WO2015163429A1 - 除濁膜モジュールの運転方法 - Google Patents
除濁膜モジュールの運転方法 Download PDFInfo
- Publication number
- WO2015163429A1 WO2015163429A1 PCT/JP2015/062450 JP2015062450W WO2015163429A1 WO 2015163429 A1 WO2015163429 A1 WO 2015163429A1 JP 2015062450 W JP2015062450 W JP 2015062450W WO 2015163429 A1 WO2015163429 A1 WO 2015163429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbidity
- water
- membrane
- membrane module
- outside
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000004140 cleaning Methods 0.000 claims abstract description 90
- 239000007788 liquid Substances 0.000 claims abstract description 49
- 239000012528 membrane Substances 0.000 claims description 297
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 258
- 238000007789 sealing Methods 0.000 claims description 60
- 238000001914 filtration Methods 0.000 claims description 49
- 238000011001 backwashing Methods 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 29
- 238000005406 washing Methods 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 15
- 239000008237 rinsing water Substances 0.000 claims description 2
- 239000012510 hollow fiber Substances 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 26
- 239000000706 filtrate Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 238000004382 potting Methods 0.000 description 14
- 239000012530 fluid Substances 0.000 description 13
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- -1 polyethylene Polymers 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000005374 membrane filtration Methods 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- KDEZRSAOKUGNAJ-UHFFFAOYSA-N C=C.C=C.F.F.F Chemical group C=C.C=C.F.F.F KDEZRSAOKUGNAJ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000005654 stationary process Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/04—Backflushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/162—Use of acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/164—Use of bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/168—Use of other chemical agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the present invention relates to a method of operating a turbidity membrane module that treats water to be treated with a turbidity membrane.
- a filtration device equipped with a turbidity removal membrane has advantages such as high turbidity and sterilization performance, ease of operation and maintenance, energy saving, and space saving. Widely used in the production of drinking water and industrial water.
- the filtration device equipped with a turbidity membrane can be used to manufacture pretreatment water supplied to the reverse osmosis membrane module used for seawater desalination, Its use is expanding in various fields such as the production of pretreatment water supplied to reverse osmosis membrane modules used for reuse.
- Patent Documents 1 and 2 disclose turbidity removal membranes.
- Patent Documents 3, 4 and 5 disclose a turbidity removal membrane module.
- Patent Documents 6 and 7 disclose a water making apparatus or a water making method provided with a turbidity removal membrane module, and a method for cleaning the turbidity removal membrane module.
- a turbidity removal membrane module usually has the following structure.
- the turbidity membrane module used for carrying out the operation method of the turbidity membrane module of the present invention also has the same structure.
- the turbidity-eliminating module is usually composed of a case and a turbidity-eliminating film housed in the case.
- the turbidity membrane is composed of a bundle of hollow fiber membranes.
- the case includes a first fluid circulation port that communicates with a treated water passage including a surface that contacts the treated water (raw water) of the turbidity removal membrane, and a filtered water passage including a surface that contacts the filtered water of the turbidity removal membrane.
- a second fluid circulation port leading to is provided. If necessary, the case is provided with a third fluid circulation port that leads to a space including a surface that contacts the water to be treated of the turbidity removal membrane.
- one end portion (upper end portion) of the turbidity removal membrane is opened to become an opening of the filtrate flow path. Further, at the upper end portion of the turbidity removal membrane, the flow of fluid between the treated water flow path and the filtrate water flow path is blocked, and the support that fixes the turbidity reduction film to the case, An opening end of the turbidity removal film is formed.
- the other end (lower end) of the turbidity-eliminating membrane is sealed with a sealing member to form a sealed end, and filtration is performed from the end opposite to the opening of the filtrate flow path. Water is prevented from flowing out.
- the first fluid circulation port is used as a treated water supply port for supplying the treated water to the treated water channel.
- the second fluid circulation port is used as a filtrate drainage port for discharging filtrate from the filtrate channel through the treated water passing through the turbidity membrane.
- the third fluid circulation port is used as a drain for discharging the surplus water to be treated from the water flow path.
- Back pressure washing (hereinafter, also simply referred to as “back washing”) is performed to remove the turbidity adhering to the turbidity membrane from the turbidity membrane.
- the second fluid circulation port Backwash water, specifically, filtered water obtained in the filtration step, or clarified water prepared separately from filtered water is used as a backwash water supply port for supplying the filtrate water flow path It is done.
- the backwash water flows from the inside of the turbidity membrane (filtered water flow path side) through the turbidity membrane to the outside of the turbidity membrane (treated water flow path side) and becomes backwash drainage.
- the first fluid circulation port or the third fluid circulation port is used as a backwash water drain port for discharging used backwash water.
- the filtered water and the clarified water used in backwashing are used as synonyms unless otherwise specified.
- the first fluid circulation port is normally used as a gas supply port for supplying gas to the treated water flow path.
- 3 fluid circulation ports are used as gas discharge ports for discharging the gas used for cleaning.
- the air cleaning gas may be described using the most commonly used air.
- the turbidity removal membrane 1 is a turbidity removal membrane formed by a bundle of many hollow fibers.
- the turbidity removal membrane 1 is accommodated in a case (pressurized container) 4.
- An opening end 2 is formed at one end (upper end) of the turbidity removal membrane 1, and a sealing end 3 is formed at the other end (lower end).
- the water to be treated is filtered by allowing the water to be treated to pass through the turbidity membrane 1 from the outside to the inside of the turbidity membrane 1.
- the filtered water inside the turbidity removal membrane 1 is taken out from the open end 2.
- This hollow fiber-shaped turbidity membrane module 14a is an external pressure type hollow fiber turbidity membrane module.
- filtration is performed in a direction opposite to the filtration direction, that is, from the inside of the turbidity removal membrane 1 (filtrated water flow path side) to the outside of the turbidity removal membrane 1 (treated water flow path side).
- backwashing that allows washing water such as water or clarified water to pass through or air washing that introduces gas (generally air) as bubbles to the outside of the turbidation membrane 1 (to-be-treated water flow path side) is generally performed. Yes.
- Japanese Patent No. 4835221 Japanese Patent No. 3760838 Japanese Unexamined Patent Publication No. 2006-231146 Japanese Laid-Open Patent Publication No. 2007-124552 US Pat. No. 6,911,147 Japanese Unexamined Patent Publication No. 2011-125822 International Publication No. 2012/122289
- the turbidity membrane module has a sealed end 3 having a water inlet 6 serving as an inlet for water to be treated or air, as shown in FIG.
- the filter is installed in the filtration device F1 in a state where the opening end 2 having the opening to circulate is positioned above the sealing end 3.
- An object of the present invention is to provide a method for operating a turbidity membrane module that can improve the cleaning performance of the turbidity membrane module including the turbidity membrane and improve the processing capability.
- the operation method of the turbidity removal membrane module of the present invention has the following characteristics.
- (1) A method for operating a turbidity membrane module comprising an external pressure type turbidity membrane that obtains filtered water by passing water to be treated from the outside to the inside of the hollow fiber-like turbidity membrane, Has an open end where the filtered water flow path of the turbidation membrane is open at one end, and a sealed end where the filtered water flow path is sealed at the other end.
- the water to be treated is filtered from the outside to the inside of the turbidity-eliminating membrane, and the obtained filtered water is filtered to the opening end.
- the sealing end portion After the filtration step to be taken out from the portion and the position of the sealing end portion are made higher than the position of the opening end portion, the sealing end portion high position cleaning of any one of the following steps (a) and (b) A method of operating the turbidity removal membrane module for performing the process.
- A Sealed end high position cleaning step A for performing air cleaning for supplying gas after filling the outside of the turbidity removal membrane in the turbidity removal membrane module with a liquid
- B Sealed end high position cleaning step B for performing air cleaning to supply gas while supplying liquid to the outside of the turbidity removal membrane in the turbidity removal membrane module
- a method for operating a turbidity membrane module comprising an external pressure type turbidity membrane that obtains filtered water by permeating water to be treated from the outside to the inside of the hollow fiber-like turbidity membrane, Has an open end where the filtered water flow path of the turbidation membrane is open at one end, and a sealed end where the filtered water flow path is sealed at the other end.
- the water to be treated is filtered from the outside to the inside of the turbidity-eliminating membrane, and the filtered water obtained is passed through the opening end.
- a filtration step for removing the turbidity membrane from the inside of the turbidation membrane by supplying the rinsing water from the opening end portion, and performing reverse pressure washing of the turbidity membrane to reverse the high position of the opening end portion.
- the operation cycle of the turbidity membrane module including the washing step is applied to the turbidity membrane module repeated at least once.
- the turbidity removal membrane that performs the sealing end portion high position cleaning step of any one of the following steps (a) and (b) How to operate the module.
- the liquid is supplied from the opening end to the outside of the turbidity membrane by back pressure cleaning to the outside of the turbidity membrane, and the back pressure cleaning.
- the turbidity membrane module of the present invention the turbidity membrane is washed in a state where the sealing end is positioned higher than the opening end, that is, the sealing end high position.
- the turbidity removal module which has been difficult to clean efficiently so far, is efficiently cleaned.
- the turbidity adhering to the turbidity film near the sealing end is efficiently removed.
- FIG. 1 is a schematic longitudinal sectional view of an example of a turbidity removal membrane module used in the practice of the present invention.
- FIG. 2 is a schematic longitudinal sectional view of an example of another turbidity-eliminating module used for carrying out the present invention.
- FIG. 3 is a schematic longitudinal sectional view of an example of still another turbidity-eliminating module used in the practice of the present invention.
- FIG. 4 is a schematic flow diagram for explaining an example of the filtration step in the implementation of the present invention.
- FIG. 5 is a schematic flowchart for explaining an example of the sealing edge high position cleaning step in the embodiment of the present invention.
- the water to be treated for filtration in the practice of the present invention includes various types of water such as seawater, river water, groundwater, sewage treated water.
- FIG. 1, FIG. 2 and FIG. 3 will be used to describe different aspects of the turbidity removal membrane module used in the practice of the present invention.
- the hollow fiber-shaped external pressure turbidity membrane allows filtered water to pass through the water to be treated from the outside to the inside.
- the hollow fiber membranes are embedded in the potting material at the upper end portion of the turbidity removal membrane 1, and the hollow portions at the upper end portions thereof are opened on the upper surface of the potting material.
- the side peripheral surface of the potting material is fixed to the inner peripheral surface of the case 4. In this state, the opening end 2 of the turbidity removal film 1 is formed by the potting material. Filtrated water is taken out from the open end 2.
- each hollow fiber membrane is embedded in a potting material, and each hollow at the lower end is sealed with the potting material. That is, the filtered water flow path of the turbidity removal membrane 1 is in a sealed state.
- the side peripheral surface of the potting material is fixed to the inner peripheral surface of the case 4. In this state, the sealing end portion 3 of the turbidity removal film 1 is formed by the potting material.
- a water passage 6 through which the water to be treated flows is provided.
- the water to be treated that has flowed from the water inlet 6 is filtered by permeating from the outer surface of the turbidity removal membrane 1 to the surface of the inner hollow portion, and becomes filtered water.
- the filtered water flows out from the opening of the hollow portion of each turbidity removal membrane 1 at the opening end 2.
- the turbidation membrane module 14 a has a treated water supply nozzle 5 that supplies treated water, a filtered water discharge nozzle 8 that extracts filtered water, and a drain nozzle 7 that discharges excess water in the case 4.
- FIG. 2 shows a turbidity membrane module 14b having a structure different from that of the turbidity membrane module 14a shown in FIG.
- the turbidity removal membrane module 14b has a structure in which the turbidity removal membrane 1 is bent in a U shape around the liner 10 and folded, and only the upper end portion is potted with a potting material. By this potting material, an opening end 2 similar to the opening end 2 in the turbidity-eliminating membrane module 14a of FIG. 1 is formed.
- the folded portion 9 of the turbidity removal film 1 may be fixed by a liner 10.
- a sealed end portion having the same function as the sealed end portion 3 in the turbidity removal membrane module 14a of FIG. 1 is formed by the folded portion 9 of the turbidity removal membrane 1 around the liner 10.
- the state in which the filtrate water flow path of the turbidity membrane is sealed is not the state in which the turbidity membrane is folded back as shown in FIG. 2 in addition to the state sealed with the potting material as shown in FIG. It also includes the state.
- FIG. 3 shows a turbidity membrane module 14c having a structure different from that of the turbidity membrane module 14a shown in FIG.
- the turbidity removal membrane module 14c shown in FIG. 3 has a drain nozzle (drain outlet) 11 provided in the case 4 near the sealing end 3 in the turbidity reduction membrane module 14a shown in FIG. It is different from the turbidity removal membrane module 14a shown in FIG.
- FIG. 4 an example of the filtration apparatus used for implementation of the operating method of the turbidity-elimination membrane module of this invention is shown.
- the water to be treated stored in the water tank 12 to be treated is removed by the water pump 13 via the water inlet 6 provided in the sealing end 3 by the water pump 13 to be treated.
- the water to be treated is supplied to the module 14 a and filtered by the turbidity membrane 1 of the turbidity membrane module 14 a, and the filtrate water thus obtained passes through the opening formed in the opening end 2 to provide a filtered water tank. It is performed by being accumulated in 16.
- the to-be-treated water valve 20 and the filtered water valve 21 are in an open state, and the first drain valve 15, the second drain valve 24, the third drain valve 27, the fourth drain valve 28, the first backwashing are performed.
- the valve 18, the second backwash valve 22, the first air supply valve 23, the second air supply valve 26, the first treated water / filtrated water valve 25, and the second treated water / filtrated water valve 29 are closed.
- the air vent valve 19 may be open or closed.
- This filtration step includes a step of supplying the treated water from the treated water tank 12 to the turbidity membrane module 14a, a step of filtering the treated water from the outside to the inside of the turbidity membrane 1, and the filtered water into the filtered water tank 16.
- the process consists of supplying.
- the filtration time can be selected to an arbitrary length. However, from the viewpoint of preventing excessive accumulation of turbidity in the turbidity-eliminating membrane module 14a, it is desirable that a single filtration time is about 15 minutes to 2 hours.
- cleaning process of the turbidity membrane 1 in the filtration apparatus F1 is performed as follows. First, in a state where the position of the opening end 2 of the turbidity removal membrane 1 is higher than the position of the sealing end 3, the first backwash valve 18 and the first drain valve 15 are opened, and the backwash pump 17 is turned on. The filtered water stored in the filtered water tank 16 is supplied from the filtered water discharge nozzle 8 of the turbidizing membrane module 14a as the washing water, and permeated from the inside to the outside of the turbidizing membrane 1, thereby removing the turbidity membrane. 1 backwashing is performed.
- the suspended matter separated from the turbidity removal membrane 1 is discharged together with the backwash waste water from the first drain valve 15 on the opening end 2 side.
- water to be treated 20 filtered water valve 21, second backwash valve 22, second drain valve 24, third drain valve 27, fourth drain valve 28, first air supply valve 23, second air supply
- the valve 26, the first treated water / filtered water valve 25, and the second treated water / filtered water valve 29 are closed.
- the air vent valve 19 may be open or closed.
- washing water the filtered water obtained at the filtration process as mentioned above may be used, but clear water such as distilled water, RO permeated water, and tap water prepared separately may be used.
- This backwashing process is an example of an opening edge part high position backwashing process.
- the first drainage valve 15 and the second drainage valve 24 are opened and the backwash pump 17 is operated so that the turbidity removal film is stepwise or continuously. It is also beneficial that the water remaining on the outside of 1 is drained out of the turbidity membrane module so that at least a part of the outer side of the turbidity membrane module is backwashed in a gaseous state.
- the first drainage valve 15 and the second drainage valve 24 are opened, and the backwash drainage remaining in the turbidity membrane module 14a is discharged out of the turbidity membrane module. Return to the filtration step.
- the first air supply valve 23 and the first drainage valve 15 are opened, and the turbidity is removed from the first air supply valve 23 through the water inlet 6.
- the turbidity removal effect of the turbidity film 1 is further enhanced by the shearing force due to the rise of air (gas) and the turbulence of the turbidity film 1.
- the outside of the turbidity membrane 1 in the turbidity membrane module 14a is filled with the water to be treated with the water to be treated after the filtration step. Air cleaning may be performed.
- the remaining backwashing is performed when the inside of the turbidity membrane module 14a is filled in the opening end high position backwashing process. It is only necessary to perform air cleaning in a state where the drainage is filled. If the water level is lowered, is air cleaning performed while supplying liquid (water) to the outside of the turbidity membrane 1 in the turbidity membrane module 14a? After the liquid (water) is supplied, air cleaning may be performed.
- the liquid (water) supplied at this time may be treated water or filtered water.
- the second drain valve 24 may be open or closed, but the turbidity membrane 1 in the turbidity membrane module 14a may be closed.
- the water level on the outside is as high as possible, and it is preferable that the water level is full because the shearing force due to air washing spreads over the entire turbidity-removing membrane 1.
- the opening end 2 and the sealing end 3 in the vicinity of the turbidity removal membrane module 14a are gradually increased.
- the turbidity tends to accumulate.
- the accumulation of turbidity becomes remarkable in the vicinity of the sealing end 3. This is because the flow resistance of the filtrate flow path through which the backwash water of the turbidity removal film 1 flows is small in the vicinity of the open end 2 in the opening end high position backwash process, but the backwash water flows well.
- the flow resistance of the filtrate flow path through which the backwash water of the turbidity removal film 1 flows is large, so that the backwash water is difficult to flow.
- the backwash drainage easily collects in the vicinity of the sealing end 3, and the water pressure of the collected backwash drainage This is because separation of turbidity is hindered, and turbidity separated from the upper part is trapped between the membrane bundles near the sealing end.
- the turbidity removal membrane 1 is fixed by the potting material in the vicinity of the sealing end 3, so that vibration due to gas flow is small, and the gas supply port is not connected. This is because the flow of gas tends to be biased at the water port 6 and there is a region through which gas does not pass.
- FIG. 5 shows that the vertical relationship between the sealed end 3 and the open end 2 of the turbidity removal membrane module 14a of the filtration device F1 shown in FIG.
- the end portion 2 is located on the lower side, and the drain nozzle 7 is connected to the treated water / filtrated water line L1 for supplying the treated water or filtered water to the turbidation membrane module 14a.
- liquid water
- the second air supply valve 26 and the fourth drain valve 28 are opened, and air cleaning is performed to supply air to the turbidity membrane module 14a.
- Examples of a method for filling the liquid (water) outside the turbidity membrane 1 include a method for supplying a liquid from the outside of the turbidity membrane 1 and a method for supplying a liquid from the inside of the turbidity membrane 1 by back pressure cleaning.
- the backwash pump 17 is operated by opening the second backwash valve 22, the first treated water / filtered water valve 25, and the fourth drain valve 28.
- the water to be treated / filtered water valve 29 and the fourth drain valve 28 are opened, the water to be treated pump 13 is operated, and the water to be treated is removed from the turbidity membrane module 14 a via the drainage nozzle 7.
- the method of supplying from the outside of 1 is mentioned.
- a method for supplying liquid from the inside of the turbidity removal membrane 1 by back pressure cleaning for example, the second backwash valve 22, the second treated water / filtrated water valve 29, and the fourth drain valve 28 are opened
- a tank for storing clarified water is provided in parallel with the tank, and clarified water is supplied from the filtered water discharge nozzle 8 in the same manner as described above, and supplied to the outside of the turbidity membrane 1 by backwashing through the turbidity membrane 1.
- a method is mentioned.
- the sealing end high position cleaning step A after the liquid (water) is filled outside the turbidity removal membrane 1 in the turbidity removal membrane module 14a, the second backwash valve 22, the first treated water / filtrated water valve 25.
- the treated water valve 20 and the second treated water / filtrated water valve 29 are closed, the treated water pump 13 or the backwash pump 17 is stopped, and the liquid (water) is supplied to the turbidity removal membrane module 14a.
- the 2nd air supply valve 26 and the 4th drain valve 28 are opened, and the air washing which supplies air to the turbidity membrane module 14a is performed.
- the liquid (water) supplied from the filtered water discharge nozzle 8 to the outside of the turbidity membrane 1 through the opening end 2 and the inside of the turbidity membrane 1 in the turbidity membrane module 14a is supplied from the drain nozzle 7 to the outside of the turbidity membrane 1 in the turbidity membrane module 14a and the removal in the turbidity membrane module 14a from the second air supply valve 26 through the drain nozzle 7
- the air supplied to the outside of the turbid film 1 becomes a gas-liquid mixed fluid, passes through the water flow port 6, and passes through the fourth water drain valve 28 from the treated water supply nozzle 5 to the outside of the turbid film module 14 a. Discharged.
- the liquid is discharged from the filtered water discharge nozzle 8 through the opening end 2 and the inside of the turbidity membrane 1 in the turbidity membrane module 14a to the outside of the turbidity membrane 1 by backwashing. It is preferable to supply (water) because suspended substances that are easily peeled off from the membrane by backwashing can be completely peeled off and removed by air washing.
- the liquid supply and the gas supply are stopped, and the stationary process for stopping the movement of the water inside the treated water module is sandwiched between the turbidity removal membrane module. Since the flow of water is generated from the state where the flow of water is stopped, the cleaning effect is enhanced.
- the liquid outside the turbidity removal membrane in the turbidity membrane module is intermittently liquid while repeating the sealing end high position cleaning and standing step from the gas state. It is preferable to raise the surface. This is because the film is shaken most severely in the gas-liquid interface state where the bubbles are released to the atmosphere, and the cleaning effect is high.By intermittently raising the gas-liquid interface, the entire film can be efficiently cleaned. is there.
- the third drainage valve 27 is opened to drain the water in the turbidity membrane module 14 a, so that the turbidity remaining in the turbidity membrane module 14 a passes through the third drainage valve 27 and is removed from the turbidity membrane. Removed from module 14a.
- the backwashing process in which the sealing end portion is at a high position is performed as follows. First, the third drain valve 27 and the fourth drain valve 28 are opened to drain at least a part of the water outside the turbidity membrane in the turbidity membrane module. Be exposed to the atmosphere.
- the second backwash valve 22 and the second treated water / filtrated water valve 29 are opened, the backwash pump 17 is operated, and the backwash is performed by allowing the filtrate to permeate from the inside to the outside of the turbidity removal membrane. Done.
- the backwash wastewater that has permeated the outside of the turbidation membrane is discharged from the third drainage valve 27 to the outside of the turbidity membrane module.
- the sealing end 3 since the outside of the turbidity removal membrane 1 is exposed to the atmosphere and there is no resistance due to water pressure, filtered water permeates selectively. High cleaning effect can be obtained.
- the liquid (water) supplied to the outside of the turbidity membrane in the turbidity membrane module in the sealing end high position cleaning step is properly used depending on the way of supplying the liquid.
- the treated water or filtered water, separately prepared distilled water, RO permeated water is used as the liquid.
- Clear water such as tap water can be used.
- filtered water or clarified water such as separately prepared distilled water, RO permeated water or tap water may be used. preferable. In this way, by properly using the liquid to be used, the inside of the turbidity removal film can be prevented from being contaminated.
- the chemical solution is added to the liquid (water) that fills the outside of the turbidity membrane before the sealed end high position cleaning step. It is desirable to contact the turbidity membrane with the liquid for a certain period of time (chemical solution cleaning). By adding a chemical solution to the liquid, the turbidity adhering to the outside of the turbidity membrane is easily peeled off from the membrane, and the turbidity membrane is very effectively removed by performing high-position cleaning of the sealed end. It can be removed from module 14a. If the filtration step and the open end high position backwash are repeated at least once, the order of the chemical solution washing step and the open end high position backwash may be any after the last filtration step. The opening end high position backwashing-sealed end high position backwashing may be performed in this order, or the opening end high position backwashing-chemical solution cleaning-sealed end high position backwashing may be performed in this order.
- an aqueous solution containing a drug such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, ascorbic acid, sodium hydrogen sulfite, sodium hydroxide, sodium hypochlorite
- a drug such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, ascorbic acid, sodium hydrogen sulfite, sodium hydroxide, sodium hypochlorite
- an oxidizing agent such as sodium hypochlorite is effective and effective in removing turbid substances containing organic substances such as seawater, river water, and treated wastewater.
- the concentration of sodium hypochlorite is preferably 10 mg / L to 10,000 mg / L. This is because if it is thinner than 10 mg / L, the cleaning effect is not sufficient, and if it is higher than 10000 mg / L, the cost of the drug becomes high and it becomes uneconomical. Furthermore, it is more preferable that it is 100 mg /
- the cleaning effect is enhanced by providing a certain contact time.
- the time for contacting the turbidity membrane and the chemical is preferably about 5 minutes to 3 hours. If the contact time is too short, the cleaning power is weak, and if it is too long, the time during which the apparatus is stopped becomes long, and the operation efficiency of the apparatus decreases, which is economically disadvantageous.
- the filtration process and the open end high position backwash process were repeated, and after several months to several years of operation, the sealed end high position cleaning process was introduced. After the end high position backwash process is performed several times to several tens of times, the sealed end high position cleaning process is periodically performed to prevent accumulation of turbidity at the sealed end. Is also effective.
- the membrane filtration method may be a whole-volume filtration type module or a cross flow filtration type module. However, the total amount filtration type module is preferable from the viewpoint of low energy consumption.
- the turbidity removal module may be either a pressure type module or an immersion type module, but a pressure type module is preferable because a high flux is possible.
- an external pressure type that performs filtration from the outside to the inside of the hollow fiber membrane is used.
- the present invention can effectively remove dirt accumulated at the sealed end, it is particularly effective for a turbidity removal membrane module having a membrane area of 5 m 2 or more where dirt is likely to accumulate at the sealed end. .
- the effective length of the turbidity removal membrane is preferably 0.5 m or more, more preferably 1.0 m or more.
- the effective length is the length excluding the length embedded in the potting agent from the total length of the turbidity removal membrane, that is, the length of the portion in contact with the water to be treated.
- the membrane filling rate of the turbidity removal membrane module is effective because the membrane area can be increased as much as possible after securing the flow path of the water to be treated. According to the present invention, it becomes possible to efficiently clean the end of the turbidity membrane module, so that it becomes a more effective cleaning technique for a turbidity membrane module having a high membrane filling rate, and the membrane filling rate is 40% or more is preferable.
- the membrane filling rate in the pressure type module is that of the turbidity membrane and the turbidity membrane filtered water flow path occupying the volume of the portion sandwiched between the sealing end and the opening end in the case of the turbidity membrane module. The volume ratio.
- the ratio of the area of the turbidity removal membrane and the filtrate flow path occupies the total horizontal sectional area of the opening of the turbidity removal membrane in a state where the membrane module stands vertically in the vertical direction. .
- the position of the drainage nozzle 7 is not particularly limited, it is preferable that the drainage nozzle 7 is provided near the opening end 2 of the turbidity removal membrane 1 because drainage efficiency is high.
- the turbidity removal membrane 1 is a microfiltration membrane capable of blocking particles or polymers having a particle size of 0.1 ⁇ m or more, or a particle or polymer having a particle size of 2 nm or more and less than 0.1 ⁇ m.
- An outer filtration membrane is preferred.
- the material of the microfiltration membrane and / or the ultrafiltration membrane used for the turbidity filtration membrane includes polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, Examples thereof include polypropylene, ethylene-vinyl alcohol copolymer, cellulose, cellulose acetate, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and composite materials thereof.
- polyvinylidene fluoride has excellent chemical resistance, so the filtration function of the microfiltration membrane and / or ultrafiltration membrane can be improved by periodically cleaning the microfiltration membrane and / or ultrafiltration membrane with chemicals. It is preferably used because it recovers and extends the life of the pretreatment membrane module.
- the case 4 of the turbidity membrane filtration module can be made of, for example, polyolefin such as polyethylene, polypropylene, polybutene, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), fluorinated ethylene.
- polyolefin such as polyethylene, polypropylene, polybutene, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), fluorinated ethylene.
- Fluorine-based resins such as polypropylene copolymer (FEP), ethylenetetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene trifluoride-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), and Chlorine resins such as polyvinyl chloride and polyvinylidene chloride, as well as polysulfone resins, polyether sulfone resins, polyallyl sulfone resins, polyphenyl ether resins, acrylonitrile Butadiene - styrene copolymer resin (ABS), acrylonitrile - styrene copolymer resin, polyphenylene sulfide resin, polyamide resin, polycarbonate resin, polyether ketone resin, polyether ether ketone resin is used alone or in combination.
- FEP polypropylene copolymer
- ETFE ethylenete
- Turbidity membrane 2 Open end 3: Sealed end 4: Case (cylindrical case) 5: Water to be treated supply nozzle 6: Water inlet 7: Drain nozzle 8: Filtration water discharge nozzle 9: Folding part of turbidity membrane 10: Liner 11: Drain nozzle 12: Water tank 13: Water pump 14a to be treated 14b, 14c: Turbidity removal membrane module 15: First drain valve 16: Filtrated water tank 17: Backwash pump 18: First backwash valve 19: Air vent valve 20: Water to be treated valve 21: Filtration water valve 22: Second Backwash valve 23: First air supply valve 24: Second drain valve 25: First treated water / filtrated water valve 26: Second air supply valve 27: Third drain valve 28: Fourth drain valve 29: Second Water to be treated / filtrated water valve F1: Filtration device L1: Water to be treated / filtrated water line
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
除濁膜モジュールは、通常、ケースと該ケースに収納された除濁膜から構成される。除濁膜は中空糸膜の束で構成されている。前記ケースには、前記除濁膜の被処理水(原水)に接する面を含む被処理水流路に通じる第1の流体流通口と、前記除濁膜のろ過水に接する面を含むろ過水流路に通じる第2の流体流通口が設けられている。前記ケースには、必要に応じて、前記除濁膜の被処理水に接する面を含む空間に通じる第3の流体流通口が設けられている。
(1)中空糸状の除濁膜の外側から内側に向かって被処理水を透過させてろ過水を得る外圧式の除濁膜を備える除濁膜モジュールの運転方法であって、前記除濁膜は、一方の端部に、該除濁膜のろ過水流路が開口されている開口端部を有すると共に、他方の端部に、前記ろ過水流路が封止されている封止端部を有し、前記開口端部の位置が前記封止端部の位置より高い位置にある状態で、前記除濁膜の外側から内側に前記被処理水をろ過し、得られたろ過水を前記開口端部から取り出すろ過工程と、前記封止端部の位置を前記開口端部の位置より高くせしめた後に、次の(a)工程及び(b)工程のいずれか1つの封止端部高位置洗浄工程を行う除濁膜モジュールの運転方法。
(a)前記除濁膜モジュール内の前記除濁膜の外側を液体で満たした後、気体を供給する空気洗浄を行う封止端部高位置洗浄工程A
(b)前記除濁膜モジュール内の前記除濁膜の外側に液体を給水しながら、気体を供給する空気洗浄を行う封止端部高位置洗浄工程B
(2)中空糸状の除濁膜の外側から内側に向かって被処理水を透過させてろ過水を得る外圧式の除濁膜を備える除濁膜モジュールの運転方法であって、前記除濁膜は、一方の端部に、該除濁膜のろ過水流路が開口されている開口端部を有すると共に、他方の端部に、前記ろ過水流路が封止されている封止端部を有し、前記開口端部の位置が前記封止端部の位置より高い位置にある状態で、前記除濁膜の外側から内側に被処理水をろ過し、得られたろ過水を前記開口端部から取り出すろ過工程と、前記開口端部から洗浄水を供給することにより、除濁膜の内側から外側に前記洗浄水を押出して、前記除濁膜の逆圧洗浄を行う開口端部高位置逆洗工程を含む除濁膜モジュールの運転サイクルが、少なくとも1回繰り返された除濁膜モジュールに対し、前記封止端部の位置を前記開口端部の位置より高くせしめた後に、次の(a)工程及び(b)工程のいずれか1つの封止端部高位置洗浄工程を行う除濁膜モジュールの運転方法。
(a)前記除濁膜モジュール内の前記除濁膜の外側を液体で満たした後、気体を供給する空気洗浄を行う封止端部高位置洗浄工程A
(b)前記除濁膜モジュール内の前記除濁膜の外側に液体を給水しながら、気体を供給する空気洗浄を行う封止端部高位置洗浄工程B
(3)前記液体が、被処理水、ろ過水及び清澄水からなる群から選択される少なくとも1つである、前記(1)または(2)に記載の除濁膜モジュールの運転方法。
(4)前記封止端部高位置洗浄工程Bにおいて、前記液体は、逆圧洗浄によって前記開口端部から前記除濁膜の内側をとして前記除濁膜の外側に供給され、前記逆圧洗浄に用いる前記液体はろ過水または清澄水である、前記(1)または(2)に記載の除濁膜モジュールの運転方法。
(5)前記開口端部高位置逆洗工程の前後、あるいは、前記開口端部高位置逆洗工程と同時に、前記封止端部側から前記除濁膜モジュール内に、気体を供給する空気洗浄を行う、前記(2)に記載の除濁膜モジュールの運転方法。
(6)前記封止端部高位置洗浄工程を行う前に、前記除濁膜を薬液に一定時間接触させる、前記(1)~(5)のいずれか1つに記載の除濁膜モジュールの運転方法。
(7)前記封止端部高位置洗浄工程において、液体の給水および気体の供給を停止して、被処理水ジュール内部の水の動きを停止させる静置工程を少なくとも1回行う、前記(1)~(6)のいずれか1つに記載の除濁膜モジュールの運転方法。
なお、本明細書において、「上」、「下」とは、除濁膜モジュールの使用時の設置状態における方向を意味し、図面に示す状態に基づいている。
ろ過装置F1におけるろ過工程は、被処理水タンク12に溜められた被処理水が、被処理水ポンプ13により、封止端部3に設けられている通水口6を経由して、除濁膜モジュール14aに供給され、除濁膜モジュール14aの除濁膜1によって、被処理水がろ過され、得られたろ過水が、開口端部2に形成されている開口を経由して、ろ過水タンク16に溜められることにより行われる。
まず、除濁膜1の開口端部2の位置が封止端部3の位置より高い位置にある状態で、第1逆洗バルブ18及び第1排水バルブ15を開とし、逆洗ポンプ17を稼動させ、ろ過水タンク16に溜められたろ過水を洗浄水として除濁膜モジュール14aのろ過水排出ノズル8から供給して、除濁膜1の内側から外側に透過させることによって、除濁膜1の逆洗が行われる。除濁膜1から剥離した濁質は、開口端部2側の第1排水バルブ15から逆洗排水と共に排出される。このとき、被処理水バルブ20、ろ過水バルブ21、第2逆洗バルブ22、第2排水バルブ24、第3排水バルブ27、第4排水バルブ28、第1空気供給バルブ23、第2空気供給バルブ26、第1被処理水/ろ過水バルブ25及び第2被処理水/ろ過水バルブ29は閉である。なお、空気抜きバルブ19は開状態であっても閉状態であってもかまわない。また、洗浄水としては、上記のようにろ過工程で得られたろ過水を用いてもよいが、別に用意される蒸留水、RO透過水、水道水などの清澄水を用いてもよい。
この逆洗工程が、開口端部高位置逆洗工程の一例である。
このように、除濁膜の外側が気体の状態で逆洗を行うことにより、除濁膜の外側の水圧による抵抗がなくなるため、除濁膜の外側が液体で覆われている状態に比べ、濁質が剥離しやすくなり、剥離した濁質が除濁膜表面をしたたり落ちながら、第2排水バルブ24から除濁膜モジュール外に排出される。このとき、除濁膜の外側を覆う水位はなるべく低くすることが望ましい。第2排水バルブ24からの逆洗排水の排出流量より、逆洗流量が高い場合には、水位が低下しないため、水位を下げるために排水ノズル7から加圧空気を導入することにより、除濁膜の外側の逆洗排水の排出流量を高めることも有効である。
除濁膜モジュール14aの除濁膜の外側が気体で満たされた状態となった後は、第1排水バルブ15を閉とし、第2排水バルブ24のみを開とすることで、除濁膜モジュール14aは空気の排出口が無くなり、除濁膜1の内側から外側に供給されたろ過水は全て逆洗排水として通水口6から排出され、水位が上昇することが無くなり、除濁膜1の外側が気体の状態のまま逆洗を効率的に行うことができるようになる。
一方、開口端部高位置逆洗工程の後に空気洗浄を行う場合には、開口端部高位置逆洗工程において除濁膜モジュール14a内を満水の状態で行った場合には、残存した逆洗排水が満たされた状態で空気洗浄を行えばよいが、水位を下げた場合には、除濁膜モジュール14a内の除濁膜1の外側に液体(水)を供給しながら空気洗浄を行うか、液体(水)を供給した後に空気洗浄を行えばよい。このとき供給する液体(水)としては、被処理水であってもろ過水であっても構わない。
開口端部高位置逆洗工程と同時に空気洗浄を行う場合には、第2排水バルブ24は開であっても閉であっても構わないが、除濁膜モジュール14a内の除濁膜1の外側の水位はなるべく高く、好ましくは満水状態とした方が、空気洗浄によるせん断力が除濁膜1の全体に行き渡るため望ましい。
これは、開口端部高位置逆洗工程では、開口端部2の近傍では、除濁膜1の逆洗水が流れるろ過水流路の流路抵抗が小さいため、逆洗水は良く流れるが、その一方、封止端部3の近傍では、除濁膜1の逆洗水が流れるろ過水流路の流路抵抗が大きいため、逆洗水は流れにくいためである。さらに、除濁膜モジュール14a内の除濁膜1の外側が気体の状態で逆洗を行っても、封止端部3の近傍には逆洗排水が溜まりやすく、溜まった逆洗排水の水圧により、濁質の剥離が阻害されたり、また、上部から剥離した濁質が封止端部付近の膜束間に捕捉されたためである。さらに、空気洗浄を組み合わせても、封止端部3の近傍においては、除濁膜1がポッティング材により固定されているために、気体の流動による振動が小さいほか、気体の供給口である通水口6では、気体の流れが偏りやすく、気体の通らない領域が存在したためである。
まず、除濁膜モジュール14aの長手方向(上下方向)の向きを回転させ、除濁膜1の封止端部3の位置が開口端部2の位置より高くなるようにする。図5は、図4に示すろ過装置F1の除濁膜モジュール14aの封止端部3と開口端部2との上下関係が完全に反転し、封止端部3が上側に位置し、開口端部2が下側に位置し、排水ノズル7が被処理水またはろ過水を除濁膜モジュール14aに供給するための被処理水/ろ過水ラインL1と接続している。
ろ過工程と開口端部高位置逆洗を少なくとも1回繰り返した場合には、最後のろ過工程を行った後に、薬液洗浄工程と開口端部高位置逆洗の順序はいずれでもよく、薬液洗浄-開口端部高位置逆洗-封止端部高位置逆洗の順に行ってもよいし、開口端部高位置逆洗-薬液洗浄-封止端部高位置逆洗の順に行ってもよい。
しかし、エネルギー消費量が少ないという点から、全量ろ過型モジュールが好ましい。なお、除濁膜モジュールは、加圧型モジュールであっても浸漬型モジュールであっても差し支えはないが、高流束が可能であることから加圧型モジュールが好ましい。
2:開口端部
3:封止端部
4:ケース(円筒ケース)
5:被処理水供給ノズル
6:通水口
7:排水ノズル
8:ろ過水排出ノズル
9:除濁膜の折り返し部
10:ライナー
11:排水ノズル
12:被処理水タンク
13:被処理水ポンプ
14a、14b、14c:除濁膜モジュール
15:第1排水バルブ
16:ろ過水タンク
17:逆洗ポンプ
18:第1逆洗バルブ
19:空気抜きバルブ
20:被処理水バルブ
21:ろ過水バルブ
22:第2逆洗バルブ
23:第1空気供給バルブ
24:第2排水バルブ
25:第1被処理水/ろ過水バルブ
26:第2空気供給バルブ
27:第3排水バルブ
28:第4排水バルブ
29:第2被処理水/ろ過水バルブ
F1:ろ過装置
L1:被処理水/ろ過水ライン
Claims (7)
- 中空糸状の除濁膜の外側から内側に向かって被処理水を透過させてろ過水を得る外圧式の除濁膜を備える除濁膜モジュールの運転方法であって、
前記除濁膜は、一方の端部に、該除濁膜のろ過水流路が開口されている開口端部を有すると共に、他方の端部に、前記ろ過水流路が封止されている封止端部を有し、
前記開口端部の位置が前記封止端部の位置より高い位置にある状態で、前記除濁膜の外側から内側に被処理水をろ過し、得られたろ過水を前記開口端部から取り出すろ過工程と、前記封止端部の位置を前記開口端部の位置より高くせしめた後に、次の(a)工程及び(b)工程のいずれか1つの封止端部高位置洗浄工程を行う除濁膜モジュールの運転方法。
(a)前記除濁膜モジュール内の前記除濁膜の外側を液体で満たした後、気体を供給する空気洗浄を行う封止端部高位置洗浄工程A
(b)前記除濁膜モジュール内の前記除濁膜の外側に液体を給水しながら、気体を供給する空気洗浄を行う封止端部高位置洗浄工程B - 中空糸状の除濁膜の外側から内側に向かって被処理水を透過させてろ過水を得る外圧式の除濁膜を備える除濁膜モジュールの運転方法であって、
前記除濁膜は、一方の端部に、該除濁膜のろ過水流路が開口されている開口端部を有すると共に、他方の端部に、前記ろ過水流路が封止されている封止端部を有し、
前記開口端部の位置が前記封止端部の位置より高い位置にある状態で、前記除濁膜の外側から内側に被処理水をろ過し、得られたろ過水を前記開口端部から取り出すろ過工程と、前記開口端部から洗浄水を供給することにより、前記除濁膜の内側から外側に前記洗浄水を押出して、前記除濁膜の逆圧洗浄を行う開口端部高位置逆洗工程を含む除濁膜モジュールの運転サイクルが、少なくとも1回繰り返された除濁膜モジュールに対し、前記封止端部の位置を前記開口端部の位置より高く位置せしめた後に、次の(a)工程及び(b)工程のいずれか1つの封止端部高位置洗浄工程を行う除濁膜モジュールの運転方法。
(a)前記除濁膜モジュール内の前記除濁膜の外側を液体で満たした後、気体を供給する空気洗浄を行う封止端部高位置洗浄工程A
(b)前記除濁膜モジュール内の前記除濁膜の外側に液体を給水しながら、気体を供給する空気洗浄を行う封止端部高位置洗浄工程B - 前記液体が、被処理水、ろ過水及び清澄水からなる群から選択される少なくとも1つである、請求項1または請求項2に記載の除濁膜モジュールの運転方法。
- 前記封止端部高位置洗浄工程Bにおいて、前記液体は、逆圧洗浄によって前記開口端部から前記除濁膜の内側を通して前記除濁膜の外側に供給され、前記逆圧洗浄に用いる前記液体はろ過水または清澄水である、請求項1または請求項2に記載の除濁膜モジュールの運転方法。
- 前記開口端部高位置逆洗工程の前後、あるいは、前記開口端部高位置逆洗工程と同時に、前記封止端部側から前記除濁膜モジュール内に、気体を供給する空気洗浄を行う、請求項2に記載の除濁膜モジュールの運転方法。
- 前記封止端部高位置洗浄工程を行う前に、前記除濁膜を薬液に一定時間接触させる、請求項1~請求項5のいずれか1項に記載の除濁膜モジュールの運転方法。
- 前記封止端部高位置洗浄工程において、液体の給水および気体の供給を停止して、被処理水ジュール内部の水の動きを停止させる静置工程を少なくとも1回行う、請求項1~請求項6のいずれか1項に記載の除濁膜モジュールの運転方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015537046A JP5874866B1 (ja) | 2014-04-25 | 2015-04-23 | 除濁膜モジュールの運転方法 |
KR1020167029384A KR20160146725A (ko) | 2014-04-25 | 2015-04-23 | 제탁막 모듈의 운전 방법 |
CN201580022038.1A CN106232212B (zh) | 2014-04-25 | 2015-04-23 | 用于操作净化薄膜模块的方法 |
US15/306,613 US20170043298A1 (en) | 2014-04-25 | 2015-04-23 | Method for operating clarifying-film module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014091197 | 2014-04-25 | ||
JP2014-091197 | 2014-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015163429A1 true WO2015163429A1 (ja) | 2015-10-29 |
Family
ID=54332591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062450 WO2015163429A1 (ja) | 2014-04-25 | 2015-04-23 | 除濁膜モジュールの運転方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170043298A1 (ja) |
JP (1) | JP5874866B1 (ja) |
KR (1) | KR20160146725A (ja) |
CN (1) | CN106232212B (ja) |
WO (1) | WO2015163429A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6319493B1 (ja) * | 2017-03-29 | 2018-05-09 | 栗田工業株式会社 | 中空糸膜モジュールの洗浄方法 |
CN114849486B (zh) * | 2022-05-31 | 2023-12-05 | 无锡凡锡环保科技有限公司 | 一种污水净化再生器的微动力一体化膜 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11309351A (ja) * | 1998-04-30 | 1999-11-09 | Kuraray Co Ltd | 中空糸膜モジュールの洗浄方法 |
JP2006198531A (ja) * | 2005-01-20 | 2006-08-03 | Daicen Membrane Systems Ltd | 中空糸膜モジュールの運転方法 |
JP2007289940A (ja) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | 中空糸膜モジュールの洗浄方法 |
WO2011122289A1 (ja) * | 2010-03-30 | 2011-10-06 | 東レ株式会社 | 分離膜モジュールの洗浄方法および造水方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07289860A (ja) * | 1994-04-25 | 1995-11-07 | Toray Ind Inc | 中空糸膜モジュールの洗浄方法 |
CN1124873C (zh) * | 1998-12-08 | 2003-10-22 | 天津纺织工学院膜天膜技术工程公司 | 一种外压中空纤维膜的清洗方法及相应膜组件 |
JP3760838B2 (ja) | 2001-11-07 | 2006-03-29 | 東レ株式会社 | 中空糸膜の製造方法及び中空糸膜 |
JP2006231146A (ja) | 2005-02-23 | 2006-09-07 | Toray Ind Inc | 中空糸膜モジュールおよびその使用方法 |
JP4835221B2 (ja) | 2005-03-25 | 2011-12-14 | 東レ株式会社 | 中空糸膜およびその製造方法 |
JP2007125452A (ja) | 2005-11-01 | 2007-05-24 | Toray Ind Inc | 中空糸膜モジュール |
JP2011125822A (ja) | 2009-12-21 | 2011-06-30 | Toray Ind Inc | 膜モジュールの洗浄方法および造水装置 |
CN103460660B (zh) | 2011-03-09 | 2016-04-27 | 美国亚德诺半导体公司 | 用于对串行数据传输进行偏斜校正的设备和方法 |
-
2015
- 2015-04-23 US US15/306,613 patent/US20170043298A1/en not_active Abandoned
- 2015-04-23 CN CN201580022038.1A patent/CN106232212B/zh not_active Expired - Fee Related
- 2015-04-23 JP JP2015537046A patent/JP5874866B1/ja not_active Expired - Fee Related
- 2015-04-23 KR KR1020167029384A patent/KR20160146725A/ko unknown
- 2015-04-23 WO PCT/JP2015/062450 patent/WO2015163429A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11309351A (ja) * | 1998-04-30 | 1999-11-09 | Kuraray Co Ltd | 中空糸膜モジュールの洗浄方法 |
JP2006198531A (ja) * | 2005-01-20 | 2006-08-03 | Daicen Membrane Systems Ltd | 中空糸膜モジュールの運転方法 |
JP2007289940A (ja) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | 中空糸膜モジュールの洗浄方法 |
WO2011122289A1 (ja) * | 2010-03-30 | 2011-10-06 | 東レ株式会社 | 分離膜モジュールの洗浄方法および造水方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5874866B1 (ja) | 2016-03-02 |
CN106232212A (zh) | 2016-12-14 |
JPWO2015163429A1 (ja) | 2017-04-20 |
KR20160146725A (ko) | 2016-12-21 |
CN106232212B (zh) | 2018-09-04 |
US20170043298A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6402956B1 (en) | Treatment system and treatment method employing spiral wound type membrane module | |
JP5821838B2 (ja) | 中空糸膜ろ過装置および中空糸膜モジュールの洗浄方法 | |
WO2006080482A1 (ja) | 選択透過性膜モジュールの製造方法および選択透過性膜モジュール | |
WO2011158559A1 (ja) | 膜モジュールの洗浄方法 | |
WO2013111826A1 (ja) | 造水方法および造水装置 | |
JP6191464B2 (ja) | 除濁膜モジュールの運転方法 | |
WO2014157057A1 (ja) | 中空糸膜モジュールの洗浄方法 | |
JP2016068046A (ja) | 縦置き型外圧型中空糸膜モジュールおよびその運転方法 | |
JP5874866B1 (ja) | 除濁膜モジュールの運転方法 | |
JPH10230145A (ja) | スパイラル型膜エレメント | |
JP4840285B2 (ja) | 浸漬型膜モジュールの洗浄方法 | |
JP2000271457A (ja) | スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびにスパイラル型膜モジュール | |
JP4270644B2 (ja) | スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法 | |
JPWO2012133068A1 (ja) | 中空糸膜モジュール | |
JP2010188250A (ja) | 水処理方法 | |
JP2015123436A (ja) | 水処理方法 | |
JP2000271461A (ja) | スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法 | |
JP2015182054A (ja) | 淡水製造装置および逆浸透膜ユニットの洗浄方法 | |
WO2012157668A1 (ja) | 濾過処理装置及び濾過処理装置の洗浄方法 | |
JP5251522B2 (ja) | 膜分離装置 | |
CN113453789B (zh) | 膜过滤单元的运转方法及膜过滤单元 | |
JP2014195775A (ja) | 中空糸膜モジュール | |
KR20100138515A (ko) | 여과막의 세정 방법 | |
JPH10296059A (ja) | スパイラル型膜エレメントの運転方法および処理システム | |
JP2000271458A (ja) | スパイラル型膜モジュール、その運転方法および洗浄方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015537046 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15783511 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167029384 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15306613 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15783511 Country of ref document: EP Kind code of ref document: A1 |