[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015166670A1 - タングステン系コンデンサ素子の製造方法 - Google Patents

タングステン系コンデンサ素子の製造方法 Download PDF

Info

Publication number
WO2015166670A1
WO2015166670A1 PCT/JP2015/051327 JP2015051327W WO2015166670A1 WO 2015166670 A1 WO2015166670 A1 WO 2015166670A1 JP 2015051327 W JP2015051327 W JP 2015051327W WO 2015166670 A1 WO2015166670 A1 WO 2015166670A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode body
tungsten
powder
chemical conversion
capacitor element
Prior art date
Application number
PCT/JP2015/051327
Other languages
English (en)
French (fr)
Inventor
内藤 一美
克俊 田村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015530231A priority Critical patent/JP5798279B1/ja
Priority to EP15785625.3A priority patent/EP3139393A4/en
Priority to US15/306,233 priority patent/US9704652B2/en
Priority to CN201580022828.XA priority patent/CN106463266A/zh
Publication of WO2015166670A1 publication Critical patent/WO2015166670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present invention relates to a method for manufacturing a tungsten-based capacitor element. More specifically, the present invention relates to a method for manufacturing a tungsten electrolytic capacitor element that is easily polymerized to form a semiconductor layer to be a cathode and has improved leakage current (LC) characteristics.
  • LC leakage current
  • capacitors used in these electronic devices are smaller, lighter, larger in capacity, and have lower equivalent series resistance.
  • ESR equivalent series resistance
  • an anode body of a capacitor made of a sintered body of valve action metal powder such as tantalum that can be anodized is anodized, and a dielectric layer made of these metal oxides is formed on the surface layer portion thereof.
  • Proposed electrolytic capacitors have been proposed.
  • An electrolytic capacitor using a sintered body of tungsten powder using tungsten as the valve action metal as an anode body is an electrolysis obtained by chemical conversion treatment of an anode body of the same volume obtained by sintering tantalum powder of the same particle size at an equivalent chemical voltage.
  • a large capacitance can be obtained, but there is a problem that a leakage current (LC) is large. Therefore, the present applicant has found that the problem of LC characteristics can be solved by using tungsten powder having a specific amount of tungsten silicide in the particle surface region, and has a tungsten content in the particle surface region and a silicon content of 0.
  • Patent Document 1 International Publication No. 2012/086272 Pamphlet (Europe) Japanese Patent No. 2656947)
  • a dielectric layer is formed on the surface layer portion of an anode body obtained by molding and sintering a powder containing tungsten as a main component, and a semiconductor layer and a conductor layer are sequentially formed on the dielectric layer. It is manufactured by.
  • a natural oxide film is easily formed on the surface.
  • the natural oxide film has a non-uniform thickness as compared with the electrolytic oxide film formed by chemical conversion treatment, and therefore has a poor withstand voltage characteristic.
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-177174 (US Pat. No. 7,768,773) discloses a prior art related to an etching method for removing a natural oxide film on the surface of a tungsten anode body employed in the present invention.
  • a method of etching an oxide film on the surface of a tantalum or niobium sintered body with an organic acid is disclosed
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-273839
  • Patent Document 4 discloses a method of completely removing a natural oxide film by energizing a tungsten anode body in an alkaline solution.
  • An object of the present invention is to form a dielectric layer on the surface layer portion of an anode body obtained by forming and sintering a powder containing tungsten as a main component, and sequentially forming a semiconductor layer and a conductor layer on the dielectric layer.
  • An object of the present invention is to provide a method for manufacturing a capacitor element that has particularly good LC characteristics.
  • the present inventors do not completely remove the natural oxide film formed on the surface layer portion of the anode body before forming the dielectric layer on the surface layer portion of the tungsten anode body by chemical conversion treatment, so that it remains slightly thin.
  • the leakage current is measured using the electrolytic solution as a cathode by performing the etching process, an anode body having a low leakage current (LC) at a high voltage and a large capacity can be obtained, and the surface layer on the outer surface of the anode body
  • the present invention was completed by finding a chemical conversion treatment condition that does not cause cracks in the dielectric layer.
  • the present invention relates to the following capacitor element manufacturing methods [1] to [7].
  • a chemical conversion step of forming a dielectric layer on a surface layer portion of an anode body obtained by molding and sintering a powder containing tungsten as a main component a semiconductor layer and a conductor layer are sequentially formed on the dielectric layer.
  • a natural oxide film formed on a surface layer portion of the outer surface of the anode body and the inner surface of the pore before the dielectric layer is formed has a thickness of 0.
  • An etching process for removing in a range of 5 to 5.0 nm, and the chemical conversion process is performed at a temperature of ⁇ 4 to 18 ° C.
  • the present invention even when a thick dielectric layer is formed in the chemical conversion step, it is possible to obtain a chemically treated tungsten anode body without cracking the dielectric layer on the outer surface of the anode body. Further, since the impregnation property of the cathode (organic semiconductor layer) in the pores of the anode body is improved, the capacity is improved and a tungsten electrolytic capacitor with improved LC characteristics can be obtained.
  • FIG. 4 is a scanning electron microscope (SEM) photograph at any three locations (5.6 ⁇ m ⁇ 3.7 ⁇ m) on the outer surface of the chemically treated anode body in Example 3.
  • FIG. 4 is a scanning electron microscope (SEM) photograph at any three locations (5.6 ⁇ m ⁇ 3.7 ⁇ m) on the outer surface of the chemically treated anode body of Example 8.
  • the tungsten electrolytic capacitor of the present invention is manufactured, for example, by the following manufacturing process.
  • a powder preparation step of obtaining metal tungsten from a tungsten compound and pulverizing it (2)
  • An etching process in which a natural oxide film on the surface of the anode body is etched and left thin.
  • a chemical conversion treatment step of forming a tungsten oxide film as a dielectric layer on the surface layer of the anode body (6)
  • a semiconductor layer forming step of covering the outer surface and the pore inner surface of the anode body with a semiconductor layer of a conductive polymer (7)
  • a conductor layer forming step of covering the surface of the semiconductor layer with a conductor layer is demonstrated in detail.
  • Tungsten trioxide powder with a smaller particle size that is not available on the market is, for example, pulverized tungsten trioxide powder in a hydrogen gas atmosphere, or tungstic acid or tungsten halide, using a reducing agent such as hydrogen or sodium, It can be obtained by appropriately selecting conditions and reducing. Moreover, it can also obtain by selecting conditions and reducing directly from a tungsten containing mineral through several processes.
  • the tungsten powder for capacitors is more preferably a granulated tungsten powder (hereinafter sometimes referred to as “granulated powder”) because pores are easily formed in the anode body.
  • the tungsten powder is a non-granulated tungsten powder (hereinafter sometimes referred to as “primary powder”), and for example, niobium powder is used to adjust the pore distribution as disclosed in JP-A-2003-213302. May be.
  • the tungsten powder used as a raw material can be obtained by pulverizing tungsten trioxide powder using a pulverizing material in a hydrogen gas atmosphere to obtain a finer particle size powder (hereinafter, the raw material tungsten powder is simply referred to as “coarse powder”. ”Sometimes.)
  • the pulverized material is preferably pulverized using a pulverized material made of metal carbide such as tungsten carbide or titanium carbide. If these metal carbides are used, there is little possibility that fine fragments of the pulverized material will be mixed. A tungsten carbide pulverized material is more preferable.
  • tungsten powder As the tungsten powder, a tungsten powder disclosed in Patent Document 1 in which only the particle surface region is tungsten silicide so that the silicon content is in a specific range is preferably used.
  • the tungsten powder whose particle surface area is silicided can be obtained, for example, by mixing silicon powder with tungsten powder and heating and reacting under reduced pressure. In this method, the silicon powder reacts from the surface of the tungsten particles, and tungsten silicide such as W 5 Si 3 is formed locally in a region usually within 50 nm from the particle surface. Therefore, the central part of the primary particles remains as a metal having high conductivity, and when an anode body of a capacitor is produced, the equivalent series resistance (ESR) of the anode body is preferably kept low.
  • ESR equivalent series resistance
  • the content of tungsten silicide can be adjusted by the amount of silicon added.
  • the silicon content in the entire tungsten powder is preferably 0.05 to 7.0% by mass. 20 to 4.0% by mass is particularly preferable.
  • Tungsten powder having a silicon content in this range gives a capacitor with good LC characteristics and is preferable as a powder for an electrolytic capacitor. If the silicon content is less than 0.05% by mass, it may not be a powder that gives an electrolytic capacitor with good LC performance.
  • the silicon content exceeds 7.0% by mass, there are too many silicide portions of the tungsten powder, and when the sintered body obtained by sintering the powder is subjected to chemical conversion treatment as an anode body, the dielectric layer may not be formed well. is there.
  • the oxygen content in the entire tungsten powder is set to a preferable range of 0.05 to 8.0% by mass. be able to.
  • the reaction temperature is preferably 1100 ° C. or higher and 2600 ° C. or lower. Although the silicidation can be performed at a lower temperature as the particle size of silicon used is smaller, silicidation takes longer when the temperature is lower than 1100 ° C. If the temperature exceeds 2600 ° C., silicon is easily vaporized, which may cause problems such as alloying with the metal of the electrode (such as molybdenum) and making the electrode brittle.
  • tungsten powder used in the present invention a powder having at least one selected from tungsten in which nitrogen is solidified, tungsten carbide, and tungsten boride is preferably used only in the particle surface region.
  • tungsten is a solid solution of tungsten, it is not necessary that all of the nitrogen is dissolved in tungsten, even if there is a portion of tungsten nitride or nitrogen adsorbed on the particle surface. Good.
  • a method for solidifying nitrogen in the particle surface region of the tungsten powder there is a method in which the tungsten powder is held at a temperature of 350 to 1500 ° C. for several minutes to several hours under reduced pressure in a nitrogen atmosphere.
  • the treatment for solidifying nitrogen may be performed at the time of high temperature treatment when silicifying tungsten powder, or silicidation may be performed after the treatment for solidifying nitrogen first.
  • a treatment for solidifying nitrogen may be performed after the granulated powder is produced or after the sintered body is produced.
  • the nitrogen content in the entire tungsten powder is 0.01 to 1.0 at an early stage of the process. It is good to make it mass%. Thereby, when handling powder in the air by the process which makes nitrogen solid-solution, oxidation more than necessary can be prevented.
  • the tungsten powder is heated to 300 to 1500 ° C. in a vacuum high-temperature furnace using a carbon electrode.
  • maintaining temperature for several minutes to several hours is mentioned.
  • Carbonization is preferably performed by selecting the temperature and time so that the carbon content in the entire tungsten powder is 0.001 to 0.50 mass%. Where the carbonization is performed is not particularly limited as in the case of the nitrogen solution treatment described above.
  • boron or boron compound powder is mixed with tungsten powder in advance as a boron source.
  • Boron is preferably performed so that the boron content in the entire tungsten powder is 0.001 to 0.10% by mass. Within this range, good LC characteristics can be obtained.
  • the boriding is performed in the tungsten powder manufacturing process is not limited as in the case of the nitrogen solution treatment described above.
  • Tungsten powder with silicified particle surface area and nitrogen solid solution is placed in a carbon electrode furnace and mixed with a boron source for granulation, and the particle surface area is silicified, carbonized, and borated, and nitrogen is solidified. It is also possible to produce tungsten powder. When a predetermined amount of boriding is performed, LC may be further improved.
  • At least one of tungsten ten powder, solidified tungsten powder, carbonized tungsten powder, and borated tungsten powder may be added to the tungsten powder whose surface area is silicified. Even in this case, each of silicon, nitrogen, carbon, and boron elements is preferably blended so as to be within the above-described content range.
  • each of the particle surface regions is made of tungsten powder.
  • at least one of nitrogen solid solution, carbonization, and boride is described above.
  • the surface region may be further silicided to the tungsten powder subjected to the above.
  • Tungsten single powder may be mixed with tungsten powder in which at least one of solidification, carbonization, and boride of nitrogen is further added to tungsten powder whose surface area is silicified, but silicon, nitrogen, carbon and boron may be mixed.
  • blend it is preferable to mix
  • the oxygen content in the entire tungsten powder of the present invention is preferably 0.05 to 8.0% by mass, and more preferably 0.08 to 1.0% by mass.
  • a method for adjusting the oxygen content to 0.05 to 8.0 mass% at least one of tungsten powder in which the particle surface region was silicided and further solidification, carbonization, and boride of nitrogen was performed on the surface region.
  • a predetermined oxygen content can be obtained by gradually introducing gas. Excessive oxidative degradation due to the formation of a natural oxide film with uneven thickness during the process of making the anode body of an electrolytic capacitor using the subsequent powder by setting each tungsten powder to a predetermined oxygen content in advance Can be relaxed. If the oxygen content is within the above range, the LC characteristics of the produced electrolytic capacitor can be kept better. If nitrogen is not solidified in this step, an inert gas such as argon or helium gas may be used instead of nitrogen gas.
  • the content of phosphorus element in the entire tungsten powder of the present invention is preferably 0.0001 to 0.050 mass%.
  • Contains 0.0001 to 0.050 mass% of phosphorus element in tungsten powder whose surface area is silicified and tungsten powder whose surface area is at least one of nitrogen solidified, carbonized, borated and oxidized As an example of the method, there is a method of preparing phosphorus-containing powder by placing phosphorus or a phosphorus compound as a phosphating source in a reduced-pressure high-temperature furnace during primary powder production or granulated powder production.
  • the physical breaking strength of the anode body when the anode body is produced may increase. Within this range, the LC performance of the produced electrolytic capacitor is further improved.
  • the tungsten powder of the present invention is mainly composed of tungsten, and preferably contains silicon, nitrogen, carbon, boron, oxygen, and phosphorus mentioned above.
  • the tungsten powder of the present invention containing tungsten as a main component contains 80.0% by mass or more of tungsten with respect to the mass of the entire tungsten powder in a state before molding.
  • the total content of impurity elements other than silicon, nitrogen, carbon, boron, oxygen and phosphorus is 0.1% by mass or less. It is preferable to suppress. In order to keep these elements below the above-mentioned content, it is necessary to keep the amount of impurity elements contained in raw materials, used pulverized materials, containers, etc. low.
  • the tungsten powder is formed into a shape of an anode body (a shape such as a rectangular parallelepiped or a cylinder).
  • a molding resin acrylic resin or the like
  • the tungsten powder to be formed may be any of primary powder, granulated powder, and mixed powder of primary powder and granulated powder (partially granulated powder).
  • a large average pore diameter can be easily obtained with a sintered body described later, and when more primary powder is used, a small average pore diameter is easily obtained.
  • the porosity of the sintered body can be adjusted by adjusting the molding pressure.
  • the anode lead wire is embedded in the tungsten powder in advance so that the anode lead wire is drawn out from one end surface of the molded body.
  • the obtained molded body is vacuum-sintered to obtain a sintered body.
  • Sintering forms a porous body in which the space between the primary powder or granulated powder becomes pores, increasing the specific surface area.
  • the sintering temperature is 1300 to 2000 ° C., more preferably 1300 to 1700 ° C., and further preferably 1400 to 1600 ° C.
  • the preferred sintering time is 10 to 50 minutes, more preferably 15 to 30 minutes.
  • Etching step before forming the dielectric layer by chemical conversion treatment on the surface layer portion of the sintered body (anode body) obtained by sintering the above various granulated powders of tungsten, it is formed on the surface layer portion of the anode body. A part of the natural oxide film is removed by etching. The thickness of the natural oxide film of the tungsten anode body is thicker on the outer surface than the inner surface of the pores of the anode body, but the thickness of the natural oxide film on the outer surface of the anode body in the etching process is the thickness on the inner surface of the pores.
  • the natural oxide film formed on the outer layer surface of the anode body and the surface portion of the inner surface of the pore is removed so that the thickness becomes 0.5 to 5.0 nm.
  • an alkaline solution is used as an etching solution, the anode body is brought into contact with the alkaline solution, and etching is performed without energization.
  • the natural oxide film on the outer surface of the anode body and the inner surface of the pores are removed in the same manner, so that the natural oxide film on the inner surface of the pores disappears first, and the outer surface The natural oxide film on the surface and the inner surface of the pore cannot be left in the same film thickness.
  • the natural oxide film on the outer surface of the anode body is easier to remove than the inner surface of the pores. Is possible.
  • an aqueous solution containing at least one selected from an alkali metal hydroxide, ammonia, and a quaternary amine is preferably used. In these, since it is easy to handle, sodium hydroxide and potassium hydroxide are preferable.
  • a solvent of the alkaline solution water must be included, and water alone or a mixed solvent of water and water-soluble organic solvent is used. Specific examples of the mixed solvent include a mixed solvent of monohydric alcohol or dihydric alcohol such as methanol, ethanol, propanol, ethylene glycol, propylene glycol and water.
  • the method of bringing the alkaline etching solution into contact with the anode body is not particularly limited, and examples thereof include dipping, spraying (spraying), and brushing. Among these, spraying (spraying) and brushing are preferable.
  • the alkaline etching solution is preferably a 0.05 to 5% by mass aqueous sodium hydroxide solution. This etching solution is sprayed, brushed, or the like to adhere 1 to 30% by mass with respect to the total mass of the anode body.
  • the anode body to which the alkaline etching solution is attached is allowed to stand at a temperature not higher than the boiling point of the solvent, preferably at room temperature for 30 minutes to 20 hours. After the alkaline solution treatment, the anode body is washed with pure water or the like to remove the remaining alkaline solution. Next, it is naturally dried or ventilated.
  • the thickness of the natural oxide film after the etching is obtained by observing the cut surface of the sample in which the anode body is embedded with a resin with a scanning electron microscope (SEM, magnification: 100,000 to 1,000,000 times).
  • SEM scanning electron microscope
  • the film thickness appearing in the SEM photograph of the cut surface is an apparent film thickness and is not necessarily the film thickness in the direction perpendicular to the film surface, an average value of values obtained by observing a plurality of locations can be taken. preferable.
  • the film thickness of the natural oxide film before the etching process mentioned later and the film thickness of the dielectric layer after a chemical conversion process can also be calculated
  • a dielectric layer is formed by chemical conversion treatment on the surface layer portion of the anode body after the etching treatment.
  • the chemical conversion treatment is performed under the following conditions.
  • An aqueous solution containing an oxidizing agent is used as the chemical conversion solution for the chemical conversion treatment.
  • the oxidizing agent used here is an oxygen-containing compound that is easily reduced by itself.
  • Preferable oxidizing agents include at least one selected from the group consisting of manganese (VII) compounds, chromium (VI) compounds, halogen acid compounds, persulfate compounds, and organic peroxides.
  • manganese (VII) compounds such as permanganate; chromium (VI) compounds such as chromium trioxide, chromate, dichromate; perchloric acid, chlorous acid, hypochlorous acid, and Examples thereof include halogen acid compounds such as salts thereof; organic acid peroxides such as peracetic acid, perbenzoic acid and salts and derivatives thereof; and persulfate compounds such as persulfuric acid and salts thereof.
  • persulfate compounds such as ammonium persulfate, potassium persulfate, and potassium hydrogen persulfate are preferred from the viewpoints of ease of handling, stability as an oxidizing agent, water solubility, and capacity increase.
  • oxidizing agents can be used alone or in combination of two or more.
  • the content of the oxidizing agent is preferably 0.05 to 12% by mass, more preferably 0.05 to 7% by mass, and further preferably 1 to 5% by mass. If the oxidant content is too low, the effect is low, and if the oxidant content is too high, an element with a low capacity may appear, and the time for cleaning the chemical conversion solution after chemical conversion treatment becomes long. . The formation temperature will be described later.
  • the chemical conversion liquid may contain a known electrolyte as long as the effects of the present invention are not impaired. Examples of the electrolyte include acids such as nitric acid, sulfuric acid, boric acid, oxalic acid, adipic acid and phosphoric acid; or alkali metal salts and ammonium salts of these acids. If the amount of the electrolyte contained in the chemical conversion solution is too large, protrusions and protrusions may be formed on the surface of the dielectric layer, and the smoothness of the dielectric layer may be impaired.
  • the chemical conversion treatment using a chemical conversion solution containing an oxidizing agent may be repeated a plurality of times. Moreover, you may perform the chemical conversion treatment using the chemical conversion liquid containing electrolyte as needed before or after chemical conversion treatment using the chemical conversion liquid containing an oxidizing agent. However, the method of using a chemical conversion treatment using a chemical conversion solution containing an oxidant and a chemical conversion treatment using a chemical conversion solution containing an electrolyte may cause the chemical conversion solution to mix and deteriorate each chemical conversion solution. In order to prevent this, it may take a long time for water washing after the chemical conversion treatment.
  • an anode body from which a part of the natural oxide film on the surface layer portion is removed is immersed in the chemical conversion solution, and a voltage is applied.
  • the voltage is applied between the anode body (anode) and the counter electrode (cathode).
  • Energization of the anode body can be performed through an anode lead wire.
  • the voltage application is preferably started at a predetermined initial current density, the current density value is maintained, and the voltage value is preferably maintained after reaching a predetermined voltage (formation voltage).
  • the formation voltage can be appropriately set according to a desired withstand voltage.
  • the thickness t (unit: nm) of the dielectric layer is preferably t ⁇ 2E, where E (unit V) is the chemical conversion treatment voltage. Furthermore, since the dielectric layer is likely to be formed thicker on the outer surface than the central portion (inner pore inner surface) of the anode body, it is particularly necessary to perform a chemical conversion treatment so that the dielectric layer on the outer surface does not crack.
  • the dielectric layer In order to achieve the preferable thickness of the dielectric layer, it is important to perform a chemical conversion treatment at a temperature of ⁇ 4 to 18 ° C. for 7 to 110 minutes after reaching a predetermined voltage.
  • the chemical treatment temperature is lower than ⁇ 4 ° C. or when the chemical treatment time is less than 7 minutes, the outer surface layer is not cracked, but the inner dielectric layer is too thin, and the LC performance may be inferior. . That is, in such a condition, it is considered that the dielectric layer thickness at the anode body center (inner pore surface) is less than 2E (nm) described above and the withstand voltage is low.
  • the chemical conversion treatment temperature exceeds 18 ° C. or the chemical conversion treatment time exceeds 110 minutes, the dielectric layer on the outer surface of the anode body becomes too thick, causing cracks and reducing the capacity.
  • the chemical conversion liquid is removed as much as possible by washing the anode body with pure water. After water washing, it is preferable to remove water adhering to the surface or water soaked in pores of the sintered body at a temperature lower than the boiling point of water at the pressure at the time of removal. The removal of water is performed, for example, by contacting with a solvent miscible with water (propanol, ethanol, methanol, etc.) and drying by heating. After the chemical conversion treatment, the anode body is washed with pure water. By this washing, the chemical conversion liquid is removed as much as possible.
  • the water washing it is preferable to remove the water adhering to the surface or the water immersed in the pores of the sintered body at a temperature lower than the boiling point of water at the pressure at the time of removal.
  • the removal of water is performed, for example, by contacting with a solvent miscible with water (propanol, ethanol, methanol, etc.) and drying by heating.
  • the cathode is a semiconductor layer (referred to as a “true cathode”) formed in direct contact with the dielectric layer, and an electrode layer (“ It is called “apparent cathode”).
  • a semiconductor layer an inorganic or organic semiconductive layer is used.
  • the inorganic semiconductive layer include a manganese dioxide layer.
  • the organic semiconductive layer include a layer made of polypyrrole or a derivative thereof, a layer made of polythiophene or a derivative thereof (for example, a polymer of 3,4-ethylenedioxythiophene), a layer made of polyaniline or a derivative thereof.
  • a conductive polymer layer are doped with a dopant.
  • a semiconductor layer made of a conductive polymer is preferable because low ESR can be obtained due to high conductivity.
  • This semiconductor layer is formed by a chemical synthesis method (solution reaction, gas phase reaction, solid-liquid reaction, and a combination thereof), an electrochemical synthesis method (electropolymerization method), or a combination of these methods.
  • Conductor layer forming step A conductor layer is provided on the semiconductor layer formed by the method described above.
  • the conductor layer can be formed, for example, by solidifying a conductive paste, plating, metal vapor deposition, adhesion of a heat-resistant conductive resin film, or the like.
  • a conductive paste As the conductive paste, silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable. These may be used alone or in combination of two or more. When using 2 or more types, they may be mixed, or may be laminated as separate layers. After applying the conductive paste, it is left in the air or heated to solidify. Examples of the plating include nickel plating, copper plating, silver plating, and aluminum plating. Moreover, aluminum, nickel, copper, silver etc.
  • a vapor deposition metal for example, a carbon paste and a silver paste are sequentially laminated on the semiconductor layer to form a conductor layer.
  • a tungsten electrolytic capacitor element is manufactured by sequentially laminating a semiconductor layer and a conductor layer as a cathode on the anode body thus formed with the dielectric layer.
  • a cathode lead is electrically connected to the cathode, and a part of the cathode lead is exposed outside the exterior of the electrolytic capacitor and becomes a cathode external terminal.
  • an anode lead is electrically connected to the anode body via an anode lead wire, and a part of the anode lead is exposed outside the exterior of the electrolytic capacitor and becomes an anode external terminal. Subsequently, the exterior can be formed by sealing with a resin or the like to obtain a capacitor product.
  • particle size average particle size and particle size range
  • bulk density specific surface area
  • elemental analysis were measured by the following methods.
  • the particle size (volume average particle size) of the powder was measured using HRA9320-X100 (laser diffraction / scattering particle size analyzer) manufactured by Microtrack. Specifically, the volume-based particle size distribution was measured with this apparatus, and in the cumulative distribution, the particle size value (D 50 ; ⁇ m) corresponding to the cumulative volume% of 50 volume% was defined as the volume average particle diameter. In this method, the secondary particle diameter is measured.
  • the dispersibility is usually good, so that the average particle diameter of the coarse powder measured by this measuring apparatus can be regarded as a volume average primary particle diameter.
  • the bulk density was determined by measuring 100 mass (cm 3 ) of powder with a graduated cylinder and measuring the mass.
  • the specific surface area was measured by BET method (adsorption gas: nitrogen) using NOVA2000E (SYSMEX). Elemental analysis was performed using an ICP emission spectrometer (manufactured by Shimadzu Corporation).
  • Examples 1-5 Tungsten trioxide powder with an average particle size of 10-120 ⁇ m is reduced by hydrogen to provide a lot of minute spaces inside, producing tungsten powder with three-dimensionally connected minute powder with an average particle size of 0.1 ⁇ m did.
  • the tungsten powder had an average particle size of 4 to 110 ⁇ m.
  • the lump was pulverized and the powder having a particle size of 26 to 180 ⁇ m was classified by sieving and used for the following operations.
  • This powder had a bulk density of 5.8 g / cm 3 and a BET specific surface area of 4.2 m 2 / g.
  • this powder is shaped so that a tantalum lead wire having a diameter of 0.24 mm is planted and vacuum-sintered at 1400 ° C. for 20 minutes to obtain a size of 1.0 ⁇ 2.3 ⁇ 1.7 mm (the lead wire is A total of 1000 anode bodies having a powder mass of 32 mg were planted at the center of a 1.0 ⁇ 2.3 mm surface.
  • this anode body was stored for 95 days in a desiccator of 40% RH at 25 ° C., and then etched with an alkaline solution as follows. That is, a separately prepared 0.5 mass% sodium hydroxide aqueous solution was sprayed on the surface of the anode body by spraying, left at 25 ° C. for the etching treatment time shown in Table 1, washed with water, and vacuum dried at 125 ° C. Removed from the dryer. According to the scanning electron microscope (SEM) observation of the cut surface of the resin-embedded anode body sample, the thickness of the natural oxide film on the anode body was 0.5 for both the inside of the anode body (inner pore surface) and the outer surface portion.
  • SEM scanning electron microscope
  • the thickness of the natural oxide film of the anode body before the etching treatment was 28 nm inside the anode body (inner pore surface) and 45 nm on the outer surface. Subsequently, using a 3% by mass ammonium persulfate aqueous solution as the electrolyte, immerse the anode body and part of the lead wire in the electrolyte, connect the lead wire to the positive electrode of the power source, and connect the stainless steel plate in the electrolyte to the negative electrode of the power source.
  • the initial current density is 2 mA / anode body
  • the conversion voltage is 10 V
  • the others are subjected to conversion treatment under the conditions of the conversion treatment temperature and the formation treatment time (time after reaching the formation voltage) described in Table 1, and the anode body and lead wire A dielectric layer made of amorphous tungsten trioxide was partially formed.
  • the conversion temperature was 0 ° C. or lower
  • 10% by mass of ethyl alcohol was contained in the conversion solution to prevent the electrolyte solution from solidifying. After washing with water, it was immediately substituted with ethyl alcohol and dried at 190 ° C. for 15 minutes.
  • a 50% by weight sulfuric acid aqueous solution prepared separately is used as the electrolyte
  • the anode body after chemical conversion treatment is immersed in the electrolyte
  • the lead wire is used as the positive electrode of the power supply
  • the platinum plate disposed in the electrolyte is used as the power supply.
  • the same 10 V as the formation voltage was applied, and the LC value after 30 seconds at a temperature of 23 ° C. was measured.
  • an LCR measuring device was connected to the chemical conversion treated anode body immersed in the same electrolyte, and the capacity was measured under the conditions of room temperature, frequency 120 Hz, and bias voltage 2.5 V.
  • Table 1 shows these LC values and capacitance measurement results (both average values of 64 elements). Furthermore, the thickness of the dielectric at the center of the chemical conversion-treated anode body of each example was determined by scanning electron microscope (SEM) observation of the cut surface of the resin-embedded anode body sample. The average value of 10 measurement samples is also shown in Table 1.
  • Comparative Examples 1 to 4 The anodes subjected to chemical conversion treatment in Comparative Examples 1 to 4 were produced in the same manner as in Example 1 except that the conditions of etching treatment time, chemical treatment temperature and chemical treatment time shown in Table 1 were used.
  • Comparative Example 5 The anode body subjected to the chemical conversion treatment of Comparative Example 5 was manufactured in the same manner as in Example 1 except that the chemical conversion treatment was performed under the conditions of the chemical treatment temperature and the chemical treatment time described in Table 1 while conducting the etching treatment. did.
  • energization was performed as follows. A 0.1% by mass sodium hydroxide aqueous solution was used as an alkaline solution, the anode body was immersed in a predetermined position in an alkaline solution, the anode body was used as an anode, and a platinum plate disposed in the alkaline solution was used as a cathode.
  • the energization conditions were room temperature, voltage 2.5 V, current density 1 mA / piece, and energized for 15 minutes.
  • Comparative Example 6 A chemically treated anode body of Comparative Example 6 was produced in the same manner as in Example 1 except that the etching treatment was not performed.
  • the film thickness, capacity, and LC value of the dielectric layer at the center of the anode body were measured in the same manner as in Example 1 for the anode bodies subjected to chemical conversion treatment in Comparative Examples 1 to 6. These results are shown in Table 1.
  • Examples 6-9, Comparative Examples 7-14 After mixing 0.5 parts by mass of silicon powder with 100 parts by mass of tungsten powder having an average particle diameter of 0.6 ⁇ m and a BET specific surface area of 3.4 m 2 / g using a roller mixer, the mixture is left in a vacuum heating furnace at 1420 ° C. for 30 minutes. It returned to room temperature. The lump taken out from the furnace was crushed, and the powder having a particle size of 26 to 180 ⁇ m was classified by sieving and used for the following operations. This powder had a bulk density of 3.1 g / cm 3 and a BET specific surface area of 2.8 m 2 / g.
  • this powder was shaped so that a tantalum lead wire having a diameter of 0.24 mm was planted and vacuum-sintered at 1480 ° C. for 20 minutes to obtain a size of 1.0 ⁇ 2.3 ⁇ 1.7 mm (the lead wire was 1000 sintered bodies (hereinafter referred to as an anode body) having a powder mass of 34 mg were planted in the center of a 1.0 ⁇ 2.3 mm surface.
  • an etching treatment was performed in the same manner as in Example 1 except that the treatment time was 3 hours.
  • the anode body subjected to the etching treatment was embedded in a resin, and the cut surface was observed with a scanning electron microscope (SEM). It was confirmed that the thickness of the natural oxide film of the anode body was 0.5 to 3.5 nm both inside the anode body (inner pore surface) and on the outer surface. In addition, the thickness of the natural oxide film of the anode body before alkali treatment was 23 nm inside the anode body (inner pore surface) and 40 nm on the outer surface.
  • ethyl alcohol 10% by mass was contained in the conversion solution to prevent the electrolyte solution from solidifying. After washing with water, it was immediately substituted with ethyl alcohol and dried at 190 ° C. for 15 minutes. After returning to room temperature, a 50% by weight sulfuric acid aqueous solution prepared separately was used as the electrolytic solution, the chemically treated anode body was immersed in the electrolytic solution, the lead wire was connected to the positive electrode of the power source, and the platinum plate disposed in the electrolytic solution was Connected to the negative electrode of the power source, 15V was applied and the LC value after 30 seconds was measured at a temperature of 23 ° C.
  • an LCR measuring device was connected to the chemical conversion treated anode body immersed in the same electrolyte, and the capacity was measured under the conditions of room temperature, frequency 120 Hz, and bias voltage 2.5 V.
  • Table 2 shows the measurement results of these LC values and capacitances (both are average values of 64 elements).
  • the dielectric thickness of the central part (inner pore surface) of the anode body subjected to chemical conversion treatment in each example was determined by observation with a scanning electron microscope (SEM) of the cut surface of the resin-embedded anode body sample. Table 2 shows the average value of 10 measurement samples. In Comparative Examples 8, 10, 13, and 14, cracks were observed on the outer surface of the dielectric layer.
  • FIG. 1 An SEM photograph (without cracks) of the outer surface of the chemical conversion-treated anode body of Example 8 is shown in FIG. 1, and an SEM photograph (with cracks) of the outer surface of the chemical-treated anode body of Comparative Example 10 is shown in FIG.
  • the figure is a photograph of a field of view of 5.6 ⁇ m ⁇ 3.7 ⁇ m at any three locations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、タングステンを主成分とする粉を成形後焼結して得た陽極体の表層部に誘電体層を形成する化成工程の後、前記誘電体層上に半導体層及び導電体層を順次形成するコンデンサ素子の製造方法であって、前記誘電体層を形成する前に、前記陽極体の外表面及び細孔内表面の表層部に形成された自然酸化被膜を、その厚さが0.5~5.0nmの範囲になるように除去するエッチング工程を有し、かつ前記化成工程を-4~18℃の温度で、所定電圧到達後7~110分間行うことを特徴とするLC特性の良好なコンデンサ素子の製造方法を提供する。

Description

タングステン系コンデンサ素子の製造方法
 本発明は、タングステン系コンデンサ素子の製造方法に関する。さらに詳しく言えば、陰極となる半導体層を形成するための重合が容易で、漏れ電流(LC)特性の改善されたタングステン電解コンデンサ素子の製造方法に関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で、より軽く、より大きな容量、より低い等価直列抵抗(ESR)が求められている。
 このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表層部にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
 弁作用金属としてタングステンを用いたタングステン粉の焼結体を陽極体とする電解コンデンサは、同一粒径のタンタル粉を焼結した同体積の陽極体を同化成電圧で化成処理して得られる電解コンデンサに比較して、大きな容量を得ることができるが、漏れ電流(LC)が大きいという問題があった。
 そこで、本出願人は、粒子表面領域に特定量のケイ化タングステンを有するタングステン粉を用いることによりLC特性の問題が解決できることを見出し、粒子表面領域にケイ化タングステンを有しケイ素含有量が0.05~7質量%であるタングステン粉、その焼結体からなるコンデンサの陽極体、電解コンデンサ、及びそれらの製造方法を提案している(特許文献1;国際公開第2012/086272号パンフレット(欧州特許第2656947号))。
 前記タングステン電解コンデンサは、タングステンを主成分とする粉を成形後焼結して得た陽極体の表層部に誘電体層を形成し、誘電体層上に半導体層及び導電体層を順次形成することにより製造される。ここで、誘電体層が形成される前のタングステン陽極体は、空気中に放置しておくと表面に自然酸化被膜が形成されやすい。自然酸化被膜は、化成処理で形成される電解酸化被膜に比べて、厚さが不均一であるため耐電圧特性が悪い。そこで、陽極体に誘電体層を形成する化成処理工程に先立って、均一な厚さの誘電体層を形成する目的で陽極体表面に存在する膜厚が不均一な自然酸化被膜を全て除去するエッチング工程が施される。しかしながら、化成処理で形成される誘電体層の厚みによっては割れを生じることがあり、後工程で誘電体層の上に形成する陰極層(重合による有機半導体層)の厚みが均一とならず、結果として漏れ電流(LC)の悪化を引き起こすという問題があった。
 本発明で採用するタングステン陽極体表面の自然酸化被膜を除去するエッチング手法に関連する先行技術としては、例えば、特許文献2(特開2009-177174号公報(米国特許第7768773号))には、タンタルまたはニオブ焼結体表面の酸化被膜を有機酸によりエッチングする方法が開示され、特許文献3(特開2007-273839号公報)にはアルミ箔表面の酸化被膜をリン酸-クロム酸混合液によりエッチングする方法が開示され、特許文献4(国際公開第2013/190756号パンフレット)には、アルカリ溶液中でタングステン陽極体に通電することにより自然酸化被膜を完全に除去する方法が開示されている。
国際公開第2012/086272号パンフレット(欧州特許第2656947号) 特開2009-177174号公報(米国特許第7768773号) 特開2007-273839号公報 国際公開第2013/190756号パンフレット
 本発明の目的は、タングステンを主成分とする粉を成形後焼結して得た陽極体の表層部に誘電体層を形成し、誘電体層上に半導体層及び導電体層を順次形成したコンデンサ素子において、特にLC特性が良好となるコンデンサ素子の製造方法を提供することにある。
 本発明者らは、タングステン陽極体の表層部に化成処理により誘電体層を形成する前に、陽極体の表層部に形成された自然酸化被膜を完全に除去せず、僅かに薄く残るようにエッチング工程を行うことによって、電解液を陰極として漏れ電流を測定した場合に、高電圧での漏れ電流(LC)が低く、容量が大きい陽極体が得られること、更に陽極体の外表面の表層部の誘電体層に割れが生じない化成処理条件を見出して本発明を完成した。
 本発明は、以下の[1]~[7]のコンデンサ素子の製造方法に関する。
[1] タングステンを主成分とする粉を成形後焼結して得た陽極体の表層部に誘電体層を形成する化成工程の後、前記誘電体層上に半導体層及び導電体層を順次形成するコンデンサ素子の製造方法であって、前記誘電体層を形成する前に、前記陽極体の外表面及び細孔内表面の表層部に形成された自然酸化被膜を、その厚さが0.5~5.0nmの範囲になるように除去するエッチング工程を有し、かつ前記化成工程を-4~18℃の温度で、所定電圧到達後7~110分間行うことを特徴とするコンデンサ素子の製造方法。
[2] 前記エッチング工程が、前記陽極体にアルカリ溶液を接触させ、通電せずに行われる前項1に記載のコンデンサ素子の製造方法。
[3] 前記アルカリが、水酸化ナトリウムまたは水酸化カリウムである前項2に記載のコンデンサ素子の製造方法。
[4] 前記アルカリ溶液が、水酸化ナトリウムまたは水酸化カリウムの水溶液または水と有機溶媒の混合溶媒の溶液である前項2に記載のコンデンサ素子の製造方法。
[5] 前記アルカリ溶液が、0.05~5質量%の水酸化ナトリウム水溶液である前項4に記載のコンデンサ素子の製造方法。
[6] 前記陽極体に前記アルカリ溶液を、散布(吹付け)、または刷毛塗りにより接触させる前項2に記載のコンデンサ素子の製造方法。
[7] 前記タングステンを主成分とする粉が、粒子表面領域のみにケイ化タングステンを有し、タングステン粉全体中のケイ素含有量が0.05~7.0質量%である前項1~6のいずれかに記載のコンデンサ素子の製造方法。
 本発明によれば、化成工程において厚い誘電体層を形成する場合においても、陽極体の外表面の誘電体層に割れのない化成処理済みタングステン陽極体が得られる。また、陽極体の細孔内における陰極(有機半導体層)の含浸性がよくなるために容量が向上し、LC特性が改善されたタングステン電解コンデンサが得られる。
実施例3の化成処理済陽極体外表面の任意の3箇所(5.6μm×3.7μm)の走査型電子顕微鏡(SEM)写真である。 実施例8の化成処理済陽極体外表面の任意の3箇所(5.6μm×3.7μm)の走査型電子顕微鏡(SEM)写真である。
 本発明のタングステン電解コンデンサは、例えば以下の製造工程により製造される。
(1)タングステン化合物から金属タングステンを得て粉末化する、粉末準備工程、
(2)タングステン粉末を直方体または円柱等の所望の形状に成形して成形体を得る、成形工程、
(3)成形体を高温、高真空中で焼結して焼結体(陽極体)を得る、焼結工程、
(4)陽極体表面の自然酸化被膜をエッチングして薄く残す、エッチング工程、
(5)陽極体の表面層に誘電体層として酸化タングステン被膜を形成する、化成処理工程、
(6)陽極体の外表面及び細孔内表面を導電性高分子の半導体層で被覆する、半導体層形成工程、
(7)半導体層の表面を導電体層で被覆する、導電体層形成工程。
 以下、上記各製造工程について詳細に説明する。
(1)粉末準備工程
 原料タングステン粉は、市販されているタングステン粉を用いることができる(最小粒径:約0.5μm)。市販品にはない粒径のさらに小さいタングステン粉は、例えば、三酸化タングステン粉を水素ガス雰囲気下で粉砕して、あるいはタングステン酸やハロゲン化タングステンを、水素やナトリウム等の還元剤を使用し、条件を適宜選択して還元することによって得ることができる。
 また、タングステン含有鉱物から直接または複数の工程を経て、条件を選択して還元することによって得ることもできる。
 コンデンサ用のタングステン粉としては、陽極体に細孔を形成しやすくなるので、造粒されたタングステン粉(以下に「造粒粉」ということがある。)がより好ましい。
 タングステン粉は未造粒のタングステン粉(以下、「一次粉」ということがある。)を用いて、例えばニオブ粉について特開2003-213302号公報に開示されているように細孔分布を調整してもよい。
 原料となるタングステン粉は、三酸化タングステン粉を水素ガス雰囲気下で粉砕材を用いて粉砕し、より細かい粒径の粉体を得ることができる(以下、原料とするタングステン粉を単に「粗製粉」ということがある。)。粉砕材としては、炭化タングステン、炭化チタン等の炭化金属製の粉砕材を用いて粉砕することが好ましい。これらの炭化金属であれば、粉砕材の微細な破片が混入する可能性が小さい。炭化タングステンの粉砕材がより好ましい。
 タングステン粉としては、特許文献1に開示された、ケイ素含有量が特定の範囲となるように粒子表面領域のみをケイ化タングステンとしたタングステン粉が好ましく用いられる。
 粒子表面領域がケイ化されたタングステン粉は、例えば、タングステン粉にケイ素粉をよく混合し、減圧下で加熱して反応させることにより得ることができる。この方法の場合、ケイ素粉はタングステン粒子表面より反応し、W5Si3等のケイ化タングステンが粒子表面から通常50nm以内の領域に局在して形成される。そのため、一次粒子の中心部は導電率の高い金属のまま残り、コンデンサの陽極体を作製したとき、陽極体の等価直列抵抗(ESR)が低く抑えられるので好ましい。ケイ化タングステンの含有量はケイ素の添加量により調整することができる。ここで、ケイ化タングステンの化合物の種類にかかわらず、その含有量をケイ素含有量で表した場合、タングステン粉全体中のケイ素含有量は、0.05~7.0質量%が好ましく、0.20~4.0質量%が特に好ましい。この範囲のケイ素含有量を有するタングステン粉は、LC特性の良好なコンデンサを与え、電解コンデンサ用粉体として好ましい。ケイ素含有量が0.05質量%未満であると、LC性能が良好な電解コンデンサを与える粉にならない場合がある。ケイ素含有量が7.0質量%を超えるとタングステン粉のケイ化部分が多すぎて、粉を焼結した焼結体を陽極体として化成処理する際に、誘電体層がうまく形成できないことがある。
 前記減圧条件については、10-1Pa以下、好ましくは10-3Pa以下でケイ化を行うと、タングステン粉全体中の酸素含有量を好ましい範囲である0.05~8.0質量%にすることができる。
 反応温度は、1100℃以上、2600℃以下が好ましい。使用するケイ素の粒径が小さいほど低温でケイ化が行えるが、1100℃未満であるとケイ化に時間がかかる。2600℃を超えるとケイ素が気化しやすくなり、電極の金属(モリブデン等)と合金化して電極を脆くするなどの問題を引き起こすことがある。
 本発明で用いるタングステン粉としては、さらに、粒子表面領域のみに、窒素が固溶化したタングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを有するものも好ましく用いられる。なお、本発明で窒素が固溶化したタングステンという場合には、すべての窒素がタングステンに固溶化している必要はなく、タングステンの窒化物や粒子表面に吸着した窒素が一部存在していてもよい。
 タングステン粉の粒子表面領域に窒素を固溶化させる方法の一例として、タングステン粉を減圧下、窒素雰囲気下で、350~1500℃の温度に数分から数時間保持する方法が挙げられる。窒素を固溶化させる処理は、タングステン粉をケイ化するときの高温処理時に行ってもよいし、先に窒素を固溶化させる処理を行ってからケイ化を行ってもよい。さらに一次粉のとき、造粒粉作製後、あるいは焼結体作製後に窒素を固溶化させる処理を行ってもよい。このように、窒素を固溶化させる処理をタングステン粉製造工程のどこで行うかについては特に限定されないが、好ましくは、工程の早い段階でタングステン粉全体中の窒素含有量を0.01~1.0質量%にしておくとよい。これにより、窒素を固溶化させる処理で粉体を空気中で取り扱う際、必要以上の酸化を防ぐことができる。
 粒子表面領域をケイ化及び/または窒素が固溶化したタングステン粉の表面の一部を炭化する方法の一例として、前記のタングステン粉を、炭素電極を使用した減圧高温炉中で300~1500℃の温度に数分から数時間保持する方法が挙げられる。温度と時間を選択して、タングステン粉全体中の炭素含有量が0.001~0.50質量%になるように炭化することが好ましい。炭化を製造工程のどこで行うかについては、前述した窒素固溶化処理の場合と同様に特に限定されない。窒素を導入した炭素電極炉中でケイ化したタングステン粉を所定条件で保持すると、炭化と窒化が同時に起こり、粒子表面領域がケイ化及び炭化し、窒素が固溶化したタングステン粉を作製することも可能である。
 粒子表面領域をケイ化、炭化及び/または窒素が固溶化したタングステン粉の表面の一部をホウ化する方法の一例として、ホウ素やホウ素元素を有する化合物の粉末をホウ素源として予めタングステン粉と混合しておき、これを造粒する方法が挙げられる。タングステン粉全体中のホウ素含有量が0.001~0.10質量%になるようにホウ化するのが好ましい。この範囲であれば良好なLC特性が得られる。ホウ化をタングステン粉製造工程のどこで行うかについては、前述した窒素固溶化処理の場合と同様に限定されない。粒子表面領域がケイ化及び窒素が固溶化したタングステン粉を炭素電極炉に入れ、ホウ素源を混合して造粒を行うことにより、粒子表面領域がケイ化、炭化、ホウ化し、窒素が固溶化したタングステン粉を作製することも可能である。所定量のホウ化を行うと、さらにLCが良くなる場合がある。
 粒子表面領域がケイ化したタングステン粉に、窒素が固溶化したタングステンテン粉、炭化したタングステン粉、ホウ化したタングステン粉の少なくとも1種を加えてもよい。この場合でも、ケイ素、窒素、炭素及びホウ素の各元素については、それぞれ前述した含有量の範囲内に収まるように配合することが好ましい。
 前述した窒素の固溶化、炭化、ホウ化の方法では、それぞれ粒子表面領域がケイ化したタングステン粉を対象として行う場合を説明したが、先に窒素の固溶化、炭化、ホウ化の少なくとも1つを行ったタングステン粉に、さらに表面領域をケイ化してもよい。粒子表面領域がケイ化されたタングステン粉にさらに窒素の固溶化、炭化、ホウ化の少なくとも1つを行ったタングステン粉に、タングステン単独粉を混合してもよいが、ケイ素、窒素、炭素及びホウ素の各元素については、それぞれ前述した含有量の範囲内に収まるように配合することが好ましい。
 本発明のタングステン粉全体中の酸素含有量は、0.05~8.0質量%であることが好ましく、0.08~1.0質量%であることがより好ましい。
 酸素含有量を0.05~8.0質量%にする方法としては、粒子表面領域がケイ化されたタングステン粉、さらに表面領域に窒素の固溶化、炭化、ホウ化の少なくとも1つを行ったタングステン粉の表面領域を酸化する方法がある。具体的には各粉の一次粉作製や造粒粉作製の際の減圧高温炉からの取り出し時に、酸素ガスを含有した窒素ガスを導入する。このとき、減圧高温炉からの取り出し時の温度が280℃未満であると窒素の固溶化よりも酸化が優先して起こる。徐々にガスを導入することにより所定の酸素含有量にすることができる。前もって各タングステン粉を所定の酸素含有量にしておくことにより、後の粉を使用して電解コンデンサの陽極体を作製する工程中において、厚みにムラのある自然酸化膜の生成による過度の酸化劣化を緩和することができる。酸素含有量が前記範囲内であれば、作製した電解コンデンサのLC特性をより良好に保つことができる。この工程で窒素の固溶化をしない場合には、窒素ガスの代わりにアルゴンやヘリウムガス等の不活性ガスを使用してもよい。
 本発明のタングステン粉全体中のリン元素の含有量は0.0001~0.050質量%であることが好ましい。
 粒子表面領域がケイ化されたタングステン粉、さらに、表面領域に窒素固溶化、炭化、ホウ化、酸化の少なくとも1つを行ったタングステン粉に、リン元素を0.0001~0.050質量%含有させる方法の一例として、各粉の一次粉作製時や造粒粉作製時に、減圧高温炉中にリンやリン化合物をリン化源として置いてリンを含有する粉を作製する方法がある。リン化源の量を調整するなどして、前述の含有量となるようにリンを含有させると、陽極体を作製したときの陽極体の物理的破壊強度が増加する場合がある。この範囲であれば、作製した電解コンデンサのLC性能がさらに良好になる。
 本発明のタングステン粉は、タングステンを主成分とし、これに上記に挙げたケイ素、窒素、炭素、ホウ素、酸素、リンを含有することが好ましい。タングステンを主成分とする本発明のタングステン粉は、成形前の状態で、タングステン粉全体の質量に対しタングステンを80.0質量%以上含む。
 粒子表面領域がケイ化されたタングステン粉では、より良好なLC特性を得るために、ケイ素、窒素、炭素、ホウ素、酸素及びリン以外の不純物元素の合計の含有量を0.1質量%以下に抑えることが好ましい。これらの元素を前記含有量以下に抑えるためには、原料や、使用粉砕材、容器等に含まれる不純物元素量を低く抑える必要がある。
(2)成形工程
 次に、上記のタングステン粉を陽極体の形(直方体や円柱などの形状)に成形する。例えば、タングステン粉に成形用の樹脂(アクリル樹脂等)を混合し、成形機を用いて成形体を作製してもよい。成形するタングステン粉は、一次粉、造粒粉、及び一次粉と造粒粉との混合粉(一部造粒されている粉)のいずれであってもよい。造粒粉をより多く用いると後述する焼結体で大きな平均細孔径が得られやすく、一次粉をより多く用いると小さな平均細孔径が得られやすい。また、成形圧力を加減することによって焼結体の細孔率の調整ができる。この際、成形体の一端面から陽極リード線が外部へ引き出されるように、タングステン粉末に陽極リード線を予め埋め込んで成形する。
(3)焼結工程
 次に、得られた成形体を真空焼結して焼結体を得る。焼結により一次粉または造粒粉の間の空間が細孔となった多孔質体が形成され、比表面積が増大する。好ましい焼結条件としては、例えば、102Pa以下の減圧下で、焼結温度は1300~2000℃であり、より好ましくは1300~1700℃、さらに好ましくは1400~1600℃である。また、好ましい焼結時間は10~50分であり、より好ましくは15~30分である。
(4)エッチング工程
 本発明では、上記の各種タングステンの造粒粉を焼結した焼結体(陽極体)の表層部に化成処理により誘電体層を形成する前に陽極体の表層部に形成された自然酸化被膜の一部をエッチング処理して除去する。タングステン陽極体の自然酸化被膜の厚さは、陽極体の細孔内表面よりも外表面の方が厚いが、エッチング工程で陽極体外表面での自然酸化被膜の厚みが細孔内表面での厚みと同程度になるように自然酸化被膜を除去する。すなわち、本発明のエッチング工程では、陽極体の外表面及び細孔内表面の表層部に形成された自然酸化被膜を、その厚さが0.5~5.0nmになるように除去する。このためにはエッチング溶液としてアルカリ溶液を使用し、陽極体をアルカリ溶液に接触させ、通電せずにエッチングを行う。なお、陽極体をアルカリ溶液に浸漬して通電すると、陽極体の外表面と細孔内表面の自然酸化被膜が同様に除去されるため、細孔内表面の自然酸化被膜が先になくなり、外表面と細孔内表面の自然酸化被膜を同じ膜厚に残すことはできない。これに対し、通電をしない場合は、陽極体の外表面の方が細孔内表面より自然酸化被膜が除去されやすいため、外表面と細孔内表面の自然酸化被膜を同じ膜厚に残すことが可能である。
 アルカリ溶液としては、アルカリ金属水酸化物、アンモニア及び第4級アミンから選ばれる少なくとも一つを含有する水性溶液を使用することが好ましい。これらの中では、扱い易いことから水酸化ナトリウム及び水酸化カリウムが好ましい。
 アルカリ溶液の溶媒としては必ず水を含む必要があり、水のみ、あるいは水と水に可溶性有機溶媒との混合溶媒が用いられる。混合溶媒の具体例としては、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール等の1価アルコールまたは2価アルコールと水との混合溶媒が挙げられる。
 陽極体にアルカリエッチング溶液を接触させる方法は特に限定されず、浸漬、散布(吹付け)、刷毛塗りなどが挙げられるが、これらの中では、散布(吹付け)、刷毛塗りが好ましい。
 アルカリエッチング溶液としては、0.05~5質量%の水酸化ナトリウム水溶液が好ましい。このエッチング溶液を吹付け、刷毛塗りなどにより、陽極体の全質量に対し1~30質量%付着させる。次いで、アルカリエッチング液が付着した陽極体を、溶媒の沸点以下、好ましくは室温に30分~20時間放置する。
 アルカリ溶液処理後に、陽極体を純水等で洗浄して残留するアルカリ溶液を除去する。次いで自然乾燥または通風乾燥させる。
 エッチング後の自然酸化被膜の厚さは、陽極体を樹脂包埋した試料の切断面を走査型電子顕微鏡(SEM、倍率:10万~100万倍)で観察することにより求められる。なお、切断面のSEM写真に現れる膜厚は見かけの膜厚であり、膜面に垂直方向の膜厚とは限らないため、複数の箇所について観察して得られる値の平均値をとることが好ましい。
 また、後述するエッチング処理前の自然酸化被膜の膜厚及び化成処理後の誘電体層の膜厚も同じ方法で求めることができる。
(5)化成処理工程
 次に、エッチング処理後の陽極体の表層部に化成処理により誘電体層を形成する。化成処理は下記の条件で行う。
 化成処理の化成液としては酸化剤を含む水溶液を用いる。ここで用いる酸化剤は、自らが還元されやすい含酸素化合物である。好ましい酸化剤としては、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、過硫酸化合物および有機過酸化物からなる群から選ばれる少なくとも1つが挙げられる。具体的には、過マンガン酸塩などのマンガン(VII)化合物;三酸化クロム、クロム酸塩、二クロム酸塩などのクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸及びそれらの塩などのハロゲン酸化合物;過酢酸、過安息香酸及びそれらの塩や誘導体などの有機酸過酸化物;過硫酸及びその塩などの過硫酸化合物が挙げられる。これらのうち、扱い易さ、酸化剤としての安定性及び水易溶性、並びに容量上昇性の観点から、過硫酸アンモニウム、過硫酸カリウム、過硫酸水素カリウム等の過硫酸化合物が好ましい。これらの酸化剤は1種単独でまたは2種以上を組み合わせて使用することができる。
 酸化剤の含有量は、好ましくは0.05~12質量%、より好ましくは0.05~7質量%、さらに好ましくは1~5質量%である。酸化剤の含有量が少なすぎると効果が低く、酸化剤の含有量が多すぎると容量の高くない素子が出現することがあり、また、化成処理後に化成液を洗浄するための時間が長くなる。
 化成温度については後述する。化成液には、本発明の効果を損なわない範囲で、公知の電解質が含まれていてもよい。電解質としては、硝酸、硫酸、ホウ酸、シュウ酸、アジピン酸、リン酸等の酸;またはそれら酸のアルカリ金属塩やアンモニウム塩等が挙げられる。化成液に含有させる電解質の量が多すぎると誘電体層の表面に突起や凸条が生じて誘電体層の平滑性が損なわれることがある。
 酸化剤を含有する化成液を用いた化成処理は複数回繰り返してもよい。また、酸化剤を含有する化成液を用いた化成処理前または処理後に必要に応じて電解質を含有する化成液を用いた化成処理を行ってもよい。ただし、酸化剤を含有する化成液を用いた化成処理と電解質を含有する化成液を用いた化成処理を併用する手法は、化成液が混じり合ってそれぞれの化成液を劣化させるおそれがあるので、それを防ぐために、化成処理後の水洗浄に要する時間が長く掛かるおそれがある。
 化成処理では、上記化成液に、前記表層部の自然酸化被膜の一部を除去した陽極体を浸漬し、電圧を印加する。電圧は、陽極体(陽極)と対電極(陰極)との間に印加する。陽極体への通電は陽極リード線を通じて行うことができる。
 電圧印加は、所定の初期電流密度にて開始し、その電流密度値を維持し、所定の電圧(化成電圧)に達した時からはその電圧値を維持することが好ましい。化成電圧は所望の耐電圧に応じて適宜設定することができる。
 実用上十分なLC特性を得るためには、誘電体層の厚さt(単位nm)は、化成処理電圧をE(単位V)としたとき、t≧2Eであることが好ましい。更に、誘電体層は陽極体の中心部(細孔内表面)よりも外表面において厚く形成されやすいため、特に外表面の誘電体層に割れが生じないように化成処理を行う必要がある。
 上記の好ましい誘電体層の厚さを達成するためには、-4~18℃の温度で、所定電圧到達後7~110分間化成処理を行うようにすることが肝要である。化成処理温度が-4℃より低い場合や、化成処理時間が7分未満の場合は、外表層に割れは見られないが、内部の誘電体層が薄過ぎるため、LC性能は劣る場合がある。すなわち、このような条件の場合、陽極体中心部(細孔内表面)の誘電体層の厚さが前述の2E(nm)未満であって耐電圧が低いと考えられる。一方、化成処理温度が18℃を超える場合や、化成処理時間が110分を超える場合は、陽極体の外表面の誘電体層が厚くなり過ぎて割れを生じ、容量が減少する。
 化成処理後、陽極体を純水で洗浄することによって化成液をできるだけ除去する。水洗浄の後、除去時の圧力における水の沸点未満の温度で表面に付着する水または焼結体の細孔内に浸み込んだ水を除去することが好ましい。水の除去は、例えば、水と混和性を有する溶剤(プロパノール、エタノール、メタノール等)に接触させて加熱乾燥することによって行われる。
 化成処理の後、陽極体を純水で洗浄する。この洗浄によって化成液をできるだけ除去する。水洗浄後は、除去時の圧力における水の沸点未満の温度で表面に付着する水または焼結体の細孔内に浸み込んだ水を除去することが好ましい。水の除去は、例えば、水と混和性を有する溶剤(プロパノール、エタノール、メタノール等)に接触させて加熱乾燥することによって行われる。
(6)半導体層形成工程
 上記の方法で得られた化成処理済み陽極体に陰極を形成する。陰極は、誘電体層に直接接触して形成される半導体層(「真の陰極」と呼ばれる。)と、半導体層の上に形成され、外部との接続のために利用される電極層(「見かけの陰極」と呼ばれる。)とから構成される。半導体層としては、無機または有機の半導電体層が使用される。無機の半導電体層としては、二酸化マンガン層等が挙げられる。有機の半導電体層としては、ポリピロールまたはそれの誘導体からなる層、ポリチオフェンまたはそれの誘導体(例えば、3,4-エチレンジオキシチオフェンの重合体)からなる層、ポリアニリンまたはそれの誘導体からなる層などの導電性高分子層等が挙げられる。これらの導電性高分子にはドーパントがドープされる。特に導電性高分子による半導体層は導電率が高いことにより低いESRが得られるため好ましい。この半導体層は、化学的合成法(溶液反応、気相反応、固液反応及びそれらの組み合わせ) または電気化学的合成法(電解重合手法)により、あるいはこれらの方法を組み合わせて形成される。ここで、少なくとも1回は電解重合手法を用いて半導体層を作製すると、コンデンサ素子の初期ESR値が他法に比較して低くなるため好ましい。
(7)導電体層形成工程
 前述した方法等で形成した半導体層の上に導電体層を設ける。導電体層は、例えば導電ペーストの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィルムの付着等により形成することができる。導電ペーストとしては、銀ペースト、銅ペースト、アルミニウムペースト、カーボンペースト、ニッケルペースト等が好ましい。これらは1種を用いても2種以上を用いてもよい。2種以上を用いる場合は混合してもよく、または別々の層として積層してもよい。導電ペーストを適用した後は空気中に放置するか、または加熱して固化させる。メッキとしては、ニッケルメッキ、銅メッキ、銀メッキ、アルミニウムメッキ等が挙げられる。また、蒸着金属としては、アルミニウム、ニッケル、銅、銀等が挙げられる。
 具体的には、例えば半導体層の上にカーボンペースト、銀ペーストを順次積層し導電体層が形成される。
 このようにして誘電体層が形成された陽極体に、陰極として半導体層及び導電体層を順次積層してタングステン電解コンデンサ素子が作製される。
 上記陰極に陰極リードが電気的に接続され、陰極リードの一部が電解コンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リード線を介して陽極リードが電気的に接続され、陽極リードの一部が電解コンデンサの外装の外部に露出して陽極外部端子となる。次いで、樹脂等による封止によって外装を形成してコンデンサ製品を得ることができる。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
 本発明において、粒径(平均粒径及び粒径範囲)、かさ密度、比表面積、及び元素分析は以下の方法で測定した。
 粉体の粒径(体積平均粒径)は、マイクロトラック社製HRA9320-X100(レーザー回折・散乱式粒度分析計)を用いて測定した。具体的には、本装置により体積基準の粒度分布を測定し、その累積分布において、累積体積%が50体積%に相当する粒径値(D50;μm)を体積平均粒径とした。なお、この方法では二次粒径が測定されるが、粗製粉の場合、通常分散性は良いので、この測定装置で測定される粗製粉の平均粒径はほぼ体積平均一次粒径とみなせる。
 かさ密度は、粉体100mL(cm3)をメスシリンダーで測り取り、この質量を測定することにより求めた。
 比表面積は、NOVA2000E(SYSMEX社)を用いBET法(吸着ガス:窒素)で測定した。
 元素分析は、ICP発光分析装置((株)島津製)を用いて行った。
実施例1~5:
 平均粒径10~120μmの三酸化タングステン粉を水素還元して、内部に微小な空間を多数設けて、内部に平均粒径0.1μmの微小な粉が3次元的に連結したタングステン粉を作製した。タングステン粉は、平均粒径4~110μmであった。この粉にケイ素0.3質量%を混合した後に、リン酸0.2質量%を水に溶解して加え充分混合した。その後、真空乾燥器中140℃で5時間乾燥し、水を除去した。次いで1300℃で30分真空加熱炉中に放置した。室温に戻した後に、塊状物を水洗し、その後、真空乾燥機中140℃で5時間乾燥して水を除いた。次いで、塊状物を解砕し、粒径26~180μmの部分の粉をふるいにより分級し、以下の操作に用いた。この粉は、かさ密度5.8g/cm3、BET比表面積4.2m2/gであった。次に、この粉を0.24mmφのタンタルリード線が植立するように成形し、1400℃で20分真空焼結して、大きさ1.0×2.3×1.7mm(リード線は1.0×2.3mm面中央に植立している。粉質量32mg)の陽極体を1000個得た。次に、この陽極体を25℃で40%RHのデシケータ中に95日保存した後、以下のようにしてアルカリ溶液にてエッチング処理を行った。すなわち、別途用意した0.5質量%の水酸化ナトリウム水溶液を霧吹きで陽極体の表面に散布して25℃で表1に示すエッチング処理時間だけ放置した後水洗し、125℃で真空乾燥後、乾燥機から取り出した。樹脂包埋した陽極体試料の切断面の走査型電子顕微鏡(SEM)観察により、陽極体の自然酸化被膜の厚さは、陽極体内部(細孔内表面)と外表面部共に、0.5~3.5nmであることを確認した。なお、エッチング処理前の陽極体の自然酸化被膜の厚さは、陽極体の内部(細孔内表面)で28nm、外表面で45nmであった。続いて、3質量%の過硫酸アンモニウム水溶液を電解液として、陽極体とリード線の一部を電解液に漬け、リード線を電源の正極に、電解液中のステンレス板を電源の負極に接続して、初期電流密度2mA/陽極体、化成電圧10V、その他は表1に記載した化成処理温度及び化成処理時間(化成電圧到達後からの時間)の条件で化成処理し、陽極体とリード線の一部に非晶質の三酸化タングステンからなる誘電体層を形成した。なお、化成温度が0℃以下の場合は、化成液に10質量%のエチルアルコールを含有させ、電解液の固化を防いだ。水洗後速やかにエチルアルコール置換し190℃で15分乾燥させた。室温に戻した後に、別途用意した50質量%硫酸水溶液を電解液として、化成処理済み陽極体を電解液に浸漬し、リード線を電源の正極に、電解液中に配置した白金板を電源の負極に接続して、化成電圧と同じ10Vを印加して23℃の温度で30秒後のLC値を測定した。また、同電解液に漬けた化成処理済み陽極体にLCR測定器を接続して、室温、周波数120Hz、バイアス電圧2.5Vの条件で容量を測定した。これらLC値及び容量の測定結果(いずれも64素子の平均値)を表1に示す。さらに各実施例の化成処理済み陽極体の中心部の誘電体厚さを、樹脂包埋した陽極体試料の切断面の走査型電子顕微鏡(SEM)観察により求めた。測定試料10個の平均値を表1に併記する。
比較例1~4:
 比較例1~4の化成処理済み陽極体は、表1に記載したエッチング処理時間、化成処理温度及び化成処理時間の条件としたこと以外は実施例1と同様にして作製した。
比較例5:
 比較例5の化成処理済み陽極体は、エッチング処理を通電しながら行い、表1に記載した化成処理温度及び化成処理時間の条件で化成処理を行ったこと以外は実施例1と同様にして作製した。ここで通電は以下のように行った。0.1質量%の水酸化ナトリウム水溶液をアルカリ溶液とし、陽極体をアルカリ溶液に所定位置まで浸漬し、陽極体を陽極とし、アルカリ溶液中に配置した白金板を陰極として行った。通電条件は、室温、電圧は2.5V、電流密度は1mA/個で、15分間通電した。
比較例6:
 エッチング処理を行わないこと以外は実施例1と同様にして比較例6の化成処理済み陽極体を作製した。
 上記の比較例1~6の化成処理済み陽極体について、実施例1と同様にして陽極体中心部の誘電体層の膜厚、容量、LC値を測定した。これらの結果を表1に示す。なお、化成済み陽極体の外表面を走査型電子顕微鏡で観察したところ、比較例4及び6の化成済み陽極体の外表面の誘電体層に割れが認められた。
Figure JPOXMLDOC01-appb-T000001
実施例6~9、比較例7~14:
 平均粒径0.6μm、BET比表面積3.4m2/gのタングステン粉100質量部にケイ素粉0.5質量部をローラーミキサーで混合した後、1420℃で30分真空加熱炉中に放置し室温に戻した。炉から取り出した塊状物を解砕し、粒径26~180μmの部分の粉をふるいにより分級し、以下の操作に用いた。この粉は、かさ密度3.1g/cm3、BET比表面積2.8m2/gであった。次に、この粉を0.24mmφのタンタルリード線が植立するように成形し、1480℃で20分真空焼結して、大きさ1.0×2.3×1.7mm(リード線は1.0×2.3mm面中央に植立している。粉質量34mg)の焼結体(以下、陽極体と称す。)を1000個得た。次に、この陽極体を25℃で、40%RHのデシケータ中に60日保存した後、処理時間が3時間であること以外は実施例1と同様にしてエッチング処理を行った。エッチング処理を行った陽極体を樹脂包埋し、その切断面を走査型電子顕微鏡(SEM)で観察した。陽極体の自然酸化被膜の厚さは、陽極体内部(細孔内表面)と外表面部共に、0.5~3.5nmであることを確認した。なお、アルカリ処理前の陽極体の自然酸化被膜の厚さは、陽極体の内部(細孔内表面)で23nm、外表面で40nmであった。続いて、2質量%の過硫酸カリウム水溶液を電解液として、陽極体とリード線の一部を電解液に漬け、リード線を電源の正極に、電解液中のステンレス板を電源の負極に接続して、初期電流密度3mA/陽極体、化成電圧15V、表2に記載した化成処理温度及び化成処理時間(化成電圧到達後からの時間)の条件で化成処理し、陽極体とリード線の一部に非晶質の三酸化タングステンからなる誘電体層を形成した。なお、化成温度が0℃以下の場合は、化成液に10質量%のエチルアルコールを含有させ、電解液の固化を防いだ。水洗後速やかにエチルアルコール置換し190℃で15分乾燥させた。室温に戻した後に、別途用意した50質量%硫酸水溶液を電解液として、化成処理済み陽極体を電解液に浸漬し、リード線を電源の正極に接続し、電解液中に配置した白金板を電源の負極に接続して、15Vを印加して23℃の温度で、30秒後のLC値を測定した。また、同電解液に漬けた化成処理済み陽極体にLCR測定器を接続して、室温、周波数120Hz、バイアス電圧2.5Vの条件で容量を測定した。これらLC値及び容量の測定結果(いずれも64素子の平均値)を表2に示す。さらに各例の化成処理済み陽極体の中心部(細孔内表面)の誘電体厚みを、樹脂包埋した陽極体試料の切断面の走査型電子顕微鏡(SEM)観察により求めた。測定試料10個の平均値を表2に併記する。また、比較例8、10、13、14では、誘電体層の外表面に割れが認められた。実施例8の化成処理済み陽極体の外表面のSEM写真(割れなし)を図1に、比較例10の化成処理済み陽極体の外表面のSEM写真(割れあり)を図2に示す(各図は、任意の3箇所の視野5.6μm×3.7μmの写真)。
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  タングステンを主成分とする粉を成形後焼結して得た陽極体の表層部に誘電体層を形成する化成工程の後、前記誘電体層上に半導体層及び導電体層を順次形成するコンデンサ素子の製造方法であって、前記誘電体層を形成する前に、前記陽極体の外表面及び細孔内表面の表層部に形成された自然酸化被膜を、その厚さが0.5~5.0nmの範囲になるように除去するエッチング工程を有し、かつ前記化成工程を-4~18℃の温度で、所定電圧到達後7~110分間行うことを特徴とするコンデンサ素子の製造方法。
  2.  前記エッチング工程が、前記陽極体にアルカリ溶液を接触させ、通電せずに行われる請求項1に記載のコンデンサ素子の製造方法。
  3.  前記アルカリが、水酸化ナトリウムまたは水酸化カリウムである請求項2に記載のコンデンサ素子の製造方法。
  4.  前記アルカリ溶液が、水酸化ナトリウムまたは水酸化カリウムの水溶液または水と有機溶媒の混合溶媒の溶液である請求項2に記載のコンデンサ素子の製造方法。
  5.  前記アルカリ溶液が、0.05~5質量%の水酸化ナトリウム水溶液である請求項4に記載のコンデンサ素子の製造方法。
  6.  前記陽極体に前記アルカリ溶液を、散布(吹付け)、または刷毛塗りにより接触させる請求項2に記載のコンデンサ素子の製造方法。
  7.  前記タングステンを主成分とする粉が、粒子表面領域のみにケイ化タングステンを有し、タングステン粉全体中のケイ素含有量が0.05~7.0質量%である請求項1~6のいずれかに記載のコンデンサ素子の製造方法。
PCT/JP2015/051327 2014-05-01 2015-01-20 タングステン系コンデンサ素子の製造方法 WO2015166670A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015530231A JP5798279B1 (ja) 2014-05-01 2015-01-20 タングステン系コンデンサ素子の製造方法
EP15785625.3A EP3139393A4 (en) 2014-05-01 2015-01-20 Method for manufacturing tungsten-based capacitor element
US15/306,233 US9704652B2 (en) 2014-05-01 2015-01-20 Method for manufacturing tungsten-based capacitor element
CN201580022828.XA CN106463266A (zh) 2014-05-01 2015-01-20 钨系电容器元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014094535 2014-05-01
JP2014-094535 2014-05-01

Publications (1)

Publication Number Publication Date
WO2015166670A1 true WO2015166670A1 (ja) 2015-11-05

Family

ID=54358411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051327 WO2015166670A1 (ja) 2014-05-01 2015-01-20 タングステン系コンデンサ素子の製造方法

Country Status (4)

Country Link
US (1) US9704652B2 (ja)
EP (1) EP3139393A4 (ja)
CN (1) CN106463266A (ja)
WO (1) WO2015166670A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404419A (zh) * 2022-09-20 2022-11-29 厦门钨业股份有限公司 一种钨丝增强钨基复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372894A (zh) * 2017-11-21 2020-07-03 住友金属矿山株式会社 三氧化钨

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108395A (ja) * 2004-10-06 2006-04-20 Nichicon Corp アルミニウム電解コンデンサ用電極箔の製造方法
JP2009177174A (ja) * 2008-01-22 2009-08-06 Avx Corp 電解コンデンサに使用するために有機酸でエッチングされた焼結アノードペレット
WO2012086272A1 (ja) * 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ
WO2013190756A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 コンデンサの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722094B2 (ja) * 1989-10-04 1995-03-08 昭和アルミニウム株式会社 電解コンデンサ電極用アルミニウム材料の製造方法
JP2001196274A (ja) * 2000-01-12 2001-07-19 Nec Corp 固体電解コンデンサ用陽極体の製造方法
JP4653687B2 (ja) 2006-03-31 2011-03-16 ニチコン株式会社 電解コンデンサ用電極箔の製造方法
JP5370188B2 (ja) * 2010-02-04 2013-12-18 株式会社村田製作所 陽極酸化膜の製造方法
WO2011121967A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 キャパシタ用電極体およびその製造方法とこの電極体を用いたキャパシタ
JP5502562B2 (ja) * 2010-03-31 2014-05-28 三洋電機株式会社 固体電解コンデンサの製造方法
US10032563B2 (en) * 2012-06-22 2018-07-24 Showa Denko K.K. Capacitor element
WO2015107749A1 (ja) * 2014-01-20 2015-07-23 昭和電工株式会社 タングステン固体電解コンデンサ素子の製造方法
JP5824115B1 (ja) * 2014-06-23 2015-11-25 昭和電工株式会社 タングステン系コンデンサ素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108395A (ja) * 2004-10-06 2006-04-20 Nichicon Corp アルミニウム電解コンデンサ用電極箔の製造方法
JP2009177174A (ja) * 2008-01-22 2009-08-06 Avx Corp 電解コンデンサに使用するために有機酸でエッチングされた焼結アノードペレット
WO2012086272A1 (ja) * 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ
WO2013190756A1 (ja) * 2012-06-22 2013-12-27 昭和電工株式会社 コンデンサの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3139393A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404419A (zh) * 2022-09-20 2022-11-29 厦门钨业股份有限公司 一种钨丝增强钨基复合材料的制备方法
CN115404419B (zh) * 2022-09-20 2023-09-01 厦门钨业股份有限公司 一种钨丝增强钨基复合材料的制备方法

Also Published As

Publication number Publication date
US9704652B2 (en) 2017-07-11
EP3139393A1 (en) 2017-03-08
EP3139393A4 (en) 2018-02-21
US20170047169A1 (en) 2017-02-16
CN106463266A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5698882B1 (ja) コンデンサ陽極体およびその製造方法
JP6101840B2 (ja) コンデンサの製造方法
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
JP5798279B1 (ja) タングステン系コンデンサ素子の製造方法
JP5851667B1 (ja) コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法
WO2015166670A1 (ja) タングステン系コンデンサ素子の製造方法
US9734953B2 (en) Carbon paste and solid electrolytic capacitor element
JP4521849B2 (ja) コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ
WO2011013375A1 (ja) 固体電解コンデンサの製造方法
US10032563B2 (en) Capacitor element
JP6012115B2 (ja) 固体電解コンデンサ素子の製造方法
JP5824115B1 (ja) タングステン系コンデンサ素子の製造方法
JP5752270B2 (ja) タングステンコンデンサの陽極及びその製造方法
JP5020433B2 (ja) コンデンサ用ニオブ粉、焼結体及びその焼結体を用いたコンデンサ
JP5840821B1 (ja) タングステンコンデンサ素子及びその製造方法
JP5824190B1 (ja) 固体電解コンデンサ素子の製造方法
WO2016009680A1 (ja) 固体電解コンデンサ素子の製造方法
JP5940222B2 (ja) 固体電解コンデンサ素子の陽極体及びその製造方法
JPWO2015107749A1 (ja) タングステン固体電解コンデンサ素子の製造方法
JP2002100542A (ja) コンデンサ用粉体、それを用いた焼結体及び該焼結体を用いたコンデンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530231

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15306233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015785625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015785625

Country of ref document: EP