[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015157835A1 - Tower for generating wind power - Google Patents

Tower for generating wind power Download PDF

Info

Publication number
WO2015157835A1
WO2015157835A1 PCT/BR2015/000055 BR2015000055W WO2015157835A1 WO 2015157835 A1 WO2015157835 A1 WO 2015157835A1 BR 2015000055 W BR2015000055 W BR 2015000055W WO 2015157835 A1 WO2015157835 A1 WO 2015157835A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
wind power
elements
tower according
columns
Prior art date
Application number
PCT/BR2015/000055
Other languages
French (fr)
Portuguese (pt)
Inventor
Afonso Henrique MASCARENHAS DE ARAÚJO
Émerson Camilo DA COSTA
Paulo Henrique CARDOSO DE MELO
Wanderson MENDES ALVES
Iara Maia SOUTTO MAYOR
Original Assignee
Vallourec Tubos Do Brasil S.A.
Cemig Geração E Transmissão S.A.
Sá Carvalho S.A.
Rosal Energia S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102014009219-6A external-priority patent/BR102014009219B1/en
Application filed by Vallourec Tubos Do Brasil S.A., Cemig Geração E Transmissão S.A., Sá Carvalho S.A., Rosal Energia S.A. filed Critical Vallourec Tubos Do Brasil S.A.
Publication of WO2015157835A1 publication Critical patent/WO2015157835A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/10Truss-like structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories

Definitions

  • the present invention relates to lattice towers using tubular steel profiles for wind turbine installation and wind power generation, with the aim of having a new tower option that will also enable its transportation and assembly in hard to reach areas.
  • Wind energy is proving to be a very efficient source of clean energy and, as a result, attracting investment.
  • it faces some barriers that discourage its implementation.
  • Commonly used wind power towers are extremely large and are made from very large and extremely heavy parts. Wind farms are generally installed in large windy locations and should preferably have access to large roads that allow parts to be transported and assembled on site using large, heavy equipment such as large cranes. postage.
  • the present invention therefore aims at the development of lattice towers using seamless or seamless metal tubular steel profiles for wind turbine installation which enables the transportation and erection of raised towers in any areas, including difficult to reach, such as mountainous areas, minimizing the use of special transports and without requiring significant changes to the infrastructure of the site, thus reducing the deployment costs of wind farms.
  • a tower for wind power generation comprising at least three columns extending from a tower base to its upper end, each column consisting of a plurality of connected metal tubular elements; and a plurality of lattice-mounted metal tubular members interconnecting the columns, forming the base structure to the upper end of the tower.
  • the tower may further comprise rigid frames attached, interconnecting the columns.
  • Said tubular members may be comprised of joined pipe compositions, each pipe composition comprising at least two pipes joined together by metal connecting elements which are selected from the group comprising welds, plates metal pipes, metal pipes, metal beams, "U”, “ ⁇ ” and “H” profiles, angles and their compositions
  • the connecting elements are fixedly trussed between the pipes of the pipe composition.
  • the tubular members of the lattice structure are preferably joined together by fasteners connected to the ends of the tubular members, such fasteners being at least one of welds, connection plates, flanges, "T” "U”, ⁇ “and “H", angles, metal tubes and their compositions
  • Fixing elements are fixed to the tubular elements by welding, screwing or riveting
  • Fixing between the fixing elements is by welding, screwing or riveting.
  • the tower preferably has a cross-section with N-sided equilateral polygon geometry, with N ranging from 3 to 12, having at each vertex a column.
  • At least some of the tubular elements may be filled with concrete, reinforced concrete, or fiber concrete.
  • the tower may have a lower segment whose columns form a first inclination angle with a horizontal plane
  • the tower has clips connecting the structure to a foundation.
  • Figure 1 shows an embodiment of the tower for wind power generation according to the invention
  • Figure 1A shows a side view of a tower for wind power generation during its crane mounting process (tower crane);
  • Figure 1B shows a side view of the wind power tower of Figure 1A following its crane (tower crane) assembly process
  • Figure 2A shows a top view of a lattice tower according to the invention with a triangular base
  • Figure 2B shows a top view of a lattice tower according to the invention with a square base
  • Figure 2C shows a top view of a lattice tower according to the invention with an octagonal base
  • Figure 2D shows a top view of a lattice tower according to the invention with a hexagonal base
  • Figure 3A shows a cross-sectional view of a first embodiment of a two-tube circular section pipe composition used in the tower structure according to the invention
  • Figure 3B shows a cross-sectional view of a first embodiment of a three-tube circular section pipe composition used in the tower structure according to the invention
  • Figure 3C shows a cross-sectional view of a first embodiment of a two-tube rectangular section pipe composition used in the tower structure according to the invention
  • Figure 3D shows a cross-sectional view of a first embodiment of a rectangular three-tube pipe composition used in the tower structure according to the invention
  • Figure 4A shows a front view of pipe compositions and their respective connecting elements
  • Figure 4B shows a front view of pipe compositions with their respective connecting elements and connecting elements with other tube compositions or tower structure elements according to the invention
  • Figure 5 shows six embodiments of the tower according to the invention using different lattice shapes and their combinations in the upper and lower portions.
  • Figure 6 shows an embodiment of flange-shaped fastener between tubular members applicable to pipes of circular or rectangular section
  • Figure 7A shows a front view of another embodiment of tubular member connection using a "T" profile applicable to circular or rectangular section tubing;
  • Figure 7B shows a side view of the connection shown in Figure
  • Figure 8 shows a cross-sectional view of the attachment of a tower column to the ground
  • Figure 9A shows a top view of figure 17 according to one embodiment of the invention using rectangular profile tubular member and rectangular plate;
  • Figure 9B shows a top view of figure 17 according to one embodiment of the invention using circular profile tubular member and rectangular plate;
  • Figure 9C shows a top view of figure 17 according to one embodiment of the invention using circular profile tubular member and circular plate;
  • Figure 10 shows a sequence of tower assembly steps according to the present invention using crane (tower crane) or other mounting equipment;
  • Figure 11A shows a top view of a triangular base tower during the assembly process according to the present invention, showing the distance between the tower's center of gravity and the cranes (tower crane);
  • Figure 11B shows a top view of a square base tower during the assembly process according to the present invention, showing the distance between the tower's center of gravity and the cranes (tower crane);
  • Figure 12 shows an embodiment of the tower for wind power generation according to the invention constituted as cable-stayed tower
  • Figure 13 shows an embodiment of the tower for wind power generation according to the invention consisting of two approximately cylindrical segments
  • Figure 14 shows a wind energy generation tower embodiment according to the invention having a transition segment between the upper and lower segments.
  • the wind power tower 1 has at least three columns 3 extending from the tower base to its upper end.
  • Each of these columns is made up of several tubular elements connected to each other successively to a desired height, there being at certain height intervals flat locking structures 5 at some levels, as shown in Figure 1.
  • the structure of the tower 1 is complemented by a plurality of diagonal tubular elements and mullions which are lattice connected 4, interconnecting the columns 3, forming a lattice of base bars to the top end of the tower. These tubular elements have sufficient strength to withstand the stresses to which the tower is subjected.
  • the columns 3 of tower 1 may also be interconnected by rigid frames (not shown) in addition to the truss structures 4.
  • the tubular elements used to form the tower structure have a circular or rectangular cross section, or any type of cross section, and are hot-rolled seamless tubes or seamed tubes made from welded sheets.
  • hot-rolled seamless tubes are classified by international standards into higher buckling curves, such as the EN 1993-1 standard “a” or " 0 " bends, which are therefore better performing, and for this reason are prefer to generate lighter structures, with greater ease of assembly and, consequently, more economical
  • the tubes are preferably comprised of unbound carbon steels and / or low alloy or microalloyed steels.
  • the steels can be slippable, which guarantees high corrosion performance and can even minimize the need for towers corrosion protection.
  • pipes filled with concrete, reinforced concrete, or even concrete with steel fibers or any other material may be used in the tower structure.
  • These concrete-filled tubes may alternatively be used only in some regions of the tower structure where there is the greatest effort and may be combined with unfilled tubes.
  • the tower base and tower cross-section have an N-sided equilateral polygon geometry such that N preferably ranges from 3 to 12, having at each vertex a column 3 consisting of tubular elements or tube compositions.
  • the number N of columns 3 will therefore be equal to the number N of sides.
  • the number of sides of the polygon and the number of columns 3 may also vary depending on the needs of the project.
  • the tower is constructed using three columns 3, so that its base has a triangular geometry.
  • the triangular base tower has the advantage of minimizing assembly costs due to the reduction in cargo handling distance 6 (nacelle, blades and other wind turbine parts) by the mounting equipment (Figure 11A) when compared to the tower square base (figure 1 B). In this case, such equipment will have shorter cargo handling distances, which will enable the use of lighter equipment and consequently lower cost.
  • the tower cross section can also be quadrangular having 4 columns (as in figure 2B), or pentagonal having 5 columns, or hexagonal having 6 columns (as figure 2D), or heptagonal having 7 columns or even octagonal with 8 columns (as per Figure 2C), and so on, depending on the area of application, loads to be applied to the structure, tower height, among other factors, including aesthetic aspects.
  • tubular elements used in the constitution of the columns 3 and the lattice structure 4 between the columns may be individual tubes joined together, or even compositions of tubes joined together, if it is necessary to provide greater resistance to the tower, for example in very tall towers with high loads.
  • Examples of pipe compositions 7 are shown in Figures 3A to 3D in cross section and Figures 4A and 4B in front view.
  • Each tube composition 7 ' consists of two, three or more tubes 8 joined together by metal connection elements 9 at their ends and / or along their lengths, or are directly welded, thus forming a single element to each other. be used in tower assembly.
  • Figures 3A and 3C illustrate the case of compositions 7 of two circular or rectangular section tubes 8 joined together
  • Figures 3B and 3D illustrate examples of compositions 7 of three pipe 8 of circular or rectangular section joined together.
  • connecting elements 9 between the pipes of the column pipe compositions preferably welds, metal pipes, sheet metal, "U”, “1” and “H” profiles, angles and their compositions, or any other type of pipe may be used. metal profile with another cross-sectional shape.
  • Such connecting elements 9 may be intermittently or continuously present between the tubes 8 of the compositions 9 along the length thereof.
  • the tubes 8 of composition 7 are joined together along their length by a sheet metal 9 whose longitudinal ends are welded to the pipes.
  • the connecting elements 9 used are pipes or other types of metal profiles
  • the pipes 8 of composition 9 may be joined together by securing the connecting elements of lattice, or by fixing these elements parallel to each other, and perpendicular to the tubes 8, in a connection commonly called locking.
  • These connecting elements 9 are generally fixed to the pipes by direct welding between the pieces.
  • the tubular elements constituting the lattice structure (diagonal and upstream) mounted between the tower columns can be fixed to each other in different ways by welding or fastening elements 10, such as connecting plates, flanges, T-profiles. ",” U “, T and ⁇ ", angles, tubes and their compositions which are joined to the tubular elements by welding or bolting.
  • fastening elements 10 are shown in Figures 6, 7A and 7B.
  • Figure 6 shows examples of circular section flanges 10 used with circular section pipes 8, and rectangular section flanges 10 used with rectangular section pipes 8.
  • FIGS. 7A and 7B show a front view and a side view of a fastener 10 in the form of a T-profile also welded to the end of the tubular member 8, and whose longer tab of the T extends axially from the tube.
  • This longer flap may be provided with bolt-on holes with other frame components or fasteners.
  • connections will be employed to facilitate and speed up the assembly process, seeking solutions that guarantee good performance during the service life of the structure.
  • bolted connections with flanged or end plate plates, "T" or “perfis” profiles described above are preferably employed, always paying particular attention to the effects of fatigue to which these connections may be subjected. , which does not prevent the use of connections welded between the connecting elements, when deemed most suitable for the project.
  • the lattice connection between the tubular elements 8 of the structure can be made in different lattice shapes.
  • Examples of types of connections between tubular elements used in the structure of the present invention are type DK, K, KK, KT, N / T, TT, DT, X, XX, Y, and DY connections, other forms of connection being excluded. and combinations thereof within the same tower structure.
  • Figure 8 shows in cross section a possible way of fixing the tower 1 to the ground, not excluding other shapes.
  • the tubular element constituting the column has a base plate 11 attached to its lower end, as shown in Figures 9A, 9B and 9C.
  • plate 11 of rectangular section can be used ( Figures 9A, 9B).
  • plate 11 with circular section may be employed ( Figure 9C).
  • the tubular elements are usually welded to the base plates 11, and these plates are provided with perforations that allow the fitting of threaded bars (anchor bolts).
  • tower 1 can be constructed from several modules 12 which can be individually pre-assembled and then assembled and fixed on top of each other as shown in Figure 10.
  • Figure 5 shows several examples of towers 101, 102, 103, 104, 105 and 106 having an upper segment 13 and a lower segment 14 with different geometries.
  • the tower can be constructed such that in the upper segment 13 the tubular elements are joined by one type of truss and in the lower segment 14 the tubular elements are joined by another type. lattice. This variation of lattice modalities can also occur in one tower segment.
  • the same type of truss is used from the base to the top of the tower. Still in this sense, the towers of the present invention may also be formed such that the base of the upper segment 13 has a type of square, triangular, geometry.
  • the base of the lower segment 14 has a different type of geometry than the upper one.
  • an example design of such a tower could have a module 12 or lower segment 14 with a square base, and a module 12 or upper segment 13 with an octagonal base.
  • the shape of the tower bases and the type of truss employed are determined for each project, and may vary depending on the structural strength that the tower must present, its height, climatic and geographical conditions of the installation site, costs, among others.
  • FIG 12 a version of the windmill tower 107 is shown, which has snaps 17 at the bottom connecting the tower frame 107 to the foundation.
  • This cable-stayed tower 107 may also be designed with the same cross-section along all or nearly all of its length.
  • Tower 1 can be designed with different column inclinations in different vertical segments to adjust their natural frequency to the limits required by the equipment, thus avoiding interference with wind turbine (wind power generation equipment) operation.
  • the tower can be made up of three segments with different column inclinations:
  • transition segment 15 between the lower segment 14 and the upper segment 13, forming a transition angle 151 with the horizontal plane.
  • the angle 151 formed by column 3 with the horizontal plane in the transition segment 15 is smaller than the corresponding angle in the lower segment 14 and the upper segment 13.
  • these angles can be adjusted according to the needs of the project. .
  • the example shown in figure 13 is an extreme case of the tower. shown in Figure 14, where the angle of the columns 3 with the horizontal plane is right (90 °) at the lower end 14 and upper end 13. Consequently, the angle with the horizontal plane of the transition segment is of 0 o.
  • the lower segment 14 has a larger diameter than the upper segment 13.
  • the transition segment 15 has horizontal beams interconnecting the lower segment 14 and the upper segment 13.
  • angles 131, 141, 151 of columns 3 of all segments 13, 14, 15 may be the same.
  • Tower 1 can be assembled in various ways. For example, initially at least one tubular member of each of the tower columns 3 is fixed to the ground. Several tubular elements can be initially fixed together that make up each column. Thereafter, the tubular elements constituting the truss 4 and / or the gantry are fixed between the columns 3.
  • the diagonal tubular elements and mullions that form part of the lattice structure 4 can be connected to each other on site during the tower assembly. Another option is for the lattice structure 4 to be divided into modules, which can be pre-assembled on site, and then each module is mounted on the next lower module.
  • the smaller tubular elements may be properly connected in the frame factories, thus forming larger modules 12 such as lattice segments and / or the compositions. 7 of tubular elements 8 used in this structure.
  • Such larger pieces should thus be transported from the place of manufacture to the tower deployment site, where they will be mounted on the tower structure 1 using the same equipment and with less man-hour consumption in the field.
  • This step of connecting the tubular elements to larger parts can be done even before the tower assembly process and the columns are grounded.
  • tower module 12 When the tower consists of several 12 modules assembled together, the process is carried out with separate tower module assembly steps followed by tower module 12 mounting steps on top of one another.
  • These tower modules 12 are comprised of column segments and diagonal tubular elements and truss-mounted mullions or elements docked between the columns as shown in Figure 10.
  • auxiliary assembly equipment to be installed on the top of the tower, able to lift and assemble the parts that make up the wind turbine and its blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a tower (1) for generating wind power, comprising at least three columns (3) extending from a base of the tower up to the upper end thereof, each column (3) comprising a plurality of interconnected tubular elements and a plurality of tubular elements mounted in the form of a trellis (4) between the columns (3) thereby forming the structure from the base to the upper end of the tower (1).

Description

Relatório Descritivo da Patente de Invenção para "TORRE PARA GERAÇÃO DE ENERGIA EÓLICA".  Report of the Invention Patent for "WIND POWER GENERATOR TOWER".
A presente invenção refere-se a torres treliçadas usando perfis tubulares de aço para instalação de aerogerador e geração de energia eólica, com o objetivo de se ter uma nova opção de torre que também irá viabilizar seu transporte e sua montagem em áreas de difícil acesso.  The present invention relates to lattice towers using tubular steel profiles for wind turbine installation and wind power generation, with the aim of having a new tower option that will also enable its transportation and assembly in hard to reach areas.
DESCRIÇÃO DO ESTADO DA TÉCNICA DESCRIPTION OF TECHNICAL STATE
Atualmente, há uma grande preocupação da sociedade com a preservação ambiental e com o investimento em fontes de energia limpas. A energia eólica vem se mostrando como uma fonte de energia limpa bastante eficiente e, consequentemente, vem atraindo investimentos. Porém, ela enfrenta algumas barreiras que desestimulam sua implantação. As torres de geração de energia eólica normalmente utilizadas apresentam dimensões extremamente grandes e são constituídas a partir de peças também de grandes dimensões e extremamente pesadas. Os parques eólicos são, geralmente, instalados em locais ventosos com grande superfície e preferencialmente devem possuir acessos por estradas de grande porte, que permita o transporte das peças e sua montagem no local, utilizando equipamentos pesados e de grandes dimensões, tais como guindastes de grande porte.  Currently, there is a major societal concern with environmental preservation and investment in clean energy sources. Wind energy is proving to be a very efficient source of clean energy and, as a result, attracting investment. However, it faces some barriers that discourage its implementation. Commonly used wind power towers are extremely large and are made from very large and extremely heavy parts. Wind farms are generally installed in large windy locations and should preferably have access to large roads that allow parts to be transported and assembled on site using large, heavy equipment such as large cranes. postage.
Esses fatores limitam a viabilidade de instalação de aerogeradores em locais com altos índices de vento, onde a energia eólica é bastante elevada, tais como locais montanhosos, mas que são acessíveis somente por estradas secundárias e com espaços planos para instalação limitados. Algumas vezes, pode ser necessário desapropriar algumas regiões e ampliar as estradas para permitir o transporte de peças e equipamentos. Esses procedimentos, além de serem inconvenientes para a comunidade local, também aumentam os custos relacionados à implantação das torres.  These factors limit the feasibility of installing wind turbines in high wind locations, where wind power is quite high, such as mountainous locations, but which are accessible only by secondary roads and with limited flat spaces for installation. Sometimes it may be necessary to expropriate some regions and widen the roads to allow the transportation of parts and equipment. These procedures, in addition to being inconvenient for the local community, also increase the costs related to the towers implementation.
Já são conhecidos do estado da técnica alguns projetos de torres de aerogeradores produzidas a partir de perfis metálicos, tais como chapas e perfis em L, em cujo topo é montada uma extremidade da torre em formato tubular, e a naceie é conectada à torre por uma conexão metálica, na qual são fixadas as pás do aerogerador. Entretanto, esses projetos também enfrentam diversos problemas técnicos, uma vez que as torres costumam ser bastante elevadas, e instaladas em locais de vento frequente e intenso. Por essas razões, as torres são submetidas a elevados esforços, estando também sujeitas à corrosão atmosférica. Assim, as torres de perfis metálicos precisam ser constituídas de peças com elevada resistência mecânica e boa resistência à corrosão. Tais características são também requeridas por suas conexões. Some designs of wind turbine towers produced from metal profiles, such as sheet metal and L-profiles, on which a tubular-shaped end of the tower are mounted, and the naceie are connected to the tower by a prior art, are known in the art. metal connection, in which the wind turbine blades are fixed. However, these projects also face a number of technical problems, as the towers are often quite high, and installed in high and frequent wind locations. For these reasons, the towers are subjected to high stresses and are also subject to atmospheric corrosion. Thus, metal profile towers need to be made up of parts with high mechanical strength and good corrosion resistance. Such features are also required by their connections.
A presente invenção visa, portanto, o desenvolvimento de torres treliçadas usando perfis tubulares de aço metálicos com ou sem costura para instalação de aerogerador que viabilize o transporte e a montagem de torres elevadas em quaisquer áreas, inclusive de difícil acesso, tais como áreas montanhosas, minimizando o emprego de transportes especiais e sem necessitar de significativas alterações da infra-estrutura do local de implantação, reduzindo assim os custos de implantação dos parques eólicos.  The present invention therefore aims at the development of lattice towers using seamless or seamless metal tubular steel profiles for wind turbine installation which enables the transportation and erection of raised towers in any areas, including difficult to reach, such as mountainous areas, minimizing the use of special transports and without requiring significant changes to the infrastructure of the site, thus reducing the deployment costs of wind farms.
É também objetivo da presente invenção proporcionar torres com elevada resistência mecânica e também com alto desempenho à corrosão, que suportem as condições adversas dos locais de instalação, podendo-se inclusive minimizar a necessidade de proteção anticorrosiva das torres.  It is also an object of the present invention to provide towers with high mechanical strength and also high corrosion performance that can withstand the harsh conditions of the installation sites, and may even minimize the need for corrosion protection of the towers.
SUMÁRIO DA INVENÇÃO  SUMMARY OF THE INVENTION
Os objetivos da invenção são alcançados por uma torre para geração de energia eólica, compreendendo pelo menos três colunas se estendendo de uma base da torre até a sua extremidade superior, cada coluna sendo constituída de uma pluralidade de elementos tubulares metálicos conectados entre si; e uma pluralidade de elementos tubulares metálicos montados em forma de treliça interligando as colunas, constituindo a estrutura da base até a extremidade superior da torre.  The objects of the invention are achieved by a tower for wind power generation, comprising at least three columns extending from a tower base to its upper end, each column consisting of a plurality of connected metal tubular elements; and a plurality of lattice-mounted metal tubular members interconnecting the columns, forming the base structure to the upper end of the tower.
A torre pode compreender adicionalmente quadros rígidos aporticados, interligando as colunas.  The tower may further comprise rigid frames attached, interconnecting the columns.
Os referidos elementos tubulares podem ser constituídos por composições de tubos unidos entre si, sendo que cada composição de tubo compreende pelo menos dois tubos unidos entre si por elementos de ligação metálicos que são selecionados do grupo compreendendo soldas, chapas metálicas, tubos metálicos, traves metálicas, perfis "U", Ί" e "H", cantoneiras e suas composições. Os elementos de ligação são fixados de forma treliçada entre os tubos da composição de tubos. Said tubular members may be comprised of joined pipe compositions, each pipe composition comprising at least two pipes joined together by metal connecting elements which are selected from the group comprising welds, plates metal pipes, metal pipes, metal beams, "U", "Ί" and "H" profiles, angles and their compositions The connecting elements are fixedly trussed between the pipes of the pipe composition.
Os elementos tubulares da estrutura treliçada são preferivelmente unidos entre si por elementos de fixação conectados às extremidades dos elementos tubulares, esses elementos de fixação sendo pelo menos um dentre soldas, chapas de ligação, flanges, perfis "T" "U", Ί" e "H", cantoneiras, tubos metálicos e suas composições. Os elementos de fixação são fixados aos elementos tubulares por meio de soldagem, parafusamento ou rebitagem. A fixação entre os elementos de fixação é feita por meio de soldagem, parafusamento ou rebitagem.  The tubular members of the lattice structure are preferably joined together by fasteners connected to the ends of the tubular members, such fasteners being at least one of welds, connection plates, flanges, "T" "U", Ί "and "H", angles, metal tubes and their compositions Fixing elements are fixed to the tubular elements by welding, screwing or riveting Fixing between the fixing elements is by welding, screwing or riveting.
A torre possui preferivelmente uma seção transversal com geometria em polígono equilátero com N lados, sendo que N varia de 3 a 12, possuindo, em cada vértice, uma coluna.  The tower preferably has a cross-section with N-sided equilateral polygon geometry, with N ranging from 3 to 12, having at each vertex a column.
Pelo menos alguns dos elementos tubulares podem ser preenchidos com concreto, concreto armado, ou concreto com fibras.  At least some of the tubular elements may be filled with concrete, reinforced concrete, or fiber concrete.
A torre pode possuir um segmento inferior cujas colunas formam um primeiro ângulo de inclinação com um plano horizontal,  The tower may have a lower segment whose columns form a first inclination angle with a horizontal plane,
um segmento superior cujas colunas formam um segundo ângulo de inclinação com o plano horizontal, e um segmento de transição entre o segmento inferior e o segmento superior, cujas colunas formam um ângulo de transição com o plano horizontal.  an upper segment whose columns form a second inclination angle with the horizontal plane, and a transition segment between the lower segment and the upper segment whose columns form a transition angle with the horizontal plane.
Alternativamente, a torre possui estais conectando a estrutura a uma fundação. Alternatively, the tower has clips connecting the structure to a foundation.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Outras características e vantagens da torre para geração de energia eólica e do processo para sua montagem de acordo com a invenção ficarão claras a partir da leitura da descrição aqui apresentada e dos exemplos não limitativos, com referência aos desenhos anexos, em que:  Other features and advantages of the wind power tower and the process for assembling it according to the invention will be apparent from reading the description herein and non-limiting examples with reference to the accompanying drawings, in which:
A figura 1 mostra uma modalidade da torre para geração de energia eólica de acordo com a invenção;  Figure 1 shows an embodiment of the tower for wind power generation according to the invention;
A figura 1A mostra uma vista lateral de uma torre para geração de energia eólica durante seu processo de montagem através de grua (guindaste de torre);  Figure 1A shows a side view of a tower for wind power generation during its crane mounting process (tower crane);
A figura 1 B mostra uma vista lateral da torre para geração de energia eólica da figura 1A após seu processo de montagem com grua (guindaste de torre);  Figure 1B shows a side view of the wind power tower of Figure 1A following its crane (tower crane) assembly process;
A figura 2A mostra uma vista superior de uma torre treliçada de acordo com a invenção com uma base triangular;  Figure 2A shows a top view of a lattice tower according to the invention with a triangular base;
A figura 2B mostra uma vista superior de uma torre treliçada de acordo com a invenção com uma base quadrada;  Figure 2B shows a top view of a lattice tower according to the invention with a square base;
A figura 2C mostra uma vista superior de uma torre treliçada de acordo com a invenção com uma base octogonal;  Figure 2C shows a top view of a lattice tower according to the invention with an octagonal base;
A figura 2D mostra uma vista superior de uma torre treliçada de acordo com a invenção com uma base hexagonal;  Figure 2D shows a top view of a lattice tower according to the invention with a hexagonal base;
A figura 3A mostra uma vista em seção transversal de uma primeira modalidade de uma composição de tubos com dois tubos de seção circular usada na estrutura da torre de acordo com a invenção;  Figure 3A shows a cross-sectional view of a first embodiment of a two-tube circular section pipe composition used in the tower structure according to the invention;
A figura 3B mostra uma vista em seção transversal de uma primeira modalidade de uma composição de tubos com três tubos de seção circular usada na estrutura da torre de acordo com a invenção;  Figure 3B shows a cross-sectional view of a first embodiment of a three-tube circular section pipe composition used in the tower structure according to the invention;
A figura 3C mostra uma vista em seção transversal de uma primeira modalidade de uma composição de tubos com dois tubos de seção retangular usada na estrutura da torre de acordo com a invenção;  Figure 3C shows a cross-sectional view of a first embodiment of a two-tube rectangular section pipe composition used in the tower structure according to the invention;
A figura 3D mostra uma vista em seção transversal de uma primeira modalidade de uma composição de tubos com três tubos de seção retangular usada na estrutura da torre de acordo com a invenção; Figure 3D shows a cross-sectional view of a first embodiment of a rectangular three-tube pipe composition used in the tower structure according to the invention;
A figura 4A mostra uma vista frontal de composições de tubos e seus respectivos elementos de ligação;  Figure 4A shows a front view of pipe compositions and their respective connecting elements;
A figura 4B mostra uma vista frontal de composições de tubos com seus respectivos elementos de ligação e os elementos de conexão com outras composições de tubos ou elementos da estrutura de torre de acordo com a invenção;  Figure 4B shows a front view of pipe compositions with their respective connecting elements and connecting elements with other tube compositions or tower structure elements according to the invention;
A figura 5 mostra seis modalidades da torre de acordo com a invenção usando diferentes formatos de treliça e suas combinações nas porções superior e inferior.  Figure 5 shows six embodiments of the tower according to the invention using different lattice shapes and their combinations in the upper and lower portions.
A figura 6 mostra uma modalidade de elemento de fixação entre elementos tubulares na forma de flange aplicável a tubos de seção circular ou retangular;  Figure 6 shows an embodiment of flange-shaped fastener between tubular members applicable to pipes of circular or rectangular section;
A figura 7A mostra uma vista frontal de outra modalidade de ligação entre elementos tubulares, utilizando um perfil "T" aplicável a tubos de seção circular ou retangular;  Figure 7A shows a front view of another embodiment of tubular member connection using a "T" profile applicable to circular or rectangular section tubing;
A figura 7B mostra uma vista lateral da ligação mostrada na figura Figure 7B shows a side view of the connection shown in Figure
7A; 7A;
A figura 8 mostra uma vista em seção transversal da fixação de uma coluna da torre no solo;  Figure 8 shows a cross-sectional view of the attachment of a tower column to the ground;
A figura 9A mostra uma vista superior da figura 17 de acordo com uma das modalidades da invenção, usando elemento tubular de perfil retangular e chapa retangular;  Figure 9A shows a top view of figure 17 according to one embodiment of the invention using rectangular profile tubular member and rectangular plate;
A figura 9B mostra uma vista superior da figura 17 de acordo com uma das modalidades da invenção, usando elemento tubular de perfil circular e e placa retangular;  Figure 9B shows a top view of figure 17 according to one embodiment of the invention using circular profile tubular member and rectangular plate;
A figura 9C mostra uma vista superior da figura 17 de acordo com uma das modalidades da invenção, usando elemento tubular de perfil circular e placa circular;  Figure 9C shows a top view of figure 17 according to one embodiment of the invention using circular profile tubular member and circular plate;
A figura 10 mostra uma sequência de etapas de montagem da torre de acordo com a presente invenção, utilizando grua (guindaste de torre) ou outro equipamento de montagem; Figure 10 shows a sequence of tower assembly steps according to the present invention using crane (tower crane) or other mounting equipment;
A figura 11A mostra uma vista superior de uma torre de base triangular durante o processo de montagem de acordo com a presente invenção, apresentando a distância entre o centro de gravidade da torre e as grua (guindaste de torre);  Figure 11A shows a top view of a triangular base tower during the assembly process according to the present invention, showing the distance between the tower's center of gravity and the cranes (tower crane);
A figura 11B mostra uma vista superior de uma torre de base quadrada durante o processo de montagem de acordo com a presente invenção, apresentando a distância entre o centro de gravidade da torre e as grua (guindaste de torre);  Figure 11B shows a top view of a square base tower during the assembly process according to the present invention, showing the distance between the tower's center of gravity and the cranes (tower crane);
A figura 12 mostra uma modalidade da torre para geração de energia eólica de acordo com a invenção constituída como torre estaiada;  Figure 12 shows an embodiment of the tower for wind power generation according to the invention constituted as cable-stayed tower;
A figura 13 mostra uma modalidade da torre para geração de energia eólica de acordo com a invenção constituída por dois segmentos aproximadamente cilíndricos; e  Figure 13 shows an embodiment of the tower for wind power generation according to the invention consisting of two approximately cylindrical segments; and
A figura 14 mostra uma modalidade da torre para geração de energia eólica de acordo com a invenção tendo um segmento de transição entre os segmentos superior e inferior.  Figure 14 shows a wind energy generation tower embodiment according to the invention having a transition segment between the upper and lower segments.
DESCRIÇÃO DETALHADA DA INVENÇÃO  DETAILED DESCRIPTION OF THE INVENTION
Conforme pode ser visto nas figuras 1, 1A e 1B, a torre para geração de energia eólica 1 de acordo com a presente invenção possui pelo menos três colunas 3 se estendendo da base da torre até a sua extremidade superior. Cada uma dessas colunas é constituída de diversos elementos tubulares conectados entre si sucessivamente até uma altura desejada, existindo em certos intervalos de altura, estruturas planas de travamento 5 em alguns níveis, como pode ser visto na figura 1.  As can be seen from figures 1, 1A and 1B, the wind power tower 1 according to the present invention has at least three columns 3 extending from the tower base to its upper end. Each of these columns is made up of several tubular elements connected to each other successively to a desired height, there being at certain height intervals flat locking structures 5 at some levels, as shown in Figure 1.
A estrutura da torre 1 é complementada por uma pluralidade de elementos tubulares diagonais e montantes que são conectados em forma de treliça 4, interligando as colunas 3, constituindo um reticulado de barras da base .até a extremidade superior da torre. Esses elementos tubulares apresentam resistência suficiente para suportar os esforços às quais à torre é submetida.. As colunas 3 da torre 1 podem ser também interligadas por quadros rígidos (não ilustrados), adicionalmente às estruturas treiíçadas 4. Os elementos tubulares usados para constituir a estrutura da torre possuem seção transversal circular ou retangular, ou qualquer tipo de seção transversal, e são tubos sem costura laminados a quente, ou ainda tubos com costura constituídos a partir de chapas soldadas. Entretanto, os tubos laminados a quente sem costura são classificados pelas normas internacionais em curvas de flambagem mais elevadas, como as curvas "a" ou "a0" da norma EN 1993-1 , portanto, com melhor performance, e por este motivo são preferenciais por gerarem estruturas mais leves, com maiores facilidades de montagem e, consequentemente, mais económicas The structure of the tower 1 is complemented by a plurality of diagonal tubular elements and mullions which are lattice connected 4, interconnecting the columns 3, forming a lattice of base bars to the top end of the tower. These tubular elements have sufficient strength to withstand the stresses to which the tower is subjected. The columns 3 of tower 1 may also be interconnected by rigid frames (not shown) in addition to the truss structures 4. The tubular elements used to form the tower structure have a circular or rectangular cross section, or any type of cross section, and are hot-rolled seamless tubes or seamed tubes made from welded sheets. However, hot-rolled seamless tubes are classified by international standards into higher buckling curves, such as the EN 1993-1 standard "a" or " 0 " bends, which are therefore better performing, and for this reason are prefer to generate lighter structures, with greater ease of assembly and, consequently, more economical
Os tubos são preferivelmente constituídos de aços-carbono não ligados e/ou aços de baixa liga ou microligados. Os aços podem ser patináveis, que garantem alto desempenho à corrosão, podendo-se inclusive minimizar a necessidade de proteção anticorrosiva das torres. Além disso, podem ser usados na estrutura da torre tubos preenchidos com concreto, concreto armado, ou mesmo concreto com fibras de aço ou de qualquer outro material. Esses tubos preenchidos com concreto podem, alternativamente, ser empregados apenas em algumas regiões da estrutura da torre onde haja maior esforço, podendo ser combinados com tubos sem preenchimento.  The tubes are preferably comprised of unbound carbon steels and / or low alloy or microalloyed steels. The steels can be slippable, which guarantees high corrosion performance and can even minimize the need for towers corrosion protection. In addition, pipes filled with concrete, reinforced concrete, or even concrete with steel fibers or any other material may be used in the tower structure. These concrete-filled tubes may alternatively be used only in some regions of the tower structure where there is the greatest effort and may be combined with unfilled tubes.
A base da torre e a seção transversal da torre apresentam uma geometria em polígono equilátero com N lados, tal que N preferivelmente varia de 3 a 12, possuindo, em cada vértice, uma coluna 3 constituída de elementos tubulares ou composições de tubos. O número N de colunas 3 será, portanto, igual ao número N de lados. O número de lados do polígono e o número de colunas 3 também podem variar de acordo com as necessidades do projeto. Na modalidade da invenção mostrada na figura 2A, por exemplo, a torre é construída utilizando três colunas 3, de modo que sua base apresenta uma geometria triangular. A torre de base triangular apresenta a vantagem de minimizar os custos de montagem, em função da redução da distância de movimentação de carga 6 (nacele, pás e outros partes dos aerogeradores) pelo equipamento de montagem (Figura 11 A), quando comparada à torre de base quadrada (figura 1 B). Neste caso, tais equipamentos terão menores distâncias de movimentação de carga, p que possibilitará ò emprego de equipamentos mais leves e consequentemente de menor custo. The tower base and tower cross-section have an N-sided equilateral polygon geometry such that N preferably ranges from 3 to 12, having at each vertex a column 3 consisting of tubular elements or tube compositions. The number N of columns 3 will therefore be equal to the number N of sides. The number of sides of the polygon and the number of columns 3 may also vary depending on the needs of the project. In the embodiment of the invention shown in Figure 2A, for example, the tower is constructed using three columns 3, so that its base has a triangular geometry. The triangular base tower has the advantage of minimizing assembly costs due to the reduction in cargo handling distance 6 (nacelle, blades and other wind turbine parts) by the mounting equipment (Figure 11A) when compared to the tower square base (figure 1 B). In this case, such equipment will have shorter cargo handling distances, which will enable the use of lighter equipment and consequently lower cost.
Alternativamente, a seção transversal da torre também pode ser quadrangular possuindo 4 colunas (conforme figura 2B), ou pentagonal possuindo 5 colunas, ou hexagonal possuindo 6 colunas (conforme figura 2D), ou heptagonal possuindo 7 colunas ou mesmo octogonal com 8 colunas (conforme figura 2C), e assim sucessivamente, dependo da área de aplicação, cargas a serem aplicadas na estrutura, altura da torre, dentre outros fatores, inclusive aspectos estéticos.  Alternatively, the tower cross section can also be quadrangular having 4 columns (as in figure 2B), or pentagonal having 5 columns, or hexagonal having 6 columns (as figure 2D), or heptagonal having 7 columns or even octagonal with 8 columns (as per Figure 2C), and so on, depending on the area of application, loads to be applied to the structure, tower height, among other factors, including aesthetic aspects.
Os elementos tubulares usados na constituição das colunas 3 e na estrutura de treliçamento 4 entre as colunas podem ser tubos individuais unidos entre si, ou ainda composições de tubos unidos entre si, caso seja necessário proporcionar uma maior resistência à torre, por exemplo, em casos de torres muito altas e com elevadas cargas. Exemplos de composições de tubos 7 são mostradas nas figuras 3A a 3D em seção transversal e nas figuras 4A e 4B, em vista frontal.  The tubular elements used in the constitution of the columns 3 and the lattice structure 4 between the columns may be individual tubes joined together, or even compositions of tubes joined together, if it is necessary to provide greater resistance to the tower, for example in very tall towers with high loads. Examples of pipe compositions 7 are shown in Figures 3A to 3D in cross section and Figures 4A and 4B in front view.
Cada composição de tubo 7'é constituída de dois, três ou mais tubos 8 unidos entre si por elementos de ligação metálicos 9 em suas extremidades e/ou ao longo de seus comprimentos, ou são diretamente soldados, formando, assim, um elemento único a ser usado na montagem da torre. As figuras 3A e 3C ilustram o caso de composições 7 de dois tubos 8 de seção circular ou retangular unidos entre si, e as figuras 3B e 3D ilustram exemplos de composições 7 de três tubos 8 de seção circular ou retangular unidos entre si. Each tube composition 7 ' consists of two, three or more tubes 8 joined together by metal connection elements 9 at their ends and / or along their lengths, or are directly welded, thus forming a single element to each other. be used in tower assembly. Figures 3A and 3C illustrate the case of compositions 7 of two circular or rectangular section tubes 8 joined together, and Figures 3B and 3D illustrate examples of compositions 7 of three pipe 8 of circular or rectangular section joined together.
Como elementos de ligação 9 entre os tubos das composições de tubos das colunas, podem ser usados preferivelmente soldas, tubos metálicos, chapas metálicas, perfis "U", "1" e "H", cantoneiras e suas composições, ou qualquer outro tipo de perfil metálico com outro formato de seção transversal. Esses elementos de ligação 9 podem estar presentes de forma intermitente ou contínua entre os tubos 8 das composições 9 ao longo do comprimento dos mesmos.  As connecting elements 9 between the pipes of the column pipe compositions, preferably welds, metal pipes, sheet metal, "U", "1" and "H" profiles, angles and their compositions, or any other type of pipe may be used. metal profile with another cross-sectional shape. Such connecting elements 9 may be intermittently or continuously present between the tubes 8 of the compositions 9 along the length thereof.
No exemplo da esquerda das figuras 4A e 4B, os tubos 8 da composição 7 são unidos entre si, ao longo de seu comprimento, por uma chapa metálica 9 cujas extremidades longitudinais são soldadas aos tubos.In the left example of Figures 4A and 4B, the tubes 8 of composition 7 are joined together along their length by a sheet metal 9 whose longitudinal ends are welded to the pipes.
Nos exemplos mostrados no centro e na direita das figuras 4A e 4B, quando os elementos de ligação 9 usados são tubos, ou outros tipos de perfis metálicos, os tubos 8 da composição 9 podem ser unidos entre si fixando-se os elementos de ligação de forma treliçada, ou fixando-se esses elementos paralelalemente entre si, e perpendicularmente aos tubos 8, em uma ligação chamada normalmente de travejamento. Esses elementos de ligação 9 são geralmente fixados aos tubos por soldagem direta entre as peças. In the examples shown in the center and right of Figures 4A and 4B, when the connecting elements 9 used are pipes or other types of metal profiles, the pipes 8 of composition 9 may be joined together by securing the connecting elements of lattice, or by fixing these elements parallel to each other, and perpendicular to the tubes 8, in a connection commonly called locking. These connecting elements 9 are generally fixed to the pipes by direct welding between the pieces.
Os elementos tubulares que constituem a estrutura treliçada (diagonais e montante) montada entre as colunas da torre podem ser fixados entre si de diferentes formas, por meio de solda ou de elementos de fixação 10, tais como chapas de ligação, flanges, perfis "T", "U", T e Ή", cantoneiras, tubos e suas composições, os quais são unidos aos elementos tubulares por soldagem ou aparafusamento. Alguns exemplos de elementos de fixação 10 são mostrados nas figuras 6, 7A e 7B. A figura 6 mostra exemplos de flanges 10 com seção circular usados com tubos 8 de seção circular, e de flanges 10 com seção retangular usados com tubos 8 de seção retangular. Esses flanges são fixados às extremidades dos elementos tubulares e são dotados de furos que permitem que elementos tubulares adjacentes sejam aparafusados entre si ou a outros elementos estruturais da torre 1 , e até mesmo à coluna. As figuras 7 A e 7B mostram uma vista frontal e uma vista lateral de um elemento de fixação 10 na forma de perfil em T também soldado à extremidade do elemento tubular 8, e cuja aba mais longa do T se estende axialmente a partir do tubo. Essa aba mais longa pode ser dotada de furos para aparafusamento com outros componentes da estrutura ou elementos de fixação.  The tubular elements constituting the lattice structure (diagonal and upstream) mounted between the tower columns can be fixed to each other in different ways by welding or fastening elements 10, such as connecting plates, flanges, T-profiles. "," U ", T and Ή", angles, tubes and their compositions which are joined to the tubular elements by welding or bolting. Some examples of fastening elements 10 are shown in Figures 6, 7A and 7B. Figure 6 shows examples of circular section flanges 10 used with circular section pipes 8, and rectangular section flanges 10 used with rectangular section pipes 8. These flanges are attached to the ends of the tubular members and are provided with holes that allow tubular members bolts to each other or to other structural elements of tower 1, and even to the column Figures 7A and 7B show a front view and a side view of a fastener 10 in the form of a T-profile also welded to the end of the tubular member 8, and whose longer tab of the T extends axially from the tube. This longer flap may be provided with bolt-on holes with other frame components or fasteners.
Preferencialmente serão empregadas ligações que facilitem e agilizem o processo de montagem, buscando soluções que garantam um bom desempenho durante a vida útil da estrutura. Por essa razão, são preferencialmente, empregadas ligações parafusadas, com chapas na forma de ligações flangeadas ou com chapas de topo, perfis "T" ou perfis Ί" descritos anteriormente, sempre com especial atenção aos efeitos da fadiga a que estas ligações podem estar sujeitas, o que não impede o emprego de ligações soldadas entre os elementos de ligação, quando se julgar mais adequado ao projeto. Preferably, connections will be employed to facilitate and speed up the assembly process, seeking solutions that guarantee good performance during the service life of the structure. For this reason, bolted connections with flanged or end plate plates, "T" or "perfis" profiles described above are preferably employed, always paying particular attention to the effects of fatigue to which these connections may be subjected. , which does not prevent the use of connections welded between the connecting elements, when deemed most suitable for the project.
A conexão treliçada entre os elementos tubulares 8 da estrutura pode ser feita em diferentes formatos de treliça. Exemplos de tipos de ligação entre os elementos tubulares usados na estrutura da presente invenção são ligações do tipo DK, K, KK, KT, N/ T, TT, DT, X, XX, Y e DY, não se excluindo outras formas de ligação e combinações das mesmas dentro da mesma estrutura de torre.  The lattice connection between the tubular elements 8 of the structure can be made in different lattice shapes. Examples of types of connections between tubular elements used in the structure of the present invention are type DK, K, KK, KT, N / T, TT, DT, X, XX, Y, and DY connections, other forms of connection being excluded. and combinations thereof within the same tower structure.
Na figura 8 é mostrada em seção transversal uma possível forma de fixação da torre 1 ao solo, não excluindo outras formas. O elemento tubular que constitui a coluna possui uma chapa de base 11 fixada à sua extremidade inferior, conforme pode ser visto nas figuras 9A, 9B e 9C. Em casos de tubos com seção retangular ou circular pode ser utilizada chapa 11 de seção retangular (Figuras 9A, 9B). Opcionalmente, para tubos de seção circular, pode ser empregada chapa 11 com seção circular (Figura 9C). Os elementos tubulares são normalmente soldados às chapas de base 11, e essas chapas são dotadas de perfurações que permitem o encaixe de barras rosqueadas (chumbadores).  Figure 8 shows in cross section a possible way of fixing the tower 1 to the ground, not excluding other shapes. The tubular element constituting the column has a base plate 11 attached to its lower end, as shown in Figures 9A, 9B and 9C. In the case of tubes with rectangular or circular section, plate 11 of rectangular section can be used (Figures 9A, 9B). Optionally, for circular section pipes, plate 11 with circular section may be employed (Figure 9C). The tubular elements are usually welded to the base plates 11, and these plates are provided with perforations that allow the fitting of threaded bars (anchor bolts).
Além disso, a torre 1 pode ser construída a partir de diversos módulos 12 que podem ser pré-montados individualmente e, em seguida, são montados e fixados um sobre o outro, conforme Figura 10.  In addition, tower 1 can be constructed from several modules 12 which can be individually pre-assembled and then assembled and fixed on top of each other as shown in Figure 10.
A figura 5 mostra diversos exemplos de torres 101 , 102, 103, 104, 105 e 106 que possuem um segmento superior 13 e um segmento inferior 14 com geometrias diferentes. Como pode ser notado nas torres 101 , 102 e 103, , a torre pode ser constituída de tal forma que no segmento superior 13, os elementos tubulares são unidos por um tipo de treliçamento e no segmento inferior 14 os elementos tubulares são unidos por outro tipo de treliçamento. Essa variação de modalidades de treliçamentos pode ocorrer também em um segmento da torre. Já nas torres 104, 105 e 106, o mesmo tipo de treliçamento é usado desde a base até o topo da torre. Ainda nesse sentido, as torres da presente invenção também podem ser constituídas de tal forma que a base do segmento superior 13 apresenta um tipo de geometria, quadrada, triangular, octogonal, entre outras, e a base do segmento inferior 14 apresenta outro tipo de geometria diferente da parte superior. Assim, um exemplo de projeto dessa torre poderia apresentar um módulo 12 ou segmento inferior 14 com uma base quadrada, e um módulo 12 ou segmento superior 13 com base octogonal. Os formatos das bases da torre e o tipo de treliçamento empregado são determinados para cada projeto, podendo variar em função da resistência estrutural que a torre deve apresentar, sua altura, condições climáticas e geográficas do local de instalação, custos, entre outros. Figure 5 shows several examples of towers 101, 102, 103, 104, 105 and 106 having an upper segment 13 and a lower segment 14 with different geometries. As can be seen from towers 101, 102 and 103, the tower can be constructed such that in the upper segment 13 the tubular elements are joined by one type of truss and in the lower segment 14 the tubular elements are joined by another type. lattice. This variation of lattice modalities can also occur in one tower segment. In towers 104, 105 and 106, the same type of truss is used from the base to the top of the tower. Still in this sense, the towers of the present invention may also be formed such that the base of the upper segment 13 has a type of square, triangular, geometry. among others, and the base of the lower segment 14 has a different type of geometry than the upper one. Thus, an example design of such a tower could have a module 12 or lower segment 14 with a square base, and a module 12 or upper segment 13 with an octagonal base. The shape of the tower bases and the type of truss employed are determined for each project, and may vary depending on the structural strength that the tower must present, its height, climatic and geographical conditions of the installation site, costs, among others.
Na figura 12, é mostrada uma versão da torre estaiada 107 para aerogeradores, a qual possui estais 17 na parte inferior conectando a estrutura da torre 107 à fundação. Essa torre estaiada 107 pode também ser concebida com a mesma seção transversal ao longo de toda ou quase toda a sua extensão.  In Figure 12, a version of the windmill tower 107 is shown, which has snaps 17 at the bottom connecting the tower frame 107 to the foundation. This cable-stayed tower 107 may also be designed with the same cross-section along all or nearly all of its length.
A torre 1 pode ser concebida com diferentes inclinações das colunas em diferentes segmentos verticais, para ajustar a sua frequência natural aos limites requeridos pelo equipamento, evitando, assim, interferência no funcionamento do aerogerador (equipamento de geração de energia eólica).  Tower 1 can be designed with different column inclinations in different vertical segments to adjust their natural frequency to the limits required by the equipment, thus avoiding interference with wind turbine (wind power generation equipment) operation.
No exemplo mostrado na figura 14, a torre pode ser constituída com três segmentos com diferentes inclinações das colunas:  In the example shown in figure 14, the tower can be made up of three segments with different column inclinations:
- um segmento inferior 14 cujas colunas 3 formam um primeiro ângulo de inclinação 141 com o plano horizontal,  a lower segment 14 whose columns 3 form a first inclination angle 141 with the horizontal plane,
- um segmento superior 13 cujas colunas 3 formam um segundo ângulo de inclinação 131 com o plano horizontal, e  - an upper segment 13 whose columns 3 form a second inclination angle 131 with the horizontal plane, and
- um segmento de transição 15 entre o segmento inferior 14 e o segmento superior 13, formando um ângulo de transição 151 com o plano horizontal.  a transition segment 15 between the lower segment 14 and the upper segment 13, forming a transition angle 151 with the horizontal plane.
Nesse exemplo, o ângulo 151 formado pela coluna 3 com o plano horizontal no segmento de transição 15 é menor do que o ângulo correspondente no segmento inferior 14 e no segmento superior 13. Porém, esses ângulos podem ser ajustados de acordo com as necessidades do projeto.  In this example, the angle 151 formed by column 3 with the horizontal plane in the transition segment 15 is smaller than the corresponding angle in the lower segment 14 and the upper segment 13. However, these angles can be adjusted according to the needs of the project. .
O exemplo mostrado na figura 13 é um caso extremo da torre mostrada na figura 14, onde o ângulo das colunas 3 com o plano horizontal é reto (90°) no segmento inferior 14 e no segmento superior 13. Por consequência, o ângulo com o plano horizontal do segmento de transição é de 0o. Nesse caso, o segmento inferior 14 possui um diâmetro maior do que o segmento superior 13. Assim, o segmento de transição 15 possui vigas horizontais interligando o segmento inferior 14 e o segmento superior 13. The example shown in figure 13 is an extreme case of the tower. shown in Figure 14, where the angle of the columns 3 with the horizontal plane is right (90 °) at the lower end 14 and upper end 13. Consequently, the angle with the horizontal plane of the transition segment is of 0 o. In this case, the lower segment 14 has a larger diameter than the upper segment 13. Thus, the transition segment 15 has horizontal beams interconnecting the lower segment 14 and the upper segment 13.
Em outras modalidades, os ângulos 131 , 141 , 151 das colunas 3 de todos os segmentos 13, 14, 15 podem ser iguais.  In other embodiments, the angles 131, 141, 151 of columns 3 of all segments 13, 14, 15 may be the same.
A torre 1 pode ser montada de diversas formas. Por exemplo, inicialmente, pelo menos um elemento tubular de cada uma das colunas 3 da torre é fixado no solo. Podem ser fixados inicialmente diversos elementos tubulares juntos que compõem cada coluna. Em seguida, os elementos tubulares que constituem o treliçamento 4 e/ou o pórtico são fixados entre as colunas 3.  Tower 1 can be assembled in various ways. For example, initially at least one tubular member of each of the tower columns 3 is fixed to the ground. Several tubular elements can be initially fixed together that make up each column. Thereafter, the tubular elements constituting the truss 4 and / or the gantry are fixed between the columns 3.
Os elementos tubulares diagonais e montantes que fazem parte da estrutura treliçada 4 podem ser conectados entre si in loco, durante a montagem da torre. Outra opção é que a estrutura treliçada 4 seja dividida em módulos, os quais podem ser pré-montados in loco, e em seguida, cada módulo é montado sobre o módulo imediatamente inferior.  The diagonal tubular elements and mullions that form part of the lattice structure 4 can be connected to each other on site during the tower assembly. Another option is for the lattice structure 4 to be divided into modules, which can be pre-assembled on site, and then each module is mounted on the next lower module.
Em situações onde o transporte não é o gargalo do processo de montagem da torre, os elementos tubulares de menores dimensões poderão ser devidamente conectados nas fábricas de estruturas, compondo assim módulos 12 de maiores dimensões, tais como segmentos da estrutura treliçada e/ou as composições 7 de elementos tubulares 8 usadas nessa estrutura. Tais peças de maiores dimensões deverão, assim, ser transportadas do local de sua fabricação até o local de implantação da torre, onde serão montadas na estrutura da torre 1 através dos mesmos equipamentos e com menor consumo de homem/hora no campo.  In situations where transport is not the bottleneck of the tower assembly process, the smaller tubular elements may be properly connected in the frame factories, thus forming larger modules 12 such as lattice segments and / or the compositions. 7 of tubular elements 8 used in this structure. Such larger pieces should thus be transported from the place of manufacture to the tower deployment site, where they will be mounted on the tower structure 1 using the same equipment and with less man-hour consumption in the field.
Essa etapa de conectar os elementos tubulares constituindo peças maiores pode ser realizada antes mesmo do início do processo de montagem da torre e da fixação das colunas no solo.  This step of connecting the tubular elements to larger parts can be done even before the tower assembly process and the columns are grounded.
Quando a torre for constituída por diversos módulos 12 montados juntos, o processo é realizado com etapas separadas de montagem de módulos de torre seguidas de etapas de fixação dos módulos 12 de torre um sobre o outro. Esses módulos 12 de torre são constituídos por segmentos de colunas e elementos tubulares diagonais e montantes montados em forma de treliça ou elementos aporticados entre as colunas, conforme mostrados na Figura 10. When the tower consists of several 12 modules assembled together, the process is carried out with separate tower module assembly steps followed by tower module 12 mounting steps on top of one another. These tower modules 12 are comprised of column segments and diagonal tubular elements and truss-mounted mullions or elements docked between the columns as shown in Figure 10.
Essas etapas podem ser realizada com auxílio de gruas 2 ou guindastes sobre rodas ou esteiras. Estas facilidades e possibilidades diversas de composição das peças estruturais e de montagem das torres 1 poderão minimizar a necessidade de utilização de equipamentos mais pesados no processo de implantação dos parques eólicos, podendo estes equipamentos ser empregados, quando necessários, apenas na fase de montagem dos aerogeradores.  These steps can be performed with the aid of 2 cranes or wheeled or crawler cranes. These diverse facilities and possibilities for composing the structural parts and assembling the towers 1 may minimize the need to use heavier equipment in the wind farm deployment process, and this equipment can be used, when necessary, only in the wind turbines assembly phase. .
Outra opção do processo de montagem é de se utilizar equipamento auxiliar de montagem, a ser instalado no topo da torre, capaz de erguer e montar as partes que compõem o aerogerador e suas pás.  Another option of the assembly process is to use auxiliary assembly equipment, to be installed on the top of the tower, able to lift and assemble the parts that make up the wind turbine and its blades.
Tendo sido descrito exemplos de concretizações preferidos, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitados tão somente pelo teor das reivindicações apenas, aí incluídos os possíveis equivalentes.  Having described examples of preferred embodiments, it should be understood that the scope of the present invention encompasses other possible variations, being limited only by the content of the claims only, including the possible equivalents thereof.

Claims

REIVINDICAÇÕES
1. Torre (1) para geração de energia eólica, caracterizada pelo fato de compreender:  1. Tower (1) for wind power generation, characterized by the fact that it comprises:
pelo menos três colunas (3) se estendendo de uma base da torre até a sua extremidade superior, cada coluna (3) sendo constituída de uma pluralidade de elementos tubulares metálicos conectados entre si; e  at least three columns (3) extending from a tower base to its upper end, each column (3) being comprised of a plurality of connected metal tubular members; and
uma pluralidade de elementos tubulares metálicos montados em forma de treliça (4) interligando as colunas (4), constituindo a estrutura da base até a extremidade superior da torre.  a plurality of lattice-mounted metal tubular elements (4) interconnecting the columns (4), constituting the base structure to the upper end of the tower.
2. Torre para geração de energia eólica de acordo com a reivindicação 1 , caracterizado pelo fato de que compreende ainda quadros rígidos aporticados, interligando as colunas (3).  Wind energy generation tower according to claim 1, characterized in that it further comprises rigid frames attached, interconnecting the columns (3).
3. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 2, caracterizado pelo fato de que os elementos tubulares são constituídos por composições de tubos (7) unidos entre si, sendo que cada composição de tubo (7) compreende pelo menos dois tubos (8) unidos entre si por elementos de ligação metálicos (9).  Wind energy generation tower according to one of Claims 1 to 2, characterized in that the tubular elements are composed of pipe compositions (7) joined together, each pipe composition (7) comprising at least at least two pipes (8) joined together by metal connection elements (9).
4. Torre para geração de energia eólica de acordo com a reivindicação 3, caracterizado pelo fato de que os elementos de ligação (9) são selecíonados do grupo compreendendo soldas, chapas metálicas, tubos metálicos, traves metálicas, perfis "U", T e Ή", cantoneiras e suas composições.  Wind power tower according to claim 3, characterized in that the connecting elements (9) are selected from the group comprising welds, sheet metal, metal tubes, metal beams, "U" profiles, T and Ή ", angles and their compositions.
5. Torre para geração de energia eólica de acordo com a reivindicação 3 ou 4, caracterizado pelo fato de que os elementos de ligação (9) são fixados de forma treliçada entre os tubos (8) da composição de tubos (7).  Wind power tower according to Claim 3 or 4, characterized in that the connecting elements (9) are fixedly interlocked between the tubes (8) of the tube composition (7).
6. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 5, caracterizado pelo fato de que os elementos tubulares da estrutura treliçada (4) são unidos entre si por elementos de fixação (10) conectados às extremidades dos elementos tubulares, esses elementos de fixação (10) sendo pelo menos um dentre soldas, chapas de ligação, flanges, perfis "T" "U", Ί" e "H", cantoneiras, tubos metálicos e suas composições. Wind energy generating tower according to one of Claims 1 to 5, characterized in that the tubular elements of the lattice structure (4) are joined together by fastening elements (10) connected to the ends of the tubular elements; these fasteners (10) being at least one of welds, connecting plates, flanges, "T""U", Ί "and" H "profiles, angles, metal pipes and their compositions.
7. Torre para geração de energia eólica de acordo com a reivindicação 6, caracterizado pelo fato de que os elementos de fixação (10) são fixados aos elementos tubulares por meio de soldagem, parafusamento ou rebitagem. Wind power tower according to Claim 6, characterized in that the fastening elements (10) are fixed to the tubular elements by welding, screwing or riveting.
8. Torre para geração de energia eólica de acordo com uma das reivindicações 6 a 7, caracterizado pelo fato de que a fixação entre os elementos de fixação (10) é feita por meio de soldagem, parafusamento ou rebitagem.  Wind power tower according to one of Claims 6 to 7, characterized in that the fixing between the fixing elements (10) is by welding, screwing or riveting.
9. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 8, caracterizado pelo fato de que possui uma seção transversal com geometria em polígono equilátero com N lados, sendo que N varia de 3 a 12, possuindo, em cada vértice, uma coluna (3).  Wind power tower according to one of Claims 1 to 8, characterized in that it has a cross-section with equilateral polygon geometry with N sides, where N varies from 3 to 12, having at each vertex , a column (3).
10. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 9, caracterizado pelo fato de que pelo menos alguns dos elementos tubulares são preenchidos com concreto, concreto armado, ou concreto com fibras.  Wind power tower according to one of Claims 1 to 9, characterized in that at least some of the tubular elements are filled with concrete, reinforced concrete or fiber-reinforced concrete.
11. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 10, caracterizada pelo fato de que possui:  Wind power tower according to one of Claims 1 to 10, characterized in that it has:
um segmento inferior (14) cujas colunas (3) formam um primeiro ângulo de inclinação (141) com um plano horizontal,  a lower segment (14) whose columns (3) form a first inclination angle (141) with a horizontal plane,
um segmento superior (13) cujas colunas (3) formam um segundo ângulo de inclinação (131) com o plano horizontal, e  an upper segment (13) whose columns (3) form a second inclination angle (131) with the horizontal plane, and
um segmento de transição (15) entre o segmento inferior (14) e o segmento superior (13), cujas colunas (3) formam um ângulo de transição (15) com o plano horizontal.  a transition segment (15) between the lower segment (14) and the upper segment (13), whose columns (3) form a transition angle (15) with the horizontal plane.
12. Torre para geração de energia eólica de acordo com uma das reivindicações 1 a 11 , caracterizada pelo fato de que possui estais (17) conectando a estrutura a uma fundação.  Wind energy generation tower according to one of Claims 1 to 11, characterized in that it has stacks (17) connecting the structure to a foundation.
PCT/BR2015/000055 2014-04-15 2015-04-15 Tower for generating wind power WO2015157835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102014009219-6A BR102014009219B1 (en) 2014-04-15 LATTICE TOWER FOR WIND GENERATORS AND LATRES TOWER ASSEMBLY PROCESS
BRBR1020140092196 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015157835A1 true WO2015157835A1 (en) 2015-10-22

Family

ID=54323296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/000055 WO2015157835A1 (en) 2014-04-15 2015-04-15 Tower for generating wind power

Country Status (1)

Country Link
WO (1) WO2015157835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114337A1 (en) * 2020-09-23 2022-03-25 Santerne Toulouse PROCESS FOR DESIGNING AND MANUFACTURING A PYLONE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9606177A (en) * 1996-12-18 1998-03-24 Seccional Tecnologia E Engenha Conical tower construction process of one or more columns in thin-walled metal tubes
WO1999055989A1 (en) * 1998-04-30 1999-11-04 Andrew Satcom Africa Structural steel elements
DE102007036764B3 (en) * 2007-08-03 2009-01-29 Butzkies Stahlbau Gmbh Tower for e.g. wind energy plant, has lattice shaped tower section with three corner posts, and tubular tower section with circular cross section, where free ends of inner profiles are connected with inner wall of tubular tower section
US20090249707A1 (en) * 2008-04-08 2009-10-08 Curme Oliver D Supporting a wind-driven electric generator
EP2280138A2 (en) * 2005-12-30 2011-02-02 Tracy Livingston Lifting system and apparatus for constructing wind turbine towers
US20110133475A1 (en) * 2010-04-23 2011-06-09 Danian Zheng Support tower for use with a wind turbine and system for designing support tower
US20110265419A1 (en) * 2008-12-31 2011-11-03 Seccional Brasil SA Metallic tower
WO2012042309A1 (en) * 2010-10-01 2012-04-05 Seccional Brasil SA Vertical structure for supporting loads
EP2444571A1 (en) * 2010-10-22 2012-04-25 Rautaruukki OYJ Lattice tower
WO2013083802A2 (en) * 2011-12-07 2013-06-13 Dong Energy Wind Power A/S Support structure for wind turbine and method of mounting such support structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9606177A (en) * 1996-12-18 1998-03-24 Seccional Tecnologia E Engenha Conical tower construction process of one or more columns in thin-walled metal tubes
WO1999055989A1 (en) * 1998-04-30 1999-11-04 Andrew Satcom Africa Structural steel elements
EP2280138A2 (en) * 2005-12-30 2011-02-02 Tracy Livingston Lifting system and apparatus for constructing wind turbine towers
DE102007036764B3 (en) * 2007-08-03 2009-01-29 Butzkies Stahlbau Gmbh Tower for e.g. wind energy plant, has lattice shaped tower section with three corner posts, and tubular tower section with circular cross section, where free ends of inner profiles are connected with inner wall of tubular tower section
US20090249707A1 (en) * 2008-04-08 2009-10-08 Curme Oliver D Supporting a wind-driven electric generator
US20110265419A1 (en) * 2008-12-31 2011-11-03 Seccional Brasil SA Metallic tower
US20110133475A1 (en) * 2010-04-23 2011-06-09 Danian Zheng Support tower for use with a wind turbine and system for designing support tower
WO2012042309A1 (en) * 2010-10-01 2012-04-05 Seccional Brasil SA Vertical structure for supporting loads
EP2444571A1 (en) * 2010-10-22 2012-04-25 Rautaruukki OYJ Lattice tower
WO2013083802A2 (en) * 2011-12-07 2013-06-13 Dong Energy Wind Power A/S Support structure for wind turbine and method of mounting such support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114337A1 (en) * 2020-09-23 2022-03-25 Santerne Toulouse PROCESS FOR DESIGNING AND MANUFACTURING A PYLONE
WO2022064126A1 (en) * 2020-09-23 2022-03-31 Santerne Toulouse Method for designing and producing a pylon

Also Published As

Publication number Publication date
BR102014009219A2 (en) 2015-12-08
BR102014009219A8 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
US9828786B2 (en) Modular tower for a wind power plant
ES2646046T5 (en) Procedure for the manufacture and assembly of a tubular tower type construction
CA2776020C (en) Wind turbine with tower support system and associated method of construction
US20100132299A1 (en) Wind turbine with improved tower and method of assembling same
KR101242505B1 (en) Modular type wind power generation tower
US9249784B2 (en) Transition structure for a wind turbine tower
US10451043B2 (en) Hybrid tubular lattice tower assembly for a wind turbine
US20130212963A1 (en) Wind Turbine Tower
BR112018073567B1 (en) TOWER SECTION FOR AUTOMATIC LIFT OF NEW OR EXISTING WIND TURBINES AND METHOD OF AUTOMATIC LIFT OF THE TOWER SECTION WITH COMPLETE WIND TURBINE ON ITS TOP
US20130104489A1 (en) Tower construction
KR20150114073A (en) Modular wind tower
US20130283722A1 (en) Transition Structure Between Adjacent Tower Structures
CN107849864B (en) Tower of a wind power plant
WO2012052086A1 (en) Tower
WO2015157835A1 (en) Tower for generating wind power
Agbayani et al. The rapid evolution of wind turbine tower structural systems: a historical and technical overview
CN117514633A (en) Wind turbine tower section, wind turbine tower and method of assembly
WO2009098524A1 (en) Aluminum triangular lattice section for the construction of lattice towers of various heights with guy wires
ES2775014T3 (en) Tower, in particular for a wind power plant
US8661764B2 (en) Method of forming multilayered netlock girder system
BR102014009219B1 (en) LATTICE TOWER FOR WIND GENERATORS AND LATRES TOWER ASSEMBLY PROCESS
CN220727327U (en) Pipeline support structure and fly ash treatment system
CN207234346U (en) Substation line aerial earth wire gantry framework A cabinet frame securing devices
BR102016014575A2 (en) PRE-MOLDED STRUCTURE APPLIED TO WIND TOWER
JP3183087U (en) Steel base structure for solar panel and solar panel mount using the base structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779499

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15779499

Country of ref document: EP

Kind code of ref document: A1