[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015163076A1 - 銀粒子塗料組成物 - Google Patents

銀粒子塗料組成物 Download PDF

Info

Publication number
WO2015163076A1
WO2015163076A1 PCT/JP2015/059000 JP2015059000W WO2015163076A1 WO 2015163076 A1 WO2015163076 A1 WO 2015163076A1 JP 2015059000 W JP2015059000 W JP 2015059000W WO 2015163076 A1 WO2015163076 A1 WO 2015163076A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
aliphatic hydrocarbon
coating composition
particle coating
monoamine
Prior art date
Application number
PCT/JP2015/059000
Other languages
English (en)
French (fr)
Inventor
宏禎 小妻
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201580021982.5A priority Critical patent/CN106232268B/zh
Priority to JP2016514827A priority patent/JPWO2015163076A1/ja
Priority to EP15782582.9A priority patent/EP3135405B1/en
Priority to KR1020167031823A priority patent/KR102321619B1/ko
Priority to US15/306,403 priority patent/US20170043396A1/en
Publication of WO2015163076A1 publication Critical patent/WO2015163076A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles

Definitions

  • the present invention relates to a silver particle-containing coating composition.
  • the silver particle coating composition of the present invention is suitable for intaglio offset printing applications. Moreover, this invention is applied also to the metal particle containing coating composition containing metals other than silver.
  • Silver nanoparticles can be sintered even at low temperatures. Utilizing this property, in the manufacture of various electronic devices, a silver coating composition containing silver nanoparticles is used to form electrodes and conductive circuit patterns on a substrate. Silver nanoparticles are usually dispersed in an organic solvent. Silver nanoparticles have an average primary particle size of about several nanometers to several tens of nanometers, and the surface thereof is usually coated with an organic stabilizer (protective agent). When the substrate is a plastic film or sheet, it is necessary to sinter the silver nanoparticles at a low temperature (for example, 200 ° C. or less) lower than the heat resistance temperature of the plastic substrate.
  • a low temperature for example, 200 ° C. or less
  • Japanese Patent Application Laid-Open No. 2010-265543 discloses a silver compound that decomposes by heating to produce metallic silver, a medium / short chain alkylamine having a boiling point of 100 ° C. to 250 ° C., and a medium / short chain alkyl diamine having a boiling point of 100 ° C. to 250 ° C.
  • a method for producing coated silver ultrafine particles comprising a first step of preparing a complex compound containing a silver compound, the alkylamine and the alkyldiamine, and a second step of thermally decomposing the complex compound is disclosed. (Claim 3, paragraphs [0061] and [0062]).
  • Japanese Patent Application Laid-Open No. 2012-162767 discloses a mixture of an amine mixture containing an alkylamine having 6 or more carbon atoms and an alkylamine having 5 or less carbon atoms and a metal compound containing a metal atom.
  • a method for producing coated metal fine particles which includes a first step of producing a complex compound containing, and a second step of thermally decomposing the complex compound to produce metal fine particles (Claim 1). It is also disclosed that the coated silver fine particles can be dispersed in an organic solvent such as an alcohol solvent such as butanol, a nonpolar solvent such as octane, or a mixed solvent thereof (paragraph [0079]).
  • Japanese Patent Application Laid-Open No. 2013-142172 discloses a method for producing silver nanoparticles, which is composed of an aliphatic hydrocarbon group and one amino group, and the aliphatic hydrocarbon group has a total carbon number of 6 or more.
  • An amine mixture containing an aliphatic hydrocarbon diamine (C) comprising a group and two amino groups and the total number of carbons of the aliphatic hydrocarbon group being 8 or less, a silver compound, and the amine mixture To produce a complex compound containing the silver compound and the amine, and heat-decompose the complex compound to thermally decompose to form silver nanoparticles. (Claims ).
  • a silver coating composition called a so-called silver ink can be prepared by dispersing the obtained silver nanoparticles in a suspended state in an appropriate organic solvent (dispersion medium).
  • organic solvent dispersing the obtained silver nanoparticles in a suspended state in an appropriate organic solvent (dispersion medium).
  • organic solvent such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane; aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, etc .; methanol, ethanol, propanol Alcohol solvents such as n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol and the like have been disclosed (paragraph [0085]).
  • Japanese Patent Application Laid-Open No. 2013-142173 discloses a method for producing silver nanoparticles, which is composed of an aliphatic hydrocarbon group and one amino group, and the aliphatic hydrocarbon group has a total number of carbon atoms of 6 or more.
  • An amine mixed solution is prepared, and the silver compound and the amine mixed solution are mixed to form a complex compound containing the silver compound and the amine, and the complex compound is heated and thermally decomposed to produce silver nano
  • a method for producing silver nanoparticles comprising forming particles is disclosed (Claim 1).
  • a silver coating composition called a so-called silver ink is obtained by dispersing the obtained silver nanoparticles in a suitable organic solvent (dispersion medium) in a suspended state. And similar organic solvents are disclosed (paragraph [0076]).
  • WO2014 / 024721 discloses a branched aliphatic hydrocarbon monoamine comprising a branched aliphatic hydrocarbon group and one amino group, wherein the branched aliphatic hydrocarbon group has 4 or more carbon atoms ( An aliphatic amine containing at least D) and a silver compound are mixed to form a complex compound containing the silver compound and the amine, and the complex compound is heated and thermally decomposed to form silver nanoparticles. A method for producing silver nanoparticles is disclosed (claim 1).
  • Japanese Patent Application Laid-Open No. 2010-55807 discloses a conductive paste used in an intaglio offset printing method using a silicone blanket made of silicone rubber, which includes a binder resin, a conductive powder, a high swelling solvent, and a low and high swelling solvent.
  • An electrically conductive paste containing a mixed solvent is disclosed (claim 1).
  • Silver powder is mentioned as the conductive powder (paragraph [0033]). It is disclosed that the 50% cumulative diameter D 50 of the particle size distribution is preferably 0.05 ⁇ m or more and 10 ⁇ m or less, particularly preferably 0.1 ⁇ m or more and 2 ⁇ m or less, and the conductive powder is a flaky conductive powder and a spherical conductive powder.
  • Japanese Patent Application Laid-Open No. 2010-55807 does not disclose silver nanoparticles whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine. Moreover, there is no disclosure about the conductive performance.
  • Japanese Patent Application Laid-Open No. 2010-90211 discloses a conductive ink composition containing conductive particles and an organic vehicle containing a resin composition and a solvent (Claim 1). It is disclosed that the conductive particles are Ag particles (claim 10).
  • the conductive ink composition is used for forming electrodes by intaglio offset printing (paragraph [0001]).
  • the conductive particles are disclosed to contain spherical conductive particles having an average particle diameter of 0.05 ⁇ m to 3 ⁇ m and flaky conductive particles having an average flake diameter of 0.1 ⁇ m or more and less than 3 ⁇ m (paragraph [0014]). ).
  • 2010-90211 does not disclose silver nanoparticles whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine.
  • the firing conditions in the examples are not described (paragraph [0027] and the like), and there is no disclosure of conductive performance by low-temperature firing.
  • JP 2011-37999 A discloses a conductive powder, a resin that is solid at 25 ° C., a monomer component selected from an oxetane monomer, an epoxy monomer, and a vinyl ether monomer, a polymerization initiator, and a specific organic compound.
  • a conductive ink containing a solvent and having a viscosity at 25 ° C. of 3 to 30 Pa ⁇ s is disclosed (Claim 1).
  • As the conductive powder a spherical silver powder having an average particle diameter of 1 ⁇ m or less and an average particle diameter of 1 ⁇ m are disclosed. Combining with spherical silver powder of 3 ⁇ m or less is disclosed (paragraph [0017]).
  • JP 2011-37999 A does not disclose silver nanoparticles whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine.
  • JP 2012-38615 A contains silver particles, a resin that is solid at 25 ° C., and an organic cyclic ether compound (bifunctional oxetane compound), and has a viscosity at 25 ° C. of 3 to 30 Pa ⁇ s.
  • a conductive silver paste is disclosed (Claims 1, 2 and 3), and as silver particles, a median diameter (D50) of 0.2 to about 100 parts by mass of silver particles having a median diameter (D50) of 1.0 to 10.0 ⁇ m is disclosed. It is disclosed that 50 to 200 parts by mass of 0.9 ⁇ m silver particles are used in combination (claim 6, paragraph [0012]).
  • Silver nanoparticles have an average primary particle diameter of about several nanometers to several tens of nanometers, and are more likely to aggregate than micron ( ⁇ m) size particles. Therefore, the reduction reaction of the silver compound (thermal decomposition reaction in the above Patent Documents 1 to 6) is performed so that the surface of the obtained silver nanoparticles is coated with an organic stabilizer (protective agent such as aliphatic amine or aliphatic carboxylic acid). ) Is carried out in the presence of an organic stabilizer.
  • an organic stabilizer protecting agent such as aliphatic amine or aliphatic carboxylic acid
  • the silver nanoparticles are a silver coating composition (silver ink, silver paste) containing the particles in an organic solvent.
  • the organic stabilizer In order to develop conductivity, it is necessary to remove the organic stabilizer covering the silver nanoparticles and sinter the silver particles at the time of firing after application on the substrate. If the firing temperature is low, the organic stabilizer is difficult to remove. If the degree of sintering of the silver particles is not sufficient, a low resistance value cannot be obtained. That is, the organic stabilizer present on the surface of the silver nanoparticles contributes to the stabilization of the silver nanoparticles, but prevents the silver nanoparticles from being sintered (particularly, sintering at low temperature firing).
  • an aliphatic amine compound and / or an aliphatic carboxylic acid compound having a relatively long chain for example, having 8 or more carbon atoms
  • the distance between the individual silver nanoparticles is easily secured. Nanoparticles are easy to stabilize.
  • long-chain aliphatic amine compounds and / or aliphatic carboxylic acid compounds are difficult to remove if the firing temperature is low.
  • Patent Documents 7 to 10 do not disclose silver nanoparticles whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine, and that sufficient electrical conductivity is obtained by low-temperature firing. There is no disclosure.
  • an object of the present invention is to provide a silver particle coating composition that exhibits excellent conductivity (low resistance value) by firing at a low temperature for a short time.
  • the silver particle coating composition is applied (or printed) on a substrate to be printed and baked to have excellent adhesion between the silver coating film (silver fired film) and the substrate.
  • an object of the present invention is to provide a silver particle paint composition that exhibits excellent conductivity (low resistance value) by firing at a low temperature for a short time and has excellent adhesion between the silver coating film (silver fired film) and the substrate. To provide things.
  • the silver particle coating composition when used for intaglio offset printing, it is necessary to improve the transferability of the silver coating composition from the blanket to the substrate to be printed.
  • intaglio offset printing first, the silver coating composition should be filled in the concave portions of the intaglio, and the silver coating composition filled in the concave portions should be transferred to a blanket (usually made of silicone rubber) and then printed from the blanket. Transfer the silver paint composition to the substrate.
  • the blanket sucks and swells the solvent of the silver coating composition to some extent, and thereby the adhesion between the silver coating composition and the blanket surface is lowered, the transferability from the blanket to the substrate is improved.
  • an object of the present invention is to provide a silver coating composition that exhibits excellent conductivity (low resistance value) by firing at a low temperature for a short time and is suitable for intaglio offset printing.
  • the present inventors have completed the present invention by using silver nanoparticles prepared by a so-called pyrolysis method and having a surface coated with a protective agent containing an aliphatic hydrocarbon amine, and silver microparticles. .
  • the present invention includes the following inventions.
  • Silver nanoparticles (N) whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine, Silver microparticles (M); A silver particle coating composition comprising a dispersion solvent.
  • the aliphatic hydrocarbon amine includes an aliphatic hydrocarbon monoamine (A) composed of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more. Furthermore, an aliphatic hydrocarbon monoamine (B) comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbons of the aliphatic hydrocarbon group being 5 or less, and an aliphatic hydrocarbon group and two amino groups
  • the silver particle coating composition according to (1) above which comprises at least one of aliphatic hydrocarbon diamines (C) having the total number of carbon atoms of the aliphatic hydrocarbon group of 8 or less.
  • the aliphatic hydrocarbon monoamine (A) has a linear alkyl monoamine having a linear alkyl group having 6 to 12 carbon atoms and a branched alkyl group having 6 to 16 carbon atoms.
  • the aliphatic hydrocarbon diamine (C) is an alkylene diamine in which one of the two amino groups is a primary amino group and the other is a tertiary amino group (2
  • the aliphatic hydrocarbon amine includes the aliphatic hydrocarbon monoamine (A), the aliphatic hydrocarbon monoamine (B), and the aliphatic hydrocarbon diamine (C).
  • the silver particle coating composition according to any one of the above.
  • the silver nanoparticles (N) Mixing the aliphatic hydrocarbon amine as a protective agent and a silver compound to produce a complex compound containing the silver compound and the amine, It can be formed by heating and thermally decomposing the complex compound.
  • the silver compound is preferably silver oxalate.
  • Silver oxalate molecules contain two silver atoms.
  • the aliphatic hydrocarbon amine is preferably used in a total amount of 2 to 100 moles per mole of silver oxalate.
  • the binder resin is at least one selected from the group consisting of polyvinyl butyral resin, polyester resin, acrylic resin, ethyl cellulose resin, phenol resin, polyimide resin, melamine resin, and melamine-polyester resin.
  • the silver particle coating composition according to (7) is at least one selected from the group consisting of polyvinyl butyral resin, polyester resin, acrylic resin, ethyl cellulose resin, phenol resin, polyimide resin, melamine resin, and melamine-polyester resin.
  • the intaglio offset printing includes gravure offset printing.
  • a silver particle coating composition according to any one of the above-mentioned items is applied onto a substrate to form a silver particle-containing coating layer, and then the coating layer is baked to form a silver conductive layer.
  • a method of manufacturing an electronic device comprising: Firing is performed at a temperature of 200 ° C. or lower, for example 150 ° C. or lower, preferably 120 ° C. or lower, for 2 hours or shorter, for example 1 hour or shorter, preferably 30 minutes or shorter, more preferably 15 minutes or shorter. More specifically, it is performed under conditions of about 90 ° C. to 120 ° C. and about 10 minutes to 15 minutes, for example, 120 ° C. for 15 minutes.
  • Metal nanoparticles whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine, Metal microparticles;
  • a metal particle coating composition comprising a dispersion solvent.
  • the substrate may be selected from a plastic substrate, a ceramic substrate, a glass substrate, and a metal substrate.
  • the silver particle coating composition includes silver nanoparticles (N) whose surfaces are coated with a protective agent containing an aliphatic hydrocarbon amine, and silver microparticles (M).
  • the silver nanoparticles (N) enter the gaps between the silver microparticles (M). If it does so, the contact efficiency between silver nanoparticle (N) and silver microparticle (M) will become good, and electroconductivity will improve by baking.
  • Silver nanoparticles (N) whose surfaces are coated with a protective agent containing an aliphatic hydrocarbon amine are prepared by a so-called thermal decomposition method of a silver complex compound.
  • a protective agent containing an aliphatic hydrocarbon amine is prepared by a so-called thermal decomposition method of a silver complex compound.
  • the aliphatic hydrocarbon amine compound that functions as a complexing agent and / or a protective agent an aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and an aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms.
  • aliphatic hydrocarbon diamines (C) having a total carbon number of 8 or less, the surface of the formed silver nanoparticles is coated with these aliphatic amine compounds.
  • the aliphatic hydrocarbon monoamine (B) and the aliphatic hydrocarbon diamine (C) have a short carbon chain length, they are calcined at a low temperature of 200 ° C. or lower, for example 150 ° C. or lower, preferably 120 ° C. or lower. In addition, it is easily removed from the surface of the silver particles in a short time of 2 hours or less, for example 1 hour or less, preferably 30 minutes or less. Further, due to the presence of the monoamine (B) and / or the diamine (C), the amount of the aliphatic hydrocarbon monoamine (A) deposited on the silver particle surface can be small. Accordingly, even in the case of firing at the low temperature, these aliphatic amine compounds are easily removed from the surface of the silver particles in the short time, and the sintering of the silver particles proceeds sufficiently.
  • the contact efficiency between the silver nanoparticles (N) and the silver microparticles (M) is good, and excellent conductivity (low resistance value) is obtained by firing at a low temperature for a short time.
  • a silver particle coating composition silver particle-containing ink or silver particle-containing paste.
  • the silver particle coating composition further contains a binder resin, the adhesion between the silver coating film (silver fired film) obtained by applying (or printing) and baking on the substrate to be printed is excellent.
  • the silver particle coating composition further contains a curable monomer and a polymerization initiator
  • the adhesion between the silver coating film (silver fired film) and the substrate is further improved, and the silver coating film (silver fired film) Increases flexibility.
  • the followability of the fired silver film to a flexible base material such as a plastic base material is improved.
  • the silver particle coating composition of the present invention when the silver nanoparticles (N) and the silver microparticles (M) are dispersed in a dispersion solvent containing a glycol ester solvent,
  • the coating composition is used for intaglio offset printing, the transferability of silver ink from the blanket to the substrate is improved.
  • intaglio offset printing first, the silver coating composition is filled into the recesses of the intaglio, and the silver coating composition filled in the recesses is transferred to a blanket (usually made of silicone rubber), and then silver is transferred from the blanket to the substrate. Transfer the coating composition. At this time, it is considered that the blanket sucks the solvent of the silver coating composition to some extent and swells, thereby reducing the adhesion between the silver coating composition and the blanket surface and improving the transferability from the blanket to the substrate.
  • a silver coating composition that exhibits excellent conductivity (low resistance value) by firing at a low temperature for a short time and is suitable for intaglio offset printing.
  • the present invention is also applicable to a metal particle coating composition containing a metal other than silver.
  • a conductive film and conductive wiring can be formed on various plastic substrates having low heat resistance such as PET and polypropylene, preferably by intaglio offset printing.
  • the silver particle coating composition of the present invention is suitable for device applications of various recent electronic devices.
  • the silver particle coating composition of the present invention contains silver nanoparticles (N) whose surfaces are coated with a protective agent containing an aliphatic hydrocarbon amine, silver microparticles (M), and a dispersion solvent.
  • the silver particle coating composition includes both so-called silver ink and silver paste.
  • Silver nanoparticles (N) whose surface is coated with an aliphatic hydrocarbon amine protecting agent
  • Silver nanoparticles (N) are mixed with an aliphatic hydrocarbon amine and a silver compound to produce a complex compound containing the silver compound and the amine, It can be produced by heating and complexing the complex compound.
  • the method for producing silver nanoparticles (N) mainly includes a complex compound generation step and a complex compound thermal decomposition step. The obtained silver nanoparticles (N) are subjected to a dispersion process for preparing a coating composition.
  • the term “nanoparticle” means that the size of the primary particles (average primary particle diameter) determined by observation with a scanning electron microscope (SEM) is less than 1000 nm.
  • the particle size is intended to exclude the protective agent (stabilizer) present (coated) on the surface (that is, the size of silver itself).
  • the silver nanoparticles have an average primary particle size of, for example, 0.5 nm to 100 nm, preferably 0.5 nm to 80 nm, more preferably 1 nm to 70 nm, and still more preferably 1 nm to 60 nm.
  • the silver compound a silver compound that is easily decomposed by heating to form metallic silver is used.
  • silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, and silver phthalate; silver fluoride, silver chloride, silver bromide, silver iodide, etc.
  • Silver sulfate; silver sulfate, silver nitrate, silver carbonate, and the like can be used, but silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated.
  • Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained as it is by thermal decomposition, and impurities derived from the reducing agent do not easily remain.
  • a metal compound that is easily decomposed by heating to produce a target metal is used instead of the silver compound.
  • a metal salt corresponding to the above silver compound for example, a metal carboxylate; a metal halide; a metal salt compound such as a metal sulfate, a metal nitrate, or a metal carbonate is used. be able to.
  • metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the above silver compound and a metal compound other than the above silver may be used in combination.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd. Based on the total metal, silver accounts for at least 20% by weight, usually at least 50% by weight, for example at least 80% by weight.
  • the aliphatic hydrocarbon amine and the silver compound may be mixed without solvent, but in the presence of an alcohol solvent having 3 or more carbon atoms, the silver compound and the silver compound are mixed. It is preferable to form a complex compound containing an amine.
  • an alcohol having 3 to 10 carbon atoms preferably an alcohol having 4 to 6 carbon atoms can be used.
  • n-propanol (boiling point bp: 97 ° C.), isopropanol (bp: 82 ° C.), n-butanol (bp: 117 ° C.), isobutanol (bp: 107.89 ° C.), sec-butanol (bp: 99.
  • n-butanol, isobutanol, sec-butanol the convenience of post-treatment after the formation of the silver nanoparticles can be increased in consideration of the ability to increase the temperature of the thermal decomposition step of the complex compound performed later.
  • Butanols and hexanols selected from tert-butanol are preferred. In particular, n-butanol and n-hexanol are preferable.
  • the alcohol solvent is, for example, 120 parts by weight or more, preferably 130 parts by weight or more, more preferably 150 parts by weight with respect to 100 parts by weight of the silver compound for sufficient stirring operation of the silver compound-alcohol slurry. It is good to use above.
  • the upper limit of the amount of the alcohol solvent is not particularly limited, and is, for example, 1000 parts by weight or less, preferably 800 parts by weight or less, more preferably 500 parts by weight or less with respect to 100 parts by weight of the silver compound. .
  • the mixing of the aliphatic hydrocarbon amine and the silver compound in the presence of an alcohol solvent having 3 or more carbon atoms may take several forms.
  • a solid silver compound and an alcohol solvent are mixed to obtain a silver compound-alcohol slurry [slurry forming step], and then an aliphatic hydrocarbon amine is added to the obtained silver compound-alcohol slurry. It may be added.
  • the slurry represents a mixture in which a solid silver compound is dispersed in an alcohol solvent.
  • a slurry may be obtained by charging a solid silver compound into a reaction vessel and adding an alcohol solvent thereto.
  • an aliphatic hydrocarbon amine and an alcohol solvent may be charged into a reaction vessel, and a silver compound-alcohol slurry may be added thereto.
  • the aliphatic hydrocarbon amine that functions as a complexing agent and / or a protective agent includes, for example, an aliphatic hydrocarbon monoamine (A) in which the total number of carbon atoms of the hydrocarbon group is 6 or more, and an aliphatic group.
  • An aliphatic hydrocarbon monoamine (B) consisting of a hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 5 or less, and consisting of an aliphatic hydrocarbon group and two amino groups; You may use at least one of the aliphatic hydrocarbon diamine (C) whose carbon total number of this aliphatic hydrocarbon group is 8 or less.
  • Each of these components is usually used as an amine mixed solution.
  • the mixing of the amine with the silver compound (or the alcohol slurry thereof) is not necessarily performed using the mixed amines.
  • the amines may be sequentially added to the silver compound (or alcohol slurry thereof).
  • an “aliphatic hydrocarbon monoamine” is a compound composed of 1 to 3 monovalent aliphatic hydrocarbon groups and one amino group.
  • a “hydrocarbon group” is a group consisting only of carbon and hydrogen.
  • the aliphatic hydrocarbon monoamine (A) and the aliphatic hydrocarbon monoamine (B) are, as necessary, a hetero atom (an atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom. ). This nitrogen atom does not constitute an amino group.
  • aliphatic hydrocarbon diamine means a divalent aliphatic hydrocarbon group (alkylene group), two amino groups intervening the aliphatic hydrocarbon group, and, in some cases, hydrogen of the amino group. It is a compound comprising an aliphatic hydrocarbon group (alkyl group) substituted with atoms.
  • the aliphatic hydrocarbon diamine (C) may have a substituent containing a hetero atom (atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom in the hydrocarbon group as necessary. Good. This nitrogen atom does not constitute an amino group.
  • the aliphatic hydrocarbon monoamine (A) having a total carbon number of 6 or more has a high function as a protective agent (stabilizer) on the surface of the silver particles to be generated by the hydrocarbon chain.
  • the aliphatic hydrocarbon monoamine (A) includes primary amines, secondary amines, and tertiary amines.
  • primary amines include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine
  • saturated aliphatic hydrocarbon monoamines having a linear aliphatic hydrocarbon group having 6 to 18 carbon atoms such as amines (that is, alkyl monoamines).
  • saturated aliphatic hydrocarbon monoamine in addition to the above linear aliphatic monoamine, a branched chain having 6 to 16 carbon atoms, preferably 6 to 8 carbon atoms such as isohexylamine, 2-ethylhexylamine, tert-octylamine, etc. And branched aliphatic hydrocarbon monoamines having a linear aliphatic hydrocarbon group. Also included is cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (namely, alkenyl monoamines) such as oleylamine can be mentioned.
  • Secondary amines are linear, such as N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, N , N-dioctylamine, N, N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, N-methyl-N-propylamine, N-ethyl-N-propyl Examples thereof include dialkyl monoamines such as amine and N-propyl-N-butylamine. Examples of the tertiary amine include tributylamine and trihexylamine.
  • examples of branched ones include secondary amines such as N, N-diisohexylamine and N, N-di (2-ethylhexyl) amine.
  • secondary amines such as N, N-diisohexylamine and N, N-di (2-ethylhexyl) amine.
  • tertiary amines such as triisohexylamine and tri (2-ethylhexyl) amine can be mentioned.
  • N, N-di (2-ethylhexyl) amine the 2-ethylhexyl group has 8 carbon atoms, but the total number of carbons contained in the amine compound is 16.
  • tri (2-ethylhexyl) amine the total number of carbons contained in the amine compound is 24.
  • a saturated aliphatic hydrocarbon monoamine having 6 or more carbon atoms is preferable.
  • the upper limit of the number of carbon atoms is not particularly defined, but saturated aliphatic monoamines having up to 18 carbon atoms are usually preferred in consideration of availability, ease of removal during firing, and the like.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • linear aliphatic hydrocarbon monoamines only one type may be used, or two or more types may be used in combination.
  • the steric factor of the branched aliphatic hydrocarbon group leads to the surface of the silver particle.
  • a larger area of the silver particle surface can be coated with a smaller amount of adhesion. Therefore, moderate stabilization of the silver nanoparticles can be obtained with a smaller amount of adhesion on the surface of the silver particles. Since the amount of protective agent (organic stabilizer) to be removed at the time of firing is small, the organic stabilizer can be efficiently removed even when firing at a low temperature of 200 ° C. or less, and the silver particles are sufficiently sintered. To do.
  • branched alkyl monoamine compounds having 5 to 6 carbon atoms in the main chain such as isohexylamine and 2-ethylhexylamine are preferable.
  • the main chain has 5 to 6 carbon atoms, appropriate stabilization of the silver nanoparticles can be easily obtained.
  • it is effective to branch at the second carbon atom from the N atom side, such as 2-ethylhexylamine.
  • said branched aliphatic monoamine only 1 type may be used and it may be used in combination of 2 or more type.
  • the linear aliphatic hydrocarbon monoamine and the branched aliphatic hydrocarbon monoamine may be used in combination in order to obtain respective advantages.
  • the aliphatic hydrocarbon monoamine (B) having a total carbon number of 5 or less has a shorter carbon chain length than the aliphatic monoamine (A) having a total carbon number of 6 or more, it itself has a low function as a protective agent (stabilizer).
  • the polarity is higher and the coordination ability of the silver compound to silver is higher, which is considered to be effective in promoting complex formation.
  • the carbon chain length is short, it can be removed from the surface of the silver particles in a short time of 30 minutes or less or 20 minutes or less even in low-temperature firing of 120 ° C. or less, or about 100 ° C. or less. Effective for low-temperature firing of silver nanoparticles.
  • Examples of the aliphatic hydrocarbon monoamine (B) include ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like.
  • Examples thereof include saturated aliphatic hydrocarbon monoamines having 2 to 5 carbon atoms (that is, alkyl monoamines).
  • dialkyl monoamines such as N, N-dimethylamine and N, N-diethylamine are also included.
  • n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable.
  • the aliphatic hydrocarbon monoamines (B) only one type may be used, or two or more types may be used in combination.
  • Aliphatic hydrocarbon diamine (C) having a total carbon number of 8 or less has high coordination ability to silver of silver compounds and is effective in promoting complex formation.
  • the aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of silver compounds to silver is increased.
  • the aliphatic hydrocarbon diamine (C) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and can produce silver nanoparticles more efficiently. .
  • the protective film of the silver particle containing the said aliphatic diamine (C) has high polarity, the dispersion stability of the silver particle in the dispersion medium containing a highly polar solvent improves. Furthermore, since the aliphatic diamine (C) has a short carbon chain length, the surface of the silver particles can be obtained in a short time of 30 minutes or less or 20 minutes or less even when firing at a low temperature of 120 ° C. or less, or about 100 ° C. or less. Therefore, it is effective for low-temperature and short-time firing of the obtained silver nanoparticles.
  • the aliphatic hydrocarbon diamine (C) is not particularly limited, but includes ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1 , 3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N— Diethyl-1,3-propanediamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl- 1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine 1,5-pentanediamine, 1,5-d
  • alkylene diamines having a total carbon number of 8 or less, in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the ability of the silver compound to coordinate to silver is high, Effective in promoting complex formation.
  • one of the two amino groups is a primary amino group
  • An alkylenediamine having a total carbon number of 8 or less, wherein —NH 2 ) and the other one is a tertiary amino group (—NR 1 R 2 ) is preferred.
  • a preferred alkylenediamine is represented by the following structural formula.
  • R represents a divalent alkylene group
  • R 1 and R 2 may be the same or different and each represents an alkyl group, provided that the total number of carbon atoms of R, R 1 and R 2 is 8
  • the alkylene group usually does not contain a hetero atom (an atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom, but may optionally have a substituent containing the hetero atom.
  • the alkyl group usually does not contain a heteroatom such as an oxygen atom or a nitrogen atom, but may optionally have a substituent containing the heteroatom.
  • one of the two amino groups is a primary amino group
  • the ability of the silver compound to coordinate to silver is increased, which is advantageous for complex formation
  • the other is a tertiary amino group. Since the tertiary amino group has poor coordination ability to silver atoms, the complex formed is prevented from having a complex network structure.
  • a high temperature may be required for the thermal decomposition process of the complex.
  • a diamine having a total carbon number of 6 or less is preferable, and a diamine having a total carbon number of 5 or less is more preferable from the viewpoint that it can be removed from the surface of the silver particles in a short time even in low-temperature firing.
  • the aliphatic hydrocarbon diamine (C) only one type may be used, or two or more types may be used in combination.
  • the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms the aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms, and the aliphatic hydrocarbon diamine (C) having 8 or less carbon atoms.
  • the use ratio with either one or both is not particularly limited, but based on the total amines [(A) + (B) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Total amount of the aliphatic monoamine (B) and the aliphatic diamine (C): 35 mol% to 95 mol% It is good to do.
  • the function of protecting and stabilizing the surface of the silver particles produced can be easily obtained by the carbon chain of the component (A).
  • the protective stabilization function may be weakly expressed.
  • the protective stabilization function is sufficient, but the component (A) is difficult to be removed by low-temperature firing.
  • aliphatic monoamine (A) and both the aliphatic monoamine (B) and the aliphatic diamine (C) are used, their use ratio is not particularly limited, but the total amines Based on [(A) + (B) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic monoamine (B): 5 mol% to 70 mol% Aliphatic diamine (C): 5 mol% to 50 mol% It is good to do.
  • the branched aliphatic monoamine is used as the component (A)
  • the aliphatic monoamine (A): 5 mol% to 65 mol% is satisfied.
  • Branched aliphatic monoamine 10 mol% to 50 mol% It is good to do.
  • the lower limit of the content of the component (A) is preferably 10 mol% or more, more preferably 20 mol% or more.
  • the content of the aliphatic monoamine (B) By setting the content of the aliphatic monoamine (B) to 5 mol% to 70 mol%, a complex formation promoting effect can be easily obtained, and it can contribute itself to low temperature and short time baking. In this case, the effect of assisting the removal of the aliphatic diamine (C) from the surface of the silver particles is easily obtained. If the content of the component (B) is less than 5 mol%, the effect of promoting complex formation may be weak, or the component (C) may be difficult to remove from the surface of the silver particles during firing. On the other hand, when the content of the component (B) exceeds 70 mol%, a complex formation promoting effect can be obtained, but the content of the aliphatic monoamine (A) is relatively decreased, and silver particles are generated.
  • the aliphatic diamine (C) By setting the content of the aliphatic diamine (C) to 5 mol% to 50 mol%, a complex formation promoting effect and a thermal decomposition promoting effect of the complex can be easily obtained, and the aliphatic diamine (C) is contained. Since the protective film of silver particles has a high polarity, the dispersion stability of silver particles in a dispersion medium containing a highly polar solvent is improved. When the content of the component (C) is less than 5 mol%, the complex formation promoting effect and the thermal decomposition promoting effect of the complex may be weak.
  • the content of the component (C) exceeds 50 mol%, the complex formation promoting effect and the thermal decomposition promoting effect of the complex are obtained, but the content of the aliphatic monoamine (A) is relatively reduced. Therefore, it is difficult to achieve protection and stabilization of the surface of the silver particles to be produced.
  • About the minimum of content of the said (C) component 5 mol% or more is preferable and 10 mol% or more is more preferable.
  • About the upper limit of content of the said (C) component 45 mol% or less is preferable and 40 mol% or less is more preferable.
  • aliphatic monoamine (A) and the aliphatic monoamine (B) are used (without using the aliphatic diamine (C)), their use ratio is not particularly limited. Considering the action, based on the total amines [(A) + (B)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic monoamine (B): 35 mol% to 95 mol% It is good to do. When the branched aliphatic monoamine is used as the component (A), the aliphatic monoamine (A): 5 mol% to 65 mol% is satisfied. Branched aliphatic monoamine: 10 mol% to 50 mol% It is good to do.
  • the use ratio thereof is not particularly limited. Considering the action, based on the total amines [(A) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic diamine (C): 35 mol% to 95 mol% It is good to do.
  • Aliphatic monoamine (A) 5 mol% to 65 mol%
  • Aliphatic diamine (C) 35 mol% to 95 mol% It is good to do.
  • the branched aliphatic monoamine is used as the component (A)
  • the aliphatic monoamine (A): 5 mol% to 65 mol% is satisfied.
  • Branched aliphatic monoamine 10 mol% to 50 mol% It is good to do.
  • the above-mentioned use ratios of the aliphatic monoamine (A), the aliphatic monoamine (B) and / or the aliphatic diamine (C) are all examples, and various changes are possible.
  • the total number of carbons is 6 depending on the use ratio thereof.
  • the adhesion amount of the above aliphatic monoamine (A) on the silver particle surface is small. Therefore, even in the case of firing at a low temperature for a short time, these aliphatic amine compounds are easily removed from the surface of the silver particles, and the sintering of the silver particles (N) proceeds sufficiently.
  • the total amount of the aliphatic hydrocarbon amine is not particularly limited, but is 1 mol of silver atoms of the silver compound as a raw material.
  • the amount is preferably about 1 to 50 mol.
  • the total amount [(A), (B) and / or (C)] of the amine component is less than 1 mole relative to 1 mole of the silver atom, it is converted into a complex compound in the complex compound formation step.
  • a silver compound that is not left will remain, and in the subsequent pyrolysis step, the uniformity of the silver particles may be impaired, resulting in enlargement of the particles, or the silver compound may remain without being thermally decomposed.
  • the total amount of the amine component is preferably about 2 mol or more, for example, and the total amount of the amine component is about 2 to 50 mol.
  • the lower limit of the total amount of the amine component is preferably 2 mol or more with respect to 1 mol of silver atoms of the silver compound. More preferably, the silver oxalate molecule contains two silver atoms.
  • an aliphatic carboxylic acid (D) may be further used as a stabilizer.
  • the aliphatic carboxylic acid (D) is preferably used together with the amines, and can be used by being included in the amine mixed solution.
  • aliphatic carboxylic acid (D) a saturated or unsaturated aliphatic carboxylic acid is used.
  • aliphatic carboxylic acid a saturated or unsaturated aliphatic carboxylic acid is used.
  • saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid
  • unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid
  • saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable.
  • the number of carbon atoms By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, a space between the silver particle and other silver particles can be secured, so that the effect of preventing aggregation of the silver particles is improved.
  • saturated or unsaturated aliphatic monocarboxylic acid compounds having up to 18 carbon atoms are usually preferred.
  • octanoic acid, oleic acid and the like are preferably used.
  • the aliphatic carboxylic acids (D) only one type may be used, or two or more types may be used in combination.
  • the aliphatic carboxylic acid (D) When the aliphatic carboxylic acid (D) is used, it may be used in an amount of, for example, about 0.05 to 10 mol, preferably 0.1 to 5 mol, relative to 1 mol of silver atoms in the starting silver compound. More preferably 0.5 to 2 mol is used.
  • the amount of the component (D) When the amount of the component (D) is less than 0.05 mol with respect to 1 mol of the silver atom, the effect of improving the stability in the dispersed state by the addition of the component (D) is weak.
  • the amount of the component (D) reaches 10 mol, the effect of improving the stability in a dispersed state is saturated, and the component (D) is hardly removed by low-temperature firing.
  • the aliphatic carboxylic acid (D) may not be used.
  • a mixed liquid containing each aliphatic hydrocarbon amine component to be used for example, any of the aliphatic monoamine (A), the aliphatic monoamine (B), and the aliphatic diamine (C)
  • An amine mixture containing either or both is prepared [a step of preparing an amine mixture].
  • the amine mixed solution can be prepared by stirring each amine (A), (B) and / or (C) component, and, if used, the carboxylic acid (D) component at a predetermined ratio at room temperature. .
  • a metal compound (or alcohol slurry) containing the target metal is used instead of the silver compound (or alcohol slurry thereof).
  • a silver compound (or alcohol slurry thereof) or a metal compound (or alcohol slurry thereof) is mixed with a predetermined amount of an amine mixture.
  • Mixing may be performed at room temperature.
  • “Normal temperature” intends 5 to 40 ° C. depending on the ambient temperature. For example, 5 to 35 ° C (JIS Z 8703), 10 to 35 ° C, and 20 to 30 ° C are intended. It may be a normal room temperature (for example, a range of 15 to 30 ° C.).
  • the mixing is carried out with stirring or the coordination reaction of amines to the silver compound (or metal compound) is exothermic, so that the temperature is within the above range, for example, about 5 to 15 ° C. You may carry out, cooling suitably and stirring. If mixing of the silver compound and the amine mixture is performed in the presence of an alcohol having 3 or more carbon atoms, stirring and cooling can be performed satisfactorily. The excess of alcohol and amines serves as the reaction medium.
  • a liquid aliphatic amine component is first charged in a reaction vessel, and a powdery silver compound (silver oxalate) is charged therein.
  • the liquid aliphatic amine component is a flammable substance, and there is a danger in putting the powdered silver compound therein. That is, there is a risk of ignition due to static electricity due to the introduction of the silver compound of the powder. Moreover, there is a risk that the complex formation reaction proceeds locally due to the introduction of the powdered silver compound, and the exothermic reaction may explode. Such a danger can be avoided by mixing the silver compound and the amine mixture in the presence of the alcohol. Therefore, it is safe in scaled-up industrial production.
  • the complex compound to be formed generally exhibits a color corresponding to its constituent components
  • the end point of the complex compound formation reaction can be detected by detecting the end of the color change of the reaction mixture by appropriate spectroscopy or the like.
  • the complex compound formed by silver oxalate is generally colorless (observed as white when visually observed), but even in such a case, the complex compound is formed on the basis of a change in form such as a change in viscosity of the reaction mixture.
  • the generation state can be detected.
  • the complex reaction time is about 30 minutes to 3 hours. In this way, a silver-amine complex (or metal-amine complex) is obtained in a medium mainly composed of alcohol and amines.
  • the obtained complex compound is heated and pyrolyzed to form silver nanoparticles (N) [complex compound pyrolysis step].
  • a metal compound containing a metal other than silver is used, target metal nanoparticles are formed.
  • Silver nanoparticles (metal nanoparticles) are formed without using a reducing agent. However, if necessary, an appropriate reducing agent may be used as long as the effects of the present invention are not impaired.
  • amines control the manner in which atomic metals generated by the decomposition of metal compounds aggregate to form fine particles, and on the surface of the formed metal fine particles.
  • a film By forming a film, it plays the role of preventing reaggregation between the fine particles. That is, by heating a complex compound of a metal compound and an amine, the metal compound is thermally decomposed while maintaining the coordinate bond of the amine to the metal atom to produce an atomic metal, and then the amine is coordinated. It is considered that the metal atoms are aggregated to form metal nanoparticles covered with an amine protective film.
  • the thermal decomposition is preferably performed while stirring the complex compound in a reaction medium mainly composed of alcohol (when used) and amines.
  • the thermal decomposition is preferably performed within a temperature range in which the coated silver nanoparticles (or coated metal nanoparticles) are generated. From the viewpoint of preventing amine from being removed from the silver particle surface (or metal particle surface), the above temperature range is used. It is preferable to carry out at as low a temperature as possible.
  • a complex compound of silver oxalate it can be set to, for example, about 80 ° C. to 120 ° C., preferably about 95 ° C. to 115 ° C., more specifically about 100 ° C. to 110 ° C.
  • the thermal decomposition of the complex compound is preferably performed in an inert gas atmosphere such as argon, but the thermal decomposition can also be performed in the air.
  • stable coated silver nanoparticles (N) (or coated metal nanoparticles) can be obtained [post-treatment step of silver nanoparticles]. If it dries after washing
  • Use water or organic solvent for decantation and cleaning operations examples include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; toluene, xylene, mesitylene, and the like
  • Aromatic hydrocarbon solvents such as: alcohol solvents such as methanol, ethanol, propanol, butanol, etc .; acetonitrile; and mixed solvents thereof may be used.
  • a glycol solvent may be used as the organic solvent for the decantation / cleaning operation.
  • the glycol solvent include glycol monomers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and dipropylene glycol monomethyl ether.
  • Ether is exemplified.
  • the glycol solvent only one kind may be used, or two or more kinds may be used in combination.
  • silver nanoparticles (N) are obtained.
  • an appropriate reducing agent may be used as necessary as long as the effects of the present invention are not impaired.
  • the protective agent includes, for example, the aliphatic monoamine (A), and further includes one or both of the aliphatic monoamine (B) and the aliphatic diamine (C). Contains the carboxylic acid (D). Their content in the protective agent is equivalent to their use in the amine mixture. The same applies to metal nanoparticles.
  • the term “microparticle” means that the average particle diameter is 1 ⁇ m or more and 10 ⁇ m or less. Unlike the silver nanoparticle (N), the silver microparticle (M) does not have an aliphatic hydrocarbon amine protecting agent on the surface thereof.
  • the silver microparticles may be spherical particles or flaky particles.
  • the flaky particles are intended to have an aspect ratio, that is, a ratio of diameter to microparticle thickness (diameter / thickness) of, for example, 2 or more.
  • the flaky particles have a larger contact area between the particles than the spherical particles, and therefore the conductivity tends to be improved.
  • the average particle diameter of the silver microparticles (M) is such that the 50% cumulative diameter D50 of the particle size distribution is, for example, 1 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • the silver microparticles include Sylbest series TC-507A (shape: flake, D50: 2.78 ⁇ m), AgS-050 (shape: spherical, D50: 1.4 ⁇ m), C -34 (shape: spherical, D50: 0.6 ⁇ m).
  • the particle diameter is calculated by a laser diffraction method.
  • the blending ratio of the silver nanoparticles (N) and the silver microparticles (M) is not particularly limited, but based on the total of the silver nanoparticles (N) and the silver microparticles (M), For example, Silver nanoparticles (N): 10 to 90% by weight Silver microparticles (M): 10 to 90% by weight It is good to do.
  • the electroconductivity improvement effect by low-temperature baking of silver nanoparticle (N) and the stability improvement effect of the silver coating composition by silver microparticle (M) are easy to be acquired.
  • the amount of the silver nanoparticles (N) is less than 10% by weight, there are few silver nanoparticles (N) entering the gaps between the silver microparticles (M), and the contact improving effect between the silver microparticles (M) is improved. It is difficult to obtain. Moreover, the effect of low-temperature firing of the silver nanoparticles (N) whose surface is coated with a protective agent containing an aliphatic hydrocarbon amine is also relatively reduced. For these reasons, it is difficult to obtain the effect of improving conductivity by low-temperature firing. On the other hand, when the amount of silver nanoparticles (N) exceeds 90% by weight, the storage stability of the silver coating composition may be lowered.
  • the silver nanoparticles (N) used in the present invention have a surface coated with a protective agent containing an aliphatic hydrocarbon amine and are excellent in low-temperature firing, but may be gradually sintered even during storage of the coating composition. is there. Sintering causes an increase in the viscosity of the coating composition. From such a viewpoint, it is preferable to use 10% by weight or more of silver microparticles (M) that are stable even at around room temperature.
  • Silver nanoparticles (N) 30-80% by weight Silver microparticles (M): 20 to 70% by weight And more preferably Silver nanoparticles (N): 50 to 75% by weight Silver microparticles (M): 25-50% by weight It is good to do.
  • the dispersion solvent should just be a solvent which can disperse
  • organic solvents for obtaining a silver coating composition include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; alicyclic carbonization such as cyclohexane and methylcyclohexane Hydrogen solvent; aromatic hydrocarbon solvent such as toluene, xylene, mesitylene, etc .; methanol, ethanol, propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n -Alcohol solvents such as decano
  • glycol solvent examples include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol mono, which are listed as organic solvents for the decantation and washing operation of the silver nanoparticles (N).
  • glycol monoethers such as butyl ether, diethylene glycol monobutyl ether (butyl carbitol: BC), propylene glycol monomethyl ether, and dipropylene glycol monomethyl ether.
  • glycol solvent only one kind may be used, or two or more kinds may be used in combination.
  • the glycol solvent may be derived from the solvent used in the decantation / cleaning operation of the silver nanoparticles (N).
  • glycol ester solvent examples include ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate: BCA). And glycol monoesters such as propylene glycol monomethyl ether acetate (PMA; 1-methoxy-2-propyl acetate) and dipropylene glycol monomethyl ether acetate). As the glycol ester solvent, only one kind may be used, or two or more kinds may be used in combination.
  • the glycol solvent and the glycol ester solvent have a property of penetrating into a silicone blanket in intaglio offset printing. When the solvent soaks into the blanket, the blanket-ink interface is dried, the adhesion between the ink and the blanket is reduced, and the transfer property of the ink from the blanket to the substrate is improved.
  • the glycol solvent or the glycol ester solvent also has an action of dissolving a binder resin, a curable monomer, and a polymerization initiator described later. These solvents are preferable because they are low in volatility and hardly change in the concentration of silver ink, and are also preferable from the viewpoint of the working environment.
  • the total amount of the dispersion solvent is, for example, 30% to 60% by weight, preferably 30% to 50% by weight, more preferably 30% by weight or more, based on the silver coating composition. It is contained in the range of 40% by weight or less. From the viewpoint of intaglio offset printing application, if the amount of the dispersion solvent is less than 30% by weight, the amount of solvent is small and there is a possibility that transfer during printing is not performed well. On the other hand, when the amount of the dispersion solvent exceeds 60% by weight, the amount of the solvent is large, fine line printing may not be performed satisfactorily, and low-temperature firing may not be performed satisfactorily.
  • the silver coating composition preferably further contains a binder resin.
  • the silver coating composition contains a binder resin, the adhesion between the substrate to be printed (or printed) and the silver fired film (conductive pattern) obtained by baking is improved. The flexibility of the fired silver film is improved.
  • binder resin examples include polyvinyl butyral resin, polyester resin, acrylic resin, ethyl cellulose resin, phenol resin, polyimide resin, melamine resin, melamine-polyester resin, and the like.
  • polyvinyl butyral resin and polyester resin are preferable, and it is also preferable to use both in combination.
  • the polyvinyl butyral resin is not particularly limited, but preferably has a weight average molecular weight (Mw) of about 10,000 to 100,000.
  • Mw weight average molecular weight
  • SLECK B series manufactured by Sekisui Chemical Co., Ltd.
  • polyester-type resin for example, a polycaprolactone triol (Purcell 305 [PCL305] by Daicel Corporation) etc. are mentioned as a commercial item.
  • ETHOCEL registered trademark, Nisshin Kasei
  • the amount of the binder resin added is, for example, about 0.1 to 10% by weight, preferably about 2 to 5% by weight, based on the silver coating composition. By the addition amount of the binder resin within this range, it is easy to improve the adhesion between the silver fired film and the substrate and the flexibility of the silver fired film.
  • the silver coating composition preferably further contains a curable monomer and a polymerization initiator.
  • the silver particle coating composition contains a curable monomer and a polymerization initiator, the adhesion between the silver fired film and the substrate is further improved, and the flexibility of the silver fired film is improved.
  • the followability to a flexible base material such as a plastic base material is improved.
  • curable monomer examples include oxetane compounds and epoxy compounds. These have cationic polymerizability.
  • the oxetanyl compound may be a monofunctional oxetanyl compound having one oxetanyl group in the molecule, but a polyfunctional oxetanyl compound having two or more oxetanyl groups in the molecule is preferable.
  • a monofunctional oxetanyl compound 3-ethyl-3-hydroxymethyloxetane (Aron Oxetane series OXT-101 manufactured by Toa Gosei Co., Ltd. as a commercial product) and the like can be mentioned.
  • Bifunctional oxetanyl compounds include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [1-ethyl- (3-oxetanyl) ]] Methyl ether (commercially available product OXT-221 manufactured by Toa Gosei), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, and the like.
  • polyfunctional oxetanyl compounds such as phenol novolac oxetane (PNOX manufactured by Toa Gosei Co., Ltd. as a commercial product) can be used. Only one type of oxetanyl compound may be used, or two or more types may be used.
  • the epoxy compound may be a monofunctional epoxy compound having one epoxy group in the molecule, but is preferably a polyfunctional epoxy compound having two or more epoxy groups in the molecule.
  • the polymerization initiator is not particularly limited as long as it initiates polymerization with heat or UV, but it is preferable to initiate polymerization with heat because of the necessity of sintering the silver nanoparticles.
  • a cation catalyst include aryl diazonium salts, aryl iodonium salts, aryl sulfonium salts, and allene-ion complexes.
  • trade names “PP-33”, “CP-66”, “CP-77” (manufactured by ADEKA Co., Ltd.), trade names “FC-509” (manufactured by 3M Co., Ltd.)
  • Trade name “UVE1014” (manufactured by GE Corp.)
  • trade names “Sun Aid SI-60L”, “Sun Aid SI-80L”, “Sun Aid SI-100L”, “Sun Aid SI-110L” Commercial products such as Shin Kagaku Kogyo Co., Ltd. and trade name “CG-24-61” (Ciba Japan Co., Ltd.) can be used.
  • a polymerization initiator for example, SI-100L that initiates a curing reaction at around 120 ° C. is preferable from the viewpoints of being able to perform low-temperature firing (120 ° C. or lower), catalyst life, and storage stability.
  • the amount of the curable monomer added is, for example, about 0.1% by weight to 10% by weight, preferably about 2% by weight to 5% by weight, based on the silver coating composition.
  • the addition amount of the curable monomer within this range, it is easy to obtain improved adhesion between the silver fired film and the substrate, and to improve the flexibility of the silver fired film.
  • the addition amount of the curable monomer is too small, it is difficult to improve the flexibility of the silver fired film, and it is difficult to improve the adhesion between the silver fired film and the substrate.
  • the addition amount of the polymerization initiator is, for example, about 0.1 to 50% by weight, preferably about 10 to 35% by weight, based on the curable monomer. What is necessary is just to select suitably the addition amount which can make the said curable monomer effective.
  • the silver coating composition may further contain components other than those described above so as to meet the object of the present invention.
  • the viscosity of the silver coating composition is, for example, in a range of 0.1 Pa ⁇ s to 30 Pa ⁇ s in an environmental temperature condition (for example, 25 ° C.) at the time of printing in consideration of intaglio offset printing applications. Preferably, it is in the range of 5 Pa ⁇ s to 25 Pa ⁇ s. If the viscosity of the ink is less than 0.1 Pa ⁇ s, the fluidity of the ink is too high, and there is a risk of problems in accepting the ink from the intaglio to the blanket and transferring the ink from the blanket to the substrate to be printed. is there.
  • the powder of the coated silver nanoparticles (N) in the dry or wet state obtained in the post-treatment step of the silver nanoparticles the powder of silver microparticles (M), and the dispersion solvent described above.
  • an ink (or paste) containing silver particles in a suspended state can be prepared.
  • the said silver particle is based also on a use purpose, it is 10 weight% or more as a sum total of a silver nanoparticle (N) and a silver microparticle (M) in a silver particle containing ink, for example, 25 weight% or more, Preferably 30 It is good to make it contain in the ratio of the weight% or more.
  • the upper limit of the silver particle content is 80% by weight or less.
  • the mixing / dispersing of the binder resin, the curable monomer and the polymerization initiator may be performed once or several times. You may go in.
  • the silver paint composition (silver ink) obtained by the present invention is excellent in stability.
  • the silver ink is stable, for example, at a silver concentration of 50% by weight without causing an increase in viscosity when stored at 5 ° C. in a refrigerator for a period of 1 month or more.
  • the prepared silver coating composition (silver ink) is applied onto a substrate by a known application method, for example, by an intaglio offset printing method, and then baked.
  • a patterned silver ink coating layer is obtained by intaglio offset printing, and the silver ink coating layer is fired to obtain a patterned silver conductive layer (silver fired film).
  • the silver ink is filled into the concave portion of the intaglio, and the silver ink filled in the concave portion is transferred to a blanket usually made of silicone rubber, and then the silver ink is transferred from the blanket to the substrate.
  • a dispersion solvent containing a glycol ester solvent when used, the dispersion solvent infiltrates into the blanket and swells the blanket.
  • the concentration of the silver ink held on the blanket surface increases, that is, the drying proceeds. Thereby, the adhesion between the silver ink on the blanket surface and the blanket is lowered, and the transferability of the silver ink from the blanket to the substrate is improved.
  • the silver ink further contains a binder resin
  • adhesion between the silver fired film obtained by applying (or printing) and firing on the substrate to be printed and the substrate is improved, and the flexibility of the silver fired film is improved. Will improve.
  • the silver ink further contains a curable monomer and a polymerization initiator
  • the adhesion between the silver fired film and the substrate is further improved, and the flexibility of the silver fired film is further improved.
  • the followability to a flexible base material such as a plastic base material is improved.
  • Calcination can be performed at a temperature of 200 ° C. or lower, for example, room temperature (25 ° C.) or higher and 150 ° C. or lower, preferably room temperature (25 ° C.) or higher and 120 ° C. or lower. However, in order to complete the sintering of silver by firing in a short time, it is performed at a temperature of 60 ° C. or higher and 200 ° C. or lower, such as 80 ° C. or higher and 150 ° C. or lower, preferably 90 ° C. or higher. Good.
  • the firing time may be appropriately determined in consideration of the amount of silver ink applied, the firing temperature, etc., for example, within several hours (eg, 3 hours or 2 hours), preferably within 1 hour, more preferably within 30 minutes, More preferably, it may be 10 minutes to 20 minutes.
  • the silver nanoparticles are configured as described above, the sintering of the silver particles sufficiently proceeds even by such a firing process at a low temperature and in a short time. As a result, excellent conductivity (low resistance value) is exhibited.
  • a silver conductive layer having a low resistance value (for example, 15 ⁇ cm or less and in the range of 5 to 15 ⁇ cm) is formed.
  • the resistance value of bulk silver is 1.6 ⁇ cm.
  • the substrate can be a glass substrate, a heat resistant plastic substrate such as a polyimide film, or a polyester film such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film.
  • a general-purpose plastic substrate having low heat resistance such as a polyolefin-based film such as polypropylene can also be suitably used.
  • baking in a short time reduces the load on these general-purpose plastic substrates having low heat resistance, and improves production efficiency.
  • the silver conductive material obtained by the present invention includes various electronic devices such as electromagnetic wave control materials, circuit boards, antennas, heat sinks, liquid crystal displays, organic EL displays, field emission displays (FEDs), IC cards, IC tags, solar It can be applied to batteries, LED elements, organic transistors, capacitors (capacitors), electronic paper, flexible batteries, flexible sensors, membrane switches, touch panels, EMI shields, and the like. In particular, it is effective for electronic materials that require surface smoothness, and for example, is effective as a gate electrode of a thin film transistor (TFT) in a liquid crystal display.
  • TFT thin film transistor
  • the thickness of the silver conductive layer may be appropriately determined according to the intended use. Without being particularly limited, for example, it may be selected from the range of 5 nm to 10 ⁇ m, preferably 100 nm to 5 ⁇ m, more preferably 300 nm to 2 ⁇ m.
  • the ink mainly containing silver nanoparticles has been described.
  • the present invention is also applied to ink containing metal nanoparticles containing a metal other than silver.
  • the obtained silver fired film was measured using a four-terminal method (Loresta GP MCP-T610).
  • the measuring range limit of this device is 10 7 ⁇ cm.
  • n-Butylamine (MW: 73.14): Reagent 2-ethylhexylamine (MW: 129.25) manufactured by Tokyo Chemical Industry Co., Ltd. Reagent n-octylamine (MW: 129.25) manufactured by Wako Pure Chemical Industries, Ltd .: manufactured by Tokyo Chemical Industry Co., Ltd. Reagent methanol: Wako Pure Chemical Co., Ltd. reagent special grade 1-butanol: Wako Pure Chemical Industries, Ltd.
  • Example 1 (Preparation of silver nanoparticles) A 500 mL flask was charged with 40.0 g (0.1317 mol) of silver oxalate, and 60 g of n-butanol was added thereto to prepare an n-butanol slurry of silver oxalate. To this slurry, an amine mixture of 115.58 g (1.5802 mol) of n-butylamine, 51.06 g (0.3950 mol) of 2-ethylhexylamine, and 17.02 g (0.1317 mol) of n-octylamine was added at 30 ° C. Was dripped. After the dropwise addition, the mixture was stirred at 30 ° C.
  • the obtained suspension was cooled, 120 g of methanol was added thereto and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed.
  • 120 g of diethylene glycol monobutyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the silver nanoparticles and stirred. Thereafter, the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles containing diethylene glycol monobutyl ether were obtained. From the result of the thermobalance using TG / DTA6300 manufactured by SII, the silver nanoparticles accounted for 90 wt% in the wet silver nanoparticles.
  • the wet silver nanoparticles were observed with a scanning electron microscope (JSM-6700F manufactured by JEOL Ltd.) by a conventional method, and the average particle size of the silver nanoparticles was determined. (Diameter) was about 50 nm.
  • the average particle size was determined as follows. The silver nanoparticles were subjected to SEM observation, the particle diameters of 10 silver particles arbitrarily selected in the SEM photograph were determined, and the average value thereof was taken as the average particle diameter.
  • the obtained silver ink was subjected to TG-DTA (simultaneous differential thermogravimetric analysis) using TG / DTA6300 manufactured by SII, and the silver concentration in the silver ink was determined.
  • the silver concentration was 65 wt%.
  • the viscosity of the silver ink was measured using a rheometer (manufactured by Anton Paar, rheometer MCR301), 22 Pa ⁇ s (5 / s), 12 Pa ⁇ s (10 / s) at each shear rate (/ s). 5 Pa ⁇ s (50 / s).
  • Table 1 shows the composition of the silver ink.
  • the composition of each component is expressed in parts by weight with respect to 100 parts by weight as a whole.
  • the silver ink was applied on a soda glass plate to form a coating film. After the coating film was formed, the coating film was quickly baked in a blast drying furnace at 120 ° C. for 30 minutes to form a 10 ⁇ m-thick silver fired film. When the specific resistance value of the obtained silver fired film was measured by a four-terminal method, it showed a good conductivity of 14.0 ⁇ cm. As described above, the silver ink exhibited excellent conductivity by baking at a low temperature for a short time.
  • Example 2 In the same manner as in Example 1, silver nanoparticles were prepared.
  • Bifunctional oxetane monomer (OXT-221, manufactured by Toagosei Co., Ltd.) 0.9 g, polyvinyl butyral resin (S-Lec B, product number BM-1, manufactured by Sekisui Chemical Co., Ltd.) 0.6 g, polycaprolactone triol (PCL305, manufactured by Daicel Corporation) ) 0.3g, cationic polymerization initiator SI-100L (manufactured by Sanshin Chemical Co., Ltd.) 0.3g, and diethylene glycol monobutyl ether acetate (manufactured by Daicel Corporation) 6.9g were mixed to completely dissolve the polyvinyl butyral resin. It was.
  • the silver concentration in the silver ink was 65 wt%.
  • the viscosity of the silver ink was 22 Pa ⁇ s (5 / s), 11 Pa ⁇ s (10 / s), and 5 Pa ⁇ s (50 / s).
  • Example 3 In the same manner as in Example 1, silver nanoparticles were prepared.
  • Bifunctional oxetane monomer (OXT-221, manufactured by Toagosei Co., Ltd.) 0.9 g, polyvinyl butyral resin (S-Lec B, product number BM-1, manufactured by Sekisui Chemical Co., Ltd.) 0.6 g, polycaprolactone triol (PCL305, manufactured by Daicel Corporation) ) 0.3g, cationic polymerization initiator SI-100L (manufactured by Sanshin Chemical Co., Ltd.) 0.3g, and diethylene glycol monobutyl ether acetate (manufactured by Daicel Corporation) 6.9g were mixed to completely dissolve the polyvinyl butyral resin. It was.
  • the silver concentration in the silver ink was 65 wt%.
  • the viscosity of the silver ink was 21 Pa ⁇ s (5 / s), 12 Pa ⁇ s (10 / s), and 5 Pa ⁇ s (50 / s).
  • Example 1 1 g of the obtained solution 7 g and 13 g of flaky silver microparticles (Sylbest series, product number TC-507A, manufactured by Tokuri Chemical Laboratory Co., Ltd.) using a rotating and rotating kneader (manufactured by Kurashiki Boseki Co., Ltd., Mazerustar KKK2508) The mixture was kneaded and kneaded in the same manner as above to prepare a black-brown silver ink.
  • the silver concentration in the silver ink was 65 wt%.
  • the viscosity of the silver ink was 21 Pa ⁇ s (5 / s), 12 Pa ⁇ s (10 / s), and 5 Pa ⁇ s (50 / s).
  • Example 1 1 g of the obtained solution 7 g and 13 g of flaky silver microparticles (Sylbest series, product number TC-507A, manufactured by Tokuri Chemical Laboratory Co., Ltd.) using a rotating and rotating kneader (manufactured by Kurashiki Boseki Co., Ltd., Mazerustar KKK2508) The mixture was kneaded and kneaded in the same manner as above to prepare a black-brown silver ink.
  • the silver concentration in the silver ink was 65 wt%.
  • the viscosity of the silver ink was 20 Pa ⁇ s (5 / s), 11 Pa ⁇ s (10 / s), and 5 Pa ⁇ s (50 / s).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 低温、短時間での焼成によって優れた導電性が発現し、且つ好ましくは銀塗膜と基板との密着性に優れる銀粒子塗料組成物を提供する。脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)と、銀マイクロ粒子(M)と、分散溶剤とを含む銀粒子塗料組成物。さらに、バインダ樹脂を含む銀粒子塗料組成物。さらに、硬化性モノマー及び重合開始剤を含む銀粒子塗料組成物。前記分散溶剤は、グリコールエステル系溶剤を少なくとも含む。凹版オフセット印刷用に好適な銀粒子塗料組成物。

Description

銀粒子塗料組成物
 本発明は、銀粒子含有塗料組成物に関する。本発明の銀粒子塗料組成物は、凹版オフセット印刷用途に好適である。また、本発明は、銀以外の金属を含む金属粒子含有塗料組成物にも適用される。
 銀ナノ粒子は、低温でも焼結させることができる。この性質を利用して、種々の電子素子の製造において、基板上に電極や導電回路パターンを形成するために、銀ナノ粒子を含む銀塗料組成物が用いられている。銀ナノ粒子は、通常、有機溶剤中に分散されている。銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、通常、その表面は有機安定剤(保護剤)で被覆されている。基板がプラスチックフィルム又はシートの場合には、プラスチック基板の耐熱温度未満の低温(例えば、200℃以下)で銀ナノ粒子を焼結させることが必要である。
 特に最近では、フレキシブルプリント配線基板として、すでに使用されている耐熱性のポリイミドのみならず、ポリイミドよりも耐熱性は低いが加工が容易で且つ安価なPET(ポリエチレンテレフタレート)やポリプロピレンなどの各種プラスチック製の基板に対しても、微細な金属配線(例えば、銀配線)を形成する試みがなされている。耐熱性の低いプラスチック製の基板を用いた場合には、金属ナノ粒子(例えば、銀ナノ粒子)をさらに低温で焼結させることが必要である。
 例えば、特開2008-214695号公報には、シュウ酸銀とオレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを含む銀超微粒子の製造方法が開示されている(請求項1)。また、前記方法において、前記シュウ酸銀と前記オレイルアミンに加えて総炭素数1~18の飽和脂肪族アミンを反応させる(請求項2、3)と、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮でき、しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができることが開示されている(段落[0011])。
 特開2010-265543号公報には、加熱により分解して金属銀を生成する銀化合物と、沸点100℃~250℃の中短鎖アルキルアミン及び沸点100℃~250℃の中短鎖アルキルジアミンとを混合して、銀化合物と前記アルキルアミン及び前記アルキルジアミンを含む錯化合物を調製する第1工程と、前記錯化合物を加熱分解させる第2工程とを含む被覆銀超微粒子の製造方法が開示されている(請求項3、段落[0061]、[0062])。
 特開2012-162767号公報には、炭素数6以上のアルキルアミンと、炭素数5以下のアルキルアミンとを含むアミン混合液と、金属原子を含む金属化合物を混合して、前記金属化合物とアミンを含む錯化合物を生成する第1工程と、前記錯化合物を加熱分解して金属微粒子を生成する第2工程とを含む被覆金属微粒子の製造方法が開示されている(請求項1)。また、被覆銀微粒子をブタノール等のアルコール溶剤、オクタン等の非極性溶剤、又はそれらの混合溶剤等の有機溶剤に分散可能であることが開示されている(段落[0079])。
 特開2013-142172号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)と、脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)とを含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール等のようなアルコール溶剤が開示されている(段落[0085])。
 特開2013-142173号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを特定の割合で含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、上記の特開2013-142172号公報と同様に、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、同様の有機溶剤が開示されている(段落[0076])。
 国際公開WO2014/024721号公報には、分枝脂肪族炭化水素基と1つのアミノ基とからなり且つ該分枝脂肪族炭化水素基の炭素数が4以上である分枝脂肪族炭化水素モノアミン(D)を少なくとも含む脂肪族アミンと、銀化合物とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。
 特開2010-55807号公報には、シリコーンゴムからなるシリコーンブランケットを用いた凹版オフセット印刷法に用いる導電性ペーストであって、バインダ樹脂、導電性粉末、及び高膨潤性溶剤と低高膨潤性溶剤との混合溶剤を含む導電性ペーストが開示されている(請求項1)。導電性粉末として、銀の粉末が挙げられている(段落[0033])。導電性粉末は、粒度分布の50%累積径D50が0.05μm以上10μm以下、特に0.1μm以上2μm以下が好ましいことが開示され、また、鱗片状の導電性粉末と球状の導電性粉末とを併用することが好ましいことが開示されている(段落[0034])。特開2010-55807号公報には、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子については開示がない。また、導電性能についての開示もない。
 特開2010-90211号公報には、導電性粒子と、樹脂組成物及び溶剤を含む有機系ビヒクルとを含有する導電性インク組成物が開示され(請求項1)。導電性粒子がAg粒子であることが開示されている(請求項10)。導電性インク組成物は、凹版オフセット印刷法により電極を形成するために用いられる(段落[0001])。導電性粒子は、平均粒径0.05μm~3μmの球状導電性粒子と、平均フレーク径0.1μm以上3μm未満のフレーク状導電性粒子とを含有することが開示されている(段落[0014])。特開2010-90211号公報には、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子については開示がない。また、実施例における焼成条件は記載されておらず(段落[0027]等)、低温焼成による導電性能についての開示もない。
 特開2011-37999号公報には、導電性粉末と、25℃において固体である樹脂と、オキセタン系モノマー、エポキシ系モノマー及びビニルエーテル系モノマーから選ばれるモノマー成分と、重合開始剤と、特定の有機溶剤とを含有し、25℃における粘度が3~30Pa・sである導電性インキが開示され(請求項1)、導電性粉末として、平均粒径1μm以下の球状銀粉末と、平均粒径1μm以上3μm以下の球状銀粉末とを組み合わせることが開示されている(段落[0017])。しかしながら、同号公報の導電性インキを用いて、低温焼成(120℃)すると、十分な導電性能は得られない(段落[0054]、表2)。特開2011-37999号公報には、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子については開示がない。
 特開2012-38615号公報には、銀粒子と、25℃において固体である樹脂と、有機環状エーテル化合物(二官能オキセタン化合物)とを含有し、25℃における粘度が3~30Pa・sである導電性銀ペーストが開示され(請求項1、2、3)、銀粒子として、メジアン径(D50)1.0~10.0μmの銀粒子100質量部当たり、メジアン径(D50)0.2~0.9μmの銀粒子50~200質量部を併用することが開示されている(請求項6、段落[0012])。しかしながら、同号公報の導電性銀ペーストを用いて、低温焼成(140℃)すると、十分な導電性能は得られない(段落[0046]、表1)。特開2012-38615号公報には、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子については開示がない。
特開2008-214695号公報 特開2010-265543号公報 特開2012-162767号公報 特開2013-142172号公報 特開2013-142173号公報 WO2014/024721号公報 特開2010-55807号公報 特開2010-90211号公報 特開2011-37999号公報 特開2012-38615号公報
 銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、ミクロン(μm)サイズの粒子に比べ、凝集しやすい。そのため、得られる銀ナノ粒子の表面が有機安定剤(脂肪族アミンや脂肪族カルボン酸などの保護剤)で被覆されるように、銀化合物の還元反応(上記特許文献1~6における熱分解反応)は有機安定剤の存在下で行われる。
 一方、銀ナノ粒子は、該粒子を有機溶剤中に含む銀塗料組成物(銀インク、銀ペースト)とされる。導電性発現のためには、基板上への塗布後の焼成時において、銀ナノ粒子を被覆している有機安定剤は除去されて銀粒子が焼結することが必要である。焼成の温度が低ければ、有機安定剤は除去されにくくなる。銀粒子の焼結度合いが十分でなければ、低い抵抗値は得られない。すなわち、銀ナノ粒子の表面に存在する有機安定剤は、銀ナノ粒子の安定化に寄与するが、一方、銀ナノ粒子の焼結(特に、低温焼成での焼結)を妨げる。
 有機安定剤として比較的長鎖(例えば、炭素数8以上)の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物を用いると、個々の銀ナノ粒子同士の互いの間隔が確保されやすいため、銀ナノ粒子が安定化されやすい。一方、長鎖の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物は、焼成の温度が低ければ、除去されにくい。
 このように、銀ナノ粒子の安定化と、低温焼成での低抵抗値の発現とは、トレードオフの関係にある。
 上記特許文献7~10には、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子については開示がなく、また、低温焼成により、十分な導電性能が得られたことについての開示もない。
 そこで、本発明の目的は、低温、短時間での焼成によって優れた導電性(低い抵抗値)が発現する銀粒子塗料組成物を提供することにある。
 また、銀粒子塗料組成物を印刷すべき基板上に塗布(あるいは印刷)、焼成して得られた銀塗膜(銀焼成膜)と基板との密着性に優れることも要求される。
 そこで、本発明の目的は、低温、短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ銀塗膜(銀焼成膜)と基板との密着性に優れる銀粒子塗料組成物を提供することにある。
 ところで、銀粒子塗料組成物を凹版オフセット印刷用に用いる場合には、ブランケットから印刷すべき基板への銀塗料組成物の転写性を向上させる必要がある。凹版オフセット印刷においては、まず、銀塗料組成物を凹版の凹部に充填し、凹部に充填された銀塗料組成物をブランケット(通常、シリコーンゴム製)に転写受理させ、その後、ブランケットから印刷すべき基板へ銀塗料組成物を転写する。この際、ブランケットが銀塗料組成物の溶剤をある程度吸い込み膨潤し、それにより、銀塗料組成物とブランケット表面との密着性が低下すると、ブランケットから基板への転写性が向上する。
 そこで、本発明の目的は、低温、短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ凹版オフセット印刷用に好適な銀塗料組成物を提供することにある。
 本発明者らは、いわゆる熱分解法により調製され、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子と、銀マイクロ粒子とを用いて、本発明を完成するに至った。本発明には、以下の発明が含まれる。
 (1)  脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)と、
 銀マイクロ粒子(M)と、
 分散溶剤とを含む銀粒子塗料組成物。
 (2)  前記銀ナノ粒子(N)において、
 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
 さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、上記(1) に記載の銀粒子塗料組成物。
 (3)  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下の直鎖状アルキル基を有する直鎖状アルキルモノアミン、及び炭素数6以上16以下の分枝状アルキル基を有する分枝状アルキルモノアミンからなる群から選ばれる少なくとも1つである、上記(2)に記載の銀粒子塗料組成物。
 (4)  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、上記(2) 又は(3) に記載の銀粒子塗料組成物。
 (5)  前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、上記(2) ~(4) のうちのいずれかに記載の銀粒子塗料組成物。
 ・ 前記脂肪族炭化水素アミンは、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素モノアミン(B)を含んでいる、上記各項のうちのいずれかに記載の銀粒子塗料組成物。
 ・ 前記脂肪族炭化水素アミンは、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素ジアミン(C)を含んでいる、上記各項のうちのいずれかに記載の銀粒子塗料組成物。
 ・ 前記脂肪族炭化水素アミンは、前記脂肪族炭化水素モノアミン(A)、前記脂肪族炭化水素モノアミン(B)、及び前記脂肪族炭化水素ジアミン(C)を含んでいる、上記各項のうちのいずれかに記載の銀粒子塗料組成物。
 ・ 前記保護剤は、前記脂肪族アミンの他に、さらに、脂肪族カルボン酸を含んでいる、上記各項のうちのいずれかに記載の銀粒子塗料組成物。
 ・ 前記保護剤は、脂肪族カルボン酸を含んでいない、上記各項のうちのいずれかに記載の銀粒子塗料組成物。
 (6)  前記銀ナノ粒子(N)の銀原子1モルに対して、前記脂肪族炭化水素アミンはその合計として1~50モル用いられている、上記(1) ~(5) のうちのいずれかに記載の銀粒子塗料組成物。
 前記銀ナノ粒子(N)は、
 保護剤としての前記脂肪族炭化水素アミンと、銀化合物とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させることにより形成され得る。
 前記銀化合物は、シュウ酸銀であることが好ましい。シュウ酸銀分子は、銀原子2個を含んでいる。前記銀化合物がシュウ酸銀である場合には、シュウ酸銀1モルに対して、前記脂肪族炭化水素アミンをその合計として2~100モル用いるとよい。
 (7)  さらに、バインダ樹脂を含む、上記(1) ~(6) のうちのいずれかに記載の銀粒子塗料組成物。
 (8)  前記バインダ樹脂は、ポリビニルブチラール樹脂、ポリエステル系樹脂、アクリル系樹脂、エチルセルロース系樹脂、フェノール系樹脂、ポリイミド系樹脂、メラミン系樹脂、及びメラミン-ポリエステル系樹脂からなる群から選ばれる少なくとも1つを含む、上記(7) に記載の銀粒子塗料組成物。
 (9)  さらに、硬化性モノマー、及び重合開始剤を含む、上記(1) ~(8) のうちのいずれかに記載の銀粒子塗料組成物。
 (10) 前記硬化性モノマーは、オキセタン化合物、及びエポキシ化合物からなる群から選ばれる少なくとも1つを含む、上記(9) に記載の銀粒子塗料組成物。
 (11) 前記分散溶剤は、グリコールエステル系溶剤を少なくとも含む、上記(1) ~(10)のうちのいずれかに記載の銀粒子塗料組成物。
 (12) 凹版オフセット印刷用に用いられる、上記(1) ~(11)のうちのいずれかに記載の銀粒子塗料組成物。前記凹版オフセット印刷には、グラビアオフセット印刷などが含まれる。
 (13) 基板と、
 前記基板上に、上記(1) ~(12)のうちのいずれかに記載の銀粒子塗料組成物が塗布され、焼成されてなる銀導電層と、
を有する電子デバイス。
電子デバイスとしては、各種の配線基板、モジュール等が含まれる。
 ・ 基板上に、上記各項のうちのいずれかに記載の銀粒子塗料組成物を塗布し、銀粒子含有塗布層を形成し、その後、前記塗布層を焼成して銀導電層を形成することを含む電子デバイスの製造方法。
焼成は、200℃以下、例えば150℃以下、好ましくは120℃以下の温度で、2時間以下、例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下の時間で行われる。より具体的には、90℃~120℃程度、10分~15分間程度の条件、例えば、120℃、15分間の条件で行われる。
 ・ 脂肪族炭化水素アミンを含む保護剤で表面が被覆された金属ナノ粒子と、
 金属マイクロ粒子と、
 分散溶剤とを含む金属粒子塗料組成物。
 基板は、プラスチック製基板、セラミック製基板、ガラス製基板、及び金属製基板から選ばれ得る。
 本発明において、銀粒子塗料組成物は、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)と、銀マイクロ粒子(M)を含んでいる。基材上への銀粒子塗料組成物の塗布層において、銀ナノ粒子(N)が銀マイクロ粒子(M)同士の隙間に入り込んでいる。そうすると、銀ナノ粒子(N)及び銀マイクロ粒子(M)相互間の接触効率が良くなり、焼成によって導電性が向上する。
 脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)は、銀錯化合物のいわゆる熱分解法により調製される。本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物として、炭素総数6以上の脂肪族炭化水素モノアミン(A)と、炭素総数5以下の脂肪族炭化水素モノアミン(B)及び炭素総数8以下の脂肪族炭化水素ジアミン(C)の少なくとも一方とを用いると、形成された銀ナノ粒子の表面は、これらの脂肪族アミン化合物によって被覆されている。
 前記脂肪族炭化水素モノアミン(B)、及び前記脂肪族炭化水素ジアミン(C)は、炭素鎖長が短いため、200℃以下、例えば150℃以下、好ましくは120℃以下の低温での焼成の場合にも、2時間以下、例えば1時間以下、好ましくは30分間以下の短い時間で、銀粒子表面から除去されやすい。また、前記モノアミン(B)及び/又は前記ジアミン(C)の存在により、前記脂肪族炭化水素モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温での焼成の場合にも前記短い時間で、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
 このようにして、本発明によれば、銀ナノ粒子(N)及び銀マイクロ粒子(M)相互間の接触効率が良く、低温且つ短時間での焼成によって優れた導電性(低い抵抗値)が発現する銀粒子塗料組成物(銀粒子含有インク、又は銀粒子含有ペースト)が提供される。
 銀粒子塗料組成物がさらにバインダ樹脂を含んでいると、印刷すべき基板上に塗布(あるいは印刷)、焼成して得られた銀塗膜(銀焼成膜)と基板との密着性に優れる。
 銀粒子塗料組成物がさらに、硬化性モノマー及び重合開始剤を含んでいると、銀塗膜(銀焼成膜)と基板との密着性がさらに向上するし、銀塗膜(銀焼成膜)の可とう性が向上する。銀焼成膜のプラスチック基材等の柔軟な基材への追従性が向上する。
 このようにして、本発明によれば、低温且つ短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ銀塗膜(銀焼成膜)と基板との密着性、更には銀塗膜(銀焼成膜)の可とう性に優れる銀粒子塗料組成物が提供される。
 本発明の銀粒子塗料組成物において、前記銀ナノ粒子(N)と前記銀マイクロ粒子(M)が、グリコールエステル系溶剤を含む分散溶剤に分散されていると、このような分散溶剤によって、該塗料組成物を凹版オフセット印刷用に用いる場合に、ブランケットから基板への銀インクの転写性が向上する。凹版オフセット印刷においては、まず、銀塗料組成物を凹版の凹部に充填し、凹部に充填された銀塗料組成物をブランケット(通常、シリコーンゴム製)に転写受理させ、その後、ブランケットから基板へ銀塗料組成物を転写する。この際、ブランケットが銀塗料組成物の溶剤をある程度吸い込み膨潤し、それにより、銀塗料組成物とブランケット表面との密着性が低下し、ブランケットから基板への転写性が向上すると考えられる。
 このように、本発明によれば、低温且つ短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ凹版オフセット印刷用に好適な銀塗料組成物が提供される。
 また、本発明は、銀以外の金属を含む金属粒子塗料組成物にも適用される。
 本発明によれば、PET及びポリプロピレンなどの耐熱性の低い各種プラスチック基板上にも、好ましくは凹版オフセット印刷により、導電膜、導電配線を形成することができる。本発明の銀粒子塗料組成物は、最近の種々の電子機器の素子用途に好適である。
 本発明の銀粒子塗料組成物は、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)と、銀マイクロ粒子(M)と、分散溶剤とを含む。なお、銀粒子塗料組成物には、いわゆる銀インク及び銀ペーストの双方が含まれる。
[脂肪族炭化水素アミン保護剤で表面が被覆された銀ナノ粒子(N)]
 銀ナノ粒子(N)は、脂肪族炭化水素アミンと、銀化合物とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させることにより、製造され得る。このように、銀ナノ粒子(N)の製造方法は、錯化合物の生成工程と、錯化合物の熱分解工程とを主として含む。得られた銀ナノ粒子(N)が塗料組成物作製の分散工程に付される。
 本明細書において、「ナノ粒子」なる用語は、走査型電子顕微鏡(SEM)観察結果により求められた一次粒子の大きさ(平均一次粒子径)が1000nm未満であることを意味している。また、粒子の大きさは、表面に存在(被覆)している保護剤(安定剤)を除外した大きさ(すなわち、銀自体の大きさ)を意図している。本発明において、銀ナノ粒子は、例えば0.5nm~100nm、好ましくは0.5nm~80nm、より好ましくは1nm~70nm、さらに好ましくは1nm~60nmの平均一次粒子径を有している。
 本発明において、前記銀化合物としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀などのカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀などのハロゲン化銀;硫酸銀、硝酸銀、炭酸銀等を用いることができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じにくいという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留しにくい点で有利である。
 銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、加熱により容易に分解して、目的とする金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いることができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。
 また、銀との複合物を得るために、上記の銀化合物と、上記の銀以外の他の金属化合物を併用してもよい。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。銀複合物は、銀と1又は2以上の他の金属からなるものであり、Au-Ag、Ag-Cu、Au-Ag-Cu、Au-Ag-Pd等が例示される。金属全体を基準として、銀が少なくとも20重量%、通常は少なくとも50重量%、例えば少なくとも80重量%を占める。
 本発明において、錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを無溶剤で混合してもよいが、炭素数3以上のアルコール溶剤存在下で混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させることが好ましい。
 前記アルコール溶剤としては、炭素数3~10のアルコール、好ましくは炭素数4~6のアルコールを用いることができる。例えば、n-プロパノール(沸点bp:97℃)、イソプロパノール(bp:82℃)、n-ブタノール(bp:117℃)、イソブタノール(bp:107.89℃)、 sec-ブタノール(bp:99.5℃)、tert-ブタノール(bp:82.45℃)、n-ペンタノノール(bp:136℃)、n-ヘキサノール(bp:156℃)、n-オクタノール(bp:194℃)、2-オクタノール(bp:174℃)等が挙げられる。これらの内でも、後に行われる錯化合物の熱分解工程の温度を高くできること、銀ナノ粒子の形成後の後処理での利便性等を考慮して、n-ブタノール、イソブタノール、 sec-ブタノール、tert-ブタノールから選ばれるブタノール類、ヘキサノール類が好ましい。特に、n-ブタノール、n-ヘキサノールが好ましい。
 また、前記アルコール溶剤は、銀化合物-アルコールスラリーの十分な攪拌操作のために、前記銀化合物100重量部に対して、例えば120重量部以上、好ましくは130重量部以上、より好ましくは150重量部以上用いることがよい。前記アルコール系溶剤量の上限については、特に制限されることなく、前記銀化合物100重量部に対して、例えば1000重量部以下、好ましくは800重量部以下、より好ましくは500重量部以下とするとよい。
 本発明において、脂肪族炭化水素アミンと銀化合物とを炭素数3以上のアルコール溶剤存在下で混合するには、いくつかの形態をとり得る。
 例えば、まず、固体の銀化合物とアルコール溶剤とを混合して、銀化合物-アルコールスラリーを得て[スラリー形成工程]、次に、得られた銀化合物-アルコールスラリーに、脂肪族炭化水素アミンを添加してもよい。スラリーとは、固体の銀化合物が、アルコール溶剤中に分散されている混合物を表している。反応容器に、固体の銀化合物を仕込み、それにアルコール溶剤を添加しスラリーを得るとよい。
 あるいは、脂肪族炭化水素アミンとアルコール溶剤とを反応容器に仕込み、それに銀化合物-アルコールスラリーを添加してもよい。
 本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミンとして、例えば、炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を用いてもよい。これら各成分は、通常、アミン混合液として用いられるが、ただし、前記銀化合物(又はそのアルコールスラリー)に対する前記アミンの混合は、必ずしも混合された状態のアミン類を用いて行う必要はない。前記銀化合物(又はそのアルコールスラリー)に対して、前記アミン類を順次添加してもよい。
 本明細書において、確立された用語であるが、「脂肪族炭化水素モノアミン」とは、1~3個の1価の脂肪族炭化水素基と1つのアミノ基とからなる化合物である。「炭化水素基」とは、炭素と水素とのみからなる基である。ただし、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素モノアミン(B)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。この窒素原子がアミノ基を構成することはない。
 また、「脂肪族炭化水素ジアミン」とは、2価の脂肪族炭化水素基(アルキレン基)と、該脂肪族炭化水素基を介在した2つのアミノ基と、場合によっては、該アミノ基の水素原子を置換した脂肪族炭化水素基(アルキル基)とからなる化合物である。ただし、前記脂肪族炭化水素ジアミン(C)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。この窒素原子がアミノ基を構成することはない。
 炭素総数6以上の脂肪族炭化水素モノアミン(A)は、その炭化水素鎖によって、生成する銀粒子表面への保護剤(安定化剤)としての高い機能を有する。
 前記脂肪族炭化水素モノアミン(A)としては、第一級アミン、第二級アミン、及び第三級アミンが含まれる。第一級アミンとしては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の炭素数6~18の直鎖状脂肪族炭化水素基を有する飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとして、上記の直鎖脂肪族モノアミンの他に、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の炭素数6~16、好ましくは炭素数6~8の分枝状脂肪族炭化水素基を有する分枝脂肪族炭化水素モノアミンが挙げられる。また、シクロヘキシルアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(すなわち、アルケニルモノアミン)が挙げられる。
 第二級アミンとしては、直鎖状のものとして、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N-プロピル-N-ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンとしては、トリブチルアミン、トリヘキシルアミン等が挙げられる。
 また、分枝状のものとして、N,N-ジイソヘキシルアミン、N,N-ジ(2-エチルヘキシル)アミン等の第二級アミンが挙げられる。また、トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン等の第三級アミンが挙げられる。N,N-ジ(2-エチルヘキシル)アミンの場合、2-エチルヘキシル基の炭素数は8であるが、前記アミン化合物に含まれる炭素の総数は16となる。トリ(2-エチルヘキシル)アミンの場合、前記アミン化合物に含まれる炭素の総数は24となる。
 上記モノアミン(A)の内でも、直鎖状の場合には、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数6以上とすることにより、アミノ基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6~12のアルキルモノアミンが好ましく用いられる。前記直鎖脂肪族炭化水素モノアミンのうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 また、分枝脂肪族炭化水素モノアミン化合物を用いると、同じ炭素数の直鎖脂肪族炭化水素モノアミン化合物を用いた場合と比べ、分枝脂肪族炭化水素基の立体的因子により銀粒子表面上へのより少ない付着量で銀粒子表面のより大きな面積を被覆することができる。そのため、銀粒子表面上へのより少ない付着量で、銀ナノ粒子の適度な安定化が得られる。焼成時において除去すべき保護剤(有機安定剤)の量が少ないので、200℃以下の低温での焼成の場合にも、有機安定剤を効率よく除去でき、銀粒子の焼結が十分に進行する。
 上記分枝脂肪族炭化水素モノアミンの内でも、イソヘキシルアミン、2-エチルヘキシルアミン等の主鎖の炭素数5~6の分枝アルキルモノアミン化合物が好ましい。主鎖の炭素数5~6であると、銀ナノ粒子の適度な安定化が得られやすい。また、分枝脂肪族基の立体的因子の観点からは、2-エチルヘキシルアミンのように、N原子側から2番目の炭素原子において枝分かれしていることが有効である。前記分枝脂肪族モノアミンとして、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、前記脂肪族炭化水素モノアミン(A)として、前記直鎖状脂肪族炭化水素モノアミンと、前記分枝状脂肪族炭化水素モノアミンとをそれぞれの利点を得るために併用してもよい。
 炭素総数5以下の脂肪族炭化水素モノアミン(B)は、炭素総数6以上の脂肪族モノアミン(A)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記脂肪族モノアミン(A)に比べると極性が高く銀化合物の銀への配位能が高く、そのため錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼成に効果がある。
 前記脂肪族炭化水素モノアミン(B)としては、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の炭素数2~5の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。また、N,N-ジメチルアミン、N,N-ジエチルアミン等のジアルキルモノアミンが挙げられる。
 これらの内でも、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記脂肪族炭化水素モノアミン(B)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 炭素総数8以下の脂肪族炭化水素ジアミン(C)は、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物の銀への配位能が高くなる。また、前記脂肪族炭化水素ジアミン(C)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。さらに、前記脂肪族ジアミン(C)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短い時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間焼成に効果がある。
 前記脂肪族炭化水素ジアミン(C)としては、特に限定されないが、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、1,4-ブタンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、1,5-ペンタンジアミン、1,5-ジアミノ-2-メチルペンタン、1,6-ヘキサンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素総数8以下のアルキレンジアミンであり、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。
 これらの内でも、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(-NH)であり、他の1つが第三級アミノ基(-NR)である炭素総数8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。
 RN-R-NH
 ここで、Rは、2価のアルキレン基を表し、R及びRは、同一又は異なっていてもよく、アルキル基を表し、ただし、R、R及びRの炭素数の総和は8以下である。該アルキレン基は、通常は酸素原子又は窒素原子等のヘテロ原子(炭素及び水素以外の原子)を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。また、該アルキル基は、通常は酸素原子又は窒素原子等のヘテロ原子を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。
 2つのアミノ基のうちの1つが第一級アミノ基であると、銀化合物の銀への配位能が高くなり、錯体形成に有利であり、他の1つが第三級アミノ基であると、第三級アミノ基は銀原子への配位能に乏しいため、形成される錯体が複雑なネットワーク構造となることが防止される。錯体が複雑なネットワーク構造となると、錯体の熱分解工程に高い温度が必要となることがある。さらに、これらの内でも、低温焼成においても短時間で銀粒子表面から除去され得るという観点から、炭素総数6以下のジアミンが好ましく、炭素総数5以下のジアミンがより好ましい。前記脂肪族炭化水素ジアミン(C)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、前記炭素総数6以上の脂肪族炭化水素モノアミン(A)と、前記炭素総数5以下の脂肪族炭化水素モノアミン(B)及び前記炭素総数8以下の脂肪族炭化水素ジアミン(C)のいずれか一方又は両方との使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A):5モル%~65モル%
前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の合計量:35モル%~95モル%
とするとよい。前記脂肪族モノアミン(A)の含有量を5モル%~65モル%とすることによって、該(A)成分の炭素鎖によって、生成する銀粒子表面の保護安定化機能が得られやすい。前記(A)成分の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記(A)成分の含有量が65モル%を超えると、保護安定化機能は十分であるが、低温焼成によって該(A)成分が除去されにくくなる。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%~65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%~50モル%
とするとよい。
 前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の両方とを用いる場合には、それらの使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%~65モル%
前記脂肪族モノアミン(B): 5モル%~70モル%
前記脂肪族ジアミン(C):  5モル%~50モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%~65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%~50モル%
とするとよい。
 この場合には、前記(A)成分の含有量の下限については、10モル%以上が好ましく、20モル%以上がより好ましい。前記(A)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
 前記脂肪族モノアミン(B)の含有量を5モル%~70モル%とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼成に寄与でき、さらに、焼成時において前記脂肪族ジアミン(C)の銀粒子表面からの除去を助ける作用が得られやすい。前記(B)成分の含有量が5モル%未満では、錯体形成促進効果が弱かったり、あるいは、焼成時において前記(C)成分が銀粒子表面から除去されにくいことがある。一方、前記(B)成分の含有量が70モル%を超えると、錯体形成促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(B)成分の含有量の下限については、10モル%以上が好ましく、15モル%以上がより好ましい。前記(B)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
 前記脂肪族ジアミン(C)の含有量を5モル%~50モル%とすることによって、錯体形成促進効果及び錯体の熱分解促進効果が得られやすく、また、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。前記(C)成分の含有量が5モル%未満では、錯体形成促進効果及び錯体の熱分解促進効果が弱いことがある。一方、前記(C)成分の含有量が50モル%を超えると、錯体形成促進効果及び錯体の熱分解促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(C)成分の含有量の下限については、5モル%以上が好ましく、10モル%以上がより好ましい。前記(C)成分の含有量の上限については、45モル%以下が好ましく、40モル%以下がより好ましい。
 前記脂肪族モノアミン(A)と前記脂肪族モノアミン(B)とを用いる(前記脂肪族ジアミン(C)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(B)]を基準として、例えば、
前記脂肪族モノアミン(A):  5モル%~65モル%
前記脂肪族モノアミン(B): 35モル%~95モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%~65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%~50モル%
とするとよい。
 前記脂肪族モノアミン(A)と前記脂肪族ジアミン(C)とを用いる(前記脂肪族モノアミン(B)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%~65モル%
前記脂肪族ジアミン(C): 35モル%~95モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%~65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%~50モル%
とするとよい。
 以上の前記脂肪族モノアミン(A)、前記脂肪族モノアミン(B)及び/又は前記脂肪族ジアミン(C)の使用割合は、いずれも例示であり、種々の変更が可能である。
 本発明においては、銀化合物の銀への配位能が高い前記脂肪族モノアミン(B)、及び/又は前記脂肪族ジアミン(C)を用いると、それらの使用割合に応じて、前記炭素総数6以上の脂肪族モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼成の場合にも、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子(N)の焼結が十分に進行する。
 本発明において、前記脂肪族炭化水素アミン[例えば、(A)、(B)及び/又は(C)]の合計量は、特に限定されないが、原料の前記銀化合物の銀原子1モルに対して、1~50モル程度とするとよい。前記アミン成分の合計量[(A)、(B)及び/又は(C)]が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。一方、前記アミン成分の合計量[((A)、(B)及び/又は(C)]が、前記銀原子1モルに対して、50モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン成分の合計量を例えば2モル程度以上とするとよい。前記アミン成分の合計量を2~50モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン成分の合計量の下限については、前記銀化合物の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましい。なお、シュウ酸銀分子は、銀原子2個を含んでいる。
 本発明において、銀ナノ粒子(N)の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(D)を用いてもよい。前記脂肪族カルボン酸(D)は、前記アミン類と共に用いるとよく、前記アミン混合液中に含ませて用いることができる。前記脂肪族カルボン酸(D)を用いることにより、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上することがある。
 前記脂肪族カルボン酸(D)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
 これらの内でも、炭素数8~18の飽和又は不飽和の脂肪族モノカルボンが好ましい。炭素数8以上とすることにより、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(D)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 前記脂肪族カルボン酸(D)は、用いる場合には、原料の前記銀化合物の銀原子1モルに対して、例えば0.05~10モル程度用いるとよく、好ましくは0.1~5モル、より好ましくは0.5~2モル用いるとよい。前記(D)成分の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記(D)成分の添加による分散状態での安定性向上効果は弱い。一方、前記(D)成分の量が10モルに達すると、分散状態での安定性向上効果が飽和するし、また、低温焼成での該(D)成分の除去がされにくくなる。ただし、低温焼成での該(D)成分の除去を考慮すると、脂肪族カルボン酸(D)を用いなくてもよい。
 本発明において、通常は、用いる各脂肪族炭化水素アミン成分を含む混合液; 例えば、前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のいずれか一方又は両方とを含むアミン混合液を調製する[アミン混合液の調製工程]。
 アミン混合液は、各アミン(A)、(B)及び/又は(C)成分、及び用いる場合には前記カルボン酸(D)成分を、所定割合で室温にて攪拌して調製することができる。
 上記銀化合物(又はそのアルコールスラリー)に、各アミン成分を含む脂肪族炭化水素アミン混合液を添加して、前記銀化合物及び前記アミンを含む錯化合物を生成させる[錯化合物の生成工程]。各アミン成分は、混合液としてないで、逐次に銀化合物(又はそのアルコールスラリー)に添加してもよい。
 銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物(又はそのアルコールスラリー)に代えて、目的とする金属を含む金属化合物(又はそのアルコールスラリー)を用いる。
 銀化合物(又はそのアルコールスラリー)、あるいは金属化合物(又はそのアルコールスラリー)と、所定量のアミン混合液とを混合する。混合は、常温にて行うとよい。「常温」とは周囲温度に応じて5~40℃を意図する。例えば、5~35℃(JIS Z 8703)、10~35℃、20~30℃を意図する。通常の室温(例えば、15~30℃の範囲)であってもよい。この際の混合は、攪拌しながら、あるいは銀化合物(あるいは金属化合物)へのアミン類の配位反応は発熱を伴うため、上記温度範囲となるように、例えば5~15℃程度になるように適宜冷却して攪拌しながら行ってもよい。銀化合物とアミン混合液との混合を、炭素数3以上のアルコール存在下にて行うと、攪拌及び冷却は良好に行うことができる。アルコールとアミン類の過剰分が反応媒体の役割を果たす。
 銀アミン錯体の熱分解法においては、従来、反応容器中に液体の脂肪族アミン成分をまず仕込み、その中に粉体の銀化合物(シュウ酸銀)が投入されていた。液体の脂肪族アミン成分は引火性物質であり、その中への粉体の銀化合物の投入には危険がある。すなわち、粉体の銀化合物の投入による静電気による着火の危険性がある。また、粉体の銀化合物の投入により、局所的に錯形成反応が進行し、発熱反応が暴発してしまう危険もある。銀化合物とアミン混合液との混合を、前記アルコール存在下にて行うと、このような危険を回避できる。従って、スケールアップされた工業的な製造においても安全である。
 生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化の終了を適宜の分光法等により検出することにより、錯化合物の生成反応の終点を検知することができる。また、シュウ酸銀が形成する錯化合物は一般に無色(目視では白色として観察される)であるが、このような場合においても、反応混合物の粘性の変化などの形態変化に基づいて、錯化合物の生成状態を検知することができる。例えば、錯化合物の生成反応の時間は、30分~3時間程度である。このようにして、アルコール及びアミン類を主体とする媒体中に銀-アミン錯体(あるいは金属-アミン錯体)が得られる。
 次に、得られた錯化合物を加熱して熱分解させて、銀ナノ粒子(N)を形成する[錯化合物の熱分解工程]。銀以外の他の金属を含む金属化合物を用いた場合には、目的とする金属ナノ粒子が形成される。還元剤を用いることなく、銀ナノ粒子(金属ナノ粒子)が形成される。ただし、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 このような金属アミン錯体分解法において、一般に、アミン類は、金属化合物の分解により生じる原子状の金属が凝集して微粒子を形成する際の様式をコントロールすると共に、形成された金属微粒子の表面に被膜を形成することで微粒子相互間の再凝集を防止する役割を果たしている。すなわち、金属化合物とアミンの錯化合物を加熱することにより、金属原子に対するアミンの配位結合を維持したままで金属化合物が熱分解して原子状の金属を生成し、次に、アミンが配位した金属原子が凝集してアミン保護膜で被覆された金属ナノ粒子が形成されると考えられる。
 この際の熱分解は、錯化合物をアルコール(用いる場合)及びアミン類を主体とする反応媒体中で攪拌しながら行うことが好ましい。熱分解は、被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が生成する温度範囲内において行うとよいが、銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から前記温度範囲内のなるべく低温で行うことが好ましい。シュウ酸銀の錯化合物の場合には、例えば80℃~120℃程度、好ましくは95℃~115℃程度、より具体的には100℃~110℃程度とすることができる。シュウ酸銀の錯化合物の場合には、概ね100℃程度の加熱により分解が起こると共に銀イオンが還元され、被覆銀ナノ粒子を得ることができる。なお、一般に、シュウ酸銀自体の熱分解は200℃程度で生じるのに対して、シュウ酸銀-アミン錯化合物を形成することで熱分解温度が100℃程度も低下する理由は明らかではないが、シュウ酸銀とアミンとの錯化合物を生成する際に、純粋なシュウ酸銀が形成している配位高分子構造が切断されているためと推察される。
 また、錯化合物の熱分解は、アルゴンなどの不活性ガス雰囲気内において行うことが好ましいが、大気中においても熱分解を行うことができる。
 錯化合物の熱分解により、青色光沢を呈する懸濁液となる。この懸濁液から、過剰のアミン等の除去操作、例えば、銀ナノ粒子(あるいは金属ナノ粒子)の沈降、適切な溶剤(水、又は有機溶剤)によるデカンテーション・洗浄操作を行うことによって、目的とする安定な被覆銀ナノ粒子(N)(あるいは被覆金属ナノ粒子)が得られる[銀ナノ粒子の後処理工程]。洗浄操作の後、乾燥すれば、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)の粉体が得られる。しかしながら、湿潤状態の銀ナノ粒子(N)を銀ナノ粒子含有インクの調製に供してもよい。
 デカンテーション・洗浄操作には、水、又は有機溶剤を用いる。有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; シクロヘキサン等の脂環式炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、ブタノール等のようなアルコール溶剤; アセトニトリル; 及びそれらの混合溶剤を用いるとよい。
 凹版オフセット印刷用途を考慮すると、デカンテーション・洗浄操作の有機溶剤として、グリコール系溶剤を用いてもよい。前記グリコール系溶剤としては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル等のグリコールモノエーテルが例示される。前記グリコール系溶剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の銀ナノ粒子の形成工程においては還元剤を用いなくてもよいので、還元剤に由来する副生成物がなく、反応系から被覆銀ナノ粒子の分離も簡単であり、高純度の被覆銀ナノ粒子(N)が得られる。しかしながら、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 このようにして、用いた保護剤によって表面が被覆された銀ナノ粒子(N)が形成される。前記保護剤は、例えば、前記脂肪族モノアミン(A)を含み、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のうちのいずれか一方又は両方を含み、さらに用いた場合には前記カルボン酸(D)を含んでいる。保護剤中におけるそれらの含有割合は、前記アミン混合液中のそれらの使用割合と同等である。金属ナノ粒子についても同様である。
[銀マイクロ粒子(M)]
 本明細書において、「マイクロ粒子」なる用語は、平均粒子径が1μm以上10μm以下であることを意味している。銀マイクロ粒子(M)は、前記銀ナノ粒子(N)とは異なり、その表面に脂肪族炭化水素アミン保護剤を有しないものである。本発明において、銀マイクロ粒子は、球状粒子であってもよいが、フレーク状粒子であってもよい。フレーク状粒子とは、アスペクト比、すなわちマイクロ粒子の厚みに対する直径の比(直径/厚み)が例えば2以上であることを意図する。フレーク状粒子は、球状粒子よりも、該粒子同士の接触面積が大きくなり、そのため、導電性が良くなる傾向にある。また、銀マイクロ粒子(M)の平均粒子径は、粒度分布の50%累積径D50が、例えば1μm~5μm、好ましくは1μm~3μmである。銀塗料組成物をグラビアオフセット印刷用途に用いた場合、細線描画(例えば、L/S=30/30μm)の観点から粒子は小さい方が好ましい。銀マイクロ粒子としては、例えば、徳力化学研究所社製のシルベストシリーズのTC-507A(形状:フレーク状、D50:2.78μm)、AgS-050(形状:球状、D50:1.4μm)、C-34(形状:球状、D50:0.6μm)等が挙げられる。粒子径は、レーザー回折法で算出される。
[銀ナノ粒子(N)及び銀マイクロ粒子(M)の配合割合]
 本発明において、前記銀ナノ粒子(N)と前記銀マイクロ粒子(M)との配合割合については、特に限定されないが、銀ナノ粒子(N)と銀マイクロ粒子(M)の合計を基準として、例えば、
銀ナノ粒子(N):10~90重量%
銀マイクロ粒子(M):10~90重量%
とするとよい。このような配合割合とすることにより、銀ナノ粒子(N)の低温焼成による導電性向上効果、及び銀マイクロ粒子(M)による銀塗料組成物の安定性向上効果が得られやすい。
 銀ナノ粒子(N)の量が10重量%未満であると、銀マイクロ粒子(M)同士の隙間に入り込む銀ナノ粒子(N)が少なく、銀マイクロ粒子(M)相互間の接触向上作用が得られにくい。また、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)の低温焼成の効果も相対的に小さくなる。これらのため、低温焼成による導電性向上効果が得られにくくなる。一方、銀ナノ粒子(N)の量が90重量%を超えると、銀塗料組成物の保存安定性が低下する場合がある。本発明で用いる銀ナノ粒子(N)は、脂肪族炭化水素アミンを含む保護剤で表面が被覆されており、低温焼成に優れるが、塗料組成物の保存時においても徐々に焼結する場合がある。焼結は、塗料組成物の粘度上昇を引き起こす。このような観点から、常温付近でも安定な銀マイクロ粒子(M)を10重量%以上用いることが好ましい。
 好ましくは、
銀ナノ粒子(N):30~80重量%
銀マイクロ粒子(M):20~70重量%
とするとよく、より好ましくは、
銀ナノ粒子(N):50~75重量%
銀マイクロ粒子(M):25~50重量%
とするとよい。
[分散溶剤]
 分散溶剤は、銀ナノ粒子(N)及び銀マイクロ粒子(M)を良好に分散し得る溶剤であればよい。銀塗料組成物を得るための有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール等のようなアルコール溶剤; グリコール系溶剤; グリコールエステル系溶剤; ターピネオール、ジヒドロターピネオールのようなテルペン系溶剤等が挙げられる。所望の銀塗料組成物(銀インク、銀ペースト)の濃度や粘性に応じて、有機溶剤の種類や量を適宜定めるとよい。金属ナノ粒子についても同様である。
 分散溶剤として、凹版オフセット印刷用途を考慮すると、グリコール系溶剤、グリコールエステル系溶剤を用いることが好ましい。グリコール系溶剤としては、上記の銀ナノ粒子(N)のデカンテーション・洗浄操作の有機溶剤として挙げた、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール:BC)、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル等のグリコールモノエーテルが例示される。前記グリコール系溶剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。前記グリコール系溶剤は、銀ナノ粒子(N)のデカンテーション・洗浄操作で用いたものに由来するものであってよい。
 前記グリコールエステル系溶剤としては、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート:BCA)、プロピレングリコールモノメチルエーテルアセテート(PMA;1-メトキシ-2-プロピルアセテート)、ジプロピレングリコールモノメチルエーテルアセテート)等のグリコールモノエステルが例示される。前記グリコールエステル系溶剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 前記グリコール系溶剤や前記グリコールエステル系溶剤には、凹版オフセット印刷において、シリコーン製のブランケットに対して浸透する性質がある。ブランケットに溶剤が浸み込むことにより、ブランケット-インク界面が乾燥して、インクとブランケットとの密着力が低下して、ブランケットから基材へのインクの転写性を良くする効果がある。また、前記グリコール系溶剤や前記グリコールエステル系溶剤には、後述するバインダ樹脂、硬化性モノマー、重合開始剤を溶解させる作用もある。また、これら溶剤は揮発性が低く、銀インクの濃度変化が起こりにくいので好ましく、また、作業環境の観点からも好ましい。
 本発明において、前記分散溶剤はその合計量として、銀塗料組成物を基準として、例えば、30重量%以上60重量%以下、好ましくは30重量%以上50重量%以下、より好ましくは30重量%以上40重量%以下の範囲で含まれている。凹版オフセット印刷用途の観点から、前記分散溶剤の量が30重量%未満であると、溶剤量が少なく、印刷時の転写が良好に行われない可能性がある。一方、前記分散溶剤の量が60重量%を超えると、溶剤量が多く、細線印刷が良好に行われない可能性があり、また、低温焼成が良好に行われない可能性がある。
[バインダ樹脂]
 本発明において、銀塗料組成物は、さらにバインダ樹脂を含むことが好ましい。銀塗料組成物がバインダ樹脂を含んでいると、印刷すべき基板上に塗布(あるいは印刷)、焼成して得られた銀焼成膜(導電性パターン)と基板との密着性が向上するし、銀焼成膜の可とう性が向上する。
 バインダ樹脂としては、例えば、ポリビニルブチラール樹脂、ポリエステル系樹脂、アクリル系樹脂、エチルセルロース系樹脂、フェノール系樹脂、ポリイミド系樹脂、メラミン系樹脂、メラミン-ポリエステル系樹脂等が挙げられる。これらの内でも、ポリビニルブチラール樹脂、ポリエステル系樹脂が好ましく、両者を併用することも好ましい。
 ポリビニルブチラール樹脂は、特に限定されないが、重量平均分子量(Mw)が10,000~100,000程度のものが好ましい。ポリビニルブチラール樹脂の市販品としては、例えば、積水化学工業社製のエスレックBシリーズが挙げられる。ポリエステル系樹脂としては、特に限定されないが、例えば、ポリカプロラクトントリオール(市販品としては、株式会社ダイセル製のプラクセル305[PCL305])等が挙げられる。エチルセルロースの市販品としては、エトセル(ETHOCEL;登録商標,日新化成)シリーズが挙げられる。
 前記バインダ樹脂の添加量は、銀塗料組成物を基準として、例えば、0.1重量%以上10重量%以下、好ましくは2重量%以上5重量%以下程度である。この範囲のバインダ樹脂添加量により、銀焼成膜と基板との密着性向上、及び銀焼成膜の可とう性の向上が得られやすい。
[硬化性モノマー及び重合開始剤]
 本発明において、銀塗料組成物は、さらに硬化性モノマー及び重合開始剤を含むことが好ましい。銀粒子塗料組成物が硬化性モノマー及び重合開始剤を含んでいると、銀焼成膜と基板との密着性がさらに向上するし、銀焼成膜の可とう性が向上する。プラスチック基材等の柔軟な基材への追従性が向上する。
 硬化性モノマーとしては、オキセタン化合物、及びエポキシ化合物等が挙げられる。これらはカチオン重合性を有する。
 オキセタニル化合物としては、分子中に1つのオキセタニル基を有する単官能オキセタニル化合物であってもよいが、分子中に2つ又はそれ以上のオキセタニル基を有する多官能オキセタニル化合物が好ましい。例えば、単官能オキセタニル化合物として、3-エチル-3-ヒドロキシメチルオキセタン(市販品として東亜合成製のアロンオキセタンシリーズOXT-101)等が挙げられる。二官能オキセタニル化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[1-エチル-(3-オキセタニル)]メチルエーテル(市販品として東亜合成製のOXT-221)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン等が挙げられる。また、フェノールノボラックオキセタン(市販品として東亜合成製のPNOX)等の多官能オキセタニル化合物が挙げられる。オキセタニル化合物の1種のみを用いてもよいが、2種以上を用いてもよい。
 エポキシ化合物としては、分子中に1つのエポキシ基を有する単官能エポキシ化合物であってもよいが、分子中に2つ又はそれ以上のエポキシ基を有する多官能エポキシ化合物が好ましい。例えば、多官能エポキシ化合物として、ビスフェノールAジグリシジルエーテル、ビスフェノールAジβ-メチルグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールFジβ-メチルグリシジルエーテル、ノボラック型エポキシ樹脂類、トリスフェノールメタントリグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等のグリシジルエーテル類; フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等のジグリシジルエステル類; 等が挙げられる。多官能エポキシ化合物の1種のみを用いてもよいが、2種以上を用いてもよい。
 重合開始剤としては、熱もしくはUVで重合を開始させるものであればよいが、銀ナノ粒子を焼結させる必要性から、熱で重合開始させるものが良い。このようなカチオン触媒として、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体等を挙げることができる。本発明においては、例えば、商品名「PP-33」、「CP-66」、「CP-77」(以上、(株)ADEKA製)、商品名「FC-509」(スリーエム(株)製)、商品名「UVE1014」(G.E.(株)製)、商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」(以上、三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン(株)製)等の市販品を使用することができる。本発明では、低温焼成(120℃以下)を行い得ること、触媒の寿命、保存安定性の観点から、120℃付近で硬化反応を開始させる重合開始剤(例えば、SI-100L)が好ましい。
 前記硬化性モノマーの添加量は、銀塗料組成物を基準として、例えば、0.1重量%以上10重量%以下、好ましくは2重量%以上5重量%以下程度である。この範囲の硬化性モノマー添加量により、銀焼成膜と基板との密着性向上が得られやすく、銀焼成膜の可とう性の向上が得られやすい。硬化性モノマーの添加量が多すぎると、銀粒子同士の接触を阻害して、導電性が低下する傾向にある。硬化性モノマーの添加量が少なすぎると、銀焼成膜の可とう性向上が得られにくく、銀焼成膜と基板との密着性向上が得られにくい傾向にある。硬化に際しては、熱硬化が好ましいが、紫外線などの放射線硬化を行っても良い。重合開始剤の添加量は、前記硬化性モノマーを基準として、例えば、0.1重量%以上50重量%以下、好ましくは10重量%以上35重量%以下程度である。前記硬化性モノマーを効果させ得る添加量を適宜選択すればよい。
 本発明において、銀塗料組成物は、本発明の目的に沿うように、さらに上記以外の成分を含んでもよい。
 銀塗料組成物(銀インク)の粘度は、凹版オフセット印刷用途を考慮すると、印刷時の環境温度条件(例えば、25℃)において、例えば0.1Pa・s以上30Pa・s以下の範囲であり、好ましくは5Pa・s以上25Pa・s以下の範囲である。インクの粘度が0.1Pa・s未満であると、インクの流動性が高すぎるため、凹版からブランケットへのインクの受理や、ブランケットから印刷すべき基板へのインクの転写に不具合が生じるおそれがある。一方、インクの粘度が30Pa・sを超えると、インクの流動性が低すぎるため、凹版の凹部への充填性が悪くなるおそれがある。凹部への充填性が悪くなると、基板上に転写されたパターンの精度が低下して、細線の断線等の不具合が生じる。
 上記銀ナノ粒子の後処理工程で得られた乾燥状態あるいは湿潤状態の被覆銀ナノ粒子(N)の粉体と、銀マイクロ粒子(M)の紛体と、上述した分散溶剤と、用いる場合にはバインダ樹脂、硬化性モノマー及び重合開始剤とを混合攪拌することにより、懸濁状態の銀粒子を含有するインク(あるいはペースト)を調製することができる。前記銀粒子は、使用目的にもよるが、銀粒子含有インク中に銀ナノ粒子(N)及び銀マイクロ粒子(M)の合計として、例えば10重量%以上、あるいは25重量%以上、好ましくは30重量%以上の割合で含まれるようにするとよい。前記銀粒子の含有量の上限としては、80重量%以下が目安である。被覆銀ナノ粒子(N)及び銀マイクロ粒子(M)と分散溶剤と用いる場合にはバインダ樹脂、硬化性モノマー及び重合開始剤との混合・分散は、1回で行っても良いし、数回にて行っても良い。
 本発明により得られた銀塗料組成物(銀インク)は、安定性に優れている。前記銀インクは、例えば、50重量%の銀濃度において、1ヶ月間以上の期間において冷蔵5℃保管では粘度上昇を起こすことなく安定である。
 調製された銀塗料組成物(銀インク)を基板上に、公知の塗布法により、例えば凹版オフセット印刷法により塗布し、その後、焼成する。
 凹版オフセット印刷法により、パターン化された銀インク塗布層を得て、銀インク塗布層を焼成することにより、パターン化された銀導電層(銀焼成膜)を得る。
 凹版オフセット印刷においては、まず、銀インクを凹版の凹部に充填し、凹部に充填された銀インクを、通常シリコーンゴム製のブランケットに転写受理させ、その後、ブランケットから基板へ銀インクを転写する。本発明の銀インクにおいて、グリコールエステル系溶剤を含む分散溶剤が用いられていると、分散溶剤は、ブランケットに浸潤しブランケットを膨潤させる。ブランケットに浸潤した溶剤量に応じて、ブランケット表面に保持されている銀インクの濃度が高くなり、すなわち、乾燥が進行する。それによって、ブランケット表面の銀インクとブランケットとの密着性が低下して、ブランケットから基板への銀インクの転写性が向上する。
 銀インクがさらにバインダ樹脂を含んでいると、印刷すべき基板上に塗布(あるいは印刷)、焼成して得られた銀焼成膜と基板との密着性が向上し、銀焼成膜の可とう性が向上する。銀インクがさらに硬化性モノマー及び重合開始剤を含んでいると、銀焼成膜と基板との密着性がさらに向上するし、銀焼成膜の可とう性がさらに向上する。プラスチック基材等の柔軟な基材への追従性が向上する。
 焼成は、200℃以下、例えば室温(25℃)以上150℃以下、好ましくは室温(25℃)以上120℃以下の温度で行うことができる。しかしながら、短い時間での焼成によって、銀の焼結を完了させるためには、60℃以上200℃以下、例えば80℃以上150℃以下、好ましくは90℃)以上120℃以下の温度で行うことがよい。焼成時間は、銀インクの塗布量、焼成温度などを考慮して、適宜定めるとよく、例えば数時間(例えば3時間、あるいは2時間)以内、好ましくは1時間以内、より好ましくは30分間以内、さらに好ましくは10分間~20分間とするとよい。
 銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値)が発現する。低い抵抗値(例えば15μΩcm以下、範囲としては5~15μΩcm)を有する銀導電層が形成される。バルク銀の抵抗値は1.6μΩcmである。
 低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間での焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
 本発明により得られる銀導電材料は、各種の電子デバイス、例えば、電磁波制御材、回路基板、アンテナ、放熱板、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等に適用することができる。とりわけ、表面平滑性が要求される電子素材に有効であり、例えば、液晶ディスプレイにおける薄膜トランジスタ(TFT)のゲート電極として有効である。
 銀導電層の厚みは、目的とする用途に応じて適宜定めるとよい。特に限定されることなく、例えば5nm~10μm、好ましくは100nm~5μm、より好ましくは300nm~2μmの範囲から選択するとよい。
 以上、主として銀ナノ粒子を含有するインクを中心に説明したが、本発明によれば、銀以外の金属を含む金属ナノ粒子を含有するインクにも適用される。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[銀焼成膜の比抵抗値]
 得られた銀焼成膜について、4端子法(ロレスタGP MCP-T610)を用いて測定した。この装置の測定範囲限界は、10Ωcmである。
 以下の試薬を各実施例及び比較例で用いた。
n-ブチルアミン(MW:73.14):東京化成社製試薬
2-エチルヘキシルアミン(MW:129.25):和光純薬社製試薬
n-オクチルアミン(MW:129.25):東京化成社製試薬
メタノール:和光純薬社製試薬特級
1-ブタノール:和光純薬社製試薬特級
シュウ酸銀(MW:303.78):硝酸銀(和光純薬社製)とシュウ酸二水和物(和光純薬社製)とから合成したもの
[実施例1]
(銀ナノ粒子の調製)
 500mLフラスコにシュウ酸銀40.0g(0.1317mol)を仕込み、これに、60gのn-ブタノールを添加し、シュウ酸銀のn-ブタノールスラリーを調製した。このスラリーに、30℃で、n-ブチルアミン115.58g(1.5802mol)、2-エチルヘキシルアミン51.06g(0.3950mol)、及びn-オクチルアミン17.02g(0.1317mol)のアミン混合液を滴下した。滴下後、30℃で1時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させた。シュウ酸銀-アミン錯体の形成後に、110℃にて加熱して、シュウ酸銀-アミン錯体を熱分解させて、濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を得た。
 得られた懸濁液を冷却し、これにメタノール120gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、次に、ジエチレングリコールモノブチルエーテル(東京化成製)120gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、ジエチレングリコールモノブチルエーテルを含む湿った状態の銀ナノ粒子を得た。SII社製TG/DTA6300を用いた熱天秤の結果から、湿潤状態の銀ナノ粒子において銀ナノ粒子は90wt%を占めていた。
 また、湿潤状態の銀ナノ粒子について、定法により走査型電子顕微鏡(日本電子社製JSM-6700F)を用いて観察し、銀ナノ粒子の平均粒子径を求めたところ、平均粒子径(1次粒子径)は50nm程度であった。
 平均粒子径は、次のようにして求めた。銀ナノ粒子についてSEM観察を行い、SEM写真において任意に選ばれた10個の銀粒子の粒子径を求め、それらの平均値を平均粒子径とした。
(銀インクの調製)
 二官能オキセタンモノマーとしてのジ[1-エチル-(3-オキセタニル)]メチルエーテル(OXT-221、東亜合成社製)1.2g、ポリビニルブチラール樹脂(エスレックB,品番BM-1、積水化学工業社製)0.9g、ポリカプロラクトントリオール(PCL305、株式会社ダイセル製)0.3g、カチオン重合開始剤SI-100L(三新化学社製)0.3g、及びジエチレングリコールモノブチルエーテルアセテート(株式会社ダイセル製)6.3gを混合して、ポリビニルブチラール樹脂を完全に溶解させた。
 得られた溶液6gを量り取った。上記ジエチレングリコールモノブチルエーテルを含む湿った状態の銀ナノ粒子10gを量り取った。得られた溶液6g、前記湿った状態の銀ナノ粒子10g、及びフレーク状銀マイクロ粒子(シルベストシリーズ,品番TC-507A、徳力化学研究所社製)4gを、自転公転式混練機(倉敷紡績株式会社製、マゼルスターKKK2508)で30秒間攪拌混練した。その後、さらに、混練機での30秒間撹拌及びスパチュラでの1分間撹拌を2回繰り返した。このようにして、黒茶色の銀インクを調製した。
 得られた銀インクについて、SII社製TG/DTA6300を用いてTG-DTA(示差熱熱重量同時分析)を行い、銀インク中の銀濃度を求めたところ、銀濃度は65wt%であった。また、レオメータ(AntonPaar社製、レオメータMCR301)を用いて、銀インクの粘度を測定したところ、各せん断速度(/s)において、22Pa・s(5/s)、12Pa・s(10/s)、5Pa・s(50/s)であった。
 表1に、銀インクの配合組成を示す。表1において、各成分の組成は、全体を100重量部とした時の重量部で表されている。上述のように、「湿潤状態の銀ナノ粒子において銀ナノ粒子は90wt%を占めていた」から、
「湿った状態の銀ナノ粒子10g」=「銀ナノ粒子そのもの9g」+「ジエチレングリコールモノブチルエーテル1g」であった。
従って、表1においては、「銀ナノ粒子そのものとして45重量部」、「ジエチレングリコールモノブチルエーテル5重量部」と表示されている。
(銀インクの印刷適性)
 前記銀インクをシリコーン製ブランケットを有するグラビアオフセット印刷装置(日本電子精機株式会社製、ミニラボファインII)によりPENフィルム上に印刷し、印刷適性を評価したところ、CCD観察にてL/S=30μm/30μmの細線が転写可能であることを確認した。ブランケット上にインクの残渣は目視で観察されなかった。
(基材との密着性)
 前記銀インクをITOフィルム上に塗布し、120℃、30分間の条件で乾燥し、5μm厚みの塗膜を形成した。得られた塗膜について、JIS K5600に準じて、セロファン粘着テープ(ニチバン株式会社製)を用いてクロスカット・テープ剥離試験(25マス)を行った。良好な密着性を示した。
良好:剥離は0/25
不良:剥離は1/25以上
(銀インクの焼成)
 前記銀インクをソーダガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃、30分間の条件で送風乾燥炉にて焼成し、10μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、14.0μΩcmと良好な導電性を示した。このように、前記銀インクは、低温、短時間での焼成によって優れた導電性を発現した。
[実施例2]
 実施例1と同様にして、銀ナノ粒子を調製した。
(銀インクの調製)
 二官能オキセタンモノマー(OXT-221、東亜合成社製)0.9g、ポリビニルブチラール樹脂(エスレックB,品番BM-1、積水化学工業社製)0.6g、ポリカプロラクトントリオール(PCL305、株式会社ダイセル製)0.3g、カチオン重合開始剤SI-100L(三新化学社製)0.3g、及びジエチレングリコールモノブチルエーテルアセテート(株式会社ダイセル製)6.9gを混合して、ポリビニルブチラール樹脂を完全に溶解させた。
 得られた溶液6gを量り取った。上記ジエチレングリコールモノブチルエーテルを含む湿った状態の銀ナノ粒子10gを量り取った。得られた溶液6g、前記湿った状態の銀ナノ粒子10g、及びフレーク状銀マイクロ粒子(シルベストシリーズ,品番TC-507A、徳力化学研究所社製)4gを、自転公転式混練機(倉敷紡績株式会社製、マゼルスターKKK2508)で実施例1と同様にして混撹拌練し、黒茶色の銀インクを調製した。
銀インク中の銀濃度は65wt%であった。
銀インクの粘度は22Pa・s(5/s)、11Pa・s(10/s)、5Pa・s(50/s)であった。
(銀インクの印刷適性)
 前記銀インクをシリコーン製ブランケットを有するグラビアオフセット印刷装置(日本電子精機株式会社製、ミニラボファインII)によりPENフィルム上に印刷し、印刷適性を評価したところ、CCD観察にてL/S=30μm/30μmの細線が転写可能であることを確認した。ブランケット上にインクの残渣は目視で観察されなかった。
(基材との密着性)
 実施例1と同様にして、前記銀インクを用いてITOフィルム上に5μm厚みの塗膜を形成した。得られた塗膜について、クロスカット・テープ剥離試験(25マス)を行った。良好な密着性を示した。
(銀インクの焼成)
 実施例1と同様にして、前記銀インクを用いてソーダガラス板上に10μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、12.0μΩcmと良好な導電性を示した。このように、前記銀インクは、低温、短時間での焼成によって優れた導電性を発現した。
[実施例3]
 実施例1と同様にして、銀ナノ粒子を調製した。
(銀インクの調製)
 二官能オキセタンモノマー(OXT-221、東亜合成社製)0.9g、ポリビニルブチラール樹脂(エスレックB,品番BM-1、積水化学工業社製)0.6g、ポリカプロラクトントリオール(PCL305、株式会社ダイセル製)0.3g、カチオン重合開始剤SI-100L(三新化学社製)0.3g、及びジエチレングリコールモノブチルエーテルアセテート(株式会社ダイセル製)6.9gを混合して、ポリビニルブチラール樹脂を完全に溶解させた。
 得られた溶液6.2gを量り取った。上記ジエチレングリコールモノブチルエーテルを含む湿った状態の銀ナノ粒子8gを量り取った。得られた溶液6.2g、前記湿った状態の銀ナノ粒子8g、及びフレーク状銀マイクロ粒子(シルベストシリーズ,品番TC-507A、徳力化学研究所社製)5.8gを、自転公転式混練機(倉敷紡績株式会社製、マゼルスターKKK2508)で実施例1と同様にして混撹拌練し、黒茶色の銀インクを調製した。
銀インク中の銀濃度は65wt%であった。
銀インクの粘度は21Pa・s(5/s)、12Pa・s(10/s)、5Pa・s(50/s)であった。
(銀インクの印刷適性)
 前記銀インクをシリコーン製ブランケットを有するグラビアオフセット印刷装置(日本電子精機株式会社製、ミニラボファインII)によりPENフィルム上に印刷し、印刷適性を評価したところ、CCD観察にてL/S=30μm/30μmの細線が転写可能であることを確認した。ブランケット上にインクの残渣は目視で観察されなかった。
(基材との密着性)
 実施例1と同様にして、前記銀インクを用いてITOフィルム上に5μm厚みの塗膜を形成した。得られた塗膜について、クロスカット・テープ剥離試験(25マス)を行った。良好な密着性を示した。
(銀インクの焼成)
 実施例1と同様にして、前記銀インクを用いてソーダガラス板上に10μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、28.0μΩcmと良好な導電性を示した。このように、前記銀インクは、低温、短時間での焼成によって優れた導電性を発現した。
[比較例1:銀ナノ粒子なし]
(銀インクの調製)
 二官能オキセタンモノマー(OXT-221、東亜合成社製)1.2g、ポリビニルブチラール樹脂(エスレックB,品番BM-1、積水化学工業社製)0.9g、ポリカプロラクトントリオール(PCL305、株式会社ダイセル製)0.3g、カチオン重合開始剤SI-100L(三新化学社製)0.3g、ジエチレングリコールモノブチルエーテル(東京化成製)1.5g、及びジエチレングリコールモノブチルエーテルアセテート(株式会社ダイセル製)6.3gを混合して、ポリビニルブチラール樹脂を完全に溶解させた。
 得られた溶液7gを量り取った。得られた溶液7g、及びフレーク状銀マイクロ粒子(シルベストシリーズ,品番TC-507A、徳力化学研究所社製)13gを、自転公転式混練機(倉敷紡績株式会社製、マゼルスターKKK2508)で実施例1と同様にして混撹拌練し、黒茶色の銀インクを調製した。
銀インク中の銀濃度は65wt%であった。
銀インクの粘度は21Pa・s(5/s)、12Pa・s(10/s)、5Pa・s(50/s)であった。
(銀インクの印刷適性)
 前記銀インクをシリコーン製ブランケットを有するグラビアオフセット印刷装置(日本電子精機株式会社製、ミニラボファインII)によりPENフィルム上に印刷し、印刷適性を評価したところ、CCD観察にてL/S=30μm/30μmの細線が転写可能であることを確認した。ブランケット上にインクの残渣は目視で観察されなかった。
(基材との密着性)
 実施例1と同様にして、前記銀インクを用いてITOフィルム上に5μm厚みの塗膜を形成した。得られた塗膜について、クロスカット・テープ剥離試験(25マス)を行った。良好な密着性を示した。
(銀インクの焼成)
 実施例1と同様にして、前記銀インクを用いてソーダガラス板上に10μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、66.0μΩcmと導電性が劣っていた。このように、前記銀インクは、低温、短時間での焼成によっては導電性に劣っていた。
[比較例2:銀ナノ粒子なし]
(銀インクの調製)
 二官能オキセタンモノマー(OXT-221、東亜合成社製)0.9g、ポリビニルブチラール樹脂(エスレックB,品番BM-1、積水化学工業社製)0.6g、ポリカプロラクトントリオール(PCL305、株式会社ダイセル製)0.3g、カチオン重合開始剤SI-100L(三新化学社製)0.3g、ジエチレングリコールモノブチルエーテル(東京化成製)1.5g、及びジエチレングリコールモノブチルエーテルアセテート(株式会社ダイセル製)6.9gを混合して、ポリビニルブチラール樹脂を完全に溶解させた。
 得られた溶液7gを量り取った。得られた溶液7g、及びフレーク状銀マイクロ粒子(シルベストシリーズ,品番TC-507A、徳力化学研究所社製)13gを、自転公転式混練機(倉敷紡績株式会社製、マゼルスターKKK2508)で実施例1と同様にして混撹拌練し、黒茶色の銀インクを調製した。
銀インク中の銀濃度は65wt%であった。
銀インクの粘度は20Pa・s(5/s)、11Pa・s(10/s)、5Pa・s(50/s)であった。
(銀インクの印刷適性)
 前記銀インクをシリコーン製ブランケットを有するグラビアオフセット印刷装置(日本電子精機株式会社製、ミニラボファインII)によりPENフィルム上に印刷し、印刷適性を評価したところ、CCD観察にてL/S=30μm/30μmの細線が転写可能であることを確認した。ブランケット上にインクの残渣は目視で観察されなかった。
(基材との密着性)
 実施例1と同様にして、前記銀インクを用いてITOフィルム上に5μm厚みの塗膜を形成した。得られた塗膜について、クロスカット・テープ剥離試験(25マス)を行った。良好な密着性を示した。
(銀インクの焼成)
 実施例1と同様にして、前記銀インクを用いてソーダガラス板上に10μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、60.0μΩcmと導電性が劣っていた。このように、前記銀インクは、低温、短時間での焼成によっては導電性に劣っていた。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (13)

  1.  脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子(N)と、
     銀マイクロ粒子(M)と、
     分散溶剤とを含む銀粒子塗料組成物。
  2.  前記銀ナノ粒子(N)において、
     前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
     さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、請求項1に記載の銀粒子塗料組成物。
  3.  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下の直鎖状アルキル基を有する直鎖状アルキルモノアミン、及び炭素数6以上16以下の分枝状アルキル基を有する分枝状アルキルモノアミンからなる群から選ばれる少なくとも1つである、請求項2に記載の銀粒子塗料組成物。
  4.  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、請求項2又は3に記載の銀粒子塗料組成物。
  5.  前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、請求項2~4のうちのいずれかに記載の銀粒子塗料組成物。
  6.  前記銀ナノ粒子(N)の銀原子1モルに対して、前記脂肪族炭化水素アミンはその合計として1~50モル用いられている、請求項1~5のうちのいずれかに記載の銀粒子塗料組成物。
  7.  さらに、バインダ樹脂を含む、請求項1~6のうちのいずれかに記載の銀粒子塗料組成物。
  8.  前記バインダ樹脂は、ポリビニルブチラール樹脂、ポリエステル系樹脂、アクリル系樹脂、エチルセルロース系樹脂、フェノール系樹脂、ポリイミド系樹脂、メラミン系樹脂、及びメラミン-ポリエステル系樹脂からなる群から選ばれる少なくとも1つを含む、請求項7に記載の銀粒子塗料組成物。
  9.  さらに、硬化性モノマー、及び重合開始剤を含む、請求項1~8のうちのいずれかに記載の銀粒子塗料組成物。
  10.  前記硬化性モノマーは、オキセタン化合物、及びエポキシ化合物からなる群から選ばれる少なくとも1つを含む、請求項9に記載の銀粒子塗料組成物。
  11.  前記分散溶剤は、グリコールエステル系溶剤を少なくとも含む、請求項1~10のうちのいずれかに記載の銀粒子塗料組成物。
  12.  凹版オフセット印刷用に用いられる、請求項1~11のうちのいずれかに記載の銀粒子塗料組成物。
  13.  基板と、
     前記基板上に、請求項1~12のうちのいずれかに記載の銀粒子塗料組成物が塗布され、焼成されてなる銀導電層と、
    を有する電子デバイス。
PCT/JP2015/059000 2014-04-25 2015-03-24 銀粒子塗料組成物 WO2015163076A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580021982.5A CN106232268B (zh) 2014-04-25 2015-03-24 银粒子涂料组合物
JP2016514827A JPWO2015163076A1 (ja) 2014-04-25 2015-03-24 銀粒子塗料組成物
EP15782582.9A EP3135405B1 (en) 2014-04-25 2015-03-24 Silver particle coating composition
KR1020167031823A KR102321619B1 (ko) 2014-04-25 2015-03-24 은 입자 도료 조성물
US15/306,403 US20170043396A1 (en) 2014-04-25 2015-03-24 Silver particle coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091216 2014-04-25
JP2014091216 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163076A1 true WO2015163076A1 (ja) 2015-10-29

Family

ID=54332246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059000 WO2015163076A1 (ja) 2014-04-25 2015-03-24 銀粒子塗料組成物

Country Status (7)

Country Link
US (1) US20170043396A1 (ja)
EP (1) EP3135405B1 (ja)
JP (1) JPWO2015163076A1 (ja)
KR (1) KR102321619B1 (ja)
CN (1) CN106232268B (ja)
TW (1) TWI679253B (ja)
WO (1) WO2015163076A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023256A (ja) * 2014-07-22 2016-02-08 京セラケミカル株式会社 熱硬化性樹脂組成物、半導体装置及び電気・電子部品
JP2017183247A (ja) * 2016-03-31 2017-10-05 Jx金属株式会社 導電性金属粉ペースト
WO2017209266A1 (ja) * 2016-06-03 2017-12-07 株式会社Dnpファインケミカル 導電性パターン印刷用組成物及び導電性パターンを有する基板の製造方法
JP2018049735A (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
JP2018080232A (ja) * 2016-11-15 2018-05-24 株式会社ダイセル 導電性インク
JP2018095885A (ja) * 2018-01-22 2018-06-21 株式会社Dnpファインケミカル 導電性パターン印刷用組成物及び導電性パターンを有する基板の製造方法
EP3260503A4 (en) * 2015-02-19 2018-10-31 Daicel Corporation Silver particle coating composition
JP2020507669A (ja) * 2017-02-08 2020-03-12 ナショナル リサーチ カウンシル オブ カナダ 熱安定性が改善された分子インク
WO2020075590A1 (ja) * 2018-10-11 2020-04-16 株式会社ダイセル インク、焼結体、及び装飾ガラス
JPWO2019138882A1 (ja) * 2018-01-09 2020-12-24 株式会社ノリタケカンパニーリミテド 銀ナノ微粒子の製造方法および銀ナノ微粒子を含む銀ペースト
WO2021025003A1 (ja) * 2019-08-07 2021-02-11 株式会社ダイセル 接合性導体ペースト
JP2021021077A (ja) * 2018-12-05 2021-02-18 Dicグラフィックス株式会社 活性エネルギー線硬化型インキ、インキ硬化物の製造方法及び印刷物
WO2021044817A1 (ja) * 2019-09-02 2021-03-11 株式会社大阪ソーダ 銀粒子
JP2021038427A (ja) * 2019-09-02 2021-03-11 株式会社大阪ソーダ 銀粒子の焼結体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172252A1 (en) * 2013-04-15 2014-10-23 Kent State University Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions
EP3305862B1 (en) * 2015-05-27 2019-07-10 Nagase ChemteX Corporation Nano-metal ink and process for producing metal film using same
CN105618787B (zh) * 2016-01-27 2017-07-21 东莞理工学院 一种憎水性银纳米颗粒的制备方法
TWI741023B (zh) * 2016-08-31 2021-10-01 日商同和電子科技股份有限公司 被覆有銀之合金粉末、導電性糊膏、電子零件及電氣裝置
WO2019060166A1 (en) * 2017-09-25 2019-03-28 Eastman Kodak Company PROCESS FOR PRODUCING DISPERSIONS CONTAINING SILVER WITH NITROGEN BASES
KR102243472B1 (ko) * 2018-12-17 2021-04-26 주식회사 경동원 전력반도체 접합용 소결 페이스트 조성물
FR3104599B1 (fr) * 2019-12-11 2021-11-26 Genesink Encre à base de nanoparticules d’argent
WO2021125161A1 (ja) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
WO2022009837A1 (ja) * 2020-07-08 2022-01-13 株式会社ダイセル 導電性インク
CN115812089B (zh) * 2020-07-08 2024-10-18 株式会社大赛璐 导电性油墨
JPWO2022070778A1 (ja) * 2020-09-30 2022-04-07
DE102022001868A1 (de) 2022-05-29 2023-11-30 Elke Hildegard Münch Biozid beschichtete, retikulierte Schaumstoffe aus Kunststoff, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102023106549A1 (de) 2023-03-15 2024-09-19 Elke Münch Verfahren und Vorrichtung zur Prävention der Verkeimung von eingebauten Luftfiltern sowie keimfreie Luftfilter

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111665A (ja) * 2003-10-02 2005-04-28 Sumitomo Rubber Ind Ltd オフセット印刷用ブランケットおよびそれを用いた電極パターンの印刷方法
JP2005174828A (ja) * 2003-12-12 2005-06-30 Hitachi Ltd 配線導電体形成用組成物及びそれを用いた配線基板の製造方法、並びに配線基板
JP2006257517A (ja) * 2005-03-18 2006-09-28 Toyo Ink Mfg Co Ltd 金属微粒子分散体の製造方法、該方法で製造された金属微粒子分散体を用いた導電性インキ、および非接触型メディア
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010037574A (ja) * 2008-07-31 2010-02-18 Mitsuboshi Belting Ltd 金属ナノ粒子ペースト及びパターン形成方法
JP2010055807A (ja) 2008-08-26 2010-03-11 Sumitomo Rubber Ind Ltd 導電性ペーストとそれを用いた導電機能部材の製造方法
JP2010090211A (ja) 2008-10-06 2010-04-22 Mitsubishi Materials Corp 導電性インク組成物及びこれを用いた電極の形成方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2011037999A (ja) 2009-08-12 2011-02-24 Dic Corp 導電性インキ及び導電性パターン形成方法
JP2012038615A (ja) 2010-08-09 2012-02-23 Dic Corp 導電性銀ペースト、導電性パターンの形成方法及び導電性パターン印刷物
JP2012162767A (ja) 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法
JP2013036057A (ja) * 2011-08-03 2013-02-21 Dai Ichi Kogyo Seiyaku Co Ltd 銀粒子分散体組成物、これを用いた導電性回路および導電性回路の形成方法
JP2013142172A (ja) 2012-01-11 2013-07-22 Yamagata Univ 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2013142173A (ja) 2012-01-11 2013-07-22 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
WO2013108408A1 (ja) * 2012-01-20 2013-07-25 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2014024721A1 (ja) 2012-08-07 2014-02-13 株式会社ダイセル 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2014034690A (ja) * 2012-08-07 2014-02-24 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319075C (zh) * 2000-10-25 2007-05-30 播磨化成株式会社 导电金属膏
JP4963393B2 (ja) * 2006-10-03 2012-06-27 三ツ星ベルト株式会社 低温焼成型銀ペースト
WO2009150972A1 (ja) * 2008-06-13 2009-12-17 Dic株式会社 絶縁膜形成用インキ組成物、該インキ組成物から形成された絶縁膜
WO2012023691A2 (ko) * 2010-08-16 2012-02-23 주식회사 엘지화학 인쇄 조성물 및 이를 이용한 인쇄방법
JP5871720B2 (ja) * 2011-06-16 2016-03-01 株式会社ダイセル 印刷用溶剤又は溶剤組成物
JP6081231B2 (ja) * 2012-03-05 2017-02-15 ナミックス株式会社 熱伝導性ペースト及びその使用
CN104237822B (zh) * 2013-06-20 2018-10-19 意法半导体(中国)投资有限公司 用于电子磁力计传感器的补偿磁干扰
TW201531528A (zh) * 2013-12-27 2015-08-16 Nippon Kayaku Kk 導電性糊及導電性膜

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111665A (ja) * 2003-10-02 2005-04-28 Sumitomo Rubber Ind Ltd オフセット印刷用ブランケットおよびそれを用いた電極パターンの印刷方法
JP2005174828A (ja) * 2003-12-12 2005-06-30 Hitachi Ltd 配線導電体形成用組成物及びそれを用いた配線基板の製造方法、並びに配線基板
JP2006257517A (ja) * 2005-03-18 2006-09-28 Toyo Ink Mfg Co Ltd 金属微粒子分散体の製造方法、該方法で製造された金属微粒子分散体を用いた導電性インキ、および非接触型メディア
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010037574A (ja) * 2008-07-31 2010-02-18 Mitsuboshi Belting Ltd 金属ナノ粒子ペースト及びパターン形成方法
JP2010055807A (ja) 2008-08-26 2010-03-11 Sumitomo Rubber Ind Ltd 導電性ペーストとそれを用いた導電機能部材の製造方法
JP2010090211A (ja) 2008-10-06 2010-04-22 Mitsubishi Materials Corp 導電性インク組成物及びこれを用いた電極の形成方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2011037999A (ja) 2009-08-12 2011-02-24 Dic Corp 導電性インキ及び導電性パターン形成方法
JP2012038615A (ja) 2010-08-09 2012-02-23 Dic Corp 導電性銀ペースト、導電性パターンの形成方法及び導電性パターン印刷物
JP2012162767A (ja) 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法
JP2013036057A (ja) * 2011-08-03 2013-02-21 Dai Ichi Kogyo Seiyaku Co Ltd 銀粒子分散体組成物、これを用いた導電性回路および導電性回路の形成方法
JP2013142172A (ja) 2012-01-11 2013-07-22 Yamagata Univ 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2013142173A (ja) 2012-01-11 2013-07-22 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
WO2013108408A1 (ja) * 2012-01-20 2013-07-25 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2014024721A1 (ja) 2012-08-07 2014-02-13 株式会社ダイセル 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2014034690A (ja) * 2012-08-07 2014-02-24 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135405A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023256A (ja) * 2014-07-22 2016-02-08 京セラケミカル株式会社 熱硬化性樹脂組成物、半導体装置及び電気・電子部品
US11254827B2 (en) 2015-02-19 2022-02-22 Daicel Corporation Silver particle coating composition
EP3260503A4 (en) * 2015-02-19 2018-10-31 Daicel Corporation Silver particle coating composition
JP2017183247A (ja) * 2016-03-31 2017-10-05 Jx金属株式会社 導電性金属粉ペースト
WO2017209266A1 (ja) * 2016-06-03 2017-12-07 株式会社Dnpファインケミカル 導電性パターン印刷用組成物及び導電性パターンを有する基板の製造方法
JP2017218469A (ja) * 2016-06-03 2017-12-14 株式会社Dnpファインケミカル 導電性パターン印刷用組成物及び導電性パターンを有する基板の製造方法
US20190185684A1 (en) * 2016-08-21 2019-06-20 Yazaki Corporation Electrically conductive paste and wiring board using the same
JP2018049735A (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
WO2018055848A1 (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
JP2018080232A (ja) * 2016-11-15 2018-05-24 株式会社ダイセル 導電性インク
JP2020507669A (ja) * 2017-02-08 2020-03-12 ナショナル リサーチ カウンシル オブ カナダ 熱安定性が改善された分子インク
JP7353185B2 (ja) 2017-02-08 2023-09-29 ナショナル リサーチ カウンシル オブ カナダ 熱安定性が改善された分子インク
JPWO2019138882A1 (ja) * 2018-01-09 2020-12-24 株式会社ノリタケカンパニーリミテド 銀ナノ微粒子の製造方法および銀ナノ微粒子を含む銀ペースト
JP7190449B2 (ja) 2018-01-09 2022-12-15 株式会社ノリタケカンパニーリミテド 銀ナノ微粒子の製造方法および銀ナノ微粒子を含む銀ペースト
JP2018095885A (ja) * 2018-01-22 2018-06-21 株式会社Dnpファインケミカル 導電性パターン印刷用組成物及び導電性パターンを有する基板の製造方法
WO2020075590A1 (ja) * 2018-10-11 2020-04-16 株式会社ダイセル インク、焼結体、及び装飾ガラス
JP2021021077A (ja) * 2018-12-05 2021-02-18 Dicグラフィックス株式会社 活性エネルギー線硬化型インキ、インキ硬化物の製造方法及び印刷物
WO2021025003A1 (ja) * 2019-08-07 2021-02-11 株式会社ダイセル 接合性導体ペースト
WO2021044817A1 (ja) * 2019-09-02 2021-03-11 株式会社大阪ソーダ 銀粒子
JP2021038427A (ja) * 2019-09-02 2021-03-11 株式会社大阪ソーダ 銀粒子の焼結体

Also Published As

Publication number Publication date
CN106232268A (zh) 2016-12-14
EP3135405A4 (en) 2018-01-03
EP3135405A1 (en) 2017-03-01
TW201542713A (zh) 2015-11-16
JPWO2015163076A1 (ja) 2017-04-13
US20170043396A1 (en) 2017-02-16
CN106232268B (zh) 2020-05-19
EP3135405B1 (en) 2022-07-20
TWI679253B (zh) 2019-12-11
KR102321619B1 (ko) 2021-11-05
KR20160149220A (ko) 2016-12-27

Similar Documents

Publication Publication Date Title
WO2015163076A1 (ja) 銀粒子塗料組成物
WO2016052036A1 (ja) 銀粒子塗料組成物
JP6532862B2 (ja) 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
JP6001861B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6664373B2 (ja) 銀粒子塗料組成物
JP6026565B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6151893B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP2013142172A (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6564385B2 (ja) 銀粒子塗料組成物
JP2017101330A (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6378880B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514827

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15306403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015782582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031823

Country of ref document: KR

Kind code of ref document: A