reception circuit 25, a demodulator 26, and an SNR. And a measurement circuit 27.
  • the reception signal received from the reception terminal device 2A is sent to the PLC reception circuit 15 via the coupler 14 for connecting the power line 3 to the transmission terminal device 1A and the reception terminal device 2A.
  • the received signal is amplified and frequency-converted to an intermediate frequency or a baseband frequency.
  • the frequency-converted signal is demodulated by the demodulator 16.
  • the demodulated data signal is sent to the separation circuit 17, where it is separated into received data and a control signal for transmission rate switching control.
  • the transmission rate control circuit 10A sends an ACK signal, which is an acknowledgment signal received from the receiving terminal device 2A, to the transmission frame generation circuit 11.
  • FIG. 2 is a table showing an example of the required SNR table 31 for the transmission rate in the communication system of FIG.
  • the transmission rate and the required SNR are determined for each transmission rate mode in the modulation scheme used.
  • the transmission speed increases as the transmission rate R1 is approached, while the transmission speed decreases as the transmission rate R9 is approached.
  • FIG. 3 is a diagram showing a packet format of a packet signal transmitted from the receiving terminal device 2A of FIG. 1 toward the transmitting terminal device 1A.
  • the transmission frame generation circuit 21 generates transmission frame (packet format information frame) including “information regarding reception quality” in transmission data (acknowledgment ACK), and sends the transmission frame to the modulator 22.
  • transmitting terminal apparatus 1A transmits a training signal to receiving terminal apparatus 2A at a transmission rate higher than the transmission rate set next time, and transmits data based on an ACK signal from receiving terminal apparatus 2A.
  • the transmission rate is adaptively controlled. In particular, it is assumed that the relationship between the error rate and the SNR of each transmission rate is known in a transmission scheme in which a plurality of transmission rates can be selected based on the modulation degree and the coding rate.
  • the transmission rate is increased, the error rate that can be guaranteed is estimated based on the transmission success / failure information of the training signal using the test transmission rate, and the transmission rate that satisfies the target error rate is determined by determining the transmission rate. The rate can be selected reliably.
  • the ACK signal is, for example, any of the following three types.
  • An acknowledgment signal returned only when reception is successful in the receiving terminal device 2A (Example 1-1) (Note that if an ACK signal is received within a predetermined time after transmitting a training signal, “ "If reception is successful” (2) ACK signal (embodiment 1-2) including a reception success / failure signal (including information on reception success or reception failure), (3) An ACK signal (embodiments 1-2, 1-4, and 1-5) including a reception success / failure signal (including information on reception success and reception SNR).
  • the ACK signal may be any as long as the transmission terminal device 1A can determine reception success or reception failure.
  • the transmission frame generation circuit 11 generates a transmission frame for a packet signal to be transmitted at the transmission rate by the transmission rate control circuit 10A based on the transmission data, and sends the transmission frame to the modulator 12.
  • the transmitted transmission frame is modulated by a predetermined modulation method for PLC at a transmission rate by the transmission rate control circuit 10 A, and the modulated signal is sent to the PLC transmission circuit 13.
  • the PLC transmission circuit 13 frequency-converts the modulated signal, further amplifies the power to generate a transmission signal, and the transmission signal is transmitted to the receiving terminal device 2A via the coupler 14 and the power line 3.
  • the reception signal received from the transmission terminal device 1A is sent to the PLC reception circuit 25 via the coupler 24 for using the same transmission path for transmission and reception.
  • the received signal is amplified with low noise and frequency-converted to an intermediate frequency or a baseband frequency.
  • the frequency-converted signal is sent to the demodulator 26 and the SNR measurement circuit 27.
  • the frequency-converted signal is demodulated by the demodulator 26 and then sent to the transmission rate control circuit 20A and an external circuit as received data.
  • the SNR measurement circuit 27 is a SNIR (value of a ratio of a received signal level to a noise level at the time of reception (including interference wave power and noise power level, and may not include interference wave power).
  • SNR Signal to Noise and Interference Ratio
  • the transmission rate control circuit 20A determines whether it is “successful reception” or “reception failure” based on the received data and the SNR, and determines one of the three types of ACK signals according to the embodiment. It is generated and output to the transmission frame generation circuit 21. As shown in FIG. 4, the transmission frame generation circuit 21 generates a transmission frame having a packet format including transmission data (ACK signal) and sends the transmission frame to the modulator 22. The transmitted transmission frame is modulated by a predetermined modulation method for PLC at a transmission rate by the transmission rate control circuit 10A, and the modulated signal is sent to the PLC transmission circuit 23. The PLC transmission circuit 23 frequency-converts the modulated signal, further amplifies the power to generate a transmission signal, and the transmission signal is transmitted to the transmission terminal device 1 ⁇ / b> A via the coupler 24 and the power line 3.
  • FIG. 4 is a graph showing a characteristic example of a frame error rate (FER (Frame Error Rate)) (no retransmission) with respect to an SNR using a transmission rate used in PLC communication according to the present embodiment as a parameter.
  • FER Frame Error Rate
  • a transmission rate higher than the next-set transmission rate is set and transmitted in the training signal, and when the training signal is successfully transmitted, data is transmitted at the next-set transmission rate. It is characterized by transmitting.
  • a high transmission rate R7 has a higher required SNR than a transmission rate R8 to be set and an error is likely to occur. Therefore, if a training signal is successfully transmitted at a high transmission rate R7, the number of packets can be reduced.
  • a transmission rate that secures an error rate with a short number of data bits can be selected.
  • the frame error rate of the transmission rate R8 is 10 ⁇ 2 in the transmission line state where the frame error rate (FER) is 0.8 at the transmission rate R7. It is. Therefore, if a training signal of 5 packets is transmitted at the transmission rate R7 and reception is successful even with the training signal of 1 packet, it can be said that the frame error rate of the transmission rate R8 is 10 ⁇ 2 or less. If the error rate under the same condition is measured at the transmission rate R8, it is necessary to receive successfully 99 times or more out of 100 times.
  • the bit error rate for which the data size of the training signal is to be guaranteed at least is changed to the number of detectable data according to the transmission rate.
  • FIG. 5 is a graph showing a characteristic example of the success rate with respect to the SNR using the transmission rate as a parameter when the spread spectrum method is used in the PLC communication according to the present embodiment.
  • the higher the transmission rate the higher the required SNR.
  • the higher the SNR the higher the success rate.
  • FIG. 6A is a timing chart illustrating an example of PLC communication according to Example 1-1.
  • the transmitting terminal apparatus 1A transmits data at the current transmission rate R9, and sets a transmission rate R7 higher than the transmission rate R8 set next time as a training signal and transmits it. Then, when transmission of the training signal is successful based on the ACK signal from the receiving terminal device 2A, data is transmitted at the transmission rate R8 set next time. Therefore, the high transmission rate R7 has a higher required SNR than the transmission rate R8 to be set, and an error is likely to occur.
  • the transmission rate that secures the error rate can be selected.
  • FIG. 6B is a timing chart illustrating an example of PLC communication according to the embodiment 1-2.
  • the transmitting terminal apparatus 1A transmits data at the transmission rate R9, and then transmits a training signal at the transmission rate R7.
  • the receiving terminal device 2A returns an ACK signal including reception success / failure information to the transmitting terminal device 1A.
  • the transmission terminal device 1A confirms “successful reception” by the ACK signal, the transmission terminal device 1A starts data transmission at the transmission rate R8 set next time.
  • FIG. 7 is a timing chart illustrating an example of PLC communication according to the embodiment 1-3.
  • a training signal is transmitted continuously at a transmission rate R8 and a plurality of times, and the reception terminal device 2A fails to receive it
  • the transmission interval of the training signal is set. spread. That is, the number of data transmissions is increased, and the training signal transmission interval is increased. That is, in order to monitor the transmission path state with the reception success / failure information included in the ACK signal, transmission is performed once in several times. However, if there is no fluctuation in the transmission path, it becomes a useless load. Need to be suppressed. It is possible to suppress the load by transmitting a training signal having a higher transmission rate and determining that the current transmission rate is optimal when a failure occurs a plurality of times.
  • FIG. 8 is a flowchart illustrating the training signal control process by the transmission terminal device 1A according to the embodiment 1-4.
  • step S31 of FIG. 8 the transmission interval of the training signal is set to Ttr.
  • step S32 it is determined whether or not an ACK signal (successful reception) has been received. If YES, the process proceeds to step S33. If NO, Returns to step S32.
  • step S33 it is determined whether or not the SNR difference obtained by subtracting the previous received SNR from the received SNR in the ACK signal is equal to or larger than a predetermined threshold value SNR th + (for example, 3 dB). While the process proceeds to step S34, when the result is NO, the process returns to step S32.
  • step S34 the training signal transmission interval TTr is set to be shortened to Ttr- ⁇ Ttr, and the process returns to step S32.
  • the receiving terminal apparatus 2A returns an ACK signal including information on the received SNR to the transmitting terminal apparatus 1A in response to the training signal.
  • the SNR difference obtained by subtracting the previous reception SNR from the current reception SNR is equal to or greater than a predetermined threshold SNR th + , the transmission interval of the training signal is shortened.
  • the communication system can quickly follow fluctuations in the transmission path by adaptively controlling the transmission rate using a larger number of training signals.
  • FIG. 9 is a flowchart illustrating training signal control processing by the transmission terminal device 1A according to the embodiment 1-5.
  • step S41 of FIG. 9 the transmission rate of the training signal is set to Rtr.
  • step S42 it is determined whether or not an ACK signal (successful reception) has been received. If YES, the process proceeds to step S43, while NO. If so, the process returns to step S42.
  • step S43 it is determined whether or not the SNR difference obtained by subtracting the previous received SNR from the received SNR in the ACK signal is greater than or equal to a predetermined threshold value SNR th + (for example, 3 dB). If YES, step S44 is performed. On the other hand, if NO, the process proceeds to step S45.
  • SNR th + for example, 3 dB
  • step S44 the transmission rate Rtr of the training signal is set by increasing it by four steps (transmission rate difference), and the process returns to step S42.
  • step S45 the transmission rate Rtr of the training signal is set, for example, by two steps (transmission rate difference) as usual, and the process returns to step S42.
  • the receiving terminal apparatus 2A returns an ACK signal including information on the received SNR to the transmitting terminal apparatus 1A in response to the training signal.
  • the transmission rate of the training signal is increased.
  • the communication system can quickly follow large fluctuations in the transmission path by adaptively controlling the transmission rate using a higher-speed training signal.
  • the transmission interval of the training signal is shortened. Or, increase the transmission rate of the training signal.
  • the present invention is not limited to this, and when the SNR difference obtained by subtracting the previous reception SNR from the current reception SNR is equal to or greater than a predetermined threshold SNR th + , the transmission interval of the training signal is shortened, and the training signal The transmission rate may be increased.
  • FIG. 10 is a timing chart showing adaptive control processing of the transmission rate using a plurality of training signals according to Embodiment 1-6.
  • the transmission rate is controlled based on one ACK signal for one training signal.
  • the present invention is not limited to this, and the transmission rate may be controlled based on a plurality of ACK signals for a plurality of training signals as shown in FIG.
  • statistical information (success rate) of reception success / failure may be calculated based on a plurality of ACK signals, and the transmission rate may be controlled based on the statistical information.
  • the transmission rate is increased by two stages, but if the success rate is 80% or more, adaptive control may be performed so that the transmission rate is increased by three or four stages.
  • the error rate can be more accurately guaranteed by selecting the rate based on the statistical information.
  • FIG. 11 is a timing chart showing transmission rate adaptive control processing using a training signal including a plurality of transmission rates according to Embodiment 1-7.
  • the training signal may be composed of data of a plurality of transmission rates.
  • the receiving terminal apparatus 2A measures the received SNR and returns it to the transmitting terminal apparatus 1A using ACK.
  • the transmission rate control circuit 10A of the transmitting terminal apparatus 1A performs an error based on the received SNR for each transmission rate returned after the above measurement based on, for example, a BER (Bit Error Rate) or FER table for an SNR of a predetermined method. Estimate the rate.
  • BER Bit Error Rate
  • the transmission rate may be adaptively controlled so that the transmission rate with the minimum error rate is used as the optimum transmission rate in the next data transmission. Therefore, according to the present embodiment, by inserting data of a plurality of transmission rates into the training signal, the error rate of each transmission rate can be known, the estimation range of the received SNR can be narrowed, and the number of training signal transmissions can be reduced. It is possible to determine the optimum rate.
  • Examples 1-1 to 1-6 have been described. However, the present invention is not limited to this, and Examples 1-1 to 1-6 may be combined with each other. .
  • FIG. 12 is a block diagram showing a configuration of a radio communication system according to this modification.
  • the wireless communication system according to the modified example is compared with the PLC communication system of FIG. (1) In place of the PLC transmission circuits 13 and 23, respectively, wireless transmission circuits 13A and 23A are provided, (2) Instead of the PLC receiving circuits 15 and 25, respectively, wireless receiving circuits 15A and 25A are provided, (3) In place of the couplers 14 and 24, the duplexers 14A and 24A are provided, respectively. (4) In place of the power line 3, antennas 18 and 28 are provided, Instead of PLC communication, a packet signal is transmitted and received by wireless communication. The other effects are the same.
  • the transmission terminal device and the reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected.
  • a transmission terminal device for a communication system that adaptively controls a transmission rate by using reception success / failure information of a training signal to be transmitted to a reception terminal device, and transmits a training signal at a transmission rate higher than a transmission rate set next time.
  • a control circuit that determines and selects a transmission rate based on reception success / failure information from the receiving terminal device.
  • the transmission terminal apparatus can efficiently perform adaptive control of the transmission rate with less traffic load than in the prior art.
  • the transmission terminal device and the reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected.
  • the program according to the above-described embodiment or modification is a program for causing a computer to execute the control method of the transmission terminal device.
  • the comprehensive or specific aspect according to the above embodiment may be realized by a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM. You may implement
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Communication Control (AREA)

Abstract

A transmission terminal apparatus (1A) for use in a communication system, in which the transmission terminal apparatus (1A) and a reception terminal apparatus (2A) are connected to each other via a transport path and in which a plurality of transport rates can be selected and reception success/failure information of a training signal sent from the transmission terminal apparatus (1A) to the reception terminal apparatus (2A) is used to adaptively control the transport rate, comprises a control circuit that transmits a training signal at a higher transport rate than a previously set transport rate next time and determines and selects a transport rate on the basis of reception success/failure information from the reception terminal apparatus (2A).

Description

送信端末装置、受信端末装置及び通信システムTransmission terminal device, reception terminal device, and communication system
 本発明は、マルチレートを有する伝送方式において、伝送路の状況に応じて適応的に伝送レートを選択する通信システムのための送信端末装置、受信端末装置、及び当該通信システムに関する。 The present invention relates to a transmission terminal device, a reception terminal device, and a communication system for a communication system that adaptively selects a transmission rate in accordance with the condition of a transmission path in a transmission method having multirate.
 例えば電力線通信(以下、PLC(Power Line Communication)という。)方式は、低速PLC(10kHz~450kHz)の通信でスペクトラム拡散方式を用い、1次変調方式がBPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)などの複数の変調方式を用いている。PLC方式では、家電機器の使用状況に応じて、通信路である電力線におけるノイズレベルが変動し、ノイズレベルの変動に追従する伝送レートの制御方式が必要であるが、従来の適応レート制御は無線LAN(Local Area Network)方式で開発されたものが主であった。 For example, the power line communication (hereinafter referred to as PLC (Power Line Communication)) method uses a spread spectrum method for low-speed PLC (10 kHz to 450 kHz) communication, and the primary modulation method is BPSK (Binary Phase Shift Keying) or QPSK (Quadrature). A plurality of modulation schemes such as Phase Shift Keying and QAM (Quadrature Amplitude Modulation) are used. The PLC method requires a transmission rate control method in which the noise level in the power line that is a communication path varies depending on the usage status of home appliances and follows the variation in the noise level. It was mainly developed by LAN (Local Area Network) method.
 例えばIEEE802.11システムにおいては、データフレーム送信は、データフレームを送信した無線基地局及び各無線端末装置がそのデータ送信に対する肯定応答であるACKフレームを送信先の無線端末装置あるいは無線基地局から受け取った場合に、「送信成功」となる。一方、データフレーム送信は、ACKフレームを受け取らなかった場合には、「送信失敗」となる。 For example, in the IEEE 802.11 system, data frame transmission is performed by receiving a radio base station that has transmitted a data frame and an ACK frame that is an acknowledgment for the data transmission from the destination radio terminal apparatus or radio base station. In this case, “successful transmission”. On the other hand, data frame transmission is “transmission failure” when no ACK frame is received.
 従来技術に係る方法では、複数の伝送レートR1、R2、R3(昇順)を有している場合に、伝送レートR1で送信している場合に、複数回連続して送信失敗したときに、伝送レートR1より低速な伝送レートR2で送信する。一方、伝送レートR2で送信している場合に、複数回連続で送信成功したときに、伝送レートR2よりも高速な、伝送レートR1で送信することにより、効率の向上を図る。このように、従来のマルチレート制御においては、送信の成功/失敗に基づいて、伝送路の状況に合わせて適応的に伝送レートを制御していた。 In the method according to the prior art, when there are a plurality of transmission rates R1, R2, and R3 (ascending order) and transmission is performed at the transmission rate R1, transmission is performed when a plurality of consecutive transmission failures occur. Transmission is performed at a transmission rate R2 lower than the rate R1. On the other hand, when transmission is performed at a transmission rate R2, when transmission is successful a plurality of times, transmission is performed at a transmission rate R1, which is faster than the transmission rate R2, thereby improving efficiency. As described above, in the conventional multi-rate control, the transmission rate is adaptively controlled according to the state of the transmission path based on the success / failure of transmission.
特開2003-319007号公報JP 2003-319007 A 特開2000-049663号公報JP 2000-049663 A
 しかし、高い伝送レートに変更する場合に、元の伝送レートで複数回送信成功したからといって、変更した伝送レートでのエラー率が保証できるわけではない。変更しようとする高い伝送レートのエラー率が高い場合、再送率が高くなり、トラフィック負荷を高くしてしまい、効率を落としてしまう場合があった。 However, when changing to a higher transmission rate, just because transmission was successful multiple times at the original transmission rate does not guarantee the error rate at the changed transmission rate. When the error rate of the high transmission rate to be changed is high, the retransmission rate becomes high, the traffic load is increased, and the efficiency may be lowered.
 本発明の目的は以上の問題点を解決し、従来技術に比較して少ないトラフィック負荷で効率的に伝送レートの適応制御を行うことができる送信端末装置、受信端末装置及びそれらを備える通信システムを提供することにある。 An object of the present invention is to solve the above-described problems and to provide a transmission terminal device, a reception terminal device, and a communication system including them that can perform adaptive control of a transmission rate efficiently with a small traffic load as compared with the prior art. It is to provide.
 第1の発明に係る送信端末装置は、送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための送信端末装置であって、次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信し、上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する制御回路を備えることを特徴とする。 In the transmission terminal device according to the first aspect of the invention, the transmission terminal device and the reception terminal device are connected via a transmission path, a plurality of transmission rates can be selected, and training is transmitted from the transmission terminal device to the reception terminal device. A transmission terminal device for a communication system that adaptively controls a transmission rate using signal reception success / failure information, transmits a training signal at a transmission rate higher than a transmission rate set next time, and receives the training signal from the reception terminal device. And a control circuit that determines and selects a transmission rate based on the reception success / failure information.
 上記送信端末装置において、上記制御回路は、トレーニング信号のデータサイズを、伝送レートに応じて最低限保証したいビットエラー率を検出可能なデータ数に設定することを特徴とする。 In the transmission terminal device, the control circuit sets the data size of the training signal to the number of data that can be detected as a bit error rate to be guaranteed at least according to the transmission rate.
 また、上記送信端末装置において、上記制御回路は、上記受信端末装置からの受信成否情報において複数回連続して受信失敗である場合に、トレーニング信号の送信間隔を広げることを特徴とする。 Further, in the transmission terminal device, the control circuit widens the transmission interval of the training signal when the reception success / failure information from the reception terminal device fails to receive a plurality of times in succession.
 さらに、上記送信端末装置において、上記受信端末装置からの受信成否情報は受信品質を含み、上記制御回路は、上記受信品質から前回の受信品質を減算してなる受信品質差が所定のしきい値以上である場合に、トレーニング信号の送信間隔を短くすることを特徴とする。 Further, in the transmission terminal device, the reception success / failure information from the reception terminal device includes reception quality, and the control circuit has a reception quality difference obtained by subtracting the previous reception quality from the reception quality is a predetermined threshold value. In this case, the transmission interval of the training signal is shortened.
 またさらに、上記送信端末装置において、上記受信端末装置からの受信成否情報は受信品質を含み、上記制御回路は、上記受信品質から前回の受信品質を減算してなる受信品質差が所定のしきい値以上である場合に、トレーニング信号の伝送レートを通常設定の伝送レート差よりも高い伝送レート差だけ高くすることを特徴とする。 Still further, in the transmission terminal device, the reception success / failure information from the reception terminal device includes reception quality, and the control circuit has a reception threshold value obtained by subtracting the previous reception quality from the reception quality at a predetermined threshold. When the value is equal to or greater than the value, the transmission rate of the training signal is increased by a transmission rate difference higher than the normal transmission rate difference.
 また、上記送信端末装置において、上記制御回路は、上記受信端末装置に対して複数のトレーニング信号を送信し、上記受信端末装置からの複数の受信成否情報に係る統計情報に基づいて伝送レートを判断して選択することを特徴とする。 In the transmitting terminal apparatus, the control circuit transmits a plurality of training signals to the receiving terminal apparatus, and determines a transmission rate based on statistical information on the plurality of reception success / failure information from the receiving terminal apparatus. It is characterized by selecting.
 さらに、上記送信端末装置において、上記受信端末装置からの受信成否情報は受信品質を含み、上記制御回路は、上記受信端末装置に対して互いに異なる複数の伝送レートのデータを含むトレーニング信号を送信し、上記受信端末装置からの異なる複数の伝送レートのデータに対する複数の受信品質に基づいてエラー率を推定し、上記推定したエラー率に基づいて伝送レートを判断して選択することを特徴とする。 Further, in the transmission terminal device, the reception success / failure information from the reception terminal device includes reception quality, and the control circuit transmits a training signal including data of a plurality of different transmission rates to the reception terminal device. An error rate is estimated based on a plurality of reception qualities for data of a plurality of different transmission rates from the receiving terminal apparatus, and a transmission rate is judged and selected based on the estimated error rate.
 第2の発明に係る受信端末装置は、送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための受信端末装置であって、上記送信端末装置からのトレーニング信号に応答して、受信成否情報を送信するように制御する制御回路を備えることを特徴とする。 In the receiving terminal device according to the second invention, the transmitting terminal device and the receiving terminal device are connected via a transmission path, a plurality of transmission rates can be selected, and training is sent from the transmitting terminal device to the receiving terminal device. A reception terminal device for a communication system that adaptively controls a transmission rate using signal reception success / failure information, wherein control is performed so as to transmit reception success / failure information in response to a training signal from the transmission terminal device. It is characterized by comprising a control circuit.
 第3の発明に係る通信システムは、上記送信端末装置と、上記受信端末装置とを備えたことを特徴とする。 A communication system according to a third aspect of the invention includes the transmission terminal device and the reception terminal device.
 本発明に係る送信端末装置を含む通信システムによれば、次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信し、上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する。従って、従来技術に比較して少ないトラフィック負荷で効率的に伝送レートの適応制御を行うことができる。 According to the communication system including the transmission terminal device according to the present invention, the training signal is transmitted at a transmission rate higher than the transmission rate set next time, and the transmission rate is determined based on the reception success / failure information from the reception terminal device. select. Therefore, adaptive control of the transmission rate can be performed efficiently with a small traffic load as compared with the prior art.
図1は、実施の形態1に係るPLC通信システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the PLC communication system according to the first embodiment. 図2は、図1のPLC通信システムにおける伝送レートに対する所要SNRテーブルの一例を示す表である。FIG. 2 is a table showing an example of a required SNR table for the transmission rate in the PLC communication system of FIG. 図3は、図1の受信端末装置から送信端末装置に向けて送信されるパケット信号のパケットフォーマットを示す図である。FIG. 3 is a diagram illustrating a packet format of a packet signal transmitted from the receiving terminal device of FIG. 1 toward the transmitting terminal device. 図4は、実施の形態1に係るPLC通信において用いる伝送レートをパラメータとするSNRに対するFER(再送なし)の特性例を示すグラフである。FIG. 4 is a graph showing a characteristic example of FER (no retransmission) with respect to SNR using the transmission rate used in PLC communication according to Embodiment 1 as a parameter. 図5は、実施の形態1に係るPLC通信においてスペクトル拡散方式を用いたときの伝送レートをパラメータとするSNRに対する成功率の特性例を示すグラフである。FIG. 5 is a graph showing a characteristic example of a success rate with respect to an SNR using a transmission rate as a parameter when the spread spectrum method is used in the PLC communication according to the first embodiment. 図6Aは、実施例1-1に係るPLC通信の一例を示すタイミングチャートである。FIG. 6A is a timing chart illustrating an example of PLC communication according to Example 1-1. 図6Bは、実施例1-2に係るPLC通信の一例を示すタイミングチャートである。FIG. 6B is a timing chart illustrating an example of PLC communication according to the embodiment 1-2. 図7は、実施例1-3に係るPLC通信の一例を示すタイミングチャートである。FIG. 7 is a timing chart illustrating an example of PLC communication according to the embodiment 1-3. 図8は、実施例1-4に係る送信端末装置によるトレーニング信号制御処理を示すフローチャートである。FIG. 8 is a flowchart illustrating the training signal control process performed by the transmission terminal apparatus according to Embodiment 1-4. 図9は、実施例1-5に係る送信端末装置によるトレーニング信号制御処理を示すフローチャートである。FIG. 9 is a flowchart illustrating the training signal control process performed by the transmission terminal apparatus according to Embodiment 1-5. 図10は、実施例1-6に係る複数のトレーニング信号を用いた伝送レートの適応制御処理を示すタイミングチャートである。FIG. 10 is a timing chart illustrating transmission rate adaptive control processing using a plurality of training signals according to Embodiment 1-6. 図11は、実施例1-7に係る複数の伝送レートを含むトレーニング信号を用いた伝送レートの適応制御処理を示すタイミングチャートである。FIG. 11 is a timing chart illustrating transmission rate adaptive control processing using a training signal including a plurality of transmission rates according to Embodiment 1-7. 図12は、変形例に係る無線通信システムの構成を示すブロック図である。FIG. 12 is a block diagram illustrating a configuration of a wireless communication system according to a modification.
 以下では、本発明の実施の形態に係るPLC通信システム等について、図面を用いて詳細に説明する。なお、本発明の実施の形態に係るPLC通信システムは、PLC通信方法又はプログラムとして実現されることも可能である。 Hereinafter, the PLC communication system according to the embodiment of the present invention will be described in detail with reference to the drawings. The PLC communication system according to the embodiment of the present invention can also be realized as a PLC communication method or program.
 なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 以下、本発明に係る実施の形態について図面を参照して説明する。なお、以下の各実施の形態において、同様の構成要素については同一の符号を付している。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
 (実施の形態1)
 図1は本実施の形態に係るPLC通信システムの構成を示すブロック図である。図1において、本実施の形態に係るPLC通信システムは、送信端末装置1Aと、受信端末装置2Aと、それらを接続する電力線3とを備えて構成され、送信端末装置1Aと受信端末装置2Aとの間でパケット通信を行う。ここで、送信端末装置1Aは、伝送レート制御回路10Aと、送信フレーム生成回路11と、変調器12と、PLC送信回路13と、結合器14と、PLC受信回路15と、復調器16と、分離回路17とを備えて構成される。また、受信端末装置2Aは、伝送レート制御回路20Aと、送信フレーム生成回路21と、変調器22と、PLC送信回路23と、結合器24と、PLC受信回路25と、復調器26と、SNR測定回路27とを備えて構成される。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a PLC communication system according to the present embodiment. 1, the PLC communication system according to the present embodiment is configured to include a transmission terminal device 1A, a reception terminal device 2A, and a power line 3 that connects them, and the transmission terminal device 1A, the reception terminal device 2A, Packet communication between the two. Here, the transmission terminal apparatus 1A includes a transmission rate control circuit 10A, a transmission frame generation circuit 11, a modulator 12, a PLC transmission circuit 13, a combiner 14, a PLC reception circuit 15, a demodulator 16, And a separation circuit 17. The reception terminal device 2A includes a transmission rate control circuit 20A, a transmission frame generation circuit 21, a modulator 22, a PLC transmission circuit 23, a combiner 24, a PLC reception circuit 25, a demodulator 26, and an SNR. And a measurement circuit 27.
 送信端末装置1Aにおいて、受信端末装置2Aから受信した受信信号は、電力線3を送信端末装置1A及び受信端末装置2Aに接続するための結合器14を介してPLC受信回路15に送られる。PLC受信回路15では、受信信号が増幅され、中間周波数又はベースバンド周波数に周波数変換される。周波数変換された信号は、復調器16で復調される。復調後のデータ信号は、分離回路17に送られ、分離回路17で受信データと伝送レート切り替え制御のための制御信号とに分離される。伝送レート制御回路10Aでは、受信端末装置2Aから受信した肯定応答信号であるACK信号を送信フレーム生成回路11に送る。 In the transmission terminal device 1A, the reception signal received from the reception terminal device 2A is sent to the PLC reception circuit 15 via the coupler 14 for connecting the power line 3 to the transmission terminal device 1A and the reception terminal device 2A. In the PLC receiving circuit 15, the received signal is amplified and frequency-converted to an intermediate frequency or a baseband frequency. The frequency-converted signal is demodulated by the demodulator 16. The demodulated data signal is sent to the separation circuit 17, where it is separated into received data and a control signal for transmission rate switching control. The transmission rate control circuit 10A sends an ACK signal, which is an acknowledgment signal received from the receiving terminal device 2A, to the transmission frame generation circuit 11.
 図2は図1の通信システムにおける伝送レートに対する所要SNRテーブル31の一例を示す表である。図2に示すように、用いる変調方式における伝送レートモード毎に、伝送速度、所要SNRが定まる。本実施の形態では、例えば、図2のテーブル31に示すように、9個の伝送レートR1~R9を有する。ここで、伝送レートR1に近づくほど伝送速度が高速である一方、伝送レートR9に近づくほど伝送速度は低速である。 FIG. 2 is a table showing an example of the required SNR table 31 for the transmission rate in the communication system of FIG. As shown in FIG. 2, the transmission rate and the required SNR are determined for each transmission rate mode in the modulation scheme used. In the present embodiment, for example, as shown in the table 31 of FIG. 2, there are nine transmission rates R1 to R9. Here, the transmission speed increases as the transmission rate R1 is approached, while the transmission speed decreases as the transmission rate R9 is approached.
 図3は図1の受信端末装置2Aから送信端末装置1Aに向けて送信されるパケット信号のパケットフォーマットを示す図である。送信フレーム生成回路21は図3に示すように、送信データ(肯定応答のACK)に、「受信品質に関する情報」を含めてパケットフォーマットの送信フレームとして生成して変調器22に送る。 FIG. 3 is a diagram showing a packet format of a packet signal transmitted from the receiving terminal device 2A of FIG. 1 toward the transmitting terminal device 1A. As illustrated in FIG. 3, the transmission frame generation circuit 21 generates transmission frame (packet format information frame) including “information regarding reception quality” in transmission data (acknowledgment ACK), and sends the transmission frame to the modulator 22.
 本実施の形態では、送信端末装置1Aは、次回設定した伝送レートよりも高い伝送レートでトレーニング信号を受信端末装置2Aに送信し、受信端末装置2AからのACK信号に基づいてデータを送信するときの伝送レートを適応制御することを特徴としている。特に、変調度及び符号化率により、複数段階の伝送レートを選択可能な伝送方式において、それぞれの伝送レートのエラー率とSNRの関係が既知であるとしている。そして、伝送レートを高くする際に、試験用の伝送レートを用いたトレーニング信号の送信成否情報に基づき、保証できるエラー率を推測し、伝送レートを決定することにより、目標のエラー率を満たす伝送レートを確実に選択できるようになる。 In the present embodiment, transmitting terminal apparatus 1A transmits a training signal to receiving terminal apparatus 2A at a transmission rate higher than the transmission rate set next time, and transmits data based on an ACK signal from receiving terminal apparatus 2A. The transmission rate is adaptively controlled. In particular, it is assumed that the relationship between the error rate and the SNR of each transmission rate is known in a transmission scheme in which a plurality of transmission rates can be selected based on the modulation degree and the coding rate. When the transmission rate is increased, the error rate that can be guaranteed is estimated based on the transmission success / failure information of the training signal using the test transmission rate, and the transmission rate that satisfies the target error rate is determined by determining the transmission rate. The rate can be selected reliably.
 ここで、ACK信号は、例えば以下の3種類のうちのいずれである。
(1)ただ単に、受信端末装置2Aにおいて受信成功のときに返信される肯定応答信号(実施例1-1)(なお、トレーニング信号を送信した後、所定時間内にACK信号を受信すれば「受信成功」と判断し、所定時間内に受信できなければ「受信失敗」と判断する)、
(2)受信成否信号(受信成功又は受信失敗の情報を含む)を含むACK信号(実施例1-2)、
(3)受信成否信号(受信成功及び受信SNRの情報を含む)を含むACK信号(実施例1-2、1-4、及び1-5)。
Here, the ACK signal is, for example, any of the following three types.
(1) An acknowledgment signal returned only when reception is successful in the receiving terminal device 2A (Example 1-1) (Note that if an ACK signal is received within a predetermined time after transmitting a training signal, “ "If reception is successful"
(2) ACK signal (embodiment 1-2) including a reception success / failure signal (including information on reception success or reception failure),
(3) An ACK signal (embodiments 1-2, 1-4, and 1-5) including a reception success / failure signal (including information on reception success and reception SNR).
 なお、後述する実施例1-3においては、ACK信号は受信成功又は受信失敗を送信端末装置1Aで判断できれば、いずれであってもよい。 In Example 1-3 described later, the ACK signal may be any as long as the transmission terminal device 1A can determine reception success or reception failure.
 また、送信端末装置1Aにおいて、送信フレーム生成回路11は送信データに基づいて、伝送レート制御回路10Aによる伝送レートで送信するパケット信号のための送信フレームを生成して変調器12に送る。送られた送信フレームは伝送レート制御回路10Aによる伝送レートでPLCのための所定の変調方式で変調され、変調された信号がPLC送信回路13に送られる。PLC送信回路13では、変調された信号を周波数変換し、更に電力増幅して送信信号を生成し、当該送信信号は結合器14及び電力線3を介して受信端末装置2Aに送信される。 Also, in the transmission terminal device 1A, the transmission frame generation circuit 11 generates a transmission frame for a packet signal to be transmitted at the transmission rate by the transmission rate control circuit 10A based on the transmission data, and sends the transmission frame to the modulator 12. The transmitted transmission frame is modulated by a predetermined modulation method for PLC at a transmission rate by the transmission rate control circuit 10 A, and the modulated signal is sent to the PLC transmission circuit 13. The PLC transmission circuit 13 frequency-converts the modulated signal, further amplifies the power to generate a transmission signal, and the transmission signal is transmitted to the receiving terminal device 2A via the coupler 14 and the power line 3.
 受信端末装置2Aにおいて、送信端末装置1Aから受信した受信信号は、送信と受信で同一の伝送路を用いるための結合器24を介してPLC受信回路25に送られる。PLC受信回路25では、受信信号が低雑音増幅され、中間周波数又はベースバンド周波数に周波数変換される。周波数変換された信号は復調器26及びSNR測定回路27に送られる。周波数変換された信号は復調器26で復調された後、受信データとして伝送レート制御回路20A及び外部回路に送られる。一方、SNR測定回路27は、受信時のノイズレベル(干渉波電力及びノイズ電力のレベルを含む。なお、干渉波電力を含まない場合もある。)に対する受信信号レベルの比の値であるSNIR(Signal to Noise and Interference Ratio)(以下、SNR(Signal-to-Noise Ratio)という。)(dB)を受信品質として測定して伝送レート制御回路20Aに出力する。SNRの測定方法は例えば特許文献2において開示されており公知である。 In the reception terminal device 2A, the reception signal received from the transmission terminal device 1A is sent to the PLC reception circuit 25 via the coupler 24 for using the same transmission path for transmission and reception. In the PLC receiving circuit 25, the received signal is amplified with low noise and frequency-converted to an intermediate frequency or a baseband frequency. The frequency-converted signal is sent to the demodulator 26 and the SNR measurement circuit 27. The frequency-converted signal is demodulated by the demodulator 26 and then sent to the transmission rate control circuit 20A and an external circuit as received data. On the other hand, the SNR measurement circuit 27 is a SNIR (value of a ratio of a received signal level to a noise level at the time of reception (including interference wave power and noise power level, and may not include interference wave power). Signal to Noise and Interference Ratio (hereinafter referred to as SNR (Signal-to-Noise Ratio)) (dB) is measured as reception quality and output to the transmission rate control circuit 20A. A method for measuring SNR is disclosed in, for example, Patent Document 2 and is well known.
 伝送レート制御回路20Aでは、受信データ及びSNRに基づいて「受信成功」であるか「受信失敗」であるかを判断し、上述の3種類のACK信号のうちのいずれかを実施例に応じて生成して送信フレーム生成回路21に出力する。送信フレーム生成回路21は図4に示すように、送信データ(ACK信号)を含むパケットフォーマットの送信フレームを生成して変調器22に送る。送られた送信フレームは伝送レート制御回路10Aによる伝送レートでPLCのための所定の変調方式で変調され、変調された信号がPLC送信回路23に送られる。PLC送信回路23では、変調された信号を周波数変換し、更に電力増幅して送信信号を生成し、当該送信信号は結合器24及び電力線3を介して送信端末装置1Aに送信される。 The transmission rate control circuit 20A determines whether it is “successful reception” or “reception failure” based on the received data and the SNR, and determines one of the three types of ACK signals according to the embodiment. It is generated and output to the transmission frame generation circuit 21. As shown in FIG. 4, the transmission frame generation circuit 21 generates a transmission frame having a packet format including transmission data (ACK signal) and sends the transmission frame to the modulator 22. The transmitted transmission frame is modulated by a predetermined modulation method for PLC at a transmission rate by the transmission rate control circuit 10A, and the modulated signal is sent to the PLC transmission circuit 23. The PLC transmission circuit 23 frequency-converts the modulated signal, further amplifies the power to generate a transmission signal, and the transmission signal is transmitted to the transmission terminal device 1 </ b> A via the coupler 24 and the power line 3.
 図4は本実施の形態に係るPLC通信において用いる伝送レートをパラメータとするSNRに対するフレームエラー率(FER(Frame Error Rate))(再送なし)の特性例を示すグラフである。本実施の形態に係る通信システムでは、次回設定した伝送レートよりも高い伝送レートをトレーニング信号に設定して送信して、当該トレーニング信号の送信成功のときに、当該次回設定した伝送レートでデータを送信することを特徴としている。図4に示すように、高い伝送レートR7は設定したい伝送レートR8よりも所要SNRが高く、エラーが発生しやすいため、高い伝送レートR7でトレーニング信号を送信して成功すれば、少ないパケット数で、短いデータビット数でエラー率を確保した伝送レートが選択可能となる。例えば、図4のようなフレームエラー率とSNRの関係がある場合に、伝送レートR7でフレームエラー率(FER)が0.8の伝送路状態では、伝送レートR8のフレームエラー率は10-2である。よって、伝送レートR7で5パケットのトレーニング信号を送信し、1パケットのトレーニング信号でも受信成功すれば、伝送レートR8のフレームエラー率が10-2以下であるといえる。なお、伝送レートR8で同条件のエラー率を測定するとすると、100回中99回以上受信成功する必要がある。 FIG. 4 is a graph showing a characteristic example of a frame error rate (FER (Frame Error Rate)) (no retransmission) with respect to an SNR using a transmission rate used in PLC communication according to the present embodiment as a parameter. In the communication system according to the present embodiment, a transmission rate higher than the next-set transmission rate is set and transmitted in the training signal, and when the training signal is successfully transmitted, data is transmitted at the next-set transmission rate. It is characterized by transmitting. As shown in FIG. 4, a high transmission rate R7 has a higher required SNR than a transmission rate R8 to be set and an error is likely to occur. Therefore, if a training signal is successfully transmitted at a high transmission rate R7, the number of packets can be reduced. A transmission rate that secures an error rate with a short number of data bits can be selected. For example, when there is a relationship between the frame error rate and the SNR as shown in FIG. 4, the frame error rate of the transmission rate R8 is 10 −2 in the transmission line state where the frame error rate (FER) is 0.8 at the transmission rate R7. It is. Therefore, if a training signal of 5 packets is transmitted at the transmission rate R7 and reception is successful even with the training signal of 1 packet, it can be said that the frame error rate of the transmission rate R8 is 10 −2 or less. If the error rate under the same condition is measured at the transmission rate R8, it is necessary to receive successfully 99 times or more out of 100 times.
 本実施の形態において、トレーニング信号のデータサイズを最低限保証したいビットエラー率を検出可能なデータ数に伝送レートに応じて変更する。これにより、冗長なトレーニング信号を最低限必要なサイズに制限することで、トラフィックの効率化がはかれる。 In this embodiment, the bit error rate for which the data size of the training signal is to be guaranteed at least is changed to the number of detectable data according to the transmission rate. As a result, the efficiency of traffic can be improved by limiting redundant training signals to the minimum required size.
 図5は本実施の形態に係るPLC通信においてスペクトル拡散方式を用いたときの伝送レートをパラメータとするSNRに対する成功率の特性例を示すグラフである。図5から明らかなように、伝送レートが高いほど所要SNRが高くなり、各伝送レートでは、SNRが高いほど成功率が高い。 FIG. 5 is a graph showing a characteristic example of the success rate with respect to the SNR using the transmission rate as a parameter when the spread spectrum method is used in the PLC communication according to the present embodiment. As is apparent from FIG. 5, the higher the transmission rate, the higher the required SNR. At each transmission rate, the higher the SNR, the higher the success rate.
 図6Aは実施例1-1に係るPLC通信の一例を示すタイミングチャートである。図6Aに示すように、送信端末装置1Aは、現在伝送レートR9でデータを送信していて、次回設定した伝送レートR8よりも高い伝送レートR7をトレーニング信号に設定して送信する。そして、受信端末装置2AからのACK信号に基づいて当該トレーニング信号の送信成功のときに、当該次回設定した伝送レートR8でデータを送信する。従って、高い伝送レートR7は設定したい伝送レートR8よりも所要SNRが高く、エラーが発生しやすいため、高い伝送レートR7でトレーニング信号を送信して成功すれば、少ないパケット数で、短いデータビット数でエラー率を確保した伝送レートが選択可能となる。 FIG. 6A is a timing chart illustrating an example of PLC communication according to Example 1-1. As shown in FIG. 6A, the transmitting terminal apparatus 1A transmits data at the current transmission rate R9, and sets a transmission rate R7 higher than the transmission rate R8 set next time as a training signal and transmits it. Then, when transmission of the training signal is successful based on the ACK signal from the receiving terminal device 2A, data is transmitted at the transmission rate R8 set next time. Therefore, the high transmission rate R7 has a higher required SNR than the transmission rate R8 to be set, and an error is likely to occur. The transmission rate that secures the error rate can be selected.
 図6Bは実施例1-2に係るPLC通信の一例を示すタイミングチャートである。図6Bにおいて、送信端末装置1Aは、伝送レートR9でデータを送信した後、伝送レートR7でトレーニング信号を送信する。これに応答して、受信端末装置2Aは、受信成否情報を含むACK信号を送信端末装置1Aに返信する。送信端末装置1AはACK信号により「受信成功」を確認したとき、次回設定する伝送レートR8でデータの送信を開始する。 FIG. 6B is a timing chart illustrating an example of PLC communication according to the embodiment 1-2. In FIG. 6B, the transmitting terminal apparatus 1A transmits data at the transmission rate R9, and then transmits a training signal at the transmission rate R7. In response to this, the receiving terminal device 2A returns an ACK signal including reception success / failure information to the transmitting terminal device 1A. When the transmission terminal device 1A confirms “successful reception” by the ACK signal, the transmission terminal device 1A starts data transmission at the transmission rate R8 set next time.
 図7は実施例1-3に係るPLC通信の一例を示すタイミングチャートである。図7において、伝送レートR10でデータを送信していて、トレーニング信号を伝送レートR8でかつ複数回連続で送信して、受信端末装置2Aがそれを受信失敗した場合に、トレーニング信号の送信間隔を広げる。すなわち、データの送信回数を増やし、トレーニング信号の送信間隔を広げることを特徴とする。すなわち、伝送路状態をACK信号に含まれる受信成否情報で監視するためには何回かに1回送信するが、伝送路に変動がない場合は、無駄な負荷になってしまうため、極力トラフィックは抑える必要がある。より高い伝送レートのトレーニング信号を送信して、複数回失敗した場合に現在の伝送レートが最適と判断することで、負荷を抑制することが可能である。 FIG. 7 is a timing chart illustrating an example of PLC communication according to the embodiment 1-3. In FIG. 7, when data is transmitted at a transmission rate R10, a training signal is transmitted continuously at a transmission rate R8 and a plurality of times, and the reception terminal device 2A fails to receive it, the transmission interval of the training signal is set. spread. That is, the number of data transmissions is increased, and the training signal transmission interval is increased. That is, in order to monitor the transmission path state with the reception success / failure information included in the ACK signal, transmission is performed once in several times. However, if there is no fluctuation in the transmission path, it becomes a useless load. Need to be suppressed. It is possible to suppress the load by transmitting a training signal having a higher transmission rate and determining that the current transmission rate is optimal when a failure occurs a plurality of times.
 図8は実施例1-4に係る送信端末装置1Aによるトレーニング信号制御処理を示すフローチャートである。 FIG. 8 is a flowchart illustrating the training signal control process by the transmission terminal device 1A according to the embodiment 1-4.
 図8のステップS31において、トレーニング信号の送信間隔をTtrに設定し、ステップS32においてACK信号(受信成功)を受信したか否かが判断され、YESのときはステップS33に進む一方、NOのときはステップS32に戻る。次いで、ステップS33において、ACK信号内の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+(例えば3dB)以上であるか否かが判断され、YESのときはステップS34に進む一方、NOのときはステップS32に戻る。ステップS34において、トレーニング信号の送信間隔TTrをTtr-ΔTtrに短くするように設定してステップS32に戻る。 In step S31 of FIG. 8, the transmission interval of the training signal is set to Ttr. In step S32, it is determined whether or not an ACK signal (successful reception) has been received. If YES, the process proceeds to step S33. If NO, Returns to step S32. Next, in step S33, it is determined whether or not the SNR difference obtained by subtracting the previous received SNR from the received SNR in the ACK signal is equal to or larger than a predetermined threshold value SNR th + (for example, 3 dB). While the process proceeds to step S34, when the result is NO, the process returns to step S32. In step S34, the training signal transmission interval TTr is set to be shortened to Ttr-ΔTtr, and the process returns to step S32.
 以上説明したように実施例1-4によれば、受信端末装置2Aは、トレーニング信号に応答して受信SNRの情報を含むACK信号を送信端末装置1Aに返信する。ここで、現時の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+以上であるとき、トレーニング信号の送信間隔を短くする。これにより、当該通信システムは、より多数のトレーニング信号を用いて伝送レートを適応制御することで、伝送路の変動に対してすばやく追従可能となる。 As described above, according to the embodiment 1-4, the receiving terminal apparatus 2A returns an ACK signal including information on the received SNR to the transmitting terminal apparatus 1A in response to the training signal. Here, when the SNR difference obtained by subtracting the previous reception SNR from the current reception SNR is equal to or greater than a predetermined threshold SNR th + , the transmission interval of the training signal is shortened. As a result, the communication system can quickly follow fluctuations in the transmission path by adaptively controlling the transmission rate using a larger number of training signals.
 図9は実施例1-5に係る送信端末装置1Aによるトレーニング信号制御処理を示すフローチャートである。 FIG. 9 is a flowchart illustrating training signal control processing by the transmission terminal device 1A according to the embodiment 1-5.
 図9のステップS41において、トレーニング信号の伝送レートをRtrに設定し、ステップS42において、ACK信号(受信成功)を受信したか否かが判断され、YESのときはステップS43に進む一方、NOのときはステップS42に戻る。ステップS43において、ACK信号内の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+(例えば3dB)以上であるか否かが判断され、YESのときはステップS44に進む一方、NOのときはステップS45に進む。ステップS44では、トレーニング信号の伝送レートRtrを4段階(伝送レート差)上げて設定し、ステップS42に戻る。また、ステップS45では、トレーニング信号の伝送レートRtrを通常設定の通り例えば2段階(伝送レート差)上げて設定し、ステップS42に戻る。 In step S41 of FIG. 9, the transmission rate of the training signal is set to Rtr. In step S42, it is determined whether or not an ACK signal (successful reception) has been received. If YES, the process proceeds to step S43, while NO. If so, the process returns to step S42. In step S43, it is determined whether or not the SNR difference obtained by subtracting the previous received SNR from the received SNR in the ACK signal is greater than or equal to a predetermined threshold value SNR th + (for example, 3 dB). If YES, step S44 is performed. On the other hand, if NO, the process proceeds to step S45. In step S44, the transmission rate Rtr of the training signal is set by increasing it by four steps (transmission rate difference), and the process returns to step S42. In step S45, the transmission rate Rtr of the training signal is set, for example, by two steps (transmission rate difference) as usual, and the process returns to step S42.
 以上説明したように実施例1-5によれば、受信端末装置2Aは、トレーニング信号に応答して受信SNRの情報を含むACK信号を送信端末装置1Aに返信する。ここで、現時の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+以上であるとき、トレーニング信号の伝送レートを高くする。これにより、当該通信システムは、より高速のトレーニング信号を用いて伝送レートを適応制御することで、伝送路の大きな変動に対してすばやく追従可能となる。 As described above, according to Embodiment 1-5, the receiving terminal apparatus 2A returns an ACK signal including information on the received SNR to the transmitting terminal apparatus 1A in response to the training signal. Here, when the SNR difference obtained by subtracting the previous received SNR from the current received SNR is equal to or greater than a predetermined threshold SNR th + , the transmission rate of the training signal is increased. As a result, the communication system can quickly follow large fluctuations in the transmission path by adaptively controlling the transmission rate using a higher-speed training signal.
 以上の実施例1-4又は1-5では、現時の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+以上であるとき、トレーニング信号の送信間隔を短くし、もしくは、トレーニング信号の伝送レートを高くする。本発明はこれに限られず、現時の受信SNRから前回の受信SNRを減算してなるSNR差が所定のしきい値SNRth+以上であるとき、トレーニング信号の送信間隔を短くし、かつ、トレーニング信号の伝送レートを高くしてもよい。 In the above embodiments 1-4 or 1-5, when the SNR difference obtained by subtracting the previous reception SNR from the current reception SNR is equal to or greater than the predetermined threshold SNR th + , the transmission interval of the training signal is shortened. Or, increase the transmission rate of the training signal. The present invention is not limited to this, and when the SNR difference obtained by subtracting the previous reception SNR from the current reception SNR is equal to or greater than a predetermined threshold SNR th + , the transmission interval of the training signal is shortened, and the training signal The transmission rate may be increased.
 図10は実施例1-6に係る複数のトレーニング信号を用いた伝送レートの適応制御処理を示すタイミングチャートである。以上の実施例1-1~1-5では、1つのトレーニング信号に対する1つのACK信号に基づいて、伝送レートの制御を行っている。しかし、本発明はこれに限らず、図10に示すように、複数のトレーニング信号に対する複数のACK信号に基づいて、伝送レートの制御を行ってもよい。このとき、複数のACK信号に基づいて、受信成否の統計情報(成功率)を算出し、それに基づいて伝送レートの制御を行ってもよい。例えば、成功率が60%~79%であれば、伝送レートを2段階上げるが、成功率が80%以上あれば、伝送レートを3又は4段階上げるように適応制御してもよい。本実施例によれば、統計情報を元にレートを選択することにより、よりエラー率の保証を正確に行うことができる。 FIG. 10 is a timing chart showing adaptive control processing of the transmission rate using a plurality of training signals according to Embodiment 1-6. In the above embodiments 1-1 to 1-5, the transmission rate is controlled based on one ACK signal for one training signal. However, the present invention is not limited to this, and the transmission rate may be controlled based on a plurality of ACK signals for a plurality of training signals as shown in FIG. At this time, statistical information (success rate) of reception success / failure may be calculated based on a plurality of ACK signals, and the transmission rate may be controlled based on the statistical information. For example, if the success rate is 60% to 79%, the transmission rate is increased by two stages, but if the success rate is 80% or more, adaptive control may be performed so that the transmission rate is increased by three or four stages. According to the present embodiment, the error rate can be more accurately guaranteed by selecting the rate based on the statistical information.
 図11は実施例1-7に係る複数の伝送レートを含むトレーニング信号を用いた伝送レートの適応制御処理を示すタイミングチャートである。実施例1-6において、図11に示すように、トレーニング信号を複数の伝送レートのデータから構成してもよい。各伝送レート毎に受信端末装置2Aは受信SNRを測定して送信端末装置1AにACKを用いて返信する。送信端末装置1Aの伝送レート制御回路10Aは、例えば所定の方式のSNRに対するBER(Bit Error Rate)又はFERのテーブルに基づいて、上記測定後返信された各伝送レート毎の受信SNRに基づいてエラー率を推定する。そして、例えば最小のエラー率の伝送レートを最適な伝送レートとして次回のデータ送信で用いるように伝送レートを適応制御してもよい。従って、本実施例によれば、トレーニング信号に複数の伝送レートのデータを挿入することで、各伝送レートのエラー率がわかり、受信SNRの推定範囲を絞ることができ、少ないトレーニング信号の送信回数で最適レートを決定することが可能となる。 FIG. 11 is a timing chart showing transmission rate adaptive control processing using a training signal including a plurality of transmission rates according to Embodiment 1-7. In Embodiment 1-6, as shown in FIG. 11, the training signal may be composed of data of a plurality of transmission rates. For each transmission rate, the receiving terminal apparatus 2A measures the received SNR and returns it to the transmitting terminal apparatus 1A using ACK. The transmission rate control circuit 10A of the transmitting terminal apparatus 1A performs an error based on the received SNR for each transmission rate returned after the above measurement based on, for example, a BER (Bit Error Rate) or FER table for an SNR of a predetermined method. Estimate the rate. Then, for example, the transmission rate may be adaptively controlled so that the transmission rate with the minimum error rate is used as the optimum transmission rate in the next data transmission. Therefore, according to the present embodiment, by inserting data of a plurality of transmission rates into the training signal, the error rate of each transmission rate can be known, the estimation range of the received SNR can be narrowed, and the number of training signal transmissions can be reduced. It is possible to determine the optimum rate.
 以上の実施の形態1において、実施例1-1~1-6について説明しているが、本発明はこれに限らず、各実施例1-1~1-6を互いに組み合わせて行ってもよい。 In Embodiment 1 above, Examples 1-1 to 1-6 have been described. However, the present invention is not limited to this, and Examples 1-1 to 1-6 may be combined with each other. .
 (変形例1)
 図12は本変形例に係る無線通信システムの構成を示すブロック図である。変形例に係る無線通信システムは、図1のPLC通信システムに比較して、
(1)PLC送信回路13及び23に代えてそれぞれ、無線送信回路13A及び23Aを備え、
(2)PLC受信回路15及び25に代えてそれぞれ、無線受信回路15A及び25Aを備え、
(3)結合器14及び24に代えてそれぞれ、共用器14A及び24Aを備え、
(4)電力線3に代えて、アンテナ18及び28を備え、
PLC通信に代えて、無線通信によりパケット信号を送受信することを特徴としている。その他の作用効果については、同様である。
(Modification 1)
FIG. 12 is a block diagram showing a configuration of a radio communication system according to this modification. The wireless communication system according to the modified example is compared with the PLC communication system of FIG.
(1) In place of the PLC transmission circuits 13 and 23, respectively, wireless transmission circuits 13A and 23A are provided,
(2) Instead of the PLC receiving circuits 15 and 25, respectively, wireless receiving circuits 15A and 25A are provided,
(3) In place of the couplers 14 and 24, the duplexers 14A and 24A are provided, respectively.
(4) In place of the power line 3, antennas 18 and 28 are provided,
Instead of PLC communication, a packet signal is transmitted and received by wireless communication. The other effects are the same.
 (変形例2)
 なお、上記の実施の形態又は変形例に係る送信端末装置等は、以下のように表現することもできる。
(Modification 2)
In addition, the transmission terminal apparatus etc. which concern on said embodiment or modification can also be expressed as follows.
 すなわち、上記の実施の形態又は変形例に係る送信端末装置は、送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための送信端末装置であって、次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信し、上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する制御回路を備える。 That is, in the transmission terminal device according to the above-described embodiment or modification, the transmission terminal device and the reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected. A transmission terminal device for a communication system that adaptively controls a transmission rate by using reception success / failure information of a training signal to be transmitted to a reception terminal device, and transmits a training signal at a transmission rate higher than a transmission rate set next time. And a control circuit that determines and selects a transmission rate based on reception success / failure information from the receiving terminal device.
 これにより、送信端末装置は、従来技術に比較して少ないトラフィック負荷で効率的に伝送レートの適応制御を行うことができる。 As a result, the transmission terminal apparatus can efficiently perform adaptive control of the transmission rate with less traffic load than in the prior art.
 また、上記の実施の形態又は変形例に係る送信端末装置の制御方法は、送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための送信端末装置の制御方法であって、前記制御方法は、次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信する送信ステップと、上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する選択ステップとを含む。 Further, in the transmission terminal device control method according to the above-described embodiment or modification, the transmission terminal device and the reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected. A transmission terminal apparatus control method for a communication system for adaptively controlling a transmission rate using reception success / failure information of a training signal sent from the apparatus to the reception terminal apparatus, wherein the control method includes a transmission rate set next time A transmission step of transmitting a training signal at a higher transmission rate, and a selection step of determining and selecting a transmission rate based on reception success / failure information from the receiving terminal device.
 これにより、上記送信端末装置と同様の効果を奏する。 As a result, the same effects as those of the transmission terminal device can be obtained.
 また、上記の実施の形態又は変形例に係るプログラムは、上記送信端末装置の制御方法をコンピュータに実行させるためのプログラムである。 Further, the program according to the above-described embodiment or modification is a program for causing a computer to execute the control method of the transmission terminal device.
 これにより、上記送信端末装置と同様の効果を奏する。 As a result, the same effects as those of the transmission terminal device can be obtained.
 なお、上記実施の形態に係る包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム又は記録媒体の任意の組み合わせで実現されてもよい。 The comprehensive or specific aspect according to the above embodiment may be realized by a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM. You may implement | achieve in arbitrary combinations of a circuit, a computer program, or a recording medium.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  1A、1B  送信端末装置
  2A、2B  受信端末装置
  3  電力線
  10A、20A  伝送レート制御回路
  11、21  送信フレーム生成回路
  12、22  変調器
  13、23  PLC送信回路
  13A、23A  無線送信回路
  14、24  結合器
  14A、24A  共用器
  15、25  PLC受信回路
  15A、25A  無線受信回路
  16、26  復調器
  17  分離回路
  20m  内部メモリ
  27  SNR測定回路
1A, 1B Transmission terminal device 2A, 2B Reception terminal device 3 Power line 10A, 20A Transmission rate control circuit 11, 21 Transmission frame generation circuit 12, 22 Modulator 13, 23 PLC transmission circuit 13A, 23A Wireless transmission circuit 14, 24 Combiner 14A, 24A Duplexer 15, 25 PLC receiving circuit 15A, 25A Wireless receiving circuit 16, 26 Demodulator 17 Separating circuit 20m Internal memory 27 SNR measuring circuit

Claims (10)

  1.  送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための送信端末装置であって、
     次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信し、上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する制御回路を備える
     送信端末装置。
    A transmission terminal device and a reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected, and adaptively using reception success / failure information of a training signal sent from the transmission terminal device to the reception terminal device A transmission terminal device for a communication system for controlling a transmission rate,
    A transmission terminal apparatus comprising: a control circuit that transmits a training signal at a transmission rate higher than a transmission rate set next time, and determines and selects a transmission rate based on reception success / failure information from the reception terminal apparatus.
  2.  上記制御回路は、トレーニング信号のデータサイズを、伝送レートに応じて最低限保証したいビットエラー率を検出可能なデータ数に設定する
     請求項1記載の送信端末装置。
    The transmission terminal apparatus according to claim 1, wherein the control circuit sets the data size of the training signal to the number of data that can be detected as a bit error rate to be guaranteed at least according to the transmission rate.
  3.  上記制御回路は、上記受信端末装置からの受信成否情報において複数回連続して受信失敗である場合に、トレーニング信号の送信間隔を広げる
     請求項1又は2記載の送信端末装置。
    The transmission terminal device according to claim 1 or 2, wherein the control circuit widens the transmission interval of the training signal when the reception success / failure information from the reception terminal device is a reception failure continuously for a plurality of times.
  4.  上記受信端末装置からの受信成否情報は受信品質を含み、
     上記制御回路は、上記受信品質から前回の受信品質を減算してなる受信品質差が所定のしきい値以上である場合に、トレーニング信号の送信間隔を短くする
     請求項1~3のうちのいずれか1つに記載の送信端末装置。
    The reception success / failure information from the receiving terminal device includes reception quality,
    The control circuit shortens the transmission interval of the training signal when the reception quality difference obtained by subtracting the previous reception quality from the reception quality is a predetermined threshold value or more. The transmission terminal device according to any one of the above.
  5.  上記受信端末装置からの受信成否情報は受信品質を含み、
     上記制御回路は、上記受信品質から前回の受信品質を減算してなる受信品質差が所定のしきい値以上である場合に、トレーニング信号の伝送レートを通常設定の伝送レート差よりも高い伝送レート差だけ高くする
     請求項1~4のうちのいずれか1つに記載の送信端末装置。
    The reception success / failure information from the receiving terminal device includes reception quality,
    When the reception quality difference obtained by subtracting the previous reception quality from the reception quality is equal to or greater than a predetermined threshold, the control circuit sets the transmission rate of the training signal to be higher than the transmission rate difference of the normal setting. The transmission terminal apparatus according to any one of claims 1 to 4, wherein the transmission terminal apparatus is increased by a difference.
  6.  上記制御回路は、上記受信端末装置に対して複数のトレーニング信号を送信し、上記受信端末装置からの複数の受信成否情報に係る統計情報に基づいて伝送レートを判断して選択する
     請求項1~5のうちのいずれか1つに記載の送信端末装置。
    The control circuit transmits a plurality of training signals to the receiving terminal apparatus, and determines and selects a transmission rate based on statistical information related to a plurality of reception success / failure information from the receiving terminal apparatus. The transmission terminal device according to any one of 5.
  7.  上記受信端末装置からの受信成否情報は受信品質を含み、
     上記制御回路は、上記受信端末装置に対して互いに異なる複数の伝送レートのデータを含むトレーニング信号を送信し、上記受信端末装置からの異なる複数の伝送レートのデータに対する複数の受信品質に基づいてエラー率を推定し、上記推定したエラー率に基づいて伝送レートを判断して選択する
     請求項1~6のうちのいずれか1つに記載の送信端末装置。
    The reception success / failure information from the receiving terminal device includes reception quality,
    The control circuit transmits a training signal including data of a plurality of transmission rates different from each other to the receiving terminal device, and generates an error based on a plurality of reception qualities for the data of a plurality of different transmission rates from the receiving terminal device. The transmission terminal apparatus according to any one of claims 1 to 6, wherein a transmission rate is estimated and a transmission rate is determined and selected based on the estimated error rate.
  8.  送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための受信端末装置であって、
     上記送信端末装置からのトレーニング信号に応答して、受信成否情報を送信するように制御する制御回路を備える
     受信端末装置。
    A transmission terminal device and a reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected, and adaptively using reception success / failure information of a training signal sent from the transmission terminal device to the reception terminal device A receiving terminal device for a communication system for controlling a transmission rate,
    A receiving terminal apparatus comprising a control circuit that controls to transmit reception success / failure information in response to a training signal from the transmitting terminal apparatus.
  9.  請求項1~7のうちのいずれか1つに記載の送信端末装置と、
     請求項8記載の受信端末装置とを備える
     通信システム。
    A transmission terminal device according to any one of claims 1 to 7,
    A communication system comprising the receiving terminal device according to claim 8.
  10.  送信端末装置と受信端末装置とが伝送路を介して接続され、複数の伝送レートが選択可能であり、上記送信端末装置から上記受信端末装置に送るトレーニング信号の受信成否情報を用いて適応的に伝送レートを制御する通信システムのための送信端末装置の制御方法であって、
     前記制御方法は、
     次回設定した伝送レートよりも高い伝送レートでトレーニング信号を送信する送信ステップと、
     上記受信端末装置からの受信成否情報に基づいて伝送レートを判断して選択する選択ステップとを含む
     制御方法。
    A transmission terminal device and a reception terminal device are connected via a transmission path, and a plurality of transmission rates can be selected, and adaptively using reception success / failure information of a training signal sent from the transmission terminal device to the reception terminal device A control method of a transmission terminal apparatus for a communication system for controlling a transmission rate,
    The control method is:
    A transmission step of transmitting a training signal at a transmission rate higher than the transmission rate set next time;
    And a selection step of determining and selecting a transmission rate based on reception success / failure information from the receiving terminal device.
PCT/JP2015/001834 2014-04-28 2015-03-30 Transmission terminal apparatus, reception terminal apparatus, and communication system WO2015166627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515848A JP6238036B2 (en) 2014-04-28 2015-03-30 Transmission terminal apparatus and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014092695 2014-04-28
JP2014-092695 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166627A1 true WO2015166627A1 (en) 2015-11-05

Family

ID=54358373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001834 WO2015166627A1 (en) 2014-04-28 2015-03-30 Transmission terminal apparatus, reception terminal apparatus, and communication system

Country Status (2)

Country Link
JP (1) JP6238036B2 (en)
WO (1) WO2015166627A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031742A (en) * 1989-05-30 1991-01-08 Konica Corp Transmission speed automatic selection device
JP2002223197A (en) * 2001-01-25 2002-08-09 Hitachi Ltd Optical network system having quality control function
JP2003051781A (en) * 2001-05-31 2003-02-21 Hitachi Kokusai Electric Inc Data communication method and data communication system
JP2007529156A (en) * 2003-07-25 2007-10-18 松下電器産業株式会社 Multi-carrier transmission / reception apparatus and method with transmission quality evaluation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813181B2 (en) * 1987-08-20 1998-10-22 株式会社リコー Wireless data communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031742A (en) * 1989-05-30 1991-01-08 Konica Corp Transmission speed automatic selection device
JP2002223197A (en) * 2001-01-25 2002-08-09 Hitachi Ltd Optical network system having quality control function
JP2003051781A (en) * 2001-05-31 2003-02-21 Hitachi Kokusai Electric Inc Data communication method and data communication system
JP2007529156A (en) * 2003-07-25 2007-10-18 松下電器産業株式会社 Multi-carrier transmission / reception apparatus and method with transmission quality evaluation

Also Published As

Publication number Publication date
JP6238036B2 (en) 2017-11-29
JPWO2015166627A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
KR102661690B1 (en) Information processing method, communication device and storage medium
JP2018518069A (en) Apparatus and method for link adaptation in uplink grantless random access
JP2010093843A (en) Data transmission method
JP2005286446A (en) Radio communication method using adaptive modulation system, and radio communication device
KR102183442B1 (en) Method and apparatus for transmitting and receiving signals using multiple modulation and coding schemes in a wireless communication system
EP2706695A2 (en) Wireless communication system, base station, and wireless communication method
JP2018534821A (en) Multi-user MIMO rate prediction based on single-user SNR feedback
JP4409793B2 (en) Base station apparatus and radio communication method
JP4905334B2 (en) Communication apparatus and adaptive modulation method
JP6536988B2 (en) Transmitting terminal device, receiving terminal device, and power line communication system
JP2013004993A (en) Communication device and communication method, and communication system
JP6238036B2 (en) Transmission terminal apparatus and communication system
JP2010074365A (en) Radio communication device
US20110244803A1 (en) Wireless communications system and wireless device
JP5333608B2 (en) Compound condition judging unit, transmission device, compound condition judging method
JP4338079B2 (en) Adaptive modulation apparatus and modulation method switching timing determination method thereof.
JP2008035211A (en) Communication system, communication method, base station apparatus, and terminal device
JP6536682B2 (en) Base station apparatus, terminal apparatus and communication system
JP5555662B2 (en) Wireless communication apparatus, wireless communication system, and communication control method
WO2013095236A1 (en) Method, network node, and computer program for determining rank
JP2004297118A (en) Communication terminal, wireless communication system and wireless communication method
JP4946815B2 (en) Communication apparatus and adaptive modulation method
WO2014207998A1 (en) Radio communication apparatus, radio communication system, and radio communication method
Endo et al. Channel Responsive Wireless TCP
Pursley et al. Tradeoffs in the design of routing metrics for frequency-hop wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785621

Country of ref document: EP

Kind code of ref document: A1