WO2015156125A1 - 医用画像撮影装置及び医用画像撮影方法 - Google Patents
医用画像撮影装置及び医用画像撮影方法 Download PDFInfo
- Publication number
- WO2015156125A1 WO2015156125A1 PCT/JP2015/059030 JP2015059030W WO2015156125A1 WO 2015156125 A1 WO2015156125 A1 WO 2015156125A1 JP 2015059030 W JP2015059030 W JP 2015059030W WO 2015156125 A1 WO2015156125 A1 WO 2015156125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- index value
- medical image
- parameter
- axis
- image photographing
- Prior art date
Links
- 238000002059 diagnostic imaging Methods 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 title claims description 9
- 238000010586 diagram Methods 0.000 claims abstract description 74
- 238000003384 imaging method Methods 0.000 claims abstract description 44
- 239000003550 marker Substances 0.000 claims description 12
- 238000002591 computed tomography Methods 0.000 description 17
- 238000002595 magnetic resonance imaging Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000013480 data collection Methods 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/545—Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4435—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
Definitions
- the present invention relates to a medical image photographing apparatus such as an X-ray CT (Computed Tomography) apparatus or an MRI (Magnetic Resonance Imaging) apparatus, and relates to a technique that supports setting of photographing conditions.
- a medical image photographing apparatus such as an X-ray CT (Computed Tomography) apparatus or an MRI (Magnetic Resonance Imaging) apparatus
- a medical imaging apparatus typified by an X-ray CT apparatus is an apparatus that images the inside of a subject and is used for diagnosis such as the detection of a lesion.
- the imaging conditions of the medical imaging apparatus include various parameters.
- the X-ray CT apparatus there are the tube voltage and tube current of the X-ray tube, the rotation speed of the scanner, the moving speed of the bed, and the like.
- the operator needs to pay attention to the index value other than the image quality, for example, the magnitude of the exposure dose by X-rays, while setting the imaging condition based on the image quality to be acquired.
- Patent Document 1 discloses that the exposure dose under the set imaging conditions is displayed on a two-dimensional map of tube voltage-tube current.
- Patent Document 1 Although the magnitude of the exposure dose under the set imaging conditions can be grasped, what parameter should be set in the imaging conditions in order to keep the exposure dose below a predetermined value. The operator has not been able to grasp this.
- index values other than the exposure dose for example, the SAR (Specific Absorption Ratio) of the MRI apparatus, in order to keep it below a certain specified value (upper limit value), what parameter should be changed and how much There is a need to know at a glance.
- SAR Specific Absorption Ratio
- an object of the present invention is to provide a medical image photographing apparatus that can reduce the burden on an operator when setting photographing conditions.
- the present invention sets a scale for each parameter axis in accordance with an index value calculated based on the value of each parameter of the imaging condition, and shows a figure indicating the size of the calculated index value And a relational diagram composed of the axis of each parameter having a set scale.
- the present invention is a medical image capturing apparatus that acquires and displays a tomographic image of a subject, an index value calculation unit that calculates an index value based on the values of parameters of imaging conditions, and a calculation A relational diagram composed of a scale setting unit for setting the scale of each parameter axis according to the index value, a figure indicating the size of the calculated index value, and the axis of each parameter having the set scale And a display control unit for displaying.
- FIG. 1 is a block diagram showing an overall configuration of an X-ray CT apparatus which is an example of a medical image photographing apparatus. As shown in FIG. 1, the X-ray CT apparatus 1 includes a scan gantry unit 100 and an operation unit 120.
- the scan gantry unit 100 includes an X-ray tube device 101, a rotating disk 102, a collimator 103, an X-ray detector 106, a data collection device 107, a bed device 105, a gantry control device 108, and a bed control device 109. And an X-ray control device 110.
- the X-ray tube apparatus 101 is an apparatus that irradiates the subject placed on the bed apparatus 105 with X-rays.
- the collimator 103 is a device that limits the radiation range of X-rays emitted from the X-ray tube device 101.
- the rotating disk 102 includes an opening 104 into which the subject placed on the bed apparatus 105 enters, and is equipped with an X-ray tube device 101 and an X-ray detector 106, and rotates around the subject. .
- the X-ray detector 106 is a device that measures the spatial distribution of transmitted X-rays by detecting X-rays that are disposed opposite to the X-ray tube device 101 and transmitted through the subject.
- 102 is one-dimensionally arranged in the rotation direction of 102, or a large number of detection elements are two-dimensionally arranged in the rotation direction of the rotating disk 102 and the rotation axis direction.
- the data collection device 107 is a device that collects the X-ray dose detected by the X-ray detector 106 as digital data.
- the gantry control device 108 is a device that controls the rotation and inclination of the rotating disk 102.
- the bed control device 109 is a device that controls the vertical and horizontal movements of the bed device 105. Note that the respective directions of up, down, front, back, left, and right are the directions shown in FIG. 1, and are also referred to as Y direction, Z direction, and X direction in the following description.
- the X-ray control device 110 is a device that controls electric power input to the X-ray tube device 101.
- the operation unit 120 includes an input device 121, an image processing device 122, a display device 125, a storage device 123, and a system control device 124.
- the input device 121 is a device for inputting a subject's name, examination date and time, imaging conditions, and the like.
- the input device 121 is a keyboard, a pointing device, a touch panel, or the like.
- the image processing apparatus 122 is an apparatus that reconstructs a CT image by performing arithmetic processing on measurement data transmitted from the data collection apparatus 107.
- the display device 125 is a device that displays a CT image or the like created by the image processing device 122, and is specifically a CRT (Cathode-Ray® Tube), a liquid crystal display, or the like.
- the storage device 123 is a device that stores data collected by the data collection device 107, image data of a CT image created by the image processing device 122, and the like. Specifically, the storage device 123 is an HDD (Hard Disk Drive) or the like.
- the system control device 124 is a device that controls these devices, the gantry control device 108, the bed control device 109, and the X-ray control device 110. Further, the system control device 124 may execute a process flow described later.
- the X-ray tube device 101 is controlled by the X-ray controller 110 controlling the power input to the X-ray tube device 101 based on the imaging conditions input from the input device 121, particularly the X-ray tube voltage and X-ray tube current. Irradiates the subject with X-rays according to imaging conditions.
- the X-ray detector 106 detects X-rays irradiated from the X-ray tube apparatus 101 and transmitted through the subject with a large number of X-ray detection elements, and measures the distribution of transmitted X-rays.
- the rotating disk 102 is controlled by the gantry control device 108, and rotates based on the imaging conditions input from the input device 121, particularly the rotation speed.
- the couch device 105 is controlled by the couch control device 109 and operates based on the imaging conditions input from the input device 121, particularly the helical pitch.
- X-ray irradiation from the X-ray tube apparatus 101 and transmission X-ray distribution measurement by the X-ray detector 106 are repeated along with the rotation of the rotating disk 102, whereby projection data from various angles is acquired.
- the projection data is associated with a view representing each angle, a channel (ch) number and a column number that are detection element numbers of the X-ray detector 106.
- the acquired projection data from various angles is transmitted to the image processing device 122.
- the image processing device 122 reconstructs the CT image by performing back projection processing on the transmitted projection data from various angles.
- the CT image obtained by the reconstruction is displayed on the display device 125.
- the functional configuration of the X-ray CT apparatus 1 of the present embodiment will be described with reference to FIG.
- These functional configurations may be configured by dedicated hardware, or may be configured by software operating on the system control device 124. Here, the case where it comprises with software is demonstrated.
- the system control device 124 of the X-ray CT apparatus 1 includes an index value calculation unit 20, a scale setting unit 21, and a display control unit 22.
- an index value calculation unit 20 a scale setting unit 21
- a display control unit 22 a display control unit 22.
- the index value calculation unit 20 calculates an index value based on the value of each parameter of the shooting conditions.
- a relational expression indicating a relationship between each parameter set in advance and the index value may be used, or a correspondence table indicating a correspondence between each parameter and the index stored in the storage device 123 is used. May be.
- the index value in the present embodiment includes, for example, an exposure dose of the subject, an image SD (Standard Deviation) indicating the noise amount of the acquired CT image, and the like.
- a value input via the input device 121 or a value stored in advance in the storage device 123 is used as the value of each parameter.
- the scale setting unit 21 sets the scale of each parameter axis according to the index value calculated by the index value calculation unit 20.
- the scale of each parameter axis is set so as to correspond to the unit amount of the index value when parameters other than the parameter are constant. For example, when the index value is proportional to A times the parameter, the scale of the parameter axis is 1 / A of the index value with respect to the index value, and when the index value is proportional to the square of the parameter, the index value On the other hand, the scale of the parameter axis corresponds to the square root of the index value.
- the display control unit 22 displays a relationship diagram composed of a figure indicating the magnitude of the index value calculated by the index value calculation unit 20 and the axis of each parameter having a scale corresponding to the unit amount of the index value. 125 is displayed.
- the graphic indicating the magnitude of the index value may be, for example, an on-axis marker or bar graph, or a planar graphic. The relationship diagram displayed on the display device will be described in detail later.
- Step 201 The index value calculation unit 20 acquires shooting conditions. Specifically, each parameter value input via the input device 121 is accepted, or the value of each parameter stored in the storage device 123 is read.
- FIG. 4 shows an example of the shooting condition setting screen.
- the screen 3 includes an image display area 300 and a shooting condition display area 301.
- the image display area 300 captured images are displayed.
- the image display area 300 is not essential.
- imaging parameters such as the tube voltage and tube current of the X-ray tube apparatus 101, the rotational speed of the rotating disk 102, and the like are displayed for each imaging number.
- An index value selection unit 302 for selecting a desired index value from a plurality of index values may be provided.
- the index value selection unit 302 is configured with a pull-down menu, and the exposure dose is selected.
- the index value calculation unit 20 calculates an index value based on the imaging condition acquired in step 201.
- a preset relational expression may be used, or a correspondence table stored in the storage device 123 may be used. In the following description, the following relational expression is used.
- D f (V, C, t, p) (1) D is the exposure dose, V is the tube voltage, C is the tube current, t is the scan time, p is the helical pitch, and f () is the relationship between the exposure dose and the tube voltage, tube current, scan time, and the helical pitch. Is a relational expression.
- the exposure dose D is f ( V4, C4, t3, p4).
- the scale setting unit 21 sets the scale of each parameter axis according to the index value calculated in step 202.
- Step 204 Based on the index value calculated in step 202 and the scale of each parameter axis set in step 203, the display control unit 22 displays a relationship diagram indicating the relationship between the index value and each parameter on the display device 125. .
- Figure 5 shows an example of the relationship diagram.
- the relationship diagram 4 includes axes 401 to 405 and a marker 406.
- Axes 401 to 405 are axes representing exposure dose, tube voltage, tube current, scan time, and helical pitch, and are arranged in parallel to each other.
- the scales of the axes 402 to 405 are associated with the index value axis 401, respectively. That is, they are associated with each other so as to know how much the index value is when a certain parameter is changed.
- the marker 406 is a figure indicating the magnitude of the index value calculated based on the set shooting conditions.
- the magnitude of the index value when the tube voltage, tube current, scan time, and helical pitch are set to V4, C4, t3, and p4, respectively, and the tip of the marker 406 is on the axis 401. Pointing. That is, the exposure dose is D5.
- the relationship diagram 4 may be configured with a bar graph indicating the magnitude of the index value instead of the marker 406.
- a figure indicating the upper limit value of the exposure dose may be displayed as a reference value of the exposure dose that is an index value.
- the upper limit value of the exposure dose is displayed by a broken line between D4 and D5. Displaying such a reference value helps the operator to determine whether or not the index value calculated based on the shooting conditions is appropriate.
- the relationship diagram 4 of FIG. 5 it can be determined that the exposure dose exceeds the upper limit value under the set imaging conditions.
- Step 205 The system control device 124 determines whether or not the photographing condition has been changed. If the photographing condition has been changed, the process returns to step 201, and if there has not been a change, the process flow ends. Whether or not the shooting condition has been changed is determined by whether or not a parameter value has been newly set.
- the relationship diagram 5 in FIG. 6 is a state in which the value of the tube voltage in the relationship diagram 4 in FIG. 5 is changed from V4 to V3, and the system controller 124 determines that the imaging condition has been changed, and step 201 is performed. This is a result of returning to step 201 and executing the processing of steps 201-204.
- each step will be described.
- the index value calculation unit 20 acquires the changed imaging condition, that is, the tube voltage value V3.
- the index value calculation unit 20 calculates an index value corresponding to the changed shooting condition.
- the exposure dose is calculated as the value of D3 because the value of the tube voltage becomes V3.
- the scale setting unit 21 sets the scale of each parameter axis according to the calculated exposure dose.
- the display control unit 22 causes the display device 125 to display the relationship diagram 5 of FIG. 6 based on the processing results of steps 202 and 203.
- the tube current axis 403 is not changed with respect to FIG. 6, and the scales of the axes 402, 404, and 405 other than the tube current are changed according to the exposure dose value.
- the index value is the exposure dose
- the past imaging history of the subject is acquired
- the exposure history is calculated from the acquired imaging history
- the calculated exposure history is accumulated in the exposure dose of the current imaging. You may display. By accumulating and displaying the exposure history, it is possible to set the shooting conditions while allowing the operator to consider the shooting history.
- FIG. 8 is an example of a relationship diagram in which a plurality of index values are displayed.
- An axis 701 of the image SD is displayed on the left side of the exposure dose axis 401.
- the scale setting unit 21 sets the scale of each parameter axis according to the calculated one index value, and the scale of another index value axis is set according to the scale of each parameter axis.
- the exposure dose is calculated as D5 based on the tube voltage V4, tube current C4, scan time t3, and pitch p4 set as the imaging conditions, and the axis of each parameter according to the value of the exposure dose.
- a scale from 402 to 405 is set.
- the scale of the axis 701 of the image SD is set according to the scale of the axes 402 to 405 of each parameter.
- a broken line indicating a preset target value of the image SD may be displayed on the axis 701 of the image SD as a reference value of the image SD.
- the marker 406 indicates that the exposure dose and the image SD are D5 and SD5, respectively.
- the exposure dose and the image SD have been described as examples of index values, the index values are not limited to these.
- the time required for the examination that is, the time from the start of imaging to the creation of a diagnostic medical image may be used as the index value.
- the time required for the inspection is used as an index value
- a relationship diagram for setting the scanning time, the number of scans, the number of reconstructed sheets, the level of successive approximation processing, the delay time, etc. may be displayed as imaging condition parameters.
- the index value axis and the parameter axis are arranged in parallel.
- the axes of the parameters are arranged radially, and the size of the index value is displayed as the area of the plane figure. That is, in the present embodiment, the configuration of the relationship diagram showing the relationship between the index value and each parameter is different from that of the first embodiment, and other configurations are the same as those of the first embodiment. A description of the same configuration is omitted.
- FIG. 9 shows an example of the relationship diagram of this embodiment.
- the relationship diagram 8 includes axes 801 to 805 and a plane figure 806.
- Axes 801 to 805 are axes representing scan time, tube voltage, tube current, tilt angle that is the tilt angle of the rotating disk 102, and collimation that is the X-ray irradiation width. Radiation from the origin 800 and around the origin 800 Are arranged at an equal angle.
- the scales of the axes 801 to 805 are each associated with the magnitude of the index value. That is, as in the first embodiment, the index value is calculated based on the imaging condition, and the scales of the axes 801 to 805 are set so that the distance from the origin 800 represents the calculated index value. .
- the plane figure 806 is a figure representing the size of the index value by the area. A point corresponding to the magnitude of the index value is calculated on each axis, and a plane figure 806 is formed by connecting the calculated points. That is, the plane figure 806 is a regular polygon centered on the origin 800 and has vertices corresponding to the number of parameter axes. In the relational diagram 8 of FIG. 9, since there are five parameter axes, the plane figure 806 is a regular pentagon. Since the scale of each parameter axis is set so that the distance from the origin 800 represents the magnitude of the index value, the shape of the plane figure 806 may be circular. Further, it may be a sector or a polygon formed by connecting an arbitrary point and end point on a sector arc. The index value calculated together with the plane figure 806 may be displayed as a numerical value.
- the scales of the axes 801 to 805 may be set so as to correspond to the square root of the index value.
- the area of the plane figure 806 changes in proportion to the index value size, so the operator can intuitively determine the index value size. Makes it easier to grasp.
- a graphic indicating the target value of the index value may be displayed on the relationship diagram as a reference value.
- the target value of the index value is displayed by a regular polygon 808. Displaying such a target value helps the operator to determine whether or not the index value calculated based on the shooting conditions is appropriate. In the relationship diagram 8 of FIG. 9, it can be determined that the index value does not reach the target value under the set shooting conditions.
- the tube voltage display label 807 is designated.
- a value that can be selected as the tube voltage is displayed on the axis 802.
- 100 kV, 120 kV, and 140 kV are displayed as selectable values.
- the display is switched to the relationship diagram 9 of FIG. That is, as in the first embodiment, the index value is calculated based on the changed shooting condition, and the calculated size of the index value is reflected in the area of the plane figure 806. At this time, since the parameters other than the tube voltage are not changed, the scales of the axes 801, 803 to 805 of the parameters other than the tube voltage are changed according to the index value.
- the tube current is set as 200 mA in the relationship diagram 8 in FIG. 9
- the intersection point between the tube current axis 803 and the plane figure 806 in the relationship diagram 8 in FIG. 9 is 200 mA
- the scale of the tube current axis 803 is changed so that the intersection between the tube current axis 803 and the plane figure 806 is 200 mA.
- the vertex of the plane figure 806, that is, the intersection of each parameter with the axes 801 to 805 is moved on the axes 801 to 805 by operating the mouse. May be.
- the configuration of the relationship diagram of the present embodiment is a display form such as a so-called radar chart.
- the scale of each parameter axis 801 to 805 is the same as the calculated index value, that is, the same. It is set according to the scale. Since the shape of the plane figure 806 representing the magnitude of the index value is always a regular polygon or a circle, it is easy to grasp the magnitude of the index value from the area of the plane figure 806.
- the display area can be made smaller than that of the relationship diagram of the first embodiment, which is advantageous when configuring a screen that needs to display other information.
- a screen 10 as shown in FIG. 11 may be displayed.
- the screen 10 includes an image display area 1000 and a shooting condition display area 1001.
- a captured image for example, a scanogram image is displayed.
- the position in the body axis direction of the subject may be displayed on the scanogram image.
- a relationship diagram showing the relationship between the imaging condition and the index value that is, a relationship diagram as shown in FIGS. 9 and 10 is displayed for each position z in the body axis direction of the subject.
- the second embodiment is a GUI (Graphical User Interface) that changes parameters on the vertices of the plane figure 806, that is, on the axis of each parameter.
- the parameter is changed by operating the side of the plane figure 806 with the mouse.
- the configuration for changing parameters is different from that of the second embodiment, and other configurations are the same as those of the second embodiment. A description of the same configuration is omitted.
- FIG. 12 shows an example of the relationship diagram of this embodiment.
- the configuration of the relationship diagram 11 is the same as that of the relationship diagrams 8 and 9 of FIGS. 9 and 10, but the values of adjacent parameters across the side 1101 are specified by operating the side 1101 with the mouse and specifying the size of the index value. Is set. For example, when the side 1101 is dragged on the side of the regular polygon 808 indicating the target value of the index value, the index value is the target value for the tube voltage and the tube current that are combinations of parameters adjacent to each other across the side 1101. Candidates for conditions that are equivalent to are retrieved and displayed on the relationship diagram.
- 100 kV-350 mA, 120 kV-350 mA, and 120 kV-400 mA are displayed as combinations of tube voltage and tube current. The operator may select a desired shooting condition from the displayed combinations.
- the scan time, tilt angle, and collimation which are parameters other than the tube voltage and tube current, are fixed at the set values.
- FIG. 13 shows another example of the relationship diagram of this embodiment.
- a combination of parameters adjacent to each other can be set by operating a mouse on one side of the plane figure 806.
- a combination of parameters that are not adjacent to each other for example, a combination of tube current and scan time cannot be set. Therefore, in the relationship diagram 12 of FIG. 13, the arrangement of the parameter axes can be changed, and a desired combination of parameters can be set.
- the second axis 1201 of the tube current is arranged between the scan time axis 801 and the collimation axis 805.
- the combination of tube current and scan time can be set by operating the side 1202
- the combination of tube current and collimation can be set by operating the side 1203.
- an X-ray CT apparatus is cited as an example of a medical image diagnostic apparatus.
- an MRI apparatus is taken as another example of the medical image diagnostic apparatus.
- FIG. 13 is a schematic view of one configuration example of the MRI apparatus.
- the MRI apparatus 13 irradiates the subject with a high-frequency magnetic field pulse (also referred to as an “RF pulse”), a static magnetic field generating magnet 1302 that generates a static magnetic field around the subject 1301, a gradient magnetic field coil 1303 that generates a gradient magnetic field, and the subject.
- the static magnetic field generating magnet 1302 is a permanent magnet, a superconducting magnet, or a normal conducting magnet disposed in a wide space around the subject 1301, and is parallel to the body axis of the subject 1301 or A uniform static magnetic field is generated in the vertical direction.
- the gradient magnetic field coil 1303 applies a gradient magnetic field in the X, Y, and Z axial directions to the subject 1301 in accordance with a signal from the gradient magnetic field power supply 1307.
- the imaging cross section of the subject is set depending on the method of applying the gradient magnetic field.
- the irradiation coil 1304 generates an RF pulse based on the signal from the RF transmitter 1308.
- This RF pulse atomic nuclei constituting the living tissue in the imaging cross section of the subject 1301 set by the gradient magnetic field coil 1303 are excited and an NMR (Nuclear-Magnetic-Resonance) phenomenon is induced.
- An echo signal which is an NMR signal generated by the NMR phenomenon of the atomic nucleus constituting the biological tissue of the subject 1301 induced by the RF pulse irradiated from the irradiation coil 1304, is received close to the subject 1301.
- the signal is detected by the signal detection unit 1309 through the coil 1305, is signal-processed by the signal processing unit 1310, and is converted into an image.
- the converted image is displayed on the display unit 1311.
- parameters such as a repetition time (TR) and an echo time (TE) necessary for imaging are input by the operator, and these parameters are sent to the display unit 1311 and displayed. Similarly, these parameters are sent to the control unit 1312.
- TR repetition time
- TE echo time
- control unit 1312 In accordance with the parameters received from the input unit 1313, the control unit 1312 generates a gradient magnetic field power source 1307, an RF transmission unit, and repeatedly generates slice encoding, phase encoding, and frequency encoding gradient magnetic fields and RF pulses in a predetermined pulse sequence. 1308, the signal processing unit 1310 is controlled.
- the control unit 1312 of the MRI apparatus 13 of the present embodiment includes an index value calculation unit 20, a scale setting unit 21, and a display control unit 22, as in the first embodiment. Since these functions in the same manner as in the first embodiment, the relationship between imaging condition parameters and index values such as SAR can be grasped at a glance in the MRI apparatus.
- FIG. 15 shows an example of the relationship diagram.
- the relationship diagram 14 includes axes 1401 to 1404 and a marker 1406.
- the axes 1401 to 1404 are axes representing the SAR, the flip angle, the number of slices, and the repetition time, and are arranged in parallel to each other.
- the scales of the axes 1402 to 1404 are associated with the index value axis 1401, respectively. That is, they are associated with each other so as to know how much the index value is when a certain parameter is changed.
- the marker 1406 indicates the magnitude of the index value calculated based on the set shooting conditions.
- the tip of the marker 1406 indicates on the axis 1401 the size of the index value when FA4, S4, and TR1 are set for the flip angle, the number of slices, and the repetition time, respectively. That is, it is shown that SAR is SAR5.
- the upper limit value of SAR is displayed as a reference value of SAR by a broken line between D4 and D5. Displaying such a reference value helps the operator to determine whether or not the index value calculated based on the shooting conditions is appropriate. In the relationship diagram 14 of FIG. 15, it can be determined that the SAR exceeds the upper limit value under the set imaging conditions.
- the imaging condition is set. It is possible to reduce the burden on the operator when doing this.
- the medical image display apparatus of the present invention is not limited to the above embodiment, and can be embodied by modifying the constituent elements without departing from the gist of the invention. Moreover, you may combine suitably the some component currently disclosed by the said embodiment. Furthermore, some components may be deleted from all the components shown in the above embodiment.
- X-ray CT apparatus 100 scan gantry section, 101 X-ray tube apparatus, 102 rotating disk, 103 collimator, 104 opening, 105 bed apparatus, 106 X-ray detector, 107 data collection apparatus, 108 gantry control apparatus, 109 bed Control device, 110 X-ray control device, 120 operation unit, 121 input device, 122 image processing device, 123 storage device, 124 system control device, 125 display device, 20 index value calculation unit, 21 scale setting unit, 22 display control unit , 3 screen, 300 image display area, 301 imaging condition display area, 302 index value selection unit, 4, 5, 6, 7 relationship diagram, 401 exposure dose axis, 402 tube voltage axis, 403 tube current axis, 404 Scan time axis, 405 pitch axis, 406 marker, 701 image SD axis, 8, 9 relationship diagram, 801 scan time axis, 802 tube voltage axis, 803 tube current axis, 804 tilt angle axis, 805 Collimation axis, 8
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Pulmonology (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Human Computer Interaction (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
図1は医用画像撮影装置の一例であるX線CT装置の全体構成を示すブロック図である。図1に示すようにX線CT装置1は、スキャンガントリ部100と操作ユニット120を備える。
指標値算出部20は、撮影条件を取得する。具体的には、入力装置121を介して入力された各パラメータ値が受け付けられるか、記憶装置123に記憶された各パラメータの値が読み出される。
指標値算出部20は、ステップ201で取得された撮影条件に基づいて指標値を算出する。指標値の算出には、予め設定された関係式を用いても良いし、記憶装置123に記憶された対応表を用いても良い。以降の説明では、次式に示す関係式を用いる。
なお、Dは被曝線量、Vは管電圧、Cは管電流、tはスキャン時間、pはらせんピッチであり、f()は被曝線量と管電圧、管電流、スキャン時間、らせんピッチとの関係を示す関係式である。
目盛設定部21は、ステップ202で算出された指標値に応じて、各パラメータの軸の目盛を設定する。例えば、指標値である被曝線量がf(V4,C4,t3,p4)であるときに、管電圧の目盛はD=f(V,C4,t3,p4)の関係が成り立つように被曝線量と対応付けられて設定される。すなわち、管電圧以外のパラメータである管電流、スキャン時間、らせんピッチをそれぞれC4、t3、p4としたまま、指標値である被曝線量の値と対応づけられて管電圧の目盛が設定される。同様に、被曝線量がf(V4,C4,t3,p4)であるときに、管電流の目盛はD=f(V4,C,t3,p4)の関係が、またスキャン時間の目盛はD=f(V4,C4,t,p4)の関係が、ピッチの目盛はD=f(V4,C4,t3,p)の関係が、それぞれ成り立つように被曝線量と対応付けられて設定される。
表示制御部22は、ステップ202で算出された指標値とステップ203で設定された各パラメータの軸の目盛に基づいて、指標値と各パラメータとの関係を示す関係図を表示装置125に表示する。
システム制御装置124は、撮影条件の変更がなされたか否かを判断する。撮影条件が変更されたのであればステップ201へ戻り、変更がなければ処理の流れは終了となる。撮影条件が変更されたか否かは、パラメータの値が新たに設定されたか否かにより判断される。
次に第二の実施形態について説明する。第一の実施形態では、指標値の軸と各パラメータの軸とが平行に配置された関係図であった。本実施形態では、各パラメータの軸を放射状に配置し、指標値の大きさを平面図形の面積で表示する。すなわち、本実施形態では指標値と各パラメータとの関係を示す関係図の構成が第一の実施形態と異なり、他の構成については第一の実施形態と同様である。同様の構成については説明を省略する。
次に第三の実施形態について説明する。第二の実施形態では、平面図形806の頂点、すなわち各パラメータの軸上でパラメータを変更するGUI(Graphical User Interface)であった。本実施形態では、平面図形806の辺をマウス操作することでパラメータを変更する。
次に第四の実施形態について説明する。第一から第三の実施形態では医用画像診断装置の一例としてX線CT装置を挙げた。本実施形態では医用画像診断装置の他の例としてMRI装置を挙げる。
Claims (10)
- 被検体の断層画像を取得して表示する医用画像撮影装置であって、
撮影条件の各パラメータの値に基づいて指標値を算出する指標値算出部と、
算出された指標値に応じて各パラメータの軸の目盛を設定する目盛設定部と、
算出された指標値の大きさを示す図形と、設定された目盛を有する各パラメータの軸とで構成される関係図を表示させる表示制御部と、
を備えることを特徴とする医用画像撮影装置。 - 請求項1に記載の医用画像撮影装置において、
前記図形は指標値の大きさを示す棒グラフあるいは指標値の軸上で指標値の大きさを指し示すマーカであり、
前記関係図は、前記棒グラフあるいは前記指標値の軸と、各パラメータの軸とが平行に配置されて構成されることを特徴とする医用画像撮影装置。 - 請求項1に記載の医用画像撮影装置において、
前記図形は指標値の大きさを示す平面図形であり、
前記関係図は、各パラメータの軸が前記平面図形の中心から放射状に配置されて構成されることを特徴とする医用画像撮影装置。 - 請求項3に記載の医用画像撮影装置において、
前記平面図形の面積が前記指標値の大きさに対応し、
前記各パラメータの軸の目盛が前記指標値の平方根に対応するように設定されることを特徴とする医用画像撮影装置。 - 請求項3に記載の医用画像撮影装置において、
前記関係図が前記被検体の体軸方向の位置毎に表示されることを特徴とする医用画像撮影装置。 - 請求項4に記載の医用画像撮影装置において、
前記関係図とともに、前記被検体の体軸方向の位置を示す画像が表示されることを特徴とする医用画像撮影装置。 - 請求項3に記載の医用画像撮影装置において、
前記平面図形の辺または円弧が操作されて前記指標値の大きさが指定されると、
指定された前記指標値の大きさに応じて、前記辺または前記円弧を挟んで隣り合うパラメータの組合せに関する撮影条件の候補が検索され表示されることを特徴とする医用画像撮影装置。 - 請求項7に記載の医用画像撮影装置において、
前記関係図を構成する軸の中のあるパラメータの軸が他のパラメータの軸の間に第二の軸として設定されることを特徴とする医用画像撮影装置。 - 請求項1に記載の医用画像撮影装置において、
前記関係図には、前記指標値の参照値が表示されることを特徴とする医用画像撮影装置。 - 被検体の断層画像を取得して表示する医用画像撮影装置を用いた医用画像撮影方法であって、
撮影条件の各パラメータの値に基づいて指標値を算出する指標値算出ステップと、
算出された指標値に応じて各パラメータの軸の目盛を設定する目盛設定ステップと、
算出された指標値の大きさを示す図形と、設定された目盛を有する各パラメータの軸とで構成される関係図を表示させる表示制御ステップと、
を備えることを特徴とする医用画像撮影方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580010540.0A CN106061391A (zh) | 2014-04-11 | 2015-03-25 | 医用图像摄影装置以及医用图像摄影方法 |
JP2016512654A JPWO2015156125A1 (ja) | 2014-04-11 | 2015-03-25 | 医用画像撮影装置及び医用画像撮影方法 |
US15/303,147 US20170055935A1 (en) | 2014-04-11 | 2015-03-25 | Medical image scanning apparatus and medical image scanning method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014081780 | 2014-04-11 | ||
JP2014-081780 | 2014-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015156125A1 true WO2015156125A1 (ja) | 2015-10-15 |
Family
ID=54287702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059030 WO2015156125A1 (ja) | 2014-04-11 | 2015-03-25 | 医用画像撮影装置及び医用画像撮影方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170055935A1 (ja) |
JP (1) | JPWO2015156125A1 (ja) |
CN (1) | CN106061391A (ja) |
WO (1) | WO2015156125A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017176268A (ja) * | 2016-03-28 | 2017-10-05 | 東芝メディカルシステムズ株式会社 | X線ct装置 |
JP2018038807A (ja) * | 2016-09-06 | 2018-03-15 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置 |
JP2018064715A (ja) * | 2016-10-18 | 2018-04-26 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置 |
JP2019158602A (ja) * | 2018-03-13 | 2019-09-19 | オムロン株式会社 | 外観検査装置、外観検査方法及びプログラム |
JP2021021620A (ja) * | 2019-07-26 | 2021-02-18 | 株式会社島津製作所 | X線位相イメージング装置 |
WO2024127751A1 (ja) * | 2022-12-16 | 2024-06-20 | 株式会社島津製作所 | X線撮影装置における表示方法およびx線撮影装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160042572A (ko) * | 2014-10-10 | 2016-04-20 | 삼성전자주식회사 | 방사선 촬영 장치, 방사선 촬영 장치의 제어 방법 및 컴퓨터 단층 촬영 장치 |
DE102020216040A1 (de) * | 2020-12-16 | 2022-06-23 | Siemens Healthcare Gmbh | Verfahren zur Ermittlung einer Anpassung einer Bildgebungsuntersuchung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013176426A (ja) * | 2012-02-28 | 2013-09-09 | Canon Inc | 放射線画像撮影装置及びその駆動方法、並びに、プログラム |
JP2013215473A (ja) * | 2012-04-11 | 2013-10-24 | Toshiba Corp | X線画像撮影装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4490645B2 (ja) * | 2003-04-09 | 2010-06-30 | 株式会社東芝 | X線コンピュータ断層撮影装置 |
WO2007138979A1 (ja) * | 2006-05-25 | 2007-12-06 | Hitachi Medical Corporation | X線ct装置 |
JP4509971B2 (ja) * | 2006-06-09 | 2010-07-21 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X線ct装置 |
JP5065822B2 (ja) * | 2007-09-14 | 2012-11-07 | 株式会社東芝 | X線ct装置、撮影計画支援装置および撮影計画支援プログラム |
JP5514450B2 (ja) * | 2009-02-23 | 2014-06-04 | 株式会社日立メディコ | X線ct装置 |
US9168010B2 (en) * | 2012-04-11 | 2015-10-27 | Kabushiki Kaisha Toshiba | X-ray imaging apparatus and medical image processing apparatus |
WO2016048388A1 (en) * | 2014-09-26 | 2016-03-31 | Somalogic, Inc. | Cardiovascular risk event prediction and uses thereof |
-
2015
- 2015-03-25 CN CN201580010540.0A patent/CN106061391A/zh active Pending
- 2015-03-25 JP JP2016512654A patent/JPWO2015156125A1/ja not_active Ceased
- 2015-03-25 WO PCT/JP2015/059030 patent/WO2015156125A1/ja active Application Filing
- 2015-03-25 US US15/303,147 patent/US20170055935A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013176426A (ja) * | 2012-02-28 | 2013-09-09 | Canon Inc | 放射線画像撮影装置及びその駆動方法、並びに、プログラム |
JP2013215473A (ja) * | 2012-04-11 | 2013-10-24 | Toshiba Corp | X線画像撮影装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017176268A (ja) * | 2016-03-28 | 2017-10-05 | 東芝メディカルシステムズ株式会社 | X線ct装置 |
US10610185B2 (en) | 2016-03-28 | 2020-04-07 | Canon Medical Systems Corporation | X-ray CT apparatus including processing circuitry to perform a metal-artifact reducing process |
JP2018038807A (ja) * | 2016-09-06 | 2018-03-15 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置 |
JP2018064715A (ja) * | 2016-10-18 | 2018-04-26 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置 |
JP2019158602A (ja) * | 2018-03-13 | 2019-09-19 | オムロン株式会社 | 外観検査装置、外観検査方法及びプログラム |
JP2021021620A (ja) * | 2019-07-26 | 2021-02-18 | 株式会社島津製作所 | X線位相イメージング装置 |
JP7226171B2 (ja) | 2019-07-26 | 2023-02-21 | 株式会社島津製作所 | X線位相イメージング装置 |
WO2024127751A1 (ja) * | 2022-12-16 | 2024-06-20 | 株式会社島津製作所 | X線撮影装置における表示方法およびx線撮影装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015156125A1 (ja) | 2017-04-13 |
US20170055935A1 (en) | 2017-03-02 |
CN106061391A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015156125A1 (ja) | 医用画像撮影装置及び医用画像撮影方法 | |
EP2981813B1 (en) | Helical computed tomography | |
JP4070457B2 (ja) | 必要に応じて部分画像を獲得する装置と方法 | |
US10238356B2 (en) | X-ray computed tomography apparatus and medical image display apparatus | |
CN101346102B (zh) | X射线ct装置 | |
US10130320B2 (en) | X-ray CT apparatus and image diagnostic apparatus | |
RU2689175C2 (ru) | Ультразвуковые системы для сбора данных во многих плоскостях с одно- и двухплоскостной визуализацией в реальном времени и способы их работы | |
US10061488B2 (en) | Medical imaging apparatus and method of displaying user interface image | |
JP6027546B2 (ja) | 医用画像診断装置及び医用画像診断装置を用いた位相決定方法 | |
EP3545837A1 (en) | Medical image providing apparatus and medical image processing method of the same | |
US20070053478A1 (en) | X-ray ct apparatus and x-ray radiographic method | |
JP2009116581A (ja) | 医療画像処理装置および医療画像処理プログラム | |
WO2013111813A1 (ja) | 医用画像処理装置 | |
US10552940B2 (en) | Medical image diagnostic apparatus for enlarging and reconstructive image portions | |
JP5960136B2 (ja) | 磁気共鳴イメージング装置および撮像位置設定支援方法 | |
US20050110748A1 (en) | Tomography-capable apparatus and operating method therefor | |
JP6945386B2 (ja) | 医用画像診断装置 | |
JP2013000479A (ja) | X線ct装置及び画像再構成方法 | |
JP2013169392A (ja) | X線ct装置、画像表示方法 | |
CN106572823A (zh) | 投影数据采集装置 | |
KR20180047401A (ko) | 의료 영상 장치 및 의료 영상 처리 방법 | |
US9538972B2 (en) | X-ray CT apparatus | |
US20140286559A1 (en) | X-ray ct apparatus, and display apparatus | |
JP7118584B2 (ja) | 医用画像診断装置、医用画像撮像装置および医用画像表示装置 | |
JP5603615B2 (ja) | 医用画像診断装置及び画像処理パラメータ設定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15777427 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016512654 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15303147 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15777427 Country of ref document: EP Kind code of ref document: A1 |