WO2015163136A1 - Abrasive pad - Google Patents
Abrasive pad Download PDFInfo
- Publication number
- WO2015163136A1 WO2015163136A1 PCT/JP2015/060803 JP2015060803W WO2015163136A1 WO 2015163136 A1 WO2015163136 A1 WO 2015163136A1 JP 2015060803 W JP2015060803 W JP 2015060803W WO 2015163136 A1 WO2015163136 A1 WO 2015163136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- polished
- annular concave
- convex curved
- compression
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/26—Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
Definitions
- the present invention relates to a polishing pad for polishing the convex curved surface portion of an object to be polished having a convex curved surface portion. More specifically, the center of a circle of the disk is pivoted on a side surface of a disk-shaped elastic body. An annular concave polishing portion that is brought into contact with the convex curved surface portion of the object to be polished while being rotationally driven in the circumferential direction is provided, and the object to be polished in which the convex curved surface portion is formed by the rotational driving, particularly convex on the outer periphery.
- the present invention relates to a polishing pad suitable for mirror-finishing a workpiece having a curved surface portion with high accuracy.
- a disk-shaped polishing member having a thickness has been used. Specifically, a circular disk of a disk is provided on the side surface of the polishing member.
- a polishing member is known in which the convex curved surface portion of an object to be polished is brought into contact while being rotationally driven in the circumferential direction around the center of the shaft (Patent Document 1).
- the polishing member of Patent Document 1 is suitable for removing unnecessary film formation attached to the edge portion of the semiconductor wafer intended by Patent Document 1, the convex curved surface portion is highly accurate.
- mirror finishing polishing for example, when the convex curved surface portion of a member having a convex curved surface portion formed on the outer peripheral edge is mirror-finished with high accuracy, a polishing member caused by vibration of a rotational drive, etc.
- the uneven contact with the object to be polished cannot be sufficiently absorbed, resulting in uneven polishing, and it is extremely inappropriate for mirror finishing of a curved surface with high accuracy without unevenness.
- the present invention provides a polishing pad capable of mirror-finishing a convex curved surface portion of an object having a convex curved surface portion with high accuracy.
- the present invention provides a polishing pad for polishing the convex curved surface portion of an object having a convex curved surface portion, and the center of a circle of the disk on a side surface of a disk-shaped elastic body
- An annular concave polishing portion that is brought into contact with the convex curved surface portion of the object to be polished while being driven to rotate in the circumferential direction about the axis is arranged, and the compressive stress at the time of 0.1 mm compression of the elastic body constituting the annular concave polishing portion is A polishing pad having a range of 50 to 150 gf / cm 2 and a compressive stress ratio (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) of 5 to 30.
- the elastic body constituting the annular concave polished portion has an initial load of 20 g, a strain range of 1.0%, a temperature of 40 ° C., a frequency of 60 Hz, and a loss coefficient tan ⁇ of 0.150 to 0.420 when measured in a compression mode. It may be a range.
- an opening may be formed on the surface of the annular concave polished portion.
- the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion.
- the annular projections located at both ends in the thickness direction of the workpiece are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished, and the object to be polished sinks into the annular concave polishing portion by the pressing force at the time of polishing.
- the annular concave polishing portion may be deformed so that the annular protrusion is in close contact with the planar portion of the object to be polished.
- the annular protrusion may be provided with a notch portion at a predetermined interval along the circumferential direction of at least one of both end portions in the thickness direction.
- the annular concave polishing portion of the polishing pad is compressed and deformed along the shape of the convex curved surface portion of the object to be polished by the pressing force during polishing, and an appropriate stress at that time is applied to the object to be polished. Since it can be given to the convex curved surface portion, the convex curved surface portion can be mirror-finished with high accuracy. Further, the ratio of compressive stress in the elastic body constituting the polishing pad (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is set in the range of 5 to 30, so that the polishing pad rotates.
- the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion.
- the annular projections located at both end portions in the thickness direction of the part are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished. From this state, the object to be polished sinks into the annular concave polishing part by the pressing force during polishing, and the annular concave polishing part is deformed, so that the annular protrusion is adjacent to the convex curved surface part of the object to be polished. It comes in close contact with the flat part.
- the boundary of a convex curved surface part and a plane part does not remain, but a high-quality to-be-polished object can be obtained. Furthermore, by arranging a notch in the annular projection and adjusting the size, shape, number, and interval of the notch as appropriate, adjustment of the slurry supply / drainage amount, promotion of discharge of polishing waste, polishing Adjustments can be made so that the boundary between the convex curved surface portion and the flat surface portion of the object does not remain.
- the top view of the polish device concerning a present Example The side view of the said polishing apparatus. It is an expanded sectional view of a polishing pad and a thing to be polished, (a) shows the state before polish, and (b) shows the state under polish, respectively.
- the top view of a polishing pad A table showing experimental results.
- FIGS. 1 and 2 show a plan view and a cross-sectional view of a polishing apparatus 2 for polishing a convex curved surface portion 1a formed on the outer peripheral edge of an object 1 to be polished.
- the polishing apparatus 2 supplies slurry between the holding table 3 for holding the object to be polished 1, the polishing means 4 having the polishing pad 13 according to the present invention, and the polishing pad 13 and the object to be polished 1.
- the slurry supply means 5 is provided.
- the object to be polished 1 has a substantially rectangular shape as shown in FIG. 1, and a convex curved surface portion 1 a is formed on the outer peripheral edge of the object to be polished 1.
- the planar shape may have other shapes, such as a circle, and a metal, glass, a plastic, a ceramic, a sapphire etc. are mentioned as a raw material.
- the holding table 3 has a structure for holding the workpiece 1 horizontally.
- the holding table 3 is prepared to be smaller than the workpiece 1 so that the convex curved portion 1a protrudes outward from the holding table 3 side from the end of the holding table 3.
- the polishing means 4 includes a polishing jig 11 provided at a position facing the holding table 3 and a moving means 12 for moving the polishing jig 11 in the direction in which the object to be polished 1 is located,
- the moving means 12 is controlled by a control means (not shown).
- the moving means 12 is configured to move along the outer peripheral edge while the polishing jig 11 is in contact with the outer peripheral edge of the workpiece 1 by a driving means (not shown).
- the polishing jig 11 is provided with a disk-shaped polishing pad 13, and the polishing pad 13 is disposed so that its axial direction is vertical, and is rotated at a high speed of, for example, 1000 rpm to 6000 rpm by a driving means (not shown). It has become.
- a vibration absorbing mechanism such as a cushion material or a spring that absorbs vibration due to the operation of the driving unit may be disposed inside the through hole of the polishing pad 13 and between the polishing pad 13 and the polishing jig 11. .
- the polishing pad 13 is pressed against the convex curved surface portion 1 a of the workpiece 1, the displacement of the workpiece 1 is suppressed, and the workpiece 1 is polished. It is preferable that it can sink more stably. More preferably, the spring is appropriately set in accordance with the material of the object 1 to be polished and the required processing accuracy of the convex curved portion 1a by adjusting the biasing force.
- the means for holding the workpiece 1 horizontally by the holding table 3 has been described. However, the present invention is not limited to this.
- the workpiece 1 may be held vertically and horizontally, and the polishing jig 11 may be moved along the outer peripheral edge while contacting the outer peripheral edge of the workpiece 1, or the polishing jig 11 is fixed and the holding table is fixed.
- the workpiece 1 may be polished by moving 3.
- the polishing pad 13 has a disk shape as shown in FIGS. 3 and 4, and an annular recess for polishing the convex curved surface portion 1 a of the workpiece 1 on the side surface.
- An annular protrusion 13b is provided at both end portions in the thickness direction of the annular concave polishing portion 13a.
- the polishing pad 13 is made of a material (elastic body) having elasticity.
- the polishing pad 13 is made of a non-woven fabric impregnated with a polyurethane resin manufactured using the manufacturing method described below, or a material such as foamed polyurethane. It is constituted by.
- polishing part 13a has an open cell and / or a closed cell, and innumerable micropores are formed in the surface.
- the diameter of the polishing pad 13 can be 35 to 250 mm depending on the object 1 to be polished, and the thickness of the object 1 to be polished is 3.0 to 30.0 mm. The dimensions are possible.
- the annular concave polishing portion 13a of the polishing pad 13 is formed in accordance with the shape of the convex curved surface portion 1a of the object 1 to be polished, and has, for example, a semicircular shape with a substantially sectional radius of 1.5 to 15.0 mm.
- the convex curved surface portion 1a can be polished.
- the convex curved surface portion 1a of the object to be polished 1 does not necessarily have a perfect semicircular shape, and the annular concave polishing portion 13a is compressed and deformed during polishing corresponding to the shape of the convex curved surface portion 1a. It is only necessary to have a structure capable of applying an appropriate stress.
- the amount of protrusion of the annular protrusion 13b can be made different, so that the planar portion of the workpiece 1 is within a range of 1.0 to 30.0 mm from the position adjacent to the convex curved surface portion 1a. 1b can also be polished.
- FIG. 3A shows a state before the workpiece 1 contacts the polishing pad 13, and the annular concave polishing portion 13 a has a slightly larger diameter than the convex curved surface portion 1 a of the workpiece 1. Is formed. Therefore, when the apex of the convex curved portion 1a of the workpiece 1 and the bottom of the annular concave polishing portion 13a are brought into contact with each other, the annular projection 13b is brought into contact with the convex curved portion 1a of the workpiece 1. It is separated from the adjacent planar portion 1b.
- the convex curved surface part 1a of the to-be-polished object 1 is not perfect semicircle shape, for example, when the convex curved surface part 1a is formed of two or more convex parts, the said large diameter is the convex shape. It means that it has a shape that is greatly formed at a required magnification according to the number of convex portions of the curved surface portion 1a.
- the workpiece 1 is pressed against the annular concave polishing portion 13a from this state, the workpiece 1 sinks against the material of the polishing pad 13, and the annular concave polishing portion 13a is formed as shown in FIG. It deform
- the annular concave polishing portion 13a when the annular concave polishing portion 13a is in close contact with the convex curved surface portion 1a, the annular projection 13b approaches the flat surface portion 1b and closely adheres with a weak stress, and the flat surface portion 1b is also convexly curved by the annular projection 13b. Polishing is possible with a lower polishing amount than the portion 1a. As a result, the boundary between the convex curved surface portion 1a and the flat surface portion 1b does not remain, and a high-quality workpiece 1 can be obtained.
- a chamfered shape 13c is formed on the annular protrusion 13b, so that the object to be polished 1 can be easily inserted between the annular protrusion 13b and the annular protrusion 13b when polishing.
- the length, chamfering angle, and shape of the chamfered shape 13c it is possible to perform adjustment so that the boundary between the convex curved surface portion 1a and the flat surface portion 1b of the workpiece 1 does not remain.
- notches 13d are formed at predetermined intervals in the annular protrusion 13b, and the slurry supplied from the slurry supply means 5 is used as the annular concave polishing portion 13a and the object 1 to be polished.
- the supplied slurry is held by the opening, and good polishing performance by the slurry can be obtained.
- the notched part 13d may be omitted for either one of the annular protrusions 13b.
- the size of the notch 13d is not particularly limited, and the shape is not particularly limited. It may be a semicircular shape, a polygon such as a substantially triangular shape or a substantially rectangular shape.
- the number and interval are not particularly limited, it is preferably formed at intervals of 30 to 60 ° in a plan view of the annular protrusion 13b at 6 to 12 locations.
- the size, shape, number, and interval of the notch portions 13d provided in the annular protrusion 13b not only the supply amount of slurry but also the adjustment of the drainage amount and the promotion of the discharge of polishing waste, It is also possible to make adjustments such that the boundary between the convex curved surface portion 1a and the flat surface portion 1b of the object to be polished does not remain.
- the polishing pad 13 of this embodiment is made of a material such as a nonwoven fabric impregnated with polyurethane resin or foamed polyurethane, and these materials have the following properties.
- the material constituting the polishing pad 13 has a compressive stress in the range of 50 to 150 gf / cm 2 when compressed to 0.1 mm, and a ratio of compressive stress (compressed stress at 0.5 mm compressed / 0.1 mm compressed).
- the compressive stress is in the range of 5-30.
- the loss coefficient tan ⁇ in the material constituting the polishing pad 13 is set in the range of 0.150 to 0.420.
- the range of the loss coefficient tan ⁇ is the initial load 20 g, the strain range 1.0%, the temperature 40 ° C., and the frequency 60 Hz. More preferably, it is obtained in compressed mode.
- the loss coefficient tan ⁇ represents the ratio of storage elastic modulus (E ′) and loss elastic modulus (E ′′), E ′′ / E ′.
- the compression stress at 0.1mm compression is preferably 50 ⁇ 150gf / cm 2, more preferably 60 ⁇ 150gf / cm 2.
- an appropriate stress can be applied to the convex curved surface portion 1a of the workpiece 1 submerged in the polishing pad 13, so that highly accurate mirror finish polishing can be performed.
- the ratio of compressive stress is preferably 5 to 30, and more preferably 5 to 20. Even if the sinking amount of the object to be polished 1 fluctuates, it is possible to stably apply stress to the object 1 to be polished, and to reduce polishing unevenness and unpolished portions.
- the ratio of compressive stress is less than 5, minute irregularities cannot be polished, resulting in uneven polishing.
- it is larger than 30 stable stress cannot be applied to the workpiece 1 and uneven polishing occurs. End up. More specifically, since the convex curved surface portion 1a of the workpiece 1 before polishing is subjected only to rough grinding in advance in the previous step or is not yet processed, grinding marks or Fine irregularities such as burrs remain, and the surface roughness is, for example, about 0.4 mm. Since the polishing pad 13 and the workpiece 1 are relatively moved during polishing, the unevenness of the convex curved surface portion 1 a reaches the contact portion between the polishing pad 13 and the workpiece 1.
- the sinking amount of the object 1 to be polished into the annular concave polishing portion 13b varies. Further, when the polishing pad 13 is rotated at a high speed as in the present embodiment, the vibration increases due to the operation of the driving means and the like, and the amount of subsidence also varies due to this vibration. Even if the sinking amount fluctuates due to the unevenness or vibration of the convex curved surface portion 1a in this way, the material of the polishing pad 13 of the present example has the above-described properties. It is possible to keep the stress applied stably and reduce polishing unevenness.
- the loss factor tan ⁇ of the material constituting the polishing pad 13 of this embodiment is preferably 0.15 to 0.420, more preferably 0.350 to 0.420.
- the polishing pad 13 rotates about an axis perpendicular to the direction in which the workpiece 1 sinks into the annular concave polishing portion 13a. The top tends to be excessively polished. Therefore, by setting the range of the loss factor tan ⁇ , the stress received from the workpiece 1 when the workpiece 1 sinks into the polishing pad 13 is appropriately absorbed, whereby the entire convex curved surface portion 1a is absorbed. Polish uniformly.
- the polishing pad 13 cannot absorb the displacement, the top of the convex curved surface portion 1a is excessively polished, and an unpolished portion is generated at a location away from the top. Moreover, since stress is not uniformly applied to the entire convex curved surface portion 1a, polishing unevenness occurs.
- the loss coefficient tan ⁇ is larger than 0.420, the viscosity of the polishing pad 13 is increased, the polishing grains are easily embedded in the polishing pad 13, and the grinding force is reduced.
- the range of the loss factor tan ⁇ to the above range at the actual polishing heat temperature of the polishing portion, that is, 40 ° C., good polishing performance at the time of actual polishing can be obtained. .
- FIG. 5 shows the experimental results of the inventive products 1 to 3 according to the present invention and the comparative products 1 and 2 prepared for comparison.
- the inventive products 1 to 3 and the comparative products 1 and 2 are shown.
- Compression stress (gf / cm 2 ) at 0.1 mm compression, ratio of compression stress (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression), loss factor tan ⁇ , The presence / absence, the presence / absence of visual scratches, and the presence / absence of visual unpolished parts were measured.
- the procedure for obtaining the invention products 1 to 3 and the comparison products 1 and 2 will be described below.
- the polishing pad according to Invention 1 was made of foamed polyurethane, and specifically manufactured by the following manufacturing process.
- the second component is crude MOCA (50 parts by mass), PTMG (50 parts by mass) having a number average molecular weight of about 1000, water (0.52 parts by mass), a catalyst (0.3 parts by mass), a silicon-based surfactant.
- the first component: second component is supplied to the mixer at a flow rate of 36 kg / min at a mass ratio of 100: 43, and air is supplied from the nozzle provided in the stirring rotor of the mixer to 35 L / It was supplied at a flow rate of min. Subsequently, the obtained mixed liquid was poured into a mold (890 mm ⁇ 890 mm) and cured, and then the formed polyurethane resin foam was extracted from the frame.
- this foam is sliced to a thickness of 9.0 mm to produce a urethane sheet, which is cut into a disk shape with an outer diameter of 40.0 mm and a semicircular annular recess with a radius of 3.5 mm on its side.
- a polishing portion 13a is provided, and semicircular cutout portions 13d having a radius of 2.5 mm are provided at two upper and lower annular projections 13b corresponding to the annular concave polishing portion 13a at intervals of 60 ° in plan view, that is, six locations each.
- a polishing pad 13 having the above shape was obtained by providing a through hole for fixing to the polishing jig 11 at the center of the disk.
- the notch 13d was provided at the same position in plan view both in the thickness direction of the annular protrusion 13b.
- the polishing pad 13 according to the invention product 2 is made of a nonwoven fabric impregnated with a polyurethane resin, and specifically manufactured by the following manufacturing process.
- a resin solution was prepared by adding 53 parts by mass of DMF as a solvent to 53 parts by mass of a DMF solution containing 30% by mass of a polyether-based polyurethane resin having a 100% modulus of 6 MPa.
- the modulus is an index representing the repulsive force of the resin, and the load applied when the non-foamed resin sheet is stretched 100% (when stretched to twice the original length) is the cross-sectional area before stretching.
- the divided value is called 100% modulus.
- a higher value means that the resin is more difficult to deform.
- a sheet-like fiber base material is prepared, and the fiber base material is a non-woven fabric whose fiber material is PET, and the fineness and fiber length are 2.2 dtex ⁇ 51 mm, 3.3 dtex ⁇ 51 mm mass ratio 1: 2 and having a thickness of 12 mm and a basis weight of 1500 g / m 2 .
- the resin solution is squeezed out using a mangle roller capable of pressurizing between a pair of rollers, so that the resin solution is substantially uniformly applied to the fiber base material. Impregnated.
- the fibrous base material impregnated with the resin solution is immersed in a coagulating liquid composed of water at room temperature, the polyether polyurethane resin is coagulated and regenerated to obtain a precursor sheet, and the precursor sheet is taken out from the coagulating liquid. Then, the DMF was removed by dipping in a cleaning solution made of water, and after further drying, the skin layer on the surface was removed by slicing to obtain a 9.0 mm thick polishing pad sheet.
- this is cut out into a disk shape having an outer diameter of 40.0 mm, and a semicircular annular concave polishing portion 13 a having a radius of 3.5 mm is provided on the side surface, and the two annular projections 13 b corresponding to the annular concave polishing portion 13 a have a radius.
- the 2.5 mm semi-circular cutouts 13d are provided at intervals of 60 ° in plan view, that is, at six points each, and by providing a through hole for fixing to the polishing jig 11 at the center of the disk.
- a polishing pad 13 having a shape was obtained.
- the notch 13d was provided at the same position in plan view both in the thickness direction of the annular protrusion 13b.
- polishing pad 13 according to the inventive product 3 was different from the inventive product 2 in that the 100% modulus of the resin was changed to 9 MPa, and the polishing pad 13 was obtained by the same process except that.
- the comparative product 1 obtained the polishing pad 13 by the method similar to the invention product 1 except having changed the isocyanate group content of the prepolymer to 6.3%.
- the comparative product 2 obtained the polishing pad 13 by the method similar to the invention product 2 except having changed the 100% modulus of resin into 34 MPa.
- the material constituting the polishing pad 13 is first cut into 12 mm ⁇ 12 mm ⁇ 15 mm, and the test piece is mounted on a test machine (manufactured by Shimadzu Corporation, Micro Autograph, MST-I).
- the compression direction was set to 15 mm, and a circular pressure plate (flat plate) having a diameter of 20 mm was applied with a load of 0 to 8000 gf / cm 2 at a speed of 0.1 mm / min.
- a plurality of test pieces were stacked so that the total thickness was 15 mm.
- the compressive stress when the pressure plate sinks 0.1 mm into the test piece and when the press plate sinks 0.5 mm is obtained, and the ratio of the compressive stress (compressive stress at the time of 0.5 mm compression) is calculated from the calculated compressive stress. / Compressive stress at 0.1 mm compression).
- the compression stress at 0.1 mm compression in Invention 1 was 64 gf / cm 2
- the compression stress ratio (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression) was 8.0. Met.
- Inventive product 2 had a compressive stress of 104 gf / cm 2 at the time of 0.1 mm compression, and the ratio of compressive stress (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) was 17.7. .
- Inventive product 3 had a compression stress of 128 gf / cm 2 at 0.1 mm compression, and the compression stress ratio (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression) was 23.4.
- the compression stress at the time of 0.1 mm compression was 39 gf / cm 2
- the compression stress ratio compression stress at the time of 0.5 mm compression / compression stress at the time of 0.1 mm compression
- the compression stress at the time of 0.1 mm compression was 192 gf / cm 2
- the ratio of the compression stress compression stress at the time of 0.5 mm compression / compression stress at the time of 0.1 mm compression
- the loss coefficient (tan ⁇ ) of the polishing pad 13 was measured using a dynamic viscoelasticity measuring apparatus (RSA-III, manufactured by TA Instruments Japan Co., Ltd.). Specifically, a test piece of 5 mm ⁇ 5 mm was taken from the polishing pad 13 of the invention and the comparative product, and this test piece was subjected to an initial load of 20 g and a strain range of 1.0% using a dynamic viscoelasticity measuring device.
- the storage elastic modulus E ′ and the loss elastic modulus E ′′ when the frequency is gradually changed in the frequency range of 1 to 70 Hz at a temperature of 40 ° C. are measured by the compression mode, and the loss coefficient tan ⁇ at 60 Hz is further calculated from these values.
- RSA-III dynamic viscoelasticity measuring apparatus
- the set frequency was set to 60 Hz corresponding to the number of rotations of the polishing pad 13 (3000 rpm).
- the loss factor tan ⁇ of Invention 1 was 0.390
- Invention 2 was 0.153
- Invention 3 was 0.169.
- the loss factor tan ⁇ of the comparative product 1 was 0.262
- the comparative product 2 was 0.147.
- the evaluation of polishing unevenness of the polishing pad 13, the evaluation of scratches, and the evaluation of the presence or absence of unpolished portions were performed by observing the polished object 1 that was actually polished under the following polishing conditions.
- a stainless steel plate having a curved surface ground on the outer periphery is used, and a 100% alumina slurry having a pH of 10 is supplied as a slurry between the object to be polished 1 and the polishing pad 13 at a flow rate of 90 cc / min.
- the polishing pad 13 was rotated at a rotational speed of 3000 rpm, the outer periphery of the workpiece 1 was moved at a speed of 80 mm / min for polishing.
- the polishing pad 13 was always submerged in the object to be polished by about 0.1 mm for polishing.
- the visual confirmation was performed about grinding
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
This abrasive pad (13) is used to abrade a convex curving surface portion (1a) of an abraded article (1) having a convex curving surface portion, wherein the abrasive pad is characterized in that an annular concave abrading portion (13a) for contacting the convex curving surface portion of the abraded article while driven to rotate in the circumferential direction about an axis at the center of the circle of a disk is arranged on the side surface of a disk-shaped elastic body having thickness, the compressive stress of the elastic body constituting the annular concave abrading portion being in the range of 50-150 gf/cm2 at 0.1 mm compression, and the ratio of compressive stress (compressive stress at 0.5 mm compression/compressive stress at 0.1 mm compressive stress) being in the range of 5-30. The convex curving surface portion of the abraded article can thus be abraded to a mirror finish with high accuracy.
Description
本発明は凸状曲面部分を有する被研磨物の前記凸状曲面部分を研磨するための研磨パッドに関し、詳しくは、円盤状で厚みを有する弾性体の側面に、該円盤の円の中心を軸に円周方向に回転駆動させながら被研磨物の凸状曲面部分と接触させる環状凹研磨部を配し、前記回転駆動によって凸状曲面部分が形成された被研磨物、特に外周縁に凸状曲面部分が形成された被研磨物を高精度に鏡面仕上げ研磨するのに好適な研磨パッドに関する。
The present invention relates to a polishing pad for polishing the convex curved surface portion of an object to be polished having a convex curved surface portion. More specifically, the center of a circle of the disk is pivoted on a side surface of a disk-shaped elastic body. An annular concave polishing portion that is brought into contact with the convex curved surface portion of the object to be polished while being rotationally driven in the circumferential direction is provided, and the object to be polished in which the convex curved surface portion is formed by the rotational driving, particularly convex on the outer periphery. The present invention relates to a polishing pad suitable for mirror-finishing a workpiece having a curved surface portion with high accuracy.
従来、凸状曲面部分を有する被研磨物の前記曲面部分を研磨する際には、円盤状で厚みを有する研磨部材が使用されており、具体的には当該研磨部材の側面に、円盤の円の中心を軸に円周方向に回転駆動させながら被研磨物の上記凸状曲面部分を接触させる研磨部材が知られている(特許文献1)。
Conventionally, when polishing the curved surface portion of an object to be polished having a convex curved surface portion, a disk-shaped polishing member having a thickness has been used. Specifically, a circular disk of a disk is provided on the side surface of the polishing member. A polishing member is known in which the convex curved surface portion of an object to be polished is brought into contact while being rotationally driven in the circumferential direction around the center of the shaft (Patent Document 1).
しかし、上記特許文献1の研磨部材は、上記特許文献1が目的としている半導体ウエハのエッジ部に付着した不要な成膜を除去するのには適しているものの、上記凸状曲面部分を高精度に鏡面仕上げ研磨するという思想はなく、例えば外周縁に凸状曲面部分が形成された部材の前記凸状曲面部分を高精度に鏡面仕上げ研磨する際には、回転駆動の振動等による研磨部材と被研磨物との当たりムラを十分に吸収できず研磨ムラを招いてしまい、曲面をムラなく高精度に鏡面仕上げ研磨するには極めて不適当であった。
また、上記特許文献1では、被研磨物の凸状曲面部分を研磨した際、研磨部材の当接した凸状曲面部分と、当接しなかった平面部分との境界が残ってしまい、仕上げ品位を低下させてしまうという問題もあった。
このような問題に鑑み、本発明は凸状曲面部分を有する被研磨物の凸状曲面部分を高精度に鏡面仕上げ研磨することが可能な研磨パッドを提供するものである。 However, although the polishing member ofPatent Document 1 is suitable for removing unnecessary film formation attached to the edge portion of the semiconductor wafer intended by Patent Document 1, the convex curved surface portion is highly accurate. There is no idea of mirror finishing polishing, for example, when the convex curved surface portion of a member having a convex curved surface portion formed on the outer peripheral edge is mirror-finished with high accuracy, a polishing member caused by vibration of a rotational drive, etc. The uneven contact with the object to be polished cannot be sufficiently absorbed, resulting in uneven polishing, and it is extremely inappropriate for mirror finishing of a curved surface with high accuracy without unevenness.
Moreover, in the saidpatent document 1, when the convex curved surface part of a to-be-polished object is grind | polished, the boundary of the convex curved surface part which the grinding | polishing member contact | abutted and the plane part which did not contact | abut remains, and finish quality is improved. There was also a problem of lowering.
In view of such a problem, the present invention provides a polishing pad capable of mirror-finishing a convex curved surface portion of an object having a convex curved surface portion with high accuracy.
また、上記特許文献1では、被研磨物の凸状曲面部分を研磨した際、研磨部材の当接した凸状曲面部分と、当接しなかった平面部分との境界が残ってしまい、仕上げ品位を低下させてしまうという問題もあった。
このような問題に鑑み、本発明は凸状曲面部分を有する被研磨物の凸状曲面部分を高精度に鏡面仕上げ研磨することが可能な研磨パッドを提供するものである。 However, although the polishing member of
Moreover, in the said
In view of such a problem, the present invention provides a polishing pad capable of mirror-finishing a convex curved surface portion of an object having a convex curved surface portion with high accuracy.
すなわち、本発明は、凸状曲面部分を有する被研磨物の前記凸状曲面部分を研磨するための研磨パッドであって、円盤状で厚みを有する弾性体の側面に、該円盤の円の中心を軸に円周方向に回転駆動させながら被研磨物の凸状曲面部分と接触させる環状凹研磨部を配し、該環状凹研磨部を構成する弾性体の0.1mm圧縮時の圧縮応力が50~150gf/cm2の範囲、かつ圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)が5~30の範囲であることを特徴とする研磨パッドとなっている。
また、上記環状凹研磨部を構成する弾性体の、初期荷重20g、歪み範囲1.0%、温度40℃、周波数60Hz、圧縮モードで測定した際の損失係数tanδが0.150~0.420の範囲であってもよい。
さらに、上記環状凹研磨部表面に開孔が形成されていてもよい。
さらにまた上記環状凹研磨部は、被研磨物の上記凸状曲面部分より大径であり、上記被研磨物の頂点と上記環状凹研磨部の底点を接触させたとき、上記環状凹研磨部の厚み方向両端部に位置する環状突起は、被研磨物の凸状曲面部分に隣接する平面部分より離隔しており、上記被研磨物が上記環状凹研磨部に研磨時の押圧力によって沈み込み当該環状凹研磨部が変形することにより、上記環状突起が上記被研磨物における上記平面部分に密着するようにしてもよい。
そして、上記環状突起には、厚み方向両端部の少なくともいずれか一方の円周方向に沿って所定の間隔で切欠き部を配してもよい。 That is, the present invention provides a polishing pad for polishing the convex curved surface portion of an object having a convex curved surface portion, and the center of a circle of the disk on a side surface of a disk-shaped elastic body An annular concave polishing portion that is brought into contact with the convex curved surface portion of the object to be polished while being driven to rotate in the circumferential direction about the axis is arranged, and the compressive stress at the time of 0.1 mm compression of the elastic body constituting the annular concave polishing portion is A polishing pad having a range of 50 to 150 gf / cm 2 and a compressive stress ratio (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) of 5 to 30. ing.
In addition, the elastic body constituting the annular concave polished portion has an initial load of 20 g, a strain range of 1.0%, a temperature of 40 ° C., a frequency of 60 Hz, and a loss coefficient tan δ of 0.150 to 0.420 when measured in a compression mode. It may be a range.
Furthermore, an opening may be formed on the surface of the annular concave polished portion.
Furthermore, the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion. The annular projections located at both ends in the thickness direction of the workpiece are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished, and the object to be polished sinks into the annular concave polishing portion by the pressing force at the time of polishing. The annular concave polishing portion may be deformed so that the annular protrusion is in close contact with the planar portion of the object to be polished.
The annular protrusion may be provided with a notch portion at a predetermined interval along the circumferential direction of at least one of both end portions in the thickness direction.
また、上記環状凹研磨部を構成する弾性体の、初期荷重20g、歪み範囲1.0%、温度40℃、周波数60Hz、圧縮モードで測定した際の損失係数tanδが0.150~0.420の範囲であってもよい。
さらに、上記環状凹研磨部表面に開孔が形成されていてもよい。
さらにまた上記環状凹研磨部は、被研磨物の上記凸状曲面部分より大径であり、上記被研磨物の頂点と上記環状凹研磨部の底点を接触させたとき、上記環状凹研磨部の厚み方向両端部に位置する環状突起は、被研磨物の凸状曲面部分に隣接する平面部分より離隔しており、上記被研磨物が上記環状凹研磨部に研磨時の押圧力によって沈み込み当該環状凹研磨部が変形することにより、上記環状突起が上記被研磨物における上記平面部分に密着するようにしてもよい。
そして、上記環状突起には、厚み方向両端部の少なくともいずれか一方の円周方向に沿って所定の間隔で切欠き部を配してもよい。 That is, the present invention provides a polishing pad for polishing the convex curved surface portion of an object having a convex curved surface portion, and the center of a circle of the disk on a side surface of a disk-shaped elastic body An annular concave polishing portion that is brought into contact with the convex curved surface portion of the object to be polished while being driven to rotate in the circumferential direction about the axis is arranged, and the compressive stress at the time of 0.1 mm compression of the elastic body constituting the annular concave polishing portion is A polishing pad having a range of 50 to 150 gf / cm 2 and a compressive stress ratio (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) of 5 to 30. ing.
In addition, the elastic body constituting the annular concave polished portion has an initial load of 20 g, a strain range of 1.0%, a temperature of 40 ° C., a frequency of 60 Hz, and a loss coefficient tan δ of 0.150 to 0.420 when measured in a compression mode. It may be a range.
Furthermore, an opening may be formed on the surface of the annular concave polished portion.
Furthermore, the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion. The annular projections located at both ends in the thickness direction of the workpiece are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished, and the object to be polished sinks into the annular concave polishing portion by the pressing force at the time of polishing. The annular concave polishing portion may be deformed so that the annular protrusion is in close contact with the planar portion of the object to be polished.
The annular protrusion may be provided with a notch portion at a predetermined interval along the circumferential direction of at least one of both end portions in the thickness direction.
即ち上記発明によれば、研磨パッドの環状凹研磨部が研磨時の押圧力によって被研磨物の凸状曲面部分の形状に沿うように圧縮変形し、その際の適度な応力を被研磨物の凸状曲面部分に与えることができるので、当該凸状曲面部分を高精度に鏡面仕上げ研磨することができる。
さらに、上記研磨パッドを構成する弾性体における圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を5~30の範囲にしたことにより、研磨パッドの回転による振動や被研磨物の表面に形成された凹凸によって環状凹研磨部の圧縮変形量が変動しても、安定した応力を被研磨物の凸状曲面部分に作用させることができ、研磨ムラや未研磨部の発生を抑えることができる。
そして環状凹研磨部表面に開孔が形成されているため、研磨液としてのスラリーを前記環状凹研磨部に保持できるので、安定した研磨効率を得ることができる。
さらにまた上記環状凹研磨部は、被研磨物の上記凸状曲面部分より大径であり、上記被研磨物の頂点と上記環状凹研磨部の底点とを接触させたとき、上記環状凹研磨部の厚み方向両端部に位置する環状突起は、被研磨物の凸状曲面部分に隣接する平面部分より離隔している。
この状態から上記被研磨物が上記環状凹研磨部に研磨時の押圧力によって沈み込み、当該環状凹研磨部が変形することで、上記環状突起が上記被研磨物における凸状曲面部分と隣接する平面部分に密着するようになっている。このような構造とすることにより、凸状曲面部分と平面部分との境界が残らず、高品位の被研磨物を得ることができる。
さらに、環状突起に切欠き部を配し、且つ、切欠き部の大きさ、形状、数、間隔を適宜調整することで、スラリーの給排液量の調整や研磨屑の排出促進、被研磨物の凸状曲面部分と平面部分との境界が残らないようにする調整等を行うことができる。 That is, according to the above invention, the annular concave polishing portion of the polishing pad is compressed and deformed along the shape of the convex curved surface portion of the object to be polished by the pressing force during polishing, and an appropriate stress at that time is applied to the object to be polished. Since it can be given to the convex curved surface portion, the convex curved surface portion can be mirror-finished with high accuracy.
Further, the ratio of compressive stress in the elastic body constituting the polishing pad (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is set in the range of 5 to 30, so that the polishing pad rotates. Even if the amount of compressive deformation of the annular concave polishing portion fluctuates due to vibration or unevenness formed on the surface of the object to be polished, stable stress can be applied to the convex curved surface portion of the object to be polished. Generation | occurrence | production of a grinding | polishing part can be suppressed.
Since the hole is formed on the surface of the annular concave polishing portion, the slurry as the polishing liquid can be held in the annular concave polishing portion, so that stable polishing efficiency can be obtained.
Furthermore, the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion. The annular projections located at both end portions in the thickness direction of the part are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished.
From this state, the object to be polished sinks into the annular concave polishing part by the pressing force during polishing, and the annular concave polishing part is deformed, so that the annular protrusion is adjacent to the convex curved surface part of the object to be polished. It comes in close contact with the flat part. By setting it as such a structure, the boundary of a convex curved surface part and a plane part does not remain, but a high-quality to-be-polished object can be obtained.
Furthermore, by arranging a notch in the annular projection and adjusting the size, shape, number, and interval of the notch as appropriate, adjustment of the slurry supply / drainage amount, promotion of discharge of polishing waste, polishing Adjustments can be made so that the boundary between the convex curved surface portion and the flat surface portion of the object does not remain.
さらに、上記研磨パッドを構成する弾性体における圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を5~30の範囲にしたことにより、研磨パッドの回転による振動や被研磨物の表面に形成された凹凸によって環状凹研磨部の圧縮変形量が変動しても、安定した応力を被研磨物の凸状曲面部分に作用させることができ、研磨ムラや未研磨部の発生を抑えることができる。
そして環状凹研磨部表面に開孔が形成されているため、研磨液としてのスラリーを前記環状凹研磨部に保持できるので、安定した研磨効率を得ることができる。
さらにまた上記環状凹研磨部は、被研磨物の上記凸状曲面部分より大径であり、上記被研磨物の頂点と上記環状凹研磨部の底点とを接触させたとき、上記環状凹研磨部の厚み方向両端部に位置する環状突起は、被研磨物の凸状曲面部分に隣接する平面部分より離隔している。
この状態から上記被研磨物が上記環状凹研磨部に研磨時の押圧力によって沈み込み、当該環状凹研磨部が変形することで、上記環状突起が上記被研磨物における凸状曲面部分と隣接する平面部分に密着するようになっている。このような構造とすることにより、凸状曲面部分と平面部分との境界が残らず、高品位の被研磨物を得ることができる。
さらに、環状突起に切欠き部を配し、且つ、切欠き部の大きさ、形状、数、間隔を適宜調整することで、スラリーの給排液量の調整や研磨屑の排出促進、被研磨物の凸状曲面部分と平面部分との境界が残らないようにする調整等を行うことができる。 That is, according to the above invention, the annular concave polishing portion of the polishing pad is compressed and deformed along the shape of the convex curved surface portion of the object to be polished by the pressing force during polishing, and an appropriate stress at that time is applied to the object to be polished. Since it can be given to the convex curved surface portion, the convex curved surface portion can be mirror-finished with high accuracy.
Further, the ratio of compressive stress in the elastic body constituting the polishing pad (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is set in the range of 5 to 30, so that the polishing pad rotates. Even if the amount of compressive deformation of the annular concave polishing portion fluctuates due to vibration or unevenness formed on the surface of the object to be polished, stable stress can be applied to the convex curved surface portion of the object to be polished. Generation | occurrence | production of a grinding | polishing part can be suppressed.
Since the hole is formed on the surface of the annular concave polishing portion, the slurry as the polishing liquid can be held in the annular concave polishing portion, so that stable polishing efficiency can be obtained.
Furthermore, the annular concave polishing portion is larger in diameter than the convex curved portion of the object to be polished, and the annular concave polishing portion is brought into contact with the top of the object to be polished and the bottom of the annular concave polishing portion. The annular projections located at both end portions in the thickness direction of the part are separated from the plane portion adjacent to the convex curved surface portion of the object to be polished.
From this state, the object to be polished sinks into the annular concave polishing part by the pressing force during polishing, and the annular concave polishing part is deformed, so that the annular protrusion is adjacent to the convex curved surface part of the object to be polished. It comes in close contact with the flat part. By setting it as such a structure, the boundary of a convex curved surface part and a plane part does not remain, but a high-quality to-be-polished object can be obtained.
Furthermore, by arranging a notch in the annular projection and adjusting the size, shape, number, and interval of the notch as appropriate, adjustment of the slurry supply / drainage amount, promotion of discharge of polishing waste, polishing Adjustments can be made so that the boundary between the convex curved surface portion and the flat surface portion of the object does not remain.
以下図示実施例について説明すると、図1、図2は被研磨物1の外周縁に形成された凸状曲面部分1aを研磨する研磨装置2の平面図および断面図を示している。
上記研磨装置2は、被研磨物1を保持する保持テーブル3と、本発明にかかる研磨パッド13を備えた研磨手段4と、上記研磨パッド13と被研磨物1との間にスラリーを供給するスラリー供給手段5とを備えている。
上記被研磨物1は、図1に示すように略長方形を有しており、この被研磨物1の外周縁には凸状曲面部分1aが形成されている。
上記凸状曲面部分1aは前工程において予め粗研削加工だけが行われているか、または未加工であることから、その表面には研削傷やバリなどの凹凸が形成されている。
なお、被研磨物1としては、その平面形状が例えば円形等のその他の形状を有したものであってもよく、また素材としては、金属、ガラス、プラスチック、セラミック、サファイヤ等が挙げられる。 The illustrated embodiment will be described below. FIGS. 1 and 2 show a plan view and a cross-sectional view of apolishing apparatus 2 for polishing a convex curved surface portion 1a formed on the outer peripheral edge of an object 1 to be polished.
Thepolishing apparatus 2 supplies slurry between the holding table 3 for holding the object to be polished 1, the polishing means 4 having the polishing pad 13 according to the present invention, and the polishing pad 13 and the object to be polished 1. The slurry supply means 5 is provided.
The object to be polished 1 has a substantially rectangular shape as shown in FIG. 1, and a convexcurved surface portion 1 a is formed on the outer peripheral edge of the object to be polished 1.
Since the convexcurved surface portion 1a has been subjected only to rough grinding in the previous step or is not yet processed, irregularities such as grinding flaws and burrs are formed on the surface.
In addition, as the to-be-polishedobject 1, the planar shape may have other shapes, such as a circle, and a metal, glass, a plastic, a ceramic, a sapphire etc. are mentioned as a raw material.
上記研磨装置2は、被研磨物1を保持する保持テーブル3と、本発明にかかる研磨パッド13を備えた研磨手段4と、上記研磨パッド13と被研磨物1との間にスラリーを供給するスラリー供給手段5とを備えている。
上記被研磨物1は、図1に示すように略長方形を有しており、この被研磨物1の外周縁には凸状曲面部分1aが形成されている。
上記凸状曲面部分1aは前工程において予め粗研削加工だけが行われているか、または未加工であることから、その表面には研削傷やバリなどの凹凸が形成されている。
なお、被研磨物1としては、その平面形状が例えば円形等のその他の形状を有したものであってもよく、また素材としては、金属、ガラス、プラスチック、セラミック、サファイヤ等が挙げられる。 The illustrated embodiment will be described below. FIGS. 1 and 2 show a plan view and a cross-sectional view of a
The
The object to be polished 1 has a substantially rectangular shape as shown in FIG. 1, and a convex
Since the convex
In addition, as the to-be-polished
上記保持テーブル3は、被研磨物1を水平に保持する構造になっている。保持テーブル3は上記被研磨物1よりも小型のものが準備され、これにより保持テーブル3の端部からは上記凸状曲面部分1aが保持テーブル3側から外側に突出するようになっている。
上記研磨手段4は、それぞれ上記保持テーブル3に相対する位置に設けられた研磨治具11と、当該研磨治具11を上記被研磨物1の位置する方向に移動させる移動手段12とを備え、図示しない制御手段によって移動手段12が制御されるようになっている。
上記移動手段12は、図示しない駆動手段により研磨治具11が被研磨物1の外周縁に接触しながら外周縁沿いに移動するようになっている。
上記研磨治具11には円盤状の研磨パッド13が設置され、この研磨パッド13は軸方向が垂直に配置されるとともに、図示しない駆動手段によって例えば1000rpm~6000rpmといった回転数で高速回転するようになっている。
なお、研磨パッド13の貫通孔の内側及び研磨パッド13と研磨治具11との間には、駆動手段の作動による振動を吸収するクッション材やばね等の振動吸収機構が配されていても良い。
これにより、図3のように上記研磨パッド13が被研磨物1の凸状曲面部分1aに押し当てられた際も、被研磨物1の変位が抑制され、被研磨物1が被研磨物13により安定に沈み込むことができ好ましい。
上記ばねについてはその付勢力を調整することで、対象となる被研磨物1の素材や必要とされる凸状曲面部分1aの加工精度に応じて適宜設定することがさらに好ましい。
また、本実施例では前記保持テーブル3により被研磨物1を水平に保持する手段を説明したが、これに限定されない。例えば、被研磨物1を水平方向と垂直に保持し、研磨冶具11が被研磨物1の外周縁に接触しながら外周縁沿いに移動させてもよく、また研磨冶具11を固定し、保持テーブル3を移動させることで被研磨物1を研磨してもよい。 The holding table 3 has a structure for holding theworkpiece 1 horizontally. The holding table 3 is prepared to be smaller than the workpiece 1 so that the convex curved portion 1a protrudes outward from the holding table 3 side from the end of the holding table 3.
The polishing means 4 includes apolishing jig 11 provided at a position facing the holding table 3 and a moving means 12 for moving the polishing jig 11 in the direction in which the object to be polished 1 is located, The moving means 12 is controlled by a control means (not shown).
The movingmeans 12 is configured to move along the outer peripheral edge while the polishing jig 11 is in contact with the outer peripheral edge of the workpiece 1 by a driving means (not shown).
Thepolishing jig 11 is provided with a disk-shaped polishing pad 13, and the polishing pad 13 is disposed so that its axial direction is vertical, and is rotated at a high speed of, for example, 1000 rpm to 6000 rpm by a driving means (not shown). It has become.
In addition, a vibration absorbing mechanism such as a cushion material or a spring that absorbs vibration due to the operation of the driving unit may be disposed inside the through hole of thepolishing pad 13 and between the polishing pad 13 and the polishing jig 11. .
Thus, as shown in FIG. 3, even when thepolishing pad 13 is pressed against the convex curved surface portion 1 a of the workpiece 1, the displacement of the workpiece 1 is suppressed, and the workpiece 1 is polished. It is preferable that it can sink more stably.
More preferably, the spring is appropriately set in accordance with the material of theobject 1 to be polished and the required processing accuracy of the convex curved portion 1a by adjusting the biasing force.
In the present embodiment, the means for holding theworkpiece 1 horizontally by the holding table 3 has been described. However, the present invention is not limited to this. For example, the workpiece 1 may be held vertically and horizontally, and the polishing jig 11 may be moved along the outer peripheral edge while contacting the outer peripheral edge of the workpiece 1, or the polishing jig 11 is fixed and the holding table is fixed. The workpiece 1 may be polished by moving 3.
上記研磨手段4は、それぞれ上記保持テーブル3に相対する位置に設けられた研磨治具11と、当該研磨治具11を上記被研磨物1の位置する方向に移動させる移動手段12とを備え、図示しない制御手段によって移動手段12が制御されるようになっている。
上記移動手段12は、図示しない駆動手段により研磨治具11が被研磨物1の外周縁に接触しながら外周縁沿いに移動するようになっている。
上記研磨治具11には円盤状の研磨パッド13が設置され、この研磨パッド13は軸方向が垂直に配置されるとともに、図示しない駆動手段によって例えば1000rpm~6000rpmといった回転数で高速回転するようになっている。
なお、研磨パッド13の貫通孔の内側及び研磨パッド13と研磨治具11との間には、駆動手段の作動による振動を吸収するクッション材やばね等の振動吸収機構が配されていても良い。
これにより、図3のように上記研磨パッド13が被研磨物1の凸状曲面部分1aに押し当てられた際も、被研磨物1の変位が抑制され、被研磨物1が被研磨物13により安定に沈み込むことができ好ましい。
上記ばねについてはその付勢力を調整することで、対象となる被研磨物1の素材や必要とされる凸状曲面部分1aの加工精度に応じて適宜設定することがさらに好ましい。
また、本実施例では前記保持テーブル3により被研磨物1を水平に保持する手段を説明したが、これに限定されない。例えば、被研磨物1を水平方向と垂直に保持し、研磨冶具11が被研磨物1の外周縁に接触しながら外周縁沿いに移動させてもよく、また研磨冶具11を固定し、保持テーブル3を移動させることで被研磨物1を研磨してもよい。 The holding table 3 has a structure for holding the
The polishing means 4 includes a
The moving
The
In addition, a vibration absorbing mechanism such as a cushion material or a spring that absorbs vibration due to the operation of the driving unit may be disposed inside the through hole of the
Thus, as shown in FIG. 3, even when the
More preferably, the spring is appropriately set in accordance with the material of the
In the present embodiment, the means for holding the
本実施例にかかる研磨パッド13は、図3、図4に示すように円盤状を有しており、その側面には、上記被研磨物1の凸状曲面部分1aを研磨するための環状凹研磨部13aを有し、上記環状凹研磨部13aの厚み方向両端部には環状突起13bが配されている。
また、上記研磨パッド13は弾力性を有した素材(弾性体)によって構成され、具体的には以下に述べる製造方法を使用して製造したポリウレタン樹脂を含浸させた不織布や、発泡ポリウレタンなどの素材によって構成されている。そしてこれらの素材によって構成することで、上記環状凹研磨部13aを構成する弾性体は連続気泡、および/或いは、独立気泡を有し、表面に微小な開孔が無数に形成されている。
上記研磨パッド13の直径は、研磨する被研磨物1に応じて35~250mmとすることができ、またその厚さは、厚さが3.0~30.0mmの被研磨物1を研磨することが可能な寸法となっている。
また、上記研磨パッド13の環状凹研磨部13aは被研磨物1の凸状曲面部分1aの形状に併せて形成されており、例えば半径1.5~15.0mmの略断面半円状を有した凸状曲面部分1aを研磨することができる。
なお、上記被研磨物1の凸状曲面部分1aは必ずしも完全な半円状である必要はなく、環状凹研磨部13aはこの凸状曲面部分1aの形状に対応して、研磨時に圧縮変形することで適度な応力を与えられるような構造を有していればよい。
さらに本実施例では、上記環状突起13bの突出量を異ならせることができ、これにより上記凸状曲面部分1aに隣接した位置から1.0~30.0mmの範囲で被研磨物1の平面部分1bも研磨することが可能となっている。 Thepolishing pad 13 according to the present embodiment has a disk shape as shown in FIGS. 3 and 4, and an annular recess for polishing the convex curved surface portion 1 a of the workpiece 1 on the side surface. An annular protrusion 13b is provided at both end portions in the thickness direction of the annular concave polishing portion 13a.
Thepolishing pad 13 is made of a material (elastic body) having elasticity. Specifically, the polishing pad 13 is made of a non-woven fabric impregnated with a polyurethane resin manufactured using the manufacturing method described below, or a material such as foamed polyurethane. It is constituted by. And by comprising by these raw materials, the elastic body which comprises the said cyclic | annular concave grinding | polishing part 13a has an open cell and / or a closed cell, and innumerable micropores are formed in the surface.
The diameter of thepolishing pad 13 can be 35 to 250 mm depending on the object 1 to be polished, and the thickness of the object 1 to be polished is 3.0 to 30.0 mm. The dimensions are possible.
Further, the annularconcave polishing portion 13a of the polishing pad 13 is formed in accordance with the shape of the convex curved surface portion 1a of the object 1 to be polished, and has, for example, a semicircular shape with a substantially sectional radius of 1.5 to 15.0 mm. The convex curved surface portion 1a can be polished.
The convexcurved surface portion 1a of the object to be polished 1 does not necessarily have a perfect semicircular shape, and the annular concave polishing portion 13a is compressed and deformed during polishing corresponding to the shape of the convex curved surface portion 1a. It is only necessary to have a structure capable of applying an appropriate stress.
Furthermore, in the present embodiment, the amount of protrusion of theannular protrusion 13b can be made different, so that the planar portion of the workpiece 1 is within a range of 1.0 to 30.0 mm from the position adjacent to the convex curved surface portion 1a. 1b can also be polished.
また、上記研磨パッド13は弾力性を有した素材(弾性体)によって構成され、具体的には以下に述べる製造方法を使用して製造したポリウレタン樹脂を含浸させた不織布や、発泡ポリウレタンなどの素材によって構成されている。そしてこれらの素材によって構成することで、上記環状凹研磨部13aを構成する弾性体は連続気泡、および/或いは、独立気泡を有し、表面に微小な開孔が無数に形成されている。
上記研磨パッド13の直径は、研磨する被研磨物1に応じて35~250mmとすることができ、またその厚さは、厚さが3.0~30.0mmの被研磨物1を研磨することが可能な寸法となっている。
また、上記研磨パッド13の環状凹研磨部13aは被研磨物1の凸状曲面部分1aの形状に併せて形成されており、例えば半径1.5~15.0mmの略断面半円状を有した凸状曲面部分1aを研磨することができる。
なお、上記被研磨物1の凸状曲面部分1aは必ずしも完全な半円状である必要はなく、環状凹研磨部13aはこの凸状曲面部分1aの形状に対応して、研磨時に圧縮変形することで適度な応力を与えられるような構造を有していればよい。
さらに本実施例では、上記環状突起13bの突出量を異ならせることができ、これにより上記凸状曲面部分1aに隣接した位置から1.0~30.0mmの範囲で被研磨物1の平面部分1bも研磨することが可能となっている。 The
The
The diameter of the
Further, the annular
The convex
Furthermore, in the present embodiment, the amount of protrusion of the
図3(a)は被研磨物1が研磨パッド13に接触する前の状態を示しており、上記環状凹研磨部13aは上記被研磨物1の凸状曲面部分1aに対して若干大径に形成されている。
このため上記被研磨物1の凸状曲面部分1aの頂点と上記環状凹研磨部13aの底点とを接触させたとき、上記環状突起13bは、被研磨物1の上記凸状曲面部分1aに隣接する上記平面部分1bから離隔するようになっている。
なお、被研磨物1の凸状曲面部分1aが完全な半円状でない場合、例えば凸状曲面部分1aが2以上の凸部により形成されている場合、上記大径という語は、この凸状曲面部分1aの凸部個数に応じて所要の倍率で大きく形成した形状を有していることを意味している。
この状態から被研磨物1が環状凹研磨部13aに押し当てられると、被研磨物1は研磨パッド13の素材に対して沈み込み、図3(b)に示すように環状凹研磨部13aが変形して凸状曲面部分1aの形状に沿って密着するようになっている。
また環状凹研磨部13aが上記凸状曲面部分1aに密着すると、これに伴って上記環状突起13bが平面部分1bに接近して弱い応力で密着し、環状突起13bによって平面部分1bも凸状曲面部分1aより低い研磨量で研磨可能な状態となる。これによって、凸状曲面部分1aと平面部分1bとの境界が残らず、高品位の被研磨物1を得ることができる。
また、上記環状突起13bには面取り形状13cが形成されており、研磨を行う際、上記環状突起13bと環状突起13bとの間に被研磨物1が挿入されやすいようになっている。また、面取り形状13cの長さ、面取り角度、形状を適宜調整することで、被研磨物1の凸状曲面部分1aと平面部分1bとの境界が残らないようにする調整等を行うこともできる。
さらに、図4に示すように上記環状突起13bには所定の間隔で切欠き部13dが形成されており、上記スラリー供給手段5から供給されたスラリーを上記環状凹研磨部13aと被研磨物1との間に良好に供給するようになっている。
ここで、上記環状凹研磨部13bの表面には開孔が形成されていることから、供給されたスラリーはこの開孔によって保持されることとなり、当該スラリーによる良好な研磨性能も得ることができる。
なお上記環状突起13bについては、上下のうちいずれか一方だけを設けてもよく、また切欠き部13dについてもいずれか一方の環状突起13bについては省略してもよい。また、上記切欠き部13dの大きさは特に限定されず、形状についても特に限定されない。半円状や、略三角形、略四角形形状などの多角形であっても良い。数および間隔も特に限定されないが、6~12箇所、環状突起13bを平面視した際に30~60°間隔に形成することが好ましい。
上述のように、環状突起13bに設ける切欠き部13dの大きさ、形状、数、間隔を適宜調整することで、スラリーの供給量のみならず、排液量の調整や研磨屑の排出促進、被研磨物の凸状曲面部分1aと平面部分1bとの境界が残らないようにする調整等を行うこともできる。 FIG. 3A shows a state before theworkpiece 1 contacts the polishing pad 13, and the annular concave polishing portion 13 a has a slightly larger diameter than the convex curved surface portion 1 a of the workpiece 1. Is formed.
Therefore, when the apex of the convexcurved portion 1a of the workpiece 1 and the bottom of the annular concave polishing portion 13a are brought into contact with each other, the annular projection 13b is brought into contact with the convex curved portion 1a of the workpiece 1. It is separated from the adjacent planar portion 1b.
In addition, when the convexcurved surface part 1a of the to-be-polished object 1 is not perfect semicircle shape, for example, when the convex curved surface part 1a is formed of two or more convex parts, the said large diameter is the convex shape. It means that it has a shape that is greatly formed at a required magnification according to the number of convex portions of the curved surface portion 1a.
When theworkpiece 1 is pressed against the annular concave polishing portion 13a from this state, the workpiece 1 sinks against the material of the polishing pad 13, and the annular concave polishing portion 13a is formed as shown in FIG. It deform | transforms and it adhere | attaches along the shape of the convex curved surface part 1a.
Further, when the annularconcave polishing portion 13a is in close contact with the convex curved surface portion 1a, the annular projection 13b approaches the flat surface portion 1b and closely adheres with a weak stress, and the flat surface portion 1b is also convexly curved by the annular projection 13b. Polishing is possible with a lower polishing amount than the portion 1a. As a result, the boundary between the convex curved surface portion 1a and the flat surface portion 1b does not remain, and a high-quality workpiece 1 can be obtained.
Further, achamfered shape 13c is formed on the annular protrusion 13b, so that the object to be polished 1 can be easily inserted between the annular protrusion 13b and the annular protrusion 13b when polishing. In addition, by appropriately adjusting the length, chamfering angle, and shape of the chamfered shape 13c, it is possible to perform adjustment so that the boundary between the convex curved surface portion 1a and the flat surface portion 1b of the workpiece 1 does not remain. .
Further, as shown in FIG. 4,notches 13d are formed at predetermined intervals in the annular protrusion 13b, and the slurry supplied from the slurry supply means 5 is used as the annular concave polishing portion 13a and the object 1 to be polished. Good supply in between.
Here, since an opening is formed in the surface of the annularconcave polishing portion 13b, the supplied slurry is held by the opening, and good polishing performance by the slurry can be obtained. .
Note that only one of the upper and lowerannular protrusions 13b may be provided, and the notched part 13d may be omitted for either one of the annular protrusions 13b. Further, the size of the notch 13d is not particularly limited, and the shape is not particularly limited. It may be a semicircular shape, a polygon such as a substantially triangular shape or a substantially rectangular shape. Although the number and interval are not particularly limited, it is preferably formed at intervals of 30 to 60 ° in a plan view of the annular protrusion 13b at 6 to 12 locations.
As described above, by appropriately adjusting the size, shape, number, and interval of thenotch portions 13d provided in the annular protrusion 13b, not only the supply amount of slurry but also the adjustment of the drainage amount and the promotion of the discharge of polishing waste, It is also possible to make adjustments such that the boundary between the convex curved surface portion 1a and the flat surface portion 1b of the object to be polished does not remain.
このため上記被研磨物1の凸状曲面部分1aの頂点と上記環状凹研磨部13aの底点とを接触させたとき、上記環状突起13bは、被研磨物1の上記凸状曲面部分1aに隣接する上記平面部分1bから離隔するようになっている。
なお、被研磨物1の凸状曲面部分1aが完全な半円状でない場合、例えば凸状曲面部分1aが2以上の凸部により形成されている場合、上記大径という語は、この凸状曲面部分1aの凸部個数に応じて所要の倍率で大きく形成した形状を有していることを意味している。
この状態から被研磨物1が環状凹研磨部13aに押し当てられると、被研磨物1は研磨パッド13の素材に対して沈み込み、図3(b)に示すように環状凹研磨部13aが変形して凸状曲面部分1aの形状に沿って密着するようになっている。
また環状凹研磨部13aが上記凸状曲面部分1aに密着すると、これに伴って上記環状突起13bが平面部分1bに接近して弱い応力で密着し、環状突起13bによって平面部分1bも凸状曲面部分1aより低い研磨量で研磨可能な状態となる。これによって、凸状曲面部分1aと平面部分1bとの境界が残らず、高品位の被研磨物1を得ることができる。
また、上記環状突起13bには面取り形状13cが形成されており、研磨を行う際、上記環状突起13bと環状突起13bとの間に被研磨物1が挿入されやすいようになっている。また、面取り形状13cの長さ、面取り角度、形状を適宜調整することで、被研磨物1の凸状曲面部分1aと平面部分1bとの境界が残らないようにする調整等を行うこともできる。
さらに、図4に示すように上記環状突起13bには所定の間隔で切欠き部13dが形成されており、上記スラリー供給手段5から供給されたスラリーを上記環状凹研磨部13aと被研磨物1との間に良好に供給するようになっている。
ここで、上記環状凹研磨部13bの表面には開孔が形成されていることから、供給されたスラリーはこの開孔によって保持されることとなり、当該スラリーによる良好な研磨性能も得ることができる。
なお上記環状突起13bについては、上下のうちいずれか一方だけを設けてもよく、また切欠き部13dについてもいずれか一方の環状突起13bについては省略してもよい。また、上記切欠き部13dの大きさは特に限定されず、形状についても特に限定されない。半円状や、略三角形、略四角形形状などの多角形であっても良い。数および間隔も特に限定されないが、6~12箇所、環状突起13bを平面視した際に30~60°間隔に形成することが好ましい。
上述のように、環状突起13bに設ける切欠き部13dの大きさ、形状、数、間隔を適宜調整することで、スラリーの供給量のみならず、排液量の調整や研磨屑の排出促進、被研磨物の凸状曲面部分1aと平面部分1bとの境界が残らないようにする調整等を行うこともできる。 FIG. 3A shows a state before the
Therefore, when the apex of the convex
In addition, when the convex
When the
Further, when the annular
Further, a
Further, as shown in FIG. 4,
Here, since an opening is formed in the surface of the annular
Note that only one of the upper and lower
As described above, by appropriately adjusting the size, shape, number, and interval of the
上述したように、本実施例の研磨パッド13は、ポリウレタン樹脂が含浸された不織布や、発泡ポリウレタンなどの素材によって構成されており、これらの素材は以下の性質を有している。
上記研磨パッド13を構成する素材における、0.1mm圧縮時の圧縮応力を50~150gf/cm2の範囲とし、かつ圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を5~30の範囲とする。
さらに、研磨パッド13を構成する素材における損失係数tanδを0.150~0.420の範囲とし、特に上記損失係数tanδの範囲が初期荷重20g、歪み範囲1.0%、温度40℃、周波数60Hz、圧縮モードにおいて得られることがより好ましい。なお上記損失係数tanδとは、貯蔵弾性率(E’)および損失弾性率(E”)の比、E”/E’を示している。 As described above, thepolishing pad 13 of this embodiment is made of a material such as a nonwoven fabric impregnated with polyurethane resin or foamed polyurethane, and these materials have the following properties.
The material constituting thepolishing pad 13 has a compressive stress in the range of 50 to 150 gf / cm 2 when compressed to 0.1 mm, and a ratio of compressive stress (compressed stress at 0.5 mm compressed / 0.1 mm compressed). The compressive stress is in the range of 5-30.
Further, the loss coefficient tan δ in the material constituting thepolishing pad 13 is set in the range of 0.150 to 0.420. In particular, the range of the loss coefficient tan δ is the initial load 20 g, the strain range 1.0%, the temperature 40 ° C., and the frequency 60 Hz. More preferably, it is obtained in compressed mode. The loss coefficient tan δ represents the ratio of storage elastic modulus (E ′) and loss elastic modulus (E ″), E ″ / E ′.
上記研磨パッド13を構成する素材における、0.1mm圧縮時の圧縮応力を50~150gf/cm2の範囲とし、かつ圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を5~30の範囲とする。
さらに、研磨パッド13を構成する素材における損失係数tanδを0.150~0.420の範囲とし、特に上記損失係数tanδの範囲が初期荷重20g、歪み範囲1.0%、温度40℃、周波数60Hz、圧縮モードにおいて得られることがより好ましい。なお上記損失係数tanδとは、貯蔵弾性率(E’)および損失弾性率(E”)の比、E”/E’を示している。 As described above, the
The material constituting the
Further, the loss coefficient tan δ in the material constituting the
上記構成を有する研磨パッド13によれば、以下のような効果を得ることができる。
まず、研磨パッド13を構成する素材における、0.1mm圧縮時の圧縮応力は50~150gf/cm2が好ましく、60~150gf/cm2がより好ましい。前述の数値範囲であれば、研磨パッド13に沈み込んだ被研磨物1の凸状曲面部分1aに適切な応力を作用させられるので、高精度な鏡面仕上げ研磨を行うことができる。
0.1mm圧縮時の圧縮応力が50gf/cm2より小さい場合、被研磨物に加わる応力が小さすぎるため、十分に研磨加工を行うことが出来ず研磨ムラとなり、150gf/cm2より大きい場合、研磨負荷が大きくなりスクラッチを発生させやすくなるため好ましくない。
また、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は5~30が好ましく、5~20がより好ましい。被研磨物1の沈み込み量が変動しても、被研磨物1に対して安定して応力を作用させ続け、研磨ムラや未研磨部を低減することができる。
圧縮応力の比が5より小さいと微小な凹凸を研磨することが出来ず研磨ムラとなり、反対に30より大きいと安定した応力が被研磨物1に加わることが出来ず、研磨ムラが発生してしまう。
具体的に説明すると、研磨前の被研磨物1の凸状曲面部分1aには、前工程において予め粗研削加工だけが行われているか、または未加工であるため、その表面には研削痕やバリなどの微小な凹凸が残存しており、例えば0.4mm程度の表面粗さに仕上げられている。
研磨の際、研磨パッド13と被研磨物1とは相対的に移動していることから、上記凸状曲面部分1aの凹凸が研磨パッド13と被研磨物1との接触部分に差し掛かることで、被研磨物1の上記研磨パッド13の上記環状凹研磨部13bへの沈み込み量が変動する。
また、本実施例のように研磨パッド13を高速回転させると、駆動手段の作動等によって振動が大きくなるため、この振動によっても上記沈み込み量が変動することとなる。
このようにして凸状曲面部分1aの凹凸や振動によって沈み込み量が変動したとしても、本実施例の研磨パッド13の素材が上記性質を有していることから、被研磨物1に対して安定して応力を作用させ続けることができ、研磨ムラを低減するようになっている。 According to thepolishing pad 13 having the above configuration, the following effects can be obtained.
First, in the material constituting thepolishing pad 13, the compression stress at 0.1mm compression is preferably 50 ~ 150gf / cm 2, more preferably 60 ~ 150gf / cm 2. Within the above numerical range, an appropriate stress can be applied to the convex curved surface portion 1a of the workpiece 1 submerged in the polishing pad 13, so that highly accurate mirror finish polishing can be performed.
When the compressive stress at the time of 0.1 mm compression is less than 50 gf / cm 2 , the stress applied to the object to be polished is too small, so that sufficient polishing cannot be performed, resulting in uneven polishing, and when greater than 150 gf / cm 2 , This is not preferable because the polishing load increases and scratches are easily generated.
The ratio of compressive stress (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is preferably 5 to 30, and more preferably 5 to 20. Even if the sinking amount of the object to be polished 1 fluctuates, it is possible to stably apply stress to theobject 1 to be polished, and to reduce polishing unevenness and unpolished portions.
If the ratio of compressive stress is less than 5, minute irregularities cannot be polished, resulting in uneven polishing. On the other hand, if it is larger than 30, stable stress cannot be applied to theworkpiece 1 and uneven polishing occurs. End up.
More specifically, since the convexcurved surface portion 1a of the workpiece 1 before polishing is subjected only to rough grinding in advance in the previous step or is not yet processed, grinding marks or Fine irregularities such as burrs remain, and the surface roughness is, for example, about 0.4 mm.
Since thepolishing pad 13 and the workpiece 1 are relatively moved during polishing, the unevenness of the convex curved surface portion 1 a reaches the contact portion between the polishing pad 13 and the workpiece 1. The sinking amount of the object 1 to be polished into the annular concave polishing portion 13b varies.
Further, when thepolishing pad 13 is rotated at a high speed as in the present embodiment, the vibration increases due to the operation of the driving means and the like, and the amount of subsidence also varies due to this vibration.
Even if the sinking amount fluctuates due to the unevenness or vibration of the convexcurved surface portion 1a in this way, the material of the polishing pad 13 of the present example has the above-described properties. It is possible to keep the stress applied stably and reduce polishing unevenness.
まず、研磨パッド13を構成する素材における、0.1mm圧縮時の圧縮応力は50~150gf/cm2が好ましく、60~150gf/cm2がより好ましい。前述の数値範囲であれば、研磨パッド13に沈み込んだ被研磨物1の凸状曲面部分1aに適切な応力を作用させられるので、高精度な鏡面仕上げ研磨を行うことができる。
0.1mm圧縮時の圧縮応力が50gf/cm2より小さい場合、被研磨物に加わる応力が小さすぎるため、十分に研磨加工を行うことが出来ず研磨ムラとなり、150gf/cm2より大きい場合、研磨負荷が大きくなりスクラッチを発生させやすくなるため好ましくない。
また、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は5~30が好ましく、5~20がより好ましい。被研磨物1の沈み込み量が変動しても、被研磨物1に対して安定して応力を作用させ続け、研磨ムラや未研磨部を低減することができる。
圧縮応力の比が5より小さいと微小な凹凸を研磨することが出来ず研磨ムラとなり、反対に30より大きいと安定した応力が被研磨物1に加わることが出来ず、研磨ムラが発生してしまう。
具体的に説明すると、研磨前の被研磨物1の凸状曲面部分1aには、前工程において予め粗研削加工だけが行われているか、または未加工であるため、その表面には研削痕やバリなどの微小な凹凸が残存しており、例えば0.4mm程度の表面粗さに仕上げられている。
研磨の際、研磨パッド13と被研磨物1とは相対的に移動していることから、上記凸状曲面部分1aの凹凸が研磨パッド13と被研磨物1との接触部分に差し掛かることで、被研磨物1の上記研磨パッド13の上記環状凹研磨部13bへの沈み込み量が変動する。
また、本実施例のように研磨パッド13を高速回転させると、駆動手段の作動等によって振動が大きくなるため、この振動によっても上記沈み込み量が変動することとなる。
このようにして凸状曲面部分1aの凹凸や振動によって沈み込み量が変動したとしても、本実施例の研磨パッド13の素材が上記性質を有していることから、被研磨物1に対して安定して応力を作用させ続けることができ、研磨ムラを低減するようになっている。 According to the
First, in the material constituting the
When the compressive stress at the time of 0.1 mm compression is less than 50 gf / cm 2 , the stress applied to the object to be polished is too small, so that sufficient polishing cannot be performed, resulting in uneven polishing, and when greater than 150 gf / cm 2 , This is not preferable because the polishing load increases and scratches are easily generated.
The ratio of compressive stress (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is preferably 5 to 30, and more preferably 5 to 20. Even if the sinking amount of the object to be polished 1 fluctuates, it is possible to stably apply stress to the
If the ratio of compressive stress is less than 5, minute irregularities cannot be polished, resulting in uneven polishing. On the other hand, if it is larger than 30, stable stress cannot be applied to the
More specifically, since the convex
Since the
Further, when the
Even if the sinking amount fluctuates due to the unevenness or vibration of the convex
次に、本実施例の研磨パッド13を構成する素材の損失係数tanδは0.15~0.420が好ましく、0.350~0.420がより好ましい。tanδの値が前述の範囲であれば、研磨均一性に優れた研磨が可能となる。
具体的に説明すると、研磨パッド13は被研磨物1が環状凹研磨部13aに沈みこむ方向に対して垂直な軸を中心に回転しているため、被研磨物1における凸状曲面部分1aの頂部が過剰に研磨される傾向にある。
そこで、上記損失係数tanδの範囲を設定することで、被研磨物1が研磨パッド13に沈みこむ際における、被研磨物1から受ける応力を適度に吸収させ、これにより凸状曲面部分1a全体が均一に研磨するようにしている。
これに対し、損失係数tanδが0.150より小さい場合、研磨パッド13が変位を吸収できず、凸状曲面部分1aの頂部が過剰に研磨され、頂部より離れた箇所では未研磨部が発生したり、また凸状曲面部分1a全域に均等に応力が加わらないため研磨ムラが発生することとなる。
一方、損失係数tanδが0.420より大きい場合、研磨パッド13の粘性が大きくなり、研磨砥粒が研磨パッド13内に埋まり込みやすくなり、研削力が低下するため好ましくない。
そして、本実施例では、特に実際の研磨加工部の研磨熱温度、すなわち40℃において損失係数tanδの範囲を上記範囲とすることで、実際の研磨加工時における良好な研磨性能を得ることができる。 Next, the loss factor tan δ of the material constituting thepolishing pad 13 of this embodiment is preferably 0.15 to 0.420, more preferably 0.350 to 0.420. When the value of tan δ is in the above range, polishing with excellent polishing uniformity is possible.
More specifically, thepolishing pad 13 rotates about an axis perpendicular to the direction in which the workpiece 1 sinks into the annular concave polishing portion 13a. The top tends to be excessively polished.
Therefore, by setting the range of the loss factor tan δ, the stress received from theworkpiece 1 when the workpiece 1 sinks into the polishing pad 13 is appropriately absorbed, whereby the entire convex curved surface portion 1a is absorbed. Polish uniformly.
On the other hand, when the loss coefficient tan δ is smaller than 0.150, thepolishing pad 13 cannot absorb the displacement, the top of the convex curved surface portion 1a is excessively polished, and an unpolished portion is generated at a location away from the top. Moreover, since stress is not uniformly applied to the entire convex curved surface portion 1a, polishing unevenness occurs.
On the other hand, when the loss coefficient tan δ is larger than 0.420, the viscosity of thepolishing pad 13 is increased, the polishing grains are easily embedded in the polishing pad 13, and the grinding force is reduced.
In this embodiment, particularly, by setting the range of the loss factor tan δ to the above range at the actual polishing heat temperature of the polishing portion, that is, 40 ° C., good polishing performance at the time of actual polishing can be obtained. .
具体的に説明すると、研磨パッド13は被研磨物1が環状凹研磨部13aに沈みこむ方向に対して垂直な軸を中心に回転しているため、被研磨物1における凸状曲面部分1aの頂部が過剰に研磨される傾向にある。
そこで、上記損失係数tanδの範囲を設定することで、被研磨物1が研磨パッド13に沈みこむ際における、被研磨物1から受ける応力を適度に吸収させ、これにより凸状曲面部分1a全体が均一に研磨するようにしている。
これに対し、損失係数tanδが0.150より小さい場合、研磨パッド13が変位を吸収できず、凸状曲面部分1aの頂部が過剰に研磨され、頂部より離れた箇所では未研磨部が発生したり、また凸状曲面部分1a全域に均等に応力が加わらないため研磨ムラが発生することとなる。
一方、損失係数tanδが0.420より大きい場合、研磨パッド13の粘性が大きくなり、研磨砥粒が研磨パッド13内に埋まり込みやすくなり、研削力が低下するため好ましくない。
そして、本実施例では、特に実際の研磨加工部の研磨熱温度、すなわち40℃において損失係数tanδの範囲を上記範囲とすることで、実際の研磨加工時における良好な研磨性能を得ることができる。 Next, the loss factor tan δ of the material constituting the
More specifically, the
Therefore, by setting the range of the loss factor tan δ, the stress received from the
On the other hand, when the loss coefficient tan δ is smaller than 0.150, the
On the other hand, when the loss coefficient tan δ is larger than 0.420, the viscosity of the
In this embodiment, particularly, by setting the range of the loss factor tan δ to the above range at the actual polishing heat temperature of the polishing portion, that is, 40 ° C., good polishing performance at the time of actual polishing can be obtained. .
図5は、本発明にかかる発明品1~3および、比較のために用意した比較品1、2についての実験結果を示し、この実験では、これら発明品1~3および比較品1、2についての、0.1mm圧縮時の圧縮応力(gf/cm2)、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)、損失係数tanδ、目視による研磨ムラの有無、目視によるスクラッチの有無、目視による未研磨部の有無についてそれぞれ測定を行った。
以下、上記発明品1~3および比較品1、2を得るための手順について説明する。 FIG. 5 shows the experimental results of theinventive products 1 to 3 according to the present invention and the comparative products 1 and 2 prepared for comparison. In this experiment, the inventive products 1 to 3 and the comparative products 1 and 2 are shown. Compression stress (gf / cm 2 ) at 0.1 mm compression, ratio of compression stress (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression), loss factor tan δ, The presence / absence, the presence / absence of visual scratches, and the presence / absence of visual unpolished parts were measured.
The procedure for obtaining theinvention products 1 to 3 and the comparison products 1 and 2 will be described below.
以下、上記発明品1~3および比較品1、2を得るための手順について説明する。 FIG. 5 shows the experimental results of the
The procedure for obtaining the
まず、発明品1にかかる研磨パッドは発泡ポリウレタン製となっており、具体的には以下の製造過程により製造を行った。
まず、第1成分のプレポリマとして、2,4-TDIと数平均分子量約1000のPTMGを反応させることで得られたイソシアネート基含有ウレタンプレポリマ(288質量部)を50℃に加熱し減圧下で脱泡した。このプレポリマでは、イソシアネート含有量が7.7%であった。
また第2成分は、粗製MOCA(50質量部)、数平均分子量約1000のPTMG(50質量部)、水(0.52質量部)、触媒(0.3質量部)、シリコン系界面活性剤(0.3質量部)をそれぞれ添加し、50℃で攪拌混合した後、減圧下で脱泡した。
そして、これら第1成分:第2成分を質量比で100:43の割合で混合機に36kg/minの流量で供給し、併せて混合機の攪拌ローターに設けられたノズルより、空気を35L/minの流量で供給した。
続いて、得られた混合液を型枠(890mm×890mm)に注型し、硬化させた後、形成されたポリウレタン樹脂発泡体を枠から抜き出した。
最後に、この発泡体を9.0mmの厚さにスライスしてウレタンシートを作製し、これを外径40.0mmの円盤状に切り出すとともにその側面に半径3.5mmの半円状の環状凹研磨部13aを設け、環状凹研磨部13aに対応する上下2カ所の環状突起13bに半径2.5mmの半円状の切欠き部13dを平面視にして60°間隔、即ち各6カ所ずつ設け、また円盤中央部に研磨治具11に固定するための貫通孔を設けることで上記形状の研磨パッド13を得た。なお、切欠き部13dは環状突起13bの厚み方向上下とも平面視にて同じ位置に設けた。 First, the polishing pad according toInvention 1 was made of foamed polyurethane, and specifically manufactured by the following manufacturing process.
First, as a prepolymer of the first component, an isocyanate group-containing urethane prepolymer (288 parts by mass) obtained by reacting 2,4-TDI with PTMG having a number average molecular weight of about 1000 is heated to 50 ° C. under reduced pressure. Defoamed. This prepolymer had an isocyanate content of 7.7%.
The second component is crude MOCA (50 parts by mass), PTMG (50 parts by mass) having a number average molecular weight of about 1000, water (0.52 parts by mass), a catalyst (0.3 parts by mass), a silicon-based surfactant. (0.3 parts by mass) was added and stirred and mixed at 50 ° C., and then degassed under reduced pressure.
Then, the first component: second component is supplied to the mixer at a flow rate of 36 kg / min at a mass ratio of 100: 43, and air is supplied from the nozzle provided in the stirring rotor of the mixer to 35 L / It was supplied at a flow rate of min.
Subsequently, the obtained mixed liquid was poured into a mold (890 mm × 890 mm) and cured, and then the formed polyurethane resin foam was extracted from the frame.
Finally, this foam is sliced to a thickness of 9.0 mm to produce a urethane sheet, which is cut into a disk shape with an outer diameter of 40.0 mm and a semicircular annular recess with a radius of 3.5 mm on its side. A polishingportion 13a is provided, and semicircular cutout portions 13d having a radius of 2.5 mm are provided at two upper and lower annular projections 13b corresponding to the annular concave polishing portion 13a at intervals of 60 ° in plan view, that is, six locations each. In addition, a polishing pad 13 having the above shape was obtained by providing a through hole for fixing to the polishing jig 11 at the center of the disk. The notch 13d was provided at the same position in plan view both in the thickness direction of the annular protrusion 13b.
まず、第1成分のプレポリマとして、2,4-TDIと数平均分子量約1000のPTMGを反応させることで得られたイソシアネート基含有ウレタンプレポリマ(288質量部)を50℃に加熱し減圧下で脱泡した。このプレポリマでは、イソシアネート含有量が7.7%であった。
また第2成分は、粗製MOCA(50質量部)、数平均分子量約1000のPTMG(50質量部)、水(0.52質量部)、触媒(0.3質量部)、シリコン系界面活性剤(0.3質量部)をそれぞれ添加し、50℃で攪拌混合した後、減圧下で脱泡した。
そして、これら第1成分:第2成分を質量比で100:43の割合で混合機に36kg/minの流量で供給し、併せて混合機の攪拌ローターに設けられたノズルより、空気を35L/minの流量で供給した。
続いて、得られた混合液を型枠(890mm×890mm)に注型し、硬化させた後、形成されたポリウレタン樹脂発泡体を枠から抜き出した。
最後に、この発泡体を9.0mmの厚さにスライスしてウレタンシートを作製し、これを外径40.0mmの円盤状に切り出すとともにその側面に半径3.5mmの半円状の環状凹研磨部13aを設け、環状凹研磨部13aに対応する上下2カ所の環状突起13bに半径2.5mmの半円状の切欠き部13dを平面視にして60°間隔、即ち各6カ所ずつ設け、また円盤中央部に研磨治具11に固定するための貫通孔を設けることで上記形状の研磨パッド13を得た。なお、切欠き部13dは環状突起13bの厚み方向上下とも平面視にて同じ位置に設けた。 First, the polishing pad according to
First, as a prepolymer of the first component, an isocyanate group-containing urethane prepolymer (288 parts by mass) obtained by reacting 2,4-TDI with PTMG having a number average molecular weight of about 1000 is heated to 50 ° C. under reduced pressure. Defoamed. This prepolymer had an isocyanate content of 7.7%.
The second component is crude MOCA (50 parts by mass), PTMG (50 parts by mass) having a number average molecular weight of about 1000, water (0.52 parts by mass), a catalyst (0.3 parts by mass), a silicon-based surfactant. (0.3 parts by mass) was added and stirred and mixed at 50 ° C., and then degassed under reduced pressure.
Then, the first component: second component is supplied to the mixer at a flow rate of 36 kg / min at a mass ratio of 100: 43, and air is supplied from the nozzle provided in the stirring rotor of the mixer to 35 L / It was supplied at a flow rate of min.
Subsequently, the obtained mixed liquid was poured into a mold (890 mm × 890 mm) and cured, and then the formed polyurethane resin foam was extracted from the frame.
Finally, this foam is sliced to a thickness of 9.0 mm to produce a urethane sheet, which is cut into a disk shape with an outer diameter of 40.0 mm and a semicircular annular recess with a radius of 3.5 mm on its side. A polishing
発明品2にかかる研磨パッド13は、ポリウレタン樹脂を含浸させた不織布製となっており、具体的には以下の製造過程により製造を行った。
まず、100%モジュラスが6MPaであるポリエーテル系ポリウレタン樹脂を30質量%含むDMF溶液53質量部に、更に溶媒としてDMF47質量部を加えた樹脂溶液を調製した。
なお、モジュラスとは、樹脂の反発力を表す指標であり、無発泡の樹脂シートを100%伸ばしたとき(元の長さの2倍に伸ばしたとき)に掛かる荷重を伸長前の断面積で割った値を100%モジュラスと呼ぶ。この値が高い程、変形しにくい樹脂である事を意味する。
一方で、シート状の繊維基材を準備し、当該繊維基材は、繊維材料がPETである不織布であり、繊度及び繊維長が2.2dtex×51mm、3.3dtex×51mmの質量比1:2の混合物で、厚さが12mm、目付けは1500g/m2であった。
続いて、上記調整した樹脂溶液に上記繊維基材を浸漬した後、1対のローラ間を加圧可能なマングルローラを用いて樹脂溶液を絞り落として、繊維基材に樹脂溶液を略均一に含浸させた。
さらに、上記樹脂溶液を含浸した繊維基材を室温の水からなる凝固液中に浸漬して、ポリエーテル系ポリウレタン樹脂を凝固再生させて前駆体シートを得、当該前駆体シートを凝固液から取り出して水からなる洗浄液に浸漬してDMFを除去するとともに、さらに乾燥させてから表面のスキン層をスライスにより除去し、厚さ9.0mmの研磨パッド用シートを得た。次いでこれを外径40.0mmの円盤状に切り出すとともにその側面に半径3.5mmの半円状の環状凹研磨部13aを設け、環状凹研磨部13aに対応する2カ所の環状突起13bに半径2.5mmの半円状の切欠き部13dを平面視にして60°間隔、即ち各6カ所ずつ設け、また円盤中央部に研磨治具11に固定するための貫通孔を設けることで、上記形状の研磨パッド13を得た。なお、切欠き部13dは環状突起13bの厚み方向上下とも平面視にて同じ位置に設けた。 Thepolishing pad 13 according to the invention product 2 is made of a nonwoven fabric impregnated with a polyurethane resin, and specifically manufactured by the following manufacturing process.
First, a resin solution was prepared by adding 53 parts by mass of DMF as a solvent to 53 parts by mass of a DMF solution containing 30% by mass of a polyether-based polyurethane resin having a 100% modulus of 6 MPa.
The modulus is an index representing the repulsive force of the resin, and the load applied when the non-foamed resin sheet is stretched 100% (when stretched to twice the original length) is the cross-sectional area before stretching. The divided value is called 100% modulus. A higher value means that the resin is more difficult to deform.
On the other hand, a sheet-like fiber base material is prepared, and the fiber base material is a non-woven fabric whose fiber material is PET, and the fineness and fiber length are 2.2 dtex × 51 mm, 3.3 dtex × 51 mm mass ratio 1: 2 and having a thickness of 12 mm and a basis weight of 1500 g / m 2 .
Subsequently, after the fiber base material is immersed in the adjusted resin solution, the resin solution is squeezed out using a mangle roller capable of pressurizing between a pair of rollers, so that the resin solution is substantially uniformly applied to the fiber base material. Impregnated.
Further, the fibrous base material impregnated with the resin solution is immersed in a coagulating liquid composed of water at room temperature, the polyether polyurethane resin is coagulated and regenerated to obtain a precursor sheet, and the precursor sheet is taken out from the coagulating liquid. Then, the DMF was removed by dipping in a cleaning solution made of water, and after further drying, the skin layer on the surface was removed by slicing to obtain a 9.0 mm thick polishing pad sheet. Next, this is cut out into a disk shape having an outer diameter of 40.0 mm, and a semicircular annularconcave polishing portion 13 a having a radius of 3.5 mm is provided on the side surface, and the two annular projections 13 b corresponding to the annular concave polishing portion 13 a have a radius. The 2.5 mm semi-circular cutouts 13d are provided at intervals of 60 ° in plan view, that is, at six points each, and by providing a through hole for fixing to the polishing jig 11 at the center of the disk. A polishing pad 13 having a shape was obtained. The notch 13d was provided at the same position in plan view both in the thickness direction of the annular protrusion 13b.
まず、100%モジュラスが6MPaであるポリエーテル系ポリウレタン樹脂を30質量%含むDMF溶液53質量部に、更に溶媒としてDMF47質量部を加えた樹脂溶液を調製した。
なお、モジュラスとは、樹脂の反発力を表す指標であり、無発泡の樹脂シートを100%伸ばしたとき(元の長さの2倍に伸ばしたとき)に掛かる荷重を伸長前の断面積で割った値を100%モジュラスと呼ぶ。この値が高い程、変形しにくい樹脂である事を意味する。
一方で、シート状の繊維基材を準備し、当該繊維基材は、繊維材料がPETである不織布であり、繊度及び繊維長が2.2dtex×51mm、3.3dtex×51mmの質量比1:2の混合物で、厚さが12mm、目付けは1500g/m2であった。
続いて、上記調整した樹脂溶液に上記繊維基材を浸漬した後、1対のローラ間を加圧可能なマングルローラを用いて樹脂溶液を絞り落として、繊維基材に樹脂溶液を略均一に含浸させた。
さらに、上記樹脂溶液を含浸した繊維基材を室温の水からなる凝固液中に浸漬して、ポリエーテル系ポリウレタン樹脂を凝固再生させて前駆体シートを得、当該前駆体シートを凝固液から取り出して水からなる洗浄液に浸漬してDMFを除去するとともに、さらに乾燥させてから表面のスキン層をスライスにより除去し、厚さ9.0mmの研磨パッド用シートを得た。次いでこれを外径40.0mmの円盤状に切り出すとともにその側面に半径3.5mmの半円状の環状凹研磨部13aを設け、環状凹研磨部13aに対応する2カ所の環状突起13bに半径2.5mmの半円状の切欠き部13dを平面視にして60°間隔、即ち各6カ所ずつ設け、また円盤中央部に研磨治具11に固定するための貫通孔を設けることで、上記形状の研磨パッド13を得た。なお、切欠き部13dは環状突起13bの厚み方向上下とも平面視にて同じ位置に設けた。 The
First, a resin solution was prepared by adding 53 parts by mass of DMF as a solvent to 53 parts by mass of a DMF solution containing 30% by mass of a polyether-based polyurethane resin having a 100% modulus of 6 MPa.
The modulus is an index representing the repulsive force of the resin, and the load applied when the non-foamed resin sheet is stretched 100% (when stretched to twice the original length) is the cross-sectional area before stretching. The divided value is called 100% modulus. A higher value means that the resin is more difficult to deform.
On the other hand, a sheet-like fiber base material is prepared, and the fiber base material is a non-woven fabric whose fiber material is PET, and the fineness and fiber length are 2.2 dtex × 51 mm, 3.3 dtex × 51 mm mass ratio 1: 2 and having a thickness of 12 mm and a basis weight of 1500 g / m 2 .
Subsequently, after the fiber base material is immersed in the adjusted resin solution, the resin solution is squeezed out using a mangle roller capable of pressurizing between a pair of rollers, so that the resin solution is substantially uniformly applied to the fiber base material. Impregnated.
Further, the fibrous base material impregnated with the resin solution is immersed in a coagulating liquid composed of water at room temperature, the polyether polyurethane resin is coagulated and regenerated to obtain a precursor sheet, and the precursor sheet is taken out from the coagulating liquid. Then, the DMF was removed by dipping in a cleaning solution made of water, and after further drying, the skin layer on the surface was removed by slicing to obtain a 9.0 mm thick polishing pad sheet. Next, this is cut out into a disk shape having an outer diameter of 40.0 mm, and a semicircular annular
次に、発明品3にかかる研磨パッド13は、上記発明品2に対して、樹脂の100%モジュラスを9MPaに異ならせ、それ以外は同様の工程により研磨パッド13を得た。
Next, the polishing pad 13 according to the inventive product 3 was different from the inventive product 2 in that the 100% modulus of the resin was changed to 9 MPa, and the polishing pad 13 was obtained by the same process except that.
そして、比較品1は、プレポリマのイソシアネート基含有量を6.3%に変更した以外、発明品1と同様の方法で研磨パッド13を得た。
また比較品2は、樹脂の100%モジュラスを34MPaに変更した以外、発明品2と同様の方法で研磨パッド13を得た。 And thecomparative product 1 obtained the polishing pad 13 by the method similar to the invention product 1 except having changed the isocyanate group content of the prepolymer to 6.3%.
Moreover, thecomparative product 2 obtained the polishing pad 13 by the method similar to the invention product 2 except having changed the 100% modulus of resin into 34 MPa.
また比較品2は、樹脂の100%モジュラスを34MPaに変更した以外、発明品2と同様の方法で研磨パッド13を得た。 And the
Moreover, the
上記研磨パッド13の圧縮応力の測定は、まず研磨パッド13を構成する素材を、12mm×12mm×15mmに切り出し、当該試験片を試験機(島津製作所製、マイクロオートグラフ、MST-I)の台上の中央に圧縮方向が15mmとなるよう設置し、さらに直径20mmの円形状の加圧板(平板)を0.1mm/minの速さで、0~8000gf/cm2の荷重を加えた。なお、試料片の圧縮方向の厚みが1.5cmに満たない場合、複数枚試験片を重ね合計で15mmの厚みとなるようにして測定した。
そして、加圧板が試験片に0.1mm沈みこんだ際と、0.5mm沈み込んだ際とにおける圧縮応力を求め、さらに算出した圧縮応力から圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を算出した。
その結果、発明品1における0.1mm圧縮時の圧縮応力は64gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は8.0であった。
発明品2における0.1mm圧縮時の圧縮応力は104gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は17.7であった。
発明品3における0.1mm圧縮時の圧縮応力は128gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は23.4であった。
比較品1における0.1mm圧縮時の圧縮応力は39gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は4.8であった。
比較品2における0.1mm圧縮時の圧縮応力は192gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は32.1であった。 In measuring the compressive stress of thepolishing pad 13, the material constituting the polishing pad 13 is first cut into 12 mm × 12 mm × 15 mm, and the test piece is mounted on a test machine (manufactured by Shimadzu Corporation, Micro Autograph, MST-I). In the upper center, the compression direction was set to 15 mm, and a circular pressure plate (flat plate) having a diameter of 20 mm was applied with a load of 0 to 8000 gf / cm 2 at a speed of 0.1 mm / min. In addition, when the thickness of the sample piece in the compression direction was less than 1.5 cm, a plurality of test pieces were stacked so that the total thickness was 15 mm.
Then, the compressive stress when the pressure plate sinks 0.1 mm into the test piece and when the press plate sinks 0.5 mm is obtained, and the ratio of the compressive stress (compressive stress at the time of 0.5 mm compression) is calculated from the calculated compressive stress. / Compressive stress at 0.1 mm compression).
As a result, the compression stress at 0.1 mm compression inInvention 1 was 64 gf / cm 2 , and the compression stress ratio (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression) was 8.0. Met.
Inventive product 2 had a compressive stress of 104 gf / cm 2 at the time of 0.1 mm compression, and the ratio of compressive stress (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) was 17.7. .
Inventive product 3 had a compression stress of 128 gf / cm 2 at 0.1 mm compression, and the compression stress ratio (compression stress at 0.5 mm compression / compression stress at 0.1 mm compression) was 23.4. .
In thecomparative product 1, the compression stress at the time of 0.1 mm compression was 39 gf / cm 2 , and the compression stress ratio (compression stress at the time of 0.5 mm compression / compression stress at the time of 0.1 mm compression) was 4.8. .
In thecomparative product 2, the compression stress at the time of 0.1 mm compression was 192 gf / cm 2 , and the ratio of the compression stress (compression stress at the time of 0.5 mm compression / compression stress at the time of 0.1 mm compression) was 32.1. .
そして、加圧板が試験片に0.1mm沈みこんだ際と、0.5mm沈み込んだ際とにおける圧縮応力を求め、さらに算出した圧縮応力から圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)を算出した。
その結果、発明品1における0.1mm圧縮時の圧縮応力は64gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は8.0であった。
発明品2における0.1mm圧縮時の圧縮応力は104gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は17.7であった。
発明品3における0.1mm圧縮時の圧縮応力は128gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は23.4であった。
比較品1における0.1mm圧縮時の圧縮応力は39gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は4.8であった。
比較品2における0.1mm圧縮時の圧縮応力は192gf/cm2であり、圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)は32.1であった。 In measuring the compressive stress of the
Then, the compressive stress when the pressure plate sinks 0.1 mm into the test piece and when the press plate sinks 0.5 mm is obtained, and the ratio of the compressive stress (compressive stress at the time of 0.5 mm compression) is calculated from the calculated compressive stress. / Compressive stress at 0.1 mm compression).
As a result, the compression stress at 0.1 mm compression in
In the
In the
上記研磨パッド13の損失係数(tanδ)は、動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン株式会社製、RSA-III)を使用して測定した。
具体的には、発明品および比較品の研磨パッド13から5mm×5mmの試験片を採取し、この試験片を動的粘弾性測定装置を使用して、初期荷重20g、歪範囲1.0%、温度40℃での周波数1~70Hz範囲において徐々に周波数を変化させたときの貯蔵弾性率E’および損失弾性率E”を圧縮モードにより測定し、さらにこれらの値から60Hz時の損失係数tanδを算出した。
上記設定した周波数については、研磨パッド13の回転数(3000rpm)に対応して60Hzとした。
その結果、発明品1の損失係数tanδは0.390、発明品2は0.153、発明品3は0.169であった。
これに対し、比較品1の損失係数tanδは0.262、比較品2は0.147であった。 The loss coefficient (tan δ) of thepolishing pad 13 was measured using a dynamic viscoelasticity measuring apparatus (RSA-III, manufactured by TA Instruments Japan Co., Ltd.).
Specifically, a test piece of 5 mm × 5 mm was taken from thepolishing pad 13 of the invention and the comparative product, and this test piece was subjected to an initial load of 20 g and a strain range of 1.0% using a dynamic viscoelasticity measuring device. The storage elastic modulus E ′ and the loss elastic modulus E ″ when the frequency is gradually changed in the frequency range of 1 to 70 Hz at a temperature of 40 ° C. are measured by the compression mode, and the loss coefficient tan δ at 60 Hz is further calculated from these values. Was calculated.
The set frequency was set to 60 Hz corresponding to the number of rotations of the polishing pad 13 (3000 rpm).
As a result, the loss factor tan δ ofInvention 1 was 0.390, Invention 2 was 0.153, and Invention 3 was 0.169.
On the other hand, the loss factor tan δ of thecomparative product 1 was 0.262, and the comparative product 2 was 0.147.
具体的には、発明品および比較品の研磨パッド13から5mm×5mmの試験片を採取し、この試験片を動的粘弾性測定装置を使用して、初期荷重20g、歪範囲1.0%、温度40℃での周波数1~70Hz範囲において徐々に周波数を変化させたときの貯蔵弾性率E’および損失弾性率E”を圧縮モードにより測定し、さらにこれらの値から60Hz時の損失係数tanδを算出した。
上記設定した周波数については、研磨パッド13の回転数(3000rpm)に対応して60Hzとした。
その結果、発明品1の損失係数tanδは0.390、発明品2は0.153、発明品3は0.169であった。
これに対し、比較品1の損失係数tanδは0.262、比較品2は0.147であった。 The loss coefficient (tan δ) of the
Specifically, a test piece of 5 mm × 5 mm was taken from the
The set frequency was set to 60 Hz corresponding to the number of rotations of the polishing pad 13 (3000 rpm).
As a result, the loss factor tan δ of
On the other hand, the loss factor tan δ of the
そして研磨パッド13の研磨ムラの評価、スクラッチの評価、および未研磨部の有無の評価については、以下の研磨条件の下で、実際に研磨を行った被研磨物1を観察して行った。
被研磨物1としては外周に研削された曲面を有するステンレス板を用い、スラリーとしてpH10の100%アルミナスラリーを90cc/minの流量で被研磨物1と研磨パッド13との間に供給するとともに、上記研磨パッド13を回転数3000rpmで回転させながら、被研磨物1の外周を80mm/分の速度で移動させ研磨を行った。なお、研磨中は常時研磨パッド13を被研磨物に0.1mm程度沈みこませ研磨を行った。
そして、研磨が終了した被研磨物1について、研磨ムラについて目視による確認を行った。具体的には、光沢度合いが被研磨物1の被研磨面上の場所により差がない場合を○とし、光沢度が場所により違いが見えた場合に×と評価した。
その結果、発明品1~3については評価が〇であり、比較品1、2については評価が×となる結果が得られた。
一方、スクラッチについては、研磨後の被研磨物1に対して目視にて確認した。線状のキズが1つも確認されなかった場合を○、1つ以上確認された場合を×と評価した。
また、未研磨部の有無については、被研磨物1における凸状曲面部分1aと平面部分1bとの境界近傍において、研磨出来ずに霞がかかったように見える部分を未研磨部として目視による確認を行い、未研磨部を確認できなかったものを「なし」、確認されたものを「あり」とした。
その結果、発明品1~3については研磨ムラ、スクラッチ、未研磨部についての評価が〇および「なし」の良好な結果であり、これに対し比較品1は研磨ムラおよびスクラッチについての評価が〇であったものの、未研磨部についての評価が「あり」であり、比較品2については研磨ムラ、スクラッチ、未研磨部についての評価がともに×および「あり」となる不良な結果が得られた。 The evaluation of polishing unevenness of thepolishing pad 13, the evaluation of scratches, and the evaluation of the presence or absence of unpolished portions were performed by observing the polished object 1 that was actually polished under the following polishing conditions.
As the object to be polished 1, a stainless steel plate having a curved surface ground on the outer periphery is used, and a 100% alumina slurry having a pH of 10 is supplied as a slurry between the object to be polished 1 and thepolishing pad 13 at a flow rate of 90 cc / min. While the polishing pad 13 was rotated at a rotational speed of 3000 rpm, the outer periphery of the workpiece 1 was moved at a speed of 80 mm / min for polishing. During polishing, the polishing pad 13 was always submerged in the object to be polished by about 0.1 mm for polishing.
And about the to-be-polished object 1 which grinding | polishing was complete | finished, the visual confirmation was performed about grinding | polishing unevenness. Specifically, the case where the degree of gloss was not different depending on the location on the surface of the object 1 to be polished was evaluated as ◯, and the case where the difference was seen in the gloss level was evaluated as x.
As a result, theinvention products 1 to 3 were evaluated as “good”, and the comparative products 1 and 2 were evaluated as “x”.
On the other hand, the scratch was visually confirmed with respect to thepolished object 1 after polishing. The case where no linear flaw was confirmed was evaluated as ◯, and the case where one or more flaws were confirmed was evaluated as x.
Further, the presence or absence of an unpolished portion is visually confirmed as an unpolished portion in the vicinity of the boundary between the convexcurved surface portion 1a and the flat surface portion 1b of the workpiece 1 that is not polished and appears wrinkled. The case where the unpolished part could not be confirmed was designated as “none”, and the confirmed part was designated as “present”.
As a result, theinventive products 1 to 3 were evaluated as “good” and “none” for polishing unevenness, scratches, and unpolished portions, while the comparative product 1 was evaluated as “good” for polishing unevenness and scratches. However, the evaluation for the unpolished part was “Yes”, and the comparative product 2 was evaluated as “Poor” and “Poor” for the polishing unevenness, scratch, and unpolished part. .
被研磨物1としては外周に研削された曲面を有するステンレス板を用い、スラリーとしてpH10の100%アルミナスラリーを90cc/minの流量で被研磨物1と研磨パッド13との間に供給するとともに、上記研磨パッド13を回転数3000rpmで回転させながら、被研磨物1の外周を80mm/分の速度で移動させ研磨を行った。なお、研磨中は常時研磨パッド13を被研磨物に0.1mm程度沈みこませ研磨を行った。
そして、研磨が終了した被研磨物1について、研磨ムラについて目視による確認を行った。具体的には、光沢度合いが被研磨物1の被研磨面上の場所により差がない場合を○とし、光沢度が場所により違いが見えた場合に×と評価した。
その結果、発明品1~3については評価が〇であり、比較品1、2については評価が×となる結果が得られた。
一方、スクラッチについては、研磨後の被研磨物1に対して目視にて確認した。線状のキズが1つも確認されなかった場合を○、1つ以上確認された場合を×と評価した。
また、未研磨部の有無については、被研磨物1における凸状曲面部分1aと平面部分1bとの境界近傍において、研磨出来ずに霞がかかったように見える部分を未研磨部として目視による確認を行い、未研磨部を確認できなかったものを「なし」、確認されたものを「あり」とした。
その結果、発明品1~3については研磨ムラ、スクラッチ、未研磨部についての評価が〇および「なし」の良好な結果であり、これに対し比較品1は研磨ムラおよびスクラッチについての評価が〇であったものの、未研磨部についての評価が「あり」であり、比較品2については研磨ムラ、スクラッチ、未研磨部についての評価がともに×および「あり」となる不良な結果が得られた。 The evaluation of polishing unevenness of the
As the object to be polished 1, a stainless steel plate having a curved surface ground on the outer periphery is used, and a 100% alumina slurry having a pH of 10 is supplied as a slurry between the object to be polished 1 and the
And about the to-
As a result, the
On the other hand, the scratch was visually confirmed with respect to the
Further, the presence or absence of an unpolished portion is visually confirmed as an unpolished portion in the vicinity of the boundary between the convex
As a result, the
1 被研磨物 1a 凸状曲面部分
2 研磨装置 13 研磨パッド
13a 環状凹研磨部 13b 環状突起
13d 切欠き部 DESCRIPTION OFSYMBOLS 1 To-be-polished object 1a Convex-curved surface part 2 Polishing apparatus 13 Polishing pad 13a Annular concave polishing part 13b Annular protrusion 13d Notch
2 研磨装置 13 研磨パッド
13a 環状凹研磨部 13b 環状突起
13d 切欠き部 DESCRIPTION OF
Claims (5)
- 凸状曲面部分を有する被研磨物の前記凸状曲面部分を研磨するための研磨パッドであって、円盤状で厚みを有する弾性体の側面に、該円盤の円の中心を軸に円周方向に回転駆動させながら被研磨物の凸状曲面部分と接触させる環状凹研磨部を配し、該環状凹研磨部を構成する弾性体の0.1mm圧縮時の圧縮応力が50~150gf/cm2の範囲、かつ圧縮応力の比(0.5mm圧縮時の圧縮応力/0.1mm圧縮時の圧縮応力)が5~30の範囲であることを特徴とする研磨パッド。 A polishing pad for polishing the convex curved surface portion of an object to be polished having a convex curved surface portion, on a side surface of an elastic body having a disk shape and a thickness, and a circumferential direction about the center of the circle of the disk An annular concave polishing portion that is brought into contact with the convex curved surface portion of the workpiece while being rotationally driven is arranged, and the compressive stress at the time of 0.1 mm compression of the elastic body constituting the annular concave polishing portion is 50 to 150 gf / cm 2. And a ratio of compressive stress (compressive stress at 0.5 mm compression / compressive stress at 0.1 mm compression) is in the range of 5-30.
- 上記環状凹研磨部を構成する弾性体の、初期荷重20g、歪み範囲1.0%、温度40℃、周波数60Hz、圧縮モードで測定した際の損失係数tanδが0.150~0.420の範囲であることを特徴とする請求項1に記載の研磨パッド。 The elastic body constituting the annular concave polished portion has an initial load of 20 g, a strain range of 1.0%, a temperature of 40 ° C., a frequency of 60 Hz, and a loss coefficient tan δ of 0.150 to 0.420 when measured in a compression mode. The polishing pad according to claim 1, wherein
- 上記環状凹研磨部表面に開孔が形成されていることを特徴とする請求項1または請求項2のいずれかに記載の研磨パッド。 3. The polishing pad according to claim 1, wherein an opening is formed in the surface of the annular concave polishing portion.
- 上記環状凹研磨部は、被研磨物の上記凸状曲面部分より大径であり、上記被研磨物の頂点と上記環状凹研磨部の底点を接触させたとき、上記環状凹研磨部の厚み方向両端部に位置する環状突起は、被研磨物の凸状曲面部分に隣接する平面部分より離隔しており、
上記被研磨物が上記環状凹研磨部に研磨時の押圧力によって沈み込み当該環状凹研磨部が変形することにより、上記環状突起が上記被研磨物における上記平面部分に密着することを特徴とする請求項1ないし請求項3のいずれかに記載の研磨パッド。 The annular concave polishing portion is larger in diameter than the convex curved surface portion of the object to be polished, and when the vertex of the object to be polished and the bottom of the annular concave polishing portion are brought into contact, the thickness of the annular concave polishing portion The annular projections located at both ends in the direction are separated from the plane portion adjacent to the convex curved portion of the object to be polished,
The object to be polished sinks into the annular concave polishing part by a pressing force during polishing, and the annular concave polishing part is deformed, whereby the annular protrusion is in close contact with the planar portion of the object to be polished. The polishing pad according to any one of claims 1 to 3. - 上記環状突起には、厚み方向両端部の少なくともいずれか一方の円周方向に沿って所定の間隔で切欠き部を配することを特徴とする請求項1ないし請求項4のいずれかに記載の研磨パッド。 The notch part is distribute | arranged to the said cyclic | annular protrusion at predetermined intervals along the circumferential direction of at least any one of the thickness direction both ends, The Claim 1 thru | or 4 characterized by the above-mentioned. Polishing pad.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167030980A KR102383987B1 (en) | 2014-04-23 | 2015-04-07 | Abrasive pad |
CN201580020884.XA CN106232296B (en) | 2014-04-23 | 2015-04-07 | Grinding pad |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-089377 | 2014-04-23 | ||
JP2014089377A JP6292397B2 (en) | 2014-04-23 | 2014-04-23 | Polishing pad |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015163136A1 true WO2015163136A1 (en) | 2015-10-29 |
Family
ID=54332303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060803 WO2015163136A1 (en) | 2014-04-23 | 2015-04-07 | Abrasive pad |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6292397B2 (en) |
KR (1) | KR102383987B1 (en) |
CN (1) | CN106232296B (en) |
WO (1) | WO2015163136A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113084598B (en) * | 2021-04-02 | 2022-04-05 | 杭州中欣晶圆半导体股份有限公司 | Cost-reducing and efficiency-improving silicon wafer edge polishing process |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08197400A (en) * | 1995-01-25 | 1996-08-06 | Sumitomo Sitix Corp | Chamfered part polishing method for semiconductor wafer |
JP2005014188A (en) * | 2003-06-27 | 2005-01-20 | Toyo Ink Mfg Co Ltd | Polishing pad laminated body |
JP2005305591A (en) * | 2004-04-21 | 2005-11-04 | Naoetsu Electronics Co Ltd | Method of manufacturing silicon wafer |
JP2007005661A (en) * | 2005-06-24 | 2007-01-11 | Ses Co Ltd | Bevel polishing method and bevel polisher |
JP2009214205A (en) * | 2008-03-07 | 2009-09-24 | Teijin Cordley Ltd | Polishing cloth |
JP2013082029A (en) * | 2011-10-07 | 2013-05-09 | Sekisui Chem Co Ltd | Cushion material for polishing |
JP2013089767A (en) * | 2011-10-18 | 2013-05-13 | Fujibo Holdings Inc | Abrasive pad and manufacturing method therefor |
WO2015020082A1 (en) * | 2013-08-09 | 2015-02-12 | 株式会社 フジミインコーポレーテッド | Polishing tool and processing method for member |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY125707A (en) * | 1994-10-26 | 2006-08-30 | Nippon Sheet Glass Co Ltd | Method of finishing edge of sheet glass, heat-tempered sheet grass using the method, and fire-resistant construction material using the heat-tempered sheet grass |
JPH11238768A (en) * | 1998-02-20 | 1999-08-31 | Japan Electronic Materials Corp | Probe end cleaning sheet |
EP2135707A4 (en) * | 2007-03-20 | 2013-10-09 | Kuraray Co | Cushion for polishing pad and polishing pad using the cushion |
US9707663B2 (en) * | 2011-02-28 | 2017-07-18 | Toray Industries, Inc. | Polishing pad |
JP5789634B2 (en) * | 2012-05-14 | 2015-10-07 | 株式会社荏原製作所 | Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus |
-
2014
- 2014-04-23 JP JP2014089377A patent/JP6292397B2/en active Active
-
2015
- 2015-04-07 KR KR1020167030980A patent/KR102383987B1/en active IP Right Grant
- 2015-04-07 CN CN201580020884.XA patent/CN106232296B/en active Active
- 2015-04-07 WO PCT/JP2015/060803 patent/WO2015163136A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08197400A (en) * | 1995-01-25 | 1996-08-06 | Sumitomo Sitix Corp | Chamfered part polishing method for semiconductor wafer |
JP2005014188A (en) * | 2003-06-27 | 2005-01-20 | Toyo Ink Mfg Co Ltd | Polishing pad laminated body |
JP2005305591A (en) * | 2004-04-21 | 2005-11-04 | Naoetsu Electronics Co Ltd | Method of manufacturing silicon wafer |
JP2007005661A (en) * | 2005-06-24 | 2007-01-11 | Ses Co Ltd | Bevel polishing method and bevel polisher |
JP2009214205A (en) * | 2008-03-07 | 2009-09-24 | Teijin Cordley Ltd | Polishing cloth |
JP2013082029A (en) * | 2011-10-07 | 2013-05-09 | Sekisui Chem Co Ltd | Cushion material for polishing |
JP2013089767A (en) * | 2011-10-18 | 2013-05-13 | Fujibo Holdings Inc | Abrasive pad and manufacturing method therefor |
WO2015020082A1 (en) * | 2013-08-09 | 2015-02-12 | 株式会社 フジミインコーポレーテッド | Polishing tool and processing method for member |
Also Published As
Publication number | Publication date |
---|---|
CN106232296A (en) | 2016-12-14 |
KR102383987B1 (en) | 2022-04-08 |
JP2015208782A (en) | 2015-11-24 |
KR20160148565A (en) | 2016-12-26 |
CN106232296B (en) | 2018-10-19 |
JP6292397B2 (en) | 2018-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI551395B (en) | Method of manufacturing chemical mechanical polishing layers | |
JP6290004B2 (en) | Soft and conditionable chemical mechanical window polishing pad | |
JP5254729B2 (en) | Polishing pad | |
JPWO2015002199A1 (en) | Polishing pad and manufacturing method thereof | |
KR102046662B1 (en) | Rectangular mold-forming substrate | |
JP5254727B2 (en) | Polishing pad | |
JP6536839B2 (en) | Polishing brush | |
JP2014233833A (en) | Chemical mechanical polishing pad stack which is soft and capable of being conditioned | |
WO2003038882A1 (en) | Method and pad for polishing wafer | |
JP4986129B2 (en) | Polishing pad | |
JP2011235389A (en) | Polishing pad and method for manufacturing glass substrate | |
TW201628787A (en) | Circular polishing pad, and semiconductor device manufacturing method | |
JP6178191B2 (en) | Polishing pad | |
WO2001078125A1 (en) | Method for producing semiconductor wafer and semiconductor wafer | |
JP6292397B2 (en) | Polishing pad | |
JP2006062059A (en) | Holding pad and manufacturing method of holding pad | |
JP5275012B2 (en) | Polishing pad and manufacturing method thereof | |
JP4237800B2 (en) | Polishing pad | |
TW202228917A (en) | Polishing pad and method for manufacturing polished product | |
JP5465578B2 (en) | Polishing pad, method for manufacturing the same, and method for manufacturing a semiconductor device | |
JP2017052078A (en) | Chemical mechanical polishing pad and manufacturing method for the polishing pad | |
JP5324962B2 (en) | Polishing pad | |
JP2005329491A (en) | Abrasive cloth for finishing polishing | |
JP2005335016A (en) | Dressing plate for abrasive cloth, dressing method for abrasive cloth, and workpiece polishing method | |
JP7502593B2 (en) | Method for manufacturing polishing pad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15782267 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167030980 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15782267 Country of ref document: EP Kind code of ref document: A1 |