[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015159480A1 - 接合用組成物及びそれを用いた金属接合体 - Google Patents

接合用組成物及びそれを用いた金属接合体 Download PDF

Info

Publication number
WO2015159480A1
WO2015159480A1 PCT/JP2015/001320 JP2015001320W WO2015159480A1 WO 2015159480 A1 WO2015159480 A1 WO 2015159480A1 JP 2015001320 W JP2015001320 W JP 2015001320W WO 2015159480 A1 WO2015159480 A1 WO 2015159480A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
bonding composition
bonding
particles
sulfur
Prior art date
Application number
PCT/JP2015/001320
Other languages
English (en)
French (fr)
Inventor
賢治 下山
正史 武居
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016513620A priority Critical patent/JPWO2015159480A1/ja
Priority to EP15780510.2A priority patent/EP3132872A4/en
Publication of WO2015159480A1 publication Critical patent/WO2015159480A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Definitions

  • the present invention relates to a bonding composition containing inorganic particles as a main component and a metal bonded body using the same, and more specifically, for bonding capable of obtaining a metal bonded body having high shear strength and long-term reliability.
  • the present invention relates to a composition and a metal joined body using the composition.
  • solder a conductive adhesive, a silver paste, an anisotropic conductive film, and the like are used for mechanically and / or electrically and / or thermally joining a metal part and a metal part.
  • These conductive adhesives, silver pastes, anisotropic conductive films, and the like may be used when joining not only metal parts but also ceramic parts and resin parts.
  • bonding of light emitting elements such as LEDs to a substrate, bonding of a semiconductor chip to a substrate, bonding of these substrates to a heat dissipation member, and the like can be given.
  • adhesives, pastes, and films containing conductive fillers made of solder and metal are used for joining parts that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.
  • a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED
  • a semiconductor device is manufactured using a semiconductor element that operates at a high temperature and is called a power device.
  • the amount of heat generation tends to increase. Attempts have been made to improve the efficiency of devices and elements to reduce heat generation. However, at present, sufficient results have not been achieved, and the operating temperature of devices and elements has risen.
  • the bonding material for bonding devices and elements is required to have heat resistance that can withstand the increase in operating temperature due to the operation of the device after bonding and maintain sufficient bonding strength as the bonding temperature decreases.
  • conventional bonding materials are not sufficient.
  • solder joins members through a process of heating the metal to the melting point or higher (reflow process).
  • the melting point is inherent to the composition, so heating (joining) when trying to increase the heat-resistant temperature. The temperature will rise.
  • solder when several layers of elements and substrates are bonded using solder, it is necessary to go through the heating process for the number of layers to be overlapped. In order to prevent melting of the already bonded portion, the solder used for the next bonding It is necessary to lower the melting point (joining temperature) of the solder, and the number of types of solder composition is required by the number of layers to be overlaid, which makes handling complicated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-63688 proposes fine particles that can be used as a main material of a bonding material so that higher bonding strength can be obtained when bonded members are bonded to each other. The problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.
  • solder containing lead has been conventionally used as a high-temperature solder used at a high operating temperature. Since lead is toxic, the trend toward solder-free solder is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used, but from the viewpoint of environmental problems, a bonding material that does not use lead is eagerly desired.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-046779
  • metal nanoparticles centered on noble metals such as silver and gold have been used as an alternative material for high-temperature solder.
  • Bonding materials that have been developed have been developed. Specifically, the bonding material is applied between the first bonded member and the second bonded member, and fired at a relatively low temperature (for example, 300 ° C. or lower), whereby the first bonded material. And the second material to be joined can be joined.
  • the bonding layer obtained by firing the bonding material using the metal nanoparticles inevitably has microdefects such as voids and organic components, and the shear strength and long-term reliability of the bonded body cannot be sufficiently secured. There was a problem.
  • an object of the present invention is to obtain a metal bonded body having high shear strength and long-term reliability, and a bonding composition containing inorganic particles as a main component and the composition.
  • the object is to provide a metal joined body used.
  • the present inventor has properly controlled the amount of sulfur contained in the bonding composition and the bonding layer. It has been found that it is extremely effective in achieving it, and the present invention has been reached.
  • a bonding composition comprising inorganic particles and an organic component,
  • the sulfur content in the bonding composition is 10 atomic% or less with respect to the total amount of the inorganic particles and the sulfur;
  • a bonding composition is provided.
  • Sulfur is derived from the atmosphere and from the raw materials used when producing the bonding composition.
  • sulfur reacts with inorganic particles on the surface of the inorganic particles. Tend to form. Since the sulfur compound formed on the surface of the inorganic particles suppresses sintering and fusion of the inorganic particles during firing (at the time of bonding), it is not preferable from the viewpoint of the shear strength and long-term reliability of the bonded body.
  • formation of the said sulfur compound can be suppressed by making content of sulfur in a joining composition into 10 atomic% or less with respect to the total amount of an inorganic particle and sulfur.
  • the sulfur content is preferably 8 atomic percent or less, and more preferably 4 atomic percent or less.
  • the sulfur content is preferably 0.35 atomic% or more from the viewpoint that the bonding strength can be secured and the manufacturing process is not prolonged and the productivity can be secured.
  • the sulfur content in the bonding composition and the atomic weight of the elements constituting the inorganic particles can be measured using, for example, EDX (energy dispersive X-ray spectroscopy) or XPS (X-ray photoelectron spectroscopy).
  • EDX energy dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the organic component is attached to at least a part of the surface of the inorganic particles (that is, an organic protective layer in which at least a part of the surface of the inorganic particles is composed of the organic component).
  • the organic component organic protective layer
  • contains an amine In order to stably store nanometer-sized inorganic particles exhibiting a melting point lowering ability, an organic protective layer is required on at least a part of the surface of the inorganic particles.
  • the amine can be suitably used as an organic protective layer because the functional group is adsorbed to the surface of the inorganic particles with an appropriate strength.
  • the bonding composition of the present invention has a mass reduction rate of less than 25% by mass when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. Preferably, it is less than 20% by mass.
  • the mass reduction ratio By setting the mass reduction ratio to less than 25% by mass, the amount of organic substances to be volatilized is small and voids that can be generated in the bonding layer are reduced, so that the fused inorganic particles are easily sintered and fused at high density.
  • the inorganic particles contain at least one metal selected from the group consisting of gold, silver, copper and platinum, and the average particle size of the inorganic particles is It is preferably 1 to 100 nm. Furthermore, the average particle size of the inorganic particles is 2 from the viewpoint that the surface ratio (specific surface area) increases, the content of inorganic and organic substances increases, the bonding strength can be secured, and the melting point lowering ability can be secured. It is preferable that the thickness is ⁇ 95 nm.
  • the average particle diameter of the inorganic particles can be measured by a dynamic light scattering method or a small angle X-ray scattering method. As another method for measuring the average particle diameter, there is a method of calculating an arithmetic average value of the particle diameters of about 50 to 100 particles from a photograph taken using a scanning electron microscope or a transmission electron microscope. Can be mentioned.
  • the present invention Including a first bonded body, a bonding layer, and a second bonded body; The first bonded body and the second bonded body are bonded via the bonding layer,
  • the bonding layer is made of a metal having a sulfur content of 15 atomic% or less;
  • a joined body characterized by the following.
  • the sulfur content is preferably 9 atomic% or less.
  • the sulfur content is preferably 0.35 atomic% or more from the viewpoint that the bonding strength can be secured and the manufacturing process is not prolonged and the productivity can be secured.
  • said 1st to-be-joined body and 2nd to-be-joined body may each be comprised with the metal or ceramics, and may have the structure which gave metal plating to the surface of ceramics.
  • the sulfur content in the bonding layer and the atomic weight of the elements caused by the inorganic particles are, for example, EDX (energy dispersive X-ray spectroscopy) or XPS (X-ray photoelectron spectroscopy). Can be measured.
  • the joining composition which has an inorganic particle as a main component, and the metal joining body using the same, Comprising: The joining composition which can obtain the metal joining body which has high shear strength and long-term reliability And a metal bonded body using the same can be provided.
  • the bonding composition of the present embodiment is a bonding composition containing inorganic particles and organic components as main components and subcomponents, respectively. Below, each component of the composition for joining is demonstrated.
  • the inorganic particles of the bonding composition of the present embodiment are not particularly limited, but the bonding layer obtained using the bonding composition of the present embodiment has good conductivity. Therefore, it is preferable to use a (noble) metal having a smaller ionization tendency than zinc.
  • the metal examples include at least one of gold, silver, copper, nickel, bismuth, tin, iron and platinum group elements, ruthenium, rhodium, palladium, osmium, iridium and platinum.
  • the metal preferably contains at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or platinum group elements, and further has a tendency to ionize more than copper or copper. More preferably, it contains a small (noble) metal, that is, at least one metal selected from the group consisting of gold, silver, copper, and platinum.
  • metals may be used singly or in combination of two or more. Methods for using these metals in combination include the use of alloy particles containing a plurality of metals, metals having a core-shell structure or a multilayer structure. Particles may be used.
  • the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver is considered in consideration of migration problems. Further, by using a bonding composition made of other metals, migration can be made difficult to occur.
  • the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
  • the average particle size of the inorganic particles in the bonding composition of the present embodiment is not particularly limited as long as the effect of the present invention is not impaired, but is a nanometer size that causes a melting point drop in the metal particles. It is preferably 1 to 100 nm. If the average particle diameter of the metal particles used as the inorganic particles is 1 nm or more, a bonding composition capable of forming a good bonding layer can be obtained, and the metal particle production is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a metal particle does not change easily over time, and it is preferable.
  • micron-sized metal particles to the nanometer-sized metal particles as described above.
  • the joining is achieved by the melting point drop of the nanometer-sized metal particles around the micron-sized metal particles.
  • the average particle diameter of the inorganic particles in the bonding composition of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, a wide-angle X-ray diffraction method, or the like.
  • the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
  • RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
  • the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
  • the inorganic particles in the bonding composition of the present embodiment preferably do not include particles that are thermally decomposed to become metal.
  • particles such as silver oxide and silver carbonate that are thermally decomposed to become metal are included, when the particles decompose, gas such as oxygen and carbon dioxide and metal particles are generated.
  • Volume shrinkage increases. Since the volume shrinkage makes it difficult to bond without pressure, it is preferable not to use particles that are thermally decomposed to become metal as inorganic particles of the bonding composition.
  • Organic component (organic protective layer) adhering to at least part of the surface of the inorganic particles forms an organic protective layer, and substantially constitutes metal colloid particles together with the metal particles as a so-called dispersant.
  • the organic components include trace organic substances contained in the metal as impurities from the beginning, trace organic substances adhering to the metal components mixed in the manufacturing process described later, residual reducing agents that could not be removed in the cleaning process, residual dispersants, etc. As described above, it is a concept that does not include organic substances or the like adhered to a metal particle in a small amount.
  • the “trace amount” is specifically intended to be less than 1% by mass in the metal colloid particles.
  • the organic component is an organic substance that can adhere to metal particles to prevent aggregation of the metal particles and form metal colloid particles, and is preferably composed of an alkylamine and a polymer dispersant. By attaching an appropriate amount of the polymer dispersant to at least a part of the metal particles, the dispersion stability can be maintained without losing the low-temperature sinterability of the metal particles.
  • the form of adhesion or coating is not particularly defined, but in the present embodiment, an amine is preferably included from the viewpoints of dispersibility and conductivity. The amine is functionally adsorbed on the surface of the metal particles with moderate strength and prevents the metal particles from contacting each other. This contributes to the stability of the metal particles in the storage state. Alternatively, it is considered that the volatilization promotes the fusion of the metal particles and the bonding with the base material.
  • the amine that can be used here is not particularly limited, and examples thereof include alkylamines (linear alkylamines, which may have a side chain) such as oleylamine, butylamine, pentylamine, hexylamine, and hexylamine.
  • Cycloalkylamines such as cyclopentylamine and cyclohexylamine, primary amines such as allylamine such as aniline, secondary amines such as dipropylamine, dibutylamine, piperidine, hexamethyleneimine, tripropylamine, dimethylpropanediamine, cyclohexyl Examples thereof include tertiary amines such as dimethylamine, pyridine and quinoline, octylamine and the like having about 2 to 20 carbon atoms. Further, the amine is not limited to a straight chain, and may have a side chain in order to control the volatilization temperature.
  • organic components when these organic components are chemically or physically bonded to the metal particles, it is considered that the organic components are changed to anions and cations. In this embodiment, ions derived from these organic components are used. And organic complexes are also included in the organic components.
  • the above-mentioned amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the said amine may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the bonding composition of this embodiment may contain a carboxylic acid in addition to the amine as long as the effects of the present invention are not impaired.
  • the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the organic compound is organic.
  • the component and the metal particles can be made sufficiently compatible to prevent aggregation between the metal particles (improve dispersibility).
  • carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
  • a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • amines and carboxylic acids form amides. Since the amide group is also adsorbed moderately on the surface of the silver particle, the organic component may contain an amide group.
  • polymer dispersant a commercially available polymer dispersant can be used.
  • examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse.
  • Dispersic (DISPERBYK) 142 Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, Dispersic 170, Dispersic 180, Dispersic 182, Dispersic 184, Dispersic 190, Dispersic 2155 EFKA-46, EFKA-47, EFKA-48, EFKA-49 (manufactured by EFKA Chemical); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 (manufactured by EFKA Chemical); Ajisper PB711, Ajisper PA111, Ajisper PB811, Ajisper PW911 (manufactured by Ajinomoto Co.); Florene DOPA-15B, Florene DOPA-22, Florene DOPA- 17, Florene DOPA-15B, Florene DOPA-22, Florene DOPA- 17,
  • Solsperse 11200 From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.2 to 5% by mass, and still more preferable content is 0.3 to 4% by mass.
  • the content of the organic component in the metal colloid in the bonding composition of the present embodiment is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting metal bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the metal bonding composition is high. There is a good tendency.
  • a more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
  • composition ratio (mass) when the amine and carboxylic acid are used in combination can be arbitrarily selected within the range of 1/99 to 99/1, preferably 20/80 to 98/2, The ratio is preferably 30/70 to 97/3.
  • amine or carboxylic acid a plurality of types of amines or carboxylic acids may be used.
  • Examples of the unsaturated hydrocarbon contained in the bonding composition of the present embodiment include ethylene, acetylene, benzene, acetone, 1-hexene, 1-octene, 4-vinylcyclohexene, cyclohexanone, terpene alcohol, allyl alcohol, Examples include oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, elaidic acid, thianic acid, ricinoleic acid, linoleic acid, linoelaidic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid. .
  • unsaturated hydrocarbons having a hydroxyl group are preferred.
  • the hydroxyl group can be easily coordinated to the surface of the metal particle, and aggregation of the metal particle can be suppressed.
  • the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid.
  • it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
  • the unsaturated hydrocarbon is preferably ricinoleic acid.
  • Ricinoleic acid has a carboxyl group and a hydroxyl group, and is adsorbed on the surface of the metal particles to uniformly disperse the metal particles and promote fusion of the metal particles.
  • the bonding composition of the present embodiment is provided with functions such as appropriate viscosity, adhesion, drying properties, and printability according to the intended use within a range that does not impair the effects of the present invention.
  • a dispersion medium for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickener, or a surface tension.
  • Such optional components are not particularly limited.
  • dispersion medium of the optional components various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
  • hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, and alicyclic hydrocarbons, which may be used alone or in combination of two or more.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • cyclic hydrocarbons examples include toluene and xylene.
  • examples of the alicyclic hydrocarbon include limonene such as kautssin, kajeptene, sinene, and orange flavor, dipentene, terpinene (also referred to as terpinene), nesol, terpinolene (also referred to as terpinolene), ferrandrene, mentadiene, and teleben. , Dihydrocymene, mossene, isoterpinene (also referred to as isoterpinene), clitomen, eulimene, pinene, turpentine, menthane, pinane, terpene, cyclohexane and the like.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • aliphatic alcohol examples include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • cyclic alcohols examples include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the
  • the content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
  • organic solvent other than those mentioned as the above dispersion medium examples include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
  • clay minerals such as clay, bentonite or hectorite
  • emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose.
  • Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysacc
  • a surfactant different from the above organic components may be added.
  • roughness of the coating surface and uneven solid content are likely to occur due to differences in volatilization rate during drying.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
  • heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
  • the bonding composition of the present embodiment includes, as a main component, metal colloid particles obtained by colloidalizing metal particles described later.
  • metal colloid particles obtained by colloidalizing metal particles described later.
  • the form of the metal colloid particles for example, a part of the surface of the metal particles.
  • metal colloidal particles having metal particles as a core and the surface thereof being coated with an organic component are preferable.
  • a person skilled in the art can appropriately prepare the metal colloid particles having the above-described form using a well-known technique in this field.
  • the bonding composition of this embodiment is a fluid having inorganic particles as the main component and organic components as the subcomponents, and may contain a dispersion medium, a residual reducing agent, and the like in addition to these.
  • the viscosity of the bonding composition of the present embodiment may be adjusted as appropriate within the range where the solid content does not impair the effects of the present invention.
  • the viscosity may be in the range of 0.01 to 5000 Pa ⁇ S, and may be 0.
  • a viscosity range of 1 to 1000 Pa ⁇ S is more preferable, and a viscosity range of 1 to 100 Pa ⁇ S is particularly preferable.
  • a wide method is applicable as a method of apply
  • Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed.
  • the viscosity can be adjusted by adjusting the particle size of the metal particles, adjusting the content of the organic substance, adjusting the addition amount of the dispersion medium and other components, adjusting the blending ratio of each component, adding a thickener, and the like.
  • the viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
  • the heat loss due to the organic component and the inorganic component attached to the surface of the metal particles used as the inorganic particles in the bonding composition of the present invention is less than 25% by mass, More preferably, it is less than 20% by mass. More specifically, the mass reduction rate when the bonding composition is heated from room temperature to 500 ° C. in the air atmosphere at a heating rate of 10 ° C./min is preferably less than 25% by mass, and less than 20% by mass. It is more preferable that By setting the mass reduction rate to less than 25% by mass, the components for protecting the surface of the metal particles are reduced, and the metal particles are easily sintered and fused.
  • organic components such as lubricants, dispersants, and rust preventive agents are usually attached to the surface of metal particles, and a part of the surface is often oxidized or sulfided.
  • noble metals are relatively difficult to oxidize, it is difficult to completely suppress oxidation. For example, even in the case of silver, a part of the surface is oxidized or sulfided (adhesion of inorganic components).
  • the organic component and inorganic component are not preferable because they cause a decrease in bonding strength.
  • the metal particles can be obtained, for example, by mixing a metal ion source and a dispersant and using a reduction method.
  • the amount of the organic component can be controlled by optimizing the amount of dispersing agent and reducing agent to be added.
  • metal particles to be added to the nanometer-sized metal particles commercially available metal powder of micrometer or submicrometer size may be used.
  • an organic component of the metal particles In order to adjust the amount of the organic component of the metal particles, heat treatment for the metal particles, washing with an acid (sulfuric acid, hydrochloric acid, nitric acid, etc.), washing with a fat-soluble organic solvent such as acetone or methanol can be used. . In addition, an organic component can be removed more efficiently by applying ultrasonic waves during cleaning.
  • an acid sulfuric acid, hydrochloric acid, nitric acid, etc.
  • a fat-soluble organic solvent such as acetone or methanol
  • the sulfur content in the bonding composition of the present invention is characterized by 10 atomic% or less with respect to the total amount of inorganic particles and sulfur.
  • sulfur tends to react with inorganic particles to form sulfur compounds on the surface of the inorganic particles. Since the sulfur compound formed on the surface of the inorganic particles suppresses sintering and fusion of the inorganic particles during firing (at the time of bonding), it is not preferable from the viewpoint of the shear strength and long-term reliability of the bonded body.
  • silver has a high standard oxidation-reduction potential of 0.8 V and easily forms a sulfide compound.
  • the metal particles are silver particles, a silver sulfide film is formed on the surface of the silver particles constituting the bonding composition. .
  • sulfur mixed in the bonding composition from the atmosphere in addition to the sulfur contained in the bonding composition components from the beginning.
  • sulfur derived from hydrogen sulfide or sulfurous acid gas present in the atmosphere may remain in the bonding layer in the heat bonding step of forming the bonded body. Even in this situation, sintering and fusion of metal particles used as inorganic particles are hindered, and the shear strength and long-term reliability of the bonded body are lowered.
  • the sulfur content in the bonding composition is preferably 8 atomic% or less, and more preferably 4 atomic% or less.
  • a thiol-based organic substance containing sulfur is often used as a dispersant for silver nanoparticles or gold nanoparticles.
  • the organic substance for example, HS-C 4 H 10 is used as a dispersant.
  • the sulfur content is 22 atomic%.
  • the sulfur content in the bonding composition and the atomic weight of the elements constituting the inorganic particles can be measured using, for example, XPS (X-ray photoelectron spectroscopy).
  • the method for adjusting the amount of organic component and the weight reduction rate is not particularly limited, but it is easy to adjust by heating. Moreover, you may carry out by adjusting the quantity of the organic component added when producing a metal particle, and you may change the washing conditions and frequency
  • the method of preparing the metal particles coated with the organic component of the present embodiment is not particularly limited, and examples thereof include a method of preparing a dispersion containing metal particles and then washing the dispersion. .
  • a step of preparing a dispersion containing metal particles for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below, and the reduction procedure is based on a chemical reduction method. A procedure may be adopted.
  • the metal particles coated with the organic component as described above are, for example, a metal salt of a metal constituting the metal particles, an organic substance as a dispersant, and a solvent (basically an organic system such as toluene, It may be prepared by reducing a raw material liquid (which may be dispersed without dissolving some of the components).
  • metal colloidal particles in which an organic component as a dispersant is attached to at least a part of the surface of the metal particles are obtained.
  • the metal colloidal particles can be used alone as a metal bonding composition, but may be used by mixing with metal particles having a micrometer or submicrometer size.
  • various known metal salts or hydrates thereof can be used.
  • the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy.
  • a method using a reducing agent is preferable from the viewpoint of easy operation.
  • Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
  • amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
  • hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
  • carbon monoxide for example, carbon monoxide.
  • Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
  • Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • light and / or heat may be added to promote the reduction reaction.
  • the metal salt is dissolved in an organic solvent (for example, toluene) to form a metal salt.
  • organic solvent for example, toluene
  • examples thereof include a method of preparing a solution, adding an organic substance as a dispersant to the metal salt solution, and then gradually dropping a solution in which the reducing agent is dissolved.
  • the dispersion containing the metal particles coated with the organic component as the dispersant obtained as described above contains a metal salt counter ion, a reducing agent residue and a dispersant.
  • the electrolyte concentration in the entire liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the metal particles are likely to coagulate and precipitate easily. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the metal particles to remove excess residues, the metal particles coated with an organic substance can be reliably obtained.
  • washing method for example, a dispersion containing metal particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, alcohol (methanol or the like) is added and stirred again. Furthermore, a method of repeating the process of removing the supernatant liquid generated by standing for a certain period of time, a method of performing centrifugation instead of the above standing, a method of desalting with an ultrafiltration device or an ion exchange device, etc. It is done. By removing the organic solvent by such washing, metal particles coated with the organic component of the present embodiment can be obtained.
  • the metal colloid dispersion liquid can be obtained by mixing the metal particles coated with the organic component obtained above and the dispersion medium described in the present embodiment.
  • the mixing method of the metal particles coated with the organic component and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer, a stirrer, or the like.
  • An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
  • the production method is not particularly limited.
  • the metal colloid dispersion liquid composed of silver and other metals
  • the metal colloid dispersion liquid is coated with the above organic substance.
  • a dispersion containing metal particles and a dispersion containing other metal particles may be produced separately and then mixed, or a silver ion solution and other metal ion solution may be mixed. Thereafter, reduction may be performed.
  • the organic component contained in the bonding composition and the amount thereof can be confirmed by, for example, measurement using TG-DTA / GC-MS manufactured by Rigaku Corporation.
  • the measurement conditions may be adjusted as appropriate.
  • a TG-DTA / GC-MS measurement is performed when a 10 mg sample is held in the atmosphere from room temperature to 550 ° C. (temperature increase rate: 10 ° C./min). Just do it.
  • the solid particles can be obtained by washing the metal particles with methanol and sedimenting them again by centrifugation (for example, at 3300 rpm for 2 minutes), then removing the supernatant and drying under reduced pressure.
  • centrifugation for example, at 3300 rpm for 2 minutes
  • the organic component adhering to the surface of the metal particle and its amount can be specified.
  • the amount of sulfur in the bonding composition can be reduced by storing the bonding composition obtained by the above method in the presence of a sulfur adsorbent.
  • the sulfur adsorbent is not particularly limited, and for example, activated carbon, metal oxide, potassium, calcium, vanadium, manganese, nickel, copper, and zinc can be used.
  • the metal oxide may be combined with one or more suitable binders selected from viscosity, graphite, alumina, silica, magnesia, chromia, and boria.
  • a sulfur adsorbent such as commercially available Purafuracarb (manufactured by Purafil), KNK-301 (manufactured by Kureha Oils and Fats Industries) can be used.
  • sulfur adsorbent KNK-301 manufactured by Kureha Oil & Fat Co., Ltd., zinc oxide chemical adsorbent, shape: spherical, specific surface area: 50 m 2 / g, bulk density: 1.17 g / ml, Pellet diameter: 3 mm
  • sulfur compound adsorption zeolite or the like is put into a closed container, for example, the bonding composition of the present invention is put into an ointment basket. And this ointment wrinkle is put in an airtight container in the state which opened the lid
  • the bonding composition is applied between a metal body that is a first bonded member and a metal body that is a second bonded member.
  • the bonding composition application step and the bonding composition applied between the first metal body and the second metal body are fired at a desired temperature (for example, 300 ° C. or less, preferably 150 to 200 ° C.).
  • the first metal body and the second metal body can be joined by the joining step (forming a joining layer).
  • it is possible to apply pressure but it is also one of the advantages of the present invention that sufficient bonding strength can be obtained without particularly applying pressure.
  • the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
  • the inventor used the bonding composition of the present embodiment described above as the bonding composition in the bonding composition application step. It has been found that a metal body can be bonded more reliably with high bonding strength, and the obtained bonded body has long-term reliability.
  • “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape.
  • the shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer.
  • the bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
  • the first metal body and the second metal body that can be used in the present embodiment are not particularly limited as long as they can be joined by applying a bonding composition and firing by heating. However, it is preferable that the member has heat resistance sufficient to prevent damage due to the temperature at the time of joining.
  • Examples of the material constituting such a metal body include various metals.
  • the metal member is preferable as the member to be bonded because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
  • the member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible.
  • the thickness of the substrate can also be selected as appropriate.
  • a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
  • various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
  • the coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained.
  • a bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
  • the binder component when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members.
  • the main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
  • the method for performing the firing is not particularly limited.
  • the temperature of the joining composition applied or drawn on a member to be joined using a conventionally known oven or the like is, for example, 300 ° C. or less. It can join by baking.
  • the lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention.
  • the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
  • the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin. As described above, sufficient bonding strength can be obtained by fusing the fused metal particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
  • the bonding composition of the present embodiment it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 150 to 200 ° C. Members can be joined together.
  • the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
  • the surface of the member to be bonded may be subjected to a surface treatment.
  • the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
  • the content of sulfur contained in the joining layer is 15 atomic% or less, preferably 9 atomic% or less.
  • the sulfur content of the bonding layer can be suitably reduced by using the bonding composition of the present invention, but even if the bonding composition of the present invention is used, the sulfur content of the bonding layer is 15 atoms.
  • the sulfur content of the bonding layer can be reduced by allowing the above-mentioned sulfur adsorbent to coexist during heating and firing.
  • the sulfur content of the bonding layer can be measured using XPS (X-ray photoelectron spectroscopy) as in the case of the bonding composition.
  • a small amount of the bonding composition is applied to an alumina plate whose surface is gold-plated, and then the surface of which is gold-plated alumina.
  • a plate is laminated to produce a laminate as a sample.
  • sulfur adsorbent KNK-301 or sulfur compound adsorption zeolite is put in an aluminum vat.
  • the laminate prepared above is put in an aluminum vat, and these sulfur adsorbent and the laminate are put in a hot air circulation oven. Note that the hot air circulation oven is heated and temperature-adjusted before adding the sulfur adsorbent and the sample, and subjected to a firing process under predetermined firing conditions.
  • the inorganic metal colloid dispersion liquid using metal particles has been described.
  • Inorganic particles such as barium and iron lithium phosphate can also be used.
  • Example 1 200 mL of toluene and 15 g of amine (hexylamine) were mixed and sufficiently stirred with a magnetic stirrer. Here, 10 g of silver nitrate was added while stirring, and after the silver nitrate was dissolved, a total of 15 g of carboxylic acid (5 g of oleic acid and 10 g of hexanoic acid were added in sequence) to obtain a toluene solution of silver nitrate.
  • amine hexylamine
  • a 0.02 g / mL aqueous solution of sodium borohydride prepared by adding 1 g of sodium borohydride to 50 mL of ion-exchanged water is dropped, and a dispersion containing silver fine particles having an average particle diameter of 22 nm is added. A liquid was obtained.
  • the particle diameter of the silver fine particles was measured by the above-mentioned wide angle X-ray diffraction method.
  • the material to be used was stored in advance in nitrogen containing a sulfur adsorbent, and the synthesis was performed in a glove box (in nitrogen containing a sulfur adsorbent).
  • the obtained bonding composition was stored in a sealed container for 24 hours together with 1 g of a sulfur adsorbent (sulfur compound adsorption zeolite) to obtain the bonding composition of the present invention.
  • a sulfur adsorbent sulfur compound adsorption zeolite
  • the sulfur compound adsorption type zeolite was put in a high vessel container (manufactured by AS ONE, capacity 325 ml, model number: No. 300) which is a sealed container.
  • about 7.3 g of the bonding composition was put in an ointment bowl (manufactured by Umano Chemical Container Co., Ltd., capacity 12 ml, model number: No. 3-52).
  • the ointment was placed in a closed container with the lid open, and the bonding composition and the sulfur adsorbent were allowed to coexist on the conditions of coexistence time: 24 hours and coexistence temperature: 22 ° C.
  • a small amount of the bonding composition obtained as described above was applied to an alumina plate (area 50 mm ⁇ 50 mm) whose surface was gold-plated with a die bonder (manufactured by Hisol), and the surface thereof was gold-plated alumina.
  • a plate (area 1 mm ⁇ 1 mm) was laminated. Thereafter, the laminate was heated with a 1 g sulfur adsorbent (sulfur compound adsorption type zeolite) to a hot air circulation oven adjusted to 250 ° C. (manufactured by Advantech Toyo Co., Ltd., model: DRM320DB, interior dimensions: W310 mm ⁇ D300 mm ⁇ H300 mm). ) And subjected to a baking treatment for 120 minutes in an air atmosphere to obtain a metal joined body.
  • Various evaluations were performed on the bonding composition and the metal bonded body, and the results are shown in Table 1.
  • Measurement device ULVAC PHI 5000 Versa Probe II
  • X-ray irradiation conditions AlK ⁇ ray (1486.6 eV), ⁇ 100 ⁇ m, 25 W, 15 KeV, inclination angle 45 degrees
  • Analysis path energy 117.4 eV at wide range (W), 11.75 eV at narrow range (N)
  • Number of integration 10 times
  • Number of repetitions 1 time
  • Analysis area 100 ⁇ m square (scanning)
  • Sputtering Argon ion 4 kV, area 2 ⁇ 2 mm, rate 3.6 nm / min for 20 minutes
  • Examples 2 and 3 A bonding composition and a metal bonded body were obtained in the same manner as in Example 1 except that the bonding composition was prepared so that the mass reduction rate was 5 or 22% by mass by adjusting the amount of tetradecane. . Further, the same evaluation test as in Example 1 was performed, and the results are shown in Table 1.
  • Examples 4 to 6 A joining composition and a metal joined body were obtained in the same manner as in Examples 1 to 3, except that the joining composition and the sulfur adsorbent (sulfur compound adsorption type zeolite) were not allowed to coexist during heating and firing. Further, the same evaluation test as in Example 1 was performed, and the results are shown in Table 1.
  • Example 1 the sulfur amount contained in the joining layer of the joining composition and the metal composite was obtained by allowing the sulfur adsorbent to coexist during storage and heating joining of the joining composition. By setting the content to 10 atomic% or less, excellent shear strength and long-term reliability could be secured.
  • Example 2 when the bonding composition in which the mass reduction rate of the bonding composition was 5% by mass was prepared, the mass reduction rate of the solid content of the bonding composition of Example 1 was 18% by mass. In the same way as above, the share strength and long-term reliability were secured.
  • Example 3 when a bonding composition in which the mass reduction rate of the bonding composition was 22% by mass was prepared, the mass reduction rate of the solid content of the bonding composition in Example 1 was 18% by mass. As well as the market strength and long-term reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 高いせん断強度と長期信頼性を有する金属接合体を得ることができる無機粒子を主成分とする接合用組成物及びそれを用いた金属接合体を提供する。本発明は、無機粒子及び有機成分を含む接合用組成物であって、接合用組成物における硫黄の含有量が、無機粒子と硫黄の総量に対して10原子%以下であること、を特徴とする接合用組成物に関する。

Description

接合用組成物及びそれを用いた金属接合体
 本発明は、無機粒子を主成分とする接合用組成物及びそれを用いた金属接合体に関し、より具体的には、高いせん断強度と長期信頼性を有する金属接合体を得ることができる接合用組成物及びそれを用いた金属接合体に関する。
 金属部品と金属部品とを機械的及び/又は電気的及び又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト及び異方導電性フィルム等が用いられている。これら導電性接着剤、銀ペースト及び異方導電性フィルム等は、金属部品だけでなく、セラミック部品や樹脂部品等を接合する場合に用いられることもある。例えば、LED等の発光素子の基板への接合、半導体チップの基板への接合、及びこれらの基板の更に放熱部材への接合等が挙げられる。
 なかでも、はんだ並びに金属からなる導電フィラーを含む接着剤、ペースト及びフィルムは、電気的な接続を必要とする部分の接合に用いられている。更には、金属は一般的に熱伝導性が高いため、これらはんだ並びに導電フィラーを含む接着剤、ペースト及びフィルムは、放熱性を上げるために使用される場合もある。
 一方、例えば、LED等の発光素子を用いて高輝度の照明デバイスや発光デバイスを作製する場合、或いは、パワーデバイスと言われる高温で高効率の動作をする半導体素子を用いて半導体デバイスを作製する場合等には、発熱量が上がる傾向にある。デバイスや素子の効率を向上させて発熱を減らす試みも行われているが、現状では十分な成果が出ておらず、デバイスや素子の使用温度が上がっているのが実情である。
 また、接合時におけるデバイスの損傷を防ぐという観点からは、低い接合温度(例えば300℃以下)で十分な接合強度を確保できる接合材が求められている。したがって、デバイスや素子等を接合するための接合材に対しては、接合温度の低下とともに、接合後におけるデバイスの動作による使用温度の上昇に耐えて十分な接合強度を維持できる耐熱性が求められているが、従来からの接合材では十分な対応ができないことが多い。例えば、はんだは、金属を融点以上に加熱する工程(リフロー工程)を経て部材同士を接合するが、一般的に融点はその組成に固有であるため、耐熱温度を上げようとすると加熱(接合)温度も上がってしまう。
 更に、はんだを用いて素子や基板を数層重ね合わせて接合する場合、重ね合わせる層の数だけ加熱工程を経る必要であり、既に接合した部分の溶融を防ぐためには、次の接合に用いるはんだの融点(接合温度)を下げる必要があり、また、重ね合わせる層の数だけはんだ組成の種類が必要になり、取扱いが煩雑になる。
 他方、導電性接着剤、銀ペースト及び異方導電性フィルムでは、含有するエポキシ樹脂等の熱硬化を利用して部材同士を接合するが、得られたデバイスや素子の使用温度が上がると樹脂成分が分解、劣化することがある。例えば、特許文献1(特開2008-63688号公報)においては、接合材の主材として用いて被接合部材同士を接合した時により高い接合強度が得られるようにした微粒子が提案されているが、使用温度上昇時における樹脂成分の分解、劣化の問題は解消されていない。
 また、高い使用温度において用いられる高温はんだには、従来より鉛を含むはんだが用いられている。鉛は有毒性があるため、はんだは鉛フリー化への流れが顕著である。高温はんだには他に良い代替材料が存在しないため、依然として鉛はんだが使用されているが、環境問題の観点から、鉛を使用しない接合材が切望されている。
 これに対し、例えば、特許文献2(特開2012-046779号公報)に開示されているように、近年、高温はんだの代替材料として、銀、金などの貴金属を中心とする金属ナノ粒子を用いた接合材が開発されている。具体的には、当該接合材を第1の被接合部材と第2の被接合部材との間に塗布し、比較的低温(例えば300℃以下)で焼成することにより、第1の被接合材と第2の被接合材とを接合することができるというものである。
特開2008-63688号公報 特開2012-046779号公報
 しかしながら、金属ナノ粒子を用いた接合材を焼成して得られる接合層には不可避的に空隙等の微小欠陥及び有機成分が存在し、接合体のせん断強度及び長期信頼性が十分に確保できないという問題があった。
 上記のような従来技術における問題点に鑑み、本発明の目的は、高いせん断強度と長期信頼性を有する金属接合体を得ることができる、無機粒子を主成分とする接合用組成物及びそれを用いた金属接合体を提供することにある。
 本発明者は、上記目的を達成すべく接合用組成物に含まれる元素について鋭意研究を重ねた結果、接合用組成物及び接合層に含まれる硫黄量を適切に制御することが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。
 即ち、本発明は、
 無機粒子及び有機成分を含む接合用組成物であって、
 前記接合用組成物における硫黄の含有量が、前記無機粒子と前記硫黄の総量に対して10原子%以下であること、
 を特徴とする接合用組成物を提供する。
 硫黄は、雰囲気に由来するものと、接合用組成物を製造する際に使用する原材料に由来するものと、があるが、いずれにしても、無機粒子と反応して無機粒子の表面に硫黄化合物を形成する傾向がある。無機粒子の表面に形成された硫黄化合物は焼成時(接合時)における無機粒子同士の焼結及び融着を抑制するため、接合体のせん断強度及び長期信頼性の観点から好ましくない。ここで、接合用組成物における硫黄の含有量を無機粒子と硫黄の総量に対して10原子%以下とすることで、上記硫黄化合物の形成を抑制することができる。なお、当該硫黄の含有量は、8原子%以下とすることが好ましく、4原子%以下とすることがより好ましい。また、当該硫黄の含有量は、接合強度を確保でき製造工程が長引かず生産性も確保できるという観点から、0.35原子%以上であるのが好ましい。
 接合用組成物における硫黄の含有量及び無機粒子を構成する元素の原子量は、例えば、EDX(エネルギー分散型X線分光法)やXPS(エックス線光電子分光分析)を用いて測定することができる。
 本発明の接合用組成物は、前記無機粒子の表面の少なくとも一部に前記有機成分が付着しており(即ち、前記無機粒子の表面の少なくとも一部が前記有機成分で構成される有機保護層で被覆されており)、前記有機成分(有機保護層)がアミンを含むこと、が好ましい。融点降下能を示すナノメートルサイズの無機粒子を安定的に保管するためには、無機粒子の表面の少なくとも一部に有機保護層が必要である。ここで、アミンは官能基が無機粒子の表面に適度の強さで吸着することから、有機保護層として好適に用いることができる。
 また、本発明の接合用組成物は、当該接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの質量減少率が25質量%未満であること、が好ましく、20質量%未満であることがより好ましい。質量減率を25質量%未満とすることで、揮発する有機物量が少なく、接合層に発生しうる空隙が少なくなるため、融着した無機粒子が高密度に焼結及び融着し易くなる。
 更に、本発明の接合用組成物は、前記無機粒子が金、銀、銅及び白金からなる群より選択される少なくとも1種の金属を含有すること、が好ましく、前記無機粒子の平均粒径が1~100nmであること、が好ましい。更には、表面の割合(比表面積)が増え、自ずと無機物及び有機物の含量が多くなり、接合強度を確保でき、また、融点降下能を確保できるという観点から、前記無機粒子の平均粒径が2~95nmであること、が好ましい。ここで、無機粒子の平均粒径は、動的光散乱法又は小角X線散乱法等で測定することができる。なお、平均粒径を測定するその他の手法としては、走査型電子顕微鏡や透過型電子顕微鏡を用いて撮影した写真から、50~100個程度の粒子の粒径の算術平均値を算出する方法が挙げられる。
 本発明は、
 第一の被接合体と、接合層と、第二の被接合体と、を含み、
 前記第一の被接合体と前記第二の被接合体が、前記接合層を介して接合しており、
 前記接合層が、硫黄の含有量が15原子%以下である金属で構成されていること、
 を特徴とする接合体をも提供する。
 ここで、上記の硫黄の含有量は、9原子%以下であることが好ましい。また、当該硫黄の含有量は、接合強度を確保でき製造工程が長引かず生産性も確保できるという観点から、0.35原子%以上であるのが好ましい。なお、上記の第一の被接合体及び第二の被接合体は、それぞれ、金属又はセラミックスで構成されていてもよく、セラミックスの表面に金属めっきを施した構成を有していてもよい。
 上述の接合用組成物の場合と同様、接合層における硫黄の含有量及び無機粒子に起因する元素の原子量は、例えば、EDX(エネルギー分散型X線分光法)やXPS(エックス線光電子分光分析)を用いて測定することができる。
 本発明によれば、無機粒子を主成分とする接合用組成物及びそれを用いた金属接合体であって、高いせん断強度と長期信頼性を有する金属接合体を得ることができる接合用組成物及びそれを用いた金属接合体を提供することができる。
 以下、本発明の接合用組成物及びそれを用いた金属接合体の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。
(1)接合用組成物
 本実施形態の接合用組成物は、無機粒子及び有機成分をそれぞれ主成分及び副成分とする接合用組成物である。以下において接合用組成物の各成分について説明する。
(1-1)無機粒子
 本実施形態の接合用組成物の無機粒子としては、特に限定されるものではないが、本実施形態の接合用組成物を用いて得られる接合層の導電性を良好にすることができるため、亜鉛よりもイオン化傾向が小さい(貴な)金属であることが好ましい。
 かかる金属としては、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金のうちの少なくとも1種が挙げられる。上記金属としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種の金属を含有することが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、銀、銅、及び白金からなる群より選択される少なくとも1種の金属を含有することがより好ましい。
 これらの金属は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。
 例えば、上記接合用組成物の無機粒子として銀粒子を用いる場合、本実施形態の接合用組成物を用いて形成した接着層の導電率は良好となるが、マイグレーションの問題を考慮して、銀及びその他の金属からなる接合用組成物を用いることによって、マイグレーションを起こりにくくすることができる。当該「その他の金属」としては、上述のイオン化列が水素より貴である金属、即ち金、銅、白金、パラジウムが好ましい。
 本実施形態の接合用組成物における無機粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、金属粒子において融点降下が生じるナノメートルサイズであることが好ましく、1~100nmであることがより好ましい。無機粒子として用いる金属粒子の平均粒径が1nm以上であれば、良好な接合層を形成可能な接合用組成物が得られ、金属粒子製造がコスト高とならず実用的である。また、100nm以下であれば、金属粒子の分散性が経時的に変化しにくく、好ましい。
 また、上述のようなナノメートルサイズの金属粒子にミクロンサイズの金属粒子を加えて使用することもできる。この場合、ナノメートルサイズの金属粒子がミクロンサイズの金属粒子の周囲で融点降下することにより、接合が達成される。
 ここで、本実施形態の接合用組成物における無機粒子の平均粒径は、動的光散乱法、小角X線散乱法、広角X線回折法等で測定することができる。ナノメートルサイズの金属粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、例えば、理学電機(株)製のRINT-UltimaIIIを用いて、回折法で2θが30~80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1~1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。
 また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を平均粒径とすればよい。
  D=Kλ/Bcosθ
ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
 本実施形態の接合用組成物における無機粒子は、加熱分解して金属になる粒子を含まないことが好ましい。例えば、酸化銀や炭酸銀のように加熱分解して金属になるような粒子が含まれている場合、当該粒子が分解した際に酸素や二酸化炭素等の気体と金属粒子とを生成するため、体積収縮が大きくなる。当該体積収縮は無加圧での接合を困難とするため、加熱分解して金属になる粒子は接合用組成物の無機粒子としては用いない方が好ましい。
(1-2)無機粒子の表面の少なくとも一部に付着している有機成分(有機保護層)
 本実施形態の接合用組成物において、無機粒子の表面の少なくとも一部に付着している有機成分は、いわば有機保護層を形成し、いわゆる分散剤として金属粒子とともに実質的に金属コロイド粒子を構成する。当該有機成分には、金属中に最初から不純物として含まれる微量有機物、後述する製造過程で混入して金属成分に付着した微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、金属粒子に微量付着した有機物等は含まれない概念である。なお、上記「微量」とは、具体的には、金属コロイド粒子中1質量%未満が意図される。
 上記有機成分は、金属粒子に付着して当該金属粒子の凝集を防止するとともに金属コロイド粒子を形成することが可能な有機物であり、アルキルアミンと高分子分散剤で構成されることが好ましい。高分子分散剤を金属粒子の少なくとも一部に適量付着させることで金属粒子の低温焼結性を失うことなく、分散安定性を保持することができる。付着乃至は被覆の形態については特に規定しないが、本実施形態においては、分散性及び導電性等の観点から、アミンを含むことが好ましい。アミンは官能基が金属粒子の表面に適度の強さで吸着し、金属粒子の相互の接触を妨げるため、保管状態での金属粒子の安定性に寄与し、加熱時に金属粒子表面から移動及び/又は揮発することにより、金属粒子同士の融着及び基材との接合を促進すると考えられる。
 ここで用いることができるアミンは特に限定されず、例えば、オレイルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン等のアリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン、オクチルアミン等のように炭素数が2~20程度のものを例示することができる。また、アミンは直鎖に限ることはなく、揮発温度を制御するために側鎖を有していてもよい。なお、これらの有機成分は、金属粒子と化学的あるいは物理的に結合している場合、アニオンやカチオンに変化していることも考えられ、本実施形態においては、これらの有機成分に由来するイオンや錯体等も上記有機成分に含まれる。
 上記のアミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下、更には250℃以下であることが好ましい。
 本実施形態の接合用組成物は、本発明の効果を損なわない範囲であれは、アミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本実施形態の接合用組成物中で、金属粒子の表面の少なくとも一部に局在化(付着)すると(即ち、金属粒子の表面の少なくとも一部を被覆すると)、有機成分と金属粒子とを十分に親和させることができ、金属粒子同士の凝集を防ぐ(分散性を向上させる。)。
 カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。
 上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も銀粒子表面に適度に吸着するため、有機成分にはアミド基が含まれていてもよい。
 上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、上記市販品としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(日本ルーブリゾール(株)製);ディスパービック(DISPERBYK)142;ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(共栄社化学工業(株)製)等を挙げることができる。低温焼結性及び分散安定性の観点からは、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000、ディスパービック142又はディスパービック2155を用いることが好ましい。
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる接合用組成物の分散安定性が良くなるが、含有量が多過ぎる場合は接合性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.2~5質量%であり、更に好ましい含有量は0.3~4質量%である。
 本実施形態の接合用組成物中における金属コロイド中の有機成分の含有量は、0.5~50質量%であることが好ましい。有機成分含有量が0.5質量%以上であれば、得られる金属接合用組成物の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、金属接合用組成物の導電性が良い傾向がある。有機成分のより好ましい含有量は1~30質量%であり、更に好ましい含有量は2~15質量%である。
 アミンとカルボン酸とを併用する場合の組成比(質量)としては、1/99~99/1の範囲で任意に選択することができるが、好ましくは20/80~98/2であり、更に好ましくは30/70~97/3である。なお、アミン又はカルボン酸は、それぞれ複数種類のアミン又はカルボン酸を用いてもよい。
 本実施形態の接合用組成物に含まれる不飽和炭化水素としては、例えば、エチレン、アセチレン、ベンゼン、アセトン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、シクロヘキサノン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸及びサリチル酸等が挙げられる。
 これらのなかでも、水酸基を有する不飽和炭化水素が好ましい。水酸基は金属粒子の表面に配位しやすく、当該金属粒子の凝集を抑制することができる。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。
 前記不飽和炭化水素はリシノール酸であることが好ましい。リシノール酸はカルボキシル基とヒドロキシル基とを有し、金属粒子の表面に吸着して当該金属粒子を均一に分散させると共に、金属粒子の融着を促進する。
 本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、分散媒や、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
 任意成分のうちの分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。
 炭化水素としては、脂肪族炭化水素、環状炭化水素及び脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。
 環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。
 更に、脂環式炭化水素としては、例えば、カウツシン、カジェプテン、シネン、オレンジフレーバー等のリモネン、ジペンテン、テルピネン(ターピネンともいう。)、ネソール、テルピノレン(ターピノレンともいう。)、フェランドレン、メンタジエン、テレベン、ジヒドロサイメン、モスレン、イソテルピネン(イソターピネンともいう。)、クリトメン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。
 環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。
 更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール等が挙げられる。
 本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1~30質量%であるのが好ましい。分散媒の含有量が1~30質量%であれば、接合性組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1~20質量%であり、更に好ましい含有量は1~15質量%である。
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
 有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、2-プロピルアルコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2,6-ヘキサントリオール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、グリセリン又はアセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
 また、上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の金属コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。
 本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。
 なお、有機成分量を所定の範囲に調整する方法としては、加熱を行って調整するのが簡便である。また、金属粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、金属粒子調整後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分量の微調整のために、上記アミン(及びカルボン酸)を後で加えることもできる。
 本実施形態の接合用組成物には、主成分として、後述する金属粒子がコロイド化した金属コロイド粒子が含まれるが、かかる金属コロイド粒子の形態に関しては、例えば、金属粒子の表面の一部に有機成分が付着して構成されている金属コロイド粒子、上記金属粒子をコアとして、その表面が有機成分で被覆されて構成されている金属コロイド粒子、それらが混在して構成されている金属コロイド粒子等が挙げられるが、特に限定されない。なかでも、金属粒子をコアとして、その表面が有機成分で被覆されて構成されている金属コロイド粒子が好ましい。当業者は、上述した形態を有する金属コロイド粒子を、当該分野における周知技術を用いて適宜調製することができる。
 本実施形態の接合用組成物は、無機粒子を主成分、有機成分を副成分とする流動体であり、これらの他に、分散媒及び残留還元剤等を含んでいてもよい。
 本実施形態の接合用組成物の粘度は、固形分の濃度は本発明の効果を損なわない範囲で適宜調整すればよいが、例えば0.01~5000Pa・Sの粘度範囲であればよく、0.1~1000Pa・Sの粘度範囲がより好ましく、1~100Pa・Sの粘度範囲であることが特に好ましい。当該粘度範囲とすることにより、基材上に接合用組成物を塗布する方法として幅広い方法を適用することができる。
 基材上に接合用組成物を塗布する方法としては、例えば、ディッピング、スクリーン印刷、スプレー方式、バーコート法、スピンコート法、インクジェット法、ディスペンサー法、ピントランスファー法、刷毛による塗布方式、流延法、フレキソ法、グラビア法、オフセット法、転写法、親疎水パターン法、又はシリンジ法等のなかから適宜選択して採用することができるようになる。
 粘度の調整は、金属粒子の粒径の調整、有機物の含有量の調整、分散媒その他の成分の添加量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。
(1-3)無機粒子の加熱減量
 本発明の接合用組成物で無機粒子として用いる金属粒子の表面に付着する有機成分及び無機成分に起因する加熱減量は25質量%未満とすることが好ましく、20質量%未満とすることがより好ましい。より具体的には、当該接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの質量減少率が25質量%未満であることが好ましく、20質量%未満であることがより好ましい。質量減少率を25質量%未満とすることで、金属粒子の表面を保護する成分が少なくなり、金属粒子同士が焼結及び融着し易くなる。
 通常、金属粒子の表面には滑剤、分散剤、及び防錆剤等の有機成分が付着したり、表面の一部が酸化や硫化されたりしていることが多い。貴金属は比較的酸化され難いが、酸化を完全に抑制することは困難であり、例えば、銀の場合でも表面の一部は酸化又は硫化されている(無機成分の付着)。
 上記有機成分及び無機成分は接合強度を低下させる原因となるため、好ましくない。接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの質量減少率を20%未満として金属粒子の表面に付着する有機成分及び無機成分を少なくすることで、接合プロセス後に接合層中に残存する有機成分や無機成分が低減されるため、接合部の高温信頼性を向上させることができる。
 金属粒子は、例えば、金属イオンソースと分散剤とを混合し、還元法によって得ることができる。この場合、添加する分散剤や還元剤の量等を最適化することによって、有機成分量を制御することができる。また、ナノメートルサイズの金属粒子に添加する金属粒子として、市販されているミクロンメートルやサブミクロンメートルサイズの金属粉を用いてもよい。
 金属粒子の有機成分量を調整するためには、金属粒子に対する加熱処理、酸(硫酸、塩酸、及び硝酸等)による洗浄、及びアセトンやメタノール等の脂溶性有機溶剤による洗浄等を用いることができる。なお、洗浄中に超音波を印加することで、より効率的に有機成分を取り除くことができる。
(1-4)接合用組成物の硫黄含有量
 本発明の接合用組成物における硫黄の含有量は、無機粒子と硫黄の総量に対して10原子%以下であることを特徴としている。
 上述のとおり、硫黄は無機粒子と反応して無機粒子の表面に硫黄化合物を形成する傾向がある。無機粒子の表面に形成された硫黄化合物は焼成時(接合時)における無機粒子同士の焼結及び融着を抑制するため、接合体のせん断強度及び長期信頼性の観点から好ましくない。特に、銀は標準酸化還元電位が0.8Vと高く、硫化化合物を形成しやすく、金属粒子が銀粒子である場合、接合用組成物を構成する銀粒子の表面に硫化銀被膜が形成される。
 接合用組成物の成分に最初から含まれている硫黄の他に、雰囲気から接合用組成物に混入する硫黄にも留意する必要がある。具体的には、接合体を形成する加熱接合の工程において、雰囲気中に存在する硫化水素や亜硫酸ガスに由来する硫黄が接合層に残留することがある。当該状況においても無機粒子として用いる金属粒子同士の焼結及び融着が阻害され、接合体のせん断強度及び長期信頼性が低下してしまう。
 ここで、接合用組成物における硫黄の含有量を無機粒子と硫黄の総量に対して10原子%以下とすることで、上記硫黄化合物の形成を抑制することができ、硫化化合物の形成を抑制することで、接合体のせん断強度及び長期信頼性を向上させることができる。ここで、当該硫黄の含有量は、8原子%以下とすることが好ましく、4原子%以下とすることがより好ましい。なお、一般的には、硫黄を含むチオール系の有機物が、しばしば銀ナノ粒子や金ナノ粒子の分散剤として用いられるところ、当該有機物として例えばHS-C410を分散剤に使って、有機分が20質量%含まれる場合は、硫黄の含有量は22原子%となる。
 接合用組成物における硫黄の含有量及び無機粒子を構成する元素の原子量は、例えば、XPS(エックス線光電子分光分析)を用いて測定することができる。
(2)接合用組成物の製造
 本実施形態の接合用組成物を製造するためには、主成分としての、有機成分で被覆された無機粒子とその他の成分とを調製及び混合し、更に、接合用組成物に含まれる硫黄の量を制御する必要がある。
 有機成分量及び重量減少率の調整方法は、特に限定しないが、加熱を行って調整するのが簡便である。また、金属粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、金属粒子調整後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーター等で行うことができる。加熱温度は50~300℃程度の範囲であればよく、加熱時間は数分間~数時間であればよい。加熱は減圧下で行ってもよい。減圧下で加熱することで、より低い温度で有機物量の調整を行うことができる。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機分量の微調整のためにアミンやカルボン酸を後で加えることもできる。
 本実施形態の有機成分で被覆された金属粒子を調製する方法としては、特に限定されないが、例えば、金属粒子を含む分散液を調製し、次いで、その分散液の洗浄を行う方法等が挙げられる。金属粒子を含む分散液を調製する工程としては、例えば、下記のように、溶媒中に溶解させた金属塩(又は金属イオン)を還元させればよく、還元手順としては、化学還元法に基づく手順を採用すればよい。
 即ち、上記のような有機成分で被覆された金属粒子は、例えば、金属粒子を構成する金属の金属塩と、分散剤としての有機物と、溶媒(基本的にトルエン等の有機系であるが、水を含んでいてもよい。)と、を含む原料液(成分の一部が溶解せず分散していてもよい。)を還元することにより調製することができる。
 この還元によって、分散剤としての有機成分が金属粒子の表面の少なくとも一部に付着している金属コロイド粒子が得られる。この金属コロイド粒子は、それのみでも金属接合用組成物として供することができるが、ミクロンメートルやサブミクロンメートルサイズの金属粒子と混合して用いてもよい。
 有機物で被覆された金属粒子を得るための出発材料としては、種々の公知の金属塩又はその水和物を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩;例えば、塩化金酸、塩化金カリウム、塩化金ナトリウム等の金塩;例えば、塩化白金酸、塩化白金、酸化白金、塩化白金酸カリウム等の白金塩;例えば、硝酸パラジウム、酢酸パラジウム、塩化パラジウム、酸化パラジウム、硫酸パラジウム等のパラジウム塩等が挙げられるが、適当な分散媒中に溶解し得、かつ還元可能なものであれば特に限定されない。また、これらは単独で用いても複数併用してもよい。
 また、上記原料液においてこれらの金属塩を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。
 上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D-グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。
 上記金属塩、有機成分、溶媒及び還元剤を用いて、有機物で被覆された金属粒子を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に分散剤としての有機物を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。
 上記のようにして得られた分散剤としての有機成分で被覆された金属粒子を含む分散液には、金属粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度が高い傾向にある。このような状態の液は、電導度が高いため、金属粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、上記金属粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、有機物で被覆された金属粒子を確実に得ることができる。
 上記洗浄方法としては、例えば、有機成分で被覆された金属粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、アルコール(メタノール等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって有機溶媒を除去することにより、本実施形態の有機成分で被覆された金属粒子を得ることができる。
 金属コロイド分散液は、上記において得た有機成分で被覆された金属粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかる有機成分で被覆された金属粒子と分散媒との混合方法は特に限定されるものではなく、攪拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。
 複数の金属を含む金属コロイド分散液を得る場合、その製造方法としては特に限定されず、例えば、銀とその他の金属とからなる金属コロイド分散液を製造する場合には、上記の有機物で被覆された金属粒子の調製において、金属粒子を含む分散液と、その他の金属粒子を含む分散液とを別々に製造し、その後混合してもよく、銀イオン溶液とその他の金属イオン溶液とを混合し、その後に還元してもよい。
 なお、接合用組成物に含まれる有機成分とその量については、例えば、(株)リガク製のTG-DTA/GC-MSを用いた測定により確認することができる。この測定の条件については適宜調整すればよいが、例えば、10mgの試料を大気中で室温~550℃(昇温速度10℃/min)まで保持した際のTG-DTA/GC-MS測定を行えばよい。
 また、金属粒子をメタノールで洗浄し、遠心分離(例えば、3300rpmで2分間)で再度沈降させた後、上澄みを取り除き、減圧乾燥することによって粒子固形分を得ることができる。得られた粒子固形分についてTG-DTA/GC-MS測定することにより、金属粒子の表面に付着している有機成分とその量を特定することができる。
 更に、上記の方法で得た接合用組成物を硫黄吸着剤と共存させて保管することで、接合用組成物の硫黄量を低減することができる。硫黄吸着剤は特に限定されず、例えば、活性炭、金属酸化物、カリウム、カルシウム、バナジウム、マンガン、ニッケル、銅、及び亜鉛等を用いることができる。また、金属酸化物を粘度、グラファイト、アルミナ、シリカ、マグネシア、クロミア、及びボリアの内から選択された1種以上の適当な結合剤と組み合わせてもよい。更に、市販されているPurafil Puracarb(Purafil社製)、KNK-301(呉羽油脂工業製)等の硫黄吸着剤を使用することができる。
 具体的には、例えば硫黄吸着剤KNK-301(呉羽油脂工業(株)製、酸化亜鉛系化学的吸着剤、形状:球形、比表面積:50m2/g、かさ密度:1.17g/ml、ペレット直径:3mm)又は硫黄化合物吸着型ゼオライト等を密閉容器に入れ、例えば軟膏壺に本発明の接合用組成物を入れる。そして、この軟膏壺を蓋を開けた状態で密閉容器中に入れ、接合用組成物と硫黄吸着剤とを共存させる。
(3)接合方法
 本実施形態の接合用組成物を用いれば、加熱を伴う部材同士の接合において高いせん断強度と長期信頼性を得ることができる。ここで、長期信頼性とは、接合体の機械的特性等が長期間維持されることを意味し、例えば、多数のヒートサイクルの印加によっても接合体の機械的特性等が低下し難いことを意味している。
 本実施形態の接合用組成物を用いた接合方法としては、例えば、接合用組成物を第一の被接合部材である金属体と第二の被接合部材である金属体との間に塗布する接合用組成物塗布工程と、第一の金属体と第二の金属体との間に塗布した接合用組成物を、所望の温度(例えば300℃以下、好ましくは150~200℃)で焼成して接合する(接合層を形成する)接合工程と、により、第一の金属体と第二の金属体とを接合することができる。この際、加圧することもできるが、特に加圧しなくとも十分な接合強度を得ることができるのも本発明の利点のひとつである。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。
 本発明者は、鋭意検討を重ねた結果、前記接合用組成物塗布工程での接合用組成物として、上述した本実施形態の接合用組成物を用いれば、第一の金属体と第二の金属体とを、高い接合強度をもってより確実に接合でき、得られた接合体が長期信頼性を有することを見出した。
 ここで、本実施形態の接合用組成物の「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。
 本実施形態において用いることのできる第一の金属体及び第二の金属体としては、接合用組成物を塗布して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した部材であるのが好ましい。
 このような金属体を構成する材料としては、種々の金属を挙げることができる。被接合部材として金属体が好ましいのは、耐熱性に優れているとともに、無機粒子が金属である本発明の接合用組成物との親和性に優れているからである。
 また、被接合部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された部材や親水化処理等の表面処理を施した部材を用いてもよい。
 接合用組成物を被接合部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。
 上記のように塗布した後の塗膜を、被接合部材を損傷させない範囲で、例えば300℃以下の温度に加熱することにより焼成し、本実施形態の接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の接合用組成物を用いるため、被接合部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。
 本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。
 上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合部材上に塗布又は描画した上記接合用組成物の温度が、例えば300℃以下となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。ここで、上記焼成後の接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。
 なお、本発明の接合用組成物には、有機物が含まれているが、従来の例えばエポキシ樹脂等の熱硬化を利用したものと異なり、有機物の作用によって焼成後の接合強度を得るものではなく、前述したように融着した金属粒子の融着によって十分な接合強度が得られるものである。このため、接合後において、接合温度よりも高温の使用環境に置かれて残存した有機物が劣化ないし分解・消失した場合であっても、接合強度の低下するおそれはなく、したがって耐熱性に優れている。
 本実施形態の接合用組成物によれば、例えば150~200℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士を接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。
 本実施形態においては、上記被接合部材と接合層との密着性を更に高めるため、上記被接合部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。
 本発明の金属接合体では、接合層に含まれる硫黄の含有量が15原子%以下であり、9原子%以下であることが好ましい。ここで、本発明の接合用組成物を用いることで接合層の硫黄含有量を好適に低減することができるが、本発明の接合用組成物を用いても接合層の硫黄含有量が15原子%を超える場合には、加熱焼成時に上述の硫黄吸着剤を共存させることで接合層の硫黄含有量を低減することができる。なお、接合層の硫黄含有量は接合用組成物の場合と同様に、XPS(エックス線光電子分光分析)を用いて測定することができる。
 焼成時に硫黄吸着剤を共存させる方法としては、具体的には、例えば、接合用組成物を表面に金めっきを施したアルミナ板に少量塗布し、その上に、表面に金めっきを施したアルミナ板を積層して、試料である積層物を作製する。また、例えば硫黄吸着剤KNK-301又は硫黄化合物吸着型ゼオライト等を、アルミ製バットに入れる。次に、上記で作製した積層物をアルミ製バットに入れ、これらの硫黄吸着剤と積層物を熱風循環式オーブンに入れる。なお、熱風循環式オーブンは硫黄吸着剤と試料の投入前に加熱して温度調整しておき、所定の焼成条件の下で、焼成処理を施す。
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、上記実施形態においては、金属粒子を採用した無機金属コロイド分散液について説明したが、例えば、導電性、熱伝導性、誘電性、イオン伝導性等に優れたスズドープ酸化インジウム、アルミナ、チタン酸バリウム、鉄リン酸リチウム等の無機粒子を用いることもできる。
 以下、実施例及び比較例を挙げて本発明の接合用組成物及びそれを用いた金属接合体について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
≪実施例1≫
 トルエン200mLとアミン(ヘキシルアミン)15gとを混合してマグネティックスターラーで十分に攪拌した。ここに、攪拌を行いながら硝酸銀10gを添加し、硝酸銀が溶解した後に、カルボン酸合計15g(オレイン酸5g及びヘキサン酸10gを順次)添加し、硝酸銀のトルエン溶液を得た。この硝酸銀のトルエン溶液に、イオン交換水50mLに水素化ホウ素ナトリウム1gを添加して調製した0.02g/mLの水素化ホウ素ナトリウム水溶液を滴下し、平均粒径が22nmである銀微粒子を含む分散液を得た。なお、銀微粒子の粒径は上述の広角X線回折法方法で測定した。ここで、使用する材料は予め硫黄吸着剤が存在する窒素中に保管し、合成はグローブボックス内(硫黄吸着剤が存在する窒素中)で行った。
 銀粒子を含む分散液の攪拌を一時間続けた後、メタノール200mLを添加して銀微粒子を凝集、沈降させた。更に、遠心分離にて銀微粒子を完全に沈降させた後、上澄みであるトルエン及びメタノールをデカンテーションで除去した。残った沈降物に更にトルエンを添加して銀微粒子を分散させ、再度メタノールを添加して上記操作を繰り返し、最終的にトルエン及びメタノールを除去し、過剰の有機物を除去して、銀微粒子約6gを得た。このようにして得た銀微粒子6gに、分散媒としてテトラデカン(和光純薬工業株式会社製の試薬特級)1.3gを添加し、撹拌することにより接合用組成物を得た。
 次に、得られた接合用組成物を1gの硫黄吸着剤(硫黄化合物吸着型ゼオライト)と共に密閉容器中に24時間保管し、本発明の接合用組成物を得た。具体的には、硫黄化合物吸着型ゼオライトを、密閉容器であるハイベッセル容器(アズワン(株)製、容量325ml、型番:No.300)に入れた。ついで、軟膏壺(馬野化学容器(株)製、容量12ml、型番:No.3-52)に、約7.3gの接合用組成物を入れた。そして、この軟膏壺を蓋を開けた状態で密閉容器中に入れ、接合用組成物と硫黄吸着剤とを、共存時間:24時間及び共存温度:22℃の条件で共存させた。
 上記のようにして得た接合用組成物をダイボンダー(ハイソル社製)で表面に金めっきを施したアルミナ板(面積50mm×50mm)に少量塗布し、その上に表面に金めっきを施したアルミナ板(面積1mm×1mm)を積層した。その後、当該積層物を1gの硫黄吸着剤(硫黄化合物吸着型ゼオライト)と共に、250℃に調整した熱風循環式オーブン(アドバンテック東洋(株)製、型式:DRM320DB、庫内寸法:W310mm×D300mm×H300mm)に入れ、大気雰囲気下で120分間の焼成処理を施すことで金属接合体を得た。接合用組成物及び金属接合体について種々の評価を行い、結果を表1に示した。
[評価試験]
(1)質量率の測定
 上記のようにして得られた接合用組成物の質量減少率を、乾燥重量法によって求めた。得られた接合用組成物について、セイコー電子工業社製TG/DTA300を用いて昇温速度10℃/分で室温から500℃までの窒素雰囲気中における熱重量変化を求め、100℃から500℃までの質量減少を計算した。
(2)硫黄量の定量
 上記のようにして得られた接合用組成物及び金属接合体(接合層)の硫黄量等をXPS(エックス線光電子分光分析)によって測定した。本実施例においては無機粒子が銀粒子であるため、硫黄量は下記の式を用いて求めた。
 硫黄量(原子%)=硫黄原子量/(硫黄原子量+銀原子量)×100
 なお、用いた測定装置及び測定条件の詳細は以下のとおりとした。
・測定装置:ULVAC PHI 5000 Versa ProbeII
・X線照射条件:AlKα線(1486.6eV)、φ100μm、25W、15KeV、傾斜角45度
・分析パスエネルギー:ワイドレンジ(W)時 117.4eV、ナローレンジ(N)時、11.75eV
・積算回数:10回
・繰り返し回数:1回
・分析エリア:100μm角(走査)
・スパッタ:アルゴンイオン4kV、エリア2×2mm、レート3.6nm/minで20分間
(3)せん断強度試験
 上記のようにして得られた金属接合体を熱風循環式オーブンから取り出して空冷した後、ボンドテスター(レスカ社製)を用いて常温にてせん断強度試験を行った。なお、破壊モードが接合層の凝集破壊であれば(×)、接合体の材料破壊であれば(○)とした。せん断強度は10~100MPaであるのが好ましい。なお、凝集破壊では、接合材の焼結及び融着が乏しく接合層が優先的に破壊されるのに対し、材料破壊では、被接合材が優先して破壊しており、これは、接合材が高密度に焼結して強固な接合層を形成していることを意味している。つまり、破壊モードにおいて、材料破壊は凝集破壊に比べて、より高い接合強度が得られるという点から好ましい。
(4)長期信頼性試験(ヒートサイクル試験)
 上記のようにして得られた金属接合体を熱風循環式オーブンから取り出して空冷した後、冷熱衝撃装置(エスペック社製:TSA-41L)に投入して、高温度側:125℃で30分間、低温度側:-40℃で30分間のヒートサイクルを印加した。高温度と低温度に曝すことを1サイクルとし、200、500、1000、2000サイクル経過後のせん断強度を測定した(せん断強度試験規格:MIL STD-883G)。せん断強度が規格を満たさなくなるサイクル数を計測し、500サイクル未満の場合は(×)、500サイクル以上の場合は(○)、1000サイクル以上の場合は(◎)とした。
≪実施例2及び3≫
 テトラデカンの量を調整することにより質量減少率を5又は22質量%になるように接合用組成物を調製したこと以外は、実施例1と同様にして接合用組成物及び金属接合体を得た。また、実施例1と同様の評価試験を行い、結果を表1に示した。
≪実施例4~6≫
 加熱焼成時に接合用組成物と硫黄吸着剤(硫黄化合物吸着型ゼオライト)を共存させなかったこと以外は、実施例1~3と同様にして接合用組成物及び金属接合体を得た。また、実施例1と同様の評価試験を行い、結果を表1に示した。
≪比較例1及び2≫
 接合用組成物を硫黄吸着剤(硫黄化合物吸着型ゼオライト)と共に保管しなかったこと以外は、実施例2及び3と同様にして接合用組成物及び金属接合体を得た。また、実施例1と同様の評価試験を行い、結果を表1に示した。
≪比較例3~5≫
 接合用組成物を硫黄吸着剤(硫黄化合物吸着型ゼオライト)と共に保管せず、かつ、加熱焼成時にも接合用組成物と硫黄吸着剤(硫黄化合物吸着型ゼオライト)を共存させなかったこと以外は、実施例1~3と同様にして接合用組成物及び金属接合体を得た。また、実施例1と同様の評価試験を行い、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、実施例1では、接合用組成物の保管中及び加熱接合中に硫黄吸着剤を共存させて、接合用組成物と金属複合体の接合層に含まれる硫黄量を10原子%以下としたことで、優れたシェア強度と長期信頼性が確保できた。
 また、実施例2では、接合用組成物の質量減少率が5質量%となる接合用組成物を調製したところ、実施例1の接合用組成物の固形分の質量減少率が18質量%となる場合と同様にシェア強度と長期信頼性が確保できた。
 実施例3では、接合用組成物の質量減少率が22質量%となる接合用組成物を調製したところ、実施例1の接合用組成物の固形分の質量減少率が18質量%となる場合と同様にシェア強度と長期信頼性が確保できた。
 また、実施例4~6では、接合用組成物の保管中に硫黄吸着剤を共存させて、加熱接合中に硫黄吸着剤を共存させなかったところ、接合用組成物に含まれる硫黄量は10原子%以下であった。金属複合体の接合層に含まれる硫黄量は15原子%以下で、実施例1~3に準じて優れたシェア強度を発揮した。
 比較例1及び2では、焼成(加熱接合)中に硫黄吸着剤を共存させて、接合用組成物の保管中に硫黄吸着剤を共存させなかったため、接合用組成物及び金属複合体の接合層に含まれる硫黄量は10原子%超であった。そのため実施例1~6と比べてシェア強度と長期信頼性に乏しかった。
 また、比較例3~5では、焼成(加熱接合)中及び接合用組成物の保管中に硫黄吸着剤を共存させなかったため、接合用組成物及び金属複合体の接合層に含まれる硫黄量は1015原子%超であった。そのため実施例1~6と比べてシェア強度と長期信頼性に乏しかった。

Claims (5)

  1.  無機粒子及び有機成分を含む接合用組成物であって、
     前記接合用組成物における硫黄の含有量が、前記無機粒子と前記硫黄の総量に対して10原子%以下であること、
     を特徴とする接合用組成物。
  2.  前記無機粒子の表面の少なくとも一部に前記有機成分が付着しており、
     前記有機成分がアミンを含むこと、
     を特徴とする請求項1に記載の接合用組成物。
  3.  前記接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの質量減少率が25質量%未満であること、
     を特徴とする請求項1又は2に記載の接合用組成物。
  4.  前記無機粒子が金、銀、銅及び白金からなる群より選択される少なくとも1種の金属を含有すること、
     を特徴とする請求項1又は2に記載の接合用組成物。
  5.  第一の被接合体と、接合層と、第二の被接合体と、を含み、
     前記第一の被接合体と前記第二の被接合体が、前記接合層を介して接合しており、
     前記接合層が、硫黄の含有量が15原子%以下である金属で構成されていること、
     を特徴とする接合体。
PCT/JP2015/001320 2014-04-14 2015-03-11 接合用組成物及びそれを用いた金属接合体 WO2015159480A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016513620A JPWO2015159480A1 (ja) 2014-04-14 2015-03-11 接合用組成物及びそれを用いた金属接合体
EP15780510.2A EP3132872A4 (en) 2014-04-14 2015-03-11 Bonding composition and metal bonded body using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083114 2014-04-14
JP2014-083114 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015159480A1 true WO2015159480A1 (ja) 2015-10-22

Family

ID=54323708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001320 WO2015159480A1 (ja) 2014-04-14 2015-03-11 接合用組成物及びそれを用いた金属接合体

Country Status (4)

Country Link
EP (1) EP3132872A4 (ja)
JP (1) JPWO2015159480A1 (ja)
TW (1) TW201606890A (ja)
WO (1) WO2015159480A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003536A1 (ja) * 2018-06-29 2020-01-02 日立化成株式会社 液相焼結用シート、焼結体、接合体及び接合体の製造方法
CN114206525A (zh) * 2019-08-05 2022-03-18 田中贵金属工业株式会社 金粉末和该金粉末的制造方法以及金糊

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068988A (ja) * 2009-08-28 2011-04-07 Dowa Electronics Materials Co Ltd 金属ナノ粒子とその凝集体、金属ナノ粒子分散体、それを用いて形成された部材
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2426861C (en) * 2000-10-25 2008-10-28 Yorishige Matsuba Conductive metal paste
EP1683592A4 (en) * 2003-10-20 2010-11-10 Harima Chemicals Inc FINE METAL PARTICLES AND FINE METAL OXIDE PARTICLES AS DRY POWDER, AND USE THEREOF
JP2013072091A (ja) * 2011-09-26 2013-04-22 Hitachi Cable Ltd 金属微粒子およびその製造方法、金属微粒子を含む金属ペースト、並びに金属ペーストから形成される金属被膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068988A (ja) * 2009-08-28 2011-04-07 Dowa Electronics Materials Co Ltd 金属ナノ粒子とその凝集体、金属ナノ粒子分散体、それを用いて形成された部材
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3132872A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003536A1 (ja) * 2018-06-29 2020-01-02 日立化成株式会社 液相焼結用シート、焼結体、接合体及び接合体の製造方法
CN114206525A (zh) * 2019-08-05 2022-03-18 田中贵金属工业株式会社 金粉末和该金粉末的制造方法以及金糊
CN114206525B (zh) * 2019-08-05 2024-04-09 田中贵金属工业株式会社 金粉末和该金粉末的制造方法以及金糊

Also Published As

Publication number Publication date
TW201606890A (zh) 2016-02-16
JPWO2015159480A1 (ja) 2017-04-13
EP3132872A1 (en) 2017-02-22
EP3132872A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6349310B2 (ja) 金属接合用組成物
JP6021816B2 (ja) 接合用組成物
JP6262139B2 (ja) 接合用組成物
WO2015162881A1 (ja) 接合用組成物及びそれを用いた金属接合体
JP2017155166A (ja) 接合用組成物
JP6163616B1 (ja) 接合用組成物
WO2017006531A1 (ja) 接合用組成物及び接合方法
WO2018030173A1 (ja) 接合用組成物及びその製造方法
WO2016067599A1 (ja) 接合用組成物
WO2015159480A1 (ja) 接合用組成物及びそれを用いた金属接合体
JP6669420B2 (ja) 接合用組成物
JP6267835B1 (ja) 接合用組成物及びその製造方法
JP6085724B2 (ja) 接合用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015780510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015780510

Country of ref document: EP