[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015155419A1 - Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation - Google Patents

Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation Download PDF

Info

Publication number
WO2015155419A1
WO2015155419A1 PCT/FR2014/050827 FR2014050827W WO2015155419A1 WO 2015155419 A1 WO2015155419 A1 WO 2015155419A1 FR 2014050827 W FR2014050827 W FR 2014050827W WO 2015155419 A1 WO2015155419 A1 WO 2015155419A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelled
crosslinked
aqueous
gel
undried
Prior art date
Application number
PCT/FR2014/050827
Other languages
English (en)
Inventor
Bruno Dufour
Jérémie JACQUEMOND
Hugo DORIE
Yannick BUREAU
Philippe Sonntag
Original Assignee
Hutchinson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson filed Critical Hutchinson
Priority to US15/302,412 priority Critical patent/US20170029574A1/en
Priority to EP14724119.4A priority patent/EP3134346A1/fr
Priority to CN201480078407.4A priority patent/CN106660796B/zh
Priority to KR1020167029806A priority patent/KR20170016820A/ko
Priority to PCT/FR2014/050827 priority patent/WO2015155419A1/fr
Priority to JP2016560914A priority patent/JP6535345B2/ja
Priority to CA2944706A priority patent/CA2944706A1/fr
Publication of WO2015155419A1 publication Critical patent/WO2015155419A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a gelled, uncured and undried aqueous polymeric composition capable of forming a non-monolithic organic airgel by drying, this airgel, a non-monolithic porous carbon resulting from a pyrolysis of this airgel, an electrode based on this porous carbon. , and a process for preparing this composition and this airgel.
  • the invention applies in particular to supercapacitors for example adapted to equip electric vehicles.
  • Organic aerogels are very promising for use as thermal insulators, because they have thermal conductivities that can be only 0.012 Wm “1 K “ 1 , ie close to those obtained with silica aerogels (0.010 Wm -1 K “1 ). Indeed, they are highly porous (being both microporous and mesoporous) and have a specific surface area and a high pore volume.
  • Organic high surface area aerogels are typically prepared from a resorcinol-formaldehyde resin (abbreviated RF). These resins are particularly interesting for obtaining these aerogels, because they are inexpensive, can be implemented in water and allow to obtain different porosities and densities depending on the conditions of preparation (ratios between reagents, choice of catalyst, etc.).
  • the gel formed by such a resin is usually an irreversible chemical gel, obtained by polycondensation of the precursors and which can no longer be used. In addition, at high conversion, this gel becomes hydrophobic and precipitates, which induces mechanical stresses in the material and therefore greater fragility.
  • Organic resorcinol-formaldehyde aerogels can be pyrolyzed at temperatures above 600 ° C under an inert atmosphere to obtain carbon aerogels (i.e., porous carbons). These carbon aerogels are interesting not only as stable thermic insulators at high temperatures, but also as electrodes active material for supercapacitors.
  • supercapacitors are electrical energy storage systems particularly interesting for applications requiring the conveyance of high power electrical energy. Their ability to charge and discharge fast, their longer life compared to a high power battery make them promising candidates for many applications.
  • Supercapacitors generally consist of the combination of two conductive porous electrodes with a high specific surface area, immersed in an ionic electrolyte and separated by an insulating membrane called "separator", which allows ionic conductivity and avoids electrical contact between the electrodes. Each electrode is in contact with a metal collector for the exchange of electric current with an external system.
  • This article also adds on page 30 (left-hand column, first paragraph) that as an example "control” was prepared a gel in powder form with a molar ratio P / R ten times greater than that used for monolithic gel. Given the number average molecular weight of P equal to 4763 g / mol, it can be deduced that the mass ratios P / R used for the preparation of the monolithic and powder gels are respectively 0.69 and 6.91.
  • the irreversible chemical monolithic gels presented in this article have the major drawbacks of having a very low viscosity which renders them totally incapable of being coated with a thickness of less than 2 mm and, in particular for high volumes of gels which are difficult to dry effectively, to require an intermediate step of transformation of the monolithic organic airgel into airgel powder (to be agglomerated with or without a binder to obtain the final electrode). Starting from a monolith, it is therefore necessary to go through a grinding step which is expensive and little controlled.
  • a porous carbon into a supercapacitor electrode, it is particularly known from US-B2-6 356 432, US-A1 -2007/0146967 and US-B2-7,811,337 to disperse it in the form of microparticles in a binder. organic non-active and in a solvent, then coat the paste obtained on a current collector. It is then possible to obtain a deposited thickness of less than 200 ⁇ m and to wind the electrodes corresponding to form a cylindrical supercapacitor, since it is porous carbon in the form of microparticles.
  • the latter method has the disadvantage of requiring an organic solvent before the drying step.
  • the aerogels are obtained in the form of nanoparticles that can pose toxicity problems.
  • the porosity of the material is indeterminate.
  • An object of the present invention is to provide an aqueous gelled, non-dried, crosslinked polymeric composition capable of forming a non-monolithic organic airgel directly in the form of microparticles, which overcomes the aforementioned drawbacks by being obtained by a simple and inexpensive method and with fast drying that does not require the use of an organic solvent or supercritical drying.
  • a gelled, uncured and undried aqueous composition according to the invention which is based on a resin derived at least in part from a polycondensation of polyhydroxybenzene (s) R and of formaldehyde (s) F and which comprises at least one polyelectrolyte
  • the water-soluble cationic substance P is thus such that the composition is formed of an aqueous dispersion of microparticles of a rheofluidifying physical gel crosslinked in an aqueous medium.
  • this gelled composition according to the invention in the form of a dispersion of gelled microparticles makes it possible to avoid the step of grinding the gel which was required for satisfactory drying of the monolithic gels of the prior art, by leading directly to an airgel. powder by simple steaming.
  • this aqueous dispersion advantageously makes it possible to obtain the gelled compositions according to the invention in a reduced time compared with the gelling processes of the aforementioned prior art implemented in a closed mold.
  • gel in known manner the mixture of a colloidal material and a liquid, which is formed spontaneously or under the action of a catalyst by flocculation and coagulation of a colloidal solution.
  • rheofluidifying gel means a gel with non-Newtonian and time-independent rheological behavior, sometimes also called pseudoplastic and which is characterized by the fact that its viscosity decreases when the gradient shear rate increases.
  • water-soluble polymer is meant a polymer which can be solubilized in water without the addition of additives (surfactants in particular), unlike a water-dispersible polymer which is capable of forming a dispersion when it is mixed with some water.
  • the composition according to the invention has the advantage, thanks to the reversible rheofluidifying gel, that it can be used in the form of a thin layer and have improved mechanical properties.
  • the unmodified RF resins of the prior art formed directly from their precursors an irreversible chemical gel which could not be coated as a thin layer and which deformed to a small thickness during the pyrolysis of the gel.
  • said cationic polyelectrolyte P has a coagulating effect and makes it possible to neutralize the charge of the phenolates of the polyhydroxybenzene R and thus to limit the repulsion between pre-polymer colloids, favoring the formation and agglomeration of polymeric nanoparticles. at low conversion of the polycondensation reaction.
  • the precipitation occurring before the crosslinking of the composition according to the invention the mechanical stresses are lower at high conversion when the gel is formed.
  • the gelled composition of the invention can be dried more easily and rapidly - by simple curing - than the aqueous gels of the prior art.
  • This drying in an oven is indeed much simpler to implement and penalizes less the cost of production of the gel than the drying carried out by solvent exchange and supercritical CO 2 .
  • said at least one polyelectrolyte P5 makes it possible to preserve the high porosity of the gel after drying in an oven and to give it a low density combined with a specific surface area and a high pore volume, it being specified that this gel according to The invention is mainly microporous which advantageously allows to have a specific energy and a high capacity for a supercapacitor o electrode consisting of this pyrolyzed gel.
  • said microparticles may have a median particle size distribution, measured by a laser diffraction granulometer in a liquid medium, which is between 1 ⁇ m and 100 ⁇ m.
  • microparticles are distinguished from the potentially toxic nanoparticles forming the airgel obtained in the aforementioned document US-A1-2012 / 0286217.
  • the mass fraction of said gel in said aqueous dispersion which characterizes the dilution of the solution of said prepolymer o can be between 10% and 40% and preferably between 15% and 30%.
  • the mass ratio P / R may be less than 0.5 and is preferably between 0.01 and 0.1.
  • said gel may be a precipitated pre-polymer which is the product of a prepolymerization and precipitation reaction of an aqueous solution of polyhydroxybenzene (s) R, (s) formaldehyde (s) F, of said at least one cationic polyelectrolyte P and an acidic or basic catalyst C in an aqueous solvent W, the composition being free of any organic solvent.
  • this product of the prepolymerization and precipitation reaction may comprise:
  • said at least one cationic polyelectrolyte P in a mass fraction of between 0.2% and 3%, and / or
  • Said at least one polyelectrolyte P that can be used in a composition according to the invention may be any cationic polyelectrolyte totally soluble in water and of low ionic strength.
  • said at least one cationic polyelectrolyte P is an organic polymer selected from the group consisting of quaternary ammonium salts, polyvinylpyridinium chloride, polyethyleneimine, polyvinylpyridine, poly (allylamine hydrochloride), poly (trimethylammonium chloride ethyl methacrylate), poly (acrylamide-dimethylammonium chloride) and mixtures thereof.
  • said at least one cationic polyelectrolyte P is a salt comprising units derived from a quaternary ammonium chosen from poly (diallyldimethylammonium halide), and is preferably poly (diallyldimethylammonium chloride) or poly (diallyldimethylammonium halide). diallyldimethylammonium bromide).
  • polyhydroxybenzenes that may be used are preferably di- or tri-hydroxybenzenes, and advantageously resorcinol (1,3-dihydroxybenzene) or the mixture of resorcinol with another compound chosen from catechol, hydroquinone and phloroglucinol.
  • polyhydroxybenzene (s) R and formaldehyde (s) F may be used in a molar ratio R F of between 0.3 and 0.7.
  • said pre-polymer forming said rheofluidifying physical gel of the composition according to the invention may have in the uncrosslinked state a viscosity measured at 25 ° C. by a Brookfield viscometer which, at a shear rate of 50 rpm , is greater than 100 mPa.s and is preferably between 150 mPa.s and 10000 mPa.s, it being specified that at 20 rpm, this viscosity is greater than 200 mPa.s and preferably greater than 250 mPa.s .s.
  • a non-monolithic organic airgel according to the invention is derived from a drying of said gelled, crosslinked and undried composition described above with reference to the invention, and this airgel is such that it is formed of a powder of said microparticles dried by heating in an oven, said dried microparticles having a median particle size distribution, measured by a laser diffraction granulometer in a liquid medium, which is between 10 pm and 80 pm.
  • this particle size of the microparticles of the airgel is particularly well suited for obtaining optimized properties of supercapacitor electrodes incorporating a pyrolysate of this airgel, as indicated below.
  • said airgel may have a specific surface area and a pore volume, both of which are predominantly microporous, preferably greater than 60%.
  • this essentially microporous structure is defined by definition with pore diameters of less than 2 nm, unlike mesoporous structures such as those obtained in the aforementioned article by Mariano M. Bruno et al. which by definition are characterized by pore diameters inclusively between 2 nm and 50 nm.
  • said airgel may have a thermal conductivity less than or equal to 40 mW.m -1 .K -1 (also unlike the aforementioned article), thus belonging to the family of super-insulating materials.
  • a non-monolithic porous carbon according to the invention is derived from a pyrolysis of said organic airgel implemented at a temperature typically greater than 600 ° C., and this porous carbon is such that it is formed of a powder of microspheres having a median particle size distribution, measured by a laser diffraction granulometer in a liquid medium, between 10 ⁇ m and 80 ⁇ m and preferably between 10 ⁇ m and 20 ⁇ m.
  • said porous carbon may have:
  • a total surface area equal to or greater than 500 m 2 / g, with a microporous specific surface area greater than 400 m 2 / g and a mesoporous specific surface area of less than 200 m 2 / g (unlike the article cited above for the test leading to a gel in the form of powder), and / or
  • a pore volume equal to or greater than 0.25 cm 3 / g, of which a microporous volume greater than 0.15 cm 3 / g.
  • An electrode according to the invention can be used to equip a supercapacitor cell by being immersed in an aqueous ionic electrolyte, the electrode covering a metal current collector, and this electrode comprises said porous non-monolithic carbon as an active ingredient and has a thickness less than 200 ⁇ m.
  • this electrode has a geometry wound around an axis, for example substantially cylindrical.
  • the porous carbon microspheres according to the invention are incorporated directly into inks, and they are coated on a metal collector before being dried.
  • a process for preparing said gelled, uncured and undried aqueous polymeric composition comprises successively:
  • step a) said at least one cationic polyelectrolyte P and said polyhydroxybenzene (s) R are used in a mass ratio P / R of less than 0.5 and preferably of between 0. , 01 and 0.1.
  • said at least one cationic polyelectrolyte P in a mass fraction of between 0.2% and 3%;
  • catalyst usable in step a mention may be made for example of acidic catalysts such as aqueous solutions of hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, perchloric acid, oxalic acid, toluenesulfonic acid or dichloroacetic acid, formic, or basic catalysts such as sodium carbonate, sodium hydrogencarbonate, potassium, ammonium carbonate, lithium carbonate, ammonia, potassium hydroxide and sodium hydroxide.
  • acidic catalysts such as aqueous solutions of hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, perchloric acid, oxalic acid, toluenesulfonic acid or dichloroacetic acid, formic, or basic catalysts such as sodium carbonate, sodium hydrogencarbon
  • step d) is carried out at a temperature of between 10 ° C. and 30 ° C. and according to a mass fraction of said pre-polymer in said aqueous dispersion of between 10% and 40% and preferably comprised between 10% and 40%. between 15% and 30%.
  • step e) is carried out under reflux, for at least 1 hour with stirring and at a temperature of between 80 ° C. and 110 ° C., to completely polymerize said gel.
  • this process may comprise, after step e), a separation step f) applied to said aqueous dispersion of said crosslinked prepolymer comprising sedimentation and elimination of the supernatant water of the dispersion, or filtration of said dispersion.
  • this process may advantageously be devoid of any use of an organic solvent and any step of obtaining and then grinding a monolithic gel.
  • a method of preparation according to the invention of said non-monolithic organic airgel is such that said gelled, crosslinked and undried composition is dried by heating in an oven without solvent exchange or drying by a supercritical fluid.
  • the following examples illustrate the preparation of three gelled compositions, crosslinked and undried G1 to G3 according to the invention, three aerogels AG1 to AG3 according to the invention in powder form which are respectively derived from drying and three porous carbons C1 to C3 according to the invention respectively obtained by pyrolysis of aerogels AG1 to AG3, in comparison with a gelled and crosslinked "control" GO composition, an airgel AGO also in powder form and a porous carbon C0 which in are from.
  • the Applicant has prepared the GO gel, the AGO airgel and the C0 porous carbon under the conditions set forth in the "control" example on page 30 of the aforementioned article by Mariano M. Bruno et al., Who mentioned as a comparative test the preparation of a non-monolithic gel.
  • a catalyst (C) consisting of sodium carbonate or hydrochloric acid
  • R / C molar ratio between resorcinol and catalyst
  • the non-viscous mixture was prepolymerized in a reactor immersed in an oil bath at 70 ° C. for 30 minutes.
  • the prepolymer formed was then cooled to 15 ° C. and then diluted 25% in water at 25 ° C.
  • the resulting mixture was refluxed to allow complete polymerization (crosslinking) of the gel.
  • RF An aqueous dispersion of microparticles of the crosslinked G1 gel was then obtained.
  • the dilution and refluxing conditions are shown in Table 2 below.
  • the airgel AG1 was pyrolyzed under nitrogen at 800 ° C. to obtain microspheres.
  • the non-viscous mixture was prepolymerized in a reactor immersed in an oil bath at 45.degree. 45 minutes. The formed mixture was then placed in a refrigerator at 4 ° C for 24 hours. The prepolymer formed was then diluted with water. The resulting mixture was then heated to reflux to allow complete polymerization (crosslinking) of the RF gel. An aqueous dispersion of microparticles of the crosslinked G2 gel was then obtained. Dilution and refluxing conditions are listed in Table 2.
  • the airgel AG2 was pyrolyzed under nitrogen at 800 ° C. to obtain microspheres.
  • the non-viscous mixture was prepolymerized in a reactor immersed in an oil bath at 70 ° C. for 45 minutes. The formed mixture was then placed in a refrigerator at 4 ° C for 24 hours. The prepolymer formed was then diluted with water. The resulting mixture was then heated to reflux to allow complete polymerization (crosslinking) of the RF gel. An aqueous dispersion of microparticles of the crosslinked G3 gel was then obtained. Dilution and refluxing conditions are listed in Table 2.
  • the airgel AG3 was pyrolyzed under nitrogen at 800 ° C. to obtain microspheres.
  • aerogels AG1 and AG3 and the porous carbons C1 and C2 according to the invention are in the form of microparticles of average size in volume between 50 pm and 70 pm.
  • each organic airgel AG0-AG3 and each porous carbon C0-C3 obtained by the nitrogen adsorption manometry technique at 77 K were characterized by means of devices TRISTAR 3020 and ASAP 2020 from Micromeritics.
  • the results of specific surfaces (respectively total, microporous and mesoporous) and of pore volumes (respectively total and microporous) are presented in Table 4 below. Table 4:
  • the organic aerogels AG1-AG3 and the porous C1-C3 carbons according to the invention each have, in spite of the aqueous dispersion used, a specific surface area (greater than 500, or even 600 m 2 / g) and a porous volume sufficiently high to be incorporated in supercapacitor electrodes, with a microporous fraction greater than 80%, or even 90% for this specific surface area and greater than 60%, or even 80% for this pore volume.
  • the Applicant has verified that the porous carbon C0 according to the "control" test of said article has a specific surface much too low to be used as an active material of a supercapacitor electrode.
  • Carbon electrodes E1, E2, E3 are also produced respectively from the porous carbons C1, C2, C3.
  • binders, conductive fillers, various additives and microspheres of each porous carbon were mixed with water according to the method described in Example 1 of FR-A1-2 985 598 in the name of the Applicant. .
  • the resulting formulation was coated and cross-linked on a metal collector. We have measured the capacitance of electrode E2 electrochemically using the device and the following tests.
  • Electrodes isolated by a separator were mounted in series in a supercapacitor measuring cell containing the aqueous electrolyte (LiNO 3, 5M) and driven by a "Bio-Logic VMP3" potentiostat / galvanostat via a three-way interface. electrodes.
  • the first electrode corresponds to the working electrode, the second form the counter electrode and the reference electrode is calomel.
  • This capacity was measured by subjecting the system to charge-discharge cycles at a constant current I of 1 A g. Since the potential evolves linearly with the load conveyed, the capacity of the supercapacitive system of the slopes p has been deduced from the load and the discharge. The specific capacity of the electrode E2 thus measured was 90 F / g.
  • the thermal conductivity of the pulverulent airgel AG3 obtained according to the invention was measured at 22 ° C. with a Neotim conductivity meter according to the hot wire technique, and this conductivity thus measured was 30 mW.m -1 .K " 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

L'invention concerne une composition polymérique aqueuse gélifiée, réticulée et non séchée apte à former un aérogel organique non monolithique par séchage, cet aérogel, un carbone poreux non monolithique issu d'une pyrolyse de cet aérogel, une électrode à base de ce carbone poreux, et un procédé de préparation de cette composition et de cet aérogel. L'invention s'applique notamment à des supercondensateurs. Une composition gélifiée, réticulée et non séchée selon l'invention, qui est à base d'une résine issue au moins en partie d'une polycondensation de polyhydroxybenzène(s) R et de formaldéhyde(s) F et qui comprend au moins un polyélectrolyte cationique hydrosoluble P, est telle que la composition est formée d'une dispersion aqueuse de microparticules d'un gel physique rhéofluidifiant réticulé en milieu aqueux. La composition non encore réticulée est notamment préparée par dilution d'un pré-polymère formant ce gel dans un solvant aqueux pour former la dispersion aqueuse de microparticules dudit gel.

Description

COMPOSITION POLYMERIQUE AQUEUSE GELIFIEE, RETICULEE ET NON SECHEE, AEROGEL ET CARBONE POREUX POUR ELECTRODE DE SUPERCONDENSATEUR ET LEURS PROCEDES DE PREPARATION. La présente invention concerne une composition polymérique aqueuse gélifiée, réticulée et non séchée apte à former un aérogel organique non monolithique par séchage, cet aérogel, un carbone poreux non monolithique issu d'une pyrolyse de cet aérogel, une électrode à base de ce carbone poreux, et un procédé de préparation de cette composition et de cet aérogel. L'invention s'applique notamment à des supercondensateurs par exemple adaptés pour équiper des véhicules électriques.
Les aérogels organiques sont très prometteurs pour une utilisation comme isolants thermiques, du fait qu'ils présentent des conductivités thermiques pouvant être de seulement 0,012 W.m"1K"1, i.e. proches de celles obtenues avec les aérogels de silice (0,010 W.m"1K"1). En effet, ils sont fortement poreux (étant à la fois microporeux et mésoporeux) et présentent une surface spécifique et un volume poreux élevés.
Les aérogels organiques de haute surface spécifique sont typiquement préparés à partir d'une résine résorcinol-formaldéhyde (RF en abrégé). Ces résines sont particulièrement intéressantes pour obtenir ces aérogels, car elles sont peu coûteuses, peuvent être mises en œuvre dans de l'eau et permettent d'obtenir différentes porosités et densités en fonction des conditions de préparation (ratios entre réactifs, choix du catalyseur, etc.). Par contre, le gel formé par une telle résine est usuellement un gel chimique irréversible, obtenu par polycondensation des précurseurs et qui ne peut plus être mis en œuvre. De plus, à forte conversion, ce gel devient hydrophobe et précipite, ce qui induit des contraintes mécaniques dans le matériau et donc une plus grande fragilité. Ainsi, pour une faible densité de matériau, il est nécessaire d'utiliser une méthode de séchage de l'eau suffisamment douce pour éviter une fracturation ou une contraction de la structure du gel, et une perte de surface spécifique. Il s'agit typiquement d'un échange de solvant par un alcool puis d'un séchage par un fluide supercritique tel que du CO2, tel que décrit dans le document US-A-4 997 804, ou d'une lyophilisation. Ces techniques sont complexes et coûteuses, et il est donc désirable de développer des aérogels organiques de haute surface spécifique pouvant être obtenus par une méthode de séchage plus simple.
Les aérogels organiques résorcinol-formaldéhyde peuvent être pyrolysés à des températures supérieures à 600° C sous atmosphère inerte pour obtenir des aérogels de carbone (i.e. des carbones poreux). Ces aérogels de carbone sont intéressants non seulement comme isolants thermiques stables à haute température, mais encore comme matière active d'électrodes pour supercondensateurs.
Rappelons que les supercondensateurs sont des systèmes de stockage d'énergie électrique particulièrement intéressants pour les applications nécessitant de véhiculer de l'énergie électrique à forte puissance. Leur aptitude à des charges et décharges rapides, leur durée de vie accrue par rapport à une batterie à puissance élevée en font des candidats prometteurs pour nombre d'applications. Les supercondensateurs consistent généralement en l'association de deux électrodes poreuses conductrices à haute surface spécifique, immergées dans un électrolyte ionique et séparées par une membrane isolante appelé « séparateur », lequel permet la conductivité ionique et évite le contact électrique entre les électrodes. Chaque électrode est en contact avec un collecteur métallique permettant l'échange du courant électrique avec un système extérieur.
Les capacités atteignables au sein de supercondensateurs sont beaucoup plus élevées que celles atteintes par des condensateurs classiques, du fait de l'utilisation d'électrodes carbonées à surface spécifique maximisée et de l'extrême finesse de la double couche électrochimique (typiquement de quelques nm d'épaisseur). Ces électrodes carbonées doivent être conductrices afin d'assurer le transport des charges électriques, poreuses afin d'assurer le transport des charges ioniques et la formation de la double couche électrique sur une grande surface, et chimiquement inertes pour éviter toute réaction parasite consommatrice d'énergie. On peut citer, à titre d'art antérieur pour la préparation d'électrodes de supercondensateurs, l'article « A novel way to maintain resorcinol-formaldehyde porosity during drying: Stabilization of the sol-gel nanostructure using a cationic polyelectrolyte, Mariano M. Bruno et al., 2010 ». Cet article divulgue un carbone monolithique mésoporeux issu d'un gel chimique aqueux de RF comprenant, en plus d'un catalyseur basique C à base de carbonate de sodium, un polyélectrolyte cationique P constitué de poly(chlorure de diallyldiméthyl ammonium) qui permet de conserver la porosité du gel suite à son séchage à l'air (i.e. sans échange de solvant, ni séchage par un fluide supercritique). Le gel monolithique est préparé avec les ratios molaires R : F : C : P = 1 : 2,5 : 9.10"3 : 1 ,6.10"2 et les concentrations correspondantes [4M] : [10M] : [0,036M] : [0,064], en polymérisant d'emblée R et F en présence de C et P à 70° C pendant 24 heures. Cet article ajoute par ailleurs en page 30 (colonne de gauche, premier alinéa) qu'à titre d'exemple « témoin » a été préparé un gel sous forme de poudre avec un ratio molaire P/R dix fois supérieur à celui utilisé pour le gel monolithique. Compte tenu de la masse moléculaire moyenne en nombre de P égale à 4763 g/mol, on en déduit que les ratios massiques P/R utilisés pour la préparation des gels monolithique et en poudre sont respectivement de 0,69 et de 6,91.
Les gels chimiques irréversibles monolithiques présentés dans cet article présentent comme inconvénients majeurs de présenter une très faible viscosité qui les rend totalement inaptes à être enduits avec une épaisseur inférieure à 2 mm et, notamment pour des volumes élevés de gels qui sont difficiles à sécher efficacement, de nécessiter une étape intermédiaire de transformation de l'aérogel organique monolithique en poudre d'aérogel (à agglomérer avec ou sans liant pour obtenir l'électrode finale). En partant d'un monolithe, il est donc nécessaire de passer par une étape de broyage qui est coûteuse et peu contrôlée.
Quant aux gels chimiques sous forme de poudre présentés à titre de comparaison dans cet article, ils présentent comme inconvénients d'être obtenus avec un rendement très faible et avec une surface spécifique de carbone poreux très faible (de l'ordre de 4 m2/g seulement). La Demande de Brevet déposée par la Demanderesse sous PCT/IB2013/059206 présente un aérogel organique et son pyrolysat sous forme de carbone poreux monolithique pour électrode de supercondensateur, qui est typiquement obtenu par les étapes suivantes :
- dissolution dans de l'eau des précurseurs résorcinol- formaldéhyde en présence d'un polyélectrolyte cationique similaire à celui de l'article précité et d'un catalyseur, pour l'obtention d'une solution aqueuse,
- pré-polymérisation jusqu'à précipitation de cette solution pour l'obtention d'un pré-polymère formant un gel physique rhéofluidifiant,
- enduction ou moulage de ce pré-polymère précipité formant ce gel avec une épaisseur inférieure à 2 mm,
- réticulation et séchage en étuve humide de ce gel enduit ou moulé pour l'obtention d'un xérogel poreux, et
- pyrolyse du xérogel pour l'obtention du carbone poreux. De manière connue, il est par ailleurs favorable pour augmenter la densité d'énergie d'un supercondensateur d'utiliser une configuration enroulée, dans laquelle la ou chaque cellule du supercondensateur se présente sous la forme d'un cylindre constitué de couches de collecteurs métalliques revêtus d'électrodes à base de la matière active et du séparateur enroulés autour d'un axe. L'utilisation d'électrodes monolithiques est impossible dans cette configuration cylindrique du fait de la rigidité de la matière active carbonée qui ne peut être conformée ou courbée. De plus, pour un fonctionnement à forte puissance, il est nécessaire d'utiliser une couche de matière active d'épaisseur inférieure à 200 pm, et les carbones poreux monolithiques sont généralement trop fragiles à cette faible épaisseur.
Pour incorporer un carbone poreux à une électrode de supercondensateur, il est notamment connu des documents US-B2-6 356 432, US-A1 -2007/0146967 et US-B2-7 811 337 de le disperser sous forme de microparticules dans un liant organique non actif et dans un solvant, puis d'enduire la pâte obtenue sur un collecteur de courant. On peut alors obtenir une épaisseur déposée de moins de 200 pm et enrouler les électrodes correspondantes pour former un supercondensateur cylindrique, du fait que l'on dispose du carbone poreux sous forme de microparticules.
Pour obtenir ces carbones poreux à l'état de microparticules, on a usuellement recours au broyage des monolithes de carbones décrits précédemment, ce qui présente de nombreux inconvénients. En effet, lors de la synthèse des monolithes, le mélange de précurseurs R et F est typiquement placé dans un moule fermé, pour former un gel après réaction. Or, pour limiter l'adhésion du mélange au moule, il est nécessaire de pourvoir le moule d'un revêtement non adhérent typiquement fluoré, qui génère un coût élevé. De plus, la gélification et le séchage de monolithes épais est extrêmement long, de l'ordre d'un à plusieurs jours, le broyage des monolithes engendre également un surcoût élevé, et il peut s'avérer difficile de contrôler le diamètre des microparticules obtenues.
On a donc cherché par le passé à mettre au point des méthodes directes de synthèse d'une poudre d'aérogel organique sous forme de microparticules, comme décrit dans le document US-A-5 508 341 qui présente une telle méthode de synthèse comprenant les étapes suivantes :
dispersion d'une phase organique aqueuse de précurseurs tels que résorcinol-formaldéhyde dans une huile minérale ou dans un solvant organique non miscible avec l'eau,
chauffage de la dispersion obtenue,
séparation pour éliminer la phase organique non aqueuse, échange de l'eau par un solvant organique (e.g. acétone), séchage par fluide supercritique pour obtenir l'aérogel organique, et éventuellement
pyrolyse pour obtenir un carbone poreux.
Cette méthode permet d'obtenir des microsphères d'aérogels de diamètres variant de 1 μιη à 3 mm et de surfaces spécifiques relativement élevées. Néanmoins, elle présente comme inconvénient de requérir l'utilisation d'une huile minérale ou de solvants organiques qui est coûteuse, tout comme l'étape de séchage par un fluide supercritique. Le document US-A1 -2012/0286217 décrit également une méthode de synthèse de nanosphères de carbone poreux, qui comprend successivement un ajout d'eau à un mélange de précurseurs tels que résorcinol-formaldéhyde, un échange de l'eau par un solvant organique, un séchage pour extraire ce solvant et une carbonisation de l'aérogel obtenu.
Cette dernière méthode présente l'inconvénient de nécessiter un solvant organique avant l'étape de séchage. De plus, les aérogels sont obtenus sous forme de nanoparticules qui peuvent poser des problèmes de toxicité. Enfin, la porosité du matériau est indéterminée.
Un but de la présente invention est de proposer une composition polymérique aqueuse gélifiée, réticulée et non séchée apte à former un aérogel organique non monolithique directement sous forme de microparticules, qui remédie aux inconvénients précités en étant obtenu par une méthode simple et peu coûteuse et avec un séchage rapide ne nécessitant pas d'utiliser un solvant organique ni un séchage supercritique.
Ce but est atteint en ce que la Demanderesse vient de découvrir d'une manière surprenante qu'une dissolution préalable en phase aqueuse des précurseurs RF et d'un polyélectrolyte cationique hydrosoluble P, suivie d'une précipitation d'un pré-polymère obtenu à partir de cette dissolution puis d'une dilution dans de l'eau de la solution du pré-polymère, permet d'obtenir une dispersion aqueuse de microparticules d'un gel physique rhéofluidifiant conduisant avec un rendement élevé, par réticulation puis simple séchage en étuve, à un aérogel en poudre et à son pyrolysat de carbone poreux avec une porosité et une surface spécifique toutes deux très élevées en dépit de cette dispersion et majoritairement microporeuses.
Une composition aqueuse gélifiée, réticulée et non séchée selon l'invention qui est à base d'une résine issue au moins en partie d'une polycondensation de polyhydroxybenzène(s) R et de formaldéhyde(s) F et qui comprend au moins un polyélectrolyte cationique hydrosoluble P, est ainsi telle que la composition est formée d'une dispersion aqueuse de microparticules d'un gel physique rhéofluidifiant réticulé en milieu aqueux. On notera que cette composition gélifiée selon l'invention sous forme de dispersion de microparticules gélifiées permet d'éviter l'étape de broyage du gel qui était requise pour un séchage satisfaisant des gels monolithiques de l'art antérieur, en conduisant directement à un aérogel pulvérulent par simple étuvage.
On notera également que cette dispersion aqueuse permet avantageusement d'obtenir les compositions gélifiées selon l'invention en un temps réduit par rapport aux procédés de gélification de l'art antérieur précité mis en œuvre dans un moule fermé.
Par « gel », on entend de manière connue le mélange d'une matière colloïdale et d'un liquide, qui se forme spontanément ou sous l'action d'un catalyseur par la floculation et la coagulation d'une solution colloïdale. Rappelons que l'on distingue les gels chimiques et les gels physiques, les premiers devant leur structure à une réaction chimique et étant par définition irréversibles alors que pour les seconds l'agrégation entre les chaînes macromoléculaires est réversible.
Il convient également de rappeler que l'on entend par « gel rhéofluidifiant » un gel au comportement rhéologique non newtonien et indépendant du temps, que l'on qualifie parfois aussi de pseudoplastique et qui est caractérisé par le fait que sa viscosité diminue lorsque le gradient de vitesse de cisaillement augmente.
Par « polymère hydrosoluble », on entend un polymère qui peut être solubilisé dans l'eau sans adjonction d'additifs (de tensioactifs notamment), à la différence d'un polymère hydrodispersable qui est susceptible de former une dispersion lorsqu'il est mélangé à de l'eau.
On notera également que la composition selon l'invention présente comme avantage, grâce au gel réversible rhéofluidifiant, de pouvoir être mise en œuvre sous forme de couche mince et de posséder des propriétés mécaniques améliorées. En comparaison, les résines RF non modifiées de l'art antérieur formaient directement à partir de leurs précurseurs un gel chimique irréversible qui ne pouvait pas être enduit sous forme de couche mince et qui se déformait à faible épaisseur lors de la pyrolyse du gel. La Demanderesse a en effet découvert que ledit polyélectrolyte cationique P a un effet coagulant et permet de neutraliser la charge des phénolates du polyhydroxybenzène R et donc de limiter la répulsion entre colloïdes de pré-polymère, favorisant la formation et 5 l'agglomération de nanoparticules polymériques à faible conversion de la réaction de polycondensation. De plus, la précipitation ayant lieu avant la réticulation de la composition selon l'invention, les contraintes mécaniques sont plus faibles à forte conversion lorsque le gel se forme.
Il en résulte que la composition gélifiée de l'invention peut êtreo séchée plus facilement et rapidement - par simple étuvage - que les gels aqueux de l'art antérieur. Ce séchage en étuve est en effet bien plus simple à mettre en œuvre et pénalise moins le coût de production du gel que le séchage réalisé par échange de solvant et par C02 supercritique.
On notera en outre que ledit au moins un polyélectrolyte P5 permet de conserver la forte porosité du gel suite à ce séchage en étuve et de lui conférer une faible densité alliée à une surface spécifique et un volume poreux élevés, étant précisé que ce gel selon l'invention est principalement microporeux ce qui permet avantageusement de disposer d'une énergie spécifique et d'une capacité élevées pour une électrode de o supercondensateur constituée de ce gel pyrolysé.
Selon une autre caractéristique de l'invention, lesdites microparticules peuvent présenter une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, qui est comprise entre 1 pm et 100 pm.
5 On notera que ces microparticules se distinguent des nanoparticules potentiellement toxiques formant l'aérogel obtenu dans le document US-A1 -2012/0286217 précité.
Avantageusement, la fraction massique dudit gel dans ladite dispersion aqueuse qui caractérise la dilution de la solution dudit prépolymère o peut être comprise entre 10 % et 40 % et de préférence entre 15 % et 30 %.
Egalement avantageusement, le ratio massique P/R peut être inférieur à 0,5 et est de préférence compris entre 0,01 et 0,1. Selon une autre caractéristique de l'invention, ledit gel peut être un pré-polymère précipité qui est le produit d'une réaction de prépolymérisation et de précipitation d'une solution aqueuse de(s) polyhydroxybenzène(s) R, de(s) formaldéhyde(s) F, dudit au moins un polyélectrolyte cationique P et d'un catalyseur C acide ou basique dans un solvant aqueux W, la composition étant dépourvue de tout solvant organique.
Avantageusement, ce produit de la réaction de prépolymérisation et de précipitation peut comprendre :
- ledit au moins un polyélectrolyte cationique P selon une fraction massique comprise entre 0,2 % et 3 %, et/ou
- Ie(s)dit(s) polyhydroxybenzène(s) R et ledit solvant aqueux W selon un ratio massique R/W compris entre 0,01 et 2 et de préférence compris entre 0,04 et 1 ,3.
Ledit au moins un polyélectrolyte P utilisable dans une composition selon l'invention peut être tout polyélectrolyte cationique totalement soluble dans l'eau et de force ionique faible.
De préférence, ledit au moins un polyélectrolyte cationique P est un polymère organique choisi dans le groupe constitué par les sels d'ammonium quaternaire, le poly(chlorure de vinylpyridinium), la poly(éthylène imine), la poly(vinyl pyridine), le poly(chlorhydrate d'allylamine), le poly(chlorure de triméthylammonium éthylméthacrylate), le poly(acrylamide- co-chlorure de diméthylammonium) et leurs mélanges.
A titre encore plus préférentiel, ledit au moins un polyélectrolyte cationique P est un sel comportant des unités issues d'un ammonium quaternaire choisi parmi les poly(halogénure de diallyldiméthylammonium), et est de préférence le poly(chlorure de diallyldiméthylammonium) ou le poly(bromure de diallyldiméthylammonium).
Parmi les polymères précurseurs de ladite résine qui sont utilisables dans l'invention, on peut citer ceux résultant de la polycondensation d'au moins un monomère du type polyhydroxybenzène et d'au moins un monomère formaldéhyde. Cette réaction de polymérisation peut impliquer plus de deux monomères distincts, les monomères additionnels étant du type polyhydroxybenzène ou non. Les polyhydroxybenzènes utilisables sont préférentiellement des di- ou des tri- hydroxybenzènes, et avantageusement le résorcinol (1 ,3-di hydroxybenzène) ou le mélange du résorcinol avec un autre composé choisi parmi le catéchol, l'hydroquinone, le phloroglucinol.
On peut par exemple utiliser les polyhydroxybenzène(s) R et formaldéhyde(s) F suivant un rapport molaire R F compris entre 0,3 et 0,7.
Egalement avantageusement, ledit pré-polymère formant ledit gel physique rhéofluidifiant de la composition selon l'invention peut présenter à l'état non réticulé une viscosité mesurée à 25° C par un viscosimètre Brookfield qui, à une vitesse de cisaillement de 50 tours/minute, est supérieure à 100 mPa.s et est de préférence comprise entre 150 mPa.s et 10000 mPa.s, étant précisé qu'à 20 tours/minute, cette viscosité est supérieure à 200 mPa.s et de préférence supérieure à 250 mPa.s.
Un aérogel organique non monolithique selon l'invention est issu d'un séchage de ladite composition gélifiée, réticulée et non séchée décrite ci-dessus en référence à l'invention, et cet aérogel est tel qu'il est formé d'une poudre desdites microparticules séchées par un chauffage en étuve, lesdites microparticules séchées présentant une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, qui est comprise entre 10 pm et 80 pm.
On notera que cette granulométrie des microparticules de l'aérogel est particulièrement bien adaptée pour l'obtention de propriétés optimisées d'électrodes de supercondensateurs incorporant un pyrolysat de cet aérogel, comme indiqué ci-dessous.
Avantageusement, ledit aérogel peut présenter une surface spécifique et un volume poreux qui sont tous deux majoritairement microporeux, de préférence à plus de 60 %.
On notera que cette structure essentiellement microporeuse est par définition caractérisée par des diamètres de pores inférieurs à 2 nm, contrairement aux structures mésoporeuses telles que celles obtenues dans l'article précité de Mariano M. Bruno et al. qui sont par définition caractérisées par des diamètres de pores inclusivement compris entre 2 nm et 50 nm. Egalement avantageusement, ledit aérogel peut présenter une conductivité thermique inférieure ou égale à 40 mW.m"1.K~1 (également contrairement à l'article précité), appartenant ainsi à la famille des matériaux super-isolants.
Un carbone poreux non monolithique selon l'invention est issu d'une pyrolyse dudit aérogel organique mise en œuvre à une température typiquement supérieure à 600° C, et ce carbone poreux est tel qu'il est formé d'une poudre de microsphères présentant une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, comprise entre 10 pm et 80 μιτι et de préférence entre 10 pm et 20 Mm.
Avantageusement, ledit carbone poreux peut présenter :
- une surface spécifique totale égale ou supérieure à 500 m2/g, dont une surface spécifique microporeuse supérieure à 400 m2/g et une surface spécifique mésoporeuse inférieure à 200 m2/g (contrairement à l'article précité pour l'essai conduisant à un gel sous forme de poudre), et/ou
- un volume poreux égal ou supérieur à 0,25 cm3/g, dont un volume microporeux supérieur à 0,15 cm3/g.
Une électrode selon l'invention est utilisable pour équiper une cellule de supercondensateur en étant immergée dans un électrolyte ionique aqueux, l'électrode recouvrant un collecteur de courant métallique, et cette électrode comprend ledit carbone poreux non monolithique à titre de matière active et présente une épaisseur inférieure à 200 pm. De préférence, cette électrode présente une géométrie enroulée autour d'un axe par exemple sensiblement cylindrique.
Pour obtenir les électrodes selon l'invention, on incorpore directement les microsphères de carbone poreux selon l'invention dans des encres, et on les enduit sur un collecteur métallique avant de les sécher.
On notera qu'une paire de telles électrodes très fines et de préférence enroulées en cylindre permet de conférer une densité d'énergie très élevée au supercondensateur. Un procédé de préparation de ladite composition polymérique aqueuse gélifiée, réticulée et non séchée comprend successivement :
a) une dissolution dans un solvant aqueux W desdits polyhydroxybenzène(s) R et formaldéhyde(s) F, en présence dudit au moins un polyélectrolyte cationique P et d'un catalyseur C acide ou basique, pour l'obtention d'une solution aqueuse,
b) une pré-polymérisation jusqu'à précipitation de la solution obtenue en a) pour l'obtention d'un pré-polymère précipité formant ledit gel physique rhéofluidifiant, de préférence dans un bain d'huile à une température supérieure à 40° C et par exemple comprise entre 45° C et 70° C,
c) un refroidissement dudit pré-polymère, de préférence à une température inférieure à 20° C,
d) une dilution dudit pré-polymère dans ledit solvant aqueux pour former ladite dispersion aqueuse de microparticules dudit gel, et
e) une réticulation dudit prépolymère en dispersion aqueuse par un chauffage de ladite dispersion.
De préférence, on utilise à l'étape a) ledit au moins un polyélectrolyte cationique P et le(s)dit(s) polyhydroxybenzène(s) R selon un ratio massique P/R inférieur à 0,5 et de préférence compris entre 0,01 et 0,1.
De préférence, on utilise à l'étape a) :
- ledit au moins un polyélectrolyte cationique P selon une fraction massique comprise entre 0,2 % et 3 % ; et/ou
- Ie(s)dit(s) polyhydroxybenzène(s) R et ledit solvant aqueux W selon un ratio massique R/W compris entre 0,01 et 2 et de préférence entre
0,04 et 1 ,3.
A titre de catalyseur utilisable à l'étape a), on peut par exemple citer des catalyseurs acides tels que des solutions aqueuses d'acide chlorhydrique, sulfurique, nitrique, acétique, phosphorique, trifluoroacétique, trifluorométhanesulfonique, perchlorique, oxalique, toluènesulfonique, dichloroacétique, formique, ou bien des catalyseurs basiques tels que le carbonate de sodium, l'hydrogénocarbonate de sodium, le carbonate de potassium, le carbonate d'ammonium, le carbonate de lithium, l'ammoniaque, l'hydroxyde de potassium et l'hydroxyde de sodium.
Egalement à titre préférentiel, on met en œuvre l'étape d) à une température comprise entre 10° C et 30° C et selon une fraction massique dudit pré-polymère dans ladite dispersion aqueuse comprise entre 10 % et 40 % et de préférence comprise entre 15 % et 30 %.
Avantageusement, l'on met en œuvre le chauffage de l'étape e) à reflux, pendant au moins 1 heure sous agitation et à une température comprise entre 80° C et 110° C, pour polymériser complètement ledit gel.
Egalement avantageusement, ce procédé peut comprendre après l'étape e) une étape f) de séparation appliquée à ladite dispersion aqueuse dudit pré-polymère réticulé comprenant une sédimentation et une élimination de l'eau surnageante de la dispersion, ou bien une filtration de ladite dispersion.
Selon une autre caractéristique de l'invention, ce procédé peut être avantageusement dépourvu de toute utilisation d'un solvant organique et de toute étape d'obtention puis de broyage d'un gel monolithique.
Un procédé de préparation selon l'invention dudit aérogel organique non monolithique est tel que l'on sèche ladite composition gélifiée, réticulée et non séchée par un chauffage en étuve sans échange de solvant ni séchage par un fluide supercritique.
On notera que l'on se dispense ainsi d'utiliser les appareils et outillages coûteux de l'art antérieur en particulier relatifs à des étapes de broyage et de séchage complexes.
D'autres caractéristiques, avantages et détails de la présente invention ressortiront à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif. Exemples de préparation selon l'invention de compositions gélifiées et réticulées, d'aérogels et de carbones poreux qui en sont issus, en comparaison d'un exemple « témoin » :
Les exemples qui suivent illustrent la préparation de trois compositions gélifiées, réticulées et non séchées G1 à G3 selon l'invention, de trois aérogels AG1 à AG3 selon l'invention sous forme de poudre qui en sont respectivement issus par séchage et de trois carbones poreux C1 à C3 selon l'invention respectivement obtenus par pyrolyse des aérogels AG1 à AG3, en comparaison d'une composition gélifiée et réticulée « témoin » GO, d'un aérogel AGO également sous forme de poudre et d'un carbone poreux C0 qui en sont issus.
La Demanderesse a préparé le gel GO, l'aérogel AGO et le carbone poreux C0 dans les conditions exposées audit exemple « témoin » figurant en page 30 de l'article précité de Mariano M. Bruno et al., qui mentionnait à titre d'essai comparatif la préparation d'un gel non monolithique.
Pour obtenir les gels organiques GO à G3, on a utilisé les réactifs suivants pour la polycondensation du résorcinol R avec le formaldéhyde F en présence du catalyseur C et du polyélectrolyte P :
- du résorcinol (R) de chez Acros Organics, pur à 98 %,
- du formaldéhyde (F) de chez Acros Organics, pur à 37 %,
- un catalyseur (C) constitué de carbonate de sodium ou d'acide chlorhydrique, et
- du poly(chlorure de diallyldiméthylammonium) (P), pur à 35 % (en solution dans l'eau W).
On a utilisé ces réactifs selon des quantités et proportions recensées au tableau 1 ci-après, avec:
- R/W : rapport massique entre résorcinol et eau,
- R/F : rapport molaire entre résorcinol et formaldéhyde,
- R/C : rapport molaire entre résorcinol et catalyseur, et
- P/R : rapport massique entre polyélectrolyte et résorcinol. 1) Préparation de la composition gélifiée et réticulée G1. de l'aéroqel AG1 et du carbone poreux C1 : a) Pour préparer le gel G1 , on a dans un premier temps d'abord solubilisé le résorcinol dans le formaldéhyde. On y a ensuite ajouté la solution de carbonate de calcium et l'additif constitué d'une solution de poly(chlorure de diallyldiméthylammonium) à 35 % en les agitant pendant 15 minutes. Le pH du mélange obtenu se situait autour de 6,5.
Dans un second temps, on a pré-polymérisé le mélange non visqueux dans un réacteur plongé dans un bain d'huile à 70° C pendant 30 minutes. On a ensuite refroidi le pré-polymère formé à 15° C, puis on l'a dilué à 25 % dans l'eau à 25° C. On a chauffé à reflux le mélange obtenu pour permettre une polymérisation complète (réticulation) du gel RF. On a alors obtenu une dispersion aqueuse de microparticules du gel G1 réticulé. Les conditions de dilution et de chauffage à reflux figurent au tableau 2 ci-après.
b) Pour préparer l'aérogel AG1 , on a laissé la dispersion au repos pour permettre une sédimentation des particules du gel G1. On a éliminé le dispersant surnageant et l'on a placé la poudre humide obtenue dans une étuve à 70° C pendant 2 heures pour sécher ces microparticules.
c) Pour préparer le carbone poreux C1 , on a pyrolysé sous azote à 800° C l'aérogel AG1 pour obtenir des microsphères.
2) Préparation de la composition gélifiée et réticulée G2, de l'aérogel AG2 et du carbone poreux C2 : a) Pour préparer le gel G2, on a dans un premier temps d'abord solubilisé le résorcinol dans le formaldéhyde. On y a ensuite ajouté la solution de carbonate de calcium et l'additif constitué d'une solution de poly(chlorure de diallyldiméthylammonium) à 35 % en les agitant pendant 15 minutes. Le pH du mélange obtenu était de 6,5.
Dans un deuxième temps, on a pré-polymérisé le mélange non visqueux dans un réacteur plongé dans un bain d'huile à 45° C pendant 45 minutes. On a ensuite placé le mélange formé dans un réfrigérateur à 4° C pendant 24 heures. Puis on a dilué dans de l'eau le pré-polymère formé. On a ensuite chauffé à reflux le mélange obtenu pour permettre une polymérisation complète (réticulation) du gel RF. On a alors obtenu une dispersion aqueuse de microparticules du gel G2 réticulé. Les conditions de dilution et de chauffage à reflux sont répertoriées au tableau 2.
b) Pour préparer l'aérogel AG2, on a laissé la dispersion au repos pour permettre une sédimentation des particules du gel G2. On a éliminé le dispersant surnageant et l'on a placé la poudre humide obtenue dans une étuve à 90° C pendant 12 heures pour sécher ces microparticules.
c) Pour préparer le carbone poreux C2, on a pyrolysé sous azote à 800° C l'aérogel AG2 pour obtenir des microsphères.
3) Préparation de la composition gélifiée et réticulée G3. de l'aérogel AG3 et du carbone poreux C3 : a) Pour préparer le gel G3, on a dans un premier temps d'abord solubilisé le résorcinol dans l'eau. On y a ensuite ajouté l'additif constitué d'une solution de poly(chlorure de diallyidiméthylammonium) à 35 % puis le formaldéhyde et enfin le catalyseur HCI. On a ensuite agité le mélange pendant 15 minutes. Le pH du mélange obtenu était de 1 ,8.
Dans un deuxième temps, on a pré-polymérisé le mélange non visqueux dans un réacteur plongé dans un bain d'huile à 70° C pendant 45 minutes. On a ensuite placé le mélange formé dans un réfrigérateur à 4° C pendant 24 heures. Puis on a dilué dans de l'eau le pré-polymère formé. On a ensuite chauffé à reflux le mélange obtenu pour permettre une polymérisation complète (réticulation) du gel RF. On a alors obtenu une dispersion aqueuse de microparticules du gel G3 réticulé. Les conditions de dilution et de chauffage à reflux sont répertoriées au tableau 2.
b) Pour préparer l'aérogel AG3, on a laissé la dispersion au repos pour permettre une sédimentation des microparticules du gel G3. On a éliminé le dispersant surnageant et l'on a placé la poudre humide obtenue dans une étuve à 90° C pendant 12 heures pour sécher ces microparticules.
c) Pour préparer le carbone poreux C3, on a pyrolysé sous azote à 800° C l'aérogel AG3 pour obtenir des microsphères.
Tableau 1 :
Figure imgf000018_0001
Tableau 2
G1 G2 G3
Concentration massique du gel (%) 25 20 20
Température du gel lors de la dilution (° C) 15 15 15
Température de l'eau lors de la dilution (° C) 25 25 25
pH de l'eau 7 7 7
Température du reflux (° C) 90 100 100
durée du reflux (h) 2 1 1
Vitesse d'agitation (tours / min.) 500 500 500 Pour chaque gel G0-G3, aérogel AG0-AG3 et carbone poreux C0-C3 obtenus, on a mesuré les granulométries médianes en volume par un granulomètre à diffraction laser par voie liquide de dénomination MasterSizer 3000. Le tableau 3 suivant donne les valeurs de ces granulométries ainsi mesurées.
Tableau 3 :
Figure imgf000019_0001
Ces mesures montrent notamment que les aérogels AG1 et AG3 et les carbones poreux C1 et C2 selon l'invention sont sous la forme de microparticules de taille moyenne en volume comprise entre 50 pm et 70 pm.
On a en outre caractérisé chaque aérogel organique AG0- AG3 et chaque carbone poreux C0-C3 obtenu par la technique de manométrie d'adsorption d'azote à 77 K au moyen d'appareils TRISTAR 3020 et ASAP 2020 de la société Micromeritics. Les résultats de surfaces spécifiques (respectivement totale, microporeuse et mésoporeuse) et de volumes poreux (respectivement total et microporeux) sont présentés dans le tableau 4 ci-après. Tableau 4 :
Figure imgf000020_0001
Ces résultats montrent que les aérogels organiques AG1-AG3 et les carbones poreux C1-C3 selon l'invention présentent chacun, en dépit de la dispersion aqueuse utilisée, une surface spécifique (supérieure à 500, voire à 600 m2/g) et un volume poreux suffisamment élevés pour être incorporés à des électrodes de supercondensateur, avec une fraction microporeuse supérieure à 80 %, voire à 90 % pour cette surface spécifique et supérieure à 60 %, voire à 80 % pour ce volume poreux. Contrairement à cela, la Demanderesse a vérifié que le carbone poreux C0 selon l'essai « témoin » dudit article présente une surface spécifique beaucoup trop faible pour être utilisable comme matière active d'une électrode de supercondensateur.
On par ailleurs réalisé des électrodes de carbone E1 , E2, E3 respectivement à partir des carbones poreux C1 , C2, C3. Pour cela, on a mélangé avec de l'eau des liants, des charges conductrices, différents additifs et ces microsphères de chaque carbone poreux selon la méthode décrite à l'exemple 1 du document FR-A1-2 985 598 au nom de la Demanderesse. On a enduit puis réticulé la formulation obtenue sur un collecteur métallique. On a mesuré la capacité de l'électrode E2 par voie électrochimique en utilisant le dispositif et les tests suivants.
On a monté en série deux électrodes identiques isolées par un séparateur au sein d'une cellule de mesure de supercondensateur contenant l'électrolyte aqueux (LiNO3, 5M) et pilotée par un potentiostat/galvanostat « Bio-Logic VMP3 » via une interface à trois électrodes. La première électrode correspond à l'électrode de travail, la seconde forme la contre-électrode et l'électrode de référence est au calomel.
On a mesuré cette capacité en soumettant le système à des cycles de charge-décharge à un courant constant I de 1 A g. Le potentiel évoluant de façon linéaire avec la charge véhiculée, on a déduit la capacité du système supercapacitif des pentes p à la charge et à la décharge. La capacité spécifique de l'électrode E2 ainsi mesurée était de 90 F/g.
On a enfin mesuré la conductivité thermique de l'aérogel pulvérulent AG3 obtenu selon l'invention à 22° C avec un conductivimètre de Neotim selon la technique du fil chaud, et cette conductivité ainsi mesurée était de 30 mW.m"1.K"1.

Claims

REVENDICATIONS
1 ) Composition polymérique aqueuse gélifiée, réticulée et non séchée apte à former un aérogel organique non monolithique par séchage, la 5 composition étant à base d'une résine issue au moins en partie d'une polycondensation de polyhydroxybenzène(s) R et de formaldéhyde(s) F et comprenant au moins un polyélectrolyte cationique hydrosoluble P, caractérisée en ce que la composition est formée d'une dispersion aqueuse de microparticules d'un gel physique rhéofluidifiant réticulé en milieu aqueux.0
2) Composition gélifiée, réticulée et non séchée selon la revendication 1 , caractérisée en ce que lesdites microparticules présentent une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, qui est comprise entre 1 pm et 100 pm.
5
3) Composition gélifiée, réticulée et non séchée selon la revendication 1 ou 2, caractérisée en ce que la fraction massique dudit gel dans ladite dispersion aqueuse est comprise entre 10 % et 40 %. 0 4) Composition gélifiée, réticulée et non séchée selon une des revendications précédentes, caractérisée en ce que le ratio massique P/R est inférieur à 0,5 et est de préférence compris entre 0,01 et 0, .
5) Composition gélifiée, réticulée et non séchée selon une des 5 revendications précédentes, caractérisée en ce que ledit gel est un prépolymère précipité qui est le produit d'une réaction de pré-polymérisation et de précipitation d'une solution aqueuse de(s) polyhydroxybenzène(s) R, de(s) formaldéhyde(s) F, dudit au moins un polyélectrolyte cationique P et d'un catalyseur C acide ou basique dans un solvant aqueux W, la composition o étant dépourvue de tout solvant organique. 6) Composition gélifiée, réticulée et non séchée selon une des revendications précédentes, caractérisée en ce que ledit au moins un polyélectrolyte cationique hydrosoluble P est un polymère organique choisi dans le groupe constitué par les sels d'ammonium quaternaire, le poly(chlorure de vinylpyridinium), la poly(éthylène imine), la poly(vinyl pyridine), le poly(chlorhydrate d'allylamine), le poly(chlorure de triméthylammonium éthylméthacrylate), le poly(acrylamide-co-chlorure de diméthylammonium) et leurs mélanges, et est de préférence un sel comportant des unités issues d'un ammonium quaternaire choisi parmi les poly(halogénure de diallyldiméthylammonium).
7) Aérogel organique non monolithique issu d'un séchage d'une composition gélifiée, réticulée et non séchée selon une des revendications précédentes, caractérisé en ce que l'aérogel est formé d'une poudre desdites microparticules séchées par un chauffage en étuve, lesdites microparticules séchées présentant une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, qui est comprise entre 10 pm et 80 pm. 8) Aérogel organique selon la revendication 7, caractérisé en ce que l'aérogel présente une surface spécifique et un volume poreux qui sont tous deux majoritairement microporeux, de préférence à plus de 60 %.
9) Aérogel organique selon la revendication 7 ou 8, caractérisé en ce qu'il présente une conductivité thermique inférieure ou égale à 40 mW.m' K-1.
10) Carbone poreux non monolithique issu d'une pyrolyse d'un aérogel organique selon une des revendications 7 à 9, caractérisé en ce que le carbone poreux est formé d'une poudre de microsphères présentant une granulométrie médiane en volume, mesurée par un granulomètre à diffraction laser en milieu liquide, qui est comprise entre 10 pm et 80 pm et de préférence entre 10 pm et 20 pm.
1 ) Carbone poreux selon la revendication 10, caractérisé en ce que le carbone poreux présente :
- une surface spécifique totale égale ou supérieure à 500 m2/g, dont une surface spécifique microporeuse supérieure à 400 m2/g et une surface spécifique mésoporeuse inférieure à 200 m2/g, et/ou
- un volume poreux égal ou supérieur à 0,25 cm3/g, dont un volume microporeux supérieur à 0,15 cm3/g.
12) Electrode utilisable pour équiper une cellule de supercondensateur en étant immergée dans un électrolyte ionique aqueux, l'électrode recouvrant un collecteur de courant métallique, caractérisée en ce que l'électrode comprend à titre de matière active un carbone poreux non monolithique selon la revendication 10 ou 11 et présente une épaisseur inférieure à 200 pm, et de préférence en ce que l'électrode présente une géométrie enroulée autour d'un axe par exemple sensiblement cylindrique. 13) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon une des revendications 1 à 6, caractérisé en ce que le procédé comprend successivement :
a) une dissolution dans un solvant aqueux W desdits polyhydroxybenzène(s) R et formaldéhyde(s) F, en présence dudit au moins un polyélectrolyte cationique P et d'un catalyseur C acide ou basique, pour l'obtention d'une solution aqueuse,
b) une pré-polymérisation jusqu'à précipitation de la solution obtenue en a) pour l'obtention d'un pré-polymère précipité formant ledit gel physique rhéofluidifiant, de préférence mise en œuvre dans un bain d'huile à une température supérieure à 40° C et par exemple comprise entre 45° C et 70° C, c) un refroidissement optionnel dudit pré-polymère, de préférence à une température inférieure à 20° C,
d) une dilution dudit pré-polymère dans ledit solvant aqueux pour former ladite dispersion aqueuse de microparticules dudit gel, et
e) une réticulation dudit prépolymère en dispersion aqueuse par un chauffage de ladite dispersion.
14) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon la revendication 13, caractérisé en ce que l'on utilise à l'étape a) ledit au moins un polyélectrolyte cationique P et le(s)dit(s) polyhydroxybenzène(s) R selon un ratio massique P/R inférieur à 0,5 et de préférence compris entre 0,01 et 0,1.
15) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon la revendication 13 ou 14, caractérisé en ce que l'on met en œuvre l'étape d) à une température comprise entre 10° C et 30° C et selon une fraction massique dudit prépolymère dans ladite dispersion aqueuse comprise entre 10 % et 40 % et de préférence comprise entre 5 % et 30 %.
16) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon une des revendications 13 à
15, caractérisé en ce que l'on met en œuvre le chauffage de l'étape e) à reflux, pendant au moins 1 heure sous agitation et à une température comprise entre 80° C et 110° C, pour polymériser complètement ledit gel.
17) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon une des revendications 13 à
16, caractérisé en ce que le procédé comprend après l'étape e) une étape f) de séparation appliquée à ladite dispersion aqueuse dudit pré-polymère réticulé comprenant une sédimentation et une élimination de l'eau surnageante de la dispersion, ou bien une filtration de ladite dispersion. 18) Procédé de préparation d'une composition polymérique aqueuse gélifiée, réticulée et non séchée selon une des revendications 13 à 17, caractérisé en ce que le procédé est dépourvu de toute utilisation d'un solvant organique, de toute étape d'obtention d'un gel monolithique et de toute étape de broyage d'un gel monolithique.
19) Procédé de préparation d'un aérogel organique non monolithique selon une des revendications 7 à 9, caractérisé en ce que l'on sèche ladite composition gélifiée, réticulée et non séchée par un chauffage en étuve sans échange de solvant ni séchage par un fluide supercritique.
PCT/FR2014/050827 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation WO2015155419A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/302,412 US20170029574A1 (en) 2014-04-07 2014-04-07 Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same
EP14724119.4A EP3134346A1 (fr) 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation
CN201480078407.4A CN106660796B (zh) 2014-04-07 2014-04-07 超级电容器电极用凝胶状交联且未干燥的水性聚合物组合物、气凝胶和多孔碳及其制备方法
KR1020167029806A KR20170016820A (ko) 2014-04-07 2014-04-07 겔화, 가교 및 비-건조된 수성 고분자 조성물, 에어로겔 및 슈퍼커패시터 전극용 다공성 탄소 및 이의 제조공정
PCT/FR2014/050827 WO2015155419A1 (fr) 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation
JP2016560914A JP6535345B2 (ja) 2014-04-07 2014-04-07 スーパーキャパシタ電極用のゲル化かつ架橋した未乾燥の水性高分子組成物、エアロゲル及び多孔質炭素、並びにその製造方法
CA2944706A CA2944706A1 (fr) 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2014/050827 WO2015155419A1 (fr) 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation

Publications (1)

Publication Number Publication Date
WO2015155419A1 true WO2015155419A1 (fr) 2015-10-15

Family

ID=50729724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050827 WO2015155419A1 (fr) 2014-04-07 2014-04-07 Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation

Country Status (7)

Country Link
US (1) US20170029574A1 (fr)
EP (1) EP3134346A1 (fr)
JP (1) JP6535345B2 (fr)
KR (1) KR20170016820A (fr)
CN (1) CN106660796B (fr)
CA (1) CA2944706A1 (fr)
WO (1) WO2015155419A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050208A1 (fr) * 2016-04-18 2017-10-20 Hutchinson Carbone microporeux de densite elevee et son procede de preparation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996849B1 (fr) * 2012-10-17 2015-10-16 Hutchinson Composition pour gel organique ou son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.
EP3476817A1 (fr) 2017-10-27 2019-05-01 Heraeus Battery Technology GmbH Procédé de préparation d'un matériau carboné poreux à l'aide d'une espèce amphiphile améliorée
EP3476818A1 (fr) 2017-10-27 2019-05-01 Heraeus Battery Technology GmbH Procédé de préparation d'un matériau carboné poreux utilisant une source de carbone améliorée
CN110240142B (zh) * 2019-07-01 2021-05-25 中钢集团鞍山热能研究院有限公司 微观结构易于调控的多孔碳电极材料及其制备方法和用途
CN111948095B (zh) * 2020-07-22 2023-06-23 电子科技大学 一种测试pzt气凝胶密度的方法
CN115768722A (zh) * 2020-08-25 2023-03-07 斯攀气凝胶公司 聚酰亚胺珠粒材料及其制造方法
CN113284741B (zh) * 2021-04-21 2022-09-09 西安理工大学 一种孔隙可调节的多孔活性碳电极材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997804A (en) 1988-05-26 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
US5508341A (en) 1993-07-08 1996-04-16 Regents Of The University Of California Organic aerogel microspheres and fabrication method therefor
US6356432B1 (en) 1997-12-30 2002-03-12 Alcatel Supercapacitor having a non-aqueous electrolyte and an active carbon electrode
US20070146967A1 (en) 2005-11-22 2007-06-28 Xiaomei Xi Ultracapacitor electrode with controlled carbon content
US7811337B2 (en) 2007-02-28 2010-10-12 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US20120286217A1 (en) 2011-05-12 2012-11-15 Headwaters Technology Innovation, Llc Methods for mitigating agglomeration of carbon nanospheres using extraction
FR2985598A1 (fr) 2012-01-06 2013-07-12 Hutchinson Composition carbonee pour electrode de cellule de supercondensateur, electrode, son procede de fabrication et cellule l'incorporant.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014019882A8 (pt) * 2012-02-09 2017-07-11 Georgia Pacific Chemicals Llc Preparação de resinas poliméricas e materiais de carbono
FR2996849B1 (fr) * 2012-10-17 2015-10-16 Hutchinson Composition pour gel organique ou son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997804A (en) 1988-05-26 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
US5508341A (en) 1993-07-08 1996-04-16 Regents Of The University Of California Organic aerogel microspheres and fabrication method therefor
US6356432B1 (en) 1997-12-30 2002-03-12 Alcatel Supercapacitor having a non-aqueous electrolyte and an active carbon electrode
US20070146967A1 (en) 2005-11-22 2007-06-28 Xiaomei Xi Ultracapacitor electrode with controlled carbon content
US7811337B2 (en) 2007-02-28 2010-10-12 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US20120286217A1 (en) 2011-05-12 2012-11-15 Headwaters Technology Innovation, Llc Methods for mitigating agglomeration of carbon nanospheres using extraction
FR2985598A1 (fr) 2012-01-06 2013-07-12 Hutchinson Composition carbonee pour electrode de cellule de supercondensateur, electrode, son procede de fabrication et cellule l'incorporant.

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BRUNO M M ET AL: "A novel way to maintain resorcinol-formaldehyde porosity during drying: Stabilization of the sol-gel nanostructure using a cationic polyelectrolyte", COLLOIDS AND SURFACES. A, PHYSICACHEMICAL AND ENGINEERING ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 362, no. 1-3, 5 June 2010 (2010-06-05), pages 28 - 32, XP027046589, ISSN: 0927-7757, [retrieved on 20100512] *
BRUNO M M ET AL: "Characterization of monolithic porous carbon prepared from resorcinol/formaldehyde gels with cationic surfactant", COLLOIDS AND SURFACES. A, PHYSICACHEMICAL AND ENGINEERING ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 358, no. 1-3, 5 April 2010 (2010-04-05), pages 13 - 20, XP026917493, ISSN: 0927-7757, [retrieved on 20100115], DOI: 10.1016/J.COLSURFA.2010.01.017 *
JUAN BALACH ET AL: "Electrostatic self-assembly of hierarchical porous carbon microparticles", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 199, 9 October 2011 (2011-10-09), pages 386 - 394, XP028117041, ISSN: 0378-7753, [retrieved on 20111014], DOI: 10.1016/J.JPOWSOUR.2011.10.029 *
JUAN BALACH ET AL: "Facile preparation of hierarchical porous carbons with tailored pore size obtained using a cationic polyelectrolyte as a soft template", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 415, 1 December 2012 (2012-12-01), pages 343 - 348, XP055155237, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2012.10.016 *
MARIANO M. BRUNO ET AL., A NOVEL WAY TO MAINTAIN RESORCINOL-FORMALDEHYDE POROSITY DURING DRYING: STABILIZATION OF THE SOL-GEL NANOSTRUCTURE USING A CATIONIC POLYELECTROLYTE, 2010
T YAMAMOTO ET AL: "P reparation and characterization of carbon cryogel microspheres", CARBON, 1 January 2002 (2002-01-01), pages 1345 - 1351, XP055155428, Retrieved from the Internet <URL:http://ac.els-cdn.com/S0008622301002949/1-s2.0-S0008622301002949-main.pdf?_tid=451e0356-76e6-11e4-981a-00000aacb361&acdnat=1417169390_56f9e382d3f3ffc6f5a935bea884272d> [retrieved on 20141127] *
WU D ET AL: "Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde", JOURNAL OF NON-CRYSTALLINE SOLIDS, NORTH-HOLLAND PHYSICS PUBLISHING. AMSTERDAM, NL, vol. 351, no. 10-11, 15 April 2005 (2005-04-15), pages 915 - 921, XP027660751, ISSN: 0022-3093, [retrieved on 20050415] *
ZULAMITA ZAPATA-BENABITHE ET AL: "Carbon Xerogel Microspheres and Monoliths from Resorcinol-Formaldehyde Mixtures with Varying Dilution Ratios: Preparation, Surface Characteristics, and Electrochemical Double-Layer Capacitances", LANGMUIR, vol. 29, no. 20, 21 May 2013 (2013-05-21), pages 6166 - 6173, XP055154936, ISSN: 0743-7463, DOI: 10.1021/la4007422 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050208A1 (fr) * 2016-04-18 2017-10-20 Hutchinson Carbone microporeux de densite elevee et son procede de preparation
WO2017182743A1 (fr) 2016-04-18 2017-10-26 Hutchinson Carbone microporeux de densite elevee et son procede de preparation
CN109071747A (zh) * 2016-04-18 2018-12-21 哈金森公司 高密度微孔碳及其制备方法

Also Published As

Publication number Publication date
JP2017519053A (ja) 2017-07-13
EP3134346A1 (fr) 2017-03-01
CN106660796A (zh) 2017-05-10
JP6535345B2 (ja) 2019-06-26
CA2944706A1 (fr) 2015-10-15
CN106660796B (zh) 2018-12-28
KR20170016820A (ko) 2017-02-14
US20170029574A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
EP3134346A1 (fr) Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation
KR102347131B1 (ko) 용매의 부재하의 졸-겔 중합을 위한 신규한 방법 및 그러한 방법으로부터의 가변형 탄소 구조의 생성
JP4410775B2 (ja) メソ多孔性炭素複合体、その製造方法、それを含む担持触媒及びそれを利用した燃料電池
EP2909137B1 (fr) Composition thermiquement isolante pour gel monolithique organique, son utilisation et son procede de preparation
US20190382614A1 (en) Composition for an organic gel and the pyrolysate thereof, production method thereof, electrode formed by the pyrolysate and supercapacitor containing same
JP7132258B2 (ja) 無溶媒中におけるゾル-ゲル重合のための新規方法、及びゾル-ゲル重合由来の可変炭素構造の作製
CA2719465C (fr) Materiaux carbones issus de latex
WO2017182743A1 (fr) Carbone microporeux de densite elevee et son procede de preparation
WO2015132475A1 (fr) Composition gelifiee pour gel monolithique organique, ses utilisations et son procede de preparation
EP3154902B1 (fr) Composition polymerique aqueuse gelifiee, composition carbonee pyrolysee qui en est issue pour electrode de supercondensateur et leurs procedes de preparation
JP2013225570A (ja) 電極およびそれを用いた蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14724119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2944706

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016560914

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15302412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029806

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014724119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014724119

Country of ref document: EP