[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015146332A1 - Solid-state imaging device, electronic apparatus and method for manufacturing solid-state imaging device - Google Patents

Solid-state imaging device, electronic apparatus and method for manufacturing solid-state imaging device Download PDF

Info

Publication number
WO2015146332A1
WO2015146332A1 PCT/JP2015/053780 JP2015053780W WO2015146332A1 WO 2015146332 A1 WO2015146332 A1 WO 2015146332A1 JP 2015053780 W JP2015053780 W JP 2015053780W WO 2015146332 A1 WO2015146332 A1 WO 2015146332A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
solid
state imaging
imaging device
adhesive sheet
Prior art date
Application number
PCT/JP2015/053780
Other languages
French (fr)
Japanese (ja)
Inventor
高地 泰三
丸山 俊介
耕功 本田
雄一 山本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015146332A1 publication Critical patent/WO2015146332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present disclosure relates to a solid-state imaging device having a solid-state imaging device (hereinafter referred to as a sensor) such as a CCD (Charge-Coupled Device-) or CMOS (Complementary-Metal-Oxide-Semiconductor) image sensor, an electronic device including the solid-state imaging device, and a solid-state imaging
  • a sensor such as a CCD (Charge-Coupled Device-) or CMOS (Complementary-Metal-Oxide-Semiconductor) image sensor
  • an electronic device including the solid-state imaging device and a solid-state imaging
  • the present invention relates to a device manufacturing method.
  • Sensors such as CCD or CMOS image sensors are made of silicon (Si), and the imaging surface is made flat.
  • the image plane on which the lens forms an image is designed to be closer to flat by combining with an aspherical lens or the like.
  • Patent Document 1 describes that a buffer material film is provided on a curved portion of a base substrate, and a sensor is provided on the buffer material film.
  • Patent Document 1 since the curvature of field aberration is corrected by bending the sensor in accordance with the curved portion of the pedestal substrate, it is desirable that the curved portion of the pedestal substrate has very high accuracy. It became a factor of high cost.
  • a solid-state imaging device capable of correcting the field curvature aberration with high accuracy
  • an electronic device including the solid-state imaging device and a method for manufacturing the solid-state imaging device.
  • a solid-state imaging device includes the following components (A) to (C).
  • (A) A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface.
  • (C) Having a third surface and a fourth surface, the third surface is in contact with the second surface of the semiconductor substrate, and the fourth surface is in contact with the bottom of the package
  • the solid-state imaging device since the solid-state imaging device is provided in the curved portion of the first surface of the semiconductor substrate, the imaging surface of the solid-state imaging device is curved. Therefore, the field curvature aberration of the image surface formed by the lens is eliminated, and a good image can be captured.
  • a resin layer is provided between the semiconductor substrate and the package, the third surface of the resin layer is in contact with the second surface of the semiconductor substrate, and the fourth surface is in contact with the bottom of the package. Therefore, by controlling the curved shape of the resin layer, the field curvature aberration is corrected with high accuracy.
  • An electronic apparatus includes the solid-state imaging device according to the embodiment of the present disclosure.
  • imaging is performed by the solid-state imaging device according to the embodiment of the present disclosure.
  • a manufacturing method of a first solid-state imaging device includes the following (A) to (E).
  • Forming a curved portion on the first surface of the substrate (E) Forming a resin layer by crosslinking the adhesive sheet by heating
  • the manufacturing method of the second solid-state imaging device includes the following (A) to (D).
  • a semiconductor substrate having a first surface and a second surface, a solid-state imaging device provided on the first surface and a curved portion provided on the second surface is prepared, and a second surface of the semiconductor substrate, A curved part is formed on the fourth surface of the adhesive sheet by arranging the B-stage adhesive sheet having three surfaces and the fourth surface in contact with the second surface and the third surface.
  • B Semiconductor The substrate and the adhesive sheet are accommodated in the package, and a cavity is formed between the curved portion of the fourth surface and the bottom of the package.
  • C) The semiconductor substrate and the adhesive sheet are deformed by providing a pressure difference inside and outside the cavity. Removing the cavity and forming a curved portion on the first surface of the semiconductor substrate (D) forming a resin layer by crosslinking the adhesive sheet by heating.
  • a manufacturing method of a third solid-state imaging device includes the following (A) to (E).
  • a semiconductor substrate having a first surface and a second surface and having a solid-state imaging device provided on the first surface is prepared, and the third surface and the fifth surface are formed on the second surface of the semiconductor substrate by nanoimprinting. And forming a first resin layer having a third surface in contact with the second surface of the semiconductor substrate and having a curved portion on the fifth surface.
  • B The sixth surface and the fifth surface on the fifth surface of the first resin layer.
  • a B-staged adhesive sheet having four surfaces is placed with the fifth surface and the sixth surface in contact with each other, and a curved portion is formed on the fourth surface of the adhesive sheet.
  • the resin layer is provided between the semiconductor substrate and the package, and the third surface of the resin layer is formed on the semiconductor substrate. Since the fourth surface is brought into contact with the second surface and the fourth surface is brought into contact with the bottom of the package, the field curvature aberration can be corrected with high accuracy.
  • the curved portion is formed on the fourth surface of the adhesive sheet using the convex mold, and then the semiconductor substrate and the adhesive sheet are accommodated in the package. Then, a cavity is formed between the curved portion of the fourth surface and the bottom of the package.
  • the semiconductor substrate and the adhesive sheet are deformed to remove the cavity, and a curved portion is formed on the first surface of the semiconductor substrate. Therefore, the solid-state imaging device according to the embodiment of the present disclosure can be easily manufactured.
  • the curved portion is formed by etching on the second surface of the semiconductor substrate, and the adhesive sheet is disposed on the second surface.
  • the curved portion is formed on the fourth surface of the adhesive sheet.
  • the first resin layer having the curved portion on the fifth surface is formed on the second surface of the semiconductor substrate by nanoimprinting.
  • a curved portion is formed on the fourth surface of the adhesive sheet.
  • FIG. 2 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 1 in order of steps.
  • FIG. 3 is a cross-sectional view illustrating a process following FIG. 2.
  • FIG. 4 is a cross-sectional view illustrating a process following FIG. 3.
  • FIG. 5 is a cross-sectional view illustrating a process following FIG. 4.
  • FIG. 6 is a cross-sectional view illustrating a process following FIG. 5.
  • FIG. 7 is a cross-sectional view illustrating a process following FIG. 6. It is sectional drawing showing the structure of the solid-state imaging device which concerns on 2nd Embodiment of this indication.
  • FIG. 9 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 8 in order of steps.
  • FIG. 10 is a cross-sectional diagram illustrating a process following the process in FIG. 9.
  • FIG. 11 is a cross-sectional diagram illustrating a process following the process in FIG. 10. It is sectional drawing showing the structure of the solid-state imaging device which concerns on 3rd Embodiment of this indication. It is sectional drawing showing the manufacturing method of the solid-state imaging device shown in FIG.
  • FIG. 14 is a cross-sectional diagram illustrating a process following the process in FIG. 13.
  • FIG. 15 is a cross-sectional view illustrating a process following FIG. 14.
  • FIG. 16 is a cross-sectional diagram illustrating a process following the process in FIG. 15.
  • 10 is a cross-sectional view illustrating a configuration of a solid-state imaging device according to Modification 1.
  • FIG. It is sectional drawing showing the structure of the solid-state imaging device which concerns on 4th Embodiment of this indication. It is sectional drawing showing the manufacturing method of the solid-state imaging device shown in FIG. 18 in order of a process.
  • FIG. 20 is a cross-sectional diagram illustrating a process following the process in FIG. 19.
  • FIG. 21 is a cross-sectional diagram illustrating a process following the process in FIG. 20.
  • FIG. 22 is a cross-sectional diagram illustrating a process following the process in FIG. 21.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a solid-state imaging device according to Modification 2.
  • FIG. It is sectional drawing showing the structure of the solid-state imaging device which concerns on 5th Embodiment of this indication.
  • FIG. 25 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 24 in the order of steps.
  • FIG. 26 is a cross-sectional diagram illustrating a process following the process in FIG. 25.
  • FIG. 27 is a cross-sectional diagram illustrating a process following the process in FIG. 26.
  • FIG. 28 is a cross-sectional diagram illustrating a process following the process in FIG. 27.
  • FIG. 29 is a cross-sectional diagram illustrating a process following the process in FIG. 28.
  • FIG. 25 is a cross-sectional view illustrating still another modification of the holding member illustrated in FIG. 24. It is sectional drawing showing the modification of the solid-state imaging device shown in FIG. It is sectional drawing showing the structure of the solid-state imaging device which concerns on 6th Embodiment of this indication.
  • FIG. 37 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 36 in the order of steps.
  • FIG. 38 is a cross-sectional diagram illustrating a process following the process in FIG. 37.
  • FIG. 39 is a cross-sectional diagram illustrating a process following the process in FIG. 38.
  • FIG. 40 is a cross-sectional diagram illustrating a process following the process in FIG. 39.
  • FIG. 41 is a cross-sectional diagram illustrating a process following the process in FIG. 40.
  • FIG. 42 is a cross-sectional diagram illustrating a process following the process in FIG. 41. It is a functional block diagram of a solid-state imaging device. It is a functional block diagram of the electronic device which concerns on an application example.
  • First Embodiment Solid-State Imaging Device: A Semiconductor Substrate and an Adhesive Sheet are Accommodated in a Package Having a Through Hole at the Bottom, and the Semiconductor Substrate and Adhesive Sheet are Deformed by Vacuum Adsorption Using the Through Hole Example of forming a curved portion on the first surface
  • Second Embodiment Solid-State Imaging Device: A Semiconductor Substrate and an Adhesive Sheet are Accommodated in a Package Having a Through Hole at the Bottom, and the Semiconductor Substrate and Adhesive Sheet are Deformed by Vacuum Adsorption Using the Through Hole Example of forming a curved portion on the first surface
  • Second Embodiment Solid-State Imaging Device; Semiconductor Substrate and Adhesive Sheet are Accommodated in a Package without a Through-Hole at the Bottom in Vacuum, and the Semiconductor Substrate and Adhesive Sheet are Deformed by Release to the Air Example of forming a curved portion on one surface
  • Third Embodiment Solid-State Imaging Device; Example of Forming Curved Part on Second Surface of Semiconductor Substrate by Etching
  • Modification 1 Solid-state imaging device; combination of the third embodiment and the second embodiment 5.
  • FIG. 1 illustrates a cross-sectional configuration of the solid-state imaging device 1 according to the first embodiment of the present disclosure.
  • the solid-state imaging device 1 is used for electronic devices such as a digital still camera and a video camera, and has a configuration in which a semiconductor substrate 10 having a solid-state imaging element (sensor) 11 is accommodated in a package 20. .
  • the semiconductor substrate 10 is, for example, a chip of the solid-state imaging device 11 that is separated from a silicon (Si) wafer (not shown).
  • the semiconductor substrate 10 has a first surface P1 and a second surface P2.
  • the first surface P1 is provided with the solid-state imaging device 11, and the second surface P2 is fixed to the bottom portion 21 of the package 21 by the resin layer 30. Yes.
  • the solid-state imaging device 11 is provided on the curved portion R1 of the first surface P1.
  • the bending portion R1 reduces the curvature of field aberration of the image surface formed by a lens (not shown) by bending the image pickup surface 11A of the solid-state image pickup device 11, thereby enabling good image pickup. It is.
  • the curved portion R1 is, for example, a concave portion that has an arc shape in a cross section in the thickness direction of the semiconductor substrate 10 and has a bowl-shaped curved surface in three dimensions.
  • the solid-state image sensor 11 is, for example, a CMOS image sensor.
  • the configuration of the solid-state imaging device 11 is not particularly limited.
  • the solid-state imaging device 11 may have a two-dimensional arrangement of pixels including photodiodes and color filters on the first surface P1 of the semiconductor substrate 10.
  • the solid-state imaging device 11 includes, for example, a photoelectric conversion element and a photodiode stacked in one pixel in the thickness direction of the semiconductor substrate 10, and performs photoelectric conversion by selectively detecting light in different wavelength ranges.
  • a so-called longitudinal spectroscopic type may be used.
  • the solid-state imaging device 11 may be a backside illumination type or a frontside illumination type.
  • the thickness D of the semiconductor substrate 10 is preferably 50 ⁇ m or less, for example. When the thickness of the semiconductor substrate 10 is reduced to 50 ⁇ m or less, the stress of the semiconductor substrate 10 can be reduced, and the semiconductor substrate 10 can be easily deformed in a manufacturing process described later.
  • the thickness of the semiconductor substrate 10 is more preferably 30 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the thickness of the semiconductor substrate 10 is preferably, for example, 10 ⁇ m or more so that the gettering effect is not lost to the extent that the solid-state imaging device 11 can be formed.
  • Package 20 accommodates semiconductor substrate 11 and is made of ceramic, plastic, or the like.
  • the package 20 has an opening 22 facing the bottom 21, and the opening 22 is sealed with a sealing glass 40.
  • a wire W is connected between the semiconductor substrate 10 and the package 20 by, for example, a wire bond such as a gold wire.
  • a through hole 23 is provided in the bottom 21 of the package 20.
  • the through hole 23 is used as a suction hole for vacuum suction in a manufacturing method described later.
  • the through hole 23 is preferably provided at the center of the bottom 21, for example.
  • the resin layer 30 has a function as an adhesive layer for fixing the semiconductor substrate 10 to the bottom 21 of the package 20.
  • the resin layer 30 controls the shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 by controlling the shape of the resin layer 30 and enables highly accurate correction of field curvature aberration. .
  • the resin layer 30 has a third surface P3 and a fourth surface P4, the third surface P3 is in contact with the second surface P2 of the semiconductor substrate 10, and the fourth surface P4 is in contact with the bottom portion 21 of the package 20. .
  • the resin layer 30 is formed by cross-linking a B-stage adhesive sheet, for example, a DAF (Die Attachment Film) material.
  • the B-stage adhesive sheet is an intermediate stage of the reaction of the thermosetting resin that can be bonded while holding a thin semiconductor device, and is softened (deformable) by heat. Cross-linking starts from above the temperature.
  • an epoxy resin is preferable.
  • an acrylic resin or a cyan resin may be used.
  • the second surface P2 of the semiconductor substrate 10 and the third surface P3 of the resin layer 30 respectively have curved portions R2 and R3 that follow the curved portion R1 of the first surface P1.
  • the fourth surface P4 of the resin layer 30 has a shape that follows the shape of the bottom portion 21 of the package 20. That is, the fourth surface P4 is a flat surface.
  • the correction amount A of the field curvature aberration of the solid-state image sensor 11 is preferably, for example, 50 ⁇ m or less.
  • the correction amount A refers to the degree of curvature of the third surface P3 of the resin layer 30, that is, the difference between the maximum value and the minimum value of the thickness of the resin layer 30 from the bottom 21 of the package 20.
  • the correction amount A is larger than 50 ⁇ m, the temperature changes due to a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the DAF material constituting the resin layer 30. And stress may occur, and the curved portion R3 may be deformed.
  • the solid-state imaging device 1 can be manufactured as follows, for example.
  • the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned. Turn into. Next, the solid-state imaging device 11 is separated into pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material. As a result, as shown in FIG. 2, the semiconductor substrate 10, that is, the chip of the solid-state imaging device 11 that is separated into pieces, is formed.
  • the semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging device 11 is provided on the first surface P1.
  • the adhesive sheet 30A has a third surface P3 and a fourth surface P4. The semiconductor substrate 10 and the adhesive sheet 30A are arranged with the second surface P2 and the third surface P3 in contact with each other.
  • the convex mold 50 is brought into contact with the fourth surface P4 of the adhesive sheet 30A and pressure P is applied. Then, the adhesive sheet 30A is deformed and cooled. Thereby, as shown in FIG. 4, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A.
  • a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are turned upside down and accommodated in the package 20. Thereby, a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20. The cavity G communicates with the external atmosphere via the through hole 23.
  • the semiconductor substrate 10 and the adhesive sheet 30A are deformed to remove the cavity G, and the first surface P1 of the semiconductor substrate 10 is curved. Part R1 is formed.
  • the fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
  • the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A.
  • the cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A.
  • the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 6, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
  • the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30.
  • the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
  • the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with the sealing glass 40.
  • the solid-state imaging device 1 shown in FIG. 1 is completed.
  • the solid-state imaging device 11 since the solid-state imaging device 11 is provided in the curved portion R1 of the first surface P1 of the semiconductor substrate 10, the imaging surface 11A of the solid-state imaging device 11 is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
  • the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P 3 of the resin layer 30 is in contact with the second surface P 2 of the semiconductor substrate 10, and the fourth surface P 4 is the bottom portion 21 of the package 20. Is in contact with Therefore, by controlling the curved shape of the resin layer 30, the field curvature aberration is corrected with high accuracy.
  • the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P3 of the resin layer 30 is brought into contact with the second surface P2 of the semiconductor substrate 10, and the fourth surface P4. Is brought into contact with the bottom portion 21 of the package 20, so that the field curvature aberration can be corrected with high accuracy.
  • FIG. 8 illustrates a cross-sectional configuration of a solid-state imaging device 1A according to the second embodiment of the present disclosure.
  • the solid-state imaging device 1A has the above-described first embodiment except that the through-hole 23 is not provided in the bottom 21 of the package 20 and the bottom 21 is constituted by a spatially continuous member. It has the same structure, operation and effect as the above. Accordingly, the corresponding components will be described with the same reference numerals.
  • the bottom portion 21 of the package 20 does not have the through hole 23 and is configured by a spatially continuous member. Therefore, peeling due to the intrusion of moisture from the through hole 23 is suppressed, and the reliability of the solid-state imaging device 11 is improved. In addition, it is possible to reduce the possibility that the through hole 23 is reflected on the imaging surface 11A of the solid-state imaging device 11 depending on the state of light when the image is taken. In addition, it is also possible to avoid the intrusion of moisture from the through hole 23 by closing the through hole 23 at the final stage of the manufacturing process.
  • the solid-state imaging device 1A can be manufactured as follows, for example.
  • FIG. 9 to 11 show the manufacturing method of the solid-state imaging device 10A in the order of steps.
  • the process which overlaps with 1st Embodiment is demonstrated with reference to FIG. 2 thru
  • the semiconductor substrate 10 and the adhesive sheet 30A are arranged in contact with the second surface P2 and the third surface P3 by the process shown in FIG.
  • the semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging element 11 is provided on the first surface P1.
  • the adhesive sheet 30A has a third surface P3 and a fourth surface P4.
  • the curved portion is formed on the fourth surface P4 of the adhesive sheet 30A by the heating H1 and the pressure P using the convex mold 50 by the steps shown in FIGS. R4 is formed.
  • a package 20 made of a member having a spatially continuous bottom 21 is installed in a chamber 60, and a semiconductor substrate is disposed above the package 20.
  • 10 and the adhesive sheet 30 ⁇ / b> A are reversed and held, and the vacuum exhaust E in the chamber 60 is performed.
  • the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are accommodated in the package 20 in a vacuum V.
  • a vacuum V cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20.
  • atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A by the atmospheric release AR to deform the semiconductor substrate 10 and the adhesive sheet 30A, thereby removing the cavity G.
  • a curved portion R1 is formed on the first surface P1.
  • the fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
  • the chamber 60 is released to the atmosphere while applying heat H2, and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A using the negative pressure inside the cavity G.
  • the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed.
  • the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30.
  • the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
  • the wire W is connected by wire bonding between the semiconductor substrate 10 and the package 20 and the opening 22 of the package 20 is sealed by the process shown in FIG. Seal with glass 40.
  • the solid-state imaging device 1A shown in FIG. 8 is completed.
  • the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
  • a resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P 3 of the resin layer 30 is in contact with the second surface P 2 of the semiconductor substrate 10, and the fourth surface P 4 is on the bottom 21 of the package 20. It touches. Therefore, by controlling the curved shape of the resin layer 30, the field curvature aberration is corrected with high accuracy.
  • the bottom portion 21 of the package 20 is formed of a spatially continuous member, that is, the through hole 23 is not provided in the bottom portion 21. Therefore, peeling due to the intrusion of moisture from the through hole 23 is suppressed, and the reliability of the solid-state imaging device 11 is improved. In addition, when the image is captured, the risk that the through hole 23 is reflected on the imaging surface 11A of the solid-state imaging device 11 is reduced due to the state of light.
  • the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, and the third surface P ⁇ b> 3 of the resin layer 30 is the second surface of the semiconductor substrate 10. Since the fourth surface P4 is brought into contact with the bottom 21 of the package 20 in contact with the surface P2, the field curvature aberration can be corrected with high accuracy.
  • the through hole 23 is not provided in the bottom portion 21 of the package 20 and is configured by a spatially continuous member, peeling due to moisture intrusion from the through hole 23 is suppressed, and the solid-state imaging device 11 Reliability can be increased.
  • FIG. 12 illustrates a cross-sectional configuration of a solid-state imaging device 1B according to the third embodiment of the present disclosure.
  • the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 is controlled by controlling the shape of the resin layer 30, whereas the present embodiment is a semiconductor
  • the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 is controlled so that the field curvature aberration can be corrected with high accuracy.
  • the solid-state imaging device 1B has the same configuration as that of the first embodiment.
  • the first surface P1 of the semiconductor substrate 10 has a curved portion R1
  • the second surface P2 of the semiconductor substrate 10 the third surface P3 and the fourth surface P4 of the resin layer 30 are formed on the package 20. It has a shape that follows the bottom 21, that is, has a flat surface.
  • the correction amount A of the field curvature aberration of the solid-state imaging device 11 is preferably 50 ⁇ m or less, for example, as in the first embodiment.
  • the correction amount A refers to the degree of curvature of the curved portion R1 of the first surface P1 of the semiconductor substrate 10, that is, the difference between the maximum value and the minimum value of the thickness of the semiconductor substrate 10.
  • the correction amount A is larger than 50 ⁇ m, the temperature changes due to a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the DAF material constituting the resin layer 30. And stress may occur, and the curved portion R3 may be deformed.
  • the solid-state imaging device 1B can be manufactured as follows, for example.
  • the manufacturing method of the present embodiment is different from the manufacturing method of the first embodiment in the method of forming the curved portion R4 on the fourth surface P4 of the adhesive sheet 30A. That is, in the first embodiment, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A using the convex mold 50. On the other hand, in the present embodiment, the curved portion R2 is formed on the second surface P2 of the semiconductor substrate 10 by etching, and the adhesive sheet 30A is bonded along the curved portion R2, whereby the adhesive sheet 30A has a first shape. A curved portion R4 reflecting the shape of the curved portion R2 is formed on the four surfaces P4.
  • the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned. Turn into. Next, as shown in FIG. 13, a curved portion R2 is formed on the second surface P2 by three-dimensional etching using a gradation mask.
  • the solid-state imaging device 11 is separated into pieces while the semiconductor substrate 10 is placed on a B-stage adhesive sheet 30A made of a DAF material.
  • the semiconductor substrate 10 that is, the chip of the solid-state imaging device 11 that is separated into pieces, is formed.
  • the semiconductor substrate 10 has a first surface P1 and a second surface P2, the solid-state imaging device 11 is provided on the first surface P1, and the curved portion R2 is provided on the second surface P2.
  • the adhesive sheet 30A has a third surface P3 and a fourth surface P4.
  • the semiconductor substrate 10 and the adhesive sheet 30A are arranged with the second surface P2 and the third surface P3 in contact with each other.
  • curved portions R3 and R4 are formed following the shape of the curved portion R2.
  • a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are turned upside down and accommodated in the package 20.
  • a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20.
  • the cavity G communicates with the external atmosphere via the through hole 23.
  • the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are deformed to remove the cavity G, and the first surface P ⁇ b> 1 of the semiconductor substrate 10 is curved. Part R1 is formed.
  • the fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
  • the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A.
  • the cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A.
  • the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 16, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
  • the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30.
  • the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
  • a wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with a sealing glass 40.
  • the solid-state imaging device 1B shown in FIG. 12 is completed.
  • the operation and effect of the solid-state imaging device 1B are the same as those in the first embodiment.
  • the solid-state imaging device 1 ⁇ / b> B is configured by a spatially continuous member without providing the through hole 23 in the bottom portion 21 of the package 20, as in the second embodiment.
  • the manufacturing method in that case is the same as in the second embodiment. Thereby, in addition to the effect of the first embodiment, it is possible to obtain the same operation and effect as those of the second embodiment.
  • FIG. 18 illustrates a cross-sectional configuration of a solid-state imaging device 1C according to the fourth embodiment of the present disclosure.
  • the resin layer 30 has a two-layer structure including a first resin layer 31 and a second resin layer 32, and the first surface P ⁇ b> 1 of the semiconductor substrate 10 is controlled by controlling the shape of the first resin layer 31.
  • the curved shape of the curved portion R1 is controlled to enable highly accurate correction of field curvature aberration.
  • the solid-state imaging device 1C has the same configuration as that of the first embodiment.
  • the resin layer 30 has a two-layer structure of the first resin layer 31 and the second resin layer 32.
  • the first resin layer 31 is provided on the semiconductor substrate 10 side in the resin layer 30 and has a third surface P3 and a fifth surface P5.
  • the second resin layer 32 is provided on the package 20 side in the resin layer 30 and has a sixth surface P6 and a fourth surface P4.
  • the second resin layer 32 is formed by crosslinking a B-stage adhesive sheet 30A, for example, a DAF material.
  • the second surface P2 of the semiconductor substrate 10 and the third surface P3 of the first resin layer 31 have curved portions R2 and R3, respectively.
  • the fifth surface P5 of the first resin layer 31 and the sixth surface P6 and the fourth surface P4 of the second resin layer 32 have a shape that follows the bottom 21 of the package 20, that is, are flat surfaces.
  • the correction amount A of the field curvature aberration of the solid-state imaging device 11 is preferably 50 ⁇ m or less, for example, as in the first embodiment.
  • the correction amount A refers to the degree of bending of the bending portion R3 of the third surface P3 of the first resin layer 31, that is, the difference between the maximum value and the minimum value of the thickness of the first resin layer 31.
  • the correction amount A is larger than 50 ⁇ m, it is caused by a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the material of the first resin layer 31 or the second resin layer 32. If the temperature changes, stress is generated and the bending portion R3 may be deformed.
  • the solid-state imaging device 1C can be manufactured as follows, for example.
  • the manufacturing method of the present embodiment is different from the manufacturing method of the first embodiment in the method of forming the curved portion R4 on the fourth surface P4 of the adhesive sheet 30A. That is, in the first embodiment, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A using the convex mold 50. On the other hand, in the present embodiment, the curved portion R5 is formed by nanoimprinting on the fifth surface P5 of the first resin layer 31, and the adhesive sheet 30A is bonded along the curved portion R5, thereby bonding the adhesive sheet 30A. A curved portion R4 reflecting the shape of the curved portion R5 is formed on the fourth surface P4.
  • the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned.
  • the first resin layer 31 is formed on the second surface P2 of the semiconductor substrate 10 by the nanoimprint method.
  • the first resin layer 31 has a third surface P3 and a fifth surface P5, the third surface is in contact with the second surface P2 of the semiconductor substrate 10, and a curved portion R5 is provided on the fifth surface P5.
  • a resin layer (not shown) made of an ultraviolet curable resin is formed on the second surface P2 of the semiconductor substrate 10, and this resin layer is brought into contact with a mold (not shown) to emit ultraviolet light. After irradiation, release from the mold. Thus, the first resin layer 31 having the curved portion R5 is formed on the fifth surface P5.
  • the solid-state imaging device 11 is separated into pieces while the semiconductor substrate 10 is placed on a B-stage adhesive sheet 30A made of a DAF material.
  • the semiconductor substrate 10 that is, the chip of the solid-state imaging device 11 separated into pieces, is formed.
  • the adhesive sheet 30A has a sixth surface P6 and a fourth surface P4.
  • the first resin layer 31 and the adhesive sheet 30A are arranged with the fifth surface P5 and the sixth surface P6 in contact with each other. Accordingly, a curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A, following the shape of the curved portion R5.
  • a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are turned upside down and accommodated in the package 20.
  • a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20.
  • the cavity G communicates with the external atmosphere via the through hole 23.
  • the semiconductor substrate 10 and the adhesive sheet 30A are deformed to remove the cavity G, and the first surface P1 of the semiconductor substrate 10 is curved. Part R1 is formed.
  • the fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
  • the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A.
  • the cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A.
  • the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 22, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
  • the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30.
  • the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
  • the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with the sealing glass 40.
  • the solid-state imaging device 1C illustrated in FIG. 18 is completed.
  • the operation and effect of the solid-state imaging device 1C are the same as those in the first embodiment.
  • the through hole 23 is not provided in the bottom portion 21 of the package 20, and it is configured by a spatially continuous member. Is also possible.
  • the manufacturing method in that case is the same as in the second embodiment. Thereby, in addition to the effect of the first embodiment, it is possible to obtain the same operation and effect as those of the second embodiment.
  • FIG. 24 illustrates a cross-sectional configuration of a solid-state imaging device 1D according to the fifth embodiment of the present disclosure.
  • the solid-state imaging device 1D has a configuration in which, for example, the semiconductor substrate 10 having the solid-state imaging element 11 is held on a holding member (pedestal) 70 by a resin layer 30 and accommodated in a package 20.
  • a holding member pedestal 70
  • the semiconductor substrate 10 is a chip of the solid-state imaging device 11 separated from, for example, a silicon (Si) wafer (not shown).
  • the semiconductor substrate 10 has a first surface P ⁇ b> 1 and a second surface P ⁇ b> 2, the solid-state imaging device 11 is provided on the first surface P ⁇ b> 1, and the second surface P ⁇ b> 2 is bonded to the resin layer 30.
  • the solid-state imaging device 11 is a CMOS image sensor provided on the curved portion R1 of the first surface P1 as in the first embodiment. Similar to the first embodiment, the curved portion R1 has an arc shape in the cross section in the thickness direction of the semiconductor substrate 10, and has a bowl-shaped curved surface in three dimensions. About the structure of the solid-state image sensor 11, it is the same as that of 1st Embodiment.
  • the package 20 is configured in the same manner as in the first embodiment except that the package 20 does not have the through hole 23 in the bottom portion 21.
  • the sealing glass 40 and the wire W are configured in the same manner as in the first embodiment.
  • the resin layer 30 has a function as an adhesive layer for fixing the semiconductor substrate 10 to the holding member 70.
  • the third surface P3 of the resin layer 30 is bonded to the second surface P2 of the semiconductor substrate 10.
  • the fourth surface P4 of the resin layer 30 is bonded to the upper surface P7 of the holding member 70.
  • the resin layer 30 is formed by crosslinking a B-stage adhesive sheet, for example, a DAF material, as in the first embodiment.
  • the material of the resin layer 30 is the same as that in the first embodiment.
  • the holding member 70 holds the semiconductor substrate 10 and controls the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 to correct field curvature aberration.
  • silicon Si
  • resin It is made of metal and ceramic.
  • the holding member 70 has a curved portion R7 on the upper surface P7.
  • the curved portion R7 has an arc shape in the cross section in the thickness direction of the holding member 70, and has a bowl-shaped curved surface in three dimensions.
  • the first surface P1 and the second surface P2 of the semiconductor substrate 10 and the third surface P3 and the fourth surface P4 of the resin layer 30 are curved in a shape that follows the curved portion R7 of the upper surface P7 of the holding member 70.
  • Portions R1, R2, R3, and R4 are formed.
  • the holding member 70 is provided with a through hole 71.
  • the through hole 71 is used as a suction hole for vacuum suction in a manufacturing method described later.
  • the through hole 71 is preferably provided at the center of the bowl-shaped three-dimensional curved surface of the holding member 70.
  • the through hole 71 is preferably embedded with an embedded layer 72 made of a material having the same reflectance as that of the holding member 70. Thereby, the in-plane output difference of the solid-state imaging device 11 due to the through hole 71 can be reduced, and unevenness of the image can be suppressed.
  • the solid-state imaging device 1D can be manufactured as follows, for example.
  • 25 to 29 show the manufacturing method of the solid-state imaging device 1D in the order of steps.
  • the process which overlaps with 1st Embodiment is demonstrated with reference to FIG.
  • the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10 and the second surface P2 is polished by the process shown in FIG. Thin film.
  • the solid-state imaging device 11 is separated into individual pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material by the process shown in FIG.
  • the semiconductor substrate 10 and the adhesive sheet 30 ⁇ / b> A are installed on the upper surface P ⁇ b> 7 of the holding member 70.
  • the fourth surface P4 of the adhesive sheet 30A is in contact with only the peripheral edge of the upper surface P7 of the holding member 70, and there is a cavity G between the fourth surface P4 of the adhesive sheet 30A and the curved portion R7 of the upper surface P7 of the holding member 70. Has occurred.
  • the cavity G communicates with the external atmosphere via the through hole 71 of the holding member 70.
  • the semiconductor substrate 10, the adhesive sheet 30A, and the holding member 70 are placed in a chamber (not shown), and evacuation E is performed. Thereby, a pressure difference arises inside and outside the cavity G, the semiconductor substrate 10 and the adhesive sheet 30A are deformed, and the cavity G is removed.
  • the fourth surface P4 of the adhesive sheet 30A comes into contact with the upper surface P7 of the holding member 70.
  • the curved portions R1 which follow the shape of the curved portion R7 of the upper surface P7 of the holding member 70.
  • R2, R3, and R4 are formed, respectively.
  • the adhesive sheet 30A is heated to the crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30.
  • the semiconductor substrate 10 is fixed to the upper surface P ⁇ b> 7 of the holding member 70 by the resin layer 30.
  • a buried layer 72 made of a material having the same reflectance as that of the holding member 70 is formed in the through hole 71 of the holding member 70.
  • planarization such as polishing is performed, and a portion protruding from the through hole 71 of the buried layer 72 is removed.
  • the holding member 70 is accommodated in the package 20, the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed glass. Seal with 40.
  • the solid-state imaging device 1D illustrated in FIG. 24 is completed.
  • the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
  • the incident light h1 passes through the semiconductor substrate 10 and the resin layer 30 as shown in FIG. 30, and is reflected by the upper surface P7 of the holding member 70 to generate reflected light h2.
  • the buried layer 72 is provided in the through hole 71, the incident light h1 passes through the semiconductor substrate 10 and the resin layer 30, and is reflected by the buried layer 72 as shown in FIG. h3 is generated. Since the buried layer 72 is made of a material having the same reflectance as that of the holding member 70, the light amounts of the reflected lights h2 and h3 are equal. Therefore, there is no difference in output between the portion on the through hole 71 of the solid-state imaging device 11 and the other portion, and the unevenness of the image is eliminated.
  • the semiconductor substrate 10 is held by the holding member 70 by the resin layer 30 and accommodated in the package 20, and the through hole 71 of the holding member 70 is formed by the embedded layer 72 having the same reflectivity as the holding member 70. Since the filling is performed, the in-plane output difference of the solid-state imaging device 11 due to the through-hole 71 can be reduced, and unevenness of the image can be suppressed.
  • the opening diameter ⁇ A of the through hole 71 on the package 20 side is larger than the opening diameter ⁇ B of the through hole 71 on the semiconductor substrate 10 side. As a result, it is possible to easily embed the buried layer 72 in the through hole 71.
  • the through hole 71 is provided in parallel to the normal line N of the imaging surface 11A of the solid-state imaging device 11 and perpendicular to the bottom 21 of the package 20.
  • the through hole 71 may be provided obliquely with respect to the normal direction N of the imaging surface 11 ⁇ / b> A of the solid-state imaging device 11.
  • the through hole 71 may have a bent portion 71C between the opening 71B on the semiconductor substrate 10 side and the opening 71A on the package 20 side.
  • the positions of the openings 71A and 71B are different in the in-plane direction of the solid-state image pickup device 11, the in-plane output difference of the solid-state image pickup device 11 due to the through hole 71 is reduced, and unevenness of the image is suppressed. Is possible.
  • the region of the package 20 where the through hole 71 is located may be made of a material having the same reflectance as that of the holding member 70.
  • an upper surface layer 24 made of a material having the same reflectance as that of the holding member 70 may be provided on the upper surface of the bottom portion 21 of the package 20.
  • the bottom of the through hole 71 is closed by the upper surface layer 24 having the same reflectance as that of the holding member 70, so that the reflectance of the vertical light component becomes equal, and the in-plane of the solid-state imaging device 11 caused by the through hole 71. It is possible to reduce the output difference and suppress image unevenness.
  • the present embodiment can be combined with the first to fourth embodiments.
  • an embedded layer (not shown) having the same reflectance as that of the package 20 may be provided in the through hole 23 of the package 20.
  • the in-plane output difference of the solid-state imaging device 11 due to the through-hole 23 can be reduced, and image unevenness can be suppressed.
  • the embedded layer 72 may not be provided in the through hole 71, and the opening diameter ⁇ A on the semiconductor substrate 10 side of the through hole 71 may be set to a size of about one pixel of the solid-state imaging device 11. In this way, since the range in which the output difference is generated is about one pixel, unevenness of the image can be suppressed by making this pixel a correction target in the image processing unit (not shown).
  • the resin layer 30 is configured by a B-stage adhesive sheet, for example, a cross-linked DAF material has been described. Furthermore, it is preferable that the resin layer 30 is made of a cross-linked DAF material having a light shielding property. Thereby, reflected light can be reduced, output difference can be suppressed, and unevenness of an image can be eliminated. In the first to fourth embodiments, the same effect can be obtained even when the resin layer 30 is formed by cross-linking a light-shielding DAF material.
  • a DAF material having a light shielding property for example, a DAF material mixed with a material that absorbs light in the near-infrared region, or a material that absorbs light in the near-infrared region between the DAF material.
  • a material that absorbs light in the near infrared region include carbon, ITO, or ATO fine particles, or a near infrared absorbing dye.
  • FIG. 36 illustrates a cross-sectional configuration of a solid-state imaging apparatus 1E according to the sixth embodiment of the present disclosure.
  • the solid-state imaging device 1E has a configuration in which, for example, the semiconductor substrate 10 having the solid-state imaging element 11 is directly bonded to the holding member 70 and is accommodated in the package 20 without sandwiching the resin layer 30 or an adhesive. ing.
  • the same components as those in the first or fifth embodiment will be described with the same reference numerals.
  • the semiconductor substrate 10 is a chip of the solid-state imaging device 11 separated from, for example, a silicon (Si) wafer (not shown).
  • the semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging device 11 is provided on the first surface P1.
  • the second surface P2 is directly joined to the holding member 70 without sandwiching the resin layer 30 or the adhesive.
  • the package 20 is configured in the same manner as in the first embodiment except that the package 20 does not have the through hole 23 in the bottom portion 21.
  • the sealing glass 40 and the wire W are configured in the same manner as in the first embodiment. Since the through-hole 23 is not provided in the package 20, it is possible to reduce the in-plane output difference of the solid-state imaging device 11 due to the through-hole 23 and suppress image unevenness.
  • the holding member 70 holds the semiconductor substrate 10 and controls the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 to correct field curvature aberration.
  • the holding member 70 has a curved portion R7 on the upper surface R7.
  • the curved portion R7 has an arc shape in the cross section in the thickness direction of the holding member 70, and has a bowl-shaped curved surface in three dimensions. Accordingly, curved portions R1, R2, R3, and R4 having shapes that follow the curved portion R7 of the upper surface P7 of the holding member 70 are formed on the first surface P1 and the second surface P2 of the semiconductor substrate 10, respectively. Further, the holding member 70 is not provided with the through hole 71. Therefore, it is possible to reduce the in-plane output difference of the solid-state imaging device 11 due to the through-hole 71 and suppress image unevenness.
  • the holding member 70 preferably has a thermal conductivity equal to or higher than that of the semiconductor substrate 10, and is preferably made of, for example, silicon (Si). Thereby, it becomes possible to improve a heat dissipation characteristic.
  • the solid-state imaging device 1E can be manufactured as follows, for example.
  • a holding member 70 made of silicon (Si) and having a curved portion R7 on the upper surface P7 is prepared, and plasma or an ion beam is applied to the upper surface P7 of the holding member 70.
  • Activation processing AC50 is performed.
  • the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10 and the second surface P2 is polished by the process shown in FIG. Thin film.
  • the solid-state imaging device 11 is separated into individual pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material by the process shown in FIG.
  • the protective tape 11B is laminated on the first surface P1 of the semiconductor substrate 10, that is, the surface on which the solid-state imaging device 11 is formed, and the protective sheet 30A is peeled off.
  • the second surface P2 of the semiconductor substrate 10 is subjected to an activation process AC10 using plasma or an ion beam to oxidize the second surface P2 of the semiconductor substrate 10.
  • the oxidation method of the second surface P2 of the semiconductor substrate 10 may be any method as long as it is an oxidation method that does not affect surface protection.
  • the first surface P1 side of the semiconductor substrate 10 to which the protective tape 11B is attached is adsorbed (arrow A1) with the male jig 11C, and the second surface P2 of the semiconductor substrate 10 is The upper surface P7 of the protection member 50 is joined (arrow A2).
  • the second surface P2 of the semiconductor substrate 10 is directly joined to the holding member 70 without sandwiching the resin layer 30, the adhesive, or the like.
  • curved portions R1 and R2 that follow the shape of the curved portion R7 on the upper surface P7 of the holding member 70 are formed.
  • a direct bonding interface layer 11 ⁇ / b> D is formed between the second surface P ⁇ b> 2 of the semiconductor substrate 10 and the upper surface P ⁇ b> 7 of the holding member 70.
  • the protective tape 11B is peeled off.
  • the holding member 70 is accommodated in the package 20, the wire W is connected between the semiconductor substrate 10 and the package 20, and the opening 22 of the package 20 is sealed glass. Seal with 40.
  • the solid-state imaging device 1E shown in FIG. 36 is completed.
  • the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
  • the second surface P2 of the semiconductor substrate 10 is directly bonded to the holding member 70 without sandwiching the resin layer 30 or the adhesive, the heat generated in the solid-state imaging device 11 is efficiently held by the holding member 70.
  • the device characteristics are reduced by heat and the deterioration of device characteristics due to heat is suppressed.
  • the second surface P2 of the semiconductor substrate 10 is directly joined to the holding member 70 without sandwiching the resin layer 30, the adhesive, or the like. It is possible to efficiently release heat to the holding member 70 side and suppress deterioration of device characteristics due to heat.
  • FIG. 43 shows the overall configuration of the solid-state imaging devices 1, 1A to 1E (hereinafter, represented by the solid-state imaging device 1) described in the above embodiment.
  • the solid-state imaging device 1 includes a pixel unit 110 serving as an imaging pixel region, and a circuit unit 130 including, for example, a row scanning unit 131, a horizontal selection unit 133, a column scanning unit 134, and a system control unit 132.
  • the circuit unit 130 may be provided in a peripheral region of the pixel unit 110 or may be provided so as to be stacked with the pixel unit 110 (in a region facing the pixel unit 110).
  • the pixel unit 110 includes, for example, a plurality of pixels PXL that are two-dimensionally arranged in a matrix.
  • a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for reading a signal from the pixel.
  • One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
  • the row scanning unit 131 includes a shift register, an address decoder, and the like, and is a pixel driving unit that drives each pixel PXL of the pixel unit 110, for example, in units of rows.
  • a signal output from each pixel PXL in the pixel row selected and scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig.
  • the horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
  • the column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel PXL transmitted through each of the vertical signal lines Lsig is sequentially transmitted to the horizontal signal line 135 and output through the horizontal signal line 135.
  • the system control unit 132 receives a clock given from the outside, data for instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1.
  • the system control unit 132 further includes a timing generator that generates various timing signals.
  • the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like are based on the various timing signals generated by the timing generator. Drive control is performed.
  • the solid-state imaging device 1 can be applied to all types of electronic devices having an imaging function, such as a camera system such as a digital still camera and a video camera, and a mobile phone having an imaging function.
  • FIG. 44 shows a schematic configuration of the electronic apparatus 2 (camera) as an example.
  • the electronic device 2 is, for example, a video camera capable of shooting a still image or a moving image.
  • the electronic device 2 is a solid-state imaging device 1, an optical system (imaging lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311.
  • a drive unit 313 including the circuit unit 130), a signal processing unit 312, a user interface 314, and a monitor 315.
  • the optical system 310 guides image light (incident light) from a subject to the pixel unit 110 of the solid-state imaging device 1.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls the light irradiation period and the light shielding period for the solid-state imaging device 1.
  • the drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 1.
  • the video signal Dout after the signal processing is output to the monitor 315.
  • the video signal Dout may be stored in a storage medium such as a memory.
  • the user interface 314 can specify a shooting scene (dynamic range specification, wavelength (terahertz, visible, infrared, ultraviolet, X-ray, etc.) specification, and the like (input signal from the user interface 314). Is sent to the drive unit 313, and based on this, the solid-state imaging device 1 performs desired imaging.
  • a shooting scene dynamic range specification, wavelength (terahertz, visible, infrared, ultraviolet, X-ray, etc.) specification, and the like
  • the solid-state imaging devices 1 and 1A to 1E are applied to a camera is illustrated.
  • an endoscope for example, an endoscope, a vision chip (artificial retina), a biosensor, etc. It can be used for all electronic devices that image (electromagnetic waves).
  • solid-state imaging devices 1 and 1A to 1E of the above embodiments may not include all the components described in the above embodiments, and conversely may include other components.
  • the present technology can also be configured as follows. (1) A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface; A package containing the semiconductor substrate; A solid-state imaging device comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package. (2) The solid-state imaging device according to (1), wherein the semiconductor substrate has a thickness of 50 ⁇ m or less. (3) The solid-state imaging device according to (1) or (2), wherein a correction amount of field curvature aberration of the solid-state imaging element is 50 ⁇ m or less.
  • the solid-state imaging device according to any one of (1) to (3), wherein the resin layer is formed by crosslinking a B-stage adhesive sheet.
  • the solid-state imaging device according to any one of (1) to (4), wherein the resin layer is made of an epoxy resin.
  • the second surface of the semiconductor substrate and the third surface of the resin layer each have a curved portion,
  • the solid-state imaging device according to any one of (1) to (5), wherein the fourth surface of the resin layer has a shape that follows a shape of a bottom portion of the package.
  • the solid-state imaging device according to any one of (1) to (6), wherein the bottom portion of the package has a through hole.
  • the solid-state imaging device according to any one of (1) to (6), wherein the bottom portion of the package is configured by a spatially continuous member.
  • the solid-state imaging device according to any one of (1) to (7), wherein the second surface of the semiconductor substrate and the third surface and the fourth surface of the resin layer have a shape that follows the bottom of the package. .
  • the resin layer has a two-layer structure of a first resin layer having the third surface and the fifth surface and a second resin layer having the sixth surface and the fourth surface.
  • (1) to (7) The solid-state imaging device according to any one of the above.
  • (11) The solid-state imaging device according to (10), wherein the second resin layer is formed by crosslinking a B-stage adhesive sheet.
  • the second surface of the semiconductor substrate and the third surface of the first resin layer each have a curved portion
  • a solid-state imaging device A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface; A package containing the semiconductor substrate; An electronic apparatus comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package.
  • a semiconductor substrate having a first surface and a second surface, and a solid-state image sensor provided on the first surface, and an adhesive sheet for a B stage having a third surface and a fourth surface, the second surface and the Placing the third surface in contact; Forming a curved portion on the fourth surface of the adhesive sheet by heating and pressing with a convex mold; Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package; Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate; Forming a resin layer by crosslinking the adhesive sheet by heating.
  • the semiconductor substrate and the adhesive sheet are accommodated in the package having a through hole at the bottom, The cavity is evacuated by heating and vacuum suction using the through hole, and the semiconductor substrate and the adhesive sheet are subjected to atmospheric pressure to deform the semiconductor substrate and the adhesive sheet to remove the cavity.
  • the manufacturing method of the solid-state imaging device according to (14). (16) By accommodating the semiconductor substrate and the adhesive sheet in the package made of a member whose bottom is spatially continuous in a vacuum, the cavity is evacuated, The manufacturing method of the solid-state imaging device according to (14), wherein the cavity is removed by applying atmospheric pressure to the semiconductor substrate and the adhesive sheet by releasing the atmosphere to deform the semiconductor substrate and the adhesive sheet.
  • a semiconductor substrate having a first surface and a second surface, a solid-state imaging device provided on the first surface, and a curved portion provided by etching on the second surface, and a B having a third surface and a fourth surface Forming a curved portion on the fourth surface of the adhesive sheet by placing the adhesive sheet of the stage in contact with the second surface and the third surface; Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package; Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate; Forming a resin layer by crosslinking the adhesive sheet by heating.
  • a semiconductor substrate having a first surface and a second surface and having a solid-state imaging device provided on the first surface is prepared, and the third surface and the fifth surface are formed on the second surface of the semiconductor substrate by nanoimprinting.
  • a B-stage adhesive sheet having a sixth surface and a fourth surface is disposed on the fifth surface of the first resin layer so that the fifth surface and the sixth surface are in contact with each other.
  • a method of manufacturing a solid-state imaging device comprising: cross-linking the adhesive sheet by heating to form a second resin layer, and forming a resin layer having a laminated structure of the first resin layer and the second resin layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

Provided is a solid-state imaging device comprising: a semiconductor substrate that has a first surface and a second surface as well as a curved part on the first surface, the curved part of the first surface having disposed thereon a solid-state imaging element; a package for accommodating the semiconductor substrate; and a resin layer that has a third surface and a fourth surface, with the third surface being in contact with the second surface of the semiconductor substrate and the fourth surface being in contact with the bottom of the package.

Description

固体撮像装置、電子機器、および固体撮像装置の製造方法Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
 本開示は、CCD(Charge Coupled Device )またはCMOS(Complementary Metal Oxide Semiconductor )イメージセンサなどの固体撮像素子(以下、センサという)を有する固体撮像装置、この固体撮像装置を備えた電子機器、および固体撮像装置の製造方法に関する。 The present disclosure relates to a solid-state imaging device having a solid-state imaging device (hereinafter referred to as a sensor) such as a CCD (Charge-Coupled Device-) or CMOS (Complementary-Metal-Oxide-Semiconductor) image sensor, an electronic device including the solid-state imaging device, and a solid-state imaging The present invention relates to a device manufacturing method.
 CCDまたはCMOSイメージセンサなどのセンサは、シリコン(Si)で形成されており、撮像面は平坦に作られている。そのようなセンサに合わせて、レンズの結像する像面は、非球面レンズなどとの組み合わせにより、より平坦に近づくように設計されている。しかしながら、カメラの小型化に伴う限られた設計条件のもとでは、レンズの結像する像面を完全に平坦にすることは困難であり、レンズの結像する像面は像面湾曲収差を持ったものとなっている。 Sensors such as CCD or CMOS image sensors are made of silicon (Si), and the imaging surface is made flat. In accordance with such a sensor, the image plane on which the lens forms an image is designed to be closer to flat by combining with an aspherical lens or the like. However, under the limited design conditions associated with the miniaturization of the camera, it is difficult to completely flatten the image plane on which the lens forms an image. It has become.
 この像面湾曲収差に合わせてセンサを湾曲させると、収差を解消してより良好な画像の撮像が可能となる。例えば特許文献1では、台座基板の湾曲部に緩衝材膜を設け、この緩衝材膜にセンサを設けることが記載されている。 When the sensor is curved in accordance with this field curvature aberration, the aberration is eliminated and a better image can be taken. For example, Patent Document 1 describes that a buffer material film is provided on a curved portion of a base substrate, and a sensor is provided on the buffer material film.
特開2005-260436号公報JP 2005-260436 A
 特許文献1では、台座基板の湾曲部に倣ってセンサを湾曲させることで像面湾曲収差を補正するようにしていたので、台座基板の湾曲部は非常に高い精度をもつことが望ましく、それが高コスト化の要因となっていた。 In Patent Document 1, since the curvature of field aberration is corrected by bending the sensor in accordance with the curved portion of the pedestal substrate, it is desirable that the curved portion of the pedestal substrate has very high accuracy. It became a factor of high cost.
 従って、像面湾曲収差を高い精度で補正することが可能な固体撮像装置、この固体撮像装置を備えた電子機器、および固体撮像装置の製造方法を提供することが望ましい。 Accordingly, it is desirable to provide a solid-state imaging device capable of correcting the field curvature aberration with high accuracy, an electronic device including the solid-state imaging device, and a method for manufacturing the solid-state imaging device.
 本開示の一実施の形態に係る固体撮像装置は、以下の(A)~(C)の構成要素を備えたものである。
(A)第1面および第2面を有すると共に第1面に湾曲部を有し、第1面の湾曲部に固体撮像素子が設けられた半導体基板
(B)半導体基板を収容するパッケージ
(C)第3面および第4面を有し、第3面は半導体基板の第2面に接し、第4面はパッケージの底部に接する樹脂層
A solid-state imaging device according to an embodiment of the present disclosure includes the following components (A) to (C).
(A) A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface. ) Having a third surface and a fourth surface, the third surface is in contact with the second surface of the semiconductor substrate, and the fourth surface is in contact with the bottom of the package
 本開示の一実施の形態の固体撮像装置では、半導体基板の第1面の湾曲部に固体撮像素子が設けられているので、固体撮像素子の撮像面は湾曲している。よって、レンズの結像する像面の像面湾曲収差が解消され、良好な画像の撮像が可能となる。 In the solid-state imaging device according to the embodiment of the present disclosure, since the solid-state imaging device is provided in the curved portion of the first surface of the semiconductor substrate, the imaging surface of the solid-state imaging device is curved. Therefore, the field curvature aberration of the image surface formed by the lens is eliminated, and a good image can be captured.
 ここでは、半導体基板とパッケージとの間に樹脂層が設けられ、樹脂層の第3面は半導体基板の第2面に接し、第4面はパッケージの底部に接している。よって、樹脂層の湾曲形状を制御することにより、像面湾曲収差が高い精度で補正される。 Here, a resin layer is provided between the semiconductor substrate and the package, the third surface of the resin layer is in contact with the second surface of the semiconductor substrate, and the fourth surface is in contact with the bottom of the package. Therefore, by controlling the curved shape of the resin layer, the field curvature aberration is corrected with high accuracy.
 本開示の一実施の形態に係る電子機器は、上記本開示の一実施の形態に係る固体撮像装置を有するものである。 An electronic apparatus according to an embodiment of the present disclosure includes the solid-state imaging device according to the embodiment of the present disclosure.
 本開示の一実施の形態の電子機器では、上記本開示の一実施の形態の固体撮像装置により撮像がなされる。 In the electronic apparatus according to an embodiment of the present disclosure, imaging is performed by the solid-state imaging device according to the embodiment of the present disclosure.
 本開示の一実施の形態に係る第1の固体撮像装置の製造方法は、以下の(A)~(E)を含むものである。
(A)第1面および第2面を有し、第1面に固体撮像素子が設けられた半導体基板と、第3面および第4面を有するBステージの接着シートとを、第2面と第3面とを接触させて配置すること
(B)加熱および凸金型を用いた加圧により接着シートの第4面に湾曲部を形成すること
(C)半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成すること
(D)空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成すること
(E)加熱により接着シートを架橋させて樹脂層を形成すること
A manufacturing method of a first solid-state imaging device according to an embodiment of the present disclosure includes the following (A) to (E).
(A) a first substrate having a first surface and a second surface, the first surface being provided with a solid-state imaging device, and an adhesive sheet for a B stage having a third surface and a fourth surface; (B) Forming a curved portion on the fourth surface of the adhesive sheet by heating and pressurizing using a convex mold (C) Housing the semiconductor substrate and the adhesive sheet in a package And forming a cavity between the curved portion of the fourth surface and the bottom of the package. (D) By providing a pressure difference between the inside and outside of the cavity, the semiconductor substrate and the adhesive sheet are deformed to remove the cavity. Forming a curved portion on the first surface of the substrate (E) Forming a resin layer by crosslinking the adhesive sheet by heating
 本開示の一実施の形態に係る第2の固体撮像装置の製造方法は、以下の(A)~(D)を含むものである。
(A)第1面および第2面を有し、第1面に固体撮像素子が設けられ、第2面に湾曲部が設けられた半導体基板を用意し、半導体基板の第2面と、第3面および第4面を有するBステージの接着シートとを、第2面と第3面とを接触させて配置することにより、接着シートの第4面に湾曲部を形成すること
(B)半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成すること
(C)空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成すること
(D)加熱により接着シートを架橋させて樹脂層を形成すること
The manufacturing method of the second solid-state imaging device according to an embodiment of the present disclosure includes the following (A) to (D).
(A) A semiconductor substrate having a first surface and a second surface, a solid-state imaging device provided on the first surface and a curved portion provided on the second surface is prepared, and a second surface of the semiconductor substrate, A curved part is formed on the fourth surface of the adhesive sheet by arranging the B-stage adhesive sheet having three surfaces and the fourth surface in contact with the second surface and the third surface. (B) Semiconductor The substrate and the adhesive sheet are accommodated in the package, and a cavity is formed between the curved portion of the fourth surface and the bottom of the package. (C) The semiconductor substrate and the adhesive sheet are deformed by providing a pressure difference inside and outside the cavity. Removing the cavity and forming a curved portion on the first surface of the semiconductor substrate (D) forming a resin layer by crosslinking the adhesive sheet by heating.
 本開示の一実施の形態に係る第3の固体撮像装置の製造方法は、以下の(A)~(E)を含むものである。
(A)第1面および第2面を有し、第1面に固体撮像素子が設けられた半導体基板を用意し、半導体基板の第2面に、ナノインプリントにより、第3面および第5面を有し、第3面で半導体基板の第2面に接し、第5面に湾曲部を有する第1樹脂層を形成すること
(B)第1樹脂層の第5面に、第6面および第4面を有するBステージ状の接着シートを、第5面と第6面とを接触させて配置し、接着シートの第4面に湾曲部を形成すること
(C)半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成すること
(D)空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成すること
(E)加熱により接着シートを架橋させて第2樹脂層を形成し、第1樹脂層および第2樹脂層の積層構造をもつ樹脂層を形成すること
A manufacturing method of a third solid-state imaging device according to an embodiment of the present disclosure includes the following (A) to (E).
(A) A semiconductor substrate having a first surface and a second surface and having a solid-state imaging device provided on the first surface is prepared, and the third surface and the fifth surface are formed on the second surface of the semiconductor substrate by nanoimprinting. And forming a first resin layer having a third surface in contact with the second surface of the semiconductor substrate and having a curved portion on the fifth surface. (B) The sixth surface and the fifth surface on the fifth surface of the first resin layer. A B-staged adhesive sheet having four surfaces is placed with the fifth surface and the sixth surface in contact with each other, and a curved portion is formed on the fourth surface of the adhesive sheet. (C) Packaging the semiconductor substrate and the adhesive sheet (D) By forming a pressure difference between the inside and outside of the cavity, the semiconductor substrate and the adhesive sheet are deformed to remove the cavity. (B) forming a curved portion on the first surface of the semiconductor substrate; The forming a second resin layer by crosslinking, to form a resin layer having a laminated structure of the first resin layer and second resin layer
 本開示の一実施の形態の固体撮像装置、または本開示の一実施の形態の電子機器によれば、半導体基板とパッケージとの間に樹脂層を設け、樹脂層の第3面を半導体基板の第2面に接触させ、第4面をパッケージの底部に接触させるようにしたので、像面湾曲収差を高い精度で補正することが可能となる。 According to the solid-state imaging device of the embodiment of the present disclosure or the electronic apparatus of the embodiment of the present disclosure, the resin layer is provided between the semiconductor substrate and the package, and the third surface of the resin layer is formed on the semiconductor substrate. Since the fourth surface is brought into contact with the second surface and the fourth surface is brought into contact with the bottom of the package, the field curvature aberration can be corrected with high accuracy.
 本開示の一実施の形態の第1の固体撮像装置の製造方法によれば、凸金型を用いて接着シートの第4面に湾曲部を形成したのち、半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成する。この空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成する。よって、上記本開示の一実施の形態の固体撮像装置を容易に製造することが可能となる。 According to the manufacturing method of the first solid-state imaging device of the embodiment of the present disclosure, the curved portion is formed on the fourth surface of the adhesive sheet using the convex mold, and then the semiconductor substrate and the adhesive sheet are accommodated in the package. Then, a cavity is formed between the curved portion of the fourth surface and the bottom of the package. By providing a pressure difference between the inside and outside of the cavity, the semiconductor substrate and the adhesive sheet are deformed to remove the cavity, and a curved portion is formed on the first surface of the semiconductor substrate. Therefore, the solid-state imaging device according to the embodiment of the present disclosure can be easily manufactured.
 本開示の一実施の形態の第2の固体撮像装置の製造方法によれば、半導体基板の第2面にエッチングにより湾曲部を形成しておき、その第2面に接着シートを配置することにより、接着シートの第4面に湾曲部を形成する。そののち、半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成する。この空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成する。よって、上記本開示の一実施の形態の固体撮像装置を容易に製造することが可能となる。 According to the manufacturing method of the second solid-state imaging device of the embodiment of the present disclosure, the curved portion is formed by etching on the second surface of the semiconductor substrate, and the adhesive sheet is disposed on the second surface. The curved portion is formed on the fourth surface of the adhesive sheet. After that, the semiconductor substrate and the adhesive sheet are accommodated in the package, and a cavity is formed between the curved portion of the fourth surface and the bottom portion of the package. By providing a pressure difference between the inside and outside of the cavity, the semiconductor substrate and the adhesive sheet are deformed to remove the cavity, and a curved portion is formed on the first surface of the semiconductor substrate. Therefore, the solid-state imaging device according to the embodiment of the present disclosure can be easily manufactured.
 本開示の一実施の形態の第3の固体撮像装置の製造方法によれば、半導体基板の第2面に、ナノインプリントにより、第5面に湾曲部を有する第1樹脂層を形成したのち、第1樹脂層の第5面に接着シートを配置することにより、接着シートの第4面に湾曲部を形成する。そののち、半導体基板および接着シートをパッケージに収容し、第4面の湾曲部とパッケージの底部との間に空洞を形成する。この空洞の内外に圧力差を設けることにより、半導体基板および接着シートを変形させて空洞を除去し、半導体基板の第1面に湾曲部を形成する。よって、上記本開示の一実施の形態の固体撮像装置を容易に製造することが可能となる。 According to the third method for manufacturing a solid-state imaging device of the embodiment of the present disclosure, the first resin layer having the curved portion on the fifth surface is formed on the second surface of the semiconductor substrate by nanoimprinting. By arranging the adhesive sheet on the fifth surface of one resin layer, a curved portion is formed on the fourth surface of the adhesive sheet. After that, the semiconductor substrate and the adhesive sheet are accommodated in the package, and a cavity is formed between the curved portion of the fourth surface and the bottom portion of the package. By providing a pressure difference between the inside and outside of the cavity, the semiconductor substrate and the adhesive sheet are deformed to remove the cavity, and a curved portion is formed on the first surface of the semiconductor substrate. Therefore, the solid-state imaging device according to the embodiment of the present disclosure can be easily manufactured.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の第1の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 1st Embodiment of this indication. 図1に示した固体撮像装置の製造方法を工程順に表す断面図である。FIG. 2 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 1 in order of steps. 図2に続く工程を表す断面図である。FIG. 3 is a cross-sectional view illustrating a process following FIG. 2. 図3に続く工程を表す断面図である。FIG. 4 is a cross-sectional view illustrating a process following FIG. 3. 図4に続く工程を表す断面図である。FIG. 5 is a cross-sectional view illustrating a process following FIG. 4. 図5に続く工程を表す断面図である。FIG. 6 is a cross-sectional view illustrating a process following FIG. 5. 図6に続く工程を表す断面図である。FIG. 7 is a cross-sectional view illustrating a process following FIG. 6. 本開示の第2の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 2nd Embodiment of this indication. 図8に示した固体撮像装置の製造方法を工程順に表す断面図である。FIG. 9 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 8 in order of steps. 図9に続く工程を表す断面図である。FIG. 10 is a cross-sectional diagram illustrating a process following the process in FIG. 9. 図10に続く工程を表す断面図である。FIG. 11 is a cross-sectional diagram illustrating a process following the process in FIG. 10. 本開示の第3の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 3rd Embodiment of this indication. 図12に示した固体撮像装置の製造方法を工程順に表す断面図である。It is sectional drawing showing the manufacturing method of the solid-state imaging device shown in FIG. 図13に続く工程を表す断面図である。FIG. 14 is a cross-sectional diagram illustrating a process following the process in FIG. 13. 図14に続く工程を表す断面図である。FIG. 15 is a cross-sectional view illustrating a process following FIG. 14. 図15に続く工程を表す断面図である。FIG. 16 is a cross-sectional diagram illustrating a process following the process in FIG. 15. 変形例1に係る固体撮像装置の構成を表す断面図である。10 is a cross-sectional view illustrating a configuration of a solid-state imaging device according to Modification 1. FIG. 本開示の第4の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 4th Embodiment of this indication. 図18に示した固体撮像装置の製造方法を工程順に表す断面図である。It is sectional drawing showing the manufacturing method of the solid-state imaging device shown in FIG. 18 in order of a process. 図19に続く工程を表す断面図である。FIG. 20 is a cross-sectional diagram illustrating a process following the process in FIG. 19. 図20に続く工程を表す断面図である。FIG. 21 is a cross-sectional diagram illustrating a process following the process in FIG. 20. 図21に続く工程を表す断面図である。FIG. 22 is a cross-sectional diagram illustrating a process following the process in FIG. 21. 変形例2に係る固体撮像装置の構成を表す断面図である。10 is a cross-sectional view illustrating a configuration of a solid-state imaging device according to Modification 2. FIG. 本開示の第5の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 5th Embodiment of this indication. 図24に示した固体撮像装置の製造方法を工程順に表す断面図である。FIG. 25 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 24 in the order of steps. 図25に続く工程を表す断面図である。FIG. 26 is a cross-sectional diagram illustrating a process following the process in FIG. 25. 図26に続く工程を表す断面図である。FIG. 27 is a cross-sectional diagram illustrating a process following the process in FIG. 26. 図27に続く工程を表す断面図である。FIG. 28 is a cross-sectional diagram illustrating a process following the process in FIG. 27. 図28に続く工程を表す断面図である。FIG. 29 is a cross-sectional diagram illustrating a process following the process in FIG. 28. 図24に示した固体撮像装置の作用を説明するための図である。It is a figure for demonstrating an effect | action of the solid-state imaging device shown in FIG. 図24に示した固体撮像装置の作用を説明するための図である。It is a figure for demonstrating an effect | action of the solid-state imaging device shown in FIG. 図24に示した保持部材の変形例を表す断面図である。It is sectional drawing showing the modification of the holding member shown in FIG. 図24に示した保持部材の他の変形例を表す断面図である。It is sectional drawing showing the other modification of the holding member shown in FIG. 図24に示した保持部材の更に他の変形例を表す断面図である。FIG. 25 is a cross-sectional view illustrating still another modification of the holding member illustrated in FIG. 24. 図24に示した固体撮像装置の変形例を表す断面図である。It is sectional drawing showing the modification of the solid-state imaging device shown in FIG. 本開示の第6の実施の形態に係る固体撮像装置の構成を表す断面図である。It is sectional drawing showing the structure of the solid-state imaging device which concerns on 6th Embodiment of this indication. 図36に示した固体撮像装置の製造方法を工程順に表す断面図である。FIG. 37 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device illustrated in FIG. 36 in the order of steps. 図37に続く工程を表す断面図である。FIG. 38 is a cross-sectional diagram illustrating a process following the process in FIG. 37. 図38に続く工程を表す断面図である。FIG. 39 is a cross-sectional diagram illustrating a process following the process in FIG. 38. 図39に続く工程を表す断面図である。FIG. 40 is a cross-sectional diagram illustrating a process following the process in FIG. 39. 図40に続く工程を表す断面図である。FIG. 41 is a cross-sectional diagram illustrating a process following the process in FIG. 40. 図41に続く工程を表す断面図である。FIG. 42 is a cross-sectional diagram illustrating a process following the process in FIG. 41. 固体撮像装置の機能ブロック図である。It is a functional block diagram of a solid-state imaging device. 適用例に係る電子機器の機能ブロック図である。It is a functional block diagram of the electronic device which concerns on an application example.
 以下、本開示における実施形態について、図面を参照して詳細に説明する。尚、説明する順序は、下記の通りである。
1.第1の実施の形態(固体撮像装置;半導体基板および接着シートを、底部に貫通孔を有するパッケージに収容し、貫通孔を用いた真空吸着により半導体基板および接着シートを変形させて、半導体基板の第1面に湾曲部を形成する例)
2.第2の実施の形態(固体撮像装置;半導体基板および接着シートを、真空中で、底部に貫通孔のないパッケージに収容し、大気解放により半導体基板および接着シートを変形させて、半導体基板の第1面に湾曲部を形成する例)
3.第3の実施の形態(固体撮像装置;エッチングにより半導体基板の第2面に湾曲部を形成する例)
4.変形例1(固体撮像装置;第3の実施の形態および第2の実施の形態の組合せ)
5.第4の実施の形態(固体撮像装置;半導体基板の第2面に第1樹脂層を形成し、ナノインプリントにより第1樹脂層の第5面に湾曲部を形成する例)
6.変形例2(固体撮像装置;第4の実施の形態および第2の実施の形態の組合せ)
7.第5の実施の形態(固体撮像装置;半導体基板を樹脂層により保持部材に保持させてパッケージに収容し、保持部材の貫通孔を保持部材と同じ反射率の埋込み層で埋める例)8.第6の実施の形態(固体撮像装置;半導体基板と保持部材とを、樹脂層を用いずに直接接合する例)
9.固体撮像装置の全体構成例
10.適用例(電子機器の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. First Embodiment (Solid-State Imaging Device: A Semiconductor Substrate and an Adhesive Sheet are Accommodated in a Package Having a Through Hole at the Bottom, and the Semiconductor Substrate and Adhesive Sheet are Deformed by Vacuum Adsorption Using the Through Hole Example of forming a curved portion on the first surface)
2. Second Embodiment (Solid-State Imaging Device; Semiconductor Substrate and Adhesive Sheet are Accommodated in a Package without a Through-Hole at the Bottom in Vacuum, and the Semiconductor Substrate and Adhesive Sheet are Deformed by Release to the Air Example of forming a curved portion on one surface)
3. Third Embodiment (Solid-State Imaging Device; Example of Forming Curved Part on Second Surface of Semiconductor Substrate by Etching)
4). Modification 1 (Solid-state imaging device; combination of the third embodiment and the second embodiment)
5. Fourth Embodiment (Solid-State Imaging Device; Example in which First Resin Layer is Formed on Second Surface of Semiconductor Substrate, and Curved Part is Formed on Fifth Surface of First Resin Layer by Nanoimprinting)
6). Modification 2 (Solid-state imaging device; combination of the fourth embodiment and the second embodiment)
7). 5. Fifth Embodiment (Solid-state imaging device; an example in which a semiconductor substrate is held on a holding member by a resin layer and accommodated in a package, and a through hole of the holding member is filled with an embedded layer having the same reflectance as the holding member) Sixth embodiment (solid-state imaging device; example in which a semiconductor substrate and a holding member are directly joined without using a resin layer)
9. 9. Example of overall configuration of solid-state imaging device Application examples (examples of electronic devices)
(第1の実施の形態)
 図1は、本開示の第1の実施の形態に係る固体撮像装置1の断面構成を表したものである。この固体撮像装置1は、例えばデジタルスチルカメラ,ビデオカメラ等の電子機器に用いられるものであり、固体撮像素子(センサ)11を有する半導体基板10を、パッケージ20に収容した構成を有している。
(First embodiment)
FIG. 1 illustrates a cross-sectional configuration of the solid-state imaging device 1 according to the first embodiment of the present disclosure. The solid-state imaging device 1 is used for electronic devices such as a digital still camera and a video camera, and has a configuration in which a semiconductor substrate 10 having a solid-state imaging element (sensor) 11 is accommodated in a package 20. .
 半導体基板10は、例えばシリコン(Si)ウェーハ(図示せず)から個片化された固体撮像素子11のチップである。半導体基板10は、第1面P1および第2面P2を有し、第1面P1には固体撮像素子11が設けられ、第2面P2は樹脂層30によりパッケージ21の底部21に固着されている。 The semiconductor substrate 10 is, for example, a chip of the solid-state imaging device 11 that is separated from a silicon (Si) wafer (not shown). The semiconductor substrate 10 has a first surface P1 and a second surface P2. The first surface P1 is provided with the solid-state imaging device 11, and the second surface P2 is fixed to the bottom portion 21 of the package 21 by the resin layer 30. Yes.
 固体撮像素子11は、第1面P1の湾曲部R1に設けられている。湾曲部R1は、固体撮像素子11の撮像面11Aを湾曲させることにより、レンズ(図示せず)の結像する像面の像面湾曲収差を低減し、良好な画像の撮像を可能とするものである。湾曲部R1は、例えば、半導体基板10の厚み方向の断面では弧状をなし、三次元的には椀状の曲面をなす凹部である。 The solid-state imaging device 11 is provided on the curved portion R1 of the first surface P1. The bending portion R1 reduces the curvature of field aberration of the image surface formed by a lens (not shown) by bending the image pickup surface 11A of the solid-state image pickup device 11, thereby enabling good image pickup. It is. The curved portion R1 is, for example, a concave portion that has an arc shape in a cross section in the thickness direction of the semiconductor substrate 10 and has a bowl-shaped curved surface in three dimensions.
 固体撮像素子11は、例えばCMOSイメージセンサである。固体撮像素子11の構成は特に限定されず、例えば、半導体基板10の第1面P1にフォトダイオードおよびカラーフィルタよりなる画素を2次元配置したものでもよい。また、固体撮像素子11は、例えば、一画素内に光電変換素子とフォトダイオードとが半導体基板10の厚み方向に積層され、互いに異なる波長域の光を選択的に検出して光電変換を行う、いわゆる縦方向分光型のものでもよい。いずれの場合も、固体撮像素子11は、裏面照射型でもよいし、また表面照射型でもよい。 The solid-state image sensor 11 is, for example, a CMOS image sensor. The configuration of the solid-state imaging device 11 is not particularly limited. For example, the solid-state imaging device 11 may have a two-dimensional arrangement of pixels including photodiodes and color filters on the first surface P1 of the semiconductor substrate 10. In addition, the solid-state imaging device 11 includes, for example, a photoelectric conversion element and a photodiode stacked in one pixel in the thickness direction of the semiconductor substrate 10, and performs photoelectric conversion by selectively detecting light in different wavelength ranges. A so-called longitudinal spectroscopic type may be used. In either case, the solid-state imaging device 11 may be a backside illumination type or a frontside illumination type.
 半導体基板10の厚みDは、例えば50μm以下であることが好ましい。半導体基板10の厚みを50μm以下と薄くするほうが、半導体基板10の応力を小さくすることが可能となり、後述する製造工程において半導体基板10を変形させやすくすることが可能となる。また、半導体基板10の厚みは、30μm以下であればより好ましく、25μm以下であれば更に好ましい。なお、半導体基板10の厚みは、少なくとも固体撮像素子11を形成可能程度でゲッタリング効果を失わないように、例えば10μm以上であることが好ましい。 The thickness D of the semiconductor substrate 10 is preferably 50 μm or less, for example. When the thickness of the semiconductor substrate 10 is reduced to 50 μm or less, the stress of the semiconductor substrate 10 can be reduced, and the semiconductor substrate 10 can be easily deformed in a manufacturing process described later. The thickness of the semiconductor substrate 10 is more preferably 30 μm or less, and further preferably 25 μm or less. The thickness of the semiconductor substrate 10 is preferably, for example, 10 μm or more so that the gettering effect is not lost to the extent that the solid-state imaging device 11 can be formed.
 パッケージ20は、半導体基板11を収容するものであり、セラミック、プラスチックなどにより構成されている。パッケージ20は、底部21に対向して開口22を有し、この開口22は封止ガラス40により封止されている。半導体基板10とパッケージ20との間には、例えば金線などのワイヤーボンドにより、ワイヤWが接続されている。 Package 20 accommodates semiconductor substrate 11 and is made of ceramic, plastic, or the like. The package 20 has an opening 22 facing the bottom 21, and the opening 22 is sealed with a sealing glass 40. A wire W is connected between the semiconductor substrate 10 and the package 20 by, for example, a wire bond such as a gold wire.
 パッケージ20の底部21には、貫通孔23が設けられている。貫通孔23は、後述する製造方法において真空吸着の吸引孔として用いられるものである。貫通孔23は、例えば、底部21の中央に設けられていることが好ましい。 A through hole 23 is provided in the bottom 21 of the package 20. The through hole 23 is used as a suction hole for vacuum suction in a manufacturing method described later. The through hole 23 is preferably provided at the center of the bottom 21, for example.
 樹脂層30は、半導体基板10をパッケージ20の底部21に固着させる接着層としての機能を有するものである。また、樹脂層30は、その形状を制御することにより、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御し、像面湾曲収差の高精度な補正を可能とするものである。 The resin layer 30 has a function as an adhesive layer for fixing the semiconductor substrate 10 to the bottom 21 of the package 20. The resin layer 30 controls the shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 by controlling the shape of the resin layer 30 and enables highly accurate correction of field curvature aberration. .
 すなわち、樹脂層30は、第3面P3および第4面P4を有し、第3面P3は半導体基板10の第2面P2に接し、第4面P4はパッケージ20の底部21に接している。これにより、この固体撮像装置1では、湾曲部をもつ台座基板のような高コストな部品を設けることなく、像面湾曲収差を高い精度で補正することが可能となっている。 That is, the resin layer 30 has a third surface P3 and a fourth surface P4, the third surface P3 is in contact with the second surface P2 of the semiconductor substrate 10, and the fourth surface P4 is in contact with the bottom portion 21 of the package 20. . Thereby, in this solid-state imaging device 1, it is possible to correct the field curvature aberration with high accuracy without providing expensive components such as a pedestal substrate having a curved portion.
 樹脂層30は、Bステージ状の接着シート、例えばDAF(ダイアタッチメントフィルム)材を架橋させることにより形成されたものである。Bステージ状の接着シートは、半導体デバイスを薄くしたものを保持しつつ接着可能な、熱硬化性樹脂の反応の中間的な段階のものであって、熱によって軟化し(変形可能となり)、ある温度以上から架橋が開始される。このようなBステージ状の接着シートすなわち樹脂層30の材料としては、例えば、エポキシ系の樹脂が好ましい。また、エポキシ系のほか、アクリル系、シアン系の樹脂でもよい。 The resin layer 30 is formed by cross-linking a B-stage adhesive sheet, for example, a DAF (Die Attachment Film) material. The B-stage adhesive sheet is an intermediate stage of the reaction of the thermosetting resin that can be bonded while holding a thin semiconductor device, and is softened (deformable) by heat. Cross-linking starts from above the temperature. As a material for such a B-staged adhesive sheet, that is, the resin layer 30, for example, an epoxy resin is preferable. In addition to an epoxy resin, an acrylic resin or a cyan resin may be used.
 半導体基板10の第2面P2および樹脂層30の第3面P3は、それぞれ、第1面P1の湾曲部R1に倣う形状の湾曲部R2,R3を有している。樹脂層30の第4面P4は、パッケージ20の底部21の形状に倣う形状を有する。すなわち、第4面P4は平坦面である。 The second surface P2 of the semiconductor substrate 10 and the third surface P3 of the resin layer 30 respectively have curved portions R2 and R3 that follow the curved portion R1 of the first surface P1. The fourth surface P4 of the resin layer 30 has a shape that follows the shape of the bottom portion 21 of the package 20. That is, the fourth surface P4 is a flat surface.
 固体撮像素子11の像面湾曲収差の補正量Aは、例えば50μm以下であることが好ましい。ここに補正量Aとは、樹脂層30の第3面P3の湾曲の度合い、つまりパッケージ20の底部21からの樹脂層30の厚みの最大値と最小値との差をいう。補正量Aが50μmよりも大きい場合には、半導体基板10を構成するシリコン(Si)と、樹脂層30を構成するDAF材とのCTE(線膨張係数)の差に起因して、温度が変わると応力が発生し、湾曲部R3が変形するおそれがある。 The correction amount A of the field curvature aberration of the solid-state image sensor 11 is preferably, for example, 50 μm or less. Here, the correction amount A refers to the degree of curvature of the third surface P3 of the resin layer 30, that is, the difference between the maximum value and the minimum value of the thickness of the resin layer 30 from the bottom 21 of the package 20. When the correction amount A is larger than 50 μm, the temperature changes due to a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the DAF material constituting the resin layer 30. And stress may occur, and the curved portion R3 may be deformed.
 像面湾曲収差の補正量Aの精度は、レンズ(図示せず)の焦点深度内にあることが望ましい。補正量Aの精度がレンズの焦点深度内にない場合には、ずれている部分は画像の中でぼけてしまうからである。望ましい精度は、Fno×d×2(FnoはレンズのF値、dは固体撮像素子11の画素サイズをそれぞれ表す。)の式により与えられる。例えばレンズのF値Fnoが2.0であり、画素サイズdが2μmである場合、2×2×2=8μmで、補正量Aはプラスマイナス8μmの精度を有することが望ましい。実際には、像面収差の補正を目的としているので、補正量Aは、その4分の1程度、つまりプラスマイナス2μmの精度を有していれば、より望ましい。 The accuracy of the correction amount A of the field curvature aberration is preferably within the depth of focus of a lens (not shown). This is because when the accuracy of the correction amount A is not within the focal depth of the lens, the shifted portion is blurred in the image. Desirable accuracy is given by the formula of Fno × d × 2 (Fno is the F value of the lens, and d is the pixel size of the solid-state imaging device 11). For example, when the F value Fno of the lens is 2.0 and the pixel size d is 2 μm, it is desirable that 2 × 2 × 2 = 8 μm and the correction amount A has an accuracy of plus or minus 8 μm. Actually, since the object is to correct field aberrations, it is more desirable that the correction amount A has an accuracy of about one-fourth, that is, plus or minus 2 μm.
 この固体撮像装置1は、例えば、次のようにして製造することができる。 The solid-state imaging device 1 can be manufactured as follows, for example.
 図2ないし図7は、この固体撮像装置1の製造方法を工程順に表したものである。まず、シリコンウェーハ(図示せず)の状態の半導体基板10を用意し、この半導体基板10の第1面P1に固体撮像素子11を形成し、第2面P2を研磨して半導体基板10を薄膜化する。次いで、半導体基板10をDAF材よりなるBステージの接着シート30Aに載せた状態で、固体撮像素子11を個片化する。これにより、図2に示したように、半導体基板10、すなわち個片化された固体撮像素子11のチップが形成される。 2 to 7 show the manufacturing method of the solid-state imaging device 1 in the order of steps. First, the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned. Turn into. Next, the solid-state imaging device 11 is separated into pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material. As a result, as shown in FIG. 2, the semiconductor substrate 10, that is, the chip of the solid-state imaging device 11 that is separated into pieces, is formed.
 図2に示したように、半導体基板10は、第1面P1および第2面P2を有し、第1面P1に固体撮像素子11が設けられている。接着シート30Aは、第3面P3および第4面P4を有している。半導体基板10と接着シート30Aとは、第2面P2と第3面P3とを接触させて配置されている。 As shown in FIG. 2, the semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging device 11 is provided on the first surface P1. The adhesive sheet 30A has a third surface P3 and a fourth surface P4. The semiconductor substrate 10 and the adhesive sheet 30A are arranged with the second surface P2 and the third surface P3 in contact with each other.
 次いで、図3に示したように、接着シート30Aが架橋しないで変形可能な温度の熱H1をかけながら、接着シート30Aの第4面P4に凸金型50を接触させて圧力Pをかけて、接着シート30Aの変形を行い、冷却する。これにより、図4に示したように、接着シート30Aの第4面P4に湾曲部R4を形成する。 Next, as shown in FIG. 3, while applying heat H1 at a temperature at which the adhesive sheet 30A can be deformed without crosslinking, the convex mold 50 is brought into contact with the fourth surface P4 of the adhesive sheet 30A and pressure P is applied. Then, the adhesive sheet 30A is deformed and cooled. Thereby, as shown in FIG. 4, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A.
 そののち、図5に示したように、底部21に貫通孔23を有するパッケージ20を用意し、このパッケージ20に、半導体基板10および接着シート30Aを表裏反転させて収容する。これにより、第4面P4の湾曲部R4とパッケージ20の底部21との間に空洞Gが形成される。空洞Gは、貫通孔23を介して外部の大気と連通されている。 Thereafter, as shown in FIG. 5, a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are turned upside down and accommodated in the package 20. Thereby, a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20. The cavity G communicates with the external atmosphere via the through hole 23.
 続いて、図6に示したように、空洞Gの内外に圧力差を設けることにより、半導体基板10および接着シート30Aを変形させて空洞Gを除去し、半導体基板10の第1面P1に湾曲部R1を形成する。接着シート30Aの第4面P4は、パッケージ20の底部21に接触する。 Subsequently, as shown in FIG. 6, by providing a pressure difference inside and outside the cavity G, the semiconductor substrate 10 and the adhesive sheet 30A are deformed to remove the cavity G, and the first surface P1 of the semiconductor substrate 10 is curved. Part R1 is formed. The fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
 具体的には、図5に示したように、熱H2をかけながら貫通孔23を用いて真空吸着VAを行うことで、空洞Gを真空にすると共に半導体基板10および接着シート30Aに大気圧APをかけて、半導体基板10および接着シート30Aを変形させて空洞Gを除去する。なお、熱H2は比較的低温とし、接着シート30Aを過度に変形させないようにすることが好ましい。このようにすることにより、図6に示したように、半導体基板の第1面P1に、元の湾曲部R4の形状を高精度に反映した湾曲部R1を形成することが可能となる。 Specifically, as shown in FIG. 5, by performing vacuum suction VA using the through-hole 23 while applying heat H2, the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A. The cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A. In addition, it is preferable that the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 6, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
 そののち、接着シート30Aを架橋温度以上に加熱することにより、接着シート30Aを架橋させて樹脂層30を形成する。これにより、半導体基板10が樹脂層30によりパッケージ20の底部21に固着される。 Thereafter, the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30. As a result, the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
 最後に、図7に示したように、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図1に示した固体撮像装置1が完成する。 Finally, as shown in FIG. 7, the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with the sealing glass 40. As described above, the solid-state imaging device 1 shown in FIG. 1 is completed.
 この固体撮像装置1では、半導体基板10の第1面P1の湾曲部R1に固体撮像素子11が設けられているので、固体撮像素子11の撮像面11Aは湾曲している。よって、レンズ(図示せず)の結像する像面の像面湾曲収差が解消され、良好な画像の撮像が可能となる。 In this solid-state imaging device 1, since the solid-state imaging device 11 is provided in the curved portion R1 of the first surface P1 of the semiconductor substrate 10, the imaging surface 11A of the solid-state imaging device 11 is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
 ここでは、半導体基板10とパッケージ20との間に樹脂層30が設けられ、樹脂層30の第3面P3は半導体基板10の第2面P2に接し、第4面P4はパッケージ20の底部21に接している。よって、樹脂層30の湾曲形状を制御することにより、像面湾曲収差が高い精度で補正される。 Here, the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P 3 of the resin layer 30 is in contact with the second surface P 2 of the semiconductor substrate 10, and the fourth surface P 4 is the bottom portion 21 of the package 20. Is in contact with Therefore, by controlling the curved shape of the resin layer 30, the field curvature aberration is corrected with high accuracy.
 このように本実施の形態では、半導体基板10とパッケージ20との間に樹脂層30を設け、樹脂層30の第3面P3を半導体基板10の第2面P2に接触させ、第4面P4をパッケージ20の底部21に接触させるようにしたので、像面湾曲収差を高い精度で補正することが可能となる。 Thus, in the present embodiment, the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P3 of the resin layer 30 is brought into contact with the second surface P2 of the semiconductor substrate 10, and the fourth surface P4. Is brought into contact with the bottom portion 21 of the package 20, so that the field curvature aberration can be corrected with high accuracy.
(第2の実施の形態)
 図8は、本開示の第2の実施の形態に係る固体撮像装置1Aの断面構成を表したものである。この固体撮像装置1Aは、パッケージ20の底部21に貫通孔23が設けられておらず、底部21が空間的に連続した部材により構成されていることを除いては、上記第1の実施の形態と同様の構成、作用および効果を有している。よって、対応する構成要素には同一の符号を付して説明する。
(Second Embodiment)
FIG. 8 illustrates a cross-sectional configuration of a solid-state imaging device 1A according to the second embodiment of the present disclosure. The solid-state imaging device 1A has the above-described first embodiment except that the through-hole 23 is not provided in the bottom 21 of the package 20 and the bottom 21 is constituted by a spatially continuous member. It has the same structure, operation and effect as the above. Accordingly, the corresponding components will be described with the same reference numerals.
 本実施の形態では、上述したように、パッケージ20の底部21に貫通孔23がなく、空間的に連続した部材により構成されている。従って、貫通孔23からの水分の浸入に起因する剥がれなどが抑えられ、固体撮像素子11の信頼性が向上する。また、撮像したときに、光の状態により、固体撮像素子11の撮像面11Aに貫通孔23が映り込んでしまうおそれを小さくすることが可能となる。なお、貫通孔23からの水分の浸入は、製造工程の最終段階で貫通孔23を塞いでおくことにより回避することも可能である。 In the present embodiment, as described above, the bottom portion 21 of the package 20 does not have the through hole 23 and is configured by a spatially continuous member. Therefore, peeling due to the intrusion of moisture from the through hole 23 is suppressed, and the reliability of the solid-state imaging device 11 is improved. In addition, it is possible to reduce the possibility that the through hole 23 is reflected on the imaging surface 11A of the solid-state imaging device 11 depending on the state of light when the image is taken. In addition, it is also possible to avoid the intrusion of moisture from the through hole 23 by closing the through hole 23 at the final stage of the manufacturing process.
 この固体撮像装置1Aは、例えば、次のようにして製造することができる。 The solid-state imaging device 1A can be manufactured as follows, for example.
 図9ないし図11は、この固体撮像素子10Aの製造方法を工程順に表したものである。なお、第1の実施の形態と重複する工程については、図2ないし図4、および図7を参照して説明する。 9 to 11 show the manufacturing method of the solid-state imaging device 10A in the order of steps. In addition, the process which overlaps with 1st Embodiment is demonstrated with reference to FIG. 2 thru | or 4 and FIG.
 まず、第1の実施の形態と同様にして、図2に示した工程により、半導体基板10と、接着シート30Aとを、第2面P2と第3面P3とを接触させて配置する。半導体基板10は、第1面P1および第2面P2を有し、第1面P1に固体撮像素子11が設けられている。接着シート30Aは、第3面P3および第4面P4を有している。 First, in the same manner as in the first embodiment, the semiconductor substrate 10 and the adhesive sheet 30A are arranged in contact with the second surface P2 and the third surface P3 by the process shown in FIG. The semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging element 11 is provided on the first surface P1. The adhesive sheet 30A has a third surface P3 and a fourth surface P4.
 次いで、第1の実施の形態と同様にして、図3および図4に示した工程により、加熱H1および凸金型50を用いた加圧Pにより、接着シート30Aの第4面P4に湾曲部R4を形成する。 Next, in the same manner as in the first embodiment, the curved portion is formed on the fourth surface P4 of the adhesive sheet 30A by the heating H1 and the pressure P using the convex mold 50 by the steps shown in FIGS. R4 is formed.
 続いて、図9に示したように、チャンバー構造を持つ実装装置を用い、チャンバー60内に、底部21が空間的に連続した部材よりなるパッケージ20を設置し、パッケージ20の上方に、半導体基板10および接着シート30Aを表裏反転させて保持し、チャンバー60内の真空排気Eを行う。 Subsequently, as shown in FIG. 9, using a mounting apparatus having a chamber structure, a package 20 made of a member having a spatially continuous bottom 21 is installed in a chamber 60, and a semiconductor substrate is disposed above the package 20. 10 and the adhesive sheet 30 </ b> A are reversed and held, and the vacuum exhaust E in the chamber 60 is performed.
 そののち、図10に示したように、半導体基板10および接着シート30Aを、真空V中で、パッケージ20に収容する。これにより、第4面P4の湾曲部R4とパッケージ20の底部21との間に、真空Vの空洞Gが形成される。 Thereafter, as shown in FIG. 10, the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are accommodated in the package 20 in a vacuum V. As a result, a vacuum V cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20.
 続いて、図11に示したように、大気解放ARにより半導体基板10および接着シート30Aに大気圧APをかけて、半導体基板10および接着シート30Aを変形させて空洞Gを除去し、半導体基板10の第1面P1に湾曲部R1を形成する。接着シート30Aの第4面P4は、パッケージ20の底部21に接触する。 Subsequently, as shown in FIG. 11, atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A by the atmospheric release AR to deform the semiconductor substrate 10 and the adhesive sheet 30A, thereby removing the cavity G. A curved portion R1 is formed on the first surface P1. The fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
 具体的には、図10に示したように、熱H2をかけながらチャンバー60を大気解放し、空洞Gの内部の負圧を利用して半導体基板10および接着シート30Aに大気圧APをかける。その際の大気圧APのかけ方を適切に制御することにより、半導体基板10および接着シート30Aを変形させて空洞Gを除去する。なお、熱H2は比較的低温とし、接着シート30Aを過度に変形させないようにすることが好ましい。このようにすることにより、図11に示したように、半導体基板の第1面P1に、元の湾曲部R4の形状を高精度に反映した湾曲部R1を形成することが可能となる。 Specifically, as shown in FIG. 10, the chamber 60 is released to the atmosphere while applying heat H2, and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A using the negative pressure inside the cavity G. By appropriately controlling the way of applying the atmospheric pressure AP at that time, the semiconductor substrate 10 and the adhesive sheet 30A are deformed to remove the cavity G. In addition, it is preferable that the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. By doing so, as shown in FIG. 11, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
 そののち、接着シート30Aを架橋温度以上に加熱することにより、接着シート30Aを架橋させて樹脂層30を形成する。これにより、半導体基板10が樹脂層30によりパッケージ20の底部21に固着される。 Thereafter, the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30. As a result, the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
 最後に、第1の実施の形態と同様にして、図7に示した工程により、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図8に示した固体撮像装置1Aが完成する。 Finally, similarly to the first embodiment, the wire W is connected by wire bonding between the semiconductor substrate 10 and the package 20 and the opening 22 of the package 20 is sealed by the process shown in FIG. Seal with glass 40. Thus, the solid-state imaging device 1A shown in FIG. 8 is completed.
 この固体撮像装置1Aでは、第1の実施の形態と同様に、半導体基板10の第1面P1の湾曲部R1に固体撮像素子11が設けられているので、固体撮像素子11の撮像面11Aは湾曲している。よって、レンズ(図示せず)の結像する像面の像面湾曲収差が解消され、良好な画像の撮像が可能となる。 In the solid-state imaging device 1A, as in the first embodiment, since the solid-state imaging device 11 is provided on the curved portion R1 of the first surface P1 of the semiconductor substrate 10, the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
 また、半導体基板10とパッケージ20との間に樹脂層30が設けられ、樹脂層30の第3面P3は半導体基板10の第2面P2に接し、第4面P4はパッケージ20の底部21に接している。よって、樹脂層30の湾曲形状を制御することにより、像面湾曲収差が高い精度で補正される。 A resin layer 30 is provided between the semiconductor substrate 10 and the package 20, the third surface P 3 of the resin layer 30 is in contact with the second surface P 2 of the semiconductor substrate 10, and the fourth surface P 4 is on the bottom 21 of the package 20. It touches. Therefore, by controlling the curved shape of the resin layer 30, the field curvature aberration is corrected with high accuracy.
 更に、パッケージ20の底部21が、空間的に連続した部材により構成されている、つまり底部21に貫通孔23が設けられていない。従って、貫通孔23からの水分の浸入に起因する剥がれなどが抑えられ、固体撮像素子11の信頼性が向上する。また、撮像したときに、光の状態により、固体撮像素子11の撮像面11Aに貫通孔23が映り込んでしまうおそれが小さくなる。 Furthermore, the bottom portion 21 of the package 20 is formed of a spatially continuous member, that is, the through hole 23 is not provided in the bottom portion 21. Therefore, peeling due to the intrusion of moisture from the through hole 23 is suppressed, and the reliability of the solid-state imaging device 11 is improved. In addition, when the image is captured, the risk that the through hole 23 is reflected on the imaging surface 11A of the solid-state imaging device 11 is reduced due to the state of light.
 このように本実施の形態では、第1の実施の形態と同様に、半導体基板10とパッケージ20との間に樹脂層30を設け、樹脂層30の第3面P3を半導体基板10の第2面P2に接触させ、第4面P4をパッケージ20の底部21に接触させるようにしたので、像面湾曲収差を高い精度で補正することが可能となる。 Thus, in the present embodiment, as in the first embodiment, the resin layer 30 is provided between the semiconductor substrate 10 and the package 20, and the third surface P <b> 3 of the resin layer 30 is the second surface of the semiconductor substrate 10. Since the fourth surface P4 is brought into contact with the bottom 21 of the package 20 in contact with the surface P2, the field curvature aberration can be corrected with high accuracy.
 また、パッケージ20の底部21に貫通孔23を設けず、空間的に連続した部材により構成するようにしたので、貫通孔23からの水分の浸入に起因する剥がれなどを抑え、固体撮像素子11の信頼性を高めることが可能となる。また、撮像したときに、光の状態により、固体撮像素子11の撮像面11Aに貫通孔23が映り込んでしまうおそれを小さくし、撮像品質の向上が可能となる。 In addition, since the through hole 23 is not provided in the bottom portion 21 of the package 20 and is configured by a spatially continuous member, peeling due to moisture intrusion from the through hole 23 is suppressed, and the solid-state imaging device 11 Reliability can be increased. In addition, it is possible to reduce the possibility that the through-hole 23 is reflected on the imaging surface 11A of the solid-state imaging device 11 depending on the state of light when taking an image, and to improve the imaging quality.
(第3の実施の形態)
 図12は、本開示の第3の実施の形態に係る固体撮像装置1Bの断面構成を表したものである。上記第1の実施の形態では、樹脂層30の形状を制御することにより、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御するのに対して、本実施の形態は、半導体基板10自体の形状を制御することにより、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御し、像面湾曲収差の高精度な補正を可能とするようにしたものである。このことを除いては、この固体撮像装置1Bは、上記第1の実施の形態と同様の構成を有している。
(Third embodiment)
FIG. 12 illustrates a cross-sectional configuration of a solid-state imaging device 1B according to the third embodiment of the present disclosure. In the first embodiment, the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 is controlled by controlling the shape of the resin layer 30, whereas the present embodiment is a semiconductor By controlling the shape of the substrate 10 itself, the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 is controlled so that the field curvature aberration can be corrected with high accuracy. Except for this, the solid-state imaging device 1B has the same configuration as that of the first embodiment.
 この固体撮像装置1Bでは、半導体基板10の第1面P1は湾曲部R1を有し、半導体基板10の第2面P2と樹脂層30の第3面P3および第4面P4は、パッケージ20の底部21に倣う形状を有する、つまり平坦面となっている。 In the solid-state imaging device 1B, the first surface P1 of the semiconductor substrate 10 has a curved portion R1, and the second surface P2 of the semiconductor substrate 10, the third surface P3 and the fourth surface P4 of the resin layer 30 are formed on the package 20. It has a shape that follows the bottom 21, that is, has a flat surface.
 固体撮像素子11の像面湾曲収差の補正量Aは、第1の実施の形態と同様に、例えば50μm以下であることが好ましい。本実施の形態において、補正量Aは、半導体基板10の第1面P1の湾曲部R1の湾曲の度合い、つまり半導体基板10の厚みの最大値と最小値との差をいう。補正量Aが50μmよりも大きい場合には、半導体基板10を構成するシリコン(Si)と、樹脂層30を構成するDAF材とのCTE(線膨張係数)の差に起因して、温度が変わると応力が発生し、湾曲部R3が変形するおそれがある。 The correction amount A of the field curvature aberration of the solid-state imaging device 11 is preferably 50 μm or less, for example, as in the first embodiment. In the present embodiment, the correction amount A refers to the degree of curvature of the curved portion R1 of the first surface P1 of the semiconductor substrate 10, that is, the difference between the maximum value and the minimum value of the thickness of the semiconductor substrate 10. When the correction amount A is larger than 50 μm, the temperature changes due to a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the DAF material constituting the resin layer 30. And stress may occur, and the curved portion R3 may be deformed.
 この固体撮像装置1Bは、例えば次のようにして製造することができる。 The solid-state imaging device 1B can be manufactured as follows, for example.
 図13ないし図16は、この固体撮像装置1Bの製造方法を工程順に表したものである。本実施の形態の製造方法は、接着シート30Aの第4面P4に湾曲部R4を形成する方法において上記第1の実施の形態の製造方法とは異なるものである。すなわち、上記第1の実施の形態では、凸金型50を用いて接着シート30Aの第4面P4に湾曲部R4を形成するようにしている。一方、本実施の形態では、半導体基板10の第2面P2にエッチングにより湾曲部R2を形成しておき、この湾曲部R2に沿わせて接着シート30Aを貼り合わせることにより、接着シート30Aの第4面P4に、湾曲部R2の形状を反映した湾曲部R4を形成するようにしている。 13 to 16 show the manufacturing method of the solid-state imaging device 1B in the order of steps. The manufacturing method of the present embodiment is different from the manufacturing method of the first embodiment in the method of forming the curved portion R4 on the fourth surface P4 of the adhesive sheet 30A. That is, in the first embodiment, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A using the convex mold 50. On the other hand, in the present embodiment, the curved portion R2 is formed on the second surface P2 of the semiconductor substrate 10 by etching, and the adhesive sheet 30A is bonded along the curved portion R2, whereby the adhesive sheet 30A has a first shape. A curved portion R4 reflecting the shape of the curved portion R2 is formed on the four surfaces P4.
 まず、シリコンウェーハ(図示せず)の状態の半導体基板10を用意し、この半導体基板10の第1面P1に固体撮像素子11を形成し、第2面P2を研磨して半導体基板10を薄膜化する。次いで、図13に示したように、グラデーションマスクを用いた三次元エッチングにより第2面P2に湾曲部R2を形成する。 First, the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned. Turn into. Next, as shown in FIG. 13, a curved portion R2 is formed on the second surface P2 by three-dimensional etching using a gradation mask.
 続いて、半導体基板10をDAF材よりなるBステージの接着シート30Aに載せた状態で、固体撮像素子11を個片化する。これにより、図14に示したように、半導体基板10、すなわち個片化された固体撮像素子11のチップが形成される。 Subsequently, the solid-state imaging device 11 is separated into pieces while the semiconductor substrate 10 is placed on a B-stage adhesive sheet 30A made of a DAF material. As a result, as shown in FIG. 14, the semiconductor substrate 10, that is, the chip of the solid-state imaging device 11 that is separated into pieces, is formed.
 図14に示したように、半導体基板10は、第1面P1および第2面P2を有し、第1面P1に固体撮像素子11が設けられ、第2面P2に湾曲部R2が設けられている。接着シート30Aは、第3面P3および第4面P4を有している。半導体基板10と接着シート30Aとは、第2面P2と第3面P3とを接触させて配置されている。接着シート30Aの第3面P3および第4面P4には、湾曲部R2の形状に倣って、湾曲部R3,R4が形成されている。 As shown in FIG. 14, the semiconductor substrate 10 has a first surface P1 and a second surface P2, the solid-state imaging device 11 is provided on the first surface P1, and the curved portion R2 is provided on the second surface P2. ing. The adhesive sheet 30A has a third surface P3 and a fourth surface P4. The semiconductor substrate 10 and the adhesive sheet 30A are arranged with the second surface P2 and the third surface P3 in contact with each other. On the third surface P3 and the fourth surface P4 of the adhesive sheet 30A, curved portions R3 and R4 are formed following the shape of the curved portion R2.
 そののち、図15に示したように、底部21に貫通孔23を有するパッケージ20を用意し、このパッケージ20に、半導体基板10および接着シート30Aを表裏反転させて収容する。このとき、第4面P4の湾曲部R4とパッケージ20の底部21との間に空洞Gが形成される。空洞Gは、貫通孔23を介して外部の大気と連通されている。 Thereafter, as shown in FIG. 15, a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are turned upside down and accommodated in the package 20. At this time, a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20. The cavity G communicates with the external atmosphere via the through hole 23.
 続いて、図16に示したように、空洞Gの内外に圧力差を設けることにより、半導体基板10および接着シート30Aを変形させて空洞Gを除去し、半導体基板10の第1面P1に湾曲部R1を形成する。接着シート30Aの第4面P4は、パッケージ20の底部21に接触する。 Subsequently, as shown in FIG. 16, by providing a pressure difference between the inside and outside of the cavity G, the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are deformed to remove the cavity G, and the first surface P <b> 1 of the semiconductor substrate 10 is curved. Part R1 is formed. The fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
 具体的には、図15に示したように、熱H2をかけながら貫通孔23を用いて真空吸着VAを行うことで、空洞Gを真空にすると共に半導体基板10および接着シート30Aに大気圧APをかけて、半導体基板10および接着シート30Aを変形させて空洞Gを除去する。なお、熱H2は比較的低温とし、接着シート30Aを過度に変形させないようにすることが好ましい。このようにすることにより、図16に示したように、半導体基板の第1面P1に、元の湾曲部R4の形状を高精度に反映した湾曲部R1を形成することが可能となる。 Specifically, as shown in FIG. 15, by performing vacuum suction VA using the through hole 23 while applying heat H2, the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A. The cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A. In addition, it is preferable that the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 16, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
 そののち、接着シート30Aを架橋温度以上に加熱することにより、接着シート30Aを架橋させて樹脂層30を形成する。これにより、半導体基板10が樹脂層30によりパッケージ20の底部21に固着される。 Thereafter, the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30. As a result, the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
 最後に、図12に示したように、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図12に示した固体撮像装置1Bが完成する。 Finally, as shown in FIG. 12, a wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with a sealing glass 40. Thus, the solid-state imaging device 1B shown in FIG. 12 is completed.
 この固体撮像装置1Bの作用および効果は第1の実施の形態と同様である。 The operation and effect of the solid-state imaging device 1B are the same as those in the first embodiment.
(変形例1)
 なお、この固体撮像装置1Bでは、図17に示したように、第2の実施の形態と同様に、パッケージ20の底部21に貫通孔23を設けず、空間的に連続した部材により構成することも可能である。その場合の製造方法は、第2の実施の形態と同様である。これにより第1の実施の形態の効果に加えて第2の実施の形態と同様の作用・効果を得ることも可能である。
(Modification 1)
As shown in FIG. 17, the solid-state imaging device 1 </ b> B is configured by a spatially continuous member without providing the through hole 23 in the bottom portion 21 of the package 20, as in the second embodiment. Is also possible. The manufacturing method in that case is the same as in the second embodiment. Thereby, in addition to the effect of the first embodiment, it is possible to obtain the same operation and effect as those of the second embodiment.
(第4の実施の形態)
 図18は、本開示の第4の実施の形態に係る固体撮像装置1Cの断面構成を表したものである。この固体撮像装置1Cは、樹脂層30を、第1樹脂層31および第2樹脂層32の2層構造とし、第1樹脂層31の形状を制御することにより、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御し、像面湾曲収差の高精度な補正を可能とするようにしたものである。このことを除いては、この固体撮像装置1Cは、上記第1の実施の形態と同様の構成を有している。
(Fourth embodiment)
FIG. 18 illustrates a cross-sectional configuration of a solid-state imaging device 1C according to the fourth embodiment of the present disclosure. In the solid-state imaging device 1 </ b> C, the resin layer 30 has a two-layer structure including a first resin layer 31 and a second resin layer 32, and the first surface P <b> 1 of the semiconductor substrate 10 is controlled by controlling the shape of the first resin layer 31. The curved shape of the curved portion R1 is controlled to enable highly accurate correction of field curvature aberration. Except for this, the solid-state imaging device 1C has the same configuration as that of the first embodiment.
 本実施の形態では、上述したように、樹脂層30は、第1樹脂層31および第2樹脂層32の2層構造を有している。第1樹脂層31は、樹脂層30において半導体基板10側に設けられ、第3面P3および第5面P5を有している。第2樹脂層32は、樹脂層30においてパッケージ20側に設けられ、第6面P6および第4面P4を有している。第2樹脂層32は、Bステージ状の接着シート30A、例えばDAF材を架橋させることにより形成されたものである。 In the present embodiment, as described above, the resin layer 30 has a two-layer structure of the first resin layer 31 and the second resin layer 32. The first resin layer 31 is provided on the semiconductor substrate 10 side in the resin layer 30 and has a third surface P3 and a fifth surface P5. The second resin layer 32 is provided on the package 20 side in the resin layer 30 and has a sixth surface P6 and a fourth surface P4. The second resin layer 32 is formed by crosslinking a B-stage adhesive sheet 30A, for example, a DAF material.
 半導体基板10の第2面P2と第1樹脂層31の第3面P3とは、それぞれ湾曲部R2,R3を有している。第1樹脂層31の第5面P5と第2樹脂層32の第6面P6および第4面P4は、パッケージ20の底部21に倣う形状を有する、すなわち平坦面となっている。 The second surface P2 of the semiconductor substrate 10 and the third surface P3 of the first resin layer 31 have curved portions R2 and R3, respectively. The fifth surface P5 of the first resin layer 31 and the sixth surface P6 and the fourth surface P4 of the second resin layer 32 have a shape that follows the bottom 21 of the package 20, that is, are flat surfaces.
 固体撮像素子11の像面湾曲収差の補正量Aは、第1の実施の形態と同様に、例えば50μm以下であることが好ましい。本実施の形態において、補正量Aは、第1樹脂層31の第3面P3の湾曲部R3の湾曲の度合い、つまり第1樹脂層31の厚みの最大値と最小値との差をいう。補正量Aが50μmよりも大きい場合には、半導体基板10を構成するシリコン(Si)と、第1樹脂層31または第2樹脂層32の材料とのCTE(線膨張係数)の差に起因して、温度が変わると応力が発生し、湾曲部R3が変形するおそれがある。 The correction amount A of the field curvature aberration of the solid-state imaging device 11 is preferably 50 μm or less, for example, as in the first embodiment. In the present embodiment, the correction amount A refers to the degree of bending of the bending portion R3 of the third surface P3 of the first resin layer 31, that is, the difference between the maximum value and the minimum value of the thickness of the first resin layer 31. When the correction amount A is larger than 50 μm, it is caused by a difference in CTE (linear expansion coefficient) between silicon (Si) constituting the semiconductor substrate 10 and the material of the first resin layer 31 or the second resin layer 32. If the temperature changes, stress is generated and the bending portion R3 may be deformed.
 この固体撮像装置1Cは、例えば次のようにして製造することができる。 The solid-state imaging device 1C can be manufactured as follows, for example.
 図19ないし図22は、この固体撮像装置1Cの製造方法を工程順に表したものである。本実施の形態の製造方法は、接着シート30Aの第4面P4に湾曲部R4を形成する方法において上記第1の実施の形態の製造方法とは異なるものである。すなわち、上記第1の実施の形態では、凸金型50を用いて接着シート30Aの第4面P4に湾曲部R4を形成するようにしている。一方、本実施の形態では、第1樹脂層31の第5面P5にナノインプリントにより湾曲部R5を形成しておき、この湾曲部R5に沿わせて接着シート30Aを貼り合わせることにより、接着シート30Aの第4面P4に、湾曲部R5の形状を反映した湾曲部R4を形成するようにしている。 19 to 22 show the manufacturing method of the solid-state imaging device 1C in the order of steps. The manufacturing method of the present embodiment is different from the manufacturing method of the first embodiment in the method of forming the curved portion R4 on the fourth surface P4 of the adhesive sheet 30A. That is, in the first embodiment, the curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A using the convex mold 50. On the other hand, in the present embodiment, the curved portion R5 is formed by nanoimprinting on the fifth surface P5 of the first resin layer 31, and the adhesive sheet 30A is bonded along the curved portion R5, thereby bonding the adhesive sheet 30A. A curved portion R4 reflecting the shape of the curved portion R5 is formed on the fourth surface P4.
 まず、シリコンウェーハ(図示せず)の状態の半導体基板10を用意し、この半導体基板10の第1面P1に固体撮像素子11を形成し、第2面P2を研磨して半導体基板10を薄膜化する。次いで、図19に示したように、この半導体基板10の第2面P2に、ナノインプリント法により、第1樹脂層31を形成する。第1樹脂層31は、第3面P3および第5面P5を有し、第3面は半導体基板10の第2面P2に接し、第5面P5には湾曲部R5が設けられている。 First, the semiconductor substrate 10 in the state of a silicon wafer (not shown) is prepared, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10, the second surface P2 is polished, and the semiconductor substrate 10 is thinned. Turn into. Next, as shown in FIG. 19, the first resin layer 31 is formed on the second surface P2 of the semiconductor substrate 10 by the nanoimprint method. The first resin layer 31 has a third surface P3 and a fifth surface P5, the third surface is in contact with the second surface P2 of the semiconductor substrate 10, and a curved portion R5 is provided on the fifth surface P5.
 具体的には、半導体基板10の第2面P2に、紫外線硬化型樹脂よりなる樹脂層(図示せず)を形成し、この樹脂層を金型(図示せず)に接触させて紫外光を照射したのち、金型から離型する。これにより、第5面P5に湾曲部R5を有する第1樹脂層31が形成される。 Specifically, a resin layer (not shown) made of an ultraviolet curable resin is formed on the second surface P2 of the semiconductor substrate 10, and this resin layer is brought into contact with a mold (not shown) to emit ultraviolet light. After irradiation, release from the mold. Thus, the first resin layer 31 having the curved portion R5 is formed on the fifth surface P5.
 続いて、半導体基板10をDAF材よりなるBステージの接着シート30Aに載せた状態で、固体撮像素子11を個片化する。これにより、図20に示したように、半導体基板10、すなわち個片化された固体撮像素子11のチップが形成される。 Subsequently, the solid-state imaging device 11 is separated into pieces while the semiconductor substrate 10 is placed on a B-stage adhesive sheet 30A made of a DAF material. As a result, as shown in FIG. 20, the semiconductor substrate 10, that is, the chip of the solid-state imaging device 11 separated into pieces, is formed.
 図20に示したように、接着シート30Aは、第6面P6および第4面P4を有している。第1樹脂層31と、接着シート30Aとは、第5面P5と第6面P6とを接触させて配置されている。これにより、接着シート30Aの第4面P4には、湾曲部R5の形状に倣って、湾曲部R4が形成されている。 As shown in FIG. 20, the adhesive sheet 30A has a sixth surface P6 and a fourth surface P4. The first resin layer 31 and the adhesive sheet 30A are arranged with the fifth surface P5 and the sixth surface P6 in contact with each other. Accordingly, a curved portion R4 is formed on the fourth surface P4 of the adhesive sheet 30A, following the shape of the curved portion R5.
 そののち、図21に示したように、底部21に貫通孔23を有するパッケージ20を用意し、このパッケージ20に、半導体基板10および接着シート30Aを表裏反転させて収容する。このとき、第4面P4の湾曲部R4とパッケージ20の底部21との間に空洞Gが形成される。空洞Gは、貫通孔23を介して外部の大気と連通されている。 Thereafter, as shown in FIG. 21, a package 20 having a through hole 23 in the bottom 21 is prepared, and the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are turned upside down and accommodated in the package 20. At this time, a cavity G is formed between the curved portion R4 of the fourth surface P4 and the bottom portion 21 of the package 20. The cavity G communicates with the external atmosphere via the through hole 23.
 続いて、図22に示したように、空洞Gの内外に圧力差を設けることにより、半導体基板10および接着シート30Aを変形させて空洞Gを除去し、半導体基板10の第1面P1に湾曲部R1を形成する。接着シート30Aの第4面P4は、パッケージ20の底部21に接触する。 Subsequently, as shown in FIG. 22, by providing a pressure difference inside and outside the cavity G, the semiconductor substrate 10 and the adhesive sheet 30A are deformed to remove the cavity G, and the first surface P1 of the semiconductor substrate 10 is curved. Part R1 is formed. The fourth surface P4 of the adhesive sheet 30A is in contact with the bottom portion 21 of the package 20.
 具体的には、図21に示したように、熱H2をかけながら貫通孔23を用いて真空吸着VAを行うことで、空洞Gを真空にすると共に半導体基板10および接着シート30Aに大気圧APをかけて、半導体基板10および接着シート30Aを変形させて空洞Gを除去する。なお、熱H2は比較的低温とし、接着シート30Aを過度に変形させないようにすることが好ましい。このようにすることにより、図22に示したように、半導体基板の第1面P1に、元の湾曲部R4の形状を高精度に反映した湾曲部R1を形成することが可能となる。 Specifically, as shown in FIG. 21, by performing vacuum suction VA using the through hole 23 while applying heat H2, the cavity G is evacuated and the atmospheric pressure AP is applied to the semiconductor substrate 10 and the adhesive sheet 30A. The cavity G is removed by deforming the semiconductor substrate 10 and the adhesive sheet 30A. In addition, it is preferable that the heat H2 is set at a relatively low temperature so that the adhesive sheet 30A is not excessively deformed. In this way, as shown in FIG. 22, it is possible to form the curved portion R1 reflecting the shape of the original curved portion R4 with high accuracy on the first surface P1 of the semiconductor substrate.
 そののち、接着シート30Aを架橋温度以上に加熱することにより、接着シート30Aを架橋させて樹脂層30を形成する。これにより、半導体基板10が樹脂層30によりパッケージ20の底部21に固着される。 Thereafter, the adhesive sheet 30A is heated to a crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30. As a result, the semiconductor substrate 10 is fixed to the bottom 21 of the package 20 by the resin layer 30.
 最後に、図18に示したように、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図18に示した固体撮像装置1Cが完成する。 Finally, as shown in FIG. 18, the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed with the sealing glass 40. Thus, the solid-state imaging device 1C illustrated in FIG. 18 is completed.
 この固体撮像装置1Cの作用および効果は第1の実施の形態と同様である。 The operation and effect of the solid-state imaging device 1C are the same as those in the first embodiment.
(変形例2)
 なお、この固体撮像装置1Cでは、図23に示したように、第2の実施の形態と同様に、パッケージ20の底部21に貫通孔23を設けず、空間的に連続した部材により構成することも可能である。その場合の製造方法は、第2の実施の形態と同様である。これにより第1の実施の形態の効果に加えて第2の実施の形態と同様の作用・効果を得ることも可能である。
(Modification 2)
In the solid-state imaging device 1C, as shown in FIG. 23, similarly to the second embodiment, the through hole 23 is not provided in the bottom portion 21 of the package 20, and it is configured by a spatially continuous member. Is also possible. The manufacturing method in that case is the same as in the second embodiment. Thereby, in addition to the effect of the first embodiment, it is possible to obtain the same operation and effect as those of the second embodiment.
(第5の実施の形態)
 図24は、本開示の第5の実施の形態に係る固体撮像装置1Dの断面構成を表したものである。この固体撮像装置1Dは、例えば、固体撮像素子11を有する半導体基板10を樹脂層30により保持部材(台座)70に保持させて、パッケージ20に収容した構成を有している。以下、第1の実施の形態と同一の構成要素には同一の符号を付して説明する。
(Fifth embodiment)
FIG. 24 illustrates a cross-sectional configuration of a solid-state imaging device 1D according to the fifth embodiment of the present disclosure. The solid-state imaging device 1D has a configuration in which, for example, the semiconductor substrate 10 having the solid-state imaging element 11 is held on a holding member (pedestal) 70 by a resin layer 30 and accommodated in a package 20. Hereinafter, the same components as those in the first embodiment will be described with the same reference numerals.
 半導体基板10は、第1の実施の形態と同様に、例えばシリコン(Si)ウェーハ(図示せず)から個片化された固体撮像素子11のチップである。半導体基板10は、第1面P1および第2面P2を有し、第1面P1には固体撮像素子11が設けられ、第2面P2は樹脂層30に接合されている。 As in the first embodiment, the semiconductor substrate 10 is a chip of the solid-state imaging device 11 separated from, for example, a silicon (Si) wafer (not shown). The semiconductor substrate 10 has a first surface P <b> 1 and a second surface P <b> 2, the solid-state imaging device 11 is provided on the first surface P <b> 1, and the second surface P <b> 2 is bonded to the resin layer 30.
 固体撮像素子11は、第1の実施の形態と同様に、第1面P1の湾曲部R1に設けられたCMOSイメージセンサである。湾曲部R1は、第1の実施の形態と同様に、半導体基板10の厚み方向の断面では弧状をなし、三次元的には椀状の曲面をなしている。固体撮像素子11の構成については、第1の実施の形態と同様である。 The solid-state imaging device 11 is a CMOS image sensor provided on the curved portion R1 of the first surface P1 as in the first embodiment. Similar to the first embodiment, the curved portion R1 has an arc shape in the cross section in the thickness direction of the semiconductor substrate 10, and has a bowl-shaped curved surface in three dimensions. About the structure of the solid-state image sensor 11, it is the same as that of 1st Embodiment.
 パッケージ20は、底部21の貫通孔23を有しないことを除いては、第1の実施の形態と同様に構成されている。封止ガラス40およびワイヤWは、第1の実施の形態と同様に構成されている。 The package 20 is configured in the same manner as in the first embodiment except that the package 20 does not have the through hole 23 in the bottom portion 21. The sealing glass 40 and the wire W are configured in the same manner as in the first embodiment.
 樹脂層30は、半導体基板10を保持部材70に固着させる接着層としての機能を有するものである。樹脂層30の第3面P3は、半導体基板10の第2面P2に接合されている。樹脂層30の第4面P4は、保持部材70の上面P7に接合されている。樹脂層30は、第1の実施の形態と同様に、Bステージ状の接着シート、例えばDAF材を架橋させることにより形成されたものである。樹脂層30の材料は、第1の実施の形態と同様である。 The resin layer 30 has a function as an adhesive layer for fixing the semiconductor substrate 10 to the holding member 70. The third surface P3 of the resin layer 30 is bonded to the second surface P2 of the semiconductor substrate 10. The fourth surface P4 of the resin layer 30 is bonded to the upper surface P7 of the holding member 70. The resin layer 30 is formed by crosslinking a B-stage adhesive sheet, for example, a DAF material, as in the first embodiment. The material of the resin layer 30 is the same as that in the first embodiment.
 保持部材70は、半導体基板10を保持すると共に、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御し、像面湾曲収差を補正するものであり、例えばシリコン(Si)、樹脂、金属、セラミックにより構成されている。保持部材70は、上面P7に湾曲部R7を有している。この湾曲部R7は、保持部材70の厚み方向の断面では弧状をなし、三次元的には椀状の曲面をなしている。これにより、半導体基板10の第1面P1および第2面P2と、樹脂層30の第3面P3および第4面P4とには、保持部材70の上面P7の湾曲部R7に倣う形状の湾曲部R1,R2,R3,R4がそれぞれ形成されている。 The holding member 70 holds the semiconductor substrate 10 and controls the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 to correct field curvature aberration. For example, silicon (Si), resin It is made of metal and ceramic. The holding member 70 has a curved portion R7 on the upper surface P7. The curved portion R7 has an arc shape in the cross section in the thickness direction of the holding member 70, and has a bowl-shaped curved surface in three dimensions. Thus, the first surface P1 and the second surface P2 of the semiconductor substrate 10 and the third surface P3 and the fourth surface P4 of the resin layer 30 are curved in a shape that follows the curved portion R7 of the upper surface P7 of the holding member 70. Portions R1, R2, R3, and R4 are formed.
 また、保持部材70には、貫通孔71が設けられている。貫通孔71は、後述する製造方法において真空吸着の吸引孔として用いられるものである。貫通孔71は、例えば、保持部材70の椀状の三次元曲面の中央に設けられていることが好ましい。 Further, the holding member 70 is provided with a through hole 71. The through hole 71 is used as a suction hole for vacuum suction in a manufacturing method described later. For example, the through hole 71 is preferably provided at the center of the bowl-shaped three-dimensional curved surface of the holding member 70.
 貫通孔71は、保持部材70と同じ反射率をもつ材料よりなる埋込み層72で埋め込まれていることが好ましい。これにより、貫通孔71に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となる。 The through hole 71 is preferably embedded with an embedded layer 72 made of a material having the same reflectance as that of the holding member 70. Thereby, the in-plane output difference of the solid-state imaging device 11 due to the through hole 71 can be reduced, and unevenness of the image can be suppressed.
 この固体撮像装置1Dは、例えば、次のようにして製造することができる。 The solid-state imaging device 1D can be manufactured as follows, for example.
 図25ないし図29は、この固体撮像装置1Dの製造方法を工程順に表したものである。なお、第1の実施の形態と重複する工程については、図2を参照して説明する。 25 to 29 show the manufacturing method of the solid-state imaging device 1D in the order of steps. In addition, the process which overlaps with 1st Embodiment is demonstrated with reference to FIG.
 まず、第1の実施の形態と同様にして、図2に示した工程により、半導体基板10の第1面P1に固体撮像素子11を形成し、第2面P2を研磨して半導体基板10を薄膜化する。次いで、同じく図2に示した工程により、半導体基板10をDAF材よりなるBステージの接着シート30Aに乗せた状態で、固体撮像素子11を個片化する。 First, similarly to the first embodiment, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10 and the second surface P2 is polished by the process shown in FIG. Thin film. Next, the solid-state imaging device 11 is separated into individual pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material by the process shown in FIG.
 続いて、図25に示したように、半導体基板10および接着シート30Aを、保持部材70の上面P7に設置する。接着シート30Aの第4面P4は、保持部材70の上面P7の周縁部のみに接し、接着シート30Aの第4面P4と保持部材70の上面P7の湾曲部R7との間には、空洞Gが生じている。空洞Gは、保持部材70の貫通孔71を介して外部の大気と連通されている。 Subsequently, as shown in FIG. 25, the semiconductor substrate 10 and the adhesive sheet 30 </ b> A are installed on the upper surface P <b> 7 of the holding member 70. The fourth surface P4 of the adhesive sheet 30A is in contact with only the peripheral edge of the upper surface P7 of the holding member 70, and there is a cavity G between the fourth surface P4 of the adhesive sheet 30A and the curved portion R7 of the upper surface P7 of the holding member 70. Has occurred. The cavity G communicates with the external atmosphere via the through hole 71 of the holding member 70.
 そののち、図26に示したように、半導体基板10、接着シート30Aおよび保持部材70を図示しないチャンバー内に設置して真空排気Eを行う。これにより、空洞Gの内外に圧力差が生じ、半導体基板10および接着シート30Aが変形して空洞Gが除去される。 Thereafter, as shown in FIG. 26, the semiconductor substrate 10, the adhesive sheet 30A, and the holding member 70 are placed in a chamber (not shown), and evacuation E is performed. Thereby, a pressure difference arises inside and outside the cavity G, the semiconductor substrate 10 and the adhesive sheet 30A are deformed, and the cavity G is removed.
 このようにして、図27に示したように、接着シート30Aの第4面P4が保持部材70の上面P7に接触する。半導体基板10の第1面P1および第2面P2と、接着シート30Aの第3面P3および第4面P4とには、保持部材70の上面P7の湾曲部R7の形状に倣う湾曲部R1,R2,R3,R4がそれぞれ形成される。 Thus, as shown in FIG. 27, the fourth surface P4 of the adhesive sheet 30A comes into contact with the upper surface P7 of the holding member 70. On the first surface P1 and the second surface P2 of the semiconductor substrate 10, and on the third surface P3 and the fourth surface P4 of the adhesive sheet 30A, the curved portions R1, which follow the shape of the curved portion R7 of the upper surface P7 of the holding member 70. R2, R3, and R4 are formed, respectively.
 続いて、接着シート30Aを架橋温度以上に加熱することにより、接着シート30Aを架橋させて樹脂層30を形成する。これにより、半導体基板10が樹脂層30により保持部材70の上面P7に固着される。 Subsequently, the adhesive sheet 30A is heated to the crosslinking temperature or higher to crosslink the adhesive sheet 30A to form the resin layer 30. Thereby, the semiconductor substrate 10 is fixed to the upper surface P <b> 7 of the holding member 70 by the resin layer 30.
 続いて、図28に示したように、保持部材70の貫通孔71に、保持部材70と同じ反射率をもつ材料よりなる埋込み層72を形成する。そののち、図29に示したように、研磨などの平坦化を行い、埋込み層72の貫通孔71から突出した部分を除去する。 Subsequently, as shown in FIG. 28, a buried layer 72 made of a material having the same reflectance as that of the holding member 70 is formed in the through hole 71 of the holding member 70. After that, as shown in FIG. 29, planarization such as polishing is performed, and a portion protruding from the through hole 71 of the buried layer 72 is removed.
 最後に、図24に示したように、保持部材70をパッケージ20に収容し、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図24に示した固体撮像装置1Dが完成する。 Finally, as shown in FIG. 24, the holding member 70 is accommodated in the package 20, the wire W is connected between the semiconductor substrate 10 and the package 20 by wire bonding, and the opening 22 of the package 20 is sealed glass. Seal with 40. Thus, the solid-state imaging device 1D illustrated in FIG. 24 is completed.
 この固体撮像装置1Dでは、第1の実施の形態と同様に、半導体基板10の第1面P1の湾曲部R1に固体撮像素子11が設けられているので、固体撮像素子11の撮像面11Aは湾曲している。よって、レンズ(図示せず)の結像する像面の像面湾曲収差が解消され、良好な画像の撮像が可能となる。 In the solid-state imaging device 1D, as in the first embodiment, since the solid-state imaging device 11 is provided in the curved portion R1 of the first surface P1 of the semiconductor substrate 10, the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
 また、このとき、入射光h1は、図30に示したように、半導体基板10および樹脂層30を通過し、保持部材70の上面P7で反射されて反射光h2が生じる。また、貫通孔71には埋込み層72が設けられているので、入射光h1は、図31に示したように、半導体基板10および樹脂層30を通過し、埋込み層72で反射されて反射光h3が生じる。埋込み層72は保持部材70と同じ反射率をもつ材料よりなるので、反射光h2,h3の光量は同等になる。よって、固体撮像素子11の貫通孔71上の部分とそれ以外の部分で出力差がなくなり、画像のムラが解消される。 Further, at this time, the incident light h1 passes through the semiconductor substrate 10 and the resin layer 30 as shown in FIG. 30, and is reflected by the upper surface P7 of the holding member 70 to generate reflected light h2. Further, since the buried layer 72 is provided in the through hole 71, the incident light h1 passes through the semiconductor substrate 10 and the resin layer 30, and is reflected by the buried layer 72 as shown in FIG. h3 is generated. Since the buried layer 72 is made of a material having the same reflectance as that of the holding member 70, the light amounts of the reflected lights h2 and h3 are equal. Therefore, there is no difference in output between the portion on the through hole 71 of the solid-state imaging device 11 and the other portion, and the unevenness of the image is eliminated.
 このように本実施の形態では、半導体基板10を樹脂層30により保持部材70に保持させてパッケージ20に収容し、保持部材70の貫通孔71を保持部材70と同じ反射率の埋込み層72で埋めるようにしたので、貫通孔71に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となる。 Thus, in the present embodiment, the semiconductor substrate 10 is held by the holding member 70 by the resin layer 30 and accommodated in the package 20, and the through hole 71 of the holding member 70 is formed by the embedded layer 72 having the same reflectivity as the holding member 70. Since the filling is performed, the in-plane output difference of the solid-state imaging device 11 due to the through-hole 71 can be reduced, and unevenness of the image can be suppressed.
 なお、上記実施の形態では、図24に示したように、貫通孔71の径φが貫通孔71の長手方向で等しい場合について説明した。しかしながら、図32に示したように、貫通孔71のパッケージ20側の開口径φAが、貫通孔71の半導体基板10側の開口径φBよりも大きいようにすることが好ましい。これにより、貫通孔71に埋込み層72を埋め込みやすくすることが可能となる。 In the above embodiment, the case where the diameter φ of the through hole 71 is equal in the longitudinal direction of the through hole 71 has been described as shown in FIG. However, as shown in FIG. 32, it is preferable that the opening diameter φA of the through hole 71 on the package 20 side is larger than the opening diameter φB of the through hole 71 on the semiconductor substrate 10 side. As a result, it is possible to easily embed the buried layer 72 in the through hole 71.
 また、上記実施の形態では、図24に示したように、貫通孔71が固体撮像素子11の撮像面11Aの法線Nに平行に、パッケージ20の底部21に対して垂直に設けられている場合について説明した。しかしながら、図33に示したように、貫通孔71は、固体撮像素子11の撮像面11Aの法線方向Nに対して斜めに設けられていてもよい。あるいは、図34に示したように、貫通孔71は、半導体基板10側の開口71Bとパッケージ20側の開口71Aとの間に屈曲部71Cを有していてもよい。このようにすることにより、固体撮像素子11の面内方向において開口71A,71Bの位置が異なり、貫通孔71に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となる。 In the above embodiment, as shown in FIG. 24, the through hole 71 is provided in parallel to the normal line N of the imaging surface 11A of the solid-state imaging device 11 and perpendicular to the bottom 21 of the package 20. Explained the case. However, as illustrated in FIG. 33, the through hole 71 may be provided obliquely with respect to the normal direction N of the imaging surface 11 </ b> A of the solid-state imaging device 11. Alternatively, as illustrated in FIG. 34, the through hole 71 may have a bent portion 71C between the opening 71B on the semiconductor substrate 10 side and the opening 71A on the package 20 side. By doing so, the positions of the openings 71A and 71B are different in the in-plane direction of the solid-state image pickup device 11, the in-plane output difference of the solid-state image pickup device 11 due to the through hole 71 is reduced, and unevenness of the image is suppressed. Is possible.
 更に、上記実施の形態では、図24に示したように、貫通孔71の内部に保持部材70と同じ反射率をもつ材料よりなる埋込み層72を埋め込む場合について説明した。しかしながら、パッケージ20のうち貫通孔71が位置する領域を、保持部材70と同じ反射率をもつ材料により構成してもよい。例えば図35に示したように、パッケージ20の底部21の上面に、保持部材70と同じ反射率をもつ材料よりなる上面層24を設けるようにしてもよい。これにより貫通孔71の底部が保持部材70と同じ反射率をもつ上面層24で塞がれるので、垂直光成分の反射率が同等になり、貫通孔71に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となる。 Furthermore, in the above-described embodiment, as shown in FIG. 24, the case where the embedded layer 72 made of a material having the same reflectance as that of the holding member 70 is embedded in the through hole 71 has been described. However, the region of the package 20 where the through hole 71 is located may be made of a material having the same reflectance as that of the holding member 70. For example, as shown in FIG. 35, an upper surface layer 24 made of a material having the same reflectance as that of the holding member 70 may be provided on the upper surface of the bottom portion 21 of the package 20. As a result, the bottom of the through hole 71 is closed by the upper surface layer 24 having the same reflectance as that of the holding member 70, so that the reflectance of the vertical light component becomes equal, and the in-plane of the solid-state imaging device 11 caused by the through hole 71. It is possible to reduce the output difference and suppress image unevenness.
 加えて、本実施の形態は、第1ないし第4の実施の形態と組み合わせることも可能である。例えば、第1の実施の形態において、パッケージ20の貫通孔23に、パッケージ20と同じ反射率の埋込み層(図示せず)を設けるようにしてもよい。これにより、本実施の形態と同様に、貫通孔23に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となる。 In addition, the present embodiment can be combined with the first to fourth embodiments. For example, in the first embodiment, an embedded layer (not shown) having the same reflectance as that of the package 20 may be provided in the through hole 23 of the package 20. As a result, as in the present embodiment, the in-plane output difference of the solid-state imaging device 11 due to the through-hole 23 can be reduced, and image unevenness can be suppressed.
 なお、貫通孔71に埋込み層72を設けず、貫通孔71の半導体基板10側の開口径φAを固体撮像素子11の一画素程度のサイズにするようにしてもよい。このようにすれば、出力差を生む範囲が一画素程度となるので、この画素を画像処理部(図示せず)において補正の対象とすることにより、画像のムラを抑えることが可能となる。 The embedded layer 72 may not be provided in the through hole 71, and the opening diameter φA on the semiconductor substrate 10 side of the through hole 71 may be set to a size of about one pixel of the solid-state imaging device 11. In this way, since the range in which the output difference is generated is about one pixel, unevenness of the image can be suppressed by making this pixel a correction target in the image processing unit (not shown).
 また、上記実施の形態では、樹脂層30をBステージ状の接着シート、例えばDAF材を架橋させたものにより構成した場合について説明した。更に、樹脂層30を、遮光性のあるDAF材を架橋させたものにより構成することが好ましい。これにより、反射光を低減し、出力差を抑えて、画像のムラを解消することが可能となる。上記第1ないし第4の実施の形態において樹脂層30を、遮光性のあるDAF材を架橋させたものにより構成した場合も、同様の効果を得ることが可能となる。 In the above embodiment, the case where the resin layer 30 is configured by a B-stage adhesive sheet, for example, a cross-linked DAF material has been described. Furthermore, it is preferable that the resin layer 30 is made of a cross-linked DAF material having a light shielding property. Thereby, reflected light can be reduced, output difference can be suppressed, and unevenness of an image can be eliminated. In the first to fourth embodiments, the same effect can be obtained even when the resin layer 30 is formed by cross-linking a light-shielding DAF material.
 遮光性をもつDAF材としては、例えば、DAF材中に近赤外領域の光を吸収する材料を混ぜ込んだもの、または、DAF材に近赤外領域の光を吸収する材料を挟んだものが挙げられる。近赤外領域の光を吸収する材料としては、例えば、カーボン、ITOあるいはATOの微粒子、または近赤外吸収色素が挙げられる。 As a DAF material having a light shielding property, for example, a DAF material mixed with a material that absorbs light in the near-infrared region, or a material that absorbs light in the near-infrared region between the DAF material. Is mentioned. Examples of the material that absorbs light in the near infrared region include carbon, ITO, or ATO fine particles, or a near infrared absorbing dye.
(第6の実施の形態)
 図36は、本開示の第6の実施の形態に係る固体撮像装置1Eの断面構成を表したものである。この固体撮像装置1Eは、例えば、固体撮像素子11を有する半導体基板10を、樹脂層30や接着剤等を挟まずに、保持部材70に直接接合させて、パッケージ20に収容した構成を有している。以下、第1または第5の実施の形態と同一の構成要素には同一の符号を付して説明する。
(Sixth embodiment)
FIG. 36 illustrates a cross-sectional configuration of a solid-state imaging apparatus 1E according to the sixth embodiment of the present disclosure. The solid-state imaging device 1E has a configuration in which, for example, the semiconductor substrate 10 having the solid-state imaging element 11 is directly bonded to the holding member 70 and is accommodated in the package 20 without sandwiching the resin layer 30 or an adhesive. ing. Hereinafter, the same components as those in the first or fifth embodiment will be described with the same reference numerals.
 半導体基板10は、第1の実施の形態と同様に、例えばシリコン(Si)ウェーハ(図示せず)から個片化された固体撮像素子11のチップである。半導体基板10は、第1面P1および第2面P2を有し、第1面P1には固体撮像素子11が設けられている。第2面P2は、樹脂層30や接着剤等を挟まずに、保持部材70に直接接合されている。これにより、この固体撮像装置1Eでは、固体撮像素子11からの熱を保持部材70側に効率よく逃がし、熱によるデバイス特性低下を抑えることが可能となっている。また、半導体基板10と保持部材70との界面での反射が抑えられ、画質の向上が可能となる。 As in the first embodiment, the semiconductor substrate 10 is a chip of the solid-state imaging device 11 separated from, for example, a silicon (Si) wafer (not shown). The semiconductor substrate 10 has a first surface P1 and a second surface P2, and the solid-state imaging device 11 is provided on the first surface P1. The second surface P2 is directly joined to the holding member 70 without sandwiching the resin layer 30 or the adhesive. Thereby, in this solid-state imaging device 1E, the heat from the solid-state imaging device 11 can be efficiently released to the holding member 70 side, and it is possible to suppress the deterioration of the device characteristics due to the heat. Further, reflection at the interface between the semiconductor substrate 10 and the holding member 70 is suppressed, and image quality can be improved.
 パッケージ20は、底部21の貫通孔23を有しないことを除いては、第1の実施の形態と同様に構成されている。封止ガラス40およびワイヤWは、第1の実施の形態と同様に構成されている。パッケージ20に貫通孔23が設けられていないので、貫通孔23に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となっている。 The package 20 is configured in the same manner as in the first embodiment except that the package 20 does not have the through hole 23 in the bottom portion 21. The sealing glass 40 and the wire W are configured in the same manner as in the first embodiment. Since the through-hole 23 is not provided in the package 20, it is possible to reduce the in-plane output difference of the solid-state imaging device 11 due to the through-hole 23 and suppress image unevenness.
 保持部材70は、半導体基板10を保持すると共に、半導体基板10の第1面P1の湾曲部R1の湾曲形状を制御し、像面湾曲収差を補正するものである。保持部材70は、上面R7に湾曲部R7を有している。この湾曲部R7は、保持部材70の厚み方向の断面では弧状をなし、三次元的には椀状の曲面をなしている。これにより、半導体基板10の第1面P1および第2面P2には、保持部材70の上面P7の湾曲部R7に倣う形状の湾曲部R1,R2,R3,R4がそれぞれ形成されている。また、保持部材70には、貫通孔71は設けられていない。従って、貫通孔71に起因する固体撮像素子11の面内出力差を低減し、画像のムラを抑えることが可能となっている。 The holding member 70 holds the semiconductor substrate 10 and controls the curved shape of the curved portion R1 of the first surface P1 of the semiconductor substrate 10 to correct field curvature aberration. The holding member 70 has a curved portion R7 on the upper surface R7. The curved portion R7 has an arc shape in the cross section in the thickness direction of the holding member 70, and has a bowl-shaped curved surface in three dimensions. Accordingly, curved portions R1, R2, R3, and R4 having shapes that follow the curved portion R7 of the upper surface P7 of the holding member 70 are formed on the first surface P1 and the second surface P2 of the semiconductor substrate 10, respectively. Further, the holding member 70 is not provided with the through hole 71. Therefore, it is possible to reduce the in-plane output difference of the solid-state imaging device 11 due to the through-hole 71 and suppress image unevenness.
 保持部材70は、半導体基板10と同等以上の熱伝導率を有することが好ましく、例えばシリコン(Si)により構成されていることが好ましい。これにより、放熱特性を高めることが可能となる。 The holding member 70 preferably has a thermal conductivity equal to or higher than that of the semiconductor substrate 10, and is preferably made of, for example, silicon (Si). Thereby, it becomes possible to improve a heat dissipation characteristic.
 この固体撮像装置1Eは、例えば、次のようにして製造することができる。 The solid-state imaging device 1E can be manufactured as follows, for example.
 図37ないし図42は、この固体撮像装置1Eの製造方法を工程順に表したものである。なお、第1の実施の形態と重複する工程については、図2を参照して説明する。 37 to 42 show the manufacturing method of the solid-state imaging device 1E in the order of steps. In addition, the process which overlaps with 1st Embodiment is demonstrated with reference to FIG.
 まず、図37に示したように、シリコン(Si)よりなると共に上面P7に湾曲部R7を有する保持部材70を用意し、この保持部材70の上面P7に対して、プラズマまたはイオンビームを用いて活性化処理AC50を行う。 First, as shown in FIG. 37, a holding member 70 made of silicon (Si) and having a curved portion R7 on the upper surface P7 is prepared, and plasma or an ion beam is applied to the upper surface P7 of the holding member 70. Activation processing AC50 is performed.
 また、第1の実施の形態と同様にして、図2に示した工程により、半導体基板10の第1面P1に固体撮像素子11を形成し、第2面P2を研磨して半導体基板10を薄膜化する。次いで、同じく図2に示した工程により、半導体基板10をDAF材よりなるBステージの接着シート30Aに乗せた状態で、固体撮像素子11を個片化する。 Similarly to the first embodiment, the solid-state imaging device 11 is formed on the first surface P1 of the semiconductor substrate 10 and the second surface P2 is polished by the process shown in FIG. Thin film. Next, the solid-state imaging device 11 is separated into individual pieces with the semiconductor substrate 10 placed on a B-stage adhesive sheet 30A made of a DAF material by the process shown in FIG.
 続いて、図38に示したように、半導体基板10の第1面P1つまり固体撮像素子11が形成されている面に、保護テープ11Bをラミネートし、保護シート30Aを剥離する。 Subsequently, as shown in FIG. 38, the protective tape 11B is laminated on the first surface P1 of the semiconductor substrate 10, that is, the surface on which the solid-state imaging device 11 is formed, and the protective sheet 30A is peeled off.
 そののち、図39に示したように、半導体基板10の第2面P2に対して、プラズマまたはイオンビームを用いて活性化処理AC10を行い、半導体基板10の第2面P2を酸化する。半導体基板10の第2面P2の酸化方法は、表面保護に影響しない酸化方法であればどのような方法でもよい。 Thereafter, as shown in FIG. 39, the second surface P2 of the semiconductor substrate 10 is subjected to an activation process AC10 using plasma or an ion beam to oxidize the second surface P2 of the semiconductor substrate 10. The oxidation method of the second surface P2 of the semiconductor substrate 10 may be any method as long as it is an oxidation method that does not affect surface protection.
 続いて、図40に示したように、半導体基板10の保護テープ11Bが貼られている第1面P1側をオス型冶具11Cで吸着(矢印A1)し、半導体基板10の第2面P2と保護部材50の上面P7とを接合(矢印A2)する。 Subsequently, as shown in FIG. 40, the first surface P1 side of the semiconductor substrate 10 to which the protective tape 11B is attached is adsorbed (arrow A1) with the male jig 11C, and the second surface P2 of the semiconductor substrate 10 is The upper surface P7 of the protection member 50 is joined (arrow A2).
 これにより、図41に示したように、半導体基板10の第2面P2が、樹脂層30や接着剤等を挟まずに、保持部材70に直接接合される。半導体基板10の第1面P1および第2面P2には、保持部材70の上面P7の湾曲部R7の形状に倣う湾曲部R1,R2が形成される。半導体基板10の第2面P2と保持部材70の上面P7との間には、直接接合界面層11Dが形成される。 Thereby, as shown in FIG. 41, the second surface P2 of the semiconductor substrate 10 is directly joined to the holding member 70 without sandwiching the resin layer 30, the adhesive, or the like. On the first surface P1 and the second surface P2 of the semiconductor substrate 10, curved portions R1 and R2 that follow the shape of the curved portion R7 on the upper surface P7 of the holding member 70 are formed. A direct bonding interface layer 11 </ b> D is formed between the second surface P <b> 2 of the semiconductor substrate 10 and the upper surface P <b> 7 of the holding member 70.
 そののち、図42に示したように、保護テープ11Bを剥離する。最後に、図36に示したように、保持部材70をパッケージ20に収容し、半導体基板10とパッケージ20との間に、ワイヤボンディングによりワイヤWを接続し、パッケージ20の開口22を封止ガラス40で封止する。以上により、図36に示した固体撮像装置1Eが完成する。 After that, as shown in FIG. 42, the protective tape 11B is peeled off. Finally, as shown in FIG. 36, the holding member 70 is accommodated in the package 20, the wire W is connected between the semiconductor substrate 10 and the package 20, and the opening 22 of the package 20 is sealed glass. Seal with 40. Thus, the solid-state imaging device 1E shown in FIG. 36 is completed.
 この固体撮像装置1Eでは、第1の実施の形態と同様に、半導体基板10の第1面P1の湾曲部R1に固体撮像素子11が設けられているので、固体撮像素子11の撮像面11Aは湾曲している。よって、レンズ(図示せず)の結像する像面の像面湾曲収差が解消され、良好な画像の撮像が可能となる。 In the solid-state imaging device 1E, as in the first embodiment, since the solid-state imaging device 11 is provided in the curved portion R1 of the first surface P1 of the semiconductor substrate 10, the imaging surface 11A of the solid-state imaging device 11 is It is curved. Therefore, the field curvature aberration of the image plane formed by the lens (not shown) is eliminated, and a good image can be captured.
 また、半導体基板10の第2面P2が、樹脂層30や接着剤等を挟まずに、保持部材70に直接接合されているので、固体撮像素子11で発生した熱は、効率よく保持部材70側に逃がされ、熱によるデバイス特性低下が抑えられる。 Further, since the second surface P2 of the semiconductor substrate 10 is directly bonded to the holding member 70 without sandwiching the resin layer 30 or the adhesive, the heat generated in the solid-state imaging device 11 is efficiently held by the holding member 70. The device characteristics are reduced by heat and the deterioration of device characteristics due to heat is suppressed.
 このように本実施の形態では、半導体基板10の第2面P2を、樹脂層30や接着剤等を挟まずに、保持部材70に直接接合するようにしたので、固体撮像素子11で発生した熱を、効率よく保持部材70側に逃がし、熱によるデバイス特性低下を抑えることが可能となる。 As described above, in the present embodiment, the second surface P2 of the semiconductor substrate 10 is directly joined to the holding member 70 without sandwiching the resin layer 30, the adhesive, or the like. It is possible to efficiently release heat to the holding member 70 side and suppress deterioration of device characteristics due to heat.
(固体撮像装置の全体構成)
 図43は、上記実施の形態において説明した固体撮像装置1,1A~1E(以下、固体撮像装置1で代表する。)の全体構成を表したものである。この固体撮像装置1は、撮像画素領域としての画素部110を有すると共に、例えば行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる回路部130を有している。回路部130は、画素部110の周辺領域に設けられていてもよいし、画素部110と積層されて(画素部110に対向する領域に)設けられていてもよい。
(Overall configuration of solid-state imaging device)
FIG. 43 shows the overall configuration of the solid-state imaging devices 1, 1A to 1E (hereinafter, represented by the solid-state imaging device 1) described in the above embodiment. The solid-state imaging device 1 includes a pixel unit 110 serving as an imaging pixel region, and a circuit unit 130 including, for example, a row scanning unit 131, a horizontal selection unit 133, a column scanning unit 134, and a system control unit 132. The circuit unit 130 may be provided in a peripheral region of the pixel unit 110 or may be provided so as to be stacked with the pixel unit 110 (in a region facing the pixel unit 110).
 画素部110は、例えば行列状に2次元配置された複数の画素PXLを有している。この画素PXLには、例えば画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsig が配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。 The pixel unit 110 includes, for example, a plurality of pixels PXL that are two-dimensionally arranged in a matrix. In the pixel PXL, for example, a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column. The pixel drive line Lread transmits a drive signal for reading a signal from the pixel. One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
 行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部110の各画素PXLを、例えば行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各画素PXLから出力される信号は、垂直信号線Lsig の各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsig ごとに設けられたアンプや水平選択スイッチ等によって構成されている。 The row scanning unit 131 includes a shift register, an address decoder, and the like, and is a pixel driving unit that drives each pixel PXL of the pixel unit 110, for example, in units of rows. A signal output from each pixel PXL in the pixel row selected and scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig. The horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
 列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsig の各々を通して伝送される各画素PXLの信号が順番に水平信号線135に伝送され、当該水平信号線135を通して出力される。 The column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel PXL transmitted through each of the vertical signal lines Lsig is sequentially transmitted to the horizontal signal line 135 and output through the horizontal signal line 135.
 システム制御部132は、外部から与えられるクロックや、動作モードを指令するデータなどを受け取り、また、固体撮像装置1の内部情報などのデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134などの駆動制御を行う。 The system control unit 132 receives a clock given from the outside, data for instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. The system control unit 132 further includes a timing generator that generates various timing signals. The row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like are based on the various timing signals generated by the timing generator. Drive control is performed.
(適用例)
 上記実施の形態等の固体撮像装置1は、例えばデジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図44に、その一例として、電子機器2(カメラ)の概略構成を示す。この電子機器2は、例えば静止画または動画を撮影可能なビデオカメラであり、例えば、固体撮像装置1と、光学系(撮像レンズ)310と、シャッタ装置311と、固体撮像装置1およびシャッタ装置311を駆動する駆動部313(上記回路部130を含む)と、信号処理部312と、ユーザインターフェイス314と、モニタ315とを有する。
(Application example)
The solid-state imaging device 1 according to the above-described embodiment can be applied to all types of electronic devices having an imaging function, such as a camera system such as a digital still camera and a video camera, and a mobile phone having an imaging function. FIG. 44 shows a schematic configuration of the electronic apparatus 2 (camera) as an example. The electronic device 2 is, for example, a video camera capable of shooting a still image or a moving image. For example, the electronic device 2 is a solid-state imaging device 1, an optical system (imaging lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311. A drive unit 313 (including the circuit unit 130), a signal processing unit 312, a user interface 314, and a monitor 315.
 光学系310は、被写体からの像光(入射光)を固体撮像装置1の画素部110へ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置1への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置1の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置1から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Dout は、モニタ315に出力される。あるいは、映像信号Dout は、メモリーなどの記憶媒体に記憶されてもよい。ユーザインターフェイス314では、撮影シーンの指定(ダイナミックレンジの指定、波長(テラヘルツ、可視、赤外、紫外、X線等)の指定など)が可能であり、この指定(ユーザインターフェイス314からの入力信号)は、駆動部313に送られ、これに基づいて固体撮像装置1において所望の撮像がなされる。 The optical system 310 guides image light (incident light) from a subject to the pixel unit 110 of the solid-state imaging device 1. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls the light irradiation period and the light shielding period for the solid-state imaging device 1. The drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311. The signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 1. The video signal Dout after the signal processing is output to the monitor 315. Alternatively, the video signal Dout may be stored in a storage medium such as a memory. The user interface 314 can specify a shooting scene (dynamic range specification, wavelength (terahertz, visible, infrared, ultraviolet, X-ray, etc.) specification, and the like (input signal from the user interface 314). Is sent to the drive unit 313, and based on this, the solid-state imaging device 1 performs desired imaging.
 以上、実施の形態を挙げて説明したが、本開示は上記実施の形態に限定されるものではなく、種々変形が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made.
 例えば、上記実施の形態では、固体撮像装置1,1A~1Eがカメラに適用される場合を例示したが、これ以外にも、例えば内視鏡、ビジョンチップ(人工網膜)、生体センサなど、光(電磁波)をイメージングする電子機器全般に用いることができる。 For example, in the above-described embodiment, the case where the solid-state imaging devices 1 and 1A to 1E are applied to a camera is illustrated. However, other than this, for example, an endoscope, a vision chip (artificial retina), a biosensor, etc. It can be used for all electronic devices that image (electromagnetic waves).
 また、上記実施の形態の固体撮像装置1,1A~1Eは、上記実施の形態で説明した各構成要素を全て備えていなくてもよく、また逆に他の構成要素を備えていてもよい。 In addition, the solid-state imaging devices 1 and 1A to 1E of the above embodiments may not include all the components described in the above embodiments, and conversely may include other components.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 本技術は、以下のような構成をとることも可能である。
(1)
 第1面および第2面を有すると共に前記第1面に湾曲部を有し、前記第1面の前記湾曲部に固体撮像素子が設けられた半導体基板と、
 前記半導体基板を収容するパッケージと、
 第3面および第4面を有し、前記第3面は前記半導体基板の第2面に接し、前記第4面は前記パッケージの底部に接する樹脂層と
 を備えた固体撮像装置。
(2)
 前記半導体基板の厚みが50μm以下である
 前記(1)記載の固体撮像装置。
(3)
 前記固体撮像素子の像面湾曲収差の補正量が50μm以下である
 前記(1)または(2)記載の固体撮像装置。
(4)
 前記樹脂層は、Bステージ状の接着シートを架橋させることにより形成されたものである
 前記(1)ないし(3)のいずれかに記載の固体撮像装置。
(5)
 前記樹脂層は、エポキシ系の樹脂により構成されている
 前記(1)ないし(4)のいずれかに記載の固体撮像装置。
(6)
 前記半導体基板の前記第2面と前記樹脂層の前記第3面とは、それぞれ湾曲部を有し、
 前記樹脂層の前記第4面は、前記パッケージの底部の形状に倣う形状を有する
 前記(1)ないし(5)のいずれかに記載の固体撮像装置。
(7)
 前記パッケージの前記底部は、貫通孔を有する
 前記(1)ないし(6)のいずれかに記載の固体撮像装置。
(8)
 前記パッケージの前記底部は、空間的に連続した部材により構成されている
 前記(1)ないし(6)のいずれかに記載の固体撮像装置。
(9)
 前記半導体基板の前記第2面と前記樹脂層の前記第3面および前記第4面は、前記パッケージの底部に倣う形状を有する
 前記(1)ないし(7)のいずれかに記載の固体撮像装置。
(10)
 前記樹脂層は、前記第3面および第5面を有する第1樹脂層と、第6面および前記第4面を有する第2樹脂層との2層構造を有する
 前記(1)ないし(7)のいずれかに記載の固体撮像装置。
(11)
 前記第2樹脂層は、Bステージ状の接着シートを架橋させることにより形成されたものである
 前記(10)記載の固体撮像装置。
(12)
 前記半導体基板の前記第2面と前記第1樹脂層の前記第3面とは、それぞれ湾曲部を有し、
 前記第1樹脂層の前記第5面と前記第2樹脂層の前記第6面および前記第4面は、前記パッケージの底部に倣う形状を有する
 前記(10)または(11)記載の固体撮像装置。
(13)
 固体撮像装置を有し、
 前記固体撮像装置は、
 第1面および第2面を有すると共に前記第1面に湾曲部を有し、前記第1面の前記湾曲部に固体撮像素子が設けられた半導体基板と、
 前記半導体基板を収容するパッケージと、
 第3面および第4面を有し、前記第3面は前記半導体基板の第2面に接し、前記第4面は前記パッケージの底部に接する樹脂層と
 を備えた電子機器。
(14)
 第1面および第2面を有し、前記第1面に固体撮像素子が設けられた半導体基板と、第3面および第4面を有するBステージの接着シートとを、前記第2面と前記第3面とを接触させて配置することと、
 加熱および凸金型を用いた加圧により前記接着シートの前記第4面に湾曲部を形成することと、
 前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
 前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
 加熱により前記接着シートを架橋させて樹脂層を形成することと
 を含む固体撮像装置の製造方法。
(15)
 前記半導体基板および前記接着シートを、底部に貫通孔を有する前記パッケージに収容し、
 加熱および前記貫通孔を用いた真空吸着により、前記空洞を真空にすると共に前記半導体基板および前記接着シートに大気圧をかけて、前記半導体基板および前記接着シートを変形させて前記空洞を除去する
 前記(14)記載の固体撮像装置の製造方法。
(16)
 前記半導体基板および前記接着シートを、真空中で、底部が空間的に連続した部材よりなる前記パッケージに収容することにより、前記空洞を真空にし、
 大気解放により前記半導体基板および前記接着シートに大気圧をかけて、前記半導体基板および前記接着シートを変形させて前記空洞を除去する
 前記(14)記載の固体撮像装置の製造方法。
(17)
 第1面および第2面を有し、前記第1面に固体撮像素子が設けられ、前記第2面にエッチングにより湾曲部が設けられた半導体基板と、第3面および第4面を有するBステージの接着シートとを、前記第2面と前記第3面とを接触させて配置することにより、前記接着シートの前記第4面に湾曲部を形成することと、
 前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
 前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
 加熱により前記接着シートを架橋させて樹脂層を形成することと
 を含む固体撮像装置の製造方法。
(18)
 第1面および第2面を有し、前記第1面に固体撮像素子が設けられた半導体基板を用意し、前記半導体基板の前記第2面に、ナノインプリントにより、第3面および第5面を有し、前記第3面で前記半導体基板の前記第2面に接し、前記第5面に湾曲部を有する第1樹脂層を形成することと、
 前記第1樹脂層の前記第5面に、第6面および第4面を有するBステージ状の接着シートを、前記第5面と前記第6面とを接触させて配置し、前記接着シートの前記第4面に湾曲部を形成することと、
 前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
 前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
 加熱により前記接着シートを架橋させて第2樹脂層を形成し、前記第1樹脂層および前記第2樹脂層の積層構造をもつ樹脂層を形成することと
 を含む固体撮像装置の製造方法。
The present technology can also be configured as follows.
(1)
A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface;
A package containing the semiconductor substrate;
A solid-state imaging device comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package.
(2)
The solid-state imaging device according to (1), wherein the semiconductor substrate has a thickness of 50 μm or less.
(3)
The solid-state imaging device according to (1) or (2), wherein a correction amount of field curvature aberration of the solid-state imaging element is 50 μm or less.
(4)
The solid-state imaging device according to any one of (1) to (3), wherein the resin layer is formed by crosslinking a B-stage adhesive sheet.
(5)
The solid-state imaging device according to any one of (1) to (4), wherein the resin layer is made of an epoxy resin.
(6)
The second surface of the semiconductor substrate and the third surface of the resin layer each have a curved portion,
The solid-state imaging device according to any one of (1) to (5), wherein the fourth surface of the resin layer has a shape that follows a shape of a bottom portion of the package.
(7)
The solid-state imaging device according to any one of (1) to (6), wherein the bottom portion of the package has a through hole.
(8)
The solid-state imaging device according to any one of (1) to (6), wherein the bottom portion of the package is configured by a spatially continuous member.
(9)
The solid-state imaging device according to any one of (1) to (7), wherein the second surface of the semiconductor substrate and the third surface and the fourth surface of the resin layer have a shape that follows the bottom of the package. .
(10)
The resin layer has a two-layer structure of a first resin layer having the third surface and the fifth surface and a second resin layer having the sixth surface and the fourth surface. (1) to (7) The solid-state imaging device according to any one of the above.
(11)
The solid-state imaging device according to (10), wherein the second resin layer is formed by crosslinking a B-stage adhesive sheet.
(12)
The second surface of the semiconductor substrate and the third surface of the first resin layer each have a curved portion,
The solid-state imaging device according to (10) or (11), wherein the fifth surface of the first resin layer and the sixth surface and the fourth surface of the second resin layer have a shape that follows a bottom of the package. .
(13)
A solid-state imaging device;
The solid-state imaging device
A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface;
A package containing the semiconductor substrate;
An electronic apparatus comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package.
(14)
A semiconductor substrate having a first surface and a second surface, and a solid-state image sensor provided on the first surface, and an adhesive sheet for a B stage having a third surface and a fourth surface, the second surface and the Placing the third surface in contact;
Forming a curved portion on the fourth surface of the adhesive sheet by heating and pressing with a convex mold;
Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
Forming a resin layer by crosslinking the adhesive sheet by heating.
(15)
The semiconductor substrate and the adhesive sheet are accommodated in the package having a through hole at the bottom,
The cavity is evacuated by heating and vacuum suction using the through hole, and the semiconductor substrate and the adhesive sheet are subjected to atmospheric pressure to deform the semiconductor substrate and the adhesive sheet to remove the cavity. (14) The manufacturing method of the solid-state imaging device according to (14).
(16)
By accommodating the semiconductor substrate and the adhesive sheet in the package made of a member whose bottom is spatially continuous in a vacuum, the cavity is evacuated,
The manufacturing method of the solid-state imaging device according to (14), wherein the cavity is removed by applying atmospheric pressure to the semiconductor substrate and the adhesive sheet by releasing the atmosphere to deform the semiconductor substrate and the adhesive sheet.
(17)
A semiconductor substrate having a first surface and a second surface, a solid-state imaging device provided on the first surface, and a curved portion provided by etching on the second surface, and a B having a third surface and a fourth surface Forming a curved portion on the fourth surface of the adhesive sheet by placing the adhesive sheet of the stage in contact with the second surface and the third surface;
Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
Forming a resin layer by crosslinking the adhesive sheet by heating.
(18)
A semiconductor substrate having a first surface and a second surface and having a solid-state imaging device provided on the first surface is prepared, and the third surface and the fifth surface are formed on the second surface of the semiconductor substrate by nanoimprinting. Forming a first resin layer in contact with the second surface of the semiconductor substrate on the third surface and having a curved portion on the fifth surface;
A B-stage adhesive sheet having a sixth surface and a fourth surface is disposed on the fifth surface of the first resin layer so that the fifth surface and the sixth surface are in contact with each other. Forming a curved portion on the fourth surface;
Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
A method of manufacturing a solid-state imaging device, comprising: cross-linking the adhesive sheet by heating to form a second resin layer, and forming a resin layer having a laminated structure of the first resin layer and the second resin layer.
 本出願は、日本国特許庁において2014年3月28日に出願された日本特許出願番号2014-69046号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2014-69046 filed on March 28, 2014 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (18)

  1.  第1面および第2面を有すると共に前記第1面に湾曲部を有し、前記第1面の前記湾曲部に固体撮像素子が設けられた半導体基板と、
     前記半導体基板を収容するパッケージと、
     第3面および第4面を有し、前記第3面は前記半導体基板の第2面に接し、前記第4面は前記パッケージの底部に接する樹脂層と
     を備えた固体撮像装置。
    A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface;
    A package containing the semiconductor substrate;
    A solid-state imaging device comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package.
  2.  前記半導体基板の厚みが50μm以下である
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the semiconductor substrate has a thickness of 50 μm or less.
  3.  前記固体撮像素子の像面湾曲収差の補正量が50μm以下である
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein a correction amount of field curvature aberration of the solid-state imaging element is 50 μm or less.
  4.  前記樹脂層は、Bステージ状の接着シートを架橋させることにより形成されたものである
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the resin layer is formed by crosslinking a B-stage adhesive sheet.
  5.  前記樹脂層は、エポキシ系の樹脂により構成されている
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the resin layer is made of an epoxy resin.
  6.  前記半導体基板の前記第2面と前記樹脂層の前記第3面とは、それぞれ湾曲部を有し、
     前記樹脂層の前記第4面は、前記パッケージの底部の形状に倣う形状を有する
     請求項1記載の固体撮像装置。
    The second surface of the semiconductor substrate and the third surface of the resin layer each have a curved portion,
    The solid-state imaging device according to claim 1, wherein the fourth surface of the resin layer has a shape that follows a shape of a bottom portion of the package.
  7.  前記パッケージの前記底部は、貫通孔を有する
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the bottom portion of the package has a through hole.
  8.  前記パッケージの前記底部は、空間的に連続した部材により構成されている
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the bottom portion of the package is configured by a spatially continuous member.
  9.  前記半導体基板の前記第2面と前記樹脂層の前記第3面および前記第4面は、前記パッケージの底部に倣う形状を有する
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the second surface of the semiconductor substrate and the third surface and the fourth surface of the resin layer have a shape that follows the bottom of the package.
  10.  前記樹脂層は、前記第3面および第5面を有する第1樹脂層と、第6面および前記第4面を有する第2樹脂層との2層構造を有する
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the resin layer has a two-layer structure of a first resin layer having the third surface and the fifth surface and a second resin layer having the sixth surface and the fourth surface. .
  11.  前記第2樹脂層は、Bステージ状の接着シートを架橋させることにより形成されたものである
     請求項10記載の固体撮像装置。
    The solid-state imaging device according to claim 10, wherein the second resin layer is formed by crosslinking a B-staged adhesive sheet.
  12.  前記半導体基板の前記第2面と前記第1樹脂層の前記第3面とは、それぞれ湾曲部を有し、
     前記第1樹脂層の前記第5面と前記第2樹脂層の前記第6面および前記第4面は、前記パッケージの底部に倣う形状を有する
     請求項10記載の固体撮像装置。
    The second surface of the semiconductor substrate and the third surface of the first resin layer each have a curved portion,
    The solid-state imaging device according to claim 10, wherein the fifth surface of the first resin layer and the sixth surface and the fourth surface of the second resin layer have a shape that follows a bottom portion of the package.
  13.  固体撮像装置を有し、
     前記固体撮像装置は、
     第1面および第2面を有すると共に前記第1面に湾曲部を有し、前記第1面の前記湾曲部に固体撮像素子が設けられた半導体基板と、
     前記半導体基板を収容するパッケージと、
     第3面および第4面を有し、前記第3面は前記半導体基板の第2面に接し、前記第4面は前記パッケージの底部に接する樹脂層と
     を備えた電子機器。
    A solid-state imaging device;
    The solid-state imaging device
    A semiconductor substrate having a first surface and a second surface and having a curved portion on the first surface, and a solid-state imaging device provided on the curved portion of the first surface;
    A package containing the semiconductor substrate;
    An electronic apparatus comprising: a third surface and a fourth surface, wherein the third surface is in contact with a second surface of the semiconductor substrate, and the fourth surface is in contact with a bottom portion of the package.
  14.  第1面および第2面を有し、前記第1面に固体撮像素子が設けられた半導体基板と、第3面および第4面を有するBステージの接着シートとを、前記第2面と前記第3面とを接触させて配置することと、
     加熱および凸金型を用いた加圧により前記接着シートの前記第4面に湾曲部を形成することと、
     前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
     前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
     加熱により前記接着シートを架橋させて樹脂層を形成することと
     を含む固体撮像装置の製造方法。
    A semiconductor substrate having a first surface and a second surface, and a solid-state image sensor provided on the first surface, and an adhesive sheet for a B stage having a third surface and a fourth surface, the second surface and the Placing the third surface in contact;
    Forming a curved portion on the fourth surface of the adhesive sheet by heating and pressing with a convex mold;
    Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
    Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
    Forming a resin layer by crosslinking the adhesive sheet by heating.
  15.  前記半導体基板および前記接着シートを、底部に貫通孔を有する前記パッケージに収容し、
     加熱および前記貫通孔を用いた真空吸着により、前記空洞を真空にすると共に前記半導体基板および前記接着シートに大気圧をかけて、前記半導体基板および前記接着シートを変形させて前記空洞を除去する
     請求項14記載の固体撮像装置の製造方法。
    The semiconductor substrate and the adhesive sheet are accommodated in the package having a through hole at the bottom,
    The vacuum is applied to the cavity by heating and vacuum suction using the through-hole, and atmospheric pressure is applied to the semiconductor substrate and the adhesive sheet to deform the semiconductor substrate and the adhesive sheet to remove the cavity. Item 15. A method for manufacturing a solid-state imaging device according to Item 14.
  16.  前記半導体基板および前記接着シートを、真空中で、底部が空間的に連続した部材よりなる前記パッケージに収容することにより、前記空洞を真空にし、
     大気解放により前記半導体基板および前記接着シートに大気圧をかけて、前記半導体基板および前記接着シートを変形させて前記空洞を除去する
     請求項14記載の固体撮像装置の製造方法。
    By accommodating the semiconductor substrate and the adhesive sheet in the package made of a member whose bottom is spatially continuous in a vacuum, the cavity is evacuated,
    The method for manufacturing a solid-state imaging device according to claim 14, wherein atmospheric pressure is applied to the semiconductor substrate and the adhesive sheet by releasing the air to deform the semiconductor substrate and the adhesive sheet to remove the cavity.
  17.  第1面および第2面を有し、前記第1面に固体撮像素子が設けられ、前記第2面にエッチングにより湾曲部が設けられた半導体基板と、第3面および第4面を有するBステージの接着シートとを、前記第2面と前記第3面とを接触させて配置することにより、前記接着シートの前記第4面に湾曲部を形成することと、
     前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
     前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
     加熱により前記接着シートを架橋させて樹脂層を形成することと
     を含む固体撮像装置の製造方法。
    A semiconductor substrate having a first surface and a second surface, a solid-state imaging device provided on the first surface, and a curved portion provided by etching on the second surface, and a B having a third surface and a fourth surface Forming a curved portion on the fourth surface of the adhesive sheet by placing the adhesive sheet of the stage in contact with the second surface and the third surface;
    Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
    Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
    Forming a resin layer by crosslinking the adhesive sheet by heating.
  18.  第1面および第2面を有し、前記第1面に固体撮像素子が設けられた半導体基板を用意し、前記半導体基板の前記第2面に、ナノインプリントにより、第3面および第5面を有し、前記第3面で前記半導体基板の前記第2面に接し、前記第5面に湾曲部を有する第1樹脂層を形成することと、
     前記第1樹脂層の前記第5面に、第6面および第4面を有するBステージ状の接着シートを、前記第5面と前記第6面とを接触させて配置し、前記接着シートの前記第4面に湾曲部を形成することと、
     前記半導体基板および前記接着シートをパッケージに収容し、前記第4面の前記湾曲部と前記パッケージの底部との間に空洞を形成することと、
     前記空洞の内外に圧力差を設けることにより、前記半導体基板および前記接着シートを変形させて前記空洞を除去し、前記半導体基板の前記第1面に湾曲部を形成することと、
     加熱により前記接着シートを架橋させて第2樹脂層を形成し、前記第1樹脂層および前記第2樹脂層の積層構造をもつ樹脂層を形成することと
     を含む固体撮像装置の製造方法。
    A semiconductor substrate having a first surface and a second surface and having a solid-state imaging device provided on the first surface is prepared, and the third surface and the fifth surface are formed on the second surface of the semiconductor substrate by nanoimprinting. Forming a first resin layer in contact with the second surface of the semiconductor substrate on the third surface and having a curved portion on the fifth surface;
    A B-stage adhesive sheet having a sixth surface and a fourth surface is disposed on the fifth surface of the first resin layer so that the fifth surface and the sixth surface are in contact with each other. Forming a curved portion on the fourth surface;
    Accommodating the semiconductor substrate and the adhesive sheet in a package, and forming a cavity between the curved portion of the fourth surface and the bottom of the package;
    Providing a pressure difference inside and outside the cavity to deform the semiconductor substrate and the adhesive sheet to remove the cavity and to form a curved portion on the first surface of the semiconductor substrate;
    A method of manufacturing a solid-state imaging device, comprising: cross-linking the adhesive sheet by heating to form a second resin layer, and forming a resin layer having a laminated structure of the first resin layer and the second resin layer.
PCT/JP2015/053780 2014-03-28 2015-02-12 Solid-state imaging device, electronic apparatus and method for manufacturing solid-state imaging device WO2015146332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069046A JP2015192074A (en) 2014-03-28 2014-03-28 Solid state image pickup device, electronic apparatus, and manufacturing method of solid state image pickup device
JP2014-069046 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146332A1 true WO2015146332A1 (en) 2015-10-01

Family

ID=54194870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053780 WO2015146332A1 (en) 2014-03-28 2015-02-12 Solid-state imaging device, electronic apparatus and method for manufacturing solid-state imaging device

Country Status (2)

Country Link
JP (1) JP2015192074A (en)
WO (1) WO2015146332A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190140008A1 (en) * 2017-11-07 2019-05-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing curved electronic circuits
US10361235B2 (en) * 2016-11-23 2019-07-23 Industrial Technology Research Institute Image sensor
FR3077159A1 (en) * 2018-01-22 2019-07-26 Stmicroelectronics (Crolles 2) Sas IMAGE SENSOR AND METHOD FOR MANUFACTURING SAME
CN111108744A (en) * 2017-10-20 2020-05-05 松下知识产权经营株式会社 Solid-state imaging device
US12062680B2 (en) 2018-06-29 2024-08-13 Sony Semiconductor Solutions Corporation Solid-state imaging device, electronic apparatus, and method for producing solid-state imaging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468262B1 (en) 2017-06-30 2022-11-18 에스케이하이닉스 주식회사 Curved image sensor
JP7246136B2 (en) 2018-02-14 2023-03-27 キヤノン株式会社 Semiconductor device, camera, and method for manufacturing semiconductor device
JP7401441B2 (en) * 2018-09-07 2023-12-19 ソニーセミコンダクタソリューションズ株式会社 Imaging device and method for manufacturing the imaging device
CN112887518B (en) * 2019-11-29 2024-09-13 南昌欧菲光电技术有限公司 Camera module, preparation method thereof and intelligent terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253509A (en) * 2003-02-19 2004-09-09 Mitsubishi Electric Corp Imaging element module and method of manufacturing same
JP2005064060A (en) * 2003-08-18 2005-03-10 Sony Corp Solid-state imaging element, method of manufacturing the same, and solid-state imaging apparatus
JP2007266380A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor image pickup device and its manufacturing method
US20090115875A1 (en) * 2007-11-01 2009-05-07 Samsung Electronics Co., Ltd. Image sensor module and fabrication method thereof
JP2012182244A (en) * 2011-02-28 2012-09-20 Sony Corp Method for manufacturing solid state imaging device, solid state imaging device and electronic equipment using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253509A (en) * 2003-02-19 2004-09-09 Mitsubishi Electric Corp Imaging element module and method of manufacturing same
JP2005064060A (en) * 2003-08-18 2005-03-10 Sony Corp Solid-state imaging element, method of manufacturing the same, and solid-state imaging apparatus
JP2007266380A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor image pickup device and its manufacturing method
US20090115875A1 (en) * 2007-11-01 2009-05-07 Samsung Electronics Co., Ltd. Image sensor module and fabrication method thereof
JP2012182244A (en) * 2011-02-28 2012-09-20 Sony Corp Method for manufacturing solid state imaging device, solid state imaging device and electronic equipment using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361235B2 (en) * 2016-11-23 2019-07-23 Industrial Technology Research Institute Image sensor
CN111108744A (en) * 2017-10-20 2020-05-05 松下知识产权经营株式会社 Solid-state imaging device
EP3700196A4 (en) * 2017-10-20 2020-12-23 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device
US11381767B2 (en) 2017-10-20 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device having electronic components mounted between a main substrate and an imaging element
US20190140008A1 (en) * 2017-11-07 2019-05-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing curved electronic circuits
US10991738B2 (en) * 2017-11-07 2021-04-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing curved electronic circuits
FR3077159A1 (en) * 2018-01-22 2019-07-26 Stmicroelectronics (Crolles 2) Sas IMAGE SENSOR AND METHOD FOR MANUFACTURING SAME
US12062680B2 (en) 2018-06-29 2024-08-13 Sony Semiconductor Solutions Corporation Solid-state imaging device, electronic apparatus, and method for producing solid-state imaging device

Also Published As

Publication number Publication date
JP2015192074A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
WO2015146332A1 (en) Solid-state imaging device, electronic apparatus and method for manufacturing solid-state imaging device
JP5676171B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP5724322B2 (en) Method for manufacturing solid-state imaging device
JP4764941B2 (en) Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
TWI402979B (en) Electronic element wafer module, electronic element module, sensor wafer module, sensor module, lens array plate, manufacturing method for the sensor module, and electronic information device
JP5709572B2 (en) Imaging apparatus and imaging system
JP4819152B2 (en) Optical element wafer, optical element wafer module, optical element module, method for manufacturing optical element module, electronic element wafer module, method for manufacturing electronic element module, electronic element module, and electronic information device
WO2017126376A1 (en) Image sensor, manufacturing method, and electronic device
JP4969995B2 (en) Solid-state imaging device and manufacturing method thereof
WO2017135062A1 (en) Semiconductor device and manufacturing method, imaging apparatus, and electronic equipment
US20100091168A1 (en) Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus
KR102334444B1 (en) Solid-state imaging element, method for manufacturing same, and electronic device
JP2012222546A (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2008092532A (en) Imaging apparatus, manufacturing method therefor and mobile phone unit
JP5721370B2 (en) Manufacturing method of optical sensor, optical sensor and camera
KR20060046412A (en) Imaging and electronic apparatus
JP5720306B2 (en) Manufacturing method of solid-state imaging device
JP2011187482A (en) Solid-state imaging apparatus, module for optical device, and method of manufacturing solid-state imaging apparatus
JP2005260436A (en) Imaging module and imaging apparatus employing it
JP2010165939A (en) Solid-state imaging device and method of manufacturing the same
JP5720305B2 (en) Solid-state imaging device manufacturing method, solid-state imaging device, and electronic apparatus
JP2008252043A (en) Solid-state imaging apparatus, manufacturing method for solid-state imaging apparatus, and photographic apparatus using the solid-state imaging apparatus
JP2009044494A (en) Imaging device
JP2011066092A (en) Imaging unit
US20210090964A1 (en) Semiconductor device and manufacturing method of imaging device and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768996

Country of ref document: EP

Kind code of ref document: A1