[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015159748A1 - Layered film and process for producing layered film - Google Patents

Layered film and process for producing layered film Download PDF

Info

Publication number
WO2015159748A1
WO2015159748A1 PCT/JP2015/060702 JP2015060702W WO2015159748A1 WO 2015159748 A1 WO2015159748 A1 WO 2015159748A1 JP 2015060702 W JP2015060702 W JP 2015060702W WO 2015159748 A1 WO2015159748 A1 WO 2015159748A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
surface layer
acrylate
segment
condition
Prior art date
Application number
PCT/JP2015/060702
Other languages
French (fr)
Japanese (ja)
Inventor
純平 大橋
規文 三羽
康之 石田
高田 育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015520443A priority Critical patent/JP6528681B2/en
Priority to KR1020167024876A priority patent/KR102242709B1/en
Priority to CN201580018002.6A priority patent/CN106132689B/en
Publication of WO2015159748A1 publication Critical patent/WO2015159748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties

Definitions

  • the present invention relates to a laminated film having both scratch resistance, in particular, repeated scratch resistance and moldability.
  • plastic films with a surface layer made of synthetic resin have been used for the purpose of protecting optical surfaces such as color filters, flat panel displays, and car body surfaces (preventing scratches and imparting antifouling properties). Yes.
  • Non-Patent Document 1 various prepolymers such as organosilanes and polyfunctional acrylics described in Non-Patent Document 1 are used.
  • the coating composition containing an oligomer, etc. is applied using a coating-drying-heat or UV-curing "high cross-linking density material” or an "organic-inorganic hybrid material” combined with various surface-modified fillers. Scratch resistance is imparted by using a so-called “hard coat material” with increased surface hardness.
  • the surface layer is required to have scratch resistance as an essential characteristic from the viewpoint of surface protection, and various characteristics such as chemical resistance, oil resistance and moldability are required depending on the application.
  • the moldability is easily cracked or peeled off by simply hardening the coating film, so it is difficult to scratch but is flexible, and it is required to have both scratch resistance and moldability. Yes.
  • Patent Document 1 states that “a laminated film having a hard coat layer provided on at least one side of a base film, A laminated film is proposed in which the maximum value of the surface hardness of the hard coat layer is 0.05 GPa or more and 4.0 GPa or less, and the crack elongation at 100 ° C. is 15% or more and less than 250% ”. Yes.
  • Patent Documents 2 and 3 propose a film using a so-called “self-healing material” that repairs scratches on the surface by deformation of the elastic recovery range of the material of the surface layer and achieves scratch resistance. Furthermore, as a material whose moldability is improved by improving the extensibility of the self-healing material, Patent Document 4 discloses that “at least one resin (A) selected from an epoxy resin, an oxetane resin and a vinyl ether resin” , A resin composition comprising a polyol (B) having a number average molecular weight of 400 or more, and an active energy ray-sensitive catalyst (C), wherein the polyol (B) has a main chain comprising a carbon-carbon bond (B1) , Polycarbonate polyol (B2), polyester polyol (B3), and polyether polyol (B4).
  • the active energy ray-curable coating agent is proposed, which is a ol.
  • Patent Document 5 states that “a stress relaxation layer and a self-healing layer are arranged in this order on at least one surface of a resin base material.
  • the self-healing layer is composed of at least a soft synthetic resin, and the hardness H due to nanoindentation of the stress relaxation layer in contact with the self-healing layer is equal to the nanoindentation of the self-healing layer.
  • Proposed is a laminate with a self-healing layer characterized by having a hardness equal to or lower than the hardness H of
  • JP 2009-184284 A International Publication No. 2011/136042 JP-A-11-228905 JP 2007-284613 A JP 2011-5766 Gazette
  • a molded body using the “hard coat material” for the surface layer is often scratched in daily life and has a poor appearance despite the extremely high surface hardness.
  • the surface of the “hard coat material” is high in hardness, but if the surface is repeatedly rubbed with a soft cloth or the like, fine scratches are generated on the surface and the surface becomes cloudy.
  • self-healing materials are flexible materials, they seem to be excellent in moldability. However, when molding is actually performed, the surface layer is cracked immediately after molding or when stored after molding. It was found that the surface layer may peel off from (crack) or the starting point.
  • Patent Documents 4 and 5 have proposed that both self-repairability and moldability be one of the problems. However, the present inventors have confirmed that both of these effects are cracks during molding. Or in terms of repeated rubbing. In addition, none of Patent Documents 1 to 5 has an idea about the structure of the present invention. Accordingly, an object of the present invention is to provide a laminated film having both scratch resistance, in particular, repeated scratch resistance and moldability.
  • the present invention is as follows.
  • a laminated film having a surface layer containing an A layer and a B layer on at least one surface of a supporting substrate, wherein the B layer and the A layer are in contact in this order from the supporting substrate side.
  • Layer, B layer, 25 ° C. storage elastic modulus (hereinafter referred to as E A25 , E B25 , E C25 ) and 120 ° C. storage elastic modulus (hereinafter referred to as E A120 , E B120 , E C120 ) satisfies the following conditions.
  • Condition 1 E A25 ⁇ E B25 ⁇ E C25
  • Condition 2 E B120 ⁇ E A120 ⁇ E C120
  • Condition 3 E A25 ⁇ 100 MPa
  • Condition 4 0 ⁇ E C25 -E B25 ⁇ 5 GPa
  • Condition 5 0 ⁇ E A120 -E B120 ⁇ 50 MPa
  • Tg B glass transition temperature
  • T B the thickness of the B layer
  • T B the thickness of the B layer
  • Condition 7 0.1 ⁇ m ⁇ T B ⁇ 5 ⁇ m (5) 10% of the surface layer thickness (hereinafter referred to as position 1), 50% (hereinafter referred to as position 2), 99 from the surface of the surface layer in the cross section perpendicular to the base material of the surface layer, 99 % (Hereinafter referred to as position 3)
  • the elastic moduli E1, E2, and E3 at each position of the atomic force microscope satisfy the following condition, according to any one of (1) to (4) Laminated film.
  • sectional drawing which shows the structure of the laminated
  • the present inventors have (1) the reason why the self-healing material is superior to the hard coat material in the actual use environment, and (2) the flexible self-healing material is immediately after molding or molding.
  • the following considerations have been made by examining in detail the cracks in the surface layer during subsequent storage and the reason why the surface layer peels from the crack.
  • the formation of scratches on the plastic surface is affected by three factors: “pressure”, “hardness of the scraping”, and “number of scratches”.
  • the reason why hard coat materials are likely to be scratched in the actual use environment is that the scratch formation mechanism in the actual use environment, that is, “in the actual use environment, the surface is scratched but the hardness is low, but the number of contact is very high”. caused by.
  • the hardness is low, but the pressure at the time of rubbing is low, even if the surface is not scratched by one rubbing, internal strain that does not cause scratches remains on the material surface, This is accumulated as distortion as the “number of scratches” increases.
  • the surface layer is an entropy elastic body, so the elastic modulus increases compared to molding, When the elongation of is large, the fracture limit is reached and cracks are considered to occur.
  • the present inventors as a surface layer of a laminated film, have excellent scratch resistance as described above, in particular, a surface having the following structure that has both sufficient moldability while having repeated scratch resistance in an actual use environment.
  • a laminated film having layers was found.
  • the laminated film of the present invention has a surface layer including an A layer and a B layer on at least one surface of a support substrate 3 as shown in FIG. Are in this order.
  • Storage elastic modulus at 25 ° C. hereinafter referred to as E A25 , E B25 , E C25
  • C layer storage elastic modulus at 120 ° C.
  • E A120 , E B120 , E C120 preferably satisfy the following conditions.
  • Condition 1 E A25 ⁇ E B25 ⁇ E C25
  • Condition 2 E B120 ⁇ E A120 ⁇ E C120
  • Condition 3 E A25 ⁇ 100 MPa.
  • the condition 1 is that the elastic modulus at 25 ° C., that is, the layer A (layer in contact with the layer B in the surface layer) and the layer B (layer in contact with the support substrate in the surface layer) at the temperature at which the laminated film is actually used. ), And the storage elastic modulus relationship of the C layer (support base material).
  • C layer has the highest storage elastic modulus
  • B layer has higher storage elastic modulus than A layer
  • C layer has the same or lower storage elastic modulus than C layer, which means that A layer has the lowest storage elastic modulus. More preferably, E A25 ⁇ E B25 ⁇ E C25 .
  • the B layer has sufficient cohesive force, and the surface layer has sufficient adhesion to the C layer, and even if it is repeatedly rubbed in actual use, it is difficult to cause peeling. preferable.
  • the surface layer may include other layers as long as it includes the A layer and the B layer. That is, the structure of the surface layer may be composed of three or more layers as shown in FIG. 3, and the elastic modulus of the layer on the surface side of the A layer in this case (referred to as Z layer) is not particularly limited.
  • the Z layer preferably has an elastic modulus close to that of the A layer.
  • the Z layer may have other functions such as antifouling properties, fingerprint resistance, dye resistance, antireflection properties, antiglare properties, and antistatic properties.
  • the storage elastic modulus measured with the micro hardness meter described above indicates a value measured with a micro hardness meter by preparing an ultrathin section of the cross section of the surface layer of the laminated film. Details of a specific measurement method and calculation method will be described later.
  • Condition 2 shows the relationship between the elastic modulus at 120 ° C., that is, the elastic modulus of the A layer, the B layer, and the C layer near the molding temperature of the laminated film.
  • the B layer has the lowest elastic modulus, or
  • the A layer has a lower elastic modulus than the C layer, which means that the C layer has the highest elastic modulus. More preferably, E B120 ⁇ E A120 ⁇ E C120 .
  • the elastic modulus of the B layer becomes lower than that of the A layer at the time of molding, so that no residual stress remains in the A layer, and cracks occur even in heating in the subsequent processes and high temperatures in the use environment. It is preferable because it is difficult.
  • the above-described mechanism may cause residual stress to accumulate at the time of molding, and may cause cracking at a high temperature in the subsequent heating and usage environment. .
  • Condition 3 indicates a preferable range of the elastic modulus (E A25 ) of the A layer at 25 ° C.
  • the value of E A25 is preferably at most 100 MPa, more preferably at most 50 MPa, and particularly preferably 20 MPa. If the value of E A25 exceeds 100 MPa, the strain release due to elastic recovery may be insufficient during repeated rubbing. Also there is no particular trouble in achieving this object is to the minute value of E A is small, there occur the adhesion to the surface becomes to 1MPa or less, if the terms of the surface protection is not practical is there.
  • Condition 4 0 ⁇ E C25 -E B25 ⁇ 5 GPa
  • Condition 5 0 ⁇ E A120 -E B120 ⁇ 50 MPa.
  • condition 4 indicates the range of the preferable storage elastic modulus difference between the B layer and the C layer at the temperature in the actual use environment of the laminated film, and more preferably 100 MPa ⁇ E C25 ⁇ E B25 ⁇ 3 GPa. .
  • E C25 -E B25 When E C25 -E B25 is 5 GPa or more, the adhesion of the surface layer to the supporting substrate becomes insufficient, and the repeated scratch resistance may decrease. When E C25 -E B25 becomes zero, as a result, the difference in elastic modulus between the A layer and the B layer increases, resulting in an increase in stress concentration at the interface between the A layer and the B layer. It may be easier.
  • Condition 5 shows a range of a preferable storage elastic modulus difference between the A layer and the B layer at the molding temperature, more preferably 0 ⁇ E A120 ⁇ E B120 ⁇ 30 MPa, and further preferably 0 ⁇ E A120 ⁇ E. B120 ⁇ 10 MPa.
  • E A120 -E B120 is 50 MPa or more, the adhesion between the surface layer and the supporting substrate becomes insufficient in the molding process, which may cause wrinkles. Further, when the direction of E B 120 is larger than E A 120, residual stress occurs at the interface between the A layer and the B layer during molding, which may easily crack or peel.
  • the surface layer preferably satisfies the following condition 6.
  • Condition 6 60 ° C. ⁇ Tg B ⁇ 130 ° C.
  • the condition 6 indicates a preferable range of the glass transition temperature of the layer (B layer) in contact with the supporting substrate in the surface layer, and more preferably 60 ° C. ⁇ Tg B ⁇ 100 ° C.
  • the glass transition temperature is a value obtained from the maximum value of temperature dispersion of the ratio of storage elastic modulus to loss elastic modulus (loss tangent) measured by the above-described microhardness meter. Details of the measurement method will be described later.
  • the glass transition temperature of the B layer When the glass transition temperature of the B layer is lower than 60 ° C., the adhesion between the surface layer and the supporting substrate is lowered, so that scratches may easily remain due to peeling at room temperature or rubbing with a hard material. Moreover, when the glass transition temperature of B layer is higher than 130 degreeC, it may become easy to produce a crack and peeling at the time of shaping
  • the surface layer preferably satisfies the following condition 7.
  • Condition 7 0.1 ⁇ m ⁇ T B ⁇ 5 ⁇ m.
  • Condition 7 indicates a preferable range of the thickness (T B ) of the layer (B layer) in contact with the support base material in the surface layer, and more preferably 0.5 ⁇ m ⁇ T B ⁇ 3 ⁇ m. If the thickness of layer B is less than 0.1 ⁇ m, the ability to absorb residual stress generated between the surface layer and the supporting substrate during molding may be slightly weakened. If the thickness of layer B is greater than 5 ⁇ m, the surface layer and the supporting base The adhesion between materials may be slightly weakened.
  • the laminated film of the present invention is a laminated film having a surface layer containing an A layer and a B layer on at least one surface of a supporting substrate as shown in FIG. 2, and is perpendicular to the substrate of the surface layer.
  • position 1 position 5 in FIG. 2
  • position 2 position 2; 6 in FIG. 2
  • Position position 3; position 7 in FIG. 2
  • the elastic moduli E1, E2, and E3 by the atomic force microscope are as follows: Condition 8, Condition 9, Condition 10 It is preferable to satisfy.
  • Condition 8 E1 ⁇ E2 ⁇ E3 Condition 9 E1 ⁇ 100 MPa Condition 10 E3 ⁇ 1 GPa Condition 8 intends that the elastic modulus is preferably higher from the surface side toward the substrate side in the thickness direction of the surface layer, and preferably E1 ⁇ E2 ⁇ E3, and E1 ⁇ E2 ⁇ E3. It is more preferable that
  • Condition 9 indicates a preferable range of the elastic modulus (E1) on the surface side of the surface layer.
  • E1 is preferably 100 MPa or less, more preferably 50 MPa or less, and particularly preferably 20 MPa or less. If the value of E1 exceeds 100 MPa, the strain release due to elastic recovery may be insufficient during repeated rubbing. In addition, since the value of E1 is small, there is no particular problem in achieving this problem, but if it is 1 MPa or less, the surface may become sticky and may not be practical from the viewpoint of surface protection. .
  • Condition 10 indicates a preferable range of the elastic modulus (E3) of the surface layer on the support base material side.
  • the value of E3 is preferably 1 GPa or more, more preferably 2 GPa or more, and particularly preferably 3 GPa or more.
  • E3 is less than 1 GPa, the surface hardness becomes insufficient, and the durability against scratching by a hard material may be insufficient.
  • an ultra-thin section of the surface layer of the laminated film is produced with an ultramicrotome (Ultracut S manufactured by Leica)
  • the measurement sample is measured under the following conditions, and the elastic modulus is calculated using Hertz's contact theory.
  • the measurement principle using an ultra-micro hardness meter will be described below.
  • A is the projected area of the indentation formed by contact between the sample and the indenter
  • E * is the combined elastic modulus of the indenter system and the sample system.
  • the tip of the indenter when the indenter contacts the very surface of the sample, the tip of the indenter is regarded as a spherical shape, and it is considered that the Hertz contact theory relating to the contact between the spherical shape and the semi-infinite flat plate can be applied.
  • the radius a of the indentation projection surface when the indenter is in contact with the sample is expressed by Equation (2).
  • the projected area A of the impression formed by the contact between the sample and the indenter is expressed by Expression (3), and E * can be calculated using Expression (1) to Expression (3).
  • Modulus mapping is based on the Hertz contact theory described above. An indenter is brought into contact with the very surface of the sample, the indenter is microvibrated during the test, and the response amplitude and phase difference with respect to the vibration are obtained as a function of time. System stiffness) and D (sample damping).
  • Equation (4) the total force (detected load component) F (t) in the direction in which the indenter enters the sample is expressed by Equation (4).
  • the first term of equation (4) is the force derived from the indenter shaft (m: mass of the indenter shaft), the second term of equation (4) is the force derived from the viscous component of the sample, and the third term of equation (4).
  • m mass of the indenter shaft
  • the second term of equation (4) is the force derived from the viscous component of the sample
  • the third term of equation (4) Represents the rigidity of the sample system, and t represents time. Since F (t) in Expression (4) depends on time, it is expressed as Expression (5).
  • is a phase difference. Since m is known at the time of measurement, by measuring the vibration amplitude (h 0 ), phase difference ( ⁇ ), and excitation vibration amplitude (F 0 ) of the displacement when measuring the specimen, the equations (7) to (7) From (10), K and D can be calculated.
  • the loss elastic modulus in the present invention can also be measured in the same manner as the measurement of the storage elastic modulus described above.
  • Ks that is derived from the sample is used, and is combined with equation (11).
  • the loss elastic modulus was calculated from the equation (12).
  • the glass transition temperature in the present invention can also be measured in the same manner as the measurement of the storage elastic modulus described above.
  • the loss tangent (tan ⁇ ) is obtained from the ratio of the storage elastic modulus and the loss elastic modulus calculated in the above, and the obtained loss tangent (tan ⁇ ) ) was the glass transition temperature (Tg).
  • the elastic modulus measurement by the atomic force microscope in the present invention is a compression test using a probe of a very small portion, and is a degree of deformation due to the pressing force. Therefore, a cantilever having a known spring constant is used to measure the thickness of the surface layer.
  • the elastic modulus in the cross section at each position is measured. Specifically, the laminated film is cut, and the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured with an atomic force microscope. Details will be described in the section of the example, but using an atomic force microscope shown below, the probe at the tip of the cantilever was brought into contact with the cross section of the surface layer, and the force curve was measured by an indentation load of 2 ⁇ N at maximum. It can be measured from the amount of bending of the cantilever. Details will be described later.
  • Atomic force microscope MFP-3DSA-J manufactured by Asylum Technology Cantilever: A cantilever “R150-NCL-10 made by NANOSENSORS (material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm).
  • the laminated film of the present invention may be in a planar state or a three-dimensional shape after being molded as long as it has a surface layer exhibiting the aforementioned physical properties.
  • the “surface layer” in the present invention is preferably formed of at least two layers.
  • the thickness of the entire surface layer is not particularly limited, but is preferably 5 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • At least the surface layer has a layer in contact with the B layer (A layer), a layer in contact with the support substrate (B layer), and the A layer, the B layer, and the support substrate have It is preferable to satisfy the above relationship.
  • the surface layer is an object of the present invention, in addition to the scratch resistance, particularly the repetitive scratch resistance and moldability, as well as antifouling properties, antireflection properties, antistatic properties, electrical conductivity, heat ray reflectivity, and near infrared absorption properties. It may have other functions such as electromagnetic wave shielding and easy adhesion.
  • the material constituting the support substrate used in the laminated film of the present invention may be either a thermoplastic resin or a thermosetting resin, may be a homo resin, may be a copolymer or a blend of two or more types. Good. More preferably, the resin constituting the support substrate is preferably a thermoplastic resin because of good moldability.
  • thermoplastic resins examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyester resins, polycarbonate resins, and polyarylate resins.
  • Fluorine resins such as polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluoroethylene resin, trifluoroethylene chloride resin, tetrafluoroethylene-6 fluoropropylene copolymer, vinylidene fluoride resin, acrylic Resins, methacrylic resins, polyacetal resins, polyglycolic acid resins, polylactic acid resins, and the like can be used.
  • the thermoplastic resin is preferably a resin having sufficient stretchability and followability.
  • the thermoplastic resin is particularly preferably a polyester resin, a polycarbonate resin, or a methacrylic resin from the viewpoint of strength, heat resistance, and transparency, and a polyester resin is particularly preferable.
  • the polyester resin in the present invention is a general term for polymers having an ester bond as a main bond chain, and is obtained by polycondensation of an acid component and its ester with a diol component.
  • Specific examples include polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and the like. These may be copolymerized with other dicarboxylic acids and their esters or diol components as acid components or diol components.
  • polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferable in terms of transparency, dimensional stability, heat resistance and the like.
  • the support substrate may be either a single layer configuration or a laminated configuration.
  • the surface of the support substrate can be subjected to various surface treatments before forming the surface layer.
  • the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment.
  • glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
  • a functional layer such as an easy-adhesion layer, an antistatic layer, an undercoat layer, and an ultraviolet absorption layer can be provided in advance on the surface of the support substrate. It is preferable to provide a layer.
  • the laminated film of the present invention can form a surface layer having a structure capable of achieving the aforementioned physical properties by applying, drying, and curing a coating composition on a supporting substrate by using a laminated film manufacturing method described later.
  • the “coating composition” is a liquid composed of a solvent and a solute, and is a material that can be applied to the above-mentioned supporting substrate and volatilized, removed, and cured in a drying process to form a surface layer.
  • the “type” of the coating composition refers to liquids that are different in part even in the type of solute constituting the coating composition.
  • This solute is a resin or a material that can form them in the coating process (hereinafter referred to as a precursor), particles, and polymerization initiators, curing agents, catalysts, leveling agents, ultraviolet absorbers, antioxidants, etc. Consists of various additives.
  • the laminated film of the present invention uses at least two types of coating compositions (hereinafter referred to as coating composition A and coating composition B), and is applied sequentially or simultaneously on a supporting substrate. It is preferable to form.
  • the coating composition A is a liquid containing a resin or a precursor suitable for forming the second layer from the support base material side of the surface layer, that is, the aforementioned A layer, and the B layer is formed in advance.
  • the A layer can be formed by coating, drying, curing on the supporting substrate, or coating, drying, and curing simultaneously with the formation of the B layer on the supporting substrate.
  • the coating composition B is a layer containing a surface layer in contact with the supporting substrate, that is, a liquid containing a resin or precursor suitable for forming the aforementioned B layer, and is applied onto the supporting substrate, dried,
  • the B layer can be formed by curing or coating, drying and curing simultaneously with the A layer on the surface side.
  • the coating composition A is a liquid containing a material suitable for constituting the A layer in the surface layer or containing a precursor that can be formed, and a resin containing the following segments (1) to (3) as a solute: Or it is preferable that a precursor is included.
  • a segment containing at least one selected from the group consisting of a polycaprolactone segment, a polycarbonate segment and a polyalkylene glycol segment (2)
  • a urethane bond (3) From a group consisting of a fluorine compound segment, a polysiloxane segment and a polydimethylsiloxane segment A segment containing at least one selected.
  • Each segment included in the resin constituting the layer A on the surface layer can be confirmed by TOF-SIMS, FT-IR, or the like.
  • (1) / (2) / (3) 90/10/1 to 60/40/10 is more preferable.
  • the details of (1), (2), and (3) will be described below.
  • the toughness of the entire surface layer can be improved when the resin constituting the layer A on the surface of the surface layer has this bond.
  • the resin constituting the surface layer contains these, so that molecules having low surface energy can be present at a high density on the outermost surface, and the surface is repeatedly scratched. improves.
  • polycaprolactone segment polycarbonate segment, polyalkylene glycol segment
  • the polycaprolactone segment refers to a segment represented by Chemical Formula 1.
  • Polycaprolactone includes those having caprolactone repeating units of 1 (monomer), 2 (dimer), 3 (trimer), and oligomers having caprolactone repeating units of up to 35.
  • n is an integer of 1 to 35.
  • the resin containing a polycaprolactone segment preferably has at least one hydroxyl group.
  • the hydroxyl group is preferably at the end of the resin containing the polycaprolactone segment.
  • polycaprolactone having a bi- or trifunctional hydroxyl group is particularly preferable.
  • polycaprolactone diol represented by Chemical Formula 2 is particularly preferable.
  • n + n is an integer from 4 to 35
  • m and n are each an integer from 1 to 34
  • R is C 2 H 4 , C 2 H 4 OC 2 H 4 , C (CH 3 ) 3 (CH 2 ) 2
  • polycaprolactone triol represented by Chemical Formula 3
  • l + m + n is an integer of 3 to 30, l, m and n are each an integer of 1 to 28, R is CH 2 CHCH 2 , CH 3 C (CH 2 ) 3 , CH 3 CH 2 C (CH 2 ) 3
  • polycaprolactone polyol and polycaprolactone-modified hydroxyethyl (meth) acrylate represented by Chemical Formula 4
  • n is an integer of 1 to 25
  • R is active energy ray-polymerizable caprolactone such as H or CH 3 .
  • examples of other active energy ray-polymerizable caprolactone include polycaprolactone-modified hydroxypropyl (meth) acrylate, polycaprolactone-modified hydroxybutyl (meth) acrylate, and the like.
  • the resin containing a polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment.
  • a polydimethylsiloxane segment, a polysiloxane segment, or a compound containing an isocyanate compound described later may be contained (or copolymerized).
  • the weight average molecular weight of the polycaprolactone segment in the resin containing the polycaprolactone segment is preferably 500 to 2,500, and more preferably 1,000 to 1,500. It is preferable that the weight average molecular weight of the polycaprolactone segment is 500 to 2,500 because the self-repairing effect is further exhibited and the repeated scratch resistance is further improved.
  • the polyalkylene glycol segment refers to a segment represented by Chemical Formula 5.
  • the polyalkylene glycol includes those having an alkylene glycol repeating unit of 2 (dimer) and 3 (trimer) and an oligomer having an alkylene glycol repeating unit of up to 11.
  • N is an integer from 2 to 4
  • m is an integer from 2 to 11.
  • the resin containing a polyalkylene glycol segment preferably has at least one hydroxyl group (hydroxyl group).
  • the hydroxyl group is preferably at the end of the resin containing the polyalkylene glycol segment.
  • the resin containing a polyalkylene glycol segment is preferably a polyalkylene glycol (meth) acrylate having an acrylate group at the end in order to impart elasticity.
  • the number of acrylate functional groups (or methacrylate functional groups) of the polyalkylene glycol (meth) acrylate is not limited, but is most preferably monofunctional from the viewpoint of self-healing properties of the cured product.
  • Examples of the polyalkylene glycol (meth) acrylate contained in the coating composition used for forming the surface layer include polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, and polybutylene glycol (meth) acrylate. .
  • the structures are represented by the following chemical formula 6, chemical formula 7, and chemical formula 8, respectively.
  • R is hydrogen (H) or a methyl group (—CH 3 ), and m is an integer from 2 to 11.
  • the resin constituting the surface layer is preferably formed by reacting a compound containing an isocyanate group, which will be described later, with the hydroxyl group of (poly) alkylene glycol (meth) acrylate and using it as the urethane (meth) acrylate in the surface layer.
  • a compound containing an isocyanate group which will be described later
  • the hydroxyl group of (poly) alkylene glycol (meth) acrylate and using it as the urethane (meth) acrylate in the surface layer.
  • (2) It can have a urethane bond and (3) (poly) alkylene glycol segment, and as a result, it can improve the toughness of the surface layer and improve self-repairability, which is preferable.
  • examples include (meth) acrylate.
  • polycarbonate segment refers to the segment represented by Chemical Formula 9.
  • Polycarbonate includes carbonate repeating units such as 2 (dimer) and 3 (trimer), and oligomers having up to 16 carbonate repeating units.
  • n is an integer of 2 to 16.
  • R 4 represents an alkylene group having 1 to 8 carbon atoms or a cycloalkylene group.
  • the resin containing a polycarbonate segment preferably has at least one hydroxyl group (hydroxyl group).
  • the hydroxyl group is preferably at the end of the resin containing the polycarbonate segment.
  • a polycarbonate diol having a bifunctional hydroxyl group is particularly preferable. Specifically, it is represented by Chemical Formula 10. Polycarbonate diol:
  • N is an integer from 2 to 16.
  • R represents an alkylene group having 1 to 8 carbon atoms or a cycloalkylene group.
  • the polycarbonate diol may have any number of repeating carbonate units, but if the number of repeating carbonate units is too large, the strength of the cured urethane (meth) acrylate will decrease, so the number of repeating units should be 10 or less. Is preferred.
  • the polycarbonate diol may be a mixture of two or more types of polycarbonate diols having different repeating numbers of carbonate units.
  • the polycarbonate diol preferably has a number average molecular weight of 500 to 10,000, more preferably 1,000 to 5,000. When the number average molecular weight is less than 500, suitable flexibility may be difficult to obtain, and when the number average molecular weight exceeds 10,000, the heat resistance and solvent resistance may be deteriorated. It is.
  • the polycarbonate diol used in the present invention includes UH-CARB, UD-CARB, UC-CARB (Ube Industries, Ltd.), PLACEL CD-PL, PLACEL CD-H (Daicel Chemical Industries, Ltd.), and Kuraray Polyol C. Products such as the series (Kuraray Co., Ltd.) and the Duranol series (Asahi Kasei Chemicals Co., Ltd.) can be suitably exemplified. These polycarbonate diols can be used alone or in combination of two or more.
  • the resin containing a polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment.
  • a polydimethylsiloxane segment, a polysiloxane segment, or a compound containing an isocyanate compound described later may be contained (or copolymerized).
  • a resin constituting the surface side of the surface layer is obtained by reacting a compound containing an isocyanate group, which will be described later, with a hydroxyl group of polycarbonate diol, as urethane (meth) acrylate, on the surface side of the surface layer.
  • a compound containing an isocyanate group which will be described later
  • a hydroxyl group of polycarbonate diol as urethane (meth) acrylate
  • urethane bond refers to a bond represented by Chemical Formula 11.
  • the resin constituting the surface side of the surface layer has this bond, whereby the toughness of the entire surface layer can be improved.
  • the resin constituting the surface side of the surface layer can have a urethane bond.
  • a urethane bond is generated by applying, drying and curing a coating composition A containing a compound containing an isocyanate group and a compound containing a hydroxyl group as a precursor.
  • a urethane bond can also be contained on the surface side of the surface layer.
  • a urethane bond into the resin constituting the surface side of the surface layer by reacting an isocyanate group and a hydroxyl group to generate a urethane bond.
  • the toughness of the surface layer and self-healing can be increased, which is more preferable from the viewpoint of repeated scratching.
  • the compound containing an isocyanate group means a resin containing an isocyanate group, or a monomer or oligomer containing an isocyanate group.
  • the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate.
  • Examples include isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, (poly) isocyanates such as a burette body of hexamethylene isocyanate, and block bodies of the above isocyanates.
  • aliphatic isocyanates are preferred because of their high self-healing properties compared to alicyclic and aromatic isocyanates.
  • the compound containing an isocyanate group is more preferably hexamethylene diisocyanate.
  • the isocyanate group-containing compound is particularly preferably an isocyanate having an isocyanurate ring from the viewpoint of heat resistance, and most preferably an isocyanurate of hexamethylene diisocyanate. Isocyanates having an isocyanurate ring form a surface layer having both self-healing properties and heat resistance.
  • the surface layer or the resin constituting the surface side of the surface layer has a segment containing at least one selected from the group consisting of a fluorine compound segment, a polysiloxane segment, and a polydimethylsiloxane segment. Preferably it is.
  • a coating composition A containing a resin containing a segment containing at least one selected from the group consisting of a fluorine compound segment, a polysiloxane segment, and a polydimethylsiloxane segment, or a coating composition A containing a precursor is formed.
  • the resin constituting the surface side of the surface layer can have these.
  • the fluorine compound segment refers to a segment including at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group.
  • a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group are alkyl groups, oxyalkyl groups, alkenyl groups, alkanediyl groups, and oxyalkanediyl groups.
  • a part or all of the substituents are replaced by fluorine, both of which are mainly composed of fluorine atoms and carbon atoms, and there may be branching in the structure.
  • a plurality of linked dimers, trimers, oligomers, and polymer structures may be formed.
  • the fluorine compound segment is preferably a fluoropolyether segment, which is a site comprising a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group or the like, more preferably represented by Chemical Formula 5 or Chemical Formula 6. As described above, it is a fluoropolyether segment.
  • the fluoropolyether segment is a segment composed of a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group, etc., and has a structure represented by Chemical Formula 12 and Chemical Formula 13.
  • n1 is an integer of 1 to 3
  • n2 to n5 are integers of 1 or 2
  • k, m, p, and s are integers of 0 or more
  • p + s is 1 or more.
  • n1 is 2 or more and n2 to n5 are integers of 1 or 2, more preferably n1 is 3, n2 and n4 are 2, and n3 and n5 are integers of 1 or 2.
  • There is a preferred range for the chain length of the fluoropolyether segment, and the carbon number is preferably 4 or more and 12 or less, more preferably 4 or more and 10 or less, and particularly preferably 6 or more and 8 or less.
  • the surface energy is not sufficiently reduced, and thus the oil repellency may be lowered.
  • the number is 13 or more, the solubility in a solvent is lowered, and the quality of the surface layer may be lowered.
  • the above-mentioned coating composition A preferably contains the following fluorine compound D.
  • This fluorine compound D is a compound represented by Chemical Formula 14.
  • R f1 represents a fluorine compound segment
  • R 7 represents an alkanediyl group, an alkanetriyl group, and an ester structure, urethane structure, ether structure, and triazine structure derived therefrom
  • D 1 represents a reactive site.
  • This reactive site refers to a site that reacts with other components by external energy such as heat or light.
  • reactive sites include alkoxysilyl groups and silanol groups in which alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, and the like. Can be mentioned. Of these, vinyl groups, allyl groups, alkoxysilyl groups, silyl ether groups, silanol groups, epoxy groups, and acryloyl (methacryloyl) groups are preferred from the viewpoints of reactivity and handling properties.
  • fluorine compound D is a compound shown below. 3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3,3,3-trifluoropropyltriisopropoxysilane, 3,3,3-trifluoropropyltrichlorosilane, 3,3,3-trifluoropropyltriisocyanate silane, 2-perfluorooctyltrimethoxysilane, 2-perfluorooctylethyltriethoxysilane, 2-perfluorooctylethyltriisopropoxysilane, 2-perfluorooctylethyltri Chlorosilane, 2-perfluorooctyl isocyanate silane, 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl
  • the fluorine compound D may have a plurality of fluoropolyether moieties per molecule.
  • Examples of commercially available fluorine compounds D include RS-75 (DIC Corporation), OPTOOL DAC-HP (Daikin Industries Co., Ltd.), C10GACRY, C8HGOL (Oil Products Co., Ltd.), etc. Can be used.
  • the polysiloxane segment refers to a segment represented by the following chemical formula 15.
  • polysiloxane includes both low molecular weight (so-called oligomer) having about 100 repeating units of siloxane and high molecular weight (so-called polymer) having more than 100 repeating units of siloxane.
  • R 1 and R 2 are either a hydroxyl group or an alkyl group having 1 to 8 carbon atoms, each having at least one in the formula, and n is an integer of 100 to 300.
  • the resin constituting the surface layer has these segments to improve heat resistance and weather resistance, and scratch resistance due to the lubricity of the surface layer. Can be improved. More preferably, it contains a polydimethylsiloxane segment represented by the following chemical formula 16 from the viewpoint of lubricity.
  • Resins containing polysiloxane segments are tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -methacryloxypropyltri
  • the resin containing a polysiloxane segment may contain (copolymerize) other segments in addition to the polysiloxane segment.
  • a monomer component having a polycaprolactone segment and a polydimethylsiloxane segment may be contained (copolymerized).
  • the surface using a coating composition containing a resin (copolymer) containing a polysiloxane segment having a hydroxyl group and a compound containing an isocyanate group When the layer is formed, the surface layer having a polysiloxane segment and a urethane bond can be efficiently formed.
  • the polydimethylsiloxane segment refers to a segment represented by Chemical Formula 16.
  • Polydimethylsiloxane includes both low molecular weight dimethylsiloxane repeating units of 10 to 100 (so-called oligomers) and high molecular weight dimethylsiloxane repeating units of more than 100 (so-called polymers).
  • M is an integer from 10 to 300.
  • the polydimethylsiloxane segment is coordinated to the surface of the surface layer.
  • the lubricity of the surface layer surface can be improved and the frictional resistance can be reduced. As a result, it is possible to improve the repeated rubbing property.
  • the resin containing a polydimethylsiloxane segment it is preferable to use a copolymer obtained by copolymerizing a vinyl monomer with a polydimethylsiloxane segment.
  • the resin containing a polydimethylsiloxane segment is preferably copolymerized with a monomer having a hydroxyl group that reacts with an isocyanate group.
  • the resin containing a polydimethylsiloxane segment is a copolymer having a hydroxyl group
  • a coating composition containing a resin (copolymer) containing a polydimethylsiloxane segment having a hydroxyl group and a compound containing an isocyanate group is used.
  • the surface layer is formed, the surface layer having a polydimethylsiloxane segment and a urethane bond can be efficiently formed.
  • any of a block copolymer, a graft copolymer, and a random copolymer may be used.
  • the resin containing the polydimethylsiloxane segment is a copolymer with a vinyl monomer, this is referred to as a polydimethylsiloxane copolymer.
  • Polydimethylsiloxane copolymer can be produced by living polymerization method, polymer initiator method, polymer chain transfer method, etc., but considering the productivity, polymer initiator method, polymer chain transfer method can be used. It is preferable to use it.
  • the polymer initiator method when used, it can be copolymerized with other vinyl monomers using a polymer azo radical polymerization initiator represented by Chemical Formula 17.
  • a two-stage polymerization is carried out by synthesizing a prepolymer in which a peroxide group is introduced into the side chain by copolymerizing a peroxy monomer and polydimethylsiloxane having an unsaturated group at a low temperature, and then copolymerizing the prepolymer with a vinyl monomer. Can also be done.
  • M is an integer from 10 to 300, and n is an integer from 1 to 50.
  • the SH group A block copolymer can be synthesized by copolymerizing the silicone compound and vinyl monomer using chain transfer.
  • M is an integer from 10 to 300.
  • a graft copolymer can be easily obtained by copolymerizing a compound represented by Chemical Formula 19, that is, a methacrylic ester of polydimethylsiloxane and a vinyl monomer. it can.
  • M is an integer from 10 to 300.
  • Examples of the vinyl monomer used in the copolymer with polydimethylsiloxane include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, octyl acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, methyl methacrylate, ethyl methacrylate, n -Butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, lauryl methacrylate, methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, styrene, ⁇ -methyl styrene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride , Vinyl fluoride, vinylidene fluoride, glycidy
  • Polydimethylsiloxane copolymers include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, ethanol, isopropyl alcohol, etc. It is preferable that the alcoholic solvent is produced by a solution polymerization method alone or in a mixed solvent.
  • a polymerization initiator such as benzoyl peroxide or azobisisobutylnitrile is used in combination.
  • the polymerization reaction is preferably carried out at 50 to 150 ° C. for 3 to 12 hours.
  • the amount of the polydimethylsiloxane segment in the polydimethylsiloxane copolymer in the present invention is 1 to 100% by mass based on 100% by mass of all components of the polydimethylsiloxane copolymer from the viewpoint of lubricity and contamination resistance of the surface layer. It is preferably 30% by mass.
  • the weight average molecular weight of the polydimethylsiloxane segment is preferably 1,000 to 30,000.
  • a resin containing a polydimethylsiloxane segment when used as the coating composition used for forming the surface layer, other segments are contained (copolymerized) in addition to the polydimethylsiloxane segment. May be.
  • a polycaprolactone segment or a polysiloxane segment may be contained (copolymerized).
  • the coating composition used to form the surface layer includes a copolymer of a polycaprolactone segment and a polydimethylsiloxane segment, a copolymer of a polycaprolactone segment and a polysiloxane segment, a polycaprolactone segment, a polydimethylsiloxane segment, and a polymer.
  • a copolymer with a siloxane segment can be used.
  • the surface layer obtained using such a coating composition can have a polycaprolactone segment and a polydimethylsiloxane segment and / or a polysiloxane segment.
  • the reaction of polydimethylsiloxane copolymer, polycaprolactone, and polysiloxane in a coating composition used to form a surface layer having a polycaprolactone segment, a polysiloxane segment, and a polydimethylsiloxane segment is a polydimethylsiloxane
  • a polycaprolactone segment and a polysiloxane segment can be appropriately added and copolymerized.
  • the coating composition B is a liquid having a surface hardness higher than that of the A layer and capable of forming a material by applying, drying and curing on the supporting substrate, and a resin or precursor suitable for forming the B layer. including.
  • the coating composition B may be either a thermosetting resin or an ultraviolet curable resin, and may be a blend of two or more types.
  • the thermosetting resin in the present invention comprises a hydroxyl group-containing resin and a polyisocyanate compound
  • examples of the hydroxyl group-containing resin include acrylic polyol, polyether polyol, polyester polyol, polyolefin polyol, polycarbonate polyol, and urethane polyol. These may be one type or a blend of two or more types.
  • the hydroxyl value of the hydroxyl group-containing resin is preferably in the range of 1 to 200 mgKOH / g from the viewpoints of durability, hydrolysis resistance, and adhesion when formed into a coating film. When the hydroxyl value is less than 1 mgKOH / g, the coating film hardly cures and the durability and strength may be lowered. On the other hand, when the hydroxyl value is larger than 200 mgKOH / g, the curing shrinkage is too large and the adhesion may be lowered.
  • the acrylic polyol containing a hydroxyl group in the present invention is obtained, for example, by polymerizing an acrylic ester or a methacrylic ester as a component.
  • Such an acrylic resin can be easily prepared, for example, by copolymerizing a methacrylic acid ester as a component and a carboxylic acid group-containing monomer such as (meth) acrylic acid, itaconic acid, and maleic anhydride as necessary. Can be manufactured.
  • (meth) acrylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl.
  • acrylic polyol containing a hydroxyl group include DIC Corporation (trade name “Acridic” (registered trademark) series, etc.), Taisei Fine Chemical Co., Ltd. (trade name “Acrit” (registered trademark) series, etc.
  • Polyether polyols containing hydroxyl groups in the present invention include polyethylene glycol or triol, polypropylene glycol or triol, polybutylene glycol or triol, polytetramethylene glycol or triol, and addition weights of oxyalkylene compounds having different carbon numbers. Examples include coalesced and block copolymers. Examples of such polyether polyols containing hydroxyl groups include Asahi Glass Co., Ltd. (trade name “Excenol” (registered trademark) series, etc.), Mitsui Chemicals Co., Ltd. (trade name “Accor” (registered trademark) series, etc.) These products can be used.
  • polyester polyol containing a hydroxyl group in the present invention examples include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, decanediol, and cyclohexanedimethanol, and succinic acid and adipine.
  • Aliphatic polyester polyol reacted as an essential raw material component with an aliphatic dibasic acid such as acid, sebacic acid, fumaric acid, suberic acid, azelaic acid, 1,10-decamethylenedicarboxylic acid, cyclohexanedicarboxylic acid, or ethylene glycol
  • Aromatic polymers obtained by reacting aliphatic glycols such as propylene glycol and butanediol with aromatic dibasic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid as essential raw material components Ester polyols.
  • polyester polyols containing hydroxyl groups examples include DIC Corporation (trade name “Polylite” (registered trademark) series, etc.), Kuraray Co., Ltd. (trade name “Kuraray polyol” (registered trademark) series, etc.), Takeda. Yakuhin Kogyo Co., Ltd. (trade name “Takelac” (registered trademark) U series) can be mentioned, and these products can be used.
  • Examples of the polyolefin-based polyol containing a hydroxyl group in the present invention include polymers and copolymers of diolefins having 4 to 12 carbon atoms such as butadiene and isoprene, diolefins having 4 to 12 carbon atoms, and 2 to 22 carbon atoms.
  • the compound contains a hydroxyl group.
  • the method for containing a hydroxyl group is not particularly limited, and for example, there is a method of reacting a diene monomer with hydrogen peroxide. Furthermore, you may make it saturated aliphatic by hydrogen-bonding the remaining double bond.
  • polyolefin-based polyols containing hydroxyl groups examples include Nippon Soda Co., Ltd. (trade name “NISSO-PB” (registered trademark) G series, etc.), Idemitsu Kosan Co., Ltd .; (trade name “Poly bd” (registered trademark). ) Series, “Epaul” (registered trademark) series, etc.), and these products can be used.
  • polycarbonate polyol containing a hydroxyl group in the present invention for example, a polycarbonate polyol obtained by using only dialkyl carbonate and 1,6-hexanediol can be used. However, in terms of lower crystallinity, 1 It is preferable to use a polycarbonate polyol obtained by copolymerizing 1,6-butanediol with 1,4-butanediol, 1,5-pentanediol or 1,4-cyclohexanedimethanol.
  • polycarbonate polyol containing a hydroxyl group Asahi Kasei Chemicals Co., Ltd., which is a copolymerized polycarbonate polyol (trade names “T5650J”, “T5652”, “T4671”, “T4672”, etc.), Ube Industries, Trade names such as “ETERNACLL” (registered trademark) UM series), and these products can be used.
  • the urethane polyol containing a hydroxyl group in the present invention is, for example, a reaction between a polyisocyanate compound and a compound containing at least two hydroxyl groups in one molecule at a ratio such that the hydroxyl group is excessive with respect to the isocyanate group. Obtained.
  • the polyisocyanate compound used in this case include hexamethylene diisocyanate, toluene diisocyanate, m-xylene diisocyanate, and isophorone diisocyanate.
  • the compound containing at least two hydroxyl groups in one molecule include polyhydric alcohols, polyester diol, polyethylene glycol, polypropylene glycol, and polycarbonate diol.
  • the polyisocyanate compound used for the thermosetting resin in the present invention refers to a resin containing an isocyanate group, a monomer or an oligomer containing an isocyanate group.
  • the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate.
  • thermosetting resins examples include Mitsui Chemicals, Inc. (trade name “Takenate” (registered trademark) series, etc.), Nippon Polyurethane Industry Co., Ltd .; (trade name “Coronate” (registered trademark).
  • polyfunctional acrylate monomers, oligomers, alkoxysilanes, alkoxysilane hydrolysates, alkoxysilane oligomers, urethane acrylate oligomers, and the like are preferable, and polyfunctional acrylate monomers, oligomers, and urethane acrylate oligomers are more preferable. .
  • polyfunctional acrylate monomers include polyfunctional acrylates having two or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate and pentaerythritol.
  • Pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used. These monomers can be used alone or in combination of two or more.
  • polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nippon Synthetic Chemical Industry Co., Ltd. (trade name “SHIKOH” (registered trademark)). ) Series), Nagase Sangyo Co., Ltd .; (trade name “Denacol” (registered trademark) series, etc.), Shin-Nakamura Chemical Co., Ltd.
  • an acrylic polymer may be used to impart the above-mentioned characteristics. More preferably, the acrylic polymer contains no unsaturated groups, has a weight average molecular weight of 5,000 to 200,000, and a glass transition temperature of 20 to 200 ° C. If the glass transition temperature of the acrylic polymer is less than 20 ° C., the hardness may decrease, and the elongation exceeding 200 ° C. may not be sufficient. A more preferable range of the glass transition temperature is 50 to 150 ° C.
  • the acrylic polymer can impart hardness by having a hydrophilic functional group.
  • hydrophilic functional groups such as (meth) acrylic acid, itaconic acid, fumaric acid, maleic acid and the like having a carboxyl group, or 2-hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate having a hydroxyl group
  • a hydrophilic functional group can be introduced into the acrylic polymer by copolymerizing an unsaturated monomer having the above with the unsaturated monomer.
  • the weight average molecular weight of the acrylic polymer is preferably 5,000 to 200,000. When the weight average molecular weight is less than 5,000, the hardness may be insufficient, and when the weight average molecular weight exceeds 200,000, the moldability and toughness including coating properties are insufficient. There is. Further, the weight average molecular weight can be adjusted depending on the blending amount of the polymerization catalyst and the chain transfer agent and the type of the solvent used.
  • the acrylic polymer content is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the total solid content of the coating composition B.
  • the elongation is remarkably improved by setting it to 1% by mass or more, and the hardness can be maintained by setting it to 50% by mass or less, which is preferable.
  • the coating composition A and the coating composition B preferably contain a solvent.
  • the number of solvent types is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and still more preferably 1 or more and 6 or less.
  • the “solvent” refers to a substance that is liquid at room temperature and normal pressure, and can be removed from the coating film by evaporating almost the whole amount in the drying step after coating.
  • the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
  • the coating composition A and the coating composition B preferably contain a polymerization initiator, a curing agent, and a catalyst.
  • a polymerization initiator and a catalyst are used to accelerate the curing of the surface layer.
  • the polymerization initiator those capable of initiating or accelerating polymerization, condensation or crosslinking reaction by anion, cation, radical polymerization reaction or the like of components contained in the coating composition are preferable.
  • polymerization initiators curing agents and catalysts
  • the polymerization initiator, the curing agent, and the catalyst may be used alone, or a plurality of polymerization initiators, curing agents, and catalysts may be used simultaneously.
  • acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
  • thermal polymerization initiator include peroxides and azo compounds.
  • the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like.
  • an alkylphenone compound is preferable from the viewpoint of curability.
  • the alkylphenone compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenone
  • a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, etc. may be added to the coating composition A and the coating composition B used for forming the surface layer as long as the effects of the present invention are not impaired.
  • the surface layer can contain a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, and the like.
  • the leveling agent include acrylic copolymers, silicone-based and fluorine-based leveling agents.
  • Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, oxalic acid anilide-based, triazine-based and hindered amine-based ultraviolet absorbers.
  • the antistatic agent include metal salts such as lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt, magnesium salt and calcium salt.
  • the production method of the laminated film of the present invention uses a production method in which at least the coating composition A and the coating composition B are formed by applying, drying and curing on the supporting substrate sequentially or simultaneously. More preferred.
  • “sequentially apply” is intended to form a surface layer by applying-drying-curing one type of coating composition and then applying-drying-curing a different type of coating composition. is doing.
  • the magnitude and gradient of the elastic modulus between the surface side and the base material side of the surface layer, and the magnitude of the elastic modulus between the base material and the surface layer can be controlled.
  • the form of the elastic modulus distribution in the surface layer can be controlled stepwise or continuously.
  • Another manufacturing method is a method in which two or more kinds of coating compositions are formed by simultaneously applying, drying and curing on a supporting substrate. There are no particular restrictions as long as the number of types of coating compositions is two or more.
  • “co-apply” is intended to dry and cure after applying two or more types of liquid films on a supporting substrate in the coating step.
  • the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc.
  • the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc.
  • FIG. 3 shows a coating composition for laminating liquid films in order before application “Multi-layer slide die coat” to be applied (FIG. 3)
  • a single layer of liquid film formed on the support substrate and then undried Any of “wet-on-wet coat”
  • the liquid film applied on the support substrate or the like is dried.
  • the drying process preferably involves heating the liquid film.
  • drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating).
  • heat transfer drying adherence to high-temperature objects
  • convection heat transfer hot air
  • radiant heat transfer infrared rays
  • microwave, induction heating microwave, induction heating
  • a further curing operation by irradiating heat or energy rays may be performed.
  • the temperature is preferably from room temperature to 200 ° C., and from the viewpoint of the activation energy of the curing reaction, 80 ° C. or more and 200 ° C. The following is more preferable, and it is more preferably 100 ° C. or higher and 200 ° C. or lower.
  • the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable.
  • nitrogen purge nitrogen purge
  • the oxygen concentration is high, the hardening of the outermost surface is hindered, the hardening of the surface becomes insufficient, and the fingerprint resistance may be insufficient.
  • Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
  • the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions, and the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2.
  • the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and varies depending on the lamp output, the emission spectrum efficiency, the diameter of the light emitting bulb, the design of the reflecting mirror, and the light source distance to the irradiated object.
  • the illuminance does not change depending on the conveyance speed.
  • the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface.
  • the integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
  • the laminated film of the present invention is excellent in scratch resistance, it can be widely used for, for example, electrical appliances, automobile interior members, building members and the like.
  • glasses, sunglasses, cosmetic boxes, plastic molded products such as food containers, smartphone housings, touch panels, keyboards, home appliances such as TVs and air conditioners, buildings, dashboards, car navigation systems, touch panels, rooms It can be suitably used for vehicle interior parts such as mirrors, and the surfaces of various printed materials.
  • ⁇ Fluorine compound D> [Fluorine compound D1 methyl ethyl ketone / methyl isobutyl ketone solution]
  • fluorine compound D1 an acrylate compound containing a fluoropolyether moiety (“Megafac” (registered trademark) RS-75 manufactured by DIC Corporation, methyl ethyl ketone / methyl isobutyl ketone solution having a solid content concentration of 40 mass%) was used.
  • Polydimethylsiloxane compound (b) EBECRYL350 (bifunctional, silicone acrylate) manufactured by Daicel Cytec Co., Ltd. was used as the polydimethylsiloxane compound (b).
  • Toluene solution of urethane acrylate 2 100 parts by mass of toluene, 50 parts by mass of methyl-2,6-diisocyanate hexanoate, and 119 parts by mass of polycarbonate diol (Placcel CD-210HL manufactured by Daicel Chemical Industries, Ltd.) were mixed, heated to 40 ° C. and heated to 8 Held for hours. Then, 28 parts by mass of 2-hydroxyethyl acrylate, 5 parts by mass of dipentaerystol hexaacrylate and 0.02 parts by mass of hydroquinone monomethyl ether were added and held at 70 ° C. for 30 minutes, and then 0.02 part by mass of dibutyltin laurate was added. In addition, it was kept at 80 ° C. for 6 hours. Finally, 97 parts by mass of toluene was added to obtain a toluene solution of urethane acrylate 2 having a solid content concentration of 50% by mass.
  • MEK methyl ethyl ketone
  • acrylic polyol 1 As the acrylic polyol 1, an acrylic polyol containing a hydroxyl group (“Takelac” (registered trademark) UA-702, manufactured by Mitsui Chemicals, Inc., solid content concentration 50 mass%, hydroxyl value: 50 mgKOH / g) was used.
  • Takelac registered trademark
  • UA-702 solid content concentration 50 mass%, hydroxyl value: 50 mgKOH / g
  • acrylic polyol 2 As the acrylic polyol 2, an acrylic polyol containing a hydroxyl group (“Acridic” (registered trademark) A-823 manufactured by DIC Corporation, solid content concentration: 50 mass%, hydroxyl value: 30 mgKOH / g) was used.
  • Tolylene diisocyanate (“Coronate” (registered trademark) Coronate L Nippon Polyurethane Industry Co., Ltd., solid content concentration: 75 mass%, NCO content: 13.5 mass%) was used as the isocyanate compound.
  • Multifunctional acrylate 1 As the polyfunctional acrylate monomer 1, dipentaerythritol hexaacrylate (“KAYARAD” DPHA manufactured by Nippon Kayaku Co., Ltd., solid content concentration: 100 mass%) was used.
  • KAYARAD dipentaerythritol hexaacrylate
  • Multifunctional acrylate 2 As the polyfunctional acrylate 2, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-3310B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
  • SHIKOH registered trademark
  • UV-3310B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%
  • Polyfunctional acrylate 3 As the polyfunctional acrylate 3, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-1700B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
  • Polyfunctional acrylate 4 As the polyfunctional acrylate 4, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-2750B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
  • Coating composition A1 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A1 having a solid concentration of 40% by mass.
  • Coating composition A2 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A2 having a solid concentration of 40% by mass.
  • Coating composition A3 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A3 having a solid concentration of 40% by mass.
  • -Fluorine compound D1 solid content concentration 40 mass%-methyl ethyl ketone / methylisobutylketone solution 3.8 mass parts-Solid content concentration of urethane acrylate 2-50 mass%-Toluene solution 75 mass parts-Solid content concentration of urethane acrylate 3 50 mass% % -Toluene solution 25 parts by mass, ethylene glycol monobutyl ether 10 parts by mass, photoradical polymerization initiator 1.5 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
  • Coating composition A4 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A4 having a solid concentration of 40% by mass.
  • -Polyfunctional acrylate 1 100 mass parts
  • Photoradical polymerization initiator 0.75 mass part (“Irgacure” (trademark) 184 BASF Japan Ltd.).
  • Coating composition B1 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B1 having a solid content concentration of 20% by mass.
  • -Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 2 22.9 parts by mass-Acrylic polymer 1 13 parts by mass-Photo radical polymerization initiator 0.69 parts by mass ("IRGACURE” (registered trademark) 184 BASF Japan Ltd.).
  • Coating composition B2 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B2 having a solid content concentration of 20% by mass.
  • -Acrylic polyol 1 100 mass parts-Isocyanate compound 18.8 mass parts-Acrylic polymer 1 9.6 mass parts.
  • Coating composition B3 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B3 having a solid content concentration of 20% by mass.
  • -Acrylic polyol 2 100 mass parts-Isocyanate compound 11.8 mass parts-Acrylic polymer 1 8.8 mass parts.
  • Coating composition B4 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B4 having a solid content concentration of 20% by mass.
  • -Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 3 12 parts by mass-Acrylic polymer 1 11.4 parts by mass-Photo radical polymerization initiator 0.36 parts by mass (“IRGACURE” (registered trademark) 184 BASF Japan Ltd.).
  • Coating composition B5 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B5 having a solid content concentration of 20% by mass.
  • Polyfunctional acrylate 4 100 parts by mass Acrylic polymer 1 15 parts by mass Photoradical polymerization initiator 3 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
  • Coating composition B6 The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B6 having a solid content concentration of 20% by mass.
  • -Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 3 3.6 parts by mass-Acrylic polymer 1 10.1 parts by mass-Photoradical polymerization initiator 0.11 parts by mass ("Irgacure” ( Registered trademark) 184 BASF Japan Ltd.).
  • Method 1 for producing laminated film As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 ⁇ m in which an easy-adhesive coating material was applied on a PET resin film was used.
  • the coating composition B is applied onto the support substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then applying Under these conditions, a drying step and a curing step were performed to form a B layer on the support substrate.
  • the coating composition A was applied onto the B layer obtained above by adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying became a specified film thickness, Subsequently, a drying process and a curing process were performed under the following conditions to obtain a laminated film.
  • "Drying process” Air temperature and humidity: Temperature: 80 ° C Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 "Curing process” for minutes Integrated light quantity: 120 mJ / cm 2 Oxygen concentration: 200 ppm (volume ratio) or less.
  • Method 2 for creating laminated film As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 ⁇ m in which an easy-adhesive coating material was applied on a PET resin film was used.
  • the coating composition B is applied onto the support substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then applying Under these conditions, a drying step and a curing step were performed to form a B layer on the support substrate.
  • Method 3 for creating laminated film As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 ⁇ m in which an easy-adhesive coating material was applied on a PET resin film was used.
  • the coating composition A is applied onto the supporting substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then Under these conditions, a drying step and a curing step were performed to form an A layer on the support substrate.
  • Table 1 shows the method for producing the laminated film, the coating composition to be used, and the film thickness of each layer corresponding to each of the examples and comparative examples.
  • the prepared ultrathin sections were mounted on a 100 mesh Cu grid manufactured by Oken Shoji Co., Ltd., and TEM observation was performed at 100 kV acceleration voltage using a Hitachi transmission electron microscope (TEM) H-7100FA to observe the cross section of the laminated film. The location of the surface layer and the supporting substrate was confirmed.
  • TEM transmission electron microscope
  • Measuring device Tribo Indenter made by Hystron Working indenter: Diamond Cubecorner indenter (curvature radius 50 nm) Measurement field of view: Approximately 30 mm square Measurement frequency: 10 Hz Measurement atmosphere: ⁇ 20 ° C. to 120 ° C., atmospheric contact load: 0.3 ⁇ N.
  • the elastic modulus (E3) at the% position (position 3) was determined. Specifically, the laminated film was cut, and the elastic modulus at each position in the thickness direction in the cross section of the surface layer was measured.
  • the obtained laminated film is heated using a vacuum forming machine “FORMECH300X” (manufactured by Seiko Sangyo Co., Ltd.) for 1 minute using a far-infrared heater so that the film surface temperature becomes a predetermined temperature.
  • a mold bottom diameter: 50 mm
  • vacuum forming was performed to form a laminated film.
  • the temperature was set to 180 to 200 ° C., followed by heating for 1 minute.
  • the state of being molded along the mold was evaluated according to the following criteria using the degree of molding (drawing ratio: molding height / bottom diameter). Class A: Molding was possible at a drawing ratio of 1.0 or more.
  • Class B Although molding was possible at a drawing ratio of 0.6 or more and less than 1.0, molding was impossible at 1.0 or more.
  • Class C Although molding was possible at a drawing ratio of 0.3 or more and less than 0.6, molding was impossible at 0.6 or more.
  • Class D Only curved surface molding with a drawing ratio of less than 0.3 was possible, and molding was impossible at 0.3 or more.
  • E grade Even if it was bent slightly, the film was broken or cracked.
  • the laminated film according to the present invention imparts a function having both scratch resistance, in particular, repeated scratch resistance and moldability, to the surfaces of plastic molded products, home appliances, buildings, vehicle interiors, and various printed materials. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)

Abstract

A layered film which comprises a supporting base and, formed on at least one surface thereof, a surface layer comprising a layer A and a layer B, characterized in that the layer B and the layer A are in contact with each other and disposed in this order from the supporting base side and that the layer A, layer B, and supporting base have 25°C storage moduli (hereinafter, referred to as EA25, EB25, and EC25) and 120°C storage moduli (hereinafter, referred to as EA120, EB120, and EC120), as measured with a microhardness meter, which satisfy the following requirements. Requirement 1 EA25<EB25≤EC25 Requirement 2 EB120≤EA120<EC120 Requirement 3 EA25≤100 MPa This layered film combines scratch resistance, in particular, resistance to repeated abrasion, with moldability.

Description

積層フィルム、および積層フィルムの製造方法Laminated film and method for producing laminated film
 本発明は耐擦傷性、特に反復擦過耐性と成型性を両立した積層フィルムに関する。 The present invention relates to a laminated film having both scratch resistance, in particular, repeated scratch resistance and moldability.
 近年、カラーフィルターなどの光学材料やフラットパネルディスプレー、自動車ボディの表面保護(傷付き防止や防汚性付与等)を目的として、合成樹脂等からなる表面層が設けられたプラスチックフィルムが用いられている。 In recent years, plastic films with a surface layer made of synthetic resin have been used for the purpose of protecting optical surfaces such as color filters, flat panel displays, and car body surfaces (preventing scratches and imparting antifouling properties). Yes.
 これらの表面層には、表面保護の観点で耐擦傷性が重要な特性として要求されるため、一般的には、非特許文献1に記載のオルガノシラン系や多官能アクリル系などの各種プレポリマー、オリゴマー等を含む塗料組成物を、塗布-乾燥-熱もしくはUV硬化させることによる「高架橋密度材料」や、さらに各種表面修飾フィラーを組み合わせた「有機-無機ハイブリッド材料」などを用いて塗膜の表面硬度を高めた、いわゆる「ハードコート材料」を用いることで耐擦傷性を付与している。 Since these surface layers require scratch resistance as an important characteristic from the viewpoint of surface protection, in general, various prepolymers such as organosilanes and polyfunctional acrylics described in Non-Patent Document 1 are used. The coating composition containing an oligomer, etc. is applied using a coating-drying-heat or UV-curing "high cross-linking density material" or an "organic-inorganic hybrid material" combined with various surface-modified fillers. Scratch resistance is imparted by using a so-called “hard coat material” with increased surface hardness.
 一方、表面層には、表面保護の観点で耐擦傷性が必須の特性として要求される他、用途に応じて、耐薬品性、耐油性、成型性など様々な特性が要求される。特に成型性は単に塗膜を硬くするだけでは変形に対して「ひび割れ」や「剥離」などが生じ易くなるため、傷付きにくいが柔軟である、耐擦傷性と成型性の両立が要求されている。 On the other hand, the surface layer is required to have scratch resistance as an essential characteristic from the viewpoint of surface protection, and various characteristics such as chemical resistance, oil resistance and moldability are required depending on the application. In particular, the moldability is easily cracked or peeled off by simply hardening the coating film, so it is difficult to scratch but is flexible, and it is required to have both scratch resistance and moldability. Yes.
 ハードコート材料において、耐擦傷性と成型性を両立した積層フィルムとして、特許文献1には「基材フィルムの少なくとも片面にハードコート層が設けられた積層フィルムであって、超微小硬度計におけるハードコート層の表面硬度の最大値が0.05GPa以上4.0GPa以下であり、100℃雰囲気下のクラック伸度が15%以上250%未満であることを特徴とする積層フィルム」が提案されている。 In a hard coat material, as a laminated film having both scratch resistance and moldability, Patent Document 1 states that “a laminated film having a hard coat layer provided on at least one side of a base film, A laminated film is proposed in which the maximum value of the surface hardness of the hard coat layer is 0.05 GPa or more and 4.0 GPa or less, and the crack elongation at 100 ° C. is 15% or more and less than 250% ”. Yes.
 一方で、表面についた傷を表面層の材料の弾性回復範囲の変形により修復し、耐擦傷性を達成する、いわゆる「自己修復材料」を用いたフィルムが、特許文献2および3に提案されており、さらに、自己修復材料の伸長性を向上させることにより成型性を向上させた材料として、特許文献4には「エポキシ樹脂、オキセタン樹脂、ビニルエーテル樹脂から選ばれた少なくとも1つの樹脂(A)と、数平均分子量が400以上のポリオール(B)、および活性エネルギー線感応触媒(C)からなる樹脂組成物であって、ポリオール(B)が炭素-炭素結合からなる主鎖を有するポリオール(B1)、ポリカーボネートポリオール(B2)、ポリエステルポリオール(B3)、ポリエーテルポリオール(B4)から選ばれた少なくとも1つのポリオールであることを特徴とする活性エネルギー線硬化性コーティング剤」が提案されている。 On the other hand, Patent Documents 2 and 3 propose a film using a so-called “self-healing material” that repairs scratches on the surface by deformation of the elastic recovery range of the material of the surface layer and achieves scratch resistance. Furthermore, as a material whose moldability is improved by improving the extensibility of the self-healing material, Patent Document 4 discloses that “at least one resin (A) selected from an epoxy resin, an oxetane resin and a vinyl ether resin” , A resin composition comprising a polyol (B) having a number average molecular weight of 400 or more, and an active energy ray-sensitive catalyst (C), wherein the polyol (B) has a main chain comprising a carbon-carbon bond (B1) , Polycarbonate polyol (B2), polyester polyol (B3), and polyether polyol (B4). The active energy ray-curable coating agent "is proposed, which is a ol.
 また、自己修復材料の成型性を向上させる他の方法として、積層構造に着目した発明として、特許文献5では「樹脂基材の少なくとも一方の面に、応力緩和層と自己修復層とをこの順で積層した自己修復層付積層体において、該自己修復層は少なくとも軟質合成樹脂から構成され、該自己修復層に接する該応力緩和層のナノインデンテーションによる硬度Hが、自己修復層のナノインデンテーションによる硬度Hと同等または低いことを特徴とする自己修復層付積層体」が提案されている。 As another method for improving the moldability of the self-healing material, as an invention focusing on a laminated structure, Patent Document 5 states that “a stress relaxation layer and a self-healing layer are arranged in this order on at least one surface of a resin base material. The self-healing layer is composed of at least a soft synthetic resin, and the hardness H due to nanoindentation of the stress relaxation layer in contact with the self-healing layer is equal to the nanoindentation of the self-healing layer. Proposed is a laminate with a self-healing layer characterized by having a hardness equal to or lower than the hardness H of
特開2009-184284号公報JP 2009-184284 A 国際公開第2011/136042号International Publication No. 2011/136042 特開平11-228905号公報JP-A-11-228905 特開2007-284613号公報JP 2007-284613 A 特開2011-5766号公報JP 2011-5766 Gazette
 しかしながら、前記表面層に前記「ハードコート材料」を用いた成型体は、表面硬度が極めて高いにもかかわらず、日常生活においては傷が付き、外観を損ねることが多く、これについて本発明者らが調べたところ、「ハードコート材料」は表面の硬度が高いが、やわらかい布などで反復擦過すると表面に微細な傷を生じて、表面が白濁することがわかった。 However, a molded body using the “hard coat material” for the surface layer is often scratched in daily life and has a poor appearance despite the extremely high surface hardness. As a result, it was found that the surface of the “hard coat material” is high in hardness, but if the surface is repeatedly rubbed with a soft cloth or the like, fine scratches are generated on the surface and the surface becomes cloudy.
 これに対して、特許文献2、特許文献3に提案されている材料について本発明者らが確認したところ、日常生活においては傷が付きにくく、反復擦過しても自己修復機能により傷が回復することで、ハードコート材料同等以上の耐擦傷性が得られていることがわかった。 On the other hand, the present inventors have confirmed the materials proposed in Patent Document 2 and Patent Document 3, and are not easily scratched in daily life. Thus, it was found that scratch resistance equal to or higher than that of the hard coat material was obtained.
 しかしながら、自己修復材料は柔軟な材料であるため、一見、成型性が優れているように見えるが、実際に成型を行うと成型直後に、または成型後の保管時に表面層に、表面層にひび(クラック)や、これを起点として表面層が剥離することがあることがわかった。 However, since self-healing materials are flexible materials, they seem to be excellent in moldability. However, when molding is actually performed, the surface layer is cracked immediately after molding or when stored after molding. It was found that the surface layer may peel off from (crack) or the starting point.
 また、特許文献4、5には自己修復性と成型性を両立することを課題の一つとした提案がなされているが、本発明者らが確認したところ、いずれもその効果は成型時のクラック、または反復擦過の面で不十分であった。また、特許文献1から5のいずれもが本発明の構造について着想には至っていない。そこで本発明の目的は耐擦傷性、特に反復擦過耐性と成型性を両立した積層フィルムを提供することにある。 In addition, Patent Documents 4 and 5 have proposed that both self-repairability and moldability be one of the problems. However, the present inventors have confirmed that both of these effects are cracks during molding. Or in terms of repeated rubbing. In addition, none of Patent Documents 1 to 5 has an idea about the structure of the present invention. Accordingly, an object of the present invention is to provide a laminated film having both scratch resistance, in particular, repeated scratch resistance and moldability.
 上記課題を解決するために本発明者らは、鋭意研究を重ねた結果、以下の発明を完成させた。すなわち、本発明は以下の通りである。
(1)支持基材の少なくとも一方の面に、A層とB層とを含む表面層を有する積層フィルムであって、支持基材側からB層、A層がこの順で接しており、A層、B層、支持基材の微小硬度計により測定された25℃の貯蔵弾性率(以下、EA25、EB25、EC25)、120℃の貯蔵弾性率(以下、EA120、EB120、EC120)が、以下の条件を満たすことを特徴とする積層フィルム。
条件1 EA25<EB25≦EC25
条件2 EB120≦EA120<EC120
条件3 EA25≦100MPa
(2)前記A層、B層、支持基材が、以下の条件を満たすことを特徴とする(1)に記載の積層フィルム。
条件4 0<EC25-EB25<5GPa
条件5 0<EA120-EB120<50MPa
(3)前記B層のガラス転移温度(以下、Tg)が、以下の条件を満たすことを特徴とする(1)または(2)に記載の積層フィルム。
条件6 60℃≦Tg≦130℃
(4)前記B層の厚み(以下、T)が、以下の条件を満たすことを特徴とする(1)から(3)のいずれかに記載の積層フィルム。
条件7 0.1μm≦T≦5μm
(5)前記表面層の基材に垂直な断面において、表面層の表面から、表面層厚みの10%の位置(以降、位置1とする)、50%(以降、位置2とする)、99%(以降、位置3とする)の各位置における、原子間力顕微鏡による弾性率E1、E2、E3が、以下の条件を満たすことを特徴とする(1)から(4)のいずれかに記載の積層フィルム。
条件8  E1≦E2<E3
条件9  E1≦100MPa
条件10 E3≧1GPa
(6)前記(1)から(5)のいずれかに記載の積層フィルムの製造方法であって、前記表面層が、2種類以上の塗料組成物を支持基材上に逐次に塗布、乾燥、硬化することにより形成されることを特徴とする積層フィルムの製造方法。
(7)前記(1)から(5)のいずれかに記載の積層フィルムの製造方法であって、前記表面層が、2種類以上の塗料組成物を支持基材上に同時に塗布し、乾燥、硬化することにより形成されることを特徴とする積層フィルムの製造方法。
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, completed the following invention. That is, the present invention is as follows.
(1) A laminated film having a surface layer containing an A layer and a B layer on at least one surface of a supporting substrate, wherein the B layer and the A layer are in contact in this order from the supporting substrate side. Layer, B layer, 25 ° C. storage elastic modulus (hereinafter referred to as E A25 , E B25 , E C25 ) and 120 ° C. storage elastic modulus (hereinafter referred to as E A120 , E B120 , E C120 ) satisfies the following conditions.
Condition 1 E A25 <E B25 ≦ E C25
Condition 2 E B120 ≦ E A120 <E C120
Condition 3 E A25 ≦ 100 MPa
(2) The laminated film according to (1), wherein the A layer, the B layer, and the supporting base material satisfy the following conditions.
Condition 4 0 <E C25 -E B25 <5 GPa
Condition 5 0 <E A120 -E B120 <50 MPa
(3) The laminated film according to (1) or (2), wherein the glass transition temperature (hereinafter, Tg B ) of the B layer satisfies the following conditions.
Condition 6 60 ° C. ≦ Tg B ≦ 130 ° C.
(4) The laminated film according to any one of (1) to (3), wherein the thickness of the B layer (hereinafter, T B ) satisfies the following condition.
Condition 7 0.1 μm ≦ T B ≦ 5 μm
(5) 10% of the surface layer thickness (hereinafter referred to as position 1), 50% (hereinafter referred to as position 2), 99 from the surface of the surface layer in the cross section perpendicular to the base material of the surface layer, 99 % (Hereinafter referred to as position 3) The elastic moduli E1, E2, and E3 at each position of the atomic force microscope satisfy the following condition, according to any one of (1) to (4) Laminated film.
Condition 8 E1 ≦ E2 <E3
Condition 9 E1 ≦ 100 MPa
Condition 10 E3 ≧ 1 GPa
(6) The method for producing a laminated film according to any one of (1) to (5), wherein the surface layer is formed by sequentially applying and drying two or more types of coating compositions on a supporting substrate, A method for producing a laminated film, which is formed by curing.
(7) The method for producing a laminated film according to any one of (1) to (5), wherein the surface layer simultaneously applies two or more kinds of coating compositions on a supporting substrate, and is dried. A method for producing a laminated film, which is formed by curing.
        
 本発明によれば耐擦傷性、特に反復擦過耐性と成型性とを両立した積層フィルムを提供できる。

According to the present invention, it is possible to provide a laminated film having both scratch resistance, in particular, repeated scratch resistance and moldability.
本発明の積層フィルムの構成を示す断面図の一例である。It is an example of sectional drawing which shows the structure of the laminated | multilayer film of this invention. 本発明の積層フィルムの構成を示す断面図の一例である。It is an example of sectional drawing which shows the structure of the laminated | multilayer film of this invention. 本発明における表面層の形成方法の一例を示す断面図である。It is sectional drawing which shows an example of the formation method of the surface layer in this invention. 本発明における表面層の形成方法の一例を示す断面図である。It is sectional drawing which shows an example of the formation method of the surface layer in this invention. 本発明における表面層の形成方法の一例を示す断面図である。It is sectional drawing which shows an example of the formation method of the surface layer in this invention.
 上記課題を達成するにあたり、本発明者らは(1)実使用環境で、自己修復材料がハードコート材料よりも耐擦傷性に優れる理由、(2)柔軟な自己修復材料が成型直後、または成型後の保管時に表面層にひび(クラック)が入ることや、クラックを起点として表面層が剥離する理由、について詳細に検討し以下の考察に至った。 In achieving the above object, the present inventors have (1) the reason why the self-healing material is superior to the hard coat material in the actual use environment, and (2) the flexible self-healing material is immediately after molding or molding. The following considerations have been made by examining in detail the cracks in the surface layer during subsequent storage and the reason why the surface layer peels from the crack.
 まず、前述の(1)について述べる。プラスチック表面への傷の形成は、「圧力」、「擦過するものの硬度」、「擦過回数」の3つの要素が影響している。ハードコート材料が実使用環境で傷が入りやすい理由は、実使用環境における傷形成メカニズム、すなわち「実使用環境では、表面を擦過するものの硬度は低い一方で、接触する回数は非常に多い」ことに起因する。ハードコート材料では、擦過するものの硬度が低い、もしくは擦過時の圧力が低く、1回の擦過で表面に傷がつかない条件であっても、材料表面に傷には至らない内部ひずみが残り、これが「擦過回数」が多くなることでひずみとして蓄積される。この結果、硬度が高く、弾性変形可能なひずみ範囲が小さい、ハードコート材料には、ひずみの許容範囲を超えて最終的に傷が形成されると考えられる。一方で、自己修復材料が実使用環境に強く、反復擦過に対して有効である原因は、材料の弾性回復範囲が大きいため、前述の条件で擦過してもひずみを解放でき、傷が形成しないと考えられる。 First, the above (1) will be described. The formation of scratches on the plastic surface is affected by three factors: “pressure”, “hardness of the scraping”, and “number of scratches”. The reason why hard coat materials are likely to be scratched in the actual use environment is that the scratch formation mechanism in the actual use environment, that is, “in the actual use environment, the surface is scratched but the hardness is low, but the number of contact is very high”. caused by. In hard coat materials, the hardness is low, but the pressure at the time of rubbing is low, even if the surface is not scratched by one rubbing, internal strain that does not cause scratches remains on the material surface, This is accumulated as distortion as the “number of scratches” increases. As a result, it is considered that scratches are finally formed in the hard coat material having high hardness and a small strain range capable of elastic deformation exceeding the allowable strain range. On the other hand, the reason that self-healing materials are strong in actual use environment and effective for repeated scratching is that the elastic recovery range of the material is large, so even if rubbing under the above-mentioned conditions, strain can be released and scratches do not form it is conceivable that.
 次に前述の(2)について述べる。特許文献2から3に記載の、弾性回復により自己修復性を発現する材料を表面層に、一般的な熱可塑性樹脂を基材に用いた積層フィルムは、表面層が「エントロピー弾性体=ゴム弾性体」、支持基材が「エネルギー弾性体」となるため、熱に対する力学的挙動が大きく異なる材料により形成されているともいえる。このようなフィルムを加熱、成型すると、支持基材は塑性変形し固定化されるが、自己修復層は弾性変形範囲で変形するため、支持基材によって伸長方法に引っ張られた状態になり、表面層内に残留応力が発生する。そして、後工程、例えば射出成型により更なる加熱を受けたり、または使用環境において高い温度になったりすると、表面層はエントロピー弾性体であるが故、成型時よりも弾性率が上昇し、成型時の伸長が大きい場合には破断限界に達して、クラックが生じると考えられる。 Next, the above item (2) will be described. The laminated film described in Patent Documents 2 to 3 using a material that exhibits self-healing properties by elastic recovery as a surface layer and a general thermoplastic resin as a base material has a surface layer of “entropy elastic body = rubber elasticity”. Since the “body” and the supporting base material are “energy elastic bodies”, it can be said that they are formed of materials having greatly different mechanical behavior against heat. When such a film is heated and molded, the supporting substrate is plastically deformed and fixed, but the self-healing layer is deformed in the elastic deformation range, so that the supporting substrate is pulled by the stretching method, and the surface Residual stress is generated in the layer. Then, when subjected to further heating, such as by injection molding, or when the temperature becomes high in the usage environment, the surface layer is an entropy elastic body, so the elastic modulus increases compared to molding, When the elongation of is large, the fracture limit is reached and cracks are considered to occur.
 そこで、本発明者らは積層フィルムの表面層として、前述のように優れた耐擦傷性、特に実使用環境における反復擦過耐性を有しながら十分な成型適性を両立する、以下の構造をもつ表面層有する積層フィルムを見出した。 Therefore, the present inventors, as a surface layer of a laminated film, have excellent scratch resistance as described above, in particular, a surface having the following structure that has both sufficient moldability while having repeated scratch resistance in an actual use environment. A laminated film having layers was found.
 まず、本発明の積層フィルムは、図1に示すように支持基材3の少なくとも一方の面に、A層とB層とを含む表面層を有し、支持基材側からB層、A層がこの順で接している。 First, the laminated film of the present invention has a surface layer including an A layer and a B layer on at least one surface of a support substrate 3 as shown in FIG. Are in this order.
 前記表面層で支持基材側から2層目にある層(図1中の1、すなわちA層)、支持基材に接している層(図1中の2、すなわちB層)、支持基材(図1中の3、以下、C層とする)の微小硬度計により測定された25℃の貯蔵弾性率(以下、EA25、EB25、EC25)、120℃の貯蔵弾性率(以下、EA120、EB120、EC120)が以下の条件を満たすことが好ましい。
条件1 EA25 <EB25 ≦EC25
条件2 EB120≦EA120<EC120
条件3 EA25 ≦100MPa。
A layer (1 in FIG. 1, that is, A layer) which is the second layer from the supporting substrate side, a layer in contact with the supporting substrate (2 in FIG. 1, that is, B layer), and the supporting substrate. Storage elastic modulus at 25 ° C. (hereinafter referred to as E A25 , E B25 , E C25 ) and storage elastic modulus at 120 ° C. (hereinafter, referred to as “C layer” in FIG. 1). E A120 , E B120 , E C120 ) preferably satisfy the following conditions.
Condition 1 E A25 <E B25 ≦ E C25
Condition 2 E B120 ≦ E A120 <E C120
Condition 3 E A25 ≦ 100 MPa.
 ここで条件1は、25℃における弾性率、すなわち積層フィルムを実使用において使用する温度におけるA層(表面層においてB層に接する層)、B層(表面層において支持基材に接している層)、C層(支持基材)の貯蔵弾性率の関係を示している。C層は最も貯蔵弾性率が高く、B層はA層より貯蔵弾性率が高く、かつC層と同じかC層より貯蔵弾性率が低く、A層は最も貯蔵弾性率が低いことを意味しており、より好ましくは、EA25 <EB25 <EC25である。 Here, the condition 1 is that the elastic modulus at 25 ° C., that is, the layer A (layer in contact with the layer B in the surface layer) and the layer B (layer in contact with the support substrate in the surface layer) at the temperature at which the laminated film is actually used. ), And the storage elastic modulus relationship of the C layer (support base material). C layer has the highest storage elastic modulus, B layer has higher storage elastic modulus than A layer, and C layer has the same or lower storage elastic modulus than C layer, which means that A layer has the lowest storage elastic modulus. More preferably, E A25 <E B25 <E C25 .
 このような構成にすることで、B層は十分な凝集力を有することになり、表面層はC層に対し十分な密着力を有し、実使用において反復擦過しても剥離を生じにくいため好ましい。 By adopting such a configuration, the B layer has sufficient cohesive force, and the surface layer has sufficient adhesion to the C layer, and even if it is repeatedly rubbed in actual use, it is difficult to cause peeling. preferable.
 表面層はA層とB層とを含んでいれば他の層を含んでいてもよい。すなわち、表面層の構成は、図3のように3層以上で構成されていてもよく、この場合のA層よりも表面側にある層(Z層とする)の弾性率は特に限定されないが、Z層はA層に近い弾性率であることが好ましい。ここでZ層は防汚性、耐指紋性、耐染着性、反射防止性、防眩性、帯電防止性、など他の機能を有していてもよい。 The surface layer may include other layers as long as it includes the A layer and the B layer. That is, the structure of the surface layer may be composed of three or more layers as shown in FIG. 3, and the elastic modulus of the layer on the surface side of the A layer in this case (referred to as Z layer) is not particularly limited. The Z layer preferably has an elastic modulus close to that of the A layer. Here, the Z layer may have other functions such as antifouling properties, fingerprint resistance, dye resistance, antireflection properties, antiglare properties, and antistatic properties.
 前述の微小硬度計により測定された貯蔵弾性率とは、積層フィルムの表面層の断面の超薄切片を作製して、微小硬度計により測定した値を示す。具体的な測定方法、計算方法の詳細については後述する。 The storage elastic modulus measured with the micro hardness meter described above indicates a value measured with a micro hardness meter by preparing an ultrathin section of the cross section of the surface layer of the laminated film. Details of a specific measurement method and calculation method will be described later.
 この弾性率の順番が逆、すなわちEA25>EB25>EC25になると、表面層の弾性回復によるひずみ解放ができなくなるため反復擦過に弱くなる場合がある。また、順番が入れ替わる、すなわちEB25>EA25>EB25などになると、層内に応力集中部が形成されて、その近傍で剥離が起こる場合がある。 If the order of the elastic moduli is reversed, that is, E A25 > E B25 > E C25 , strain release due to elastic recovery of the surface layer cannot be performed, so that it may be susceptible to repeated abrasion. Further, when the order is changed, that is, when E B25 > E A25 > E B25 or the like, a stress concentration portion is formed in the layer, and peeling may occur in the vicinity thereof.
 また条件2は、120℃における弾性率、すなわち積層フィルムの成型温度付近におけるA層、B層、C層の弾性率の関係を示しており、B層がもっとも弾性率が低い、もしくはA層と同じで、A層はC層よりも弾性率が低く、C層が最も弾性率が高いことを意味している。より好ましくは、EB120<EA120<EC120である。 Condition 2 shows the relationship between the elastic modulus at 120 ° C., that is, the elastic modulus of the A layer, the B layer, and the C layer near the molding temperature of the laminated film. The B layer has the lowest elastic modulus, or In the same manner, the A layer has a lower elastic modulus than the C layer, which means that the C layer has the highest elastic modulus. More preferably, E B120 <E A120 <E C120 .
 このような構成にすることにより、成型時にB層の弾性率がA層よりも低くなることによって、A層に残留応力を残さず、その後の工程における加熱、使用環境における高温においてもクラックを生じにくいため好ましい。 By adopting such a configuration, the elastic modulus of the B layer becomes lower than that of the A layer at the time of molding, so that no residual stress remains in the A layer, and cracks occur even in heating in the subsequent processes and high temperatures in the use environment. It is preferable because it is difficult.
 この弾性率の順番が入れ替わる、すなわちEA120≦EB120<EC120になると、前述のメカニズムにより、成型時に残留応力が蓄積し、その後の工程における加熱、使用環境における高温においてクラックを生じる場合がある。 When the order of the elastic modulus is switched, that is, when E A120 ≦ E B120 <E C120 , the above-described mechanism may cause residual stress to accumulate at the time of molding, and may cause cracking at a high temperature in the subsequent heating and usage environment. .
 ここで、条件3は、A層の25℃における弾性率(EA25)の好ましい範囲を示している。EA25の値は100MPa以下が好ましく、50MPa以下がより好ましく、20MPa以下が特に好ましい。EA25の値は100MPaを超えると、反復擦過時に弾性回復によるひずみの解放が不十分になる場合がある。またEの値は小さい分には本課題を達成する上では特に支障はないが、1MPa以下になると表面に粘着性を発生する場合があり、表面保護の観点からは実用的ではない場合がある。 Here, Condition 3 indicates a preferable range of the elastic modulus (E A25 ) of the A layer at 25 ° C. The value of E A25 is preferably at most 100 MPa, more preferably at most 50 MPa, and particularly preferably 20 MPa. If the value of E A25 exceeds 100 MPa, the strain release due to elastic recovery may be insufficient during repeated rubbing. Also there is no particular trouble in achieving this object is to the minute value of E A is small, there occur the adhesion to the surface becomes to 1MPa or less, if the terms of the surface protection is not practical is there.
 さらに以下の条件4、条件5を満たすことが好ましい。
条件4 0<EC25-EB25<5GPa
条件5 0<EA120-EB120<50MPa。
Furthermore, it is preferable to satisfy the following conditions 4 and 5.
Condition 4 0 <E C25 -E B25 <5 GPa
Condition 5 0 <E A120 -E B120 <50 MPa.
 ここで、条件4は、積層フィルムの実使用環境における温度でのB層とC層の好ましい貯蔵弾性率の差の範囲を示しており、より好ましくは100MPa<EC25-EB25<3GPaである。 Here, the condition 4 indicates the range of the preferable storage elastic modulus difference between the B layer and the C layer at the temperature in the actual use environment of the laminated film, and more preferably 100 MPa <E C25 −E B25 <3 GPa. .
 EC25-EB25が5GPa以上になると、表面層の支持基材に対する密着力が不十分になるため、反復擦過耐性が低下する場合がある。EC25-EB25がゼロになると、結果としてA層とB層の弾性率差が大きくなることによりA層とB層の層間界面での応力集中が大きくなり、硬い材料による擦過で傷が残りやすくなる場合がある。 When E C25 -E B25 is 5 GPa or more, the adhesion of the surface layer to the supporting substrate becomes insufficient, and the repeated scratch resistance may decrease. When E C25 -E B25 becomes zero, as a result, the difference in elastic modulus between the A layer and the B layer increases, resulting in an increase in stress concentration at the interface between the A layer and the B layer. It may be easier.
 また、条件5は、成型温度におけるA層とB層の好ましい貯蔵弾性率の差の範囲を示しており、より好ましくは0<EA120-EB120<30MPa、さらに好ましくは0<EA120-EB120<10MPaである。 Condition 5 shows a range of a preferable storage elastic modulus difference between the A layer and the B layer at the molding temperature, more preferably 0 <E A120 −E B120 <30 MPa, and further preferably 0 <E A120 −E. B120 <10 MPa.
 EA120-EB120が50MPa以上になると、成型過程において、表面層と支持基材との密着力が不十分になり、皺を生じる場合がある。また、EB120の方がEA120よりも大きくなると、成型時にA層とB層との界面で残留応力が発生し、クラックや剥離を生じやすくなる場合がある。 If E A120 -E B120 is 50 MPa or more, the adhesion between the surface layer and the supporting substrate becomes insufficient in the molding process, which may cause wrinkles. Further, when the direction of E B 120 is larger than E A 120, residual stress occurs at the interface between the A layer and the B layer during molding, which may easily crack or peel.
 さらに、前記表面層は、以下の条件6を満たすことが好ましい。
条件6 60℃≦Tg≦130℃
 ここで、条件6は、表面層のなかで支持基材に接する層(B層)のガラス転移温度の好ましい範囲を示しており、より好ましくは、60℃≦Tg≦100℃である。
Furthermore, the surface layer preferably satisfies the following condition 6.
Condition 6 60 ° C. ≦ Tg B ≦ 130 ° C.
Here, the condition 6 indicates a preferable range of the glass transition temperature of the layer (B layer) in contact with the supporting substrate in the surface layer, and more preferably 60 ° C. ≦ Tg B ≦ 100 ° C.
 前記ガラス転移温度は、前述の微小硬度計により測定された貯蔵弾性率と損失弾性率の比(損失正接)の温度分散の極大値から求めた値を示す。測定方法の詳細については後述する。 The glass transition temperature is a value obtained from the maximum value of temperature dispersion of the ratio of storage elastic modulus to loss elastic modulus (loss tangent) measured by the above-described microhardness meter. Details of the measurement method will be described later.
 B層のガラス転移温度が60℃よりも低くなると、表面層と支持基材間の密着力が低下するため、室温での剥離や、硬い材料による擦過で傷が残りやすくなる場合がある。また、B層のガラス転移温度が130℃よりも高い場合には、条件によっては成型時にクラックや剥離を生じやすくなる場合がある。 When the glass transition temperature of the B layer is lower than 60 ° C., the adhesion between the surface layer and the supporting substrate is lowered, so that scratches may easily remain due to peeling at room temperature or rubbing with a hard material. Moreover, when the glass transition temperature of B layer is higher than 130 degreeC, it may become easy to produce a crack and peeling at the time of shaping | molding depending on conditions.
 さらに、前記表面層は、以下の条件7を満たすことが好ましい、
条件7 0.1μm ≦T≦ 5μm。
Furthermore, the surface layer preferably satisfies the following condition 7.
Condition 7 0.1 μm ≦ T B ≦ 5 μm.
 ここで条件7は、表面層において支持基材に接する層(B層)の厚み(T)の好ましい範囲を示しており、より好ましくは0.5μm ≦T≦ 3μmである。B層の厚みが、0.1μmよりも薄くなると、成型時に表面層と支持基材間で生じる残留応力を吸収する能力がやや弱くなる場合があり、5μmよりも厚くなると、表面層と支持基材間の密着力がやや弱くなる場合がある。 Here, Condition 7 indicates a preferable range of the thickness (T B ) of the layer (B layer) in contact with the support base material in the surface layer, and more preferably 0.5 μm ≦ T B ≦ 3 μm. If the thickness of layer B is less than 0.1 μm, the ability to absorb residual stress generated between the surface layer and the supporting substrate during molding may be slightly weakened. If the thickness of layer B is greater than 5 μm, the surface layer and the supporting base The adhesion between materials may be slightly weakened.
 本発明の積層フィルムは、図2に示すように支持基材の少なくとも一方の面に、A層とB層とを含む表面層を有する積層フィルムであって、前記表面層の基材に垂直な断面において、表面層の表面から、表面層厚みの10%の位置(以降、位置1とする。図2中の5の位置)、50%(以降、位置2とする。図2中の6の位置)、99%(以降、位置3とする。図2中の7の位置)の各位置における、原子間力顕微鏡による弾性率E1、E2、E3が、以下の条件8、条件9、条件10を満たすことが好ましい。
条件8  E1≦E2<E3
条件9  E1≦100MPa
条件10 E3≧1GPa
 条件8は、表面層の厚み方向において表面側から基材側に向かって弾性率が高くなることが好ましいことを意図しており、E1≦E2<E3であることが好ましく、E1<E2<E3であることがより好ましい。
The laminated film of the present invention is a laminated film having a surface layer containing an A layer and a B layer on at least one surface of a supporting substrate as shown in FIG. 2, and is perpendicular to the substrate of the surface layer. In the cross section, from the surface layer surface, the position of 10% of the surface layer thickness (hereinafter referred to as position 1; position 5 in FIG. 2), 50% (hereinafter referred to as position 2; 6 in FIG. 2). Position), 99% (hereinafter referred to as position 3; position 7 in FIG. 2), the elastic moduli E1, E2, and E3 by the atomic force microscope are as follows: Condition 8, Condition 9, Condition 10 It is preferable to satisfy.
Condition 8 E1 ≦ E2 <E3
Condition 9 E1 ≦ 100 MPa
Condition 10 E3 ≧ 1 GPa
Condition 8 intends that the elastic modulus is preferably higher from the surface side toward the substrate side in the thickness direction of the surface layer, and preferably E1 ≦ E2 <E3, and E1 <E2 <E3. It is more preferable that
 この順番が逆、すなわちE1>E2>E3になると、最表面で弾性回復によるひずみ解放ができなくなるため反復擦過に弱く、また、最表面は硬度が高くても下部の弾性率が低いためにひずみが大きくなるので、高い圧力や硬度が高い材料により擦過する場合に、耐擦傷性が低下する場合がある。 If this order is reversed, that is, E1> E2> E3, the strain cannot be released by elastic recovery on the outermost surface, so that it is vulnerable to repeated rubbing. Therefore, the scratch resistance may be lowered when it is rubbed with a material having a high pressure and high hardness.
 条件9は表面層の表面側の弾性率(E1)の好ましい範囲を示している。E1の値は100MPa以下が好ましく、50MPa以下がより好ましく、20MPa以下が特に好ましい。E1の値は100MPaを超えると、反復擦過時に弾性回復によるひずみの解放が不十分になる場合がある。またE1の値は小さい分には本課題を達成する上では特に支障はないが、1MPa以下になると表面に粘着性を発生する場合があり、表面保護の観点からは実用的ではない場合がある。 Condition 9 indicates a preferable range of the elastic modulus (E1) on the surface side of the surface layer. The value of E1 is preferably 100 MPa or less, more preferably 50 MPa or less, and particularly preferably 20 MPa or less. If the value of E1 exceeds 100 MPa, the strain release due to elastic recovery may be insufficient during repeated rubbing. In addition, since the value of E1 is small, there is no particular problem in achieving this problem, but if it is 1 MPa or less, the surface may become sticky and may not be practical from the viewpoint of surface protection. .
 条件10は、表面層の支持基材側の弾性率(E3)の好ましい範囲を示している。E3の値は1GPa以上が好ましく、2GPa以上がより好ましく、3GPa以上が特に好ましい。E3の値は1GPaより小さいと表面硬度が不十分になり、硬い材料による擦過に対する耐久性が不十分になる場合がある。E3の値は耐擦傷性については高いほど好ましいが、実用的に耐折性や加工性等の観点から積層フィルム上の表面層として使用可能な材料としては100GPa程度が限度である。 Condition 10 indicates a preferable range of the elastic modulus (E3) of the surface layer on the support base material side. The value of E3 is preferably 1 GPa or more, more preferably 2 GPa or more, and particularly preferably 3 GPa or more. When the value of E3 is less than 1 GPa, the surface hardness becomes insufficient, and the durability against scratching by a hard material may be insufficient. The higher the value of E3, the better the scratch resistance, but the practical limit is about 100 GPa as a material that can be used as the surface layer on the laminated film from the viewpoint of folding resistance and workability.
 ここで、表面層の貯蔵弾性率、損失弾性率、およびガラス転移温度の測定について述べる。これらの測定は、超微小硬度計(Hysitron 社製Tribo Indenter)を用いてモジュラスマッピング像[貯蔵弾性率(E’)像・損失弾性率(E’’)像]を取得して行うことができる。 Here, the measurement of the storage elastic modulus, loss elastic modulus, and glass transition temperature of the surface layer will be described. These measurements can be performed by obtaining a modulus mapping image [storage elastic modulus (E ′) image / loss elastic modulus (E ″) image] using an ultra-micro hardness meter (Tribo Indenter manufactured by Hystron). it can.
 例えば、積層フィルムを電顕用エポキシ樹脂(日新EM社製Quetol812)で包埋し硬化させた後、ウルトラミクロトーム(ライカ社製Ultracut S)で積層フィルムの表面層の断面の超薄切片を作製し測定サンプルとし、以下の条件で測定し、ヘルツの接触理論を用いて弾性率を算出する。
測定装置:Hysitron社製Tribo Indenter
使用圧子:ダイヤモンド製Cubecorner圧子(曲率半径50nm)
測定視野:約30mm角
測定周波数:200Hz
測定雰囲気:室温・大気中
接触荷重:0.3μN
 以下に超微小硬度計による測定原理を説明する。
For example, after embedding a laminated film with an electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM) and curing it, an ultra-thin section of the surface layer of the laminated film is produced with an ultramicrotome (Ultracut S manufactured by Leica) The measurement sample is measured under the following conditions, and the elastic modulus is calculated using Hertz's contact theory.
Measuring device: Tribo Indenter made by Hystron
Working indenter: Diamond Cubecorner indenter (curvature radius 50 nm)
Measurement field of view: approx. 30 mm square Measurement frequency: 200 Hz
Measurement atmosphere: Room temperature and atmospheric contact load: 0.3 μN
The measurement principle using an ultra-micro hardness meter will be described below.
 軸対称圧子を試料に押し込んだ際の、測定系のスチフネス(K)は式(1)で表される
ことが知られている。
It is known that the stiffness (K) of the measurement system when an axisymmetric indenter is pushed into a sample is expressed by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Aは、試料と圧子が接触してできる圧痕の投影面積、Eは圧子系と試料系の複合弾性率である。 Here, A is the projected area of the indentation formed by contact between the sample and the indenter, and E * is the combined elastic modulus of the indenter system and the sample system.
 一方、圧子が試料のごく表面に接触した際には、圧子先端を球形状とみなし、球形と半無限平板の接触に関するヘルツの接触理論を適用できると考えられる。ヘルツの接触理論では、圧子と試料が接触している際の圧痕投影面の半径aは式(2)で表される。 On the other hand, when the indenter contacts the very surface of the sample, the tip of the indenter is regarded as a spherical shape, and it is considered that the Hertz contact theory relating to the contact between the spherical shape and the semi-infinite flat plate can be applied. In Hertz's contact theory, the radius a of the indentation projection surface when the indenter is in contact with the sample is expressed by Equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Pは荷重、Rは圧子先端の曲率半径である。 Where P is the load and R is the radius of curvature of the indenter tip.
 よって、試料と圧子が接触してできる圧痕の投影面積Aは式(3)で表され、式(1)~式(3)を用いて、Eを算出することができる。 Therefore, the projected area A of the impression formed by the contact between the sample and the indenter is expressed by Expression (3), and E * can be calculated using Expression (1) to Expression (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 モジュラスマッピングとは、上記ヘルツの接触理論に基づき、試料のごく表面に圧子を接触させ、試験中に圧子を微小振動させ、振動に対する応答振幅、位相差を時間の関数として取得し、K(測定系スチフネス)およびD(試料ダンピング)を求める方法である。 Modulus mapping is based on the Hertz contact theory described above. An indenter is brought into contact with the very surface of the sample, the indenter is microvibrated during the test, and the response amplitude and phase difference with respect to the vibration are obtained as a function of time. System stiffness) and D (sample damping).
 この振動が単純調和振動子であると、試料へ圧子が侵入する方向の力の総和(検出荷重成分)F(t)は、式(4)で表される。 If this vibration is a simple harmonic oscillator, the total force (detected load component) F (t) in the direction in which the indenter enters the sample is expressed by Equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、式(4)第1項は圧子軸由来の力(m:圧子軸の質量)、式(4)第2項は試料の粘性的成分由来の力を、式(4)第3項は試料系の剛性を表し、tは時間を表している。式(4)のF(t)は、時間に依存することから、式(5)のように表される。 Here, the first term of equation (4) is the force derived from the indenter shaft (m: mass of the indenter shaft), the second term of equation (4) is the force derived from the viscous component of the sample, and the third term of equation (4). Represents the rigidity of the sample system, and t represents time. Since F (t) in Expression (4) depends on time, it is expressed as Expression (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、Fは定数、ωは角振動数である。式(5)を式(4)に代入して、常微分方程式の特別解である式(6)を代入し、方程式を解くと、式(7)~(10)の関係式を得ることができる。 Here, F 0 is a constant, and ω is an angular frequency. Substituting equation (5) into equation (4), substituting equation (6), which is a special solution of ordinary differential equations, and solving the equations yields relational expressions of equations (7) to (10). it can.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、φは位相差である。mは測定時に既知であることから、供試体の測定時に、変位の振動振幅(h)、位相差(φ)と励起振動振幅(F)を計測することによって、式(7)~式(10)より、KおよびDを算出することができる。 Here, φ is a phase difference. Since m is known at the time of measurement, by measuring the vibration amplitude (h 0 ), phase difference (φ), and excitation vibration amplitude (F 0 ) of the displacement when measuring the specimen, the equations (7) to (7) From (10), K and D can be calculated.
 Eを貯蔵弾性率(E’)とみなして式(1)~式(10)をまとめ、測定系スチフネスのうち、試料由来であるKs(=K-mω)を用いて式(11)から貯蔵弾性率を算出した。 E * is regarded as the storage elastic modulus (E ′), and the formulas (1) to (10) are summarized. Among the measurement system stiffnesses, using the sample-derived Ks (= K−mω 2 ), the formula (11) The storage elastic modulus was calculated from
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 本発明中の損失弾性率も前述した貯蔵弾性率の測定と同様に測定でき、前述の式(8)における測定系スチフネスのうち、試料由来であるKsを用い、式(11)とあわせてまとめた式(12)から損失弾性率を算出した。 The loss elastic modulus in the present invention can also be measured in the same manner as the measurement of the storage elastic modulus described above. Among the measurement system stiffnesses in the above equation (8), Ks that is derived from the sample is used, and is combined with equation (11). The loss elastic modulus was calculated from the equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本発明におけるガラス転移温度も前述した貯蔵弾性率の測定と同様に測定でき、前途で算出された貯蔵弾性率、損失弾性率の比から損失正接(tanδ)を求め、得られた損失正接(tanδ)のピーク値の温度を、ガラス転移温度(Tg)とした。 The glass transition temperature in the present invention can also be measured in the same manner as the measurement of the storage elastic modulus described above. The loss tangent (tan δ) is obtained from the ratio of the storage elastic modulus and the loss elastic modulus calculated in the above, and the obtained loss tangent (tan δ) ) Was the glass transition temperature (Tg).
 本発明における原子間力顕微鏡による弾性率測定は、極微小部分の探針による圧縮試験であり、押し付け力による変形度合いであるため、ばね定数が既知のカンチレバーを用いて、表面層の厚み方向の各位置の断面における弾性率を測定する。具体的には積層フィルムを切断し、表面層の厚み方向の各位置の断面における弾性率を原子間力顕微鏡により測定する。詳細は実施例の項で記載するが、下記に示す原子間力顕微鏡を用い、カンチレバー先端の探針を、表面層の断面に接触させ、最大2μNの押し込み荷重によりフォースカーブを測定して求めたカンチレバーの撓み量より測定することができる。詳細については後述する。 The elastic modulus measurement by the atomic force microscope in the present invention is a compression test using a probe of a very small portion, and is a degree of deformation due to the pressing force. Therefore, a cantilever having a known spring constant is used to measure the thickness of the surface layer. The elastic modulus in the cross section at each position is measured. Specifically, the laminated film is cut, and the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured with an atomic force microscope. Details will be described in the section of the example, but using an atomic force microscope shown below, the probe at the tip of the cantilever was brought into contact with the cross section of the surface layer, and the force curve was measured by an indentation load of 2 μN at maximum. It can be measured from the amount of bending of the cantilever. Details will be described later.
 原子間力顕微鏡:アサイラムテクノロジー社製 MFP-3DSA-J
 カンチレバー:NANOSENSORS製のカンチレバー「R150-NCL-10(材質Si、ばね定数48N/m、先端の曲率半径150nm)。
Atomic force microscope: MFP-3DSA-J manufactured by Asylum Technology
Cantilever: A cantilever “R150-NCL-10 made by NANOSENSORS (material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm).
 以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 [積層フィルム、および表面層]
 本発明の積層フィルムは、前述の物性を示す表面層を有していれば平面状態、または成型された後の3次元形状のいずれであってもよい。ここで本発明における「表面層」は、少なくとも2以上の層から形成されていることが好ましい。
[Laminated film and surface layer]
The laminated film of the present invention may be in a planar state or a three-dimensional shape after being molded as long as it has a surface layer exhibiting the aforementioned physical properties. Here, the “surface layer” in the present invention is preferably formed of at least two layers.
 前記表面層全体の厚みは特に限定はないが、5μm以上200μm以下が好ましく、10μm以上100μm以下がより好ましい。 The thickness of the entire surface layer is not particularly limited, but is preferably 5 μm or more and 200 μm or less, and more preferably 10 μm or more and 100 μm or less.
 前述の2以上の層として、少なくとも前記表面層においてB層と接する層(A層)、支持基材に接している層(B層)を有し、A層、B層、支持基材が、前述の関係を満たすことが好ましい。 As the above-mentioned two or more layers, at least the surface layer has a layer in contact with the B layer (A layer), a layer in contact with the support substrate (B layer), and the A layer, the B layer, and the support substrate have It is preferable to satisfy the above relationship.
 前記表面層は本発明の課題としている耐擦傷性、特に反復擦過耐性と成型性の両立のほかに、防汚性、反射防止性、帯電防止性、導電性、熱線反射性、近赤外線吸収性、電磁波遮蔽性、易接着等の他の機能を有してもよい。 The surface layer is an object of the present invention, in addition to the scratch resistance, particularly the repetitive scratch resistance and moldability, as well as antifouling properties, antireflection properties, antistatic properties, electrical conductivity, heat ray reflectivity, and near infrared absorption properties. It may have other functions such as electromagnetic wave shielding and easy adhesion.
 [支持基材]
 本発明の積層フィルムに用いられる支持基材を構成する材料は、熱可塑性樹脂、熱硬化性樹脂のいずれでもよく、ホモ樹脂であってもよく、共重合または2種類以上のブレンドであってもよい。より好ましくは、支持基材を構成する樹脂は、成型性が良好であるため、熱可塑性樹脂が好ましい。
[Supporting substrate]
The material constituting the support substrate used in the laminated film of the present invention may be either a thermoplastic resin or a thermosetting resin, may be a homo resin, may be a copolymer or a blend of two or more types. Good. More preferably, the resin constituting the support substrate is preferably a thermoplastic resin because of good moldability.
 熱可塑性樹脂の例としては、ポリエチレン・ポリプロピレン・ポリスチレン・ポリメチルペンテンなどのポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ナイロン6・ナイロン66などのポリアミド樹脂、アラミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂・3フッ化エチレン樹脂・3フッ化塩化エチレン樹脂・4フッ化エチレン-6フッ化プロピレン共重合体・フッ化ビニリデン樹脂などのフッ素樹脂、アクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂などを用いることができる。熱可塑性樹脂は、十分な延伸性と追従性を備える樹脂が好ましい。熱可塑性樹脂は、強度・耐熱性・透明性の観点から、特に、ポリエステル樹脂、もしくはポリカーボネート樹脂、メタクリル樹脂であることが好ましく、ポリエステル樹脂が特に好ましい。 Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polystyrene, and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyester resins, polycarbonate resins, and polyarylate resins. Fluorine resins such as polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluoroethylene resin, trifluoroethylene chloride resin, tetrafluoroethylene-6 fluoropropylene copolymer, vinylidene fluoride resin, acrylic Resins, methacrylic resins, polyacetal resins, polyglycolic acid resins, polylactic acid resins, and the like can be used. The thermoplastic resin is preferably a resin having sufficient stretchability and followability. The thermoplastic resin is particularly preferably a polyester resin, a polycarbonate resin, or a methacrylic resin from the viewpoint of strength, heat resistance, and transparency, and a polyester resin is particularly preferable.
 本発明におけるポリエステル樹脂とは、エステル結合を主鎖の主要な結合鎖とする高分子の総称であって、酸成分およびそのエステルとジオール成分の重縮合によって得られる。具体例としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートなどを挙げることができる。またこれらに酸成分やジオール成分として他のジカルボン酸およびそのエステルやジオール成分を共重合したものであってもよい。これらの中で透明性、寸法安定性、耐熱性などの点でポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレートが特に好ましい。 The polyester resin in the present invention is a general term for polymers having an ester bond as a main bond chain, and is obtained by polycondensation of an acid component and its ester with a diol component. Specific examples include polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and the like. These may be copolymerized with other dicarboxylic acids and their esters or diol components as acid components or diol components. Among these, polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferable in terms of transparency, dimensional stability, heat resistance and the like.
 また、支持基材には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。支持基材は、単層構成、積層構成のいずれであってもよい。 In addition, for the support substrate, various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, A dopant for adjusting the refractive index may be added. The support substrate may be either a single layer configuration or a laminated configuration.
 支持基材の表面には、前記表面層を形成する前に各種の表面処理を施すことも可能である。表面処理の例としては、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が挙げられる。これらの中でもグロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理と紫外線処理がさらに好ましい。 The surface of the support substrate can be subjected to various surface treatments before forming the surface layer. Examples of the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment. Among these, glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
 また、支持基材の表面には、本発明の表面層とは別に易接着層、帯電防止層、アンダーコート層、紫外線吸収層などの機能性層をあらかじめ設けることも可能であり、特に易接着層を設けることが好ましい。 In addition to the surface layer of the present invention, a functional layer such as an easy-adhesion layer, an antistatic layer, an undercoat layer, and an ultraviolet absorption layer can be provided in advance on the surface of the support substrate. It is preferable to provide a layer.
 [塗料組成物]
 本発明の積層フィルムは支持基材上に後述する積層フィルムの製造方法を用いて、塗料組成物を塗布、乾燥、硬化することで、前述の物性を達成可能な構造を持つ表面層を形成できる。ここで「塗料組成物」とは、溶媒と溶質からなる液体であり、前述の支持基材上に塗布し、溶媒を乾燥工程で揮発、除去、硬化することにより表面層を形成可能な材料を指す。ここで、塗料組成物の「種類」とは、塗料組成物を構成する溶質の種類が一部でも異なる液体を指す。この溶質は、樹脂もしくは塗布プロセス内でそれらを形成可能な材料(以降これを前駆体と呼ぶ)、粒子、および重合開始剤、硬化剤、触媒、レベリング剤、紫外線吸収剤、酸化防止剤等の各種添加剤からなる。
[Coating composition]
The laminated film of the present invention can form a surface layer having a structure capable of achieving the aforementioned physical properties by applying, drying, and curing a coating composition on a supporting substrate by using a laminated film manufacturing method described later. . Here, the “coating composition” is a liquid composed of a solvent and a solute, and is a material that can be applied to the above-mentioned supporting substrate and volatilized, removed, and cured in a drying process to form a surface layer. Point to. Here, the “type” of the coating composition refers to liquids that are different in part even in the type of solute constituting the coating composition. This solute is a resin or a material that can form them in the coating process (hereinafter referred to as a precursor), particles, and polymerization initiators, curing agents, catalysts, leveling agents, ultraviolet absorbers, antioxidants, etc. Consists of various additives.
 本発明の積層フィルムは、前述のように少なくとも2種類の塗料組成物(以下塗料組成物A、塗料組成物Bとする)を用い、支持基材上に逐次に塗布、または同時塗布することにより形成することが好ましい。 As described above, the laminated film of the present invention uses at least two types of coating compositions (hereinafter referred to as coating composition A and coating composition B), and is applied sequentially or simultaneously on a supporting substrate. It is preferable to form.
 ここで塗料組成物Aは、表面層の支持基材側から2層目、すなわち前述のA層を形成するのに適した樹脂、または前駆体を含む液体であり、あらかじめB層が形成された支持基材上に、塗布、乾燥、硬化、もしくは支持基材上にB層の形成と同時に塗布、乾燥、硬化することによりA層を形成できる。 Here, the coating composition A is a liquid containing a resin or a precursor suitable for forming the second layer from the support base material side of the surface layer, that is, the aforementioned A layer, and the B layer is formed in advance. The A layer can be formed by coating, drying, curing on the supporting substrate, or coating, drying, and curing simultaneously with the formation of the B layer on the supporting substrate.
 塗料組成物Bは、表面層の支持基材と接している層、すなわち前述のB層を形成するのに適した樹脂、または前駆体を含む液体であり、支持基材上に塗布、乾燥、硬化、もしくは表面側にA層と同時に塗布、乾燥、硬化することにより、B層を形成できる。 The coating composition B is a layer containing a surface layer in contact with the supporting substrate, that is, a liquid containing a resin or precursor suitable for forming the aforementioned B layer, and is applied onto the supporting substrate, dried, The B layer can be formed by curing or coating, drying and curing simultaneously with the A layer on the surface side.
 [塗料組成物A]
 塗料組成物Aは、表面層におけるA層を構成するのに適した材料を含む、もしくは形成可能な前駆体を含む液体であり、溶質として次の(1)から(3)のセグメントを含む樹脂もしくは前駆体を含むことが好ましい。
(1)ポリカプロラクトンセグメント、ポリカーボネートセグメントおよびポリアルキレングリコールセグメントからなる群より選ばれる少なくとも一つを含むセグメント
(2)ウレタン結合
(3)フッ素化合物セグメント、ポリシロキサンセグメントおよびポリジメチルシロキサンセグメントからなる群より選ばれる少なくとも一つを含むセグメント。
[Coating composition A]
The coating composition A is a liquid containing a material suitable for constituting the A layer in the surface layer or containing a precursor that can be formed, and a resin containing the following segments (1) to (3) as a solute: Or it is preferable that a precursor is included.
(1) A segment containing at least one selected from the group consisting of a polycaprolactone segment, a polycarbonate segment and a polyalkylene glycol segment (2) A urethane bond (3) From a group consisting of a fluorine compound segment, a polysiloxane segment and a polydimethylsiloxane segment A segment containing at least one selected.
 この表面層の表面におけるA層を構成する樹脂が含む各セグメントについては、TOF-SIMS、FT-IR等により確認することできる。 Each segment included in the resin constituting the layer A on the surface layer can be confirmed by TOF-SIMS, FT-IR, or the like.
 また、塗料組成物A中に含まれる前記(1)、(2)、(3)の質量部は、(1)/(2)/(3)= 95/5/1 ~ 50/50/15 が好ましく、(1)/(2)/(3)= 90/10/1 ~ 60/40/10 がより好ましい。以下、(1)、(2)、(3)の詳細について説明する。 The mass parts of (1), (2) and (3) contained in the coating composition A are (1) / (2) / (3) = 95/5/1 to 50/50/15. (1) / (2) / (3) = 90/10/1 to 60/40/10 is more preferable. The details of (1), (2), and (3) will be described below.
 前記(1)ポリカプロラクトンセグメント、ポリカーボネートセグメントおよびポリアルキレングリコールセグメントの詳細については後述するが、前記表面層の表面におけるA層を構成する樹脂がこれらのセグメントを有することで、表面層の自己修復性を向上させ、反復擦過性を向上させることができる。 The details of the (1) polycaprolactone segment, polycarbonate segment and polyalkylene glycol segment will be described later, but the resin constituting the layer A on the surface of the surface layer has these segments, so that the self-healing property of the surface layer Can be improved, and repetitive scratching can be improved.
 前記ウレタン結合の詳細については後述するが、前記表面層の表面におけるA層を構成する樹脂がこの結合を有することで、表面層全体の強靭性を向上させることができる。 Although details of the urethane bond will be described later, the toughness of the entire surface layer can be improved when the resin constituting the layer A on the surface of the surface layer has this bond.
 前記フルオロポリエーテルセグメントの詳細については後述するが、表面層を構成する樹脂がこれらを含むことにより最表面に低表面エネルギーを示す分子を高密度に存在させることができ、表面の反復擦過性が向上する。 Although details of the fluoropolyether segment will be described later, the resin constituting the surface layer contains these, so that molecules having low surface energy can be present at a high density on the outermost surface, and the surface is repeatedly scratched. improves.
 [ポリカプロラクトンセグメント、ポリカーボネートセグメント、ポリアルキレングリコールセグメント]
 まず、ポリカプロラクトンセグメントとは化学式1で示されるセグメントを指す。ポリカプロラクトンには、カプロラクトンの繰り返し単位が1(モノマー)、2(ダイマー)、3(トライマー)のようなものや、カプロラクトンの繰り返し単位が35までのオリゴマーも含む。
[Polycaprolactone segment, polycarbonate segment, polyalkylene glycol segment]
First, the polycaprolactone segment refers to a segment represented by Chemical Formula 1. Polycaprolactone includes those having caprolactone repeating units of 1 (monomer), 2 (dimer), 3 (trimer), and oligomers having caprolactone repeating units of up to 35.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
nは1~35の整数である。 n is an integer of 1 to 35.
 ポリカプロラクトンセグメントを含有する樹脂は、少なくとも1以上の水酸基(ヒドロキシル基)を有することが好ましい。水酸基はポリカプロラクトンセグメントを含有する樹脂の末端にあることが好ましい。 The resin containing a polycaprolactone segment preferably has at least one hydroxyl group. The hydroxyl group is preferably at the end of the resin containing the polycaprolactone segment.
 ポリカプロラクトンセグメントを含有する樹脂としては、特に2~3官能の水酸基を有するポリカプロラクトンが好ましい。具体的には、化学式2で示されるポリカプロラクトンジオール、 As the resin containing a polycaprolactone segment, polycaprolactone having a bi- or trifunctional hydroxyl group is particularly preferable. Specifically, polycaprolactone diol represented by Chemical Formula 2,
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ここで、m+nは4~35の整数で、m、nはそれぞれ1~34の整数、RはC、COC、C(CH(CH
または化学式3で示されるポリカプロラクトントリオール、
Here, m + n is an integer from 4 to 35, m and n are each an integer from 1 to 34, R is C 2 H 4 , C 2 H 4 OC 2 H 4 , C (CH 3 ) 3 (CH 2 ) 2
Or polycaprolactone triol represented by Chemical Formula 3,
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 ここで、l+m+nは3~30の整数で、l、m、nはそれぞれ1~28の整数、RはCHCHCH、CHC(CH、CHCHC(CH
などのポリカプロラクトンポリオールや化学式4で示されるポリカプロラクトン変性ヒドロキシエチル(メタ)アクリレート
Here, l + m + n is an integer of 3 to 30, l, m and n are each an integer of 1 to 28, R is CH 2 CHCH 2 , CH 3 C (CH 2 ) 3 , CH 3 CH 2 C (CH 2 ) 3
Such as polycaprolactone polyol and polycaprolactone-modified hydroxyethyl (meth) acrylate represented by Chemical Formula 4
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ここで、nは1~25の整数で、RはHまたはCHなどの活性エネルギー線重合性カプロラクトンを用いることができる。他の活性エネルギー線重合性カプロラクトンの例として、ポリカプロラクトン変性ヒドロキシプロピル(メタ)アクリレート、ポリカプロラクトン変性ヒドロキシブチル(メタ)アクリレートなどが挙げられる。 Here, n is an integer of 1 to 25, and R is active energy ray-polymerizable caprolactone such as H or CH 3 . Examples of other active energy ray-polymerizable caprolactone include polycaprolactone-modified hydroxypropyl (meth) acrylate, polycaprolactone-modified hydroxybutyl (meth) acrylate, and the like.
 さらに本発明において、ポリカプロラクトンセグメントを含有する樹脂は、ポリカプロラクトンセグメント以外に、他のセグメントやモノマーが含有(あるいは、共重合)されていてもよい。たとえば、後述するポリジメチルシロキサンセグメントやポリシロキサンセグメント、イソシアネート化合物を含有する化合物が含有(あるいは、共重合)されていてもよい。 Furthermore, in the present invention, the resin containing a polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment. For example, a polydimethylsiloxane segment, a polysiloxane segment, or a compound containing an isocyanate compound described later may be contained (or copolymerized).
 また、本発明において、ポリカプロラクトンセグメントを含有する樹脂中の、ポリカプロラクトンセグメントの重量平均分子量は500~2,500であることが好ましく、より好ましい重量平均分子量は1,000~1,500である。ポリカプロラクトンセグメントの重量平均分子量が500~2,500であると、自己修復性の効果がより発現し、また反復擦過性がより向上するため好ましい。 Further, in the present invention, the weight average molecular weight of the polycaprolactone segment in the resin containing the polycaprolactone segment is preferably 500 to 2,500, and more preferably 1,000 to 1,500. . It is preferable that the weight average molecular weight of the polycaprolactone segment is 500 to 2,500 because the self-repairing effect is further exhibited and the repeated scratch resistance is further improved.
 次にポリアルキレングリコールセグメントとは、化学式5で示されるセグメントを指す。ポリアルキレングリコールには、アルキレングリコールの繰り返し単位が2(ダイマー)、3(トライマー)のようなものや、アルキレングリコールの繰り返し単位が11までのオリゴマーも含む。 Next, the polyalkylene glycol segment refers to a segment represented by Chemical Formula 5. The polyalkylene glycol includes those having an alkylene glycol repeating unit of 2 (dimer) and 3 (trimer) and an oligomer having an alkylene glycol repeating unit of up to 11.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 nは2~4の整数、mは2~11の整数である。 N is an integer from 2 to 4, and m is an integer from 2 to 11.
 ポリアルキレングリコールセグメントを含有する樹脂は、少なくとも1以上の水酸基(ヒドロキシル基)を有することが好ましい。水酸基はポリアルキレングリコールセグメントを含有する樹脂の末端にあることが好ましい。 The resin containing a polyalkylene glycol segment preferably has at least one hydroxyl group (hydroxyl group). The hydroxyl group is preferably at the end of the resin containing the polyalkylene glycol segment.
 ポリアルキレングリコールセグメントを含有する樹脂としては、弾性を付与するために、末端にアクリレート基を有するポリアルキレングリコール(メタ)アクリレートであることが好ましい。ポリアルキレングリコール(メタ)アクリレートのアクリレート官能基(またはメタクリレート官能基)数は限定されないが、硬化物の自己修復性の点から単官能であることが最も好ましい。 The resin containing a polyalkylene glycol segment is preferably a polyalkylene glycol (meth) acrylate having an acrylate group at the end in order to impart elasticity. The number of acrylate functional groups (or methacrylate functional groups) of the polyalkylene glycol (meth) acrylate is not limited, but is most preferably monofunctional from the viewpoint of self-healing properties of the cured product.
 表面層を形成するために用いる塗料組成物中に含有されるポリアルキレングリコール(メタ)アクリレートとしては、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリブチレングリコール(メタ)アクリレートが挙げられる。それぞれ次の化学式6、化学式7、化学式8に代表される構造である。 Examples of the polyalkylene glycol (meth) acrylate contained in the coating composition used for forming the surface layer include polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, and polybutylene glycol (meth) acrylate. . The structures are represented by the following chemical formula 6, chemical formula 7, and chemical formula 8, respectively.
 ポリエチレングリコール(メタ)アクリレート: Polyethylene glycol (meth) acrylate:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ポリプロピレングリコール(メタ)アクリレート: Polypropylene glycol (meth) acrylate:
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ポリブチレングリコール(メタ)アクリレート: Polybutylene glycol (meth) acrylate:
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化学式6、化学式7、化学式8でRは水素(H)またはメチル基(-CH)、mは2~11となる整数である。 In Chemical Formula 6, Chemical Formula 7, and Chemical Formula 8, R is hydrogen (H) or a methyl group (—CH 3 ), and m is an integer from 2 to 11.
 本発明では、好ましくは、後述するイソシアネート基を含有する化合物と(ポリ)アルキレングリコール(メタ)アクリレートの水酸基を反応させてウレタン(メタ)アクリレートとして表面層に用いることにより、表面層を構成する樹脂が、(2)ウレタン結合および(3)(ポリ)アルキレングリコールセグメントを有することができ、結果として表面層の強靱性を向上させると共に自己修復性を向上することができて好ましい。 In the present invention, the resin constituting the surface layer is preferably formed by reacting a compound containing an isocyanate group, which will be described later, with the hydroxyl group of (poly) alkylene glycol (meth) acrylate and using it as the urethane (meth) acrylate in the surface layer. However, (2) It can have a urethane bond and (3) (poly) alkylene glycol segment, and as a result, it can improve the toughness of the surface layer and improve self-repairability, which is preferable.
 イソシアネート基を含有する化合物とポリアルキレングリコール(メタ)アクリレートとのウレタン化反応の際に同時に配合するヒドロキシアルキル(メタ)アクリレートとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が例示される。 Hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl as the hydroxyalkyl (meth) acrylate compounded at the same time as the urethanization reaction between the compound containing an isocyanate group and the polyalkylene glycol (meth) acrylate Examples include (meth) acrylate.
 次に、ポリカーボネートセグメントとは化学式9で示されるセグメントを指す。ポリカーボネートには、カーボネートの繰り返し単位が2(ダイマー)、3(トライマー)のようなものや、カーボネートの繰り返し単位が16までのオリゴマーも含む。 Next, the polycarbonate segment refers to the segment represented by Chemical Formula 9. Polycarbonate includes carbonate repeating units such as 2 (dimer) and 3 (trimer), and oligomers having up to 16 carbonate repeating units.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 nは2~16の整数である。
は炭素数1~8までのアルキレン基またはシクロアルキレン基を指す。
n is an integer of 2 to 16.
R 4 represents an alkylene group having 1 to 8 carbon atoms or a cycloalkylene group.
 ポリカーボネートセグメントを含有する樹脂は、少なくとも1以上の水酸基(ヒドロキシル基)を有することが好ましい。水酸基は、ポリカーボネートセグメントを含有する樹脂の末端にあることが好ましい。 The resin containing a polycarbonate segment preferably has at least one hydroxyl group (hydroxyl group). The hydroxyl group is preferably at the end of the resin containing the polycarbonate segment.
 ポリカーボネートセグメントを含有する樹脂としては、特に2官能の水酸基を有するポリカーボネートジオールが好ましい。具体的には化学式10で示される。
ポリカーボネートジオール:
As the resin containing a polycarbonate segment, a polycarbonate diol having a bifunctional hydroxyl group is particularly preferable. Specifically, it is represented by Chemical Formula 10.
Polycarbonate diol:
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 nは2~16の整数である。Rは炭素数1~8までのアルキレン基またはシクロアルキレン基を指す。 N is an integer from 2 to 16. R represents an alkylene group having 1 to 8 carbon atoms or a cycloalkylene group.
 ポリカーボネートジオールは、カーボネート単位の繰り返し数がいくつであってもよいが、カーボネート単位の繰り返し数が大きすぎるとウレタン(メタ)アクリレートの硬化物の強度が低下するため、繰り返し数は10以下であることが好ましい。なお、ポリカーボネートジオールは、カーボネート単位の繰り返し数が異なる2種以上のポリカーボネートジオールの混合物であってもよい。 The polycarbonate diol may have any number of repeating carbonate units, but if the number of repeating carbonate units is too large, the strength of the cured urethane (meth) acrylate will decrease, so the number of repeating units should be 10 or less. Is preferred. The polycarbonate diol may be a mixture of two or more types of polycarbonate diols having different repeating numbers of carbonate units.
 ポリカーボネートジオールは、数平均分子量が500~10,000のものが好ましく、1,000~5,000のものがより好ましい。数平均分子量が500未満になると好適な柔軟性が得難くなる場合があり、また数平均分子量が10,000を超えると耐熱性や耐溶剤性が低下する場合があるので前記程度のものが好適である。 The polycarbonate diol preferably has a number average molecular weight of 500 to 10,000, more preferably 1,000 to 5,000. When the number average molecular weight is less than 500, suitable flexibility may be difficult to obtain, and when the number average molecular weight exceeds 10,000, the heat resistance and solvent resistance may be deteriorated. It is.
 また、本発明で用いられるポリカーボネートジオールとしては、UH-CARB、UD-CARB、UC-CARB(宇部興産株式会社)、PLACCEL CD-PL、PLACCEL CD-H(ダイセル化学工業株式会社)、クラレポリオールCシリーズ(株式会社クラレ)、デュラノールシリーズ(旭化成ケミカルズ株式会社)のなど製品を好適に例示することができる。これらのポリカーボネートジオールは、単独で、または二種類以上を組合せて用いることもできる。 The polycarbonate diol used in the present invention includes UH-CARB, UD-CARB, UC-CARB (Ube Industries, Ltd.), PLACEL CD-PL, PLACEL CD-H (Daicel Chemical Industries, Ltd.), and Kuraray Polyol C. Products such as the series (Kuraray Co., Ltd.) and the Duranol series (Asahi Kasei Chemicals Co., Ltd.) can be suitably exemplified. These polycarbonate diols can be used alone or in combination of two or more.
 さらに本発明において、ポリカプロラクトンセグメントを含有する樹脂は、ポリカプロラクトンセグメント以外に、他のセグメントやモノマーが含有(あるいは、共重合)されていてもよい。たとえば、後述するポリジメチルシロキサンセグメントやポリシロキサンセグメント、イソシアネート化合物を含有する化合物が含有(あるいは、共重合)されていてもよい。 Furthermore, in the present invention, the resin containing a polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment. For example, a polydimethylsiloxane segment, a polysiloxane segment, or a compound containing an isocyanate compound described later may be contained (or copolymerized).
 本発明では、好ましくは、後述するイソシアネート基を含有する化合物とポリカーボネートジオールの水酸基を反応させてウレタン(メタ)アクリレートとして、表面層の表面側に用いることにより、表面層の表面側を構成する樹脂が、前述の(2)ウレタン結合および(1)ポリカーボネートジオールセグメントを有することができ、結果として表面層の強靱性を向上させると共に自己修復性を向上することができ、反復擦過性を向上させることができる。 In the present invention, preferably, a resin constituting the surface side of the surface layer is obtained by reacting a compound containing an isocyanate group, which will be described later, with a hydroxyl group of polycarbonate diol, as urethane (meth) acrylate, on the surface side of the surface layer. Can have the above-mentioned (2) urethane bond and (1) polycarbonate diol segment, and as a result, the toughness of the surface layer can be improved and the self-healing property can be improved, and the repeated scratch resistance can be improved. Can do.
 [ウレタン結合、イソシアネート基を含有する化合物]
 本発明において、「ウレタン結合」とは化学式11で示される結合を指す。
[Compound containing urethane bond and isocyanate group]
In the present invention, the “urethane bond” refers to a bond represented by Chemical Formula 11.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記表面層の表面側を構成する樹脂がこの結合を有することで、表面層全体の強靭性を向上させることができる。 The resin constituting the surface side of the surface layer has this bond, whereby the toughness of the entire surface layer can be improved.
 塗料組成物Aが市販のウレタン変性樹脂を含むことにより、表面層の表面側を構成する樹脂がウレタン結合を有することが可能となる。また、表面層の表面側を形成する際に前駆体としてイソシアネート基を含有する化合物と水酸基を含有する化合物とを含む塗料組成物Aを塗布、乾燥、硬化することにより、ウレタン結合を生成させて、表面層の表面側にウレタン結合を含有させることもできる。 When the coating composition A contains a commercially available urethane-modified resin, the resin constituting the surface side of the surface layer can have a urethane bond. Moreover, when forming the surface side of the surface layer, a urethane bond is generated by applying, drying and curing a coating composition A containing a compound containing an isocyanate group and a compound containing a hydroxyl group as a precursor. A urethane bond can also be contained on the surface side of the surface layer.
 本発明ではイソシアネート基と水酸基とを反応させてウレタン結合を生成させることにより、表面層の表面側を構成する樹脂にウレタン結合を導入することが好ましい。イソシアネート基と水酸基とを反応させてウレタン結合を生成させることにより、表面層の強靱性を向上させると共に自己修復性を向上させることで、反復擦過性を向上させることができる。 In the present invention, it is preferable to introduce a urethane bond into the resin constituting the surface side of the surface layer by reacting an isocyanate group and a hydroxyl group to generate a urethane bond. By repeating the isocyanate group and the hydroxyl group to generate a urethane bond, the toughness of the surface layer is improved and the self-repairing property is improved, whereby the repeated scratching property can be improved.
 また、前述したポリカプロラクトンセグメント、ポリカーボネートセグメント、ポリアルキレングリコールセグメントを含有する樹脂や、水酸基を有する場合は、熱などによってこれら樹脂と前駆体としてイソシアネート基を含有する化合物との間にウレタン結合を生成させることも可能である。 In addition, if a resin containing the above-mentioned polycaprolactone segment, polycarbonate segment, polyalkylene glycol segment or a hydroxyl group is present, a urethane bond is formed between these resin and a compound containing an isocyanate group as a precursor by heat or the like. It is also possible to make it.
 イソシアネート基を含有する化合物と、後述する水酸基を有するポリシロキサンセグメントを含有する樹脂や、水酸基を有するポリジメチルシロキサンセグメントを含有する樹脂を用いて表面層を形成すると、表面層の強靱性および自己修復性に加えて、表面のすべり性を高めることができ、反復擦過性の観点からもより好ましい。 When a surface layer is formed using a compound containing an isocyanate group and a resin containing a polysiloxane segment having a hydroxyl group, which will be described later, or a resin containing a polydimethylsiloxane segment having a hydroxyl group, the toughness of the surface layer and self-healing In addition to the property, the surface slipperiness can be increased, which is more preferable from the viewpoint of repeated scratching.
 本発明において、イソシアネート基を含有する化合物とは、イソシアネート基を含有する樹脂や、イソシアネート基を含有するモノマーやオリゴマーを指す。イソシアネート基を含有する化合物は、例えば、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンイソシアネートのビューレット体などの(ポリ)イソシアネート、および上記イソシアネートのブロック体などを挙げることができる。 In the present invention, the compound containing an isocyanate group means a resin containing an isocyanate group, or a monomer or oligomer containing an isocyanate group. Examples of the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate. Examples include isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, (poly) isocyanates such as a burette body of hexamethylene isocyanate, and block bodies of the above isocyanates.
 これらのイソシアネート基を含有する化合物の中でも、脂環族や芳香族のイソシアネートに比べて脂肪族のイソシアネートが、自己修復性が高く好ましい。イソシアネート基を含有する化合物は、より好ましくは、ヘキサメチレンジイソシアネートである。また、イソシアネート基を含有する化合物は、イソシアヌレート環を有するイソシアネートが耐熱性の点で特に好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート体が最も好ましい。イソシアヌレート環を有するイソシアネートは、自己修復性と耐熱特性を併せ持つ表面層を形成する。 Of these isocyanate group-containing compounds, aliphatic isocyanates are preferred because of their high self-healing properties compared to alicyclic and aromatic isocyanates. The compound containing an isocyanate group is more preferably hexamethylene diisocyanate. The isocyanate group-containing compound is particularly preferably an isocyanate having an isocyanurate ring from the viewpoint of heat resistance, and most preferably an isocyanurate of hexamethylene diisocyanate. Isocyanates having an isocyanurate ring form a surface layer having both self-healing properties and heat resistance.
 [フッ素化合物セグメント、ポリシロキサンセグメント、ポリジメチルシロキサンセグメント]
 本発明の積層フィルムにおいて、表面層、もしくは表面層の表面側を構成する樹脂が、フッ素化合物セグメント、ポリシロキサンセグメントおよびポリジメチルシロキサンセグメントからなる群より選ばれる少なくとも一つを含むセグメントを有していることが好ましい。
[Fluorine compound segment, polysiloxane segment, polydimethylsiloxane segment]
In the laminated film of the present invention, the surface layer or the resin constituting the surface side of the surface layer has a segment containing at least one selected from the group consisting of a fluorine compound segment, a polysiloxane segment, and a polydimethylsiloxane segment. Preferably it is.
 さらに、フッ素化合物セグメント、ポリシロキサンセグメントおよびポリジメチルシロキサンセグメントからなる群より選ばれる少なくとも一つを含むセグメントを含む樹脂、もしくは前駆体を含む塗料組成物Aを、表面層を形成する塗料祖生物の一つに用いることにより、表面層の表面側を構成する樹脂がこれらを有することができる。 Further, a coating composition A containing a resin containing a segment containing at least one selected from the group consisting of a fluorine compound segment, a polysiloxane segment, and a polydimethylsiloxane segment, or a coating composition A containing a precursor is formed. By using it in one, the resin constituting the surface side of the surface layer can have these.
 以下、これらフッ素化合物セグメント、ポリシロキサンセグメント、ポリジメチルシロキサンセグメントについて説明する。 Hereinafter, these fluorine compound segment, polysiloxane segment, and polydimethylsiloxane segment will be described.
 まず、フッ素化合物セグメントは、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基およびフルオロオキシアルカンジイル基からなる群より選ばれる少なくとも一つを含むセグメントを指す。 First, the fluorine compound segment refers to a segment including at least one selected from the group consisting of a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group.
 ここで、フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基とはアルキル基、オキシアルキル基、アルケニル基、アルカンジイル基、オキシアルカンジイル基が持つ水素の一部、あるいは全てがフッ素に置き換わった置換基であり、いずれも主にフッ素原子と炭素原子から構成される置換基であり、構造中に分岐があってもよく、これらの部位を有する構造が複数連結したダイマー、トリマー、オリゴマー、ポリマー構造を形成していてもよい。 Here, a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group are alkyl groups, oxyalkyl groups, alkenyl groups, alkanediyl groups, and oxyalkanediyl groups. A part or all of the substituents are replaced by fluorine, both of which are mainly composed of fluorine atoms and carbon atoms, and there may be branching in the structure. A plurality of linked dimers, trimers, oligomers, and polymer structures may be formed.
 また、前記フッ素化合物セグメントとしては、フルオロポリエーテルセグメントが好ましく、これはフルオロアルキル基、オキシフルオロアルキル基、オキシフルオロアルカンジイル基などからなる部位で、より好ましくは化学式5、化学式6に代表されるフルオロポリエーテルセグメントであることはすでに述べたとおりである。 The fluorine compound segment is preferably a fluoropolyether segment, which is a site comprising a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group or the like, more preferably represented by Chemical Formula 5 or Chemical Formula 6. As described above, it is a fluoropolyether segment.
 前記フルオロポリエーテルセグメントとは、フルオロアルキル基、オキシフルオロアルキル基、オキシフルオロアルカンジイル基などからなるセグメントで、化学式12、化学式13に代表される構造である。 The fluoropolyether segment is a segment composed of a fluoroalkyl group, an oxyfluoroalkyl group, an oxyfluoroalkanediyl group, etc., and has a structure represented by Chemical Formula 12 and Chemical Formula 13.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 ここで、n1は1~3の整数、n2~n5は1または2の整数、k、m、p、sは0以上の整数でかつp+sは1以上である。好ましくは、n1は2以上、n2~n5は1または2の整数であり、より好ましくは、n1は3、n2とn4は2、n3とn5は1または2の整数である。
このフルオロポリエーテルセグメントの鎖長には好ましい範囲があり、炭素数は4以上12以下が好ましく、4以上10以下がより好ましく、6以上8以下が特に好ましい。炭素数が、3以下では表面エネルギーが十分に低下しないため撥油性が低下する場合があり、13以上では溶媒への溶解性が低下するため、表面層の品位が低下する場合がある。
Here, n1 is an integer of 1 to 3, n2 to n5 are integers of 1 or 2, k, m, p, and s are integers of 0 or more, and p + s is 1 or more. Preferably, n1 is 2 or more and n2 to n5 are integers of 1 or 2, more preferably n1 is 3, n2 and n4 are 2, and n3 and n5 are integers of 1 or 2.
There is a preferred range for the chain length of the fluoropolyether segment, and the carbon number is preferably 4 or more and 12 or less, more preferably 4 or more and 10 or less, and particularly preferably 6 or more and 8 or less. When the number of carbon atoms is 3 or less, the surface energy is not sufficiently reduced, and thus the oil repellency may be lowered. When the number is 13 or more, the solubility in a solvent is lowered, and the quality of the surface layer may be lowered.
 この表面層に含まれる樹脂がフッ素化合物セグメントを含む場合には、前述の塗料組成物Aが以下のフッ素化合物Dを含むことが好ましい。このフッ素化合物Dは化学式14で示される化合物である。 When the resin contained in this surface layer contains a fluorine compound segment, the above-mentioned coating composition A preferably contains the following fluorine compound D. This fluorine compound D is a compound represented by Chemical Formula 14.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 ここでRf1はフッ素化合物セグメント、Rはアルカンジイル基、アルカントリイル基、およびそれらから導出されるエステル構造、ウレタン構造、エーテル構造、トリアジン構造を、Dは反応性部位を示す。 Here, R f1 represents a fluorine compound segment, R 7 represents an alkanediyl group, an alkanetriyl group, and an ester structure, urethane structure, ether structure, and triazine structure derived therefrom, and D 1 represents a reactive site.
 この反応性部位とは、熱または光などの外部エネルギーにより他の成分と反応する部位を指す。このような反応性部位として、反応性の観点からアルコキシシリル基およびアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。なかでも、反応性、ハンドリング性の観点から、ビニル基、アリル基、アルコキシシリル基、シリルエーテル基あるいはシラノール基や、エポキシ基、アクリロイル(メタクリロイル)基が好ましい。 This reactive site refers to a site that reacts with other components by external energy such as heat or light. Examples of such reactive sites include alkoxysilyl groups and silanol groups in which alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, and the like. Can be mentioned. Of these, vinyl groups, allyl groups, alkoxysilyl groups, silyl ether groups, silanol groups, epoxy groups, and acryloyl (methacryloyl) groups are preferred from the viewpoints of reactivity and handling properties.
 フッ素化合物Dの一例は次に示される化合物である。3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリイソプロポキシシラン、3,3,3-トリフルオロプロピルトリクロロシラン、3,3,3-トリフルオロプロピルトリイソシアネートシラン、2-パーフルオロオクチルトリメトキシシラン、2-パーフルオロオクチルエチルトリエトキシシラン、2-パーフルオロオクチルエチルトリイソプロポキシシラン、2-パーフルオロオクチルエチルトリクロロシラン、2-パーフルオロオクチルイソシアネートシラン、2,2,2-トリフルオロエチルアクリレート、2,2,3,3,3-ペンタフロオロプロピルアクリレート、2-パーフルオロブチルエチルアクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロヘキシルエチルアクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロオクチルエチルアクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロデシルエチルアクリレート、2-パーフルオロ-3-メチルブチルエチルアクリレート、3-パーフルオロ-3-メトキシブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-5-メチルヘキシルエチルアクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-7-メチルオクチル-2-ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、2-パーフルオロブチルエチルメタクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロオクチルエチルメタクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロデシルエチルメタクリレート、2-パーフルオロ-3-メチルブチルエチルメタクリレート、3-パーフルオロ-3-メチルブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-5-メチルヘキシルエチルメタクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-7-メチルオクチルエチルメタクリレート、3-パーフルオロ-6-メチルオクチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1-トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレート、トリアクリロイル-ヘプタデカフルオロノネニル-ペンタエリスリトールなどが挙げられる。 An example of the fluorine compound D is a compound shown below. 3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3,3,3-trifluoropropyltriisopropoxysilane, 3,3,3-trifluoropropyltrichlorosilane, 3,3,3-trifluoropropyltriisocyanate silane, 2-perfluorooctyltrimethoxysilane, 2-perfluorooctylethyltriethoxysilane, 2-perfluorooctylethyltriisopropoxysilane, 2-perfluorooctylethyltri Chlorosilane, 2-perfluorooctyl isocyanate silane, 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluoro Butyl-2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2- Perfluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perfluoro-5-methylhexylethyl acrylate, 3-perfluoro -5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyloctyl-2-hydroxypropyl acrylate, tetrafluoropropyl acrylate Octafluoropentyl acrylate, dodecafluoroheptyl acrylate, hexadecafluorononyl acrylate, hexafluorobutyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2-par Fluorobutylethyl methacrylate, 3-perfluorobutyl-2-hydroxypropyl methacrylate, 2-perfluorooctylethyl methacrylate, 3-perfluorooctyl-2-hydroxypropyl methacrylate, 2-perfluorodecylethyl methacrylate, 2-perfluoro- 3-methylbutylethyl methacrylate, 3-perfluoro-3-methylbutyl-2-hydroxypropyl methacrylate, 2-perfluoro-5-methyl Hexylethyl methacrylate, 3-perfluoro-5-methylhexyl-2-hydroxypropyl methacrylate, 2-perfluoro-7-methyloctylethyl methacrylate, 3-perfluoro-6-methyloctyl methacrylate, tetrafluoropropyl methacrylate, octafluoro Examples include pentyl methacrylate, octafluoropentyl methacrylate, dodecafluoroheptyl methacrylate, hexadecafluorononyl methacrylate, 1-trifluoromethyltrifluoroethyl methacrylate, hexafluorobutyl methacrylate, triacryloyl-heptadecafluorononenyl-pentaerythritol.
 なお、フッ素化合物Dは1分子あたり複数のフルオロポリエーテル部位を有していてもよい。
上記フッ素化合物Dの市販されている例としては、RS-75(DIC株式会社)、オプツールDAC-HP(ダイキン工業株式会社)、C10GACRY、C8HGOL(油脂製品株式会社)などを挙げることができ、これらの製品を利用することができる。
The fluorine compound D may have a plurality of fluoropolyether moieties per molecule.
Examples of commercially available fluorine compounds D include RS-75 (DIC Corporation), OPTOOL DAC-HP (Daikin Industries Co., Ltd.), C10GACRY, C8HGOL (Oil Products Co., Ltd.), etc. Can be used.
 次にポリシロキサンセグメントについて述べる。本発明においてポリシロキサンセグメントとは、後述の化学式15で示されるセグメントを指す。 Next, the polysiloxane segment will be described. In the present invention, the polysiloxane segment refers to a segment represented by the following chemical formula 15.
 ここで、ポリシロキサンには、シロキサンの繰り返し単位が100程度である低分子量のもの(いわゆるオリゴマー)およびシロキサンの繰り返し単位が100を超える高分子量のもの(いわゆるポリマー)の両方が含まれる。 Here, polysiloxane includes both low molecular weight (so-called oligomer) having about 100 repeating units of siloxane and high molecular weight (so-called polymer) having more than 100 repeating units of siloxane.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 R、Rは、水酸基または炭素数1~8のアルキル基のいずれかであり、式中においてそれぞれを少なくとも1つ以上有するものであり、nは100~300の整数である。 R 1 and R 2 are either a hydroxyl group or an alkyl group having 1 to 8 carbon atoms, each having at least one in the formula, and n is an integer of 100 to 300.
 前記ポリシロキサンセグメント、ポリジメチルシロキサンセグメントの詳細については後述するが、前記表面層を構成する樹脂がこれらのセグメントを有することで耐熱性、耐候性の向上や、表面層の潤滑性による耐擦傷性を向上することができる。より好ましくは後述する化学式16で表されるポリジメチルシロキサンセグメントを含むことが潤滑性の面から好ましい。 The details of the polysiloxane segment and polydimethylsiloxane segment will be described later, but the resin constituting the surface layer has these segments to improve heat resistance and weather resistance, and scratch resistance due to the lubricity of the surface layer. Can be improved. More preferably, it contains a polydimethylsiloxane segment represented by the following chemical formula 16 from the viewpoint of lubricity.
 本発明では、加水分解性シリル基を含有するシラン化合物の部分加水分解物、オルガノシリカゾルまたは該オルガノシリカゾルにラジカル重合体を有する加水分解性シラン化合物を付加させた塗料組成物を、ポリシロキサンセグメントを含有する樹脂として用いることができる。 In the present invention, a partially hydrolyzed product of a silane compound containing a hydrolyzable silyl group, an organosilica sol or a coating composition obtained by adding a hydrolyzable silane compound having a radical polymer to the organosilica sol, a polysiloxane segment It can be used as a resin to contain.
 ポリシロキサンセグメントを含有する樹脂は、テトラアルコキシシラン、メチルトリアルコキシシラン、ジメチルジアルコキシシラン、γ-グリシドキシプロピルトリアルコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシランなどの加水分解性シリル基を有するシラン化合物の完全もしくは部分加水分解物や有機溶媒に分散させたオルガノシリカゾル、オルガノシリカゾルの表面に加水分解性シリル基の加水分解シラン化合物を付加させたものなどを例示することができる。 Resins containing polysiloxane segments are tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, γ-glycidoxypropyltrialkoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ-methacryloxypropyltri A hydrolyzable silyl group on the surface of an organosilica sol dispersed in a complete or partial hydrolyzate of a silane compound having a hydrolyzable silyl group such as alkoxysilane or γ-methacryloxypropylalkyldialkoxysilane or an organic solvent. The thing etc. which added the hydrolysis silane compound of this can be illustrated.
 また、本発明において、ポリシロキサンセグメントを含有する樹脂は、ポリシロキサンセグメント以外に、他のセグメント等が含有(共重合)されていてもよい。たとえば、ポリカプロラクトンセグメント、ポリジメチルシロキサンセグメントを有するモノマー成分が含有(共重合)されていてもよい。 In the present invention, the resin containing a polysiloxane segment may contain (copolymerize) other segments in addition to the polysiloxane segment. For example, a monomer component having a polycaprolactone segment and a polydimethylsiloxane segment may be contained (copolymerized).
 ポリシロキサンセグメントを含有する樹脂が水酸基を有する共重合体である場合、水酸基を有するポリシロキサンセグメントを含有する樹脂(共重合体)とイソシアネート基を含有する化合物とを含む塗料組成物を用いて表面層を形成すると、効率的に、ポリシロキサンセグメントとウレタン結合とを有する表面層とすることができる。 When the resin containing a polysiloxane segment is a copolymer having a hydroxyl group, the surface using a coating composition containing a resin (copolymer) containing a polysiloxane segment having a hydroxyl group and a compound containing an isocyanate group When the layer is formed, the surface layer having a polysiloxane segment and a urethane bond can be efficiently formed.
 次にポリジメチルシロキサンセグメントについて述べる。本発明において、ポリジメチルシロキサンセグメントとは、化学式16で示されるセグメントを指す。ポリジメチルシロキサンには、ジメチルシロキサンの繰り返し単位が10~100である低分子量のもの(いわゆるオリゴマー)およびジメチルシロキサンの繰り返し単位が100を超える高分子量のもの(いわゆるポリマー)の両方が含まれる。 Next, the polydimethylsiloxane segment will be described. In the present invention, the polydimethylsiloxane segment refers to a segment represented by Chemical Formula 16. Polydimethylsiloxane includes both low molecular weight dimethylsiloxane repeating units of 10 to 100 (so-called oligomers) and high molecular weight dimethylsiloxane repeating units of more than 100 (so-called polymers).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 mは10~300の整数である。 M is an integer from 10 to 300.
 表面層の表面側を構成する樹脂が、ポリジメチルシロキサンセグメントを有すると、ポリジメチルシロキサンセグメントが表面層の表面に配位することとなる。ポリジメチルシロキサンセグメントが表面層の表面に配位することにより、表面層表面の潤滑性が向上し、摩擦抵抗を低減することができる。この結果、反復擦過性を向上させることができる。 When the resin constituting the surface side of the surface layer has a polydimethylsiloxane segment, the polydimethylsiloxane segment is coordinated to the surface of the surface layer. By coordinating the polydimethylsiloxane segment to the surface of the surface layer, the lubricity of the surface layer surface can be improved and the frictional resistance can be reduced. As a result, it is possible to improve the repeated rubbing property.
 本発明においては、ポリジメチルシロキサンセグメントを含有する樹脂としては、ポリジメチルシロキサンセグメントにビニルモノマーが共重合された共重合体を用いることが好ましい。 In the present invention, as the resin containing a polydimethylsiloxane segment, it is preferable to use a copolymer obtained by copolymerizing a vinyl monomer with a polydimethylsiloxane segment.
 表面層の強靱性を向上させる目的で、ポリジメチルシロキサンセグメントを含有する樹脂は、イソシアネート基と反応する水酸基を有するモノマー等が共重合されていることが好ましい。 For the purpose of improving the toughness of the surface layer, the resin containing a polydimethylsiloxane segment is preferably copolymerized with a monomer having a hydroxyl group that reacts with an isocyanate group.
 ポリジメチルシロキサンセグメントを含有する樹脂が水酸基を有する共重合体である場合、水酸基を有するポリジメチルシロキサンセグメントを含有する樹脂(共重合体)とイソシアネート基を含有する化合物とを含む塗料組成物を用いて表面層を形成すると、効率的にポリジメチルシロキサンセグメントとウレタン結合とを有する表面層とすることができる。 When the resin containing a polydimethylsiloxane segment is a copolymer having a hydroxyl group, a coating composition containing a resin (copolymer) containing a polydimethylsiloxane segment having a hydroxyl group and a compound containing an isocyanate group is used. When the surface layer is formed, the surface layer having a polydimethylsiloxane segment and a urethane bond can be efficiently formed.
 ポリジメチルシロキサンセグメントを含有する樹脂が、ビニルモノマーとの共重合体の場合は、ブロック共重合体、グラフト共重合体、ランダム共重合体のいずれであってもよい。ポリジメチルシロキサンセグメントを含有する樹脂がビニルモノマーとの共重合体の場合、これを、ポリジメチルシロキサン系共重合体という。ポリジメチルシロキサン系共重合体は、リビング重合法、高分子開始剤法、高分子連鎖移動法などにより製造することができるが、生産性を考慮すると高分子開始剤法、高分子連鎖移動法を用いるのが好ましい。 When the resin containing the polydimethylsiloxane segment is a copolymer with a vinyl monomer, any of a block copolymer, a graft copolymer, and a random copolymer may be used. When the resin containing the polydimethylsiloxane segment is a copolymer with a vinyl monomer, this is referred to as a polydimethylsiloxane copolymer. Polydimethylsiloxane copolymer can be produced by living polymerization method, polymer initiator method, polymer chain transfer method, etc., but considering the productivity, polymer initiator method, polymer chain transfer method can be used. It is preferable to use it.
 高分子開始剤法を用いる場合には化学式17で示される高分子アゾ系ラジカル重合開始剤を用いて他のビニルモノマーと共重合させることができる。またペルオキシモノマーと不飽和基を有するポリジメチルシロキサンとを低温で共重合させて過酸化物基を側鎖に導入したプレポリマーを合成し、該プレポリマーをビニルモノマーと共重合させる二段階の重合を行うこともできる。 When the polymer initiator method is used, it can be copolymerized with other vinyl monomers using a polymer azo radical polymerization initiator represented by Chemical Formula 17. In addition, a two-stage polymerization is carried out by synthesizing a prepolymer in which a peroxide group is introduced into the side chain by copolymerizing a peroxy monomer and polydimethylsiloxane having an unsaturated group at a low temperature, and then copolymerizing the prepolymer with a vinyl monomer. Can also be done.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 mは10~300の整数、nは1~50の整数である。 M is an integer from 10 to 300, and n is an integer from 1 to 50.
 高分子連鎖移動法を用いる場合は、例えば、化学式18に示すシリコーンオイルに、HS-CHCOOHやHS-CHCHCOOH等を付加してSH基を有する化合物とした後、SH基の連鎖移動を利用して該シリコーン化合物とビニルモノマーとを共重合させることでブロック共重合体を合成することができる。 When the polymer chain transfer method is used, for example, after adding HS—CH 2 COOH or HS—CH 2 CH 2 COOH to the silicone oil represented by Chemical Formula 18 to obtain a compound having an SH group, the SH group A block copolymer can be synthesized by copolymerizing the silicone compound and vinyl monomer using chain transfer.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 mは10~300の整数である。 M is an integer from 10 to 300.
 ポリジメチルシロキサン系グラフト共重合体を合成するには、例えば、化学式19に示す化合物、すなわちポリジメチルシロキサンのメタクリルエステルなどとビニルモノマーとを共重合させることにより容易にグラフト共重合体を得ることができる。 In order to synthesize a polydimethylsiloxane graft copolymer, for example, a graft copolymer can be easily obtained by copolymerizing a compound represented by Chemical Formula 19, that is, a methacrylic ester of polydimethylsiloxane and a vinyl monomer. it can.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 mは10~300の整数である。 M is an integer from 10 to 300.
 ポリジメチルシロキサンとの共重合体に用いられるビニルモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、2-エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、スチレン、α-メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、無水マレイン酸、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレート、ジアセチトンアクリルアミド、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、アリルアルコールなどを挙げることができる。 Examples of the vinyl monomer used in the copolymer with polydimethylsiloxane include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, octyl acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, methyl methacrylate, ethyl methacrylate, n -Butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, lauryl methacrylate, methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, styrene, α-methyl styrene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride , Vinyl fluoride, vinylidene fluoride, glycidyl accelerator Glycidyl methacrylate, allyl glycidyl ether, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, maleic anhydride, acrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, N, N-dimethylamino Examples thereof include ethyl methacrylate, N, N-diethylaminoethyl methacrylate, diacetylone acrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, and allyl alcohol.
 また、ポリジメチルシロキサン系共重合体は、トルエン、キシレンなどの芳香族炭化水素系溶剤、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶剤、エタノール、イソプロピルアルコールなどのアルコール系溶剤などを単独もしくは混合溶媒中で溶液重合法によって製造されることが好ましい。 Polydimethylsiloxane copolymers include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, ethanol, isopropyl alcohol, etc. It is preferable that the alcoholic solvent is produced by a solution polymerization method alone or in a mixed solvent.
 必要に応じてベンゾイルパーオキサイド、アゾビスイソブチルニトリルなどの重合開始剤を併用する。重合反応は50~150℃で3~12時間行うのが好ましい。 If necessary, a polymerization initiator such as benzoyl peroxide or azobisisobutylnitrile is used in combination. The polymerization reaction is preferably carried out at 50 to 150 ° C. for 3 to 12 hours.
 本発明におけるポリジメチルシロキサン系共重合体中の、ポリジメチルシロキサンセグメントの量は、表面層の潤滑性や耐汚染性の点で、ポリジメチルシロキサン系共重合体の全成分100質量%において1~30質量%であるのが好ましい。またポリジメチルシロキサンセグメントの重量平均分子量は1,000~30,000とするのが好ましい。 The amount of the polydimethylsiloxane segment in the polydimethylsiloxane copolymer in the present invention is 1 to 100% by mass based on 100% by mass of all components of the polydimethylsiloxane copolymer from the viewpoint of lubricity and contamination resistance of the surface layer. It is preferably 30% by mass. The weight average molecular weight of the polydimethylsiloxane segment is preferably 1,000 to 30,000.
 本発明において、表面層を形成するために用いる塗料組成物として、ポリジメチルシロキサンセグメントを含有する樹脂を使用する場合は、ポリジメチルシロキサンセグメント以外に、他のセグメント等が含有(共重合)されていてもよい。たとえば、ポリカプロラクトンセグメントやポリシロキサンセグメントが含有(共重合)されていてもよい。 In the present invention, when a resin containing a polydimethylsiloxane segment is used as the coating composition used for forming the surface layer, other segments are contained (copolymerized) in addition to the polydimethylsiloxane segment. May be. For example, a polycaprolactone segment or a polysiloxane segment may be contained (copolymerized).
 表面層を形成するために用いる塗料組成物には、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメントの共重合体、ポリカプロラクトンセグメントとポリシロキサンセグメントとの共重合体、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメントとポリシロキサンセグメントとの共重合体などを用いることが可能である。このような塗料組成物を用いて得られる表面層は、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメントおよび/またはポリシロキサンセグメントとを有することが可能となる。 The coating composition used to form the surface layer includes a copolymer of a polycaprolactone segment and a polydimethylsiloxane segment, a copolymer of a polycaprolactone segment and a polysiloxane segment, a polycaprolactone segment, a polydimethylsiloxane segment, and a polymer. A copolymer with a siloxane segment can be used. The surface layer obtained using such a coating composition can have a polycaprolactone segment and a polydimethylsiloxane segment and / or a polysiloxane segment.
 ポリカプロラクトンセグメント、ポリシロキサンセグメントおよびポリジメチルシロキサンセグメントを有する表面層を形成するために用いる塗料組成物中の、ポリジメチルシロキサン系共重合体、ポリカプロラクトン、およびポリシロキサンの反応は、ポリジメチルシロキサン系共重合体合成時に、適宜ポリカプロラクトンセグメントおよびポリシロキサンセグメントを添加して共重合することができる。 The reaction of polydimethylsiloxane copolymer, polycaprolactone, and polysiloxane in a coating composition used to form a surface layer having a polycaprolactone segment, a polysiloxane segment, and a polydimethylsiloxane segment is a polydimethylsiloxane When synthesizing the copolymer, a polycaprolactone segment and a polysiloxane segment can be appropriately added and copolymerized.
 [塗料組成物B]
 塗料組成物Bは支持基材上に塗布、乾燥、硬化することにより、A層よりも表面硬度が高く、材料を形成可能な液体で、B層を形成するのに適した樹脂、または前駆体を含む。
[Coating composition B]
The coating composition B is a liquid having a surface hardness higher than that of the A layer and capable of forming a material by applying, drying and curing on the supporting substrate, and a resin or precursor suitable for forming the B layer. including.
 塗料組成物Bは熱硬化型樹脂、紫外線硬化型樹脂のいずれでもよく、2種類以上のブレンドであってもよい。 The coating composition B may be either a thermosetting resin or an ultraviolet curable resin, and may be a blend of two or more types.
 本発明における熱硬化型樹脂は、水酸基を含有する樹脂とポリイソシアネート化合物とからなり、水酸基を含有する樹脂としてアクリルポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリオレフィン系ポリオール、ポリカーボネートポリオール、ウレタンポリオール等が挙げられ、これらは1種類、もしくは2種類以上のブレンドであってもよい。水酸基を含有する樹脂の水酸基価は1~200mgKOH/gの範囲であれば、塗膜とした時の耐久性、耐加水分解性、密着性の観点から好ましい。水酸基価が1mgKOH/gより小さい場合は塗膜の硬化がほとんど進まず、耐久性や強度が低下する場合がある。一方、水酸基価が200mgKOH/gより大きい場合は、硬化収縮が大きすぎるために、密着性を低下させる場合がある。 The thermosetting resin in the present invention comprises a hydroxyl group-containing resin and a polyisocyanate compound, and examples of the hydroxyl group-containing resin include acrylic polyol, polyether polyol, polyester polyol, polyolefin polyol, polycarbonate polyol, and urethane polyol. These may be one type or a blend of two or more types. The hydroxyl value of the hydroxyl group-containing resin is preferably in the range of 1 to 200 mgKOH / g from the viewpoints of durability, hydrolysis resistance, and adhesion when formed into a coating film. When the hydroxyl value is less than 1 mgKOH / g, the coating film hardly cures and the durability and strength may be lowered. On the other hand, when the hydroxyl value is larger than 200 mgKOH / g, the curing shrinkage is too large and the adhesion may be lowered.
 本発明における水酸基を含有するアクリルポリオールとは、例えば、アクリル酸エステルまたはメタクリル酸エステルを成分として重合して得られる。この様なアクリル樹脂は、例えば、(メタ)アクリル酸エステルを成分として、必要に応じて(メタ)アクリル酸、イタコン酸、無水マレイン酸等のカルボキシル酸基含有モノマーを共重合することで容易に製造することが出来る。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。この様な水酸基を含有するアクリルポリオールとしては、例えば、DIC株式会社;(商品名“アクリディック”(登録商標)シリーズなど)、大成ファインケミカル株式会社;(商品名“アクリット”(登録商標)シリーズなど)、株式会社日本触媒;(商品名“アクリセット”(登録商標)シリーズなど)、三井化学株式会社;(商品名“タケラック”(登録商標)UAシリーズ)などを挙げることができ、これらの製品を利用することができる。 The acrylic polyol containing a hydroxyl group in the present invention is obtained, for example, by polymerizing an acrylic ester or a methacrylic ester as a component. Such an acrylic resin can be easily prepared, for example, by copolymerizing a methacrylic acid ester as a component and a carboxylic acid group-containing monomer such as (meth) acrylic acid, itaconic acid, and maleic anhydride as necessary. Can be manufactured. Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl. (Meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methylhexyl (meth) acrylate, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate Etc. Examples of such an acrylic polyol containing a hydroxyl group include DIC Corporation (trade name “Acridic” (registered trademark) series, etc.), Taisei Fine Chemical Co., Ltd. (trade name “Acrit” (registered trademark) series, etc. ), Nippon Shokubai Co., Ltd .; (trade name “Akreset” (registered trademark) series, etc.), Mitsui Chemicals Co., Ltd. (trade name “Takelac” (registered trademark) UA series), etc. Can be used.
 本発明における水酸基を含有するポリエーテルポリオールとしては、ポリエチレングリコールあるいはトリオール、ポリプロピレングリコールあるいはトリオール、ポリブチレングリコールあるいはトリオール、ポリテトラメチレングリコールあるいはトリオール、さらには、これら炭素数の異なるオキシアルキレン化合物の付加重合体やブロック共重合体等が挙げられる。この様な水酸基を含有するポリエーテルポリオールとしては、旭硝子株式会社;(商品名“エクセノール”(登録商標)シリーズなど)、三井化学株式会社;(商品名“アクトコール”(登録商標)シリーズなど)を挙げることができ、これらの製品を利用することができる。 Polyether polyols containing hydroxyl groups in the present invention include polyethylene glycol or triol, polypropylene glycol or triol, polybutylene glycol or triol, polytetramethylene glycol or triol, and addition weights of oxyalkylene compounds having different carbon numbers. Examples include coalesced and block copolymers. Examples of such polyether polyols containing hydroxyl groups include Asahi Glass Co., Ltd. (trade name “Excenol” (registered trademark) series, etc.), Mitsui Chemicals Co., Ltd. (trade name “Accor” (registered trademark) series, etc.) These products can be used.
 本発明における水酸基を含有するポリエステルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、デカンジオール、シクロヘキサンジメタノール等の脂肪族グリコールと、例えばコハク酸、アジピン酸、セバシン酸、フマル酸、スベリン酸、アゼライン酸、1,10-デカメチレンジカルボン酸、シクロヘキサンジカルボン酸等の脂肪族二塩基酸との必須原料成分として反応させた脂肪族ポリエステルポリオールや、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコールと、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族二塩基酸とを必須原料成分として反応させた芳香族ポリエステルポリオールが挙げられる。 Examples of the polyester polyol containing a hydroxyl group in the present invention include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, decanediol, and cyclohexanedimethanol, and succinic acid and adipine. Aliphatic polyester polyol reacted as an essential raw material component with an aliphatic dibasic acid such as acid, sebacic acid, fumaric acid, suberic acid, azelaic acid, 1,10-decamethylenedicarboxylic acid, cyclohexanedicarboxylic acid, or ethylene glycol Aromatic polymers obtained by reacting aliphatic glycols such as propylene glycol and butanediol with aromatic dibasic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid as essential raw material components Ester polyols.
 このような水酸基を含有するポリエステルポリオールとしては、DIC株式会社;(商品名“ポリライト”(登録商標)シリーズなど)、株式会社クラレ;(商品名“クラレポリオール”(登録商標)シリーズなど)、武田薬品工業株式会社;(商品名“タケラック”(登録商標)Uシリーズ)を挙げることができ、これらの製品を利用することができる。 Examples of such polyester polyols containing hydroxyl groups include DIC Corporation (trade name “Polylite” (registered trademark) series, etc.), Kuraray Co., Ltd. (trade name “Kuraray polyol” (registered trademark) series, etc.), Takeda. Yakuhin Kogyo Co., Ltd. (trade name “Takelac” (registered trademark) U series) can be mentioned, and these products can be used.
 本発明における水酸基を含有するポリオレフィン系ポリオールとしては、ブタジエンやイソプレンなどの炭素数4から12個のジオレフィン類の重合体および共重合体、炭素数4から12のジオレフィンと炭素数2から22のα-オレフィン類の共重合体のうち、水酸基を含有している化合物である。水酸基を含有させる方法としては、特に制限されないが、例えば、ジエンモノマーを過酸化水素と反応させる方法がある。さらに、残存する二重結合を水素結合することで、飽和脂肪族化してもよい。このような水酸基を含有するポリオレフィン系ポリオールとしては、日本曹達株式会社;(商品名“NISSO-PB”(登録商標)Gシリーズなど)、出光興産株式会社;(商品名“Poly bd”(登録商標)シリーズ、“エポール”(登録商標)シリーズなど)を挙げることができ、これらの製品を利用することができる。 Examples of the polyolefin-based polyol containing a hydroxyl group in the present invention include polymers and copolymers of diolefins having 4 to 12 carbon atoms such as butadiene and isoprene, diolefins having 4 to 12 carbon atoms, and 2 to 22 carbon atoms. Among the α-olefin copolymers, the compound contains a hydroxyl group. The method for containing a hydroxyl group is not particularly limited, and for example, there is a method of reacting a diene monomer with hydrogen peroxide. Furthermore, you may make it saturated aliphatic by hydrogen-bonding the remaining double bond. Examples of such polyolefin-based polyols containing hydroxyl groups include Nippon Soda Co., Ltd. (trade name “NISSO-PB” (registered trademark) G series, etc.), Idemitsu Kosan Co., Ltd .; (trade name “Poly bd” (registered trademark). ) Series, “Epaul” (registered trademark) series, etc.), and these products can be used.
 本発明における水酸基を含有するポリカーボネートポリオールとしては、例えば、炭酸ジアルキルと1,6-ヘキサンジオールのみを用いて得たポリカーボネートポリオールを用いることもできるが、より結晶性が低い点で、ジオールとして、1,6-ヘキサンジオールと、1,4-ブタンジオール、1,5-ペンタンジオールまたは1,4-シクロヘキサンジメタノールとを共重合させて得られるポリカーボネートポリオールを用いることが好ましい。 As the polycarbonate polyol containing a hydroxyl group in the present invention, for example, a polycarbonate polyol obtained by using only dialkyl carbonate and 1,6-hexanediol can be used. However, in terms of lower crystallinity, 1 It is preferable to use a polycarbonate polyol obtained by copolymerizing 1,6-butanediol with 1,4-butanediol, 1,5-pentanediol or 1,4-cyclohexanedimethanol.
 このような水酸基を含有するポリカーボネートポリオールとしては、共重合ポリカーボネートポリオールである旭化成ケミカルズ株式会社;(商品名“T5650J”、“T5652”、“T4671”、“T4672”など)、宇部興産株式会社;(商品名“ETERNACLL”(登録商標)UMシリーズなど)を挙げることができ、これらの製品を利用することができる。 As such a polycarbonate polyol containing a hydroxyl group, Asahi Kasei Chemicals Co., Ltd., which is a copolymerized polycarbonate polyol (trade names “T5650J”, “T5652”, “T4671”, “T4672”, etc.), Ube Industries, Trade names such as “ETERNACLL” (registered trademark) UM series), and these products can be used.
 本発明における水酸基を含有するウレタンポリオールとは、例えば、ポリイソシアネート化合物と1分子中に少なくとも2個の水酸基を含有する化合物とを、水酸基がイソシアネート基に対して過剰となるような比率で反応させて得られる。その際に使用されるポリイソシアネート化合物としては、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、m-キシレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。また、1分子中に少なくとも2個の水酸基を含有する化合物としては、多価アルコール類、ポリエステルジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリカーボネートジオール等が挙げられる。 The urethane polyol containing a hydroxyl group in the present invention is, for example, a reaction between a polyisocyanate compound and a compound containing at least two hydroxyl groups in one molecule at a ratio such that the hydroxyl group is excessive with respect to the isocyanate group. Obtained. Examples of the polyisocyanate compound used in this case include hexamethylene diisocyanate, toluene diisocyanate, m-xylene diisocyanate, and isophorone diisocyanate. Examples of the compound containing at least two hydroxyl groups in one molecule include polyhydric alcohols, polyester diol, polyethylene glycol, polypropylene glycol, and polycarbonate diol.
 本発明における熱硬化型樹脂に用いられるポリイソシアネート化合物としては、イソシアネート基を含有する樹脂や、イソシアネート基を含有するモノマーやオリゴマーを指す。イソシアネート基を含有する化合物は、例えば、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンイソシアネートのビューレット体などの(ポリ)イソシアネート、および上記イソシアネートのブロック体などを挙げることができる。この様な熱硬化型樹脂に用いられるポリイソシアネート化合物としては、三井化学株式会社;(商品名“タケネート”(登録商標)シリーズなど)、日本ポリウレタン工業株式会社;(商品名“コロネート”(登録商標)シリーズなど)、旭化成ケミカルズ株式会社;(商品名“デュラネート”(登録商標)シリーズなど)、DIC株式会社;(商品名“バーノック”(登録商標)シリーズなど)を挙げることができ、これらの製品を利用することができる。 The polyisocyanate compound used for the thermosetting resin in the present invention refers to a resin containing an isocyanate group, a monomer or an oligomer containing an isocyanate group. Examples of the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate. Examples include isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, (poly) isocyanates such as a burette body of hexamethylene isocyanate, and block bodies of the above isocyanates. Polyisocyanate compounds used in such thermosetting resins include Mitsui Chemicals, Inc. (trade name “Takenate” (registered trademark) series, etc.), Nippon Polyurethane Industry Co., Ltd .; (trade name “Coronate” (registered trademark). ) Series, etc.), Asahi Kasei Chemicals Corporation; (trade name “Duranate” (registered trademark) series, etc.), DIC Corporation (trade name “Burnock” (registered trademark) series, etc.). Can be used.
 本発明における紫外線硬化型樹脂としては、多官能アクリレートモノマー、オリゴマー、アルコキシシラン、アルコキシシラン加水分解物、アルコキシシランオリゴマー、ウレタンアクリレートオリゴマー等が好ましく、多官能アクリレートモノマー、オリゴマー、ウレタンアクリレートオリゴマーがより好ましい。 As the ultraviolet curable resin in the present invention, polyfunctional acrylate monomers, oligomers, alkoxysilanes, alkoxysilane hydrolysates, alkoxysilane oligomers, urethane acrylate oligomers, and the like are preferable, and polyfunctional acrylate monomers, oligomers, and urethane acrylate oligomers are more preferable. .
 多官能アクリレートモノマーの例としては、1分子中に2個以上の(メタ)アクリロイルオキシ基を有する多官能アクリレートおよびその変性ポリマー、具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアネートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。 Examples of polyfunctional acrylate monomers include polyfunctional acrylates having two or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate and pentaerythritol. Tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate Pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used. These monomers can be used alone or in combination of two or more.
 また、市販されている多官能アクリル系組成物としては三菱レイヨン株式会社;(商品名“ダイヤビーム”(登録商標)シリーズなど)、日本合成化学工業株式会社;(商品名“SHIKOH”(登録商標)シリーズなど)、長瀬産業株式会社;(商品名“デナコール”(登録商標)シリーズなど)、新中村化学株式会社;(商品名“NKエステル”シリーズなど)、DIC株式会社;(商品名“UNIDIC”(登録商標)など)、東亞合成株式会社;(“アロニックス”(登録商標)シリーズなど)、日油株式会社;(“ブレンマー”(登録商標)シリーズなど)、日本化薬株式会社;(商品名“KAYARAD”(登録商標)シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。 Commercially available polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nippon Synthetic Chemical Industry Co., Ltd. (trade name “SHIKOH” (registered trademark)). ) Series), Nagase Sangyo Co., Ltd .; (trade name “Denacol” (registered trademark) series, etc.), Shin-Nakamura Chemical Co., Ltd. (trade name “NK ester” series, etc.), DIC Corporation; "(Registered trademark) etc.), Toagosei Co., Ltd .; (" Aronix "(registered trademark) series, etc.), NOF Corporation; (" Blemmer "(registered trademark) series, etc.), Nippon Kayaku Co., Ltd .; Name “KAYARAD” (registered trademark) series, etc.), Kyoeisha Chemical Co., Ltd. (trade name “light ester” series, etc.) , It is possible to use these products.
 また、前述の特性を付与するために、アクリルポリマーを用いてもよい。該アクリルポリマーは不飽和基を含有せず、重量平均分子量が5,000~200,000であり、ガラス転移温度が20~200℃であることがより好ましい。アクリルポリマーのガラス転移温度が20℃未満では硬度が低下する場合があり、200℃を超えるとの伸度が十分でない場合がある。より好ましいガラス転移温度の範囲は50~150℃である。 Also, an acrylic polymer may be used to impart the above-mentioned characteristics. More preferably, the acrylic polymer contains no unsaturated groups, has a weight average molecular weight of 5,000 to 200,000, and a glass transition temperature of 20 to 200 ° C. If the glass transition temperature of the acrylic polymer is less than 20 ° C., the hardness may decrease, and the elongation exceeding 200 ° C. may not be sufficient. A more preferable range of the glass transition temperature is 50 to 150 ° C.
 また、前記アクリルポリマーは親水性官能基を有することで、硬度を付与することができる。具体的には、カルボキシル基を有する(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸等、あるいは水酸基を有する2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の親水性官能基を有する不飽和単量体を前記不飽和単量体と共重合することにより、アクリルポリマーに親水性官能基を導入することができる。 Moreover, the acrylic polymer can impart hardness by having a hydrophilic functional group. Specifically, hydrophilic functional groups such as (meth) acrylic acid, itaconic acid, fumaric acid, maleic acid and the like having a carboxyl group, or 2-hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate having a hydroxyl group A hydrophilic functional group can be introduced into the acrylic polymer by copolymerizing an unsaturated monomer having the above with the unsaturated monomer.
 前記アクリルポリマーの重量平均分子量は5,000~200,000であることが好ましい。重量平均分子量が5,000未満である場合、硬度が不十分となる場合があり、重量平均分子量が200,000を超える場合、塗工性を含めた成型性や強靱性が不十分となる場合がある。また、重量平均分子量は重合触媒、連鎖移動剤の配合量および使用する溶媒の種別により調整できる。 The weight average molecular weight of the acrylic polymer is preferably 5,000 to 200,000. When the weight average molecular weight is less than 5,000, the hardness may be insufficient, and when the weight average molecular weight exceeds 200,000, the moldability and toughness including coating properties are insufficient. There is. Further, the weight average molecular weight can be adjusted depending on the blending amount of the polymerization catalyst and the chain transfer agent and the type of the solvent used.
 前記アクリルポリマー含有割合は、塗料組成物Bの総固形分中1~50質量%が好ましく、より好ましくは5~30質量%である。1質量%以上とすることで伸度が顕著に向上し、50質量%以下にすることで硬度を維持できるため好ましい。 The acrylic polymer content is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the total solid content of the coating composition B. The elongation is remarkably improved by setting it to 1% by mass or more, and the hardness can be maintained by setting it to 50% by mass or less, which is preferable.
 [溶媒]
 前記塗料組成物A、塗料組成物Bは溶媒を含むことが好ましい。溶媒の種類数としては1種類以上20種類以下が好ましく、より好ましくは1種類以上10種類以下、さらに好ましくは1種類以上6種類以下である。ここで「溶媒」とは、塗布後の乾燥工程にて、ほぼ全量を蒸発させ、塗膜から除去することが可能な、常温、常圧で液体である物質を指す。
[solvent]
The coating composition A and the coating composition B preferably contain a solvent. The number of solvent types is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and still more preferably 1 or more and 6 or less. Here, the “solvent” refers to a substance that is liquid at room temperature and normal pressure, and can be removed from the coating film by evaporating almost the whole amount in the drying step after coating.
 ここで、溶媒の種類とは溶媒を構成する分子構造によって決まる。すなわち、同一の元素組成で、かつ官能基の種類と数が同一であっても結合関係が異なるもの(構造異性体)、前記構造異性体ではないが、3次元空間内ではどのような配座をとらせてもぴったりとは重ならないもの(立体異性体)は、種類の異なる溶媒として取り扱う。例えば、2-プロパノールと、n-プロパノールは異なる溶媒として取り扱う。 Here, the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
 [他の添加剤]
 前記塗料組成物Aと塗料組成物Bは、重合開始剤や硬化剤や触媒を含むことが好ましい。重合開始剤および触媒は、表面層の硬化を促進するために用いられる。重合開始剤としては、塗料組成物に含まれる成分をアニオン、カチオン、ラジカル重合反応等による重合、縮合または架橋反応を開始あるいは促進できるものが好ましい。
[Other additives]
The coating composition A and the coating composition B preferably contain a polymerization initiator, a curing agent, and a catalyst. A polymerization initiator and a catalyst are used to accelerate the curing of the surface layer. As the polymerization initiator, those capable of initiating or accelerating polymerization, condensation or crosslinking reaction by anion, cation, radical polymerization reaction or the like of components contained in the coating composition are preferable.
 重合開始剤、硬化剤および触媒は種々のものを使用できる。また、重合開始剤、硬化剤および触媒はそれぞれ単独で用いてもよく、複数の重合開始剤、硬化剤および触媒を同時に用いてもよい。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用してもよい。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられる。 Various polymerization initiators, curing agents and catalysts can be used. In addition, the polymerization initiator, the curing agent, and the catalyst may be used alone, or a plurality of polymerization initiators, curing agents, and catalysts may be used simultaneously. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator. Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like. Examples of the thermal polymerization initiator include peroxides and azo compounds. Examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like.
 光重合開始剤としては、硬化性の点から、アルキルフェノン系化合物が好ましい。アルキルフェノン系化合物の具体例としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-フェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-(4-フェニル)-1-ブタン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタン、1-シクロヒキシル-フェニルケトン、2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-エトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2-フェニル-2-オキソ酢酸)オキシビスエチレン、およびこれらの材料を高分子量化したものなどが挙げられる。 As the photopolymerization initiator, an alkylphenone compound is preferable from the viewpoint of curability. Specific examples of the alkylphenone compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropane-1-one , 1- [4- (2-Ethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (2-phenyl-2-oxoacetic acid) oxybisethylene, and materials thereof And the like having a high molecular weight.
 また、本発明の効果を阻害しない範囲であれば、表面層を形成するために用いる塗料組成物A、塗料組成物Bにレベリング剤、紫外線吸収剤、滑剤、帯電防止剤等を加えてもよい。これにより、表面層はレベリング剤、紫外線吸収剤、滑剤、帯電防止剤等を含有することができる。レベリング剤の例としては、アクリル共重合体またはシリコーン系、フッ素系のレベリング剤が挙げられる。紫外線吸収剤の具体例としては、ベンゾフェノン系、ベンゾトリアゾール系、シュウ酸アニリド系、トリアジン系およびヒンダードアミン系の紫外線吸収剤が挙げられる。帯電防止剤の例としてはリチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩、マグネシウム塩、カルシウム塩などの金属塩が挙げられる。 In addition, a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, etc. may be added to the coating composition A and the coating composition B used for forming the surface layer as long as the effects of the present invention are not impaired. . Thereby, the surface layer can contain a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, and the like. Examples of the leveling agent include acrylic copolymers, silicone-based and fluorine-based leveling agents. Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, oxalic acid anilide-based, triazine-based and hindered amine-based ultraviolet absorbers. Examples of the antistatic agent include metal salts such as lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt, magnesium salt and calcium salt.
 [積層フィルムの製造方法]
 本発明の積層フィルムの製造方法は、少なくとも前述の塗料組成物Aと塗料組成物Bを、逐次または同時に前述の支持基材上に塗布-乾燥-硬化することにより形成する製造方法を用いることがより好ましい。
[Production method of laminated film]
The production method of the laminated film of the present invention uses a production method in which at least the coating composition A and the coating composition B are formed by applying, drying and curing on the supporting substrate sequentially or simultaneously. More preferred.
 ここで「逐次に塗布する」とは、1種類の塗料組成物を塗布-乾燥-硬化後、次いで種類の異なる塗料組成物を、塗布-乾燥-硬化することにより表面層を形成することを意図している。本製造方法において用いる塗料組成物の種類、数を適宜選択することにより、表面層の表面側-基材側の弾性率の大小や勾配、基材と表面層の弾性率の大小を制御することができ、さらに塗料組成物の種類、組成、乾燥条件、硬化条件を適宜選択することにより、表面層内の弾性率分布の形態を段階的、または連続的に制御することができる。 Here, “sequentially apply” is intended to form a surface layer by applying-drying-curing one type of coating composition and then applying-drying-curing a different type of coating composition. is doing. By appropriately selecting the type and number of coating compositions used in this production method, the magnitude and gradient of the elastic modulus between the surface side and the base material side of the surface layer, and the magnitude of the elastic modulus between the base material and the surface layer can be controlled. Furthermore, by appropriately selecting the type, composition, drying conditions, and curing conditions of the coating composition, the form of the elastic modulus distribution in the surface layer can be controlled stepwise or continuously.
 もう1つの製造方法としては、2種類以上の塗料組成物を支持基材上に「同時に」塗布、乾燥、硬化することにより形成する方法である。塗料組成物の種類の数は2種類以上であれば特に制約はない。ここで「同時塗布する」とは塗布工程において支持基材上に、2種類以上の液膜を塗布後、乾燥、硬化することを意図している。 Another manufacturing method is a method in which two or more kinds of coating compositions are formed by simultaneously applying, drying and curing on a supporting substrate. There are no particular restrictions as long as the number of types of coating compositions is two or more. Here, “co-apply” is intended to dry and cure after applying two or more types of liquid films on a supporting substrate in the coating step.
 本製造方法において、塗布方法は、前述の塗料組成物を逐次に塗布する場合には、ディップコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許第2681294号明細書)などにより支持基材等に塗布することにより表面層を形成することが好ましい
 また、前述の2種類以上の塗料組成物を同時塗布する場合には、塗布前の状態で液膜を順に積層後塗布する「多層スライドダイコート」(図3)や、基材上に塗布と同時に積層する「多層スロットダイコート」(図4)、支持基材上に1層の液膜を形成後、未乾燥の状態でもう1層を積層させる「ウェット-オンーウェットコート」(図5)等のいずれでもよい。
In this production method, the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc. In addition, when simultaneously applying two or more kinds of coating compositions as described above, after laminating liquid films in order before application “Multi-layer slide die coat” to be applied (FIG. 3), “Multi-layer slot die coat” to be laminated simultaneously with application on the substrate (FIG. 4), and a single layer of liquid film formed on the support substrate, and then undried Any of “wet-on-wet coat” (FIG. 5) or the like in which another layer is laminated.
 次いで、支持基材等の上に塗布された液膜を乾燥する。得られる積層フィルム中から完全に溶媒を除去することに加え、乾燥工程では液膜の加熱を伴うことが好ましい。 Next, the liquid film applied on the support substrate or the like is dried. In addition to completely removing the solvent from the resulting laminated film, the drying process preferably involves heating the liquid film.
 乾燥方法については、伝熱乾燥(高熱物体への密着)、対流伝熱(熱風)、輻射伝熱(赤外線)、その他(マイクロ波、誘導加熱)などが挙げられる。この中でも、本発明の製造方法では、精密に幅方向でも乾燥速度を均一にする必要から、対流伝熱、または輻射伝熱を使用した方式が好ましい。 Examples of drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating). Among these, in the manufacturing method of the present invention, a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform even in the width direction.
 さらに、熱またはエネルギー線を照射することによるさらなる硬化操作(硬化工程)を行ってもよい。硬化工程において、塗料組成物Aおよび塗料組成物Bを用い、熱で硬化する場合には、室温から200℃以下であることが好ましく、硬化反応の活性化エネルギーの観点から、80℃以上200℃以下がより好ましく、100℃以上200℃以下であることがさらに好ましい。 Furthermore, a further curing operation (curing step) by irradiating heat or energy rays may be performed. In the curing step, when the coating composition A and the coating composition B are used and cured by heat, the temperature is preferably from room temperature to 200 ° C., and from the viewpoint of the activation energy of the curing reaction, 80 ° C. or more and 200 ° C. The following is more preferable, and it is more preferably 100 ° C. or higher and 200 ° C. or lower.
 また、活性エネルギー線により硬化する場合には汎用性の点から電子線(EB線)および/または紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。酸素濃度が高い場合には、最表面の硬化が阻害され、表面の硬化が不十分となり、耐指紋性が不十分となる場合がある。 Further, when curing with active energy rays, electron beams (EB rays) and / or ultraviolet rays (UV rays) are preferable from the viewpoint of versatility. In the case of curing with ultraviolet rays, the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable. When the oxygen concentration is high, the hardening of the outermost surface is hindered, the hardening of the surface becomes insufficient, and the fingerprint resistance may be insufficient.
 また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100~3,000mW/cm、好ましくは200~2,000mW/cm、さらに好ましくは300~1,500mW/cmとなる条件で紫外線照射を行うことが好ましく、紫外線の積算光量が100~3,000mJ/cm、好ましくは200~2,000mJ/cm、さらに好ましくは300~1,500mJ/cmとなる条件で紫外線照射を行うことが好ましい。ここで、紫外線の照度とは、単位面積当たりに受ける照射強度で、ランプ出力、発光スペクトル効率、発光バルブの直径、反射鏡の設計および被照射物との光源距離によって変化する。しかし、搬送スピードによって照度は変化しない。また、紫外線積算光量とは単位面積当たりに受ける照射エネルギーで、その表面に到達するフォトンの総量である。積算光量は、光源下を通過する照射速度に反比例し、照射回数とランプ灯数に比例する。 Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method. When UV curing is performed using a high-pressure mercury lamp that is a discharge lamp method, the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions, and the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2. It is preferable to perform ultraviolet irradiation under conditions. Here, the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and varies depending on the lamp output, the emission spectrum efficiency, the diameter of the light emitting bulb, the design of the reflecting mirror, and the light source distance to the irradiated object. However, the illuminance does not change depending on the conveyance speed. Further, the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface. The integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
 [用途例]
 本発明の積層フィルムは、耐擦傷性に優れているため、例えば電化製品や自動車の内装部材、建築部材等に幅広く用いることができる。
[Application example]
Since the laminated film of the present invention is excellent in scratch resistance, it can be widely used for, for example, electrical appliances, automobile interior members, building members and the like.
 一例を挙げると、メガネ・サングラス、化粧箱、食品容器などのプラスチック成型品、スマートフォンの筐体、タッチパネル、キーボード、テレビ・エアコンのリモコンなどの家電製品、建築物、ダッシュボード、カーナビ・タッチパネル、ルームミラーなどの車両内装品、および種々の印刷物のそれぞれの表面などに好適に用いることができる。 For example, glasses, sunglasses, cosmetic boxes, plastic molded products such as food containers, smartphone housings, touch panels, keyboards, home appliances such as TVs and air conditioners, buildings, dashboards, car navigation systems, touch panels, rooms It can be suitably used for vehicle interior parts such as mirrors, and the surfaces of various printed materials.
 次に、実施例に基づいて本発明を説明するが、本発明は必ずしもこれらに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not necessarily limited thereto.
 <フッ素化合物D>
 [フッ素化合物D1 メチルエチルケトン/メチルイソブチルケトン溶液]
 フッ素化合物D1としてフルオロポリエーテル部位を含むアクリレート化合物(“メガファック”(登録商標) RS-75 DIC株式会社製 固形分濃度40質量%のメチルエチルケトン/メチルイソブチルケトン溶液)を使用した。
<Fluorine compound D>
[Fluorine compound D1 methyl ethyl ketone / methyl isobutyl ketone solution]
As the fluorine compound D1, an acrylate compound containing a fluoropolyether moiety (“Megafac” (registered trademark) RS-75 manufactured by DIC Corporation, methyl ethyl ketone / methyl isobutyl ketone solution having a solid content concentration of 40 mass%) was used.
 <ポリシロキサン化合物の合成>
 [ポリシロキサン(a)]
 攪拌機、温度計、コンデンサおよび窒素ガス導入管を備えた500ml容量のフラスコにエタノール106質量部、テトラエトキシシラン320質量部、脱イオン水21質量部、および1質量%塩酸1質量部を仕込み、85℃で2時間保持した後、昇温しながらエタノールを回収し、180℃で3時間保持した。その後、冷却し、粘調な(ポリ)シロキサン(a)を得た。
<Synthesis of polysiloxane compound>
[Polysiloxane (a)]
A 500 ml flask equipped with a stirrer, thermometer, condenser and nitrogen gas inlet tube was charged with 106 parts by mass of ethanol, 320 parts by mass of tetraethoxysilane, 21 parts by mass of deionized water, and 1 part by mass of 1% by mass hydrochloric acid, 85 After maintaining at 2 ° C. for 2 hours, ethanol was recovered while the temperature was raised and maintained at 180 ° C. for 3 hours. Then, it cooled and the viscous (poly) siloxane (a) was obtained.
 <ポリジメチルシロキサン化合物の合成>
 [ポリジメチルシロキサン系ブロック共重合体(a)トルエン溶液]
 ポリシロキサン(a)の合成と同様の装置を用い、トルエン50質量部、およびメチルイソブチルケトン50質量部、(ポリ)ジメチルシロキサン系高分子重合開始剤(和光純薬株式会社製 VPS-0501)20質量部、メタクリル酸メチル18質量部、メタクリル酸ブチル38質量部、2-ヒドロキシエチルメタクリレート23質量部、メタクリル酸1重量部および1-チオグリセリン0.5質量部を仕込み、180℃で8時間反応させてポリジメチルシロキサン系ブロック共重合体(a)の固形分濃度50質量%のトルエン溶液を得た。
<Synthesis of polydimethylsiloxane compound>
[Polydimethylsiloxane block copolymer (a) toluene solution]
Using the same apparatus as the synthesis of polysiloxane (a), 50 parts by mass of toluene and 50 parts by mass of methyl isobutyl ketone, (poly) dimethylsiloxane polymer polymerization initiator (VPS-0501 manufactured by Wako Pure Chemical Industries, Ltd.) 20 1 part by weight, 18 parts by weight of methyl methacrylate, 38 parts by weight of butyl methacrylate, 23 parts by weight of 2-hydroxyethyl methacrylate, 1 part by weight of methacrylic acid and 0.5 parts by weight of 1-thioglycerin are reacted at 180 ° C. for 8 hours. Thus, a toluene solution having a solid content concentration of 50% by mass of the polydimethylsiloxane block copolymer (a) was obtained.
 [ポリジメチルシロキサン化合物(b)]
 ポリジメチルシロキサン化合物(b)として、ダイセルサイテック株式会社製 EBECRYL350(2官能、シリコーンアクリレート)を用いた。
[Polydimethylsiloxane compound (b)]
EBECRYL350 (bifunctional, silicone acrylate) manufactured by Daicel Cytec Co., Ltd. was used as the polydimethylsiloxane compound (b).
 <ウレタンアクリレートの合成>
 [ウレタンアクリレート1のトルエン溶液]
 トルエン50質量部、ヘキサメチレンジイソシアネートのイソシアヌレート変性タイプ(三井化学株式会社製 「タケネート」(登録商標)D-170N)50質量部、ポリカプロラクトン変性ヒドロキシエチルアクリレート(ダイセル化学工業株式会社製 プラクセルFA5)76質量部、ジブチル錫ラウレート0.02質量部、およびハイドロキノンモノメチルエーテル0.02質量部を混合し、70℃で5時間保持した。その後、トルエン79質量部を加えて固形分濃度50質量%のウレタンアクリレート1のトルエン溶液を得た。
<Synthesis of urethane acrylate>
[Toluene acrylate 1 in toluene solution]
50 parts by mass of toluene, isocyanurate-modified type of hexamethylene diisocyanate (“Takenate” (registered trademark) D-170N, manufactured by Mitsui Chemicals), polycaprolactone-modified hydroxyethyl acrylate (Placcel FA5, manufactured by Daicel Chemical Industries, Ltd.) 76 parts by mass, 0.02 parts by mass of dibutyltin laurate and 0.02 parts by mass of hydroquinone monomethyl ether were mixed and held at 70 ° C. for 5 hours. Thereafter, 79 parts by mass of toluene was added to obtain a toluene solution of urethane acrylate 1 having a solid content concentration of 50% by mass.
 [ウレタンアクリレート2のトルエン溶液]
 トルエン100質量部、メチル-2,6-ジイソシアネートヘキサノエート50質量部、及びポリカーボネートジオール(ダイセル化学工業株式会社製 プラクセルCD-210HL)119質量部を混合し、40℃にまで昇温して8時間保持した。それから、2-ヒドロキシエチルアクリレート28質量部、ジペンタエリストールヘキサアクリレート5質量部、ハイドロキノンモノメチルエーテル0.02質量部を加えて70℃で30分間保持した後、ジブチル錫ラウレート0.02質量部を加えて80℃で6時間保持した。そして、最後にトルエン97質量部を加えて固形分濃度50質量%のウレタンアクリレート2のトルエン溶液を得た。
[Toluene solution of urethane acrylate 2]
100 parts by mass of toluene, 50 parts by mass of methyl-2,6-diisocyanate hexanoate, and 119 parts by mass of polycarbonate diol (Placcel CD-210HL manufactured by Daicel Chemical Industries, Ltd.) were mixed, heated to 40 ° C. and heated to 8 Held for hours. Then, 28 parts by mass of 2-hydroxyethyl acrylate, 5 parts by mass of dipentaerystol hexaacrylate and 0.02 parts by mass of hydroquinone monomethyl ether were added and held at 70 ° C. for 30 minutes, and then 0.02 part by mass of dibutyltin laurate was added. In addition, it was kept at 80 ° C. for 6 hours. Finally, 97 parts by mass of toluene was added to obtain a toluene solution of urethane acrylate 2 having a solid content concentration of 50% by mass.
 [ウレタンアクリレート3のトルエン溶液]
 ヘキサメチレンジイソシアネートのイソシアヌレート変性体(三井化学株式会社製 “タケネート”(登録商標)D-170N、イソシアネート基含有量:20.9質量%)50質量部、ポリエチレングリコールモノアクリレート(日油株式会社製 “ブレンマー”(登録商標)AE-150(水酸基価:264(mgKOH/g))53質量部、ジブチル錫ラウレート0.02質量部及びハイドロキノンモノメチルエーテル0.02質量部を仕込んだ。そして、70℃で5時間保持して反応を行った。反応終了後、反応液にメチルエチルケトン(以下、MEKという)102質量部を加え、固形分濃度50質量%のウレタンアクリレート3のトルエン溶液を得た。
[Toluene acrylate 3 in toluene solution]
Isocyanurate modified form of hexamethylene diisocyanate (Mitsui Chemical Co., Ltd. “Takenate” (registered trademark) D-170N, isocyanate group content: 20.9 mass%), 50 parts by mass, polyethylene glycol monoacrylate (manufactured by NOF Corporation) “Blenmer” (registered trademark) AE-150 (hydroxyl value: 264 (mgKOH / g)) 53 parts by mass, dibutyltin laurate 0.02 parts by mass and hydroquinone monomethyl ether 0.02 parts by mass were charged at 70 ° C. After completion of the reaction, 102 parts by mass of methyl ethyl ketone (hereinafter referred to as MEK) was added to the reaction solution to obtain a toluene solution of urethane acrylate 3 having a solid content concentration of 50% by mass.
 [アクリルポリオール1]
 アクリルポリオール1として、水酸基を含有するアクリルポリオール(“タケラック”(登録商標)UA-702 三井化学株式会社製 固形分濃度50質量% 水酸基価:50mgKOH/g)を使用した。
[Acrylic polyol 1]
As the acrylic polyol 1, an acrylic polyol containing a hydroxyl group (“Takelac” (registered trademark) UA-702, manufactured by Mitsui Chemicals, Inc., solid content concentration 50 mass%, hydroxyl value: 50 mgKOH / g) was used.
 [アクリルポリオール2]
 アクリルポリオール2として、水酸基を含有するアクリルポリオール(“アクリディック”(登録商標)A-823 DIC株式会社製 固形分濃度50質量% 水酸基価30mgKOH/g)を使用した。
[Acrylic polyol 2]
As the acrylic polyol 2, an acrylic polyol containing a hydroxyl group (“Acridic” (registered trademark) A-823 manufactured by DIC Corporation, solid content concentration: 50 mass%, hydroxyl value: 30 mgKOH / g) was used.
 [イソシアネート化合物1]
 イソシアネート化合物として、トリレンジジイソシアネート(“コロネート”(登録商標)コロネートL 日本ポリウレタン工業株式会社 固形分濃度75質量% NCO含有量13.5質量%)を使用した。
[Isocyanate compound 1]
Tolylene diisocyanate (“Coronate” (registered trademark) Coronate L Nippon Polyurethane Industry Co., Ltd., solid content concentration: 75 mass%, NCO content: 13.5 mass%) was used as the isocyanate compound.
 [多官能アクリレート1]
 多官能アクリレートモノマー1として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”DPHA 日本化薬株式会社製、固形分濃度100質量%)を使用した。
[Multifunctional acrylate 1]
As the polyfunctional acrylate monomer 1, dipentaerythritol hexaacrylate (“KAYARAD” DPHA manufactured by Nippon Kayaku Co., Ltd., solid content concentration: 100 mass%) was used.
 [多官能アクリレート2]
 多官能アクリレート2として、ウレタンアクリレートオリゴマー(“SHIKOH”(登録商標)UV-3310B 日本合成化学工業株式会社製、固形分濃度100質量%)を使用した。
[Multifunctional acrylate 2]
As the polyfunctional acrylate 2, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-3310B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
 [多官能アクリレート3]
 多官能アクリレート3として、ウレタンアクリレートオリゴマー(“SHIKOH”(登録商標)UV-1700B 日本合成化学工業株式会社製、固形分濃度100質量%)を使用した。
[Polyfunctional acrylate 3]
As the polyfunctional acrylate 3, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-1700B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
 [多官能アクリレート4]
 多官能アクリレート4として、ウレタンアクリレートオリゴマー(“SHIKOH”(登録商標)UV-2750B 日本合成化学工業株式会社製、固形分濃度100質量%)を使用した。
[Polyfunctional acrylate 4]
As the polyfunctional acrylate 4, a urethane acrylate oligomer (“SHIKOH” (registered trademark) UV-2750B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., solid content concentration: 100 mass%) was used.
 [アクリルポリマー1の合成]
 ジラウロイルパーオキサイド(パーロイルL 日油株式会社製)24質量部をメチルエチルケトン495質量部に加えて70℃で30分間加温して溶解させ、メタクリル酸50質量部、ブチルアクリレート90質量部、メチルメタクリレート100質量部および4-メチル-2,4-ジフェニルペンテン-1(ノフマーMSD 日油株式会社製)2.4質量部を混合した溶液を4時間かけて滴下して撹拌重合させた。その後、さらに80℃で2時間撹拌を行い、親水性官能基を含有した固形分濃度35質量%のアクリルポリマー1のメチルエチルケトン溶液(重量平均分子量6,000)を得た。
[Synthesis of Acrylic Polymer 1]
24 parts by mass of dilauroyl peroxide (manufactured by Parroyl L NOF Corporation) is added to 495 parts by mass of methyl ethyl ketone, heated and dissolved at 70 ° C. for 30 minutes, 50 parts by mass of methacrylic acid, 90 parts by mass of butyl acrylate, methyl methacrylate A solution prepared by mixing 100 parts by mass and 2.4 parts by mass of 4-methyl-2,4-diphenylpentene-1 (NOFMER MSD NOF Corporation) was added dropwise over 4 hours to perform stirring polymerization. Thereafter, the mixture was further stirred at 80 ° C. for 2 hours to obtain a methyl ethyl ketone solution (weight average molecular weight 6,000) of acrylic polymer 1 containing a hydrophilic functional group and having a solid content concentration of 35% by mass.
 <塗料組成物Aの調合>
 [塗料組成物A1]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%の塗料組成物A1を得た。
・フッ素化合物D1の固形分濃度40質量%-メチルエチルケトン/メチルイソブチルケトン溶液                                3.8質量部
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液    50質量部
・ウレタンアクリレート3の固形分濃度50質量%-トルエン溶液    50質量部
・エチレングリコールモノブチルエーテル               10質量部
・光ラジカル重合開始剤                      1.5質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
<Preparation of coating composition A>
[Coating composition A1]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A1 having a solid concentration of 40% by mass.
-Solid content concentration of fluorine compound D1-40% by weight of methyl ethyl ketone / methyl isobutyl ketone solution-50% by weight of solid content of urethane acrylate 1-50 parts by weight of toluene solution-50% by weight of solid content of urethane acrylate 3 % -Toluene solution 50 parts by mass, ethylene glycol monobutyl ether 10 parts by mass, radical photopolymerization initiator 1.5 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物A2]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%の塗料組成物A2を得た。
[Coating composition A2]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A2 having a solid concentration of 40% by mass.
・フッ素化合物D1の固形分濃度40質量%-メチルエチルケトン/メチルイソブチルケトン溶液                               3.8質量部
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液    25質量部
・ウレタンアクリレート3の固形分濃度50質量%-トルエン溶液    75質量部
・エチレングリコールモノブチルエーテル               10質量部
・光ラジカル重合開始剤                        1.5質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
-Solid content concentration of fluorine compound D1-methyl ethyl ketone / methyl isobutyl ketone solution 3.8 parts by mass-Solid content concentration of urethane acrylate 1-50% by weight toluene solution-25 parts by mass-Solid content concentration of urethane acrylate 3-50 masses % -Toluene solution 75 parts by mass, ethylene glycol monobutyl ether 10 parts by mass, photoradical polymerization initiator 1.5 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物A3]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%の塗料組成物A3を得た。
・フッ素化合物D1の固形分濃度40質量%-メチルエチルケトン/メチルイソブチルケトン溶液                                3.8質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液    75質量部
・ウレタンアクリレート3の固形分濃度50質量%-トルエン溶液    25質量部
・エチレングリコールモノブチルエーテル               10質量部
・光ラジカル重合開始剤                      1.5質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition A3]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A3 having a solid concentration of 40% by mass.
-Fluorine compound D1 solid content concentration 40 mass%-methyl ethyl ketone / methylisobutylketone solution 3.8 mass parts-Solid content concentration of urethane acrylate 2-50 mass%-Toluene solution 75 mass parts-Solid content concentration of urethane acrylate 3 50 mass% % -Toluene solution 25 parts by mass, ethylene glycol monobutyl ether 10 parts by mass, photoradical polymerization initiator 1.5 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物A4]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%の塗料組成物A4を得た。
・多官能アクリレート1                      100質量部
・光ラジカル重合開始剤                     0.75質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition A4]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition A4 having a solid concentration of 40% by mass.
-Polyfunctional acrylate 1 100 mass parts-Photoradical polymerization initiator 0.75 mass part ("Irgacure" (trademark) 184 BASF Japan Ltd.).
 [塗料組成物B1]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B1を得た。
・アクリルポリオール1                      100質量部
・イソシアネート化合物                     18.8質量部
・多官能アクリレート2                     22.9質量部
・アクリルポリマー1                        13質量部
・光ラジカル重合開始剤                     0.69質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B1]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B1 having a solid content concentration of 20% by mass.
-Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 2 22.9 parts by mass-Acrylic polymer 1 13 parts by mass-Photo radical polymerization initiator 0.69 parts by mass ("IRGACURE" (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B2]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B2を得た。
・アクリルポリオール1                      100質量部
・イソシアネート化合物                     18.8質量部
・アクリルポリマー1                       9.6質量部。
[Coating composition B2]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B2 having a solid content concentration of 20% by mass.
-Acrylic polyol 1 100 mass parts-Isocyanate compound 18.8 mass parts-Acrylic polymer 1 9.6 mass parts.
 [塗料組成物B3]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B3を得た。
・アクリルポリオール2                      100質量部
・イソシアネート化合物                     11.8質量部
・アクリルポリマー1                       8.8質量部。
[Coating composition B3]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B3 having a solid content concentration of 20% by mass.
-Acrylic polyol 2 100 mass parts-Isocyanate compound 11.8 mass parts-Acrylic polymer 1 8.8 mass parts.
 [塗料組成物B4]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B4を得た。
・アクリルポリオール1                      100質量部
・イソシアネート化合物                     18.8質量部
・多官能アクリレート3                       12質量部
・アクリルポリマー1                      11.4質量部
・光ラジカル重合開始剤                     0.36質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B4]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B4 having a solid content concentration of 20% by mass.
-Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 3 12 parts by mass-Acrylic polymer 1 11.4 parts by mass-Photo radical polymerization initiator 0.36 parts by mass ("IRGACURE" (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B5]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B5を得た。
・多官能アクリレート4                      100質量部
・アクリルポリマー1                        15質量部
・光ラジカル重合開始剤                        3質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B5]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B5 having a solid content concentration of 20% by mass.
Polyfunctional acrylate 4 100 parts by mass Acrylic polymer 1 15 parts by mass Photoradical polymerization initiator 3 parts by mass ("Irgacure" (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B6]
 下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度20質量%の塗料組成物B6を得た。
・アクリルポリオール1                      100質量部
・イソシアネート化合物                     18.8質量部
・多官能アクリレート3                      3.6質量部
・アクリルポリマー1                      10.1質量部
・光ラジカル重合開始剤                     0.11質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B6]
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition B6 having a solid content concentration of 20% by mass.
-Acrylic polyol 1 100 parts by mass-Isocyanate compound 18.8 parts by mass-Polyfunctional acrylate 3 3.6 parts by mass-Acrylic polymer 1 10.1 parts by mass-Photoradical polymerization initiator 0.11 parts by mass ("Irgacure" ( Registered trademark) 184 BASF Japan Ltd.).
 <積層フィルムの製造方法>
 [積層フィルムの作成方法1]
 支持基材(C層となる層)としてPET樹脂フィルム上に易接着性塗料が塗布されている厚み100μmの“ルミラー”(登録商標)U48(東レ株式会社製)を用いた。支持基材上に塗料組成物Bをスロットダイコーターによる連続塗布装置を用い、乾燥後の表面層の厚みが指定の膜厚になるようにスロットからの吐出流量を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行い、支持基材上にB層を形成した。
「乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 大気雰囲気。
<Method for producing laminated film>
[Method 1 for producing laminated film]
As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 μm in which an easy-adhesive coating material was applied on a PET resin film was used. The coating composition B is applied onto the support substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then applying Under these conditions, a drying step and a curing step were performed to form a B layer on the support substrate.
"Drying process"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 "Curing process" for minutes
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: Atmospheric atmosphere.
 さらに、同装置を用い、上記で得られたB層上に塗料組成物Aを、乾燥後の表面層の厚みが指定の膜厚になるようにスロットからの吐出流量を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行い、積層フィルムを得た。
「乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 200ppm(体積比率)以下。
Furthermore, using the same apparatus, the coating composition A was applied onto the B layer obtained above by adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying became a specified film thickness, Subsequently, a drying process and a curing process were performed under the following conditions to obtain a laminated film.
"Drying process"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 "Curing process" for minutes
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: 200 ppm (volume ratio) or less.
 [積層フィルムの作成方法2]
 支持基材(C層となる層)としてPET樹脂フィルム上に易接着性塗料が塗布されている厚み100μmの“ルミラー”(登録商標)U48(東レ株式会社製)を用いた。支持基材上に塗料組成物Bをスロットダイコーターによる連続塗布装置を用い、乾燥後の表面層の厚みが指定の膜厚になるようにスロットからの吐出流量を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行い、支持基材上にB層を形成した。
「乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
 さらに、同装置を用い、上記で得られたB層上に塗料組成物Aを、乾燥後の表面層の厚みが指定の膜厚になるようにスロットからの吐出流量を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行い、積層フィルムを得た。
「乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 200ppm(体積比率)以下。
[Method 2 for creating laminated film]
As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 μm in which an easy-adhesive coating material was applied on a PET resin film was used. The coating composition B is applied onto the support substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then applying Under these conditions, a drying step and a curing step were performed to form a B layer on the support substrate.
"Drying process"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 Further, using the same apparatus, the coating composition A was applied onto the B layer obtained above while adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying would be the specified film thickness. Then, a drying process and a curing process were performed under the following conditions to obtain a laminated film.
"Drying process"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 "Curing process" for minutes
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: 200 ppm (volume ratio) or less.
 [積層フィルムの作成方法3]
 支持基材(C層となる層)としてPET樹脂フィルム上に易接着性塗料が塗布されている厚み100μmの“ルミラー”(登録商標)U48(東レ株式会社製)を用いた。支持基材上に塗料組成物Aをスロットダイコーターによる連続塗布装置を用い、乾燥後の表面層の厚みが指定の膜厚になるようにスロットからの吐出流量を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行い、支持基材上にA層を形成した。
「乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 200ppm(体積比率)以下。
[Method 3 for creating laminated film]
As a supporting substrate (layer to be the C layer), “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 100 μm in which an easy-adhesive coating material was applied on a PET resin film was used. The coating composition A is applied onto the supporting substrate by using a continuous coating apparatus using a slot die coater, adjusting the discharge flow rate from the slot so that the thickness of the surface layer after drying becomes a specified film thickness, and then Under these conditions, a drying step and a curing step were performed to form an A layer on the support substrate.
"Drying process"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 "Curing process" for minutes
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: 200 ppm (volume ratio) or less.
 以上の方法により実施例1~13、比較例1~2の積層フィルムを作成した。各実施例・比較例に対応する上記積層フィルムの作成方法、使用する塗料組成物、各層の膜厚を表1に記載した。 The laminated films of Examples 1 to 13 and Comparative Examples 1 and 2 were prepared by the above method. Table 1 shows the method for producing the laminated film, the coating composition to be used, and the film thickness of each layer corresponding to each of the examples and comparative examples.
 <積層フィルムの評価>
 作成した積層フィルムについて、次に示す性能評価を実施し、得られた結果を表2に示す。特に断らない場合を除き、測定は各実施例・比較例において1つのサンプルについて場所を変えて3回測定を行い、その平均値を用いた。
<Evaluation of laminated film>
About the produced laminated film, the following performance evaluation was implemented and the obtained result is shown in Table 2. Unless otherwise specified, the measurement was performed three times by changing the location of one sample in each example and comparative example, and the average value was used.
 [貯蔵弾性率、ガラス転移温度の測定]
 A.積層フィルム断面の確認
 積層フィルムをカッターで切り出し、電顕用エポキシ樹脂(日新EM社製Quetol812)で包埋し、60℃のオーブン中で48時間かけて該エポキシ樹脂を硬化させた後、ウルトラミクロトーム(ライカ社製Ultracut S)で厚さ約100nmの超薄切片を作製した。
[Measurement of storage modulus and glass transition temperature]
A. Confirmation of cross section of laminated film Cut out the laminated film with a cutter, embed it with an electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM), cure the epoxy resin in an oven at 60 ° C for 48 hours, An ultrathin section having a thickness of about 100 nm was prepared with a microtome (Ultracut S manufactured by Leica).
 作製した超薄切片を応研商事社製100メッシュのCuグリッドに搭載して、日立製透過型電子顕微鏡(TEM)H-7100FAを使用し加速電圧100kVでTEM観察を行い、積層フィルム断面の観察を行い、表面層と支持基材の場所を確認した。 The prepared ultrathin sections were mounted on a 100 mesh Cu grid manufactured by Oken Shoji Co., Ltd., and TEM observation was performed at 100 kV acceleration voltage using a Hitachi transmission electron microscope (TEM) H-7100FA to observe the cross section of the laminated film. The location of the surface layer and the supporting substrate was confirmed.
 B.超微小硬度計による測定
 上記、超薄切片をサンプルとし、超微小硬度計(Hysitron社製Tribo Indenter)を用いて、表面層と支持基材のモジュラスマッピング像を取得し、貯蔵弾性率、損失弾性率を算出し、貯蔵弾性率と損失弾性率の比から損失正接(tanδ)を求め、得られた損失正接(tanδ)のピーク値の温度を、ガラス転移温度(Tg)とした。
測定条件は下記に示す。
測定装置: Hysitron社製Tribo Indenter
使用圧子: ダイヤモンド製Cubecorner圧子(曲率半径50nm)
測定視野: 約30mm角
測定周波数:10Hz
測定雰囲気:-20℃~120℃・大気中
接触荷重: 0.3μN。
B. Measurement with an ultra-micro hardness meter Using the ultra-thin slice as a sample, an ultra-micro hardness meter (Tribo Indenter manufactured by Hysitron) was used to obtain a modulus mapping image of the surface layer and the supporting substrate, storage modulus, The loss elastic modulus was calculated, the loss tangent (tan δ) was determined from the ratio of the storage elastic modulus and the loss elastic modulus, and the temperature of the peak value of the obtained loss tangent (tan δ) was defined as the glass transition temperature (Tg).
The measurement conditions are shown below.
Measuring device: Tribo Indenter made by Hystron
Working indenter: Diamond Cubecorner indenter (curvature radius 50 nm)
Measurement field of view: Approximately 30 mm square Measurement frequency: 10 Hz
Measurement atmosphere: −20 ° C. to 120 ° C., atmospheric contact load: 0.3 μN.
 [原子間力顕微鏡による弾性率の測定]
 実施例1~13、比較例1~2の積層フィルムを凍結ミクロトーム法により断面を切り出し、当該断面を測定面として専用のサンプル固定台に固定し、アサイラムテクノロジー製の原子間力顕微鏡(AFM)「MFP-3DSA-J」とNANOSENSORS製のカンチレバー「R150-NCL-10(材質Si、ばね定数48N/m、先端の曲率半径150nm)」を用い、表面層の厚み方向に垂直にContactモードでフォースカーブ (カンチレバーの移動速度2μm/s、最大押し込み荷重2μN)を測定した。
[Measurement of elastic modulus by atomic force microscope]
Cross sections of the laminated films of Examples 1 to 13 and Comparative Examples 1 and 2 were cut out by a freezing microtome method, and the cross sections were fixed to a dedicated sample fixing base as a measurement surface, and an atomic force microscope (AFM) “manufactured by Asylum Technology” Force curve in contact mode perpendicular to the thickness direction of the surface layer using “MFP-3DSA-J” and a cantilever “R150-NCL-10 (material Si, spring constant 48 N / m, radius of curvature at the tip 150 nm)” manufactured by NANOSENSORS (Cantilever moving speed 2 μm / s, maximum indentation load 2 μN) was measured.
 上記測定方法に基づき、表面層の厚み方向に対し、表面層の表面から10%の位置(位置1)の弾性率(E1)、50%の位置(位置2)の弾性率(E2)、99%の位置(位置3)の弾性率(E3)を求めた。具体的には積層フィルムを切断し、表面層断面における厚み方向の各位置の弾性率を測定した。 Based on the measurement method, the elastic modulus (E1) at 10% position (position 1), the elastic modulus (E2) at position 50% (position 2) with respect to the thickness direction of the surface layer, 99 The elastic modulus (E3) at the% position (position 3) was determined. Specifically, the laminated film was cut, and the elastic modulus at each position in the thickness direction in the cross section of the surface layer was measured.
 [クラック伸度]
 積層フィルムを長手方向および幅方向に長さ150mm×幅10mmの短形に切り出し、サンプルとした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離50mmとし、引張速度を10mm/分として引張試験を行った。この時の測定雰囲気は23℃・65RH%である。伸張する際に、伸張中のサンプルを観察しておき、サンプルのいずれかの箇所に目視でクラック(亀裂)が生じたら停止する(停止するときの伸度は5の整数となるように調整する)。次から測定するサンプルは、停止時の伸度より、5%単位で伸張伸度を低くしていったサンプルを順次採取し、最終的にサンプルのいずれかの箇所に目視にてクラックが入らなくなる伸度まで行った。
[Crack elongation]
The laminated film was cut into a short shape having a length of 150 mm and a width of 10 mm in the longitudinal direction and the width direction to prepare a sample. Using a tensile tester (Orientec Tensilon UCT-100), an initial tensile chuck distance was set to 50 mm, and a tensile speed was set to 10 mm / min. The measurement atmosphere at this time is 23 ° C. and 65 RH%. When stretching, observe the sample being stretched, and stop if any cracks are visually observed in any part of the sample (adjust the elongation to be an integer of 5) ). Samples to be measured from the next time, samples that have been stretched at a rate of 5% lower than the elongation at the time of stopping are collected in sequence, and finally no cracks are visually observed in any part of the sample. It went to elongation.
 採取したサンプルのクラック部分の薄膜断面を切り出し、断面を透過型電子顕微鏡にて倍率3,000倍で観察し、表面層の平均厚みの50%以上のクラックが発生している場合をクラック有り(表面層の破壊有り)として、クラック有りとされたサンプルの中で、最も低い伸度を有するサンプルの伸度値をクラック伸度とした。 Cut out the thin film cross section of the cracked portion of the collected sample, observe the cross section with a transmission electron microscope at a magnification of 3,000 times, and cracks occur when cracks of 50% or more of the average thickness of the surface layer have occurred ( As the surface layer was broken, the elongation value of the sample having the lowest elongation among the samples with cracks was defined as the crack elongation.
 そして、同一の水準の異なる箇所から切り出した3サンプルで測定を行い、それらのクラック伸度の平均値を採用した。 Measured with 3 samples cut out from different locations of the same level, and adopted the average value of their crack elongation.
 [熱成型性]
 得られた積層フィルムを、真空成型機「FORMECH300X」(成光産業株式会社製)を用いて、遠赤外線ヒーターを用いて、フィルム表面温度が所定の温度になるように1分間加熱し円柱状の金型(底面直径50mm)を用いて真空成型を行い積層フィルムを成型した。また、その後、硬化を完全に終わらせるために、温度を180~200℃にして引き続き1分間加熱を行った。金型に沿って成型できた状態を成型度合い(絞り比:成型高さ/底面直径)を用いて以下の基準で評価した。
A級:絞り比1.0以上で成型できた。
B級:絞り比0.6以上、1.0未満で成型できたが、1.0以上では成型できなかった。
C級:絞り比0.3以上、0.6未満で成型できたが、0.6以上では成型できなかった。
D級:絞り比0.3未満の曲面成型のみ可能であり、0.3以上では成型できなかった。
E級:わずかに折り曲げるだけでも、フィルム破れ・クラックが発生した。
[Thermoformability]
The obtained laminated film is heated using a vacuum forming machine “FORMECH300X” (manufactured by Seiko Sangyo Co., Ltd.) for 1 minute using a far-infrared heater so that the film surface temperature becomes a predetermined temperature. Using a mold (bottom diameter: 50 mm), vacuum forming was performed to form a laminated film. Thereafter, in order to completely complete the curing, the temperature was set to 180 to 200 ° C., followed by heating for 1 minute. The state of being molded along the mold was evaluated according to the following criteria using the degree of molding (drawing ratio: molding height / bottom diameter).
Class A: Molding was possible at a drawing ratio of 1.0 or more.
Class B: Although molding was possible at a drawing ratio of 0.6 or more and less than 1.0, molding was impossible at 1.0 or more.
Class C: Although molding was possible at a drawing ratio of 0.3 or more and less than 0.6, molding was impossible at 0.6 or more.
Class D: Only curved surface molding with a drawing ratio of less than 0.3 was possible, and molding was impossible at 0.3 or more.
E grade: Even if it was bent slightly, the film was broken or cracked.
 [表面層の低硬度材料による反復擦過耐性]
 積層フィルムを温度20℃で12時間放置した後、同環境にて本光製作所製消しゴム摩耗試験機の先端(先端部面積1cm)に、白ネル生地〔600番 興和(株)製〕を取り付け、500gの荷重をかけて積層フィルム上を5cm、5,000回往復、及び1,000g荷重をかけて、積層フィルム上を5cm、200回往復摩擦し、下記のクラス分けを行った。なお、同一の水準の異なる箇所から切り出した3サンプルで測定を行い、以下のクラス分けを行った。クラス分けを行った3サンプルの値の平均値を採用した。
10点: 傷なし
7点:  1~10本の傷
4点:  11~20本の傷
1点:  試験部分の表面層が全面剥離。
[Repeated abrasion resistance by low hardness material of surface layer]
After the laminated film is left at a temperature of 20 ° C. for 12 hours, in the same environment, a white Nell fabric (No. 600 Kowa Co., Ltd.) is attached to the tip of the eraser abrasion tester manufactured by Honko Seisakusho (tip area 1 cm 2 ). A 500 g load was applied to the laminated film for 5 cm, 5,000 reciprocations, and a 1,000 g load was applied to the laminated film for 5 cm, 200 reciprocating frictions, and the following classification was performed. In addition, it measured by 3 samples cut out from the different location of the same level, and performed the following classification. The average of the values of the three samples that were classified was adopted.
10 points: No scratches 7 points: 1 to 10 scratches 4 points: 11 to 20 scratches 1 point: The surface layer of the test part was completely peeled off.
 [表面層の自己修復性]
 温度20℃で12時間放置した後、同環境にて表面層表面を、真鍮ブラシ(TRUSCO製)に下記の荷重をかけて、水平に5回引っ掻いたのち、5分間放置後の傷の回復状態を、下記の基準に則り目視で判定を行った。なお、同一の水準の異なる箇所から切り出した3サンプルで測定を行い、それらの平均値を採用した。
10点: 荷重1kgで傷が残らない
7点:  荷重1kgでは傷が残るが、700gでは傷が残らない
4点:  荷重700gでは傷が残るが、500gでは傷が残らない
1点:  荷重500gで傷が残る。
[Surface layer self-healing]
After leaving at a temperature of 20 ° C. for 12 hours, in the same environment, the surface layer surface was subjected to the following load on a brass brush (manufactured by TRUSCO) and horizontally scratched five times, and then the wound was recovered after being left for 5 minutes. Was visually determined according to the following criteria. In addition, it measured by 3 samples cut out from the different location of the same level, and those average values were employ | adopted.
10 points: No scratches left at 1 kg load 7: No scratches left at 1 kg load, but no scratches left at 700 g 4: No scratches left at 700 g load, but no scratches left at 500 g 1 point: At 500 g load The wound remains.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
1 表面層でB層と接する層(A層)
2 支持基材に接している層(B層)
3 支持基材(C層)
4 A層とB層を含む表面層
5 表面層の表面から、表面層厚みの10%の位置(位置1)
6 表面層の表面から、表面層厚みの50%の位置(位置2)
7 表面層の表面から、表面層厚みの99%の位置(位置3)
8 多層スライドダイ
9 多層スロットダイ
10 単層スロットダイ
1 Layer in contact with layer B at surface layer (layer A)
2 Layer in contact with the support substrate (B layer)
3 Support base material (C layer)
4 Surface layer including A layer and B layer 5 10% of the surface layer thickness from the surface of the surface layer (position 1)
6 Position of 50% of the surface layer thickness from the surface layer (position 2)
7 From the surface of the surface layer, 99% of the surface layer thickness (position 3)
8 Multilayer Slide Die 9 Multilayer Slot Die 10 Single Layer Slot Die
 本発明に係る積層フィルムは、プラスチック成型品、家電製品、建築物や車両内装品および種々の印刷物のそれぞれの表面に耐擦傷性、特に反復擦過性と成型性とを両立した機能を付与するために用いることができる。 The laminated film according to the present invention imparts a function having both scratch resistance, in particular, repeated scratch resistance and moldability, to the surfaces of plastic molded products, home appliances, buildings, vehicle interiors, and various printed materials. Can be used.

Claims (7)

  1. 支持基材の少なくとも一方の面に、A層とB層とを含む表面層を有する積層フィルムであって、支持基材側からB層、A層がこの順で接しており、A層、B層、支持基材の微小硬度計により測定された25℃の貯蔵弾性率(以下、EA25、EB25、EC25)、120℃の貯蔵弾性率(以下、EA120、EB120、EC120)が、以下の条件を満たすことを特徴とする積層フィルム。
    条件1 EA25<EB25≦EC25
    条件2 EB120≦EA120<EC120
    条件3 EA25≦100MPa
    A laminated film having a surface layer including an A layer and a B layer on at least one surface of a supporting substrate, wherein the B layer and the A layer are in contact in this order from the supporting substrate side. Storage elastic modulus at 25 ° C. (hereinafter referred to as E A25 , E B25 , E C25 ) and storage elastic modulus at 120 ° C. (hereinafter referred to as E A120 , E B120 , E C120 ) However, the laminated film characterized by satisfying the following conditions.
    Condition 1 E A25 <E B25 ≦ E C25
    Condition 2 E B120 ≦ E A120 <E C120
    Condition 3 E A25 ≦ 100 MPa
  2. 前記A層、B層、支持基材が、以下の条件を満たすことを特徴とする請求項1に記載の積層フィルム。
    条件4 0<EC25-EB25<5GPa
    条件5 0<EA120-EB120<50MPa
    The said A layer, B layer, and a support base material satisfy | fill the following conditions, The laminated | multilayer film of Claim 1 characterized by the above-mentioned.
    Condition 4 0 <E C25 -E B25 <5 GPa
    Condition 5 0 <E A120 -E B120 <50 MPa
  3. 前記B層のガラス転移温度(以下、Tg)が、以下の条件を満たすことを特徴とする請求項1または2に記載の積層フィルム。
    条件6 60℃≦Tg≦130℃
    The laminated film according to claim 1 or 2, wherein the glass transition temperature (hereinafter, Tg B ) of the B layer satisfies the following condition.
    Condition 6 60 ° C. ≦ Tg B ≦ 130 ° C.
  4. 前記B層の厚み(以下、T)が、以下の条件を満たすことを特徴とする請求項1から請求項3のいずれかに記載の積層フィルム。
    条件7 0.1μm≦T≦5μm
    The laminated film according to any one of claims 1 to 3, wherein a thickness (hereinafter, T B ) of the B layer satisfies the following condition.
    Condition 7 0.1 μm ≦ T B ≦ 5 μm
  5. 前記表面層の基材に垂直な断面において、表面層の表面から、表面層厚みの10%の位置(以降、位置1とする)、50%(以降、位置2とする)、99%(以降、位置3とする)の各位置における、原子間力顕微鏡による弾性率E1、E2、E3が、以下の条件を満たすことを特徴とする請求項1から請求項4のいずれかに記載の積層フィルム。
    条件8  E1≦E2<E3
    条件9  E1≦100MPa
    条件10 E3≧1GPa
    In a cross section perpendicular to the base material of the surface layer, from the surface of the surface layer, a position of 10% of the thickness of the surface layer (hereinafter referred to as position 1), 50% (hereinafter referred to as position 2), 99% (hereinafter referred to as position layer). 5. The laminated film according to any one of claims 1 to 4, wherein the elastic moduli E1, E2, and E3 measured by an atomic force microscope at each of the positions 3) satisfy the following condition: .
    Condition 8 E1 ≦ E2 <E3
    Condition 9 E1 ≦ 100 MPa
    Condition 10 E3 ≧ 1 GPa
  6. 請求項1から請求項5のいずれかに記載の積層フィルムの製造方法であって、前記表面層が、2種類以上の塗料組成物を支持基材上に逐次に塗布、乾燥、硬化することにより形成されることを特徴とする積層フィルムの製造方法。 It is a manufacturing method of the laminated | multilayer film in any one of Claims 1-5, Comprising: The said surface layer applies two or more types of coating compositions sequentially on a support base material, and dries and hardens | cures. A method for producing a laminated film, which is formed.
  7. 請求項1から請求項5のいずれかに記載の積層フィルムの製造方法であって、前記表面層が、2種類以上の塗料組成物を支持基材上に同時に塗布し、乾燥、硬化することにより形成されることを特徴とする積層フィルムの製造方法。 It is a manufacturing method of the laminated | multilayer film in any one of Claims 1-5, Comprising: The said surface layer applies two or more types of coating compositions simultaneously on a support base material, and is dried and hardened | cured. A method for producing a laminated film, which is formed.
PCT/JP2015/060702 2014-04-15 2015-04-06 Layered film and process for producing layered film WO2015159748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015520443A JP6528681B2 (en) 2014-04-15 2015-04-06 Laminated film, and method of manufacturing laminated film
KR1020167024876A KR102242709B1 (en) 2014-04-15 2015-04-06 Layered film and process for producing layered film
CN201580018002.6A CN106132689B (en) 2014-04-15 2015-04-06 The manufacture method of stack membrane and stack membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014083448 2014-04-15
JP2014-083448 2014-04-15
JP2015024956 2015-02-12
JP2015-024956 2015-02-12

Publications (1)

Publication Number Publication Date
WO2015159748A1 true WO2015159748A1 (en) 2015-10-22

Family

ID=54323959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060702 WO2015159748A1 (en) 2014-04-15 2015-04-06 Layered film and process for producing layered film

Country Status (5)

Country Link
JP (1) JP6528681B2 (en)
KR (1) KR102242709B1 (en)
CN (1) CN106132689B (en)
TW (1) TWI663061B (en)
WO (1) WO2015159748A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185482A (en) * 2016-03-31 2017-10-12 東レ株式会社 Method for manufacturing laminate
JP2020157563A (en) * 2019-03-26 2020-10-01 大日本印刷株式会社 Decorative sheet and decorative resin molding
JP2020173282A (en) * 2019-04-05 2020-10-22 住友ベークライト株式会社 Method of manufacturing optical component
WO2021205682A1 (en) * 2020-04-07 2021-10-14 東洋インキScホールディングス株式会社 Active energy ray-curable hard coating agent, laminated film, transparent conductive film, optical member, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680417B (en) * 2018-04-20 2019-08-06 吴礼高 A kind of preparation method of easy elution biological tissue embedding agent
CN115443303B (en) * 2020-05-07 2024-04-16 比卡姆有限公司 Laminated structure for display cover window with improved scratch resistance by using difference of elastic modulus and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158892A (en) * 1998-11-27 2000-06-13 Dainippon Printing Co Ltd Transfer sheet, manufacture of decorative material using it and decorative material
JP2004002592A (en) * 2001-06-29 2004-01-08 Sekisui Chem Co Ltd Sheet
JP2006123497A (en) * 2004-10-01 2006-05-18 Sekisui Chem Co Ltd Transparent sheet laminate
JP2010123802A (en) * 2008-11-20 2010-06-03 Nitto Denko Corp Sealing sheet for optical semiconductor
JP2012164891A (en) * 2011-02-08 2012-08-30 Hitachi Chem Co Ltd Adhesive sheet for semiconductor, manufacturing method of adhesive sheet for semiconductor, semiconductor wafer, semiconductor device and semiconductor device manufacturing method
WO2013183489A1 (en) * 2012-06-08 2013-12-12 東レ株式会社 Film for decorative molding and method for producing decorative molded body
JP2015104881A (en) * 2013-11-29 2015-06-08 三菱樹脂株式会社 Thermally-molded body, and production method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076662C (en) * 1994-01-24 2001-12-26 住友化学工业株式会社 laminate, laminated film and molding
JP3926461B2 (en) 1998-02-13 2007-06-06 ナトコ株式会社 Paint composition
TW490392B (en) * 1998-12-18 2002-06-11 Tokuyama Corp Laminate film having gas barrier property
DE102004053644A1 (en) * 2004-11-03 2006-05-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vehicle headlamp
JP5539605B2 (en) 2006-04-19 2014-07-02 株式会社ダイセル Active energy ray-curable coating agent and use thereof
JP2008109075A (en) * 2006-09-26 2008-05-08 Bridgestone Corp Electric wave absorbing material
JP2009184284A (en) 2008-02-08 2009-08-20 Toray Ind Inc Laminated film
JP2011005766A (en) 2009-06-26 2011-01-13 Konica Minolta Holdings Inc Laminate with self-repairable layer, and molding
JP5799806B2 (en) 2010-04-27 2015-10-28 東レ株式会社 Laminated film and molded body
JPWO2014141866A1 (en) * 2013-03-13 2017-02-16 Dic株式会社 Hard coat film, protective film, and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158892A (en) * 1998-11-27 2000-06-13 Dainippon Printing Co Ltd Transfer sheet, manufacture of decorative material using it and decorative material
JP2004002592A (en) * 2001-06-29 2004-01-08 Sekisui Chem Co Ltd Sheet
JP2006123497A (en) * 2004-10-01 2006-05-18 Sekisui Chem Co Ltd Transparent sheet laminate
JP2010123802A (en) * 2008-11-20 2010-06-03 Nitto Denko Corp Sealing sheet for optical semiconductor
JP2012164891A (en) * 2011-02-08 2012-08-30 Hitachi Chem Co Ltd Adhesive sheet for semiconductor, manufacturing method of adhesive sheet for semiconductor, semiconductor wafer, semiconductor device and semiconductor device manufacturing method
WO2013183489A1 (en) * 2012-06-08 2013-12-12 東レ株式会社 Film for decorative molding and method for producing decorative molded body
JP2015104881A (en) * 2013-11-29 2015-06-08 三菱樹脂株式会社 Thermally-molded body, and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185482A (en) * 2016-03-31 2017-10-12 東レ株式会社 Method for manufacturing laminate
JP2020157563A (en) * 2019-03-26 2020-10-01 大日本印刷株式会社 Decorative sheet and decorative resin molding
JP7480474B2 (en) 2019-03-26 2024-05-10 大日本印刷株式会社 Decorative sheets and decorative resin molded products
JP2020173282A (en) * 2019-04-05 2020-10-22 住友ベークライト株式会社 Method of manufacturing optical component
JP7275786B2 (en) 2019-04-05 2023-05-18 住友ベークライト株式会社 Method for manufacturing optical laminate
WO2021205682A1 (en) * 2020-04-07 2021-10-14 東洋インキScホールディングス株式会社 Active energy ray-curable hard coating agent, laminated film, transparent conductive film, optical member, and electronic device

Also Published As

Publication number Publication date
JP6528681B2 (en) 2019-06-12
TW201544328A (en) 2015-12-01
KR102242709B1 (en) 2021-04-22
TWI663061B (en) 2019-06-21
CN106132689B (en) 2018-01-23
JPWO2015159748A1 (en) 2017-04-13
CN106132689A (en) 2016-11-16
KR20160145546A (en) 2016-12-20

Similar Documents

Publication Publication Date Title
WO2015159748A1 (en) Layered film and process for producing layered film
JP6394395B2 (en) Laminated film
JP2013173871A (en) Composition, antistatic coating agent, and antistatic laminate
JP6481607B2 (en) Laminated film
US9469789B2 (en) Laminated film
JP2014184610A (en) Laminated film and method for producing the same
JP2024086782A (en) Laminate, laminate manufacturing method, resin film manufacturing method, plastic molded product, display, sensor, and material for manufacturing step
JP6531531B2 (en) Laminated film, and method of manufacturing laminated film
JP7200562B2 (en) laminate
JP2017170671A (en) Laminated film
JP6582862B2 (en) Laminated film
WO2015041175A1 (en) Layered film
JP6911648B2 (en) Laminated film
JP6897043B2 (en) Laminate
JP2017064968A (en) Laminated film
JP2021098357A (en) Laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015520443

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167024876

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779786

Country of ref document: EP

Kind code of ref document: A1