[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015146165A1 - Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device - Google Patents

Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device Download PDF

Info

Publication number
WO2015146165A1
WO2015146165A1 PCT/JP2015/001693 JP2015001693W WO2015146165A1 WO 2015146165 A1 WO2015146165 A1 WO 2015146165A1 JP 2015001693 W JP2015001693 W JP 2015001693W WO 2015146165 A1 WO2015146165 A1 WO 2015146165A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
angular velocity
oscillation
drive
vibration
Prior art date
Application number
PCT/JP2015/001693
Other languages
French (fr)
Japanese (ja)
Inventor
一成 澤田
勇樹 山中
義博 升井
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Publication of WO2015146165A1 publication Critical patent/WO2015146165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719

Definitions

  • the present invention relates to an angular velocity sensor capable of performing intermittent and time-division oscillation in an oscillation operation, a driving circuit thereof, a driving method thereof, and an angular velocity detection sensor device.
  • an oscillating part that can be displaced inside, and by oscillating this oscillating part at a predetermined frequency, the angular velocity is detected by detecting the displacement generated by the Coriolis force generated in the oscillating part when the angular velocity is applied to the system
  • an angular velocity sensor for detecting the above.
  • a method for detecting the displacement of the vibration part there are a method for detecting a change in capacitance due to the displacement of the vibration part, a method for detecting a change in stress due to the displacement of the vibration part by a piezoelectric effect, and the like.
  • a vibration unit supported to be displaceable by an angular velocity from the outside As a configuration of a conventional angular velocity sensor, a vibration unit supported to be displaceable by an angular velocity from the outside, a detection electrode that detects and outputs a change in stress due to displacement of the vibration unit by a piezoelectric effect, and a drive that vibrates the vibration unit
  • a detection electrode that detects and outputs a change in stress due to displacement of the vibration unit by a piezoelectric effect
  • a drive that vibrates the vibration unit The structure which has an electrode is mentioned.
  • Patent Document 1 discloses an angular velocity sensor including two drive electrodes D1 and D2 to which a drive signal for vibrating a vibration unit is input and four detection electrodes X1, X2, Y1, and Y2.
  • Z-Drive that vibrates the vibration part in the Z-axis direction
  • an in-phase sine wave Vdz is driven to the drive electrodes D1 and D2 to vibrate the vibration part in the Z-axis direction.
  • sin waves Vs_x1, Vs_x2, Vs_y1, and Vs_y2 whose phases are shifted by 270 ° with respect to the drive signal can be detected from the detection electrodes X1, X2, Y1, and Y2.
  • the following carrier wave and angular velocity can be detected.
  • the angular velocity ⁇ y of the Y axis can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vs_x1 and Vs_x2 detected from the detection electrode X1 and the detection electrode X2, that is, “the orthogonal component of ⁇ y ⁇ (Vs_x1 ⁇ Vs_x2)”.
  • the X-axis angular velocity ⁇ x can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vs_y1 and Vs_y2 detected from the detection electrodes Y1 and Y2, that is, “the orthogonal component of ⁇ x ⁇ (Vs_y1 ⁇ Vs_y2)”.
  • the oscillating control part output signals Vdrx and -Vdrx of sine waves having opposite phases are driven to the drive electrodes D1 and D2 to vibrate the vibration part in the X-axis direction.
  • signals having opposite phases, voltages, and the like may be represented by adding a minus sign ( ⁇ ) to the same sign.
  • the sine wave oscillation control unit output signal Vdrx and the sine wave oscillation control unit output signal ⁇ Vdrx are signals that are 180 ° out of phase with each other.
  • the Z-axis angular velocity ⁇ z can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vsx_Y1 and Vsx_Y2 detected from the detection electrodes Y1 and Y2, that is, “the orthogonal component of ⁇ z ⁇ (Vsx_Y1 ⁇ Vsx_Y2)”.
  • a method is known in which the angular velocities around the angular axes are detected in a time-division manner by sequentially switching the angular velocities around the plurality of axes and the excitation direction, which is the direction in which the vibration unit vibrates.
  • Patent Documents 1 to 3 disclose a technique for detecting angular velocity by changing the vibration direction of the vibration unit in a time-sharing manner. However, in the time-sharing operation, control or adjustment for stably vibrating the vibration unit. Is insufficient.
  • An object of the present invention is to provide an angular velocity sensor, a driving circuit thereof, a driving method thereof, and an angular velocity detecting sensor device capable of realizing a stable oscillation in which a vibration section stably vibrates in a time division operation.
  • an angular velocity sensor drive circuit is an angular velocity sensor drive circuit that vibrates a sensor unit having a drive electrode, a detection electrode, and a vibration unit, and generates a vibration start signal.
  • a vibration start signal generation circuit an excitation circuit that generates an excitation signal based on a detection signal from the detection electrode, and the vibration start signal that is output to the drive electrode in a vibration start section in which vibration of the vibration unit starts.
  • An angular velocity detection section for detecting angular velocity, an output section for outputting the excitation signal to the drive electrode, a control circuit for controlling the output section so that the vibration start section and the angular velocity detection section are repeated, and the angular velocity Based on the amplitude of the detection signal or the excitation signal in the detection section or the fluctuation amount of the amplitude, the vibration start signal applied to the drive electrode during the next vibration start section Characterized in that it comprises a an adjustment unit that adjusts the Energy.
  • an angular velocity sensor includes the angular velocity sensor drive circuit according to the above aspect, and a sensor unit including a drive electrode, a detection electrode, and a vibration unit.
  • the angular velocity sensor driving method provides a vibration start signal in a vibration start section in which vibration of the vibration portion of the angular velocity sensor portion is started.
  • an angular velocity sensor drive circuit is an angular velocity sensor drive circuit that drives a weight portion having a drive electrode, and vibrates the weight portion in a first axis direction.
  • a first drive signal, a second drive signal that vibrates the weight portion in the second axis direction, and a first static signal that stabilizes the vibration of the weight portion in the first axis direction are generated and output to the drive electrode.
  • a signal generation circuit that outputs the first drive signal from the signal generation circuit to the drive electrode in a section from detection of the angular velocity in the second axis direction to detection of the angular velocity in the first axis direction.
  • An oscillation section is set, a first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is driven by the signal generation circuit after the first free section.
  • First oscillation stop zone output to the electrode Set, characterized in that it and a control circuit for the second driving signal to set the second oscillation interval to be output to the drive electrodes from the signal generating circuit immediately after the first oscillation stop period.
  • an angular velocity detection sensor device includes an angular velocity sensor drive circuit according to an aspect of the present invention, and a drive signal supplied by the angular velocity sensor drive circuit.
  • An angular velocity for detecting an angular velocity from the detection signal output from the detection electrode comprising a drive electrode, the weight portion that vibrates by the drive signal, and a detection electrode that outputs a detection signal output by the vibration of the weight portion.
  • a detection circuit comprising a drive electrode, the weight portion that vibrates by the drive signal, and a detection electrode that outputs a detection signal output by the vibration of the weight portion.
  • a driving method of an angular velocity sensor is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode.
  • a first drive signal is output to the drive electrode in a first oscillation section that vibrates in one axial direction, and a first free section after the first oscillation section supplies a constant voltage to the drive electrode or the drive electrode In a floating state, and in a first oscillation stop section after the first free section, a first stabilization signal for stabilizing the vibration of the weight portion in the first axis direction is output to the drive electrode, and the first A second drive signal for vibrating the weight portion in the second axis direction is output to the drive electrode in a second oscillation section immediately after one oscillation stop section.
  • each aspect of the present invention it is possible to stably vibrate the vibration part in the time-sharing operation and to realize stable oscillation.
  • FIG. 1 is a circuit block diagram showing a schematic configuration of an angular velocity sensor 1 according to a first embodiment of the present invention. It is a figure which shows the connection state of the oscillation control part 5 in the oscillation start area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as Z-Drive. It is a figure which shows the connection state of the oscillation control part 5 in the stable oscillation area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as Z-Drive.
  • FIG. It is a figure which shows typically an example of the oscillation amplitude adjustment of the carrier wave Vs when the loop gain of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped is smaller than 1.
  • FIG. It is a figure explaining the procedure of amplitude adjustment of the carrier wave Vs of the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a flowchart which shows an example of the flow of the adjustment procedure of a silicon device.
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation start section T1 in Z-Drive. It is.
  • FIG. 1 is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows an example of the operation
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in a stable oscillation section T2 in Z-Drive. It is.
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation stop period T3 in Z-Drive. It is.
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation start section T1 in X-Drive. It is.
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in a stable oscillation section T2 in X-Drive. It is.
  • FIG. 1 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in a stable oscillation section T2 in X-Drive. It is.
  • FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation stop period T3 in X-Drive. It is. It is a figure explaining the angular velocity sensor by the modification of 1st Embodiment of this invention, Comprising: It is a block diagram which shows schematic structure of the angular velocity sensor part 3 provided with the drive electrode D1X, D2X, D1Y, D2Y of 4 terminals. It is a figure for demonstrating the angular velocity sensor 1 in 2nd-1 embodiment from 2nd-1 embodiment of this invention.
  • FIG. 10 is a diagram for explaining an integrated circuit according to embodiments 2-1 to 2-3 of the present invention. It is a figure which illustrates the drive signal applied to the drive electrode shown to Fig.30 (a) of this invention. It is a block diagram for demonstrating the structure of the angular velocity sensor drive circuit of 2nd-1 embodiment of this invention. It is a figure for demonstrating the drive signal by 2nd-1 embodiment of this invention. It is a figure for demonstrating the drive signal by 2nd-2 embodiment of this invention. It is a figure for demonstrating the drive signal by 2nd-3 embodiment of this invention. It is a block diagram of the integrated circuit of the angular velocity sensor of the 2-4 embodiment of the present invention. It is a block diagram for demonstrating the angular velocity sensor drive circuit shown in FIG. It is a figure for demonstrating the drive signal by 2-4 embodiment of this invention.
  • An angular velocity sensor having high vibration energy efficiency such as a piezoelectric element can perform self-excited oscillation.
  • the above-described conventional gyro angular velocity sensor
  • forms an oscillation loop that feeds back one of detection signals detected by the detection electrodes X1 and X2 and outputs it as a drive signal.
  • the open loop gain of the oscillation system is 0 dB, stable oscillation can be achieved.
  • the carrier wave Vs is phase-shifted by 90 °, and the gain-amplified signal is driven to the drive electrodes D1 and D2 as the sine wave oscillation control unit output signal Vdr.
  • the carrier wave Vsx is phase-shifted by 90 ° and the gain-amplified signal is driven to the drive electrodes D1 and D2 as sin-phase oscillation control unit output signals Vdrx and -Vdrx.
  • FIG. 1 is a diagram illustrating an example of frequency characteristics and envelope characteristics of an angular velocity sensor by an external drive.
  • 1A shows the frequency characteristic of the angular velocity sensor
  • FIG. 1B is an enlarged view of the peak portion of the frequency characteristic shown in FIG. 1A
  • FIG. 1C shows the angular velocity sensor.
  • trajectory at the time of the vibration part oscillating and vibrating is shown.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the gain.
  • the horizontal axis indicates time
  • the vertical axis indicates voltage.
  • the angular velocity sensor can oscillate following the frequency of the maximum gain value of the BPF (Band Path Filter) characteristic of the angular velocity sensor unit.
  • BPF Band Path Filter
  • the conventional excitation method for outputting a drive signal having a constant oscillation frequency to the drive electrode has the following problems.
  • the gain peak of the angular velocity sensor is set as the oscillation frequency fsns
  • the oscillation frequency of the external drive is set as fdr.
  • the oscillation period (frequency) of the external drive is only an integral multiple of the master clock. Therefore, as shown in FIG.
  • FIG. 2 is a circuit block diagram showing a schematic configuration of the angular velocity sensor 1.
  • the angular velocity sensor 1 includes an angular velocity sensor unit 3 and an oscillation control unit 5.
  • the angular velocity sensor unit 3 includes drive electrodes (drive electrodes) D1 and D2, detection electrodes X1, X2, Y1, and Y2, and a vibration unit 3a.
  • the oscillation control unit 5 outputs a drive signal to the self-excited oscillation circuit 5a constituting the oscillation loop, the rectangular wave generator (an example of the drive signal generation circuit) 5b, and the drive electrodes D1 and D2, or a self-excited oscillation signal.
  • the oscillation control unit 5 includes a control unit 5f that controls the switching circuit (an example of the output unit) 5c so that the vibration start section for starting the vibration of the vibration section 3a and the angular velocity detection section for detecting the angular velocity are repeated. ing.
  • the self-excited oscillation circuit 5a generates self-excited oscillation signals to be output to the drive electrodes D1 and D2 based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the vibration detection electrodes X1, X2, Y1, and Y2.
  • the rectangular wave generator 5b generates a rectangular wave driving signal (rectangular wave driving signal) to be output to the drive electrodes D1, D2.
  • the self-excited oscillation circuit is an excitation circuit that generates an excitation signal based on a detection signal from the detection electrode.
  • the rectangular wave generator is a vibration start signal generation circuit that generates a vibration start signal.
  • the switching circuit is an output unit that outputs a vibration start signal to the drive electrode during a vibration start interval in which the vibration of the vibration unit is started, and outputs an excitation signal to the drive electrode during an angular velocity detection interval in which the angular velocity is detected.
  • FIG. 3 is a diagram showing a connection state of the oscillation control unit 5 in the oscillation start period when the oscillation control unit 5 functions as Z-Drive
  • FIG. 4 shows the oscillation control unit 5 functioning as Z-Drive. It is a figure which shows the connection state of the oscillation control part 5 in the stable oscillation area at the time.
  • the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected by the switching circuit 5c.
  • the connection state between the rectangular wave generator 5b and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the rectangular wave generator 5b and the drive electrodes D1, D2.
  • the two output terminals of the rectangular wave generator 5b are short-circuited with each other, and the output signals Rct1 and Rct2 output from the two output terminals are input to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
  • the rectangular wave output from the rectangular wave generator 5b is driven to the drive electrodes D1 and D2, and the angular velocity sensor 1 is started up.
  • the angular velocity sensor unit 3 and the driver 6e are connected by the switching circuit 5c.
  • the connection state between the driver 6e and the drive electrodes D1, D2 is shown by a straight line connecting one output terminal of the driver 6e and the drive electrodes D1, D2.
  • the self-excited oscillation signal Dr1 output from one output terminal of the driver 6e is input to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
  • the self-excited oscillation circuit 5a of the oscillation control unit 5 has signals from the detection electrodes X1, X2, Y1, and Y2 as HPF (High Path Filter) 6a, carrier wave generation circuit 6b, phase shifter 6c, and variable amplifier.
  • HPF High Path Filter
  • the self-excited oscillation circuit 5a is controlled so as to be input to the drive electrodes D1 and D2 via 6d and the driver 6e, and a 360 ° oscillation (positive feedback) loop is formed to stably oscillate.
  • An HPF (High Path Filter) 6a, a carrier wave generation circuit 6b, a phase shifter 6c, a variable amplifier 6d, and a driver 6e are provided in the self-excited oscillation circuit 5a.
  • the phase shifter 6c shifts the phase of the input signal by 90 ° and outputs it.
  • the phase of the signal in the oscillation loop is shifted by 270 ° in the angular velocity sensor unit 3 and shifted by 90 ° in the phase shifter 6c.
  • the phase of the signal in the oscillation loop is shifted by 360 °.
  • the connection state in the oscillation stop period is the same as that in the stable oscillation period, but the driver 6e can be switched to operate as a voltage follower in the stable oscillation period and to operate as an inverting amplifier in the oscillation stop period. Yes.
  • the oscillation (positive feedback) loop in the stable oscillation period is inverted, and a 180 ° oscillation stop (negative feedback) loop that converges to the operating common voltage VCOM is formed in the self-excited oscillation circuit 5a, and the oscillation stops.
  • the oscillation control unit 5 includes a reference value generation unit 5d that generates a master clock and a voltage source, and a sequencer 5e that performs the above control in an oscillation start period, a stable oscillation period, and an oscillation stop period.
  • the sequencer 5e is a storage unit that stores amplitude information that determines the amplitude of the drive signal (rectangular wave drive signal) of the rectangular wave generator 5b or time information that determines the time during which the drive signal of the rectangular wave generator 5b is output.
  • Have The sequencer 5e outputs the first amplitude information of the rectangular wave driving signal (an example of the first driving signal) output from the rectangular wave generator 5b in Z-Drive, and the rectangular wave generator 5b outputs in X-Drive described later.
  • the second amplitude information of the rectangular wave driving signal (an example of the second driving signal) output from the rectangular wave generator 5b to be stored is stored. Further, the sequencer 5e stores first time information for outputting a rectangular wave drive signal in Z-Drive and second time information for outputting a rectangular wave drive signal in X-Drive.
  • the sequencer 5e corresponds to an adjustment unit that adjusts the energy of the vibration start signal applied to the drive electrode during the next vibration start interval based on the amplitude of the detection signal or the excitation signal in the angular velocity detection interval or the amount of fluctuation of the amplitude. To do.
  • This self-excited oscillation is controlled by a control value based on the BPF characteristic of the angular velocity sensor unit 3 and the oscillation amplitude characteristic of the rising edge of the output signal output from the rectangular wave generator 5b.
  • the oscillation amplitude of the angular velocity sensor 1 is controlled by at least one of the amplitude of the rectangular wave at the start of oscillation and the driving time thereof.
  • the vibration unit 3a of the angular velocity sensor unit 3 vibrates in the Z-axis direction, and the Y-axis angular velocity ⁇ y is generated in the orthogonal component of the carrier wave of the detection electrodes X1 and X2, and the detection signal from the detection electrodes X1 and X2 It is detected as a difference or phase difference between Vs_x1 and Vs_x2.
  • the X-axis angular velocity ⁇ x is generated in the orthogonal component of the carrier waves of the detection electrodes Y1 and Y2, and is detected as a difference or phase difference between the detection signals Vs_y1 and Vs_y2 from the detection electrodes Y1 and Y2.
  • the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are output from Y2.
  • the HPF 6a is a resistor connected between the capacitive electrode having the detection electrodes X1, X2, Y1, and Y2 of the angular velocity sensor unit 3 as one electrode and the other electrode of the capacitive element and the operation common voltage VCOM. It consists only of and. That is, the HPF 6a is a passive high-pass filter circuit.
  • the HPF 6a is provided for each of the detection electrodes X1, X2, Y1, and Y2.
  • the carrier wave generation circuit 6b generates the carrier wave Vs as described above.
  • the carrier wave Vs is obtained from the following equation.
  • the phase shifter 6c has a so-called all-pass filter circuit, and makes at least one of the resistance value of the resistor and the capacitance value of the capacitive element constituting the all-pass filter circuit variable.
  • the phase shift amount Sft can be adjusted.
  • the variable amplifier 6d is composed of an inverting amplifier, an attenuator, and the like, and the gain A can be adjusted by making the resistance value variable.
  • the driver 6e operates as a voltage follower when forming a 360 ° oscillation (positive feedback) loop, and operates as an inverting amplifier (inversion gain -B) when forming a 180 ° oscillation stop (negative feedback) loop.
  • the two self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are the same signal.
  • the rectangular wave generator 5b is orthogonal to the rectangular wave drive signal (an example of the first drive signal) that vibrates the vibration part 3a in the Z-axis (an example of the first axis) and the vibration part 3a in the Z-axis direction.
  • a rectangular wave drive signal (an example of the second drive signal) that causes the X axis (an example of the second axis) to vibrate is output.
  • the rectangular wave generator 5b outputs a rectangular wave driving voltage Vrct having a frequency fdr substantially equal to the oscillation frequency of the angular velocity sensor unit 3 with an amplitude Vup and a driving time Tup.
  • the amplitude of self-oscillation can be adjusted substantially in proportion to the amplitude Vup and the drive time Tup.
  • the two rectangular wave drive signals Rct1 and Rct2 output from the rectangular wave generator 5b are the same signal.
  • the switching circuit 5c can connect the drive electrodes D1 and D2 by selecting the rectangular wave drive signals Rct1 and Rct2 and the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e.
  • the switching circuit 5c outputs a rectangular wave drive signal Vrct to vibrate the vibration unit 3a, and then switches to output a self-excited oscillation signal.
  • the control unit 5f controls the output unit 5c so that the first vibration start section, the first angular velocity detection section, the second vibration start section, and the second angular speed detection section (details of each section will be described later) are repeated.
  • the reference value needs a certain degree of accuracy.
  • the master clock MCLK may be free-running oscillation that is asynchronous with the carrier wave.
  • the reference value generator 5d outputs an operation common voltage VCOM, a reference voltage VREF, and a master clock MCLK (oscillation frequency fclk).
  • the angular velocity is a component orthogonal to the carrier wave, and the carrier wave (represented by, for example, the symbol “Vs” in FIG. 2) is a signal that is phase-shifted by 90 ° or 270 ° in the angular velocity detection, and is called an orthogonal signal Q.
  • signals that are 90 ° phase shifted from the carrier wave represented by the symbols “Vi”, “Via”, and “Vdr” in FIG.
  • the output signal Via which is the output of the variable amplifier 6d can be used as the in-phase signal I in the angular velocity detection.
  • the angular velocity sensor 1 includes a monitor unit (an example of an amplitude detection unit) 1a that monitors a carrier wave Vs and a monitor unit (an example of an amplitude detection unit) 1b that monitors an output signal Via.
  • the quadrature signal Q is monitored, and the monitor unit 1b monitors the in-phase signal I.
  • the monitor units 1a and 1b detect the amplitude of the self-excited oscillation signal in the self-excited oscillation circuit 5a, the amplitude detection signal which is the amplitude of the detected self-excited oscillation signal, the amplitude information of the carrier wave held by the monitor units 1a and 1b, and Based on the frequency information, the amplitude of the rectangular wave drive signal of the rectangular wave generator 5b or the time (period) during which the rectangular wave drive signal is output may be adjusted.
  • the control data of the oscillation controller 5 is preferably a digital value in order to easily perform a time division operation.
  • Data stored in the sequencer 5e is the following count value Nf, control value dtsft, and gain control value dtA.
  • the count value Nf is a count value of a sensor oscillation signal that is an oscillation signal oscillating at an oscillation frequency of the angular velocity sensor unit 3 in Z-Drive and a count value of a rectangular wave period CLK of a rectangular wave drive signal.
  • the frequency fdr of the rectangular wave drive signal is set to a value (fclk / Nf) obtained by dividing the oscillation frequency fclk of the angular velocity sensor unit 3 by the counter value Nf in Z-Drive.
  • the control value dtSft is a control value of the phase shift amount Sft of the carrier wave Vsz in the phase shifter 6c.
  • the gain control value dtA is a control value of the carrier wave gain A in
  • the data stored in the sequencer 5e by adjusting the amplitude and control time of the rectangular wave so as to obtain the target amplitude from the start of oscillation of the angular velocity sensor 1 to the self-excited oscillation are the control value dtRct and the master clock.
  • the count value Nup is a control value for controlling the rectangular wave amplitude Vrct which is the amplitude of the rectangular wave drive signal Rct
  • the master clock count value Nup is the count value of the master clock MCLK in the rectangular wave drive time Tup. It is.
  • the rectangular wave driving time Tup is a driving time for driving the drive electrodes D1 and D2 by the rectangular wave generator 5b.
  • the Z-axis angular velocity ⁇ z is generated as a quadrature component of the carrier waves of the detection electrodes Y1 and Y2, and is detected as a difference between the detection signal Vsx_y1 and the detection signal Vsx_y2. .
  • the oscillation control unit output signal Vdrx and the oscillation control unit output signal ⁇ Vdxr applied to the drive electrodes D1 and D2 in reverse phase are phase-shifted by 270 ° to detect electrodes.
  • a detection signal Vsx_x1 and a detection signal Vsx_x2 having opposite phases are output from X1 and X2.
  • the carrier wave generation circuit 6b detects the carrier wave Vsx as described above.
  • FIG. 5 is a diagram illustrating a connection state of the oscillation control unit 5 in the oscillation start period when the oscillation control unit 5 functions as an X-Drive.
  • the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected by the switching circuit 5c.
  • the connection state between the rectangular wave generator 5b and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the rectangular wave generator 5b and the drive electrodes D1, D2.
  • the rectangular wave drive signal Rct1 output from the output terminal of the rectangular wave generator 5b is input to the drive electrode D1 as the oscillation control unit output signal Vdrx, and is output from the other output terminal of the rectangular wave generator 5b.
  • the rectangular wave drive signals Rct1x and Rct2x of the rectangular wave generator 5b are rectangular waves having opposite phases
  • the oscillation control unit output signals Vdrx and -Vdrx are signals having opposite phases.
  • FIG. 6 is a diagram illustrating a connection state of the oscillation control unit 5 in a stable oscillation section when the oscillation control unit 5 functions as an X-Drive.
  • the angular velocity sensor unit 3 and the driver 6e are connected by the switching circuit 5c.
  • the connection state between the driver 6e and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the driver 6e and the drive electrodes D1, D2.
  • the self-excited oscillation signal Dr1x output from one output terminal of the driver 6e is input to the drive electrode D1 as the oscillation control unit output signal Vdrx, and the self-excited oscillation signal Dr2x output from the other output terminal of the driver 6e is output from the oscillation control unit
  • the signal -Vdrx is input to the drive electrode D2.
  • the driver 6e When the oscillation control unit 5 functions as X-Drive, the driver 6e operates as a voltage follower during a 360 ° oscillation (positive feedback) loop in a stable oscillation period.
  • the driver 6e operates as an inverting amplifier during a 180 ° oscillation stop (negative feedback) loop in the oscillation stop period.
  • the self-excited oscillation signals Dr1x and Dr2x of the driver 6e are drive signals having opposite phases.
  • the rectangular wave generator 5b can adjust the amplitude of self-oscillation in substantially proportion to the amplitude and driving time of the rectangular wave driving signal.
  • the switching circuit 5c can select and input the rectangular wave drive signals Rct1x and Rct2x and the self-excited oscillation signals Vdrx1 and Vdr2x to the drive electrodes D1 and D2 as the oscillation control unit output signals Vdrx and ⁇ Vdrx.
  • the data stored in the sequencer 5e is the same type of data as Z-Drive as follows.
  • the count value NfX is a count value of a sensor oscillation signal that is an oscillation signal oscillating at the oscillation frequency of the angular velocity sensor unit 3 in X-Drive, and a count value of a rectangular wave period CLK of the rectangular wave drive signal.
  • the frequency fdr of the rectangular wave drive signal is set to a value (fclk / NfX) obtained by dividing the oscillation frequency fclk of the angular velocity sensor unit 3 by the counter value NfX in X-Drive.
  • the control value dtSftX is a control value of the phase shift amount SftX of the carrier wave Vsx in the phase shifter 6c.
  • the gain control value dtAX is a control value of the carrier wave gain AX.
  • the control value dtRctX is a control value of the rectangular wave amplitude VrctX in the variable amplifier 6d.
  • the count value NupX is a count value of the rectangular wave period CLK of the rectangular wave driving time TupX.
  • FIG. 7 is an image diagram of time-division operation in the angular velocity sensor 1.
  • FIG. 7A shows a timing chart of the next division operation in the angular velocity sensor 1
  • FIG. 7B shows an enlarged timing chart in Z-Drive.
  • the upper part of FIG. 7A schematically shows Z-Drive and X-Drive operation sections
  • the lower part of FIG. 7A shows the oscillation start section T1 and the stable state in each of the Z-Drive and X-Drive operation sections.
  • the timings of the oscillation period T2 and the oscillation stop period T3 are shown.
  • FIG. 7B schematically shows the Z-Drive operation section, and the second stage in the figure shows the oscillation start section T1, the stable oscillation section T2, and the oscillation stop section in the Z-Drive operation section.
  • the timing of T3 is shown
  • the third stage in the figure shows the voltage waveform of the oscillation control unit output signal Vdr inputted to the drive electrodes D1 and D2
  • the fourth stage in the figure shows the voltage waveform of the carrier wave Vsz.
  • the horizontal axis indicates time, and the passage of time is represented from left to right in the drawing.
  • the Z-Drive oscillation start interval T1 corresponds to the first vibration start interval
  • the Z-Drive stable oscillation interval T2 corresponds to the first angular velocity detection interval
  • the X-Drive oscillation start interval T1 corresponds to the second vibration start interval T1.
  • the X-Drive stable oscillation period T2 corresponds to the start period, and corresponds to the second angular velocity detection period.
  • Z-Drive and X-Drive each have T1 + T2 + T3 (for example, 4 ms) as an oscillation start period T1 (for example, 1 ms), oscillation control is performed in three states of a stable oscillation period T2 (for example, 2 ms) and an oscillation stop period T3 (for example, 1 ms).
  • the angular velocity is detected in the stable oscillation section T2.
  • the interval section of each of the Z-Drive and X-Drive operation sections is, for example, 1 ms.
  • the distortion component When a distortion component such as odd-order distortion is generated in the carrier wave Vs, the distortion component is generated with a phase shift of 90 ° with respect to the carrier wave Vs, and becomes an in-phase component of angular velocity and becomes a noise component. Therefore, it is preferable that the carrier wave has less distortion.
  • the state switching is performed by the driver 6e and the switching circuit 5c. Even if noise occurs in the oscillation control unit output signal Vdr at the time of switching, the noise does not propagate to the carrier wave Vs. This is because the angular velocity sensor unit 3 has a narrow band BPF characteristic, and noise of the oscillation control unit output signal Vdr generated at the time of switching is removed.
  • the detection signal output from the detection electrode also becomes a sine wave with less distortion due to the BFP characteristics of the angular velocity sensor unit.
  • the self-excited oscillation operation is composed of the following three states.
  • a rectangular wave drive signal Rct1 having a period fclk / Nf close to the oscillation frequency fclk of the angular velocity sensor unit 3 is applied to the drive electrodes D1 and D2 as an oscillation control unit output signal Vdr.
  • the phase shift amount Sft of the phase shifter 6c and the gain A of the variable amplifier 6d are controlled.
  • a 360 ° oscillation (positive feedback) loop is formed.
  • the stable oscillation period T2 self-excited oscillation period
  • the oscillation amplitude of the self-excited oscillation signal Dr that is, the oscillation
  • the amplitude of the control unit output signal Vdr can be maintained at a constant value.
  • the angular velocity is detected with the in-phase signal.
  • the self-excited oscillation circuit 5a inverts the oscillation (positive feedback) loop to form a 180 ° oscillation stop (negative feedback) loop. As a result, the amplitude is reduced, converged to the operating common voltage VCOM, and oscillation stops.
  • the same operation as described above is performed.
  • ⁇ Adjustment value setting method> a method for setting each adjustment value from the open loop characteristics of the angular velocity sensor 1 will be described.
  • the oscillation frequency of the drive signal output to the drive electrode be highly accurate, but it is usually very difficult to adjust and control the oscillation frequency of the drive signal.
  • adjustment or control can be easily performed with high accuracy.
  • the frequency characteristics of the angular velocity sensor unit 3 during Z-Drive are as follows.
  • the frequency characteristic of the angular velocity sensor unit 3 is a narrow band BPF characteristic.
  • the adjustment value is determined by the frequency characteristics of the angular velocity sensor unit 3.
  • Nf sensor oscillation frequency fz ⁇ period of rectangular wave
  • CLK count value Nsft adjustment value of phase shifter to be shift amount 1 / (4 fz) dtA: sensor gain 1 / A ⁇ data in which gain of oscillation control unit is A ( (Adjustment value for stable oscillation at a total gain of 0 dB) In this state, stable oscillation is possible.
  • the set value can be obtained from the BPF characteristic of the angular velocity sensor unit 3, but the measurement time of the BPF characteristic of the angular velocity sensor unit 3 is not short, and the number of testers that can be measured is limited. Lack. Adjustment of the frequency is indispensable for oscillation, and since the angular velocity is proportional to the carrier wave, it is also necessary to control the oscillation amplitude. The oscillation amplitude never exceeds a large.
  • One means for monitoring here is a comparator, and the other is an ADC (analog-digital converter) for measuring amplitude.
  • the comparator compares the input wave with the operating common voltage VCOM and detects the zero-cross timing of the input wave.
  • the amplitude measurement ADC converts the amplitude value into a digital code.
  • the carrier wave Vs is called the quadrature signal Q
  • the output signal Via of the variable amplifier 6d is called the in-phase signal I. Therefore, monitoring of the carrier wave Vsz in Z-Drive is executed by the comparator and ADC constituting the monitor unit 1a, and monitoring of the oscillation control unit output signal Vdr is executed only by the comparator constituting the monitor unit 1b.
  • FIG. 8 shows information obtained from each monitor when the output of the comparator provided in the monitor unit 1a is the output signal COMPQ and the output of the comparator provided in the monitor unit 1b is the output signal COMPI.
  • the first stage shows the voltage waveform Vq of the carrier wave Vs
  • the second stage shows the voltage waveform of the output signal COMPQ of the comparator Q of the monitor unit 1a
  • the third stage shows the output signal Via of the variable amplifier 6d.
  • the voltage waveform is shown
  • the fourth stage shows the voltage waveform of the output signal COMPI of the comparator of the monitor unit 1b.
  • the vertical axis represents voltage
  • the horizontal axis represents time
  • the passage of time is represented from left to right.
  • the carrier wave amplitude detected by the ADC is defined as AQ.
  • the first rise time of the output signal of the comparator of the monitor unit 1a is defined as tQ (0)
  • the second rise time is defined as tQ (1)
  • the (n-1) th rise time is defined as tQ (n).
  • the first rise time of the output signal of the comparator of the monitor unit 1b is defined as tI (0)
  • the second rise time is defined as tI (1)
  • the (n-1) th rise time is defined as tI (n ).
  • the frequency of the rectangular wave periodic clock signal is fclk, the following information is obtained and control is possible.
  • the count value Nf of the oscillation period of the angular velocity sensor 1 is obtained by “tQ (n + 1) ⁇ tQ (n)) / fclk”.
  • FIG. 9 is a diagram illustrating a method for adjusting the oscillation amplitude of the rectangular wave drive signal output from the rectangular wave generator 5b.
  • FIG. 9A is a diagram illustrating envelope characteristics of the carrier wave Vs in the oscillation start period and the stable oscillation period. The horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the carrier wave Vs.
  • the amplitude voltage is a potential difference between the maximum voltage value and the minimum voltage value of the carrier wave Vs.
  • a curve L3 shows the envelope characteristic of the carrier wave Vs when the oscillation amplitude of the rectangular wave drive signal is not adjusted
  • a curve L4 shows the envelope characteristic of the carrier wave Vs when oscillated only by self-excited oscillation
  • the curve L5 is The envelope characteristic of the carrier wave Vs when the oscillation amplitude of the rectangular wave drive signal is adjusted is shown.
  • the target amplitude value Vcw is a target value for preventing the beat from occurring in the stable oscillation period with a short rise time of the carrier wave Vs.
  • FIG. 9B shows the amplitude characteristics of the oscillation control unit output signal input to the drive electrodes D1 and D2.
  • the horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the oscillation control unit output signal.
  • FIG. 9C shows the amplitude characteristic of the carrier wave Vs after adjusting the rectangular wave drive signal.
  • the horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the carrier wave Vs.
  • the frequency of the rectangular wave driving signal output from the rectangular wave generator 5b is controlled by the count value Nf of the rectangular wave periodic clock signal obtained previously.
  • the oscillation amplitude of the rectangular wave is monitored by the ADC.
  • the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected, so that the oscillation unit 3a is open loop and operates regardless of the gains of the angular velocity sensor unit 3 and the oscillation control unit 5. .
  • the sensor gain is 1 time and the gain of the oscillation control unit 5 is also 1 time. That is, during stable oscillation, if the amplitude voltage Vpp of the carrier wave Vs is 0.5V, the amplitude voltage Vpp of the oscillation control unit output signal Vdr is 0.5V.
  • the amplitude voltage of the carrier wave Vs that is a sine wave is three times (1.5 Vpp), the period is an integral multiple of the master clock MCLK, and the rectangular wave has a slight error from the oscillation period of the angular velocity sensor unit 3.
  • the detection signal waveforms detected by the detection electrodes X1, X2, Y1, and Y2 are removed from the harmonics due to the BPF characteristics of the angular velocity sensor unit 3, and clean sin. Become a wave. Further, as shown in FIG.
  • the rise of the envelope (curve L3) of the carrier wave Vs by the external drive is compared with the rise of the self-excited oscillation envelope (curve L4). And it rises about 3 times faster in a straight line.
  • the rise of the envelope of the carrier wave Vs due to the external drive gradually approaches the exponential characteristic from the linear characteristic, and finally the oscillation period of the angular velocity sensor unit 3 and the oscillation control unit output signal that drives the drive electrodes D1 and D2 The period error with the period becomes a beat, and the carrier wave Vs fluctuates.
  • the oscillation amplitude characteristic in the oscillation start section T1 (for example, 1 ms) is a linear characteristic, and since there is no frequency error when switching to loop oscillation, no fluctuation occurs. Since this oscillation amplitude characteristic is proportional to the amplitude of the rectangular wave drive signal and the drive time, it can be controlled as follows.
  • the target amplitude value Vcw of the carrier wave is adjusted by setting the amplitude voltage Vpp to 0.5V.
  • the rectangular wave generator 5b sets the amplitude voltage Vpp of the rectangular wave driving voltage Vrct of the rectangular wave driving signal Rct1 to 1.5 V, sets the rectangular wave driving time Tup to 1 ms, and is counted by the count value Nf of the rectangular wave period clock signal. A rectangular wave with a specified period is output.
  • the amplitude adjustment value of the rectangular wave drive signal Rct is determined to be an adjustment value that is 1.25 Vpp, and the drive time Nup that is driven by the rectangular wave drive signal Rct is a count of the rectangular wave period clock signal that causes the oscillation start period T1 to be 1 ms. Determined by value.
  • the adjustment value can be determined as follows.
  • the amplitude adjustment value of the rectangular wave drive signal Rct is determined to be an adjustment value that is 1.5 times the amplitude voltage Vpp (1.5 Vpp), and the drive time Nup is the count value of the rectangular wave period clock signal during the oscillation start period T1. To be determined.
  • FIG. 10 and 11 are diagrams for explaining a method of adjusting the oscillation amplitude of the rectangular wave drive signal output from the rectangular wave generator 5b.
  • FIG. 10 shows an example in which a beat is prevented from occurring in the carrier wave Vs by adjusting the oscillation amplitude of the rectangular wave drive signal.
  • FIG. 11 shows an example of preventing a beat from occurring in the carrier wave Vs by adjusting the driving time of the rectangular wave driving signal.
  • 10 (a) and 11 (a) are illustrated in the same manner as in FIG. 9 (a), and FIGS. 10 (b) and 11 (b) are similar to those in FIG. 9 (b).
  • 10 (c) and 11 (c) are illustrated in the same manner as FIG. 9 (c). As shown in FIG.
  • the rectangular wave drive voltage Vrct of the rectangular wave drive signal in the oscillation start period is adjusted, and the amplitude voltage of the carrier wave Vs is set to the target amplitude value Vcw as shown in FIG. To do.
  • the drive time for driving the drive electrodes D1, D2 is adjusted to be short with the rectangular wave output amplitude, and the amplitude voltage of the carrier wave Vs is set to the target as shown in FIG. 11C. Set to the amplitude value Vcw.
  • the amplitude information (an example of the first amplitude information) and the time information (an example of the first time information) of the rectangular wave output signal are determined by the envelope of the detection signal (for example, the carrier wave Vs). While the envelope of the detection signal (for example, the carrier wave Vs) has a linear characteristic, the switching circuit 5c switches so as to output the oscillation control unit output signal based on the self-excited oscillation signal from the oscillation control unit output signal based on the rectangular wave drive signal Rct. .
  • the monitor unit When the switching circuit 5c switches to output a self-excited oscillation signal from the self-excited oscillation circuit 5a after outputting the rectangular wave drive signal as an oscillation control unit output signal to vibrate the vibration unit 3a, the monitor unit When the amplitude detection signals monitored by 1a and 1b are greater than or equal to a predetermined value, adjustment is made to reduce the amplitude of the drive signal, or adjustment to shorten the time during which the rectangular wave drive signal is output as the oscillation control unit output signal. . In addition, when the amplitude of the detection signal (for example, the carrier wave Vs) is not linear with respect to the output time of the detection signal, adjustment to reduce the amplitude of the rectangular wave drive signal or shorten the time for outputting the rectangular wave drive signal. Make adjustments.
  • the amplitude of the detection signal for example, the carrier wave Vs
  • FIG. 12 is a diagram schematically showing the oscillation amplitude characteristic of the carrier wave Vs when the angular velocity sensor 1 continuously oscillates.
  • the vertical axis represents the amplitude voltage Vpp of the carrier wave Vs
  • the horizontal axis represents time. The passage of time is shown from left to right in the figure.
  • the oscillation of the angular velocity sensor 1 is maintained from the above state unless a stop operation is performed.
  • the loop gain is 1 (for example, the gain of the angular velocity sensor unit 3 is 1 / A and the gain of the variable amplifier 6d is A), as shown by a curve L5 in FIG.
  • the oscillation amplitude of Vs is maintained at a constant value.
  • the oscillation amplitude of the carrier wave Vs gradually increases if the loop gain is greater than 1 (see curve L6), and gradually decreases if the loop gain is less than 1 (see curve L7).
  • the time change is small.
  • an oscillation loop is formed.
  • the oscillation amplitude of the carrier wave Vs is measured by the ADC of the monitor unit 1a at a sampling rate of about 0.5 ms.
  • the amplitude AQ (n ⁇ 1) before one sampling is compared with the current amplitude AQ (n), and when the difference exceeds the threshold value + ⁇ TH, the loop gain is larger than 1, and the difference is the threshold value.
  • the loop gain is smaller than 1. Therefore, adjustment for changing the gain of the variable amplifier 6d is performed. More specifically, it is as follows.
  • the difference of “AQ (n) ⁇ AQ (n ⁇ 1)” exceeds the threshold value + ⁇ TH, adjustment is performed to lower the gain of the variable amplifier 6d.
  • the difference between “AQ (n) ⁇ AQ (n ⁇ 1)” is equal to or smaller than the threshold ⁇ TH (threshold having the same absolute value as the threshold TH and having a minus sign ( ⁇ ).
  • the negative threshold is “ ⁇ TH”.
  • the gain of the variable amplifier 6d is adjusted to increase.
  • the difference of “AQ (n) ⁇ AQ (n ⁇ 1)” is equal to or less than the threshold + ⁇ TH and equal to or greater than ⁇ TH, the gain of the variable amplifier 6d is maintained. As a result, stable oscillation when a self-excited oscillation loop is formed can be realized. Also, the oscillation stop operation is necessary even in the above-described oscillation operation.
  • FIG. 13 is a diagram schematically illustrating an example of the adjustment of the oscillation amplitude of the carrier wave Vs when the loop gain of the oscillation control unit 5 is greater than one.
  • 13A and 13B show the oscillation amplitude characteristics of the oscillation control unit 5, the middle stage shows the loop gain of the oscillation control unit 5, and the lower part of the figure. Shows the adjustment determination result.
  • the vertical axis indicates the amplitude voltage Vpp of the carrier wave Vs
  • the horizontal axis indicates time
  • the time passage is shown from left to right in the figure.
  • the middle and lower rectangular frames indicate the timing of oscillation amplitude adjustment, and adjustment determination and oscillation amplitude adjustment are performed for each rectangular frame.
  • the numerical value in the rectangular frame in the middle of the figure represents the loop gain of the oscillation control unit 5.
  • the equal sign in the rectangular frame at the bottom indicates that the amplitude value of the previous sample is equal to the current amplitude value, and the inequality sign (>) indicates that the amplitude value of the previous sample is greater than the current amplitude value.
  • the oscillation control unit 5 forms an oscillation loop after the oscillation operation of the oscillation control unit 5, that is, after the rectangular wave driving time Tup has elapsed.
  • the oscillation amplitude is measured at a sampling rate of about 0.5 ms.
  • the gain of the oscillation control unit 5 is adjusted according to the adjustment determination described above. As shown in the lower part of FIG. 13A, in this example, the adjustment determination for increasing the oscillation amplitude continues, and as shown in the middle part of FIG. 13A, the oscillation loop of the oscillation control unit 5 is increased. When the gain reaches 0.88, the gain is maintained.
  • the oscillation control unit 5 determines that the amplitude adjustment has been completed, forms a ⁇ 1 times inversion loop, and stops oscillation. Since the target amplitude value Vcw is, for example, 1.2 V, the oscillation control unit 5 determines that there is no problem with the amplitude value of the carrier wave Vs. When the amplitude value of the carrier wave Vs is greatly deviated from the target amplitude value Vcw, the adjustment gain is set, and the above operation is repeated once more so that a more accurate adjustment value of the oscillation amplitude of the carrier wave Vs can be obtained. .
  • FIG. 14 is a diagram schematically illustrating an example of the oscillation amplitude adjustment of the carrier wave Vs when the loop gain of the oscillation control unit 5 is smaller than 1.
  • the method shown in FIG. 14A is the same as the method shown in FIG. 13A, and the method shown in FIG. 14B is the same as the method shown in FIG. 13B. The description is omitted.
  • the adjustment determination for decreasing the oscillation amplitude continues, and as shown in the middle part of FIG. 14A, the oscillation loop of the oscillation control unit 5 When the gain reaches 1.12, the gain is maintained. Thereafter, the amplitude adjustment of the carrier wave Vs is performed by the same control as described with reference to FIG.
  • the oscillation control unit 5 needs to be adjusted.
  • the oscillation control unit 5 is manufactured by a CMOS (Complementary MOS (Metal-Oxide-Semiconductor): complementary MOS) silicon device.
  • CMOS Complementary MOS (Metal-Oxide-Semiconductor): complementary MOS) silicon device.
  • the oscillation control unit 5 having a high temperature and power supply voltage drift tolerance can be arranged, the oscillation control unit 5 is sensitive to variations in resistance and capacitance.
  • the phase shifter 6c is sensitive to variations in resistance and capacitance, and it is necessary to adjust the amount of phase shift.
  • the voltage source, the current source, the frequency of the master clock MCLK, the target value of the phase shift amount of the phase shifter 6c, and the like are measured.
  • a nonvolatile memory such as Programmable ROM.
  • the nonvolatile memory is provided in the sequencer 5e, for example. Since this procedure can be performed even before the module assembly process, it is preferable to perform this procedure at the time of a screening test of a single CMOS device.
  • FIG. 15 is a flowchart illustrating an example of a flow of a silicon device adjustment procedure.
  • the adjustment procedure shown in FIG. 15 is executed, for example, in a screening test for a single COMS device before the module assembly process.
  • step S1 the reference value generating unit 5d is adjusted, and the process proceeds to step S3.
  • step S1 the voltage value of the operation common voltage VCOM output from the reference value generator 5d, the voltage value of the reference voltage VREF, and the frequency of the master clock MCLK are adjusted.
  • the reference voltage VREF is used as a reference voltage for generating the output voltage of the voltage source and the output current of the current source.
  • step S3 the phase shifter characteristics are confirmed, and the process proceeds to step S5.
  • step S3 the phase shifter amount of the phase shifter 6c, the target value of the phase shift amount, and the like are measured and confirmed.
  • step S5 each value confirmed in step S3 is written in the memory, and the silicon device adjustment procedure is completed.
  • step S5 the phase shifter amount of the phase shifter 6c, the target value of the phase shifter amount, the frequency of the master clock MCLK, and the like are written in the nonvolatile memory (not shown) provided in the sequencer 5e.
  • FIG. 16 is a flowchart illustrating an example of a flow of processing of sensor module adjustment and oscillation frequency control.
  • the oscillation frequency of the angular velocity sensor module (angular velocity sensor unit 3) assembled in the process is measured and adjusted.
  • the method of measuring the oscillation frequency of the angular velocity sensor module is to vibrate the vibrating part 3a according to the operation (oscillation operation or self-excited oscillation operation) in each of the above-described sections T1, T2, T3 (see FIG. 7) and monitor in the stable oscillation section T2. Output signals from 1a and 1b are detected.
  • the square wave oscillation period count value Nf output from the square wave generator 5b before adjustment and the control value dtSft of the phase shifter 6c are set to, for example, standard values (for example, average values of mass production results) (step S11), and oscillation control is performed. Adjustment is started (from step S13 to step S21).
  • ⁇ Oscillation frequency control> The angular velocity sensor unit 3 having a relatively low Q value starts oscillating even if there is a frequency error. Therefore, if the rectangular wave oscillation cycle count value Nf output from the rectangular wave generator 5b and the control value dtSft of the phase shifter 6c are swept within the allowable frequency error range, the angular velocity sensor unit 3 oscillates under any condition. Start (oscillation start processing in step S13 following step S11).
  • the angular velocity sensor unit 3 starts oscillating to form an oscillation loop (state of the stable oscillation section T2), the angular velocity sensor unit 3 is naturally drawn into the oscillation frequency of the angular velocity sensor unit 3, and the angular velocity sensor unit 3 maintains the state of stable oscillation to some extent. (Self-excited oscillation process in step S13). Therefore, the oscillation speed of the angular velocity sensor unit 3 is measured by measuring the count value Nf of the oscillation period and the count value Nsft of the phase shift amount of the angular velocity sensor unit 3 in the stable oscillation state (step S15 after step S13). Know the exact frequency.
  • the phase shift adjustment of the phase shifter 6c requires a target value for the oscillation frequency when adjusting the silicon device. Therefore, the angular velocity sensor unit 3 can be adjusted for each period, and the oscillation frequency of the angular velocity sensor unit 3 can be adjusted. Retraction is fast.
  • step S15 It is also possible to measure the amplitude AQ of the carrier wave Vs output from the carrier wave generation circuit 6b (step S15), and when the amplitude AQ becomes larger than the specified value Vs_min (Yes in step S17 following step S15), the angular velocity sensor. It is determined that the oscillation of the unit 3 has been successful, the oscillation of the angular velocity sensor unit 3 is stopped (step S19 after Yes in step S17), the oscillation frequency control process is terminated, and the process proceeds to the next stage.
  • step S17 when the amplitude AQ is smaller than the specified value Vs_min (No in step S17), the count value Nf and the control value dtSft are changed (step S21 next to No in step S17), the process returns to step S13, and again, The sensor module adjustment process is started.
  • step S13 corresponds to an example of a signal output step.
  • Step S15 corresponds to an example of a signal detection step.
  • Step S17 corresponds to an example of a signal comparison step.
  • Step S19 and step S21 each correspond to an example of a signal adjustment step. Note that not changing the count value Nf and the control value dtSft is a kind of adjustment of the amplitude (an example of the first amplitude) and the time (an example of the first time) of the rectangular wave drive signal, and thus the step S19 is also a signal. This corresponds to the adjustment step.
  • FIG. 17 is a flowchart showing another example of the processing flow of oscillation amplitude control of the sensor module and oscillation control during normal operation.
  • step S11 the count value Nf of the rectangular wave oscillation period and the control value dtSft of the phase shifter 6c are set by the same processing as in step S11 shown in FIG. 16, and the process proceeds to step S53.
  • step S53 a control value dtRct for controlling the amplitude of the rectangular wave driving voltage Vrct and a master clock count value Nup that is a count value of the master clock MCLK in the rectangular wave driving time Tup are set.
  • step S55 the angular velocity sensor unit 3 starts oscillating and self-oscillates similarly to the processing in step S13 shown in FIG. 16, and then in step S57, the amplitude AQ is measured, and the process proceeds to step S59.
  • the measurement of the carrier wave Vs by the monitor 1a has a plurality of occasions in the stable oscillation section T2, and the measurement value of the amplitude AQ in the first adjustment determination section and the last adjustment determination section is an adjustment procedure. You will need it.
  • the measurement opportunity is assumed to be four times
  • the measurement value in the first adjustment determination section is the amplitude AQ (1)
  • the measurement value in the fourth (last) adjustment determination section is the amplitude AQ (2).
  • the target value is assumed to be amplitude AQ (cw). Using these measured values, at least one of the signal amplitude of the rectangular wave drive voltage Vrct output from the rectangular wave generator 5b and the gain of the variable amplifier 6d is controlled, and adjustment is performed by incrementing data at the next oscillation.
  • step S59 If it is determined in step S59 that the measured amplitude AQ (1) or amplitude AQ (2) is smaller than the predetermined threshold VT (No), the process proceeds to step S71.
  • step S71 it is determined that the frequency of the rectangular wave is greatly deviated from the resonance frequency, the oscillation is stopped, and the process proceeds to step S73.
  • step S73 the rectangular wave oscillation cycle count value Nf set in step S51 and the control value DtSft of the phase shifter 6c are reset, and the process returns to step S53. Based on the reset count value Nft and the control value DtSft, the processes after step S53 are executed again.
  • step S59 when the measured amplitude AQ (1) or amplitude AQ (2) is equal to or greater than the predetermined threshold VT (Yes), it is determined that the frequency of the rectangular wave is a setting close to the resonance frequency, and step S61.
  • Migrate to The determination process in step S59 is “amplitude AQ (1) (or amplitude AQ (2)) ⁇ amplitude AQ (cw)”, that is, amplitude AQ (1) (or amplitude AQ (2)) to amplitude AQ (cw). ) May be determined based on whether or not the value obtained by subtracting) is equal to or greater than a predetermined threshold.
  • step S59 an example is shown in which the measured amplitude (absolute value of the waveform amplitude) is compared with a predetermined threshold value VT.
  • the measured waveform is between -VT and + VT. It is also possible to make a determination based on whether or not.
  • step S61 the gain control value dtA of the variable amplifier 6d is set, and the process proceeds to step S63.
  • step S63 measurement of the amplitude AQ is started, and the process proceeds to step S65.
  • step S65 the following determination is made in step S65 while measuring the amplitude AQ.
  • step S75 the gain control value dtA of the variable amplifier 6d is changed, and the process returns to step S63. Based on the control value dtA after the change, the processing after step S63 is executed again.
  • step S65 it is determined that the gain of the variable amplifier 6d is large when the relationship of “AQ (2) ⁇ AQ (1)> + ⁇ VT” is satisfied (determination result “>” (FIG. 13 (a ))), The control value dtA of the variable amplifier 6d is controlled so that the gain decreases.
  • step S65 it is determined that the gain of the variable amplifier 6d is small when the relationship of “AQ (2) ⁇ AQ (1) ⁇ ⁇ VT” is satisfied (determination result “ ⁇ ” (see FIG. 14A)). )), The control value dtA of the variable amplifier 6d is controlled so as to increase the gain.
  • step S67 the oscillation is stopped and the process proceeds to step S69.
  • step S69 adjustment values in the memory provided in the sequencer 5e, that is, the control value dtA of the variable amplifier 6d set at the present time, the count value Nf of the rectangular wave oscillation period, the control value dtSft of the phase shifter 6c, and the rectangular wave amplitude are set.
  • the control value dtRct and the rectangular wave driving time Tup are written, and the adjustment of the oscillation amplitude control of the sensor module and the oscillation control during the normal operation are completed.
  • step S55 corresponds to an example of a signal output step.
  • Step S57 corresponds to an example of a signal detection step.
  • Step S59 corresponds to an example of a signal comparison step.
  • Step S73 corresponds to an example of a signal adjustment step.
  • the oscillation control is relatively easy to adjust if the sensor oscillates. Therefore, it is also possible to store only the control value (count value) Nf of the oscillation frequency and obtain other control values within a certain interval.
  • temperature drift is an effective means because it is only necessary to grasp the temperature characteristics of the oscillation frequency. Also, drift can be followed during time-division operation. Since the oscillation frequency of the vibration unit varies depending on the temperature, it is difficult for the conventional circuit to make the oscillation frequency of the vibration unit follow the temperature drift, and it is difficult to stably oscillate the vibration unit. In addition, the conventional circuit requires some control circuit for temperature drift, and the circuit area increases.
  • the oscillation control unit 5 since the oscillation control unit 5 includes the monitors 1a and 1b, the rectangular wave oscillation period is calculated from the monitor values of the square wave oscillation period count value Nf, the phase shift amount count value Nsft, and the carrier wave Vs amplitude AQ. And the control value dtSft of the phase shifter 6c, the gain control value dtA of the variable amplifier 6d, the rectangular wave amplitude control value dtRct, and the control value Nup of the rectangular wave drive time can be updated. It is.
  • the energy of the vibration start signal applied to the drive electrode during the next vibration start section is adjusted based on the amplitude of the detection signal or the excitation signal in the angular velocity detection section or the fluctuation amount of the amplitude. For example, if the amplitude of the detection signal or excitation signal in the angular velocity detection section is larger than the reference value, and if the variation amount of the detection signal or excitation signal in the angular velocity detection section is larger than the reference value, the previous vibration starts Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is smaller than the energy of the vibration start signal applied to the drive electrode during the interval.
  • the previous vibration starts Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is larger than the energy of the vibration start signal applied to the drive electrode during the interval.
  • the energy of the vibration start signal is adjusted by the amplitude of the vibration start signal and the time output to the drive electrode.
  • a first Z-axis vibration start signal is output to the drive electrode in the first vibration start section of the Z-axis.
  • the first Z-axis direction excitation signal generated based on the first Z-axis direction detection signal is output to the drive electrode in the first Z-axis angular velocity detection section.
  • the amplitude of the output signal Via output to the carrier Vs corresponding to the detection signal or the driver corresponding to the excitation signal, or the amount of fluctuation of the amplitude is monitored by the monitor 1a, 1b or the like. Note that monitoring may be performed in all sections of the angular velocity detection section, or may be performed in a partial section.
  • the amplitude or time of the second vibration start signal in the next vibration start section is determined.
  • a signal obtained by inverting the first Z-axis direction excitation signal based on the first Z-axis direction detection signal is output to the drive electrode during the first oscillation stop period of the Z-axis.
  • a first X-axis direction vibration start signal is output to the drive electrode in the first X-axis vibration start section.
  • the first Z-axis direction excitation signal generated based on the first X-axis direction detection signal is output to the drive electrode in the first X-axis angular velocity detection section.
  • the amplitude of the output signal Via output to the carrier Vs corresponding to the detection signal or the driver corresponding to the excitation signal, or the amount of fluctuation of the amplitude is monitored by the monitor 1a, 1b or the like. Note that monitoring may be performed in all sections of the angular velocity detection section, or may be performed in a partial section.
  • a signal obtained by inverting the first X axis direction excitation signal based on the first X axis direction detection signal is output to the drive electrode.
  • the Z-axis direction vibration is started by the second Z-axis direction vibration start signal having the updated amplitude or time.
  • the sequencer controls the amplitude of the rectangular wave generator and the time at which the vibration start signal is output based on the updated amplitude information or time information.
  • a second Z-axis vibration start signal is output to the drive electrode in the second vibration start section of the Z-axis.
  • a second Z-axis direction excitation signal generated based on the second Z-axis direction detection signal is output to the drive electrode in the second Z-axis angular velocity detection section.
  • the monitor and the amplitude or time may be determined as before.
  • a signal obtained by inverting the second Z-axis direction excitation signal based on the second Z-axis direction detection signal is output to the drive electrode during the second oscillation stop period of the Z-axis.
  • the vibration in the X-axis direction is started by the second X-axis direction vibration start signal having the updated amplitude or time.
  • the sequencer controls the amplitude of the rectangular wave generator and the time at which the vibration start signal is output based on the updated amplitude information or time information.
  • a second X-axis direction vibration start signal is output to the drive electrode in the second X-axis vibration start section.
  • a second Z-axis direction excitation signal generated based on the second X-axis direction detection signal is output to the drive electrode in the second X-axis angular velocity detection section.
  • the monitor and the amplitude or time may be determined as before.
  • a signal obtained by inverting the second X-axis direction excitation signal based on the second X-axis direction detection signal is output to the drive electrode during the second oscillation stop period of the X-axis.
  • the amplitude or time of the vibration start signal on each axis may be updated every interval, every few intervals, or only one of the axes.
  • the count value Nf of the rectangular wave oscillation period For the monitoring of the count value Nf of the rectangular wave oscillation period, the count value Nsft of the phase shift amount, and the amplitude AQ of the carrier wave Vs, it is sufficient to measure a part of the self-excited oscillation period. Since the temperature change is relatively slow, it is possible to thin out the time division measurement from the viewpoint of reducing power consumption. It is also possible to install a thermometer in the silicon device, and it is also effective to perform monitor measurement when the temperature changes to some extent.
  • FIG. 18 is a diagram illustrating a circuit configuration and frequency characteristics of the phase shifter 6c.
  • 18A shows the circuit configuration of the phase shifter 6c
  • FIG. 18B shows the frequency characteristics of the phase shifter 6c.
  • the horizontal axis indicates the frequency (Hz)
  • the vertical axis indicates the phase (°).
  • the phase shifter 6c has an all-pass filter circuit 161.
  • the all-pass filter circuit 161 includes an amplifier 161a, a resistor element 161b, a capacitor element 161c, an input resistor 161d, and a feedback resistor 161e.
  • One terminal of the input resistor 161d is connected to the output terminal of the carrier wave generating circuit 6b (not shown in FIG. 18A) and one terminal of the resistor element 161b, and the other terminal is connected to the inverting input terminal ( ⁇ ) of the amplifier 161a and the feedback resistor. 161e is connected to one terminal.
  • the other terminal of the feedback resistor 161e is connected to the output terminal of the amplifier 161a and the input terminal of the variable amplifier 6d (not shown in FIG. 18A), and one terminal is also connected to the inverting input terminal ( ⁇ ) of the amplifier 161a. ing.
  • the other terminal of the resistive element 161b is connected to the non-inverting input terminal (+) of the amplifier 161a and one electrode of the capacitive element 161c.
  • the other electrode of the capacitive element 161c is connected to the input terminal of the operating common voltage VCOM, and one electrode is also connected to the non-inverting input terminal (+) of the amplifier 161a.
  • the output terminal of the amplifier 161a is the output terminal of the phase shifter 6c, and is connected to the input terminal of the variable amplifier 6d (not shown in FIG. 18A).
  • the phase shifter 6c makes at least one of the resistance value R of the resistance element 161b and the capacitance value C of the capacitance element 161c variable, and the phase shifter 6c outputs an output signal that is 90 ° phase shifted with respect to the input signal. The frequency is adjusted.
  • FIG. 19 is a circuit block showing an example of a schematic configuration of the rectangular wave generator 5b.
  • the rectangular wave generator 5b includes a variable voltage source (VR_RCT) 51a, an amplifier (OP_U) 51b, an amplifier (OP_D) 51c, switches 51d, 51e, 51f, 51g, 51h, and 51i. And a switch control unit 51j.
  • a reference voltage VREF, an operation common voltage VCOM, and a rectangular wave amplitude control value drRct are input to the variable voltage source 51a.
  • the variable voltage source 51a outputs a high level voltage VrctH and a low level voltage VrctL whose voltage values are adjusted based on the rectangular wave amplitude control value dtRct, and an operation common voltage VCOM.
  • the high level voltage VrctH and the low level voltage VrctL of the rectangular wave output drive voltage Vrct output from the rectangular wave generator 5b are as follows.
  • VrctH VCOM + Vrct / 2
  • VrctL VCOM ⁇ Vrct / 2
  • the amplifier 51b and the amplifier 51c function as, for example, a voltage follower circuit.
  • the amplifier 51b outputs an output signal having the same potential as the input high level voltage VrctH.
  • the amplifier 51c outputs an output signal having the same potential as the input low level voltage VrctL.
  • the switch 51d When the switch 51d is turned on, the output terminal of the amplifier 51b is connected to one output terminal of the rectangular wave generator 5b.
  • the switch 51e When the switch 51e is turned on, the output terminal of the amplifier 51b is connected to the other output terminal of the rectangular wave generator 5b.
  • One output terminal of the rectangular wave generator 5b is a terminal that outputs a rectangular wave drive signal Rct1, and the other output terminal is a terminal that outputs a rectangular wave drive signal Rct2.
  • the switch 51 f When the switch 51 f is turned on, the variable voltage source 51 a connects an output terminal (hereinafter referred to as “common voltage output terminal”) from which the operating common voltage VCOM is output to one output terminal of the rectangular wave generator 5 b.
  • variable voltage source 51a connects the common voltage output terminal to the other output terminal of the rectangular wave generator 5b.
  • the switch 51h is turned on, the output terminal of the amplifier 51c is connected to one output terminal of the rectangular wave generator 5b.
  • the switch 51i is turned on, the output terminal of the amplifier 51c is connected to the other output terminal of the rectangular wave generator 5b.
  • the switch control unit 51j controls the on state and the off state (ON / OFF) of the switches 51d to 51i.
  • Each signal of the master clock MCLK, the oscillation start state control signal E_RCT, the count value Nf, and the rectangular wave driving time Nup is input to the switch control unit 51j.
  • the switch control unit 51j outputs control signals D1P, D2P, D1N, D2N, and D0 for controlling the switches 51d to 51i based on the signal levels of the input signals.
  • the switches 51d to 51i are turned on, for example, and when the signal levels of the control signals D1P, D2P, D0, D1N, and D2N become low.
  • the switches 51d to 51i are turned off, for example.
  • the drive electrode D1 and the drive electrode D2 are simultaneously charged with a voltage having the same potential as the operation common voltage VCOM.
  • the rectangular wave generator 5b is a tristate buffer that outputs the operation common voltage VCOM, the high level voltage VrctH, and the low level voltage VrctL.
  • FIG. 20 shows an example of an operation timing chart of the rectangular wave generator 5b in the oscillation start section T1 in Z-Drive.
  • E_RCT in the first stage indicates the signal waveform of the oscillation start state control signal E_RCT
  • D1P, D2P in the second stage indicates the signal waveforms of the control signal D1P and the control signal D2P.
  • the third stage “D1N, D2N” indicates the signal waveforms of the control signal D1N and the control signal D2N
  • the fourth stage “D0” indicates the signal waveform of the control signal D0
  • the fifth stage “Vdr” The voltage waveform of the drive voltage input into the drive electrodes D1 and D2 is shown.
  • the horizontal axis indicates time, and the passage of time is represented from left to right in the figure.
  • the oscillation start state control signal E_RCT is a signal that controls whether or not the angular velocity sensor unit 3 is in the state of the oscillation start section T1. If the signal level of the oscillation start state control signal E_RCT is high, an oscillation start interval (in this example, “T1” interval) is entered, and the rectangular wave generator 5b operates. In the section represented by “T1-Nup / fclk” from the start of the operation of the rectangular wave generator 5b, the signal level of the control signal D0 becomes high as shown in the fourth stage of FIG. 19, and the switch 51f , 51g are turned on. On the other hand, in the section, as shown in the second and third stages in FIG.
  • the signal levels of the control signals D1P, D2P, D1N, D2N are low and the switches 51d, 51e, 51h, 51i are in the off state. It becomes. Therefore, in the section, as shown in the fifth stage in the figure, the drive electrodes D1 and D2 are connected to the common voltage output terminal. Thereby, the operation common voltage VCOM is applied to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
  • control signals D1P and D2P are rectangular wave signals having one cycle of “Nf / fclk”.
  • the control signals D1N and D2N are rectangular wave signals having a cycle of “Nf / fclk” and having a phase inverted by 180 ° from the control signals D1P and D2P.
  • the oscillation control unit output signal Vdr has a center voltage value of the operation common voltage VCOM and a high level voltage value of the high level voltage VrctH.
  • the low-level voltage value is the low-level voltage VrctL, and a rectangular voltage waveform having one cycle of “Nf / fclk” is obtained.
  • the amplitude voltage of the oscillation control unit output signal Vdr is a value obtained by adding the absolute value of the low level voltage VrctL to the absolute value of the high level voltage VrctH.
  • the amplitude voltage of the oscillation control unit output signal Vdr is 2 of the voltage value of the high level voltage VrctH or the low level voltage VrctL. Doubled.
  • the control signal D1P and the control signal D2P are the same signal, the control signal D1N and the control signal D2N are the same signal, and the output signals of the oscillation control units that drive the drive electrodes D1 and D2 are the same during Z-Drive.
  • the oscillation start period T1 ends, the stable oscillation period T2 starts.
  • the oscillation start state control signal E_RCT is a low level signal, and is not in the state of the oscillation start period T1. Therefore, as shown in the second to fourth stages in FIG. 20, the switch control unit 51j outputs control signals D1P, D2P, D1N, D2N, and D0 having low signal levels.
  • variable voltage source 51a is electrically disconnected from the drive electrodes D1 and D2. Further, in synchronization with the oscillation start state control signal E_RCT becoming a low level signal, the switching circuit 5c connects the drive electrodes D1 and D2 and the driver 6e. As a result, as shown in the fifth row in FIG. 20, a self-excited oscillation signal Dr1 based on the self-excited oscillation of the angular velocity sensor unit 3 is applied to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
  • FIG. 21 shows an example of an operation timing chart of the rectangular wave generator 5b in the oscillation start section T1 in X-Drive.
  • the first stage “E_RCT” indicates the signal waveform of the oscillation start state control signal E_RCT
  • the second stage “D1P, D2N” indicates the signal waveforms of the control signal D1P and the control signal D2N.
  • “D1N, D2P” in the third stage shows signal waveforms of the control signal D1N and the control signal D2P
  • “D0” in the fourth stage shows a signal waveform of the control signal D0
  • “Vdr” in the fifth stage in the figure “Indicates the voltage waveform of the oscillation control unit output signal input to the drive electrode D1, and” -Vdr "in the sixth stage in the figure indicates the voltage waveform of the oscillation control unit output signal input to the drive electrode D2. Yes.
  • the horizontal axis indicates time, and the passage of time is represented from left to right in the figure.
  • control signal D1P and the control signal D2N are the same signal, and the control signal D1N and the control signal D2P are The control signal D1P and the control signal D2N are the same signal, and the phase is inverted by 180 °. Therefore, when the signal levels of the control signal D1P and the control signal D2N are high and the signal levels of the control signal D1P and the control signal D2N are low as shown in the fifth and sixth stages in FIG.
  • a drive signal Vdr having a high level voltage VrctH is applied to the drive electrode D1
  • a drive signal ⁇ Vdr having a low level voltage VrctL is applied to the drive electrode D2.
  • the drive electrode D1 is a drive signal having a low level voltage VrctL.
  • Vdr is applied, and a drive signal ⁇ Vdr having a high level voltage VrctH is applied to the drive electrode D2.
  • the count value Nf and the control value Nup are different from those in the case of Z-Drive, and the drive signals Vdr and -Vdr having opposite phases are applied to the drive electrode D1 and the drive electrode D2.
  • the oscillation start operation need not be synchronized with the carrier wave.
  • FIG. 22 is a circuit block diagram illustrating an example of a schematic configuration of the driver 6e and the switching circuit 5c.
  • the rectangular wave generator 5 b is also illustrated for easy understanding.
  • the driver 6e includes amplifiers 61a and 62b, feedback resistors 61b and 62b, input resistors 61c and 62c, switches 63a, 63b, 63c and 63d, and switches 64a, 64b, 64c and 64d. , And switches 65 and 66.
  • a feedback resistor 61b and a switch 64b connected in parallel are connected between the output terminal of the amplifier 61a and the inverting input terminal ( ⁇ ).
  • a switch 63a and an input resistor 61c connected in series are connected between the inverting input terminal ( ⁇ ) of the amplifier 61a and the input terminal of the driver 6e connected to the output terminal of the variable amplifier 6d (see FIG. 2).
  • the switch 63a is provided on the input terminal side of the driver 6e, and the input resistor 61c is provided on the amplifier 61a side.
  • a switch 64a is connected between the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the driver 6e.
  • a switch 63b is connected between the non-inverting input terminal and the switch 64a and between the input terminal of the operation common voltage VCOM.
  • An output terminal of the amplifier 61a is connected to an input terminal of a switch 52a (details will be described later) provided in the switching circuit 5c.
  • a feedback resistor 62b and a switch 64d connected in parallel are connected between the output terminal of the amplifier 62a and the inverting input terminal ( ⁇ ).
  • a series-connected switch 66, switch 63c, and input resistor 62c are connected between the inverting input terminal ( ⁇ ) of the amplifier 62a and the input terminal of the driver 6e connected to the output terminal of the variable amplifier 6d. Yes.
  • Switches 66 and 63c are provided on the input terminal side of the driver 6e, and an input resistor 62c is provided on the amplifier 62a side.
  • a switch 65 and a switch 64c connected in series are connected between the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the driver 6e.
  • a switch 63d is connected between the non-inverting input terminal (+) and the switch 64c and between the input terminal of the operation common voltage VCOM.
  • An output terminal of the amplifier 62a is connected to an input terminal of a switch 52b (details will be described later) provided in the switching circuit 5c.
  • the switches 63a, 63b, 63c, and 63d are controlled to be opened / closed based on a control signal LP180 input to these control signal input terminals, and are simultaneously closed (on) or open (off).
  • the control signal input terminal is, for example, a positive logic input.
  • the switches 64a, 64b, 64c, and 64d are controlled to open and close based on a control signal LP360 input to a control signal input terminal, and are simultaneously closed (on) or open (off).
  • the control signal input terminal is the same logic input as the control signal input terminals of the switches 63a, 63b, 63c, and 63d, for example, a positive logic input.
  • the control signal LP180 and the control signal LP360 are opposite phase signals. Therefore, when the switches 63a, 63b, 63c, and 63d are turned on, the switches 64a, 64b, 64c, and 64d are turned off, and when the switches 63a, 63b, 63c, and 63d are turned off, the switches 64a, 64b, 64c and 64d are turned on. Details will be described with reference to FIGS. 23 to 28.
  • the driver 6e Functions as an inverting amplifier circuit.
  • the driver 6e functions as a voltage follower circuit.
  • the switch 65 is connected between the input terminal of the switch 63a and the input terminal of the switch 64c, and the open / close state is controlled based on the control signal ZD input to the control signal input terminal.
  • the control input terminal is, for example, a positive logic input.
  • the switch 65 and a switch 54 described later are turned on when the oscillation control unit 5 functions as Z-Drive, and are turned off when the oscillation control unit 5 functions as X-Drive.
  • the switch 66 is connected between the input terminal of the switch 64a and the input terminal of the switch 63c, and the open / close state is controlled based on the control signal XD input to the control signal input terminal.
  • the control input terminal is, for example, a positive logic input.
  • the switch 66 is turned off when the oscillation control unit 5 functions as Z-Drive, and is turned on when the oscillation control unit 5 functions as X-Drive.
  • the switching circuit 5c includes switches 52a and 52b, switches 53a and 53b, and a switch 54.
  • the switch 52a is connected between the output terminal of the amplifier 61a of the driver 6e and the drive electrode D1.
  • the output terminal of the switch 52a is connected to the drive electrode D1.
  • the switch 52b is connected between the output terminal of the amplifier 62a of the driver 6e and the drive electrode D2.
  • the output terminal of the switch 52b is connected to the drive electrode D2.
  • the switch 52a and the switch 52b are controlled to be opened / closed based on a control signal FB input to a control signal input terminal.
  • the control input terminal is, for example, a positive logic input.
  • the switch 53a is connected between the output terminals (see FIG. 19) of the switches 51d, 51f, and 51h of the rectangular wave generator 5b and the drive electrode D1 (see FIG. 2).
  • the switch 53b is connected between the output terminals (see FIG. 19) of the switches 51e, 51g, and 51i of the rectangular wave generator 5b and the drive electrode D2 (see FIG. 2).
  • the switch 53a and the switch 53b are controlled to open and close based on a control signal RCT input to the control signal input terminal, and are simultaneously in a closed state (on state) or an open state (off state).
  • the control input terminal is, for example, a positive logic input.
  • the control signal RCT and the control signal FB are, for example, signals having opposite phases. Therefore, when the switches 53a and 53b are turned on, the switches 52a and 52b are turned off, and when the switches 53a and 53b are turned off, the switches 52a and 52b are turned on. In the oscillation start period T1, the switches 53a and 53b are turned on and the rectangular wave generator 5b is connected to the drive electrodes D1 and D2, whereas the switches 52a and 52b are turned off and the driver 6e is driven. It is electrically disconnected from D1 and D2.
  • FIG. 23 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation start section T1 in Z-Drive.
  • FIG. 24 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable oscillation section T2 in Z-Drive.
  • FIG. 25 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 in Z-Drive.
  • the switches 52a, 52b, 53a, 53b, 54, 63a to 63d, 64a to 64d, 65 and 66 are shown as straight lines in the on state. In the off state, the illustration is omitted. Also, in FIGS. 23 to 25 and FIGS. 26 to 28 to be described later, illustration of resistors and wirings that are electrically disconnected from the driver 6e, the rectangular wave generator 5b, or the switching circuit 5c when the switch is turned off is omitted. Has been.
  • the signal level of the control signal RCT is high
  • the signal level of the control signal FB is low
  • the signal level of the control signal LP360 of the switches 64a to 64d is high
  • the switch 63a The signal level of the control signal LP180 of .about.63d becomes a low level state.
  • the switches 53a and 53b are turned on and the switches 52a and 52b are turned off, so that the rectangular wave generator 5b and the drive are driven.
  • the electrodes D1 and D2 are connected, and the driver 6e is disconnected from the drive electrodes D1 and D2.
  • the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
  • the switches 63a to 63d are turned off, and the switches 64a to 64d are turned on. Therefore, the output terminal of the amplifier 61a and the inverting input terminal ( ⁇ ) are connected via the switch 64b, the input resistor 61c is disconnected from the input terminal of the driver 6e by the switch 63a, and the non-inverting input terminal (+) of the amplifier 61a. And the input terminal of the driver 6e are connected via a switch 64a.
  • the output terminal of the amplifier 62a and the inverting input terminal ( ⁇ ) are connected via the switch 64d, the input resistor 61c is disconnected from the input terminal of the driver 6e by the switch 63a, and the non-inverting input terminal (+) of the amplifier 62a.
  • the input terminal of the driver 6e is connected via the switch 64c. Accordingly, the driver 6e functions as a voltage follower, and the same signal as the input signal input from the input terminal of the driver 6e (that is, the output signal output from the variable amplifier 6d (see FIG. 2)) is used as the self-excited oscillation signals Dr1 and Dr2. Output from the output terminals of the amplifiers 61a and 62a.
  • the switching circuit 5c selects the rectangular wave generator 5b from the rectangular wave generator 5b and the driver 6e in the oscillation start period T1 during Z-Drive, and the rectangular wave rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b. , Rct2 are output to the drive electrodes D1, D2. Therefore, the rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b is input to the drive electrodes D1 and D2 as the oscillation control unit output signals Vdr and Vdr via the switching circuit 5c. As described with reference to FIG. 20, in the oscillation start period T1 at the time of Z-Drive, the rectangular wave drive signal Rct1 and the rectangular wave drive signal Rct2 are the same signal, and therefore, two output terminals of the rectangular wave generator 5b. There is no problem even if is connected.
  • the vibration unit 3a shown in FIG. 2 starts to vibrate at the frequency of the self-excited oscillation signals Dr1 and Dr2. Then, it vibrates at the oscillation frequency of the angular velocity sensor unit 3 while increasing the vibration amplitude. Thereby, the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are detected from the detection electrodes X1, X2, Y1, and Y2.
  • the carrier wave generation circuit 6b Based on detection of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 from the detection electrodes X1, X2, Y1, and Y2, the carrier wave generation circuit 6b outputs the carrier wave Vs, and the phase shifter 6c outputs the output signal Vi.
  • An output signal Via is output from the variable amplifier 6d.
  • the phase of the output signal Vi is shifted by 90 ° with respect to the phase of the carrier wave Vs. Since the driver 6e functions as a voltage follower circuit, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e have the same signal waveform as the output signal Via.
  • the signal level of the control signal RCT is low
  • the signal level of the control signal FB is high
  • the signal level of the control signal LP360 of the switches 64a to 64d is high
  • the switch 63a The signal level of the control signal LP180 of .about.63d becomes a low level state.
  • the switches 52a and 52b are turned on and the switches 53a and 53b are turned off. Therefore, as shown in FIG. Driver 6e and drive electrodes D1, D2 are connected, and rectangular wave generator 5b is disconnected from drive electrodes D1, D2. Further, the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
  • the driver 6e Since the open / close state of the switches 63a to 63d and the switches 64a to 64d in the stable oscillation section T2 in Z-Drive is the same as the open / close state in the oscillation start section T1 in Z-Drive, the driver 6e functions as a voltage follower.
  • the same signal as the input signal input from the input terminal of the driver 6e (that is, the output signal output from the variable amplifier 6d (see FIG. 4)) is output from the output terminals of the amplifiers 61a and 62a as the self-excited oscillation signals Dr1 and Dr2.
  • the switching circuit 5c selects the driver 6e from the rectangular wave generator 5b and the driver 6e and outputs the self-excited oscillation signals Dr1 and Dr2 output by the driver 6e to the oscillation control unit output.
  • the signal Vdr is output to the drive electrodes D1 and D2.
  • the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e and based on the self-excited oscillation of the angular velocity sensor unit 3 are input to the drive electrodes D1 and D2 as the output signal Vdr via the switching circuit 5c.
  • the output terminal of the amplifier 61a and the output terminal of the amplifier 62a are connected via the switch 54. No problem.
  • the angular velocity sensor unit 3 continues self-excited oscillation, so that the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are detected from the detection electrodes X1, X2, Y1, and Y2.
  • the carrier wave Vs is output from the carrier wave generation circuit 6b, and the output signal Vi is output from the phase shifter 6c and is variable.
  • An output signal Via is output from the amplifier 6d.
  • the phase of the output signal Vi is shifted by 90 ° with respect to the phase of the carrier wave Vs. Since the driver 6e functions as a voltage follower circuit, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e have the same signal waveform as the output signal Via.
  • the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the rectangular wave drive signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
  • the signal level of the control signal RCT is low
  • the signal level of the control signal FB is high
  • the signal level of the control signal LP360 of the switches 64a to 64d is low
  • the switch 63a The signal level of the control signal LP180 of .about.63d becomes a high level state. Accordingly, as shown in FIGS.
  • the switches 52a and 52b are turned on and the switches 53a and 53b are turned off, so that the driver 6e and the drive electrodes D1, D2 is connected, and the rectangular wave generator 5b is disconnected from the drive electrodes D1 and D2. Further, the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
  • the switches 63a to 63d are turned on, and the switches 64a to 64d are turned off. Therefore, the output terminal of the amplifier 61a and the inverting input terminal ( ⁇ ) are connected via the feedback resistor 61b, and the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the operating common voltage VCOM are connected via the switch 63b. Connected. The inverting input terminal ( ⁇ ) is connected to the input terminal of the driver 6e via the input resistor 61c and the switch 63a.
  • the output terminal of the amplifier 62a and the inverting input terminal ( ⁇ ) are connected via the feedback resistor 62b, and the non-inverting input terminal (+) of the amplifier 62a and the input terminal of the operating common voltage VCOM are connected via the switch 63d. Connected. Further, the inverting input terminal ( ⁇ ) is connected to the input terminal of the driver 6e through the input resistor 62c and the switch 63c.
  • the driver 6e functions as an inverting amplifier circuit having an inverting amplification factor of “R / r”.
  • the switching circuit 5c selects the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e by selecting the driver 6e from the rectangular wave generator 5b and the driver 6e in the oscillation stop period T3 during Z-Drive. Output to D2.
  • the oscillation control unit 5 selects the driver 6e that functions as an inverting amplifier circuit, a 180 ° stable loop is formed in the self-excited oscillation circuit 5a. Therefore, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are signals whose phases are inverted by 180 ° with respect to the self-excited oscillation signals Dr1 and Dr2 in the stable oscillation period T2.
  • the amplitude of the self-excited oscillation based on the oscillation frequency of the angular velocity sensor unit 3 gradually decreases.
  • the self-oscillation signals Dr1 and Dr2 output from the driver 6e are input to the drive electrodes D1 and D2 as the output signal Vdr through the switching circuit 5c.
  • the output terminal of the amplifier 61a and the output terminal of the amplifier 62a are connected via the switch 54. No problem.
  • the angular velocity sensor unit 3 stops self-excited oscillation, so that the amplitudes of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the detection electrodes X1, X2, Y1, and Y2 are gradually increased. Decreases to zero.
  • the phases of the carrier Vs and the carrier Vs generated by the carrier generation circuit 6b based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are 90 °.
  • the respective amplitudes of the output signal Via output from the variable amplifier 6d that receives the output signal Vi of the shifted phase shifter 6c and the output signal Vi are also gradually reduced to zero.
  • the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the rectangular wave drive signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
  • FIG. 26 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation start section T1 in X-Drive.
  • FIG. 27 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable oscillation section T2 in X-Drive.
  • FIG. 28 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 in X-Drive.
  • connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the X-Drive oscillation start period T1 is the same as that of the Z-Drive except that the switch 54 is turned off. This is the same as the connection relationship in Drive.
  • one output terminal from which the rectangular wave drive signal Rct1 is output is connected to the drive electrode D1, and the other output terminal from which the rectangular wave drive signal Rct2 is output. The output terminal is connected to the drive electrode D2.
  • the rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b is input to the drive electrode D1 as the oscillation control unit output signal Vdr via the switching circuit 5c, and the rectangular wave drive signal Rct2 generated by the rectangular wave generator 5b. Is input to the drive electrode D2 as the oscillation control unit output signal -Vdr via the switching circuit 5c. Further, as described with reference to FIG. 21, the rectangular wave drive signal Rct1 and the rectangular wave drive signal Rct2 are signals having opposite phases. Therefore, the oscillation control unit 5 inputs the rectangular wave drive signals Rct1 and Rct2 having opposite phases to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr in the oscillation start period T1 during X-Drive.
  • the connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c is Z except that the switch 54 is turned off. This is the same as the connection relationship of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable drive oscillation period T2.
  • the oscillation controller 5 inputs the self-excited oscillation signal Dr1 output from the amplifier 61a of the driver 6e to the drive electrode D1, and inputs the self-excited oscillation signal Dr2 output from the amplifier 62a of the driver 6e to the drive electrode D2.
  • the self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 are signals having opposite phases based on the self-excited oscillation of the angular velocity sensor unit 3 (see FIG. 5). For this reason, the drive electrode D1 and the drive electrode D2 are respectively driven by the self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 having opposite phases, as in the oscillation start period T1.
  • the self-excited oscillation circuit 5 a forms a 360 ° oscillation loop, and the frequency of the signal in the oscillation loop is drawn into the oscillation frequency of the angular velocity sensor unit 3, and the vibration unit 3 a of the angular velocity sensor unit 3 Continue to vibrate at frequency.
  • the connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c is Z except that the switch 54 is turned off. This is the same as the connection relationship of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 of -Drive.
  • the oscillation controller 5 drives the output signal output from the amplifier 61a of the driver 6e (ie, the self-excited oscillation signal Dr1) to the drive electrode D1, and outputs the output signal output from the amplifier 62a of the driver 6e (ie, the self-excited oscillation signal Dr2). Is driven to the drive electrode D2.
  • the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are signals whose phases are inverted by 180 ° with respect to the self-excited oscillation signals Dr1 and Dr2 in the stable oscillation period T2.
  • the self-excited oscillation circuit 5a forms a 180 ° stable loop, reduces the self-excited oscillation amplitude based on the oscillation frequency of the angular velocity sensor unit 3, and stops the self-excited oscillation. . Therefore, the amplitudes of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the detection electrodes X1, X2, Y1, and Y2 gradually decrease and finally become zero.
  • the carrier wave generation circuit 6b generates the carrier wave Vs generated based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2, the output signal Vi of the phase shifter 6c obtained by shifting the phase of the carrier wave Vs by 90 °, and the output signal Vi.
  • the amplitude of each output signal Via output from the amplifier 6d also gradually decreases and finally becomes zero.
  • the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the output signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
  • the angular velocity sensor of the two-terminal drive electrodes D1, D2 has been described, but the present invention is not limited to this.
  • the angular velocity sensor may be a four-terminal angular velocity sensor of drive electrodes D1x, D2x, D1y, and D2y.
  • FIG. 29 is a block diagram showing a schematic configuration of the angular velocity sensor unit 3 including four-terminal drive electrodes D1x, D2x, D1y, and D2y.
  • FIG. 29A shows signals input to the drive electrodes D1x, D2x, D1y, and D2y in Z-Drive, and FIG.
  • 29B shows inputs to the drive electrodes D1x, D2x, D1y, and D2y in X-Drive.
  • the signal to be shown is shown.
  • FIG. 29A in the case of Z-Drive, the same output signal Vdr is input to the drive electrodes D1x, D2x, D1y, D2y.
  • FIG. 29B in the case of X-Drive, an output signal Vdrx is input to the drive electrode D1x, an output signal -Vdrx is input to the drive electrode D2x, and an operation common is applied to the drive electrodes D1y and D2y.
  • the voltage VCOM is input.
  • the second embodiment of the present invention relates to an angular velocity sensor driving circuit, an angular velocity sensor device, and an angle sensor driving method.
  • an angular velocity sensor having a vibration part that can be displaced inside.
  • An angular velocity sensor having a vibrating portion vibrates the vibrating portion at a predetermined frequency, and detects a displacement generated by a Coriolis force generated in the vibrating portion when an angular velocity is applied to the system. The angular velocity is detected based on the detected displacement.
  • Known angular velocity sensors are described in, for example, Patent Document 4 and Patent Document 5.
  • the angular velocity sensors described in Patent Literature 4 and Patent Literature 5 both provide a drive signal to vibrate the vibrating portion in a predetermined axial direction and detect the angular velocity.
  • the vibration part vibrates in an unintended direction, and the angular velocity in a desired direction cannot be detected.
  • the vibration part vibrates in a direction other than the X-axis direction due to an external force or the like when the vibration part is in a section before being vibrated in the X-axis direction or is stopped.
  • the vibration component in the Y-axis direction and the Z-axis direction affects the vibration component in the X-axis direction, and the detection accuracy of the angular velocity in the X-axis direction decreases.
  • Such a phenomenon occurs not only in the X-axis direction but also in detecting angular velocities in other directions.
  • the present embodiment has been made in view of such points, and when the angular velocity is detected by vibrating the weight of the vibrating portion in one axial direction, the weight vibrates in a direction other than the one axial direction.
  • An object of the present invention is to provide an angular velocity sensor driving circuit, an angular velocity sensor device, and an angle sensor driving method that prevent this and has high angular velocity detection accuracy.
  • an angular velocity sensor drive circuit is an angular velocity sensor drive circuit that drives a weight portion including a drive electrode, and vibrates the weight portion in the first axis direction. Generating the first drive signal to be generated, the second drive signal for vibrating the weight portion in the second axis direction, and the first static signal for stabilizing the vibration of the weight portion in the first axis direction to generate the drive electrode And a signal generation circuit that outputs the first drive signal from the signal generation circuit to the drive electrode in a section from the detection of the angular velocity in the second axis direction to the detection of the angular velocity in the first axis direction.
  • a first oscillation section is set, a first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is sent from the signal generation circuit after the first free section.
  • the first output to the drive electrode A control circuit that sets an oscillation stop period and sets a second oscillation period in which the second drive signal is output from the signal generation circuit to the drive electrode immediately after the first oscillation stop period.
  • An angular velocity sensor driving method is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion, and the second oscillation direction is set in a first oscillation section that vibrates the weight portion in the first axis direction.
  • the vibration in the first axis direction of the weight part is settled, and the angular velocity in the first axis direction is detected in the second oscillation section in which the weight part immediately after the first oscillation stop section is vibrated in the second axis direction. It is characterized by.
  • the driving method of the angular velocity sensor is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode.
  • the first drive signal is output to the drive electrode, and in the first free period after the first oscillation period, a constant voltage is supplied to the drive electrode or the drive electrode is in a floating state, and the first oscillation after the first free period
  • a first stabilization signal for stabilizing the vibration in the first axis direction of the weight part is output to the drive electrode, and the weight part is placed in the second axis direction in the second oscillation period immediately after the first oscillation stop period.
  • the second drive signal to be vibrated is output to the drive electrode.
  • the weight when the angular velocity is detected by vibrating the weight of the vibrating portion in one axial direction, the weight is prevented from vibrating in directions other than the one axial direction, and the angular velocity detection accuracy is reduced.
  • the configuration requirements in the present embodiment and the configuration requirements in the first embodiment are associated as follows.
  • the former is a configuration requirement in the present embodiment, and the latter is a configuration requirement in the first embodiment.
  • the weight portion 223 corresponds to the vibration portion 3a
  • the drive electrode corresponds to the drive electrode
  • the angular velocity sensor drive circuit 231 corresponds to the oscillation control portion 5
  • the angular velocity detection circuit corresponds to the monitor portion 1a
  • the signal generation circuit 310 corresponds to a circuit constituted by the self-excited oscillation circuit 5a, the rectangular wave generator 5b, and the switching circuit 5c
  • the rising signal generation circuit 311 corresponds to the rectangular wave generator 5b
  • the feedback circuit 312 includes the HPF 6a and the carrier wave generation.
  • the circuit 6b, a phase shifter circuit 6c, a variable amplifier 6d, and a driver 6e correspond to the circuit
  • the output driver 313 corresponds to a circuit that includes the driver 6e and the switching circuit 5c.
  • FIGS. 30A and 30B are diagrams for explaining the angular velocity sensor 201 according to the 2-1 embodiment to the 2-4 embodiment.
  • 30A is a top view of the angular velocity sensor unit 210 included in the angular velocity sensor 201
  • FIG. 30B is a cross-sectional view of the angular velocity sensor unit 210 along the line bb shown in FIG. 30A.
  • the angular velocity sensor 201 includes a support part 221, a weight part 223, and a flexible part 219 that connects the support part 221 and the weight part 223.
  • the support part 221, the weight part 223, and the flexible part 219 constitute a basic structure as a vibration part of the angular velocity sensor part 210.
  • the electrode layer 217 is provided on the surface of the flexible portion 219 that is not supported by the support portion 221 (the upper surface of the flexible portion 219), and the back surface of the electrode layer 217 in contact with the flexible portion 219 (hereinafter, “A piezoelectric layer 215 is provided on the upper surface of the electrode layer 217). Further, the drive electrode 211 Xa , 211 Xb , 211 Ya , 211 Yb , the detection electrode 213 Xa , 213 Xb , 213 Ya , and the back surface (the upper surface of the piezoelectric layer 215) of the surface in contact with the upper surface of the electrode layer 217 of the piezoelectric layer 215 213 Yb is provided.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are defined as in the coordinate system shown in FIG.
  • the Z axis is an axis along the normal line of the surfaces of the flexible portion 219 and the piezoelectric layer 215.
  • the X axis and the Y axis are orthogonal to each other and also orthogonal to the Z axis.
  • the weight part 223 can vibrate in the X-axis, Y-axis, and Z-axis directions.
  • the drive electrodes 211Xa , 211Xb , 211Ya , 211Yb are arranged so as to form a ring.
  • the drive electrode 211 Xa and the drive electrode 211 Xb face each other, and the drive electrode 211 Ya and the drive electrode 211 Yb face each other.
  • the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb are concentric with the ring formed by the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , and the drive electrodes 211 Xa , 211 Xb , It arrange
  • the detection electrode 213 Xa and the detection electrode 213 Xb face each other, and the detection electrode 213 Ya and the detection electrode 213 Yb face each other.
  • the piezoelectric layer 215 When a drive signal is input to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , the piezoelectric layer 215 is distorted. When the piezoelectric layer 215 is distorted, the weight portion 223 vibrates in the Z-axis direction or the X-axis direction shown in the drawing. Specifically, the drive signal is supplied to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb with the electrode layer 217 shown in FIG. 30B grounded.
  • the portions of the electrode layer 217 located below the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb expand and contract, and the weight portion 223 extends through the flexible portion 219 according to the expansion and contraction of the electrode layer 217. Vibrates in the axial direction or X-axis direction.
  • the weight portion 223 is displaced in a direction orthogonal to the vibration direction.
  • the piezoelectric layer 215 expands due to the displacement.
  • the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb detect voltages generated by the expansion of the piezoelectric layer 215.
  • Coriolis force is generated in the Z-axis direction perpendicular to the X-axis direction, and the generated Coriolis force is electrically transmitted to the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb . It is detected as a simple detection signal.
  • the angular velocity of the Z-axis direction is detected from the value of the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 Yb detected by the detection signal.
  • Coriolis force is generated in the X-axis direction or Y-axis direction perpendicular to the Z-axis direction, and the generated Coriolis force is detected by the detection electrodes 213 Xa , 213 Xb , 213 Ya , 213 Yb detects electrically.
  • the angular velocity in the X-axis direction or the Y-axis direction is detected from the electrical values detected by the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb .
  • the angular velocity sensor unit 210 is not limited to the configuration shown in FIGS. 30 (a) and 30 (b).
  • the angular velocity sensor unit may have any configuration as long as it is an angular velocity sensor unit that vibrates the weight part in directions of two or more axes.
  • the weight portion only needs to be able to vibrate at least in the first axis direction and in the second axis direction different from the first axis direction. That is, any configuration may be used as long as the weight portion vibrates in two or more directions and angular velocity in two or more directions can be detected.
  • a device that uses a piezoelectric layer and supplies a drive signal with a capacitive element to detect a voltage can be considered.
  • the number of drive electrodes and detection electrodes is not limited.
  • FIG. 31 shows an application-specific integrated circuit (hereinafter simply referred to as “integrated circuit”) that detects an electrical signal by detecting a driving signal of the angular velocity sensor according to the 2-1 to 2-3 embodiments.
  • integrated circuit application-specific integrated circuit
  • the integrated circuit 203 illustrated in FIG. 31 includes an angular velocity sensor drive circuit 231 and an angular velocity detection circuit 232.
  • the angular velocity sensor unit 210 has the drive electrodes 211 Xa, 211 Xb, and 211 Ya, 211 Yb, and the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 Yb, the ing.
  • the angular velocity sensor driving circuit 231 is a circuit for supplying a driving signal DX1, DX2, DY1, DY2 to the drive electrodes 211 Xa, 211 Xb, 211 Ya , 211 Yb.
  • Angular velocity detecting circuit 232 detects a detection signal SX1, SX2, SY1, SY2 from the detection electrode 213 Xa, 213 Xb, 213 Ya , 213 Yb.
  • the drive signal DX1 output from the angular velocity sensor drive circuit 231 is a signal supplied to the drive electrode 211 Xa
  • the drive signal DX2 is a signal supplied to the drive electrode 211 Xb
  • the drive signal DY1 output from the angular velocity sensor drive circuit 231 is a signal supplied to the drive electrode 211 Ya
  • the drive signal DY2 is a signal supplied to the drive electrode 211 Yb
  • the detection signal SX1 output from the angular velocity sensor unit 210 is a signal supplied from the detection electrode 213 Xa
  • the detection signal SX2 is a signal supplied from the detection electrode 213 Xb .
  • the detection signal SY1 output from the angular velocity sensor unit 210 is a signal supplied from the detection electrode 213 Ya
  • the detection signal SY2 is a signal supplied from the detection electrode 213 Yb
  • the angular velocity sensor drive circuit 231 processes the detection signals SX1, SX2, SY1, and SY2 to generate drive signals DX1, DX2, DY1, and DY2, and outputs them to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb . It can be configured as a self-oscillation loop.
  • FIG. 32 is a diagram illustrating drive signals applied to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb shown in FIG.
  • the horizontal axis indicates time
  • the vertical axis indicates a voltage value as a drive signal.
  • the drive signal has a different waveform depending on each of the three sections of “oscillation start section”, “stable oscillation section”, and “oscillation stop section”.
  • the oscillation start section is a section having a waveform for exciting the drive signal in the direction in which the weight portion 223 is desired to vibrate.
  • the stable oscillation section is a section in which the drive signal has a waveform for stably vibrating the weight portion 223.
  • the oscillation stop section is a section in which the drive signal has a waveform for stopping the vibration of the weight portion 223.
  • the oscillation start interval and the subsequent stable oscillation interval are also referred to as “oscillation interval”.
  • the oscillation period includes an oscillation start period and a stable oscillation period.
  • the amplitude of the waveform of the drive signal is large so that the amplitude of the weight portion 223 becomes a constant value in a short time.
  • the drive signal output in the oscillation start period is also referred to as a “rising signal” in the second to second to fourth embodiments.
  • the drive signal is a signal having a constant amplitude and phase.
  • the angular velocity sensor unit 210 detects angular velocity during the stable oscillation period.
  • the drive signal output in the stable oscillation section is also referred to as “stable drive signal” in the 2-1 to 2-4 embodiments.
  • the drive signal has a waveform for stopping the vibration of the weight portion 223.
  • the drive signal output in the oscillation stop period is also referred to as a “static signal” in the 2-1 to 2-4 embodiments.
  • the static signal shown in FIG. 32 is obtained when the angular velocity sensor drive circuit 231 constitutes a self-excited oscillation loop.
  • the amplitude of the static signal decreases as the vibration of the weight portion 223 stabilizes.
  • outputting the stabilization signal to stabilize the vibration of the weight part 223 is also referred to as “static stabilization processing” in this specification.
  • FIG. 33 is a block diagram for explaining a configuration of an angular velocity sensor drive circuit 231 according to the 2-1 embodiment.
  • the angular velocity sensor drive circuit 231 includes a signal generation circuit 310, an output driver 313, and a control circuit 314.
  • the signal generation circuit 310 includes a rising signal generation circuit 311, a feedback circuit 312, and an output driver 313.
  • the rising signal generation circuit 311 outputs the rising signal SU having a large amplitude as shown in FIG. 32 in the oscillation start period.
  • the rising signal US is a signal intended to set the amplitude of the weight portion 223 to a constant value in a short time.
  • the rising signal SU shown in FIG. 32 is a pulse wave, but the rising signal SU is not limited to a pulse wave, and may be a sine wave.
  • the feedback circuit 312 generates a feedback signal SFb based on the detection signals SX1, SX2, SY1, and SY2, and outputs the generated feedback signal SFb to the output driver 313.
  • the feedback signal SFb is a signal for stably vibrating the weight portion 223.
  • the feedback signal SFb is generated by, for example, a method of adding two or four detection signals, shifting the phase by a predetermined amount, and appropriately amplifying the gain.
  • the output driver 313 receives the rising signal SU and the feedback signal SFb.
  • the output driver 313 outputs drive signals DX1, DX2, DY1, and DY2 based on the rising signal SU to the angle sensor unit 210 in the oscillation start period. Further, the output driver 313 generates a drive signal DX1, DX2, DY1, DY2 by processing the feedback signal SFb in accordance with the control of the control circuit 314 in the stable oscillation period, and generates the generated drive signals DX1, DX2, DY1, DY2 is output to the angular velocity sensor unit 210.
  • the drive signals DX1, DX2, DY1, and DY2 generated from the feedback signal SFb based on the detection signals SX1, SX2, SY1, and SY2 are fed back to the angle sensor unit 210.
  • a self-excited oscillation loop of “angular velocity sensor unit 210 ⁇ feedback circuit 312, output driver 313, angular velocity sensor unit 210” is formed.
  • the signal generation circuit 310 stabilizes the weight portion 223 of the angular velocity sensor unit 210 in the self-excited oscillation loop configured by the feedback circuit 312 after the oscillation is started by the start signal generation circuit 311. It can oscillate. Further, the feedback circuit 312 of the signal generating circuit 310, the oscillation stop period, the vibration of the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 detection signals SX1 input from Yb, SX2, SY1, weight portion 223 on the basis of the SY2 Is output to the angular velocity sensor unit 210 via the output driver 313.
  • the static signal can be generated, for example, by inverting the phase of the stable drive signal output in the stable oscillation period.
  • the feedback circuit 312 is used to generate a static signal in accordance with the switching of the driving direction of the driving electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb. In particular, it may have a function of selecting an appropriate detection signal.
  • control circuit 314 is free to apply a first oscillation section that vibrates the weight portion 223 in the Z-axis direction, a second oscillation section that vibrates the weight portion in the X-axis or Y-axis direction, and without applying external force to the weight portion 223.
  • a first oscillation stop section in which the first free section to be vibrated and the vibration of the weight portion 223 in the X-axis direction are settled is set.
  • each section is set based on a clock signal (not shown), and the phase and amplitude of the feedback signal SFb are controlled according to the section, or the drive electrode to which the drive signal is output from the output driver 313 is switched. Can be done.
  • the signals output in each section will be described later with reference to FIG.
  • control circuit 314 controls the power-up and power-down of the start signal generation circuit 311 in the oscillation start period.
  • control circuit 314 controls the feedback circuit 312 or the output driver 313 so as to invert the phase of the feedback signal SFb with the transition from the stable oscillation period to the oscillation stop period. By inverting the phase of the feedback signal SFb, a static signal based on the feedback signal SFb can be generated.
  • control circuit 314 switches the drive signals 211 Xa , 211 Xb , 211 Ya , 211 Yb and drives signals DX 1, DX 2 from the output driver 313 along with switching of the drive direction and transition from the oscillation start period to the stable oscillation period.
  • DY1 and DY2 are controlled.
  • Signal processing such as amplification of the rising signal SU and phase inversion can be performed by either the rising signal generation circuit 311 or the output driver 313.
  • Signal processing such as amplification of the feedback signal SFb and phase inversion can be performed by either the feedback circuit 312 or the output driver 313.
  • the output driver 313 controls the drive signal 211 Xa , 211 by switching the drive direction of the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb under the control of the control circuit 314. It is also possible to switch whether four of Xb , 211 Ya , and 211 Yb are output as in-phase signals, or output to the two drive electrodes as mutually opposite-phase signals.
  • the control circuit controls the signal generation circuit to generate the drive signal as described above, switch to a static signal, switch the driving axial direction, and the like.
  • FIG. 34 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the 2-1 embodiment.
  • FIG. 34 shows waveforms of the drive signals DX1, DX2, DY1, and DY2 shown in FIG.
  • the horizontal axis of each drive signal is time, and the vertical axis is voltage value.
  • X stop”, “Y stop”, and “Z stop” indicate the oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively.
  • Start up indicates an oscillation start interval in the Z-axis direction and the X-axis direction
  • Measure indicates a stable oscillation interval in which angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected.
  • the “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
  • the Z-axis direction corresponds to the first axis
  • the X-axis direction and the Y-axis direction correspond to the second axis.
  • a section “Measure ( ⁇ X, ⁇ Y detection)” shown in FIG. 34 detects the angular velocity ⁇ X in the X-axis direction or the angular velocity ⁇ Y in the Y-axis direction by vibrating the weight portion 223 in the Z-axis direction.
  • the section “Measure ( ⁇ Z detection)” shown in FIG. 34 corresponds to the second stable oscillation section in which the weight portion 223 is vibrated in the X-axis direction to detect the angular velocity ⁇ Z in the Z-axis direction.
  • the sections “X stop” and “Y stop” shown in FIG. 34 correspond to the second oscillation stop section
  • the section “Z stop” corresponds to the first oscillation stop section.
  • the weight portion 223 is vibrated in the Z-axis direction in the oscillation start period.
  • vibrations in the X-axis direction and the Y-axis direction other than the Z-axis direction are settled in the oscillation stop period of “X stop” and “Y stop”. In the example shown in FIG.
  • the signal generating circuit 310 generates a drive signal DX1, DX2 as the X-axis direction of the settling signals based on the feedback signal SFb, the driving electrodes 211 of the angular velocity sensor unit 210 Xa, 211 Xb To supply. Subsequently, the signal generating circuit 310 generates a drive signal DY1, DY2 as a Y-axis direction of the settling signals based on the feedback signal SFb, supplied to the drive electrodes 211 Ya, 211 Yb of the angular velocity sensor unit 210.
  • the rising signal generation circuit 311 shown in FIG. 33 After stopping vibrations other than in the Z-axis direction, the rising signal generation circuit 311 shown in FIG. 33 outputs a pulse wave that is the rising signal SU to the output driver 313 in the oscillation start period in the Z-axis direction.
  • the output driver 313 outputs the rising signal SU as drive signals DX1, DX2, DY1, and DY2.
  • Driving signals DX1, DX2, DY1, DY2 is a phase pulse signal supplied to each of the four drive electrodes 211 Xa, 211 Xb, 211 Ya , 211 Yb.
  • the control circuit 314 In the stable oscillation section in the Z-axis direction, the control circuit 314 outputs the drive signals DX1, DX2, DY1, and DY2 that are stable drive signals based on the feedback signal SFb output from the feedback circuit 312 from the angular velocity sensor unit 210.
  • the output driver 313 is controlled. For this reason, in the stable oscillation section, in-phase drive signals DX1, DX2, DY1, and DY2 based on the detection signals SX1, SX2, SY1, and SY2 are output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , respectively. .
  • the angular velocity sensor unit 210 detects angular velocities ⁇ X and ⁇ Y in the X-axis direction and the Y-axis direction during the stable oscillation section in the Z-axis direction.
  • the control circuit 314 sets a free vibration section for freely vibrating the weight portion 223 after the stable oscillation section in the Z-axis direction.
  • detecting the angular velocity in the Z-axis direction after detecting the angular velocity in the X-axis direction and the Y-axis direction by setting the free vibration section from detecting the angular velocity in the X-axis direction or the Y-axis direction to detecting the angular velocity in the Z-axis direction
  • a certain blank time is provided between.
  • the blank section is provided in this way, for example, in a mode in which the frequency of the time division operation for detecting the angular velocity is lowered or the power consumption is lowered.
  • the angular velocity sensor drive circuit provides a free section after the stable oscillation section in the Z-axis direction, and starts vibration in the X-axis direction immediately after stabilizing the Z-axis direction vibration after the free section. ing.
  • the free section the weight portion 223 vibrates freely without being affected by external force.
  • the free vibration of the weight portion 223 can be realized by not outputting a drive signal to any of the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb .
  • Free vibration can also be realized by the output driver 313 shown in FIG. 33 outputting a constant voltage to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb . Further, in the angular velocity sensor drive circuit of the 2-1 embodiment, the output driver 313 may place the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb in a floating state in a free section where free vibration is performed.
  • the angular velocity sensor drive circuit of the second to first embodiments grounds the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb via a resistance element in the free section to absorb the vibration energy of the weight part 223.
  • the vibration of the weight portion 223 may be naturally damped.
  • the angular velocity sensor drive circuit according to the 2-1 embodiment may reduce or eliminate the power supplied to the configuration other than the control circuit 314 in the free section. With such an operation, the angular velocity sensor drive circuit of the first embodiment can reduce the power consumption of the angular velocity sensor 201.
  • the output driver 313 stabilizes the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb in the Z-axis direction.
  • the static signal in the Z-axis direction may be, for example, a signal obtained by inverting the phase of a signal having the same amplitude and cycle as the drive signals DX1, DX2, DY1, and DY2 as stable drive signals.
  • the static signal in the Z-axis direction may be, for example, a signal obtained by amplifying the amplitudes of the drive signals DX1, DX2, DY1, and DY2 as stable drive signals and inverting the phase of a signal having the same period.
  • the rising signal generating circuit 311 shown in FIG. 33 after the oscillation stop period in the Z-axis direction, the rising signal generating circuit 311 shown in FIG. 33 generates a pulse wave as the rising signal SU in the X-axis direction.
  • the output driver 313 controls the control circuit 313 to convert the rising signal SU into signals having opposite phases to each other and outputs the signals to the drive electrodes 211 Xa and 211 Xb .
  • the rising signal SU is output, the angular velocity sensor drive circuit 10 of the first embodiment is in the state of the oscillation start interval in the X-axis direction. After the oscillation start interval in the X-axis direction, the angular velocity sensor drive circuit 10 enters a stable oscillation interval in the X-axis direction.
  • the control circuit 314 controls the output driver 313 so as to output the feedback signal SFb instead of the rising signal SU.
  • the feedback circuit 312 generates a feedback signal SFb based on the detection signals SX1 and SX2.
  • the output driver 313 outputs the feedback signal SFb to the drive electrodes 211 Xa and 211 Xb as drive signals DX1 and DX2 having opposite phases.
  • the angular velocity in the Z-axis direction is detected.
  • the angular velocity sensor drive circuit according to the 2-1 embodiment starts vibration in the desired direction immediately after stopping the vibration of the weight part 223 other than the desired direction. For this reason, the angular velocity sensor drive circuit according to the 2-1 embodiment can reduce the influence of vibration in a direction other than the direction desired to vibrate on the detection of the angular velocity, and can increase the detection accuracy of the angular velocity.
  • the angular velocity sensor driving circuit according to the second to first embodiments can detect a predetermined direction in a predetermined direction even if noise enters a free section between the detection of the angular velocity in a predetermined direction and the detection of the angular velocity in another direction. Since the angular velocity is detected after performing the stabilization process, the angular velocity can be detected with high accuracy while stably vibrating the weight portion 223.
  • the signals having the same amplitude and cycle as those of the drive signals DX1 and DX2 as the stable drive signals and having the phase inverted are set as the static signals.
  • the output driver 313 outputs the static signal to the drive electrodes 211 Xa and 211 Xb as signals having opposite phases to each other. Thereafter, the output driver 313 outputs, to the drive electrodes 211 Ya and 211 Yb , static signals having the same amplitude and cycle as the stable drive signals DY1 and DY2 and having the phases reversed, as signals having opposite phases.
  • the angular velocity sensor driving circuit according to the second-first embodiment is not limited to such a configuration.
  • the rising signal generation circuit 311 generates rising signals SU having opposite phases
  • the output driver 313 outputs the rising signals having opposite phases to the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb as static signals. It can also be output.
  • the feedback circuit 312 can generate feedback signals SFb having opposite phases, and the control circuit 314 can switch the generated feedback signal SFb.
  • an angular velocity sensor driving circuit according to a second to second embodiment of the present invention will be described.
  • the angular velocity sensor and the integrated circuit have the same configuration as that of the first embodiment. For this reason, illustration and description of the configuration of the angular velocity sensor and the integrated circuit are omitted, and only control by the drive signal will be described.
  • FIG. 35 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the 2-2 embodiment.
  • the horizontal axis of each drive signal in FIG. 35 is time, and the vertical axis is voltage value.
  • “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively.
  • “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction
  • “Measure” indicates a stable oscillation interval in which the angular velocity is detected.
  • the “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
  • the angular velocity sensor drive circuit includes a second oscillation stop section in the Y-axis direction that stops the oscillation of the weight portion 223 in the Y-axis direction after the oscillation stop section in the Z-axis direction. This is different from the angular velocity sensor driving circuit of the embodiment.
  • the static stabilization process in the Z-axis direction is performed prior to the detection of the angular velocity in the Z-axis direction.
  • the vibration of the weight portion 223 includes vibration components other than the Z-axis direction.
  • the angular velocity sensor drive circuit according to the second to second embodiments pays attention to this point, and performs the stabilization process in the Y-axis direction following the stabilization process in the Z-axis direction.
  • the angular velocity sensor drive circuit according to the 2-2 embodiment stabilizes the vibration of the weight portion 223 in the Y-axis direction, and then outputs a rising signal in the X-axis direction to the drive electrodes 211 Xa and 211 Xb to cause the weight portion 223 to move. Vibrate in the X-axis direction.
  • Such an angular velocity sensor driving circuit can detect the angular velocity in the Z-axis direction with high accuracy in the stable oscillation section in the X-axis direction.
  • the angular velocity sensor drive circuit of the 2-2 embodiment is configured so that the noise in the Z-axis direction and the Y-axis can be detected even if noise occurs between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of angular velocity in the Z-axis direction. Since the axial stabilization process is performed, the weight 223 can be stably vibrated and the angular velocity in the Z-axis direction can be detected with high accuracy.
  • an angular velocity sensor driving circuit according to the second to third embodiments of the present invention will be described.
  • the angular velocity sensor and the integrated circuit have the same configuration as that of the second to first embodiments. For this reason, illustration and description of the configuration of the angular velocity sensor and the integrated circuit are omitted, and only control by the drive signal will be described.
  • FIG. 36 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the second to third embodiments.
  • the horizontal axis of each drive signal in FIG. 35 is time, and the vertical axis is voltage value.
  • “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively.
  • “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction
  • “Measure” indicates a stable oscillation interval in which angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected.
  • the “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
  • the angular velocity sensor drive circuit of the second to third embodiments is different from the second to first embodiments in that an oscillation stop interval in the Y-axis direction is set in parallel with an oscillation start interval in the X-axis direction.
  • the rising signal in the X-axis direction and the static signal in the Y-axis direction are output in parallel.
  • the angular velocity sensor drive circuit according to the second to third embodiments performs a stabilization process in the oscillation stop period in the Z-axis direction prior to the detection of the angular velocity in the Z-axis direction, and performs Y during the oscillation start period in the Z-axis direction.
  • the settling process is also performed in the axial direction.
  • the angular velocity sensor drive circuit according to the second to third embodiments can detect the angular velocity in the Z-axis direction with high accuracy during the stable oscillation section in the X-axis direction. Further, the angular velocity sensor drive circuit according to the second to third embodiments can detect the Z-axis direction and the Y-axis even if noise occurs between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of the angular velocity in the Z-axis direction. Since the axial stabilization process is performed, the angular velocity in the Z-axis direction can be detected with high accuracy. In addition, the angular velocity sensor driving circuit according to the second to third embodiments can increase the sampling frequency for angular velocity detection by simultaneously performing the stabilization process in the Z-axis direction and the start of oscillation in the X-axis direction.
  • an angular velocity sensor driving circuit according to a second to fourth embodiment of the present invention will be described.
  • the angular velocity sensor has the same configuration as that of the 2-1 embodiment. For this reason, in the second to fourth embodiments, illustration and description of the configuration of the angular velocity sensor are omitted, and control by the integrated circuit and the drive signal will be described.
  • FIG. 37 is a block diagram of the integrated circuit 205 of the angular velocity sensor according to the second to fourth embodiments.
  • the integrated circuit 205 includes an angle sensor drive circuit 34 and an angular velocity detection circuit 232.
  • the angular velocity sensor drive circuit 234 of the second to fourth embodiments operates without inputting the detection signals SX1, SX2, SY1, and SY2 input to the angular velocity detection circuit 232, and the angular velocity sensor drive of the 2-1 embodiment. This is different from the circuit 231.
  • FIG. 38 is a block diagram for explaining the angular velocity sensor drive circuit 234 shown in FIG.
  • the angular velocity sensor drive circuit 234 includes a signal generation circuit 318 and a control circuit 323.
  • the signal generation circuit 318 includes a drive signal generation circuit 319 and a switch circuit 315.
  • the drive signal generation circuit 319 generates the drive signal Sd according to the control of the control circuit 323.
  • the switch circuit 315 generates drive signals DX1, DX2, DY1, and DY2 based on the drive signal Sd under the control of the control circuit 323.
  • the switch circuit 315 generates a static signal by inverting the phases of the drive signals DX1, DX2, DY1, and DY2 output in the stable oscillation period according to the control of the control circuit 323, respectively. To do.
  • the switch circuit 315 switches the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb from which the drive signals DX 1, DX 2, DY 1, and DY 2 are output.
  • FIG. 39 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the second to fourth embodiments.
  • the horizontal axis of each drive signal in FIG. 39 is time, and the vertical axis is voltage value.
  • “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively.
  • “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction
  • “Measure” indicates a stable oscillation interval in which the angular velocity is detected.
  • the “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
  • the drive signal in the stable oscillation section is not a sine wave but a pulse wave.
  • the drive signals DX1, DX2, DY1, and DY2 of the 2-4 embodiment are not signals generated based on the feedback signal SFb.
  • the switch circuit 315 of the second to fourth embodiments controls each of the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb of the weight part 223 to be in a floating state in the free section.
  • the angular velocity sensor driving circuit according to the second to fourth embodiments described above detects the angular velocity in the Z-axis direction with high accuracy during the stable oscillation section in the X-axis direction, similarly to the angular velocity sensor driving circuit according to the second to third embodiments. be able to.
  • the angular velocity sensor drive circuit of the second to fourth embodiments can prevent the angular velocity in the Z-axis direction even if noise enters between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of the angular velocity in the Z-axis direction. Can be detected with high accuracy.
  • the angular velocity sensor drive circuit of the second to fourth embodiments does not use the feedback circuit 312 of the angular velocity sensor drive circuit of the second to third embodiments. Therefore, the signal processing in the angular velocity sensor driving circuit can be simplified as compared with the second to third embodiments.
  • the angular velocity sensor drive circuit according to the 2-1 to 2-4 embodiments of the present invention is not limited to the configuration described above.
  • the angular velocity is detected in the three axis directions of the Z-axis direction, the X-axis direction, and the Y-axis direction. Yes.
  • the angular velocity sensor drive circuit of the 2-1 to 2-4 embodiments may detect an angular velocity only in the direction of one axis.
  • the angular velocity sensor drive circuits of the second to second to second embodiments can perform, for example, the Z-axis direction and the Y-axis direction before starting the oscillation in the X-axis direction.
  • Oscillation in the X-axis direction may be started after stabilizing the vibration and stabilizing the vibration of the weight portion 223.
  • the oscillation in the Z-axis direction and the X-axis direction may be stabilized before the oscillation in the Y-axis direction is started, and the oscillation in the Y-axis direction may be started after stabilizing the oscillation of the weight portion 223.
  • the angular velocity sensor drive circuits of the 2-1 to 2-4 embodiments are not limited to those in which the drive signal output to the drive electrode when the angular velocity is detected includes a rising signal.
  • the oscillation stop period after the free period when the signal from the two detection electrodes among the four detection electrodes is fed back and the static signal is output to the drive electrode, the remaining two detection electrodes are short-circuited.
  • the same common potential may be applied.
  • the present invention is not limited to the embodiment described above. Based on the knowledge of a person skilled in the art, design changes or the like may be added to the embodiments, and the embodiments may be arbitrarily combined, and aspects including such changes are also included in the technical scope of the present invention. It is.
  • An angular velocity sensor unit having a drive electrode, a vibration detection electrode, and a vibration unit; A self-excited oscillation circuit that generates a self-excited oscillation signal to be output to the drive electrode based on a detection signal from the vibration detection electrode; A drive signal generation circuit for generating a drive signal to be output to the drive electrode; A switching circuit for switching whether to output the drive signal or the self-excited oscillation signal to the drive electrode; A storage unit storing amplitude information for determining the amplitude of the drive signal of the drive signal generation circuit, or time information for determining the time for which the drive signal is output; Angular velocity sensor with (Appendix 2) The angular velocity sensor according to claim 1, wherein the switching circuit switches the output to output the self-excited oscillation signal after the drive signal is output to vibrate the vibration unit.
  • the drive signal generation circuit includes: a first drive signal that vibrates the vibration unit in a first axis direction; and a second drive signal that vibrates the vibration unit on a second axis that is orthogonal to the first axis direction.
  • the angular velocity sensor according to appendix 3 wherein the storage unit stores first amplitude information of the first drive signal and second amplitude information of the second drive signal.
  • the angular velocity according to appendix 3 or 4 wherein the storage unit stores first time information at which the first drive signal is output and second time information at which the second drive signal is output. Sensor.
  • An angular velocity sensor unit having a drive electrode, a vibration detection electrode, and a vibration unit; A self-excited oscillation circuit that generates a self-excited oscillation signal to be output to the drive electrode based on a detection signal from the vibration detection electrode; A drive signal generation circuit for generating a drive signal to be output to the drive electrode; A switching circuit for switching whether to output the drive signal or the self-excited oscillation signal to the drive electrode; An amplitude detection unit for detecting the amplitude of the self-excited oscillation signal, An angular velocity sensor that adjusts an amplitude of the drive signal of the drive signal generation circuit or a time during which the drive signal is output based on an amplitude detection signal of the amplitude detector.
  • Adjustment method (Appendix 13) As a result of the comparison, if the amplitude detection signal is larger than a target value, the angular velocity according to appendix 11 or 12, wherein an adjustment for decreasing the amplitude of the drive signal or an adjustment for shortening the time during which the drive signal is output is performed. Sensor adjustment method. (Appendix 14) As a result of the comparison, when the amplitude detection signal is smaller than a target value, any one of Supplementary notes 11 to 13 is performed to adjust the drive signal to increase the amplitude or to increase the drive signal output time. An adjustment method of the angular velocity sensor according to one item.
  • a first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is output from the signal generation circuit to the drive electrode after the first free section.
  • a control circuit that sets one oscillation stop period and sets a second oscillation period in which the second drive signal is output from the signal generation circuit to the drive electrode immediately after the first oscillation stop period;
  • An angular velocity sensor driving circuit comprising: (Appendix 2)
  • the signal generation circuit further generates a second static signal for stabilizing the vibration of the weight portion in the second axis direction, and outputs the second static signal to the drive electrode.
  • the control circuit sets a second free section in which the weight portion freely vibrates after the second oscillation section, and after the second free section, the second static signal is sent from the signal generation circuit to the drive electrode.
  • the angular velocity sensor drive circuit according to appendix 1, wherein a second oscillation stop period to be output is set, and the first oscillation period is set immediately after the second oscillation stop period.
  • the first drive signal includes a first rising signal for causing the weight portion to start vibration in the first axial direction, and a first stable drive signal for stabilizing the vibration in the first axial direction, and the second drive signal.
  • the control circuit sets a first oscillation start period in which the first rising signal is output from the signal generation circuit to the drive electrode in the first oscillation period, and the first oscillation start period is followed by the first oscillation period.
  • a first oscillation oscillation period in which a stable drive signal is output to the drive electrode is set, and a second oscillation start period in which the second rising signal is output from the signal generation circuit to the drive electrode in the second oscillation period.
  • the angular velocity sensor drive circuit according to appendix 2, wherein a second stable oscillation section in which the second stable drive signal is output to the drive electrode is set after the second oscillation start section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

 This angular velocity sensor driving circuit is an oscillation controller (5) for oscillating an angular velocity sensor unit (3) that has drive electrodes (D1, D2), detection electrodes (X1…), and an oscillator (3a), the circuit being provided with: a square wave generator (5b) for generating an oscillation start signal; a self-oscillation circuit (5a) for generating an excitation signal on the basis of a detection signal from the detection electrodes (X1…); a switching circuit (5c) for outputting an oscillation start signal to the drive electrodes (D1, D2) during an oscillation start interval in which oscillation by the oscillator (3a) starts, and outputting an excitation signal to the drive electrodes (D1, D2) during an angular velocity detection interval in which angular velocity is detected; a controller (5f) for controlling the switching circuit (5c) in such a way that the oscillation start interval and the angular velocity detection interval are repeated; and a sequencer (5e) for regulating the energy of the oscillation start signal that will be presented to the drive electrodes (D1, D2) during the next oscillation start interval, doing so on the basis of the amplitude, or the amount of fluctuation in amplitude, of the detection signal or the excitation signal during the angular velocity detection interval.

Description

角速度センサ、その駆動回路及びその駆動方法並びに角速度検出センサ装置Angular velocity sensor, driving circuit and driving method thereof, and angular velocity detecting sensor device
 本発明は、発振動作において、間欠および時分割発振を行うことのできる角速度センサ、その駆動回路及びその駆動方法並びに角速度検出センサ装置に関する。 The present invention relates to an angular velocity sensor capable of performing intermittent and time-division oscillation in an oscillation operation, a driving circuit thereof, a driving method thereof, and an angular velocity detection sensor device.
 従来、内部に変位可能な振動部を有し、この振動部を所定の周波数で振動させることで、系に角速度が加わったときに振動部に生じるコリオリ力によって発生する変位を検出することにより角速度を検出する角速度センサが知られている。
 振動部の変位の検出方法には、振動部の変位による静電容量の変化を検出する方法や、振動部の変位による応力の変化を圧電効果で検出する方法などがある。
 従来の角速度センサの構成として、外界からの角速度により変位可能に支持された振動部と、振動部の変位による応力の変化を圧電効果で検出して出力する検出電極と、振動部を振動させる駆動電極と、を有する構成が挙げられる。
Conventionally, there is an oscillating part that can be displaced inside, and by oscillating this oscillating part at a predetermined frequency, the angular velocity is detected by detecting the displacement generated by the Coriolis force generated in the oscillating part when the angular velocity is applied to the system There is known an angular velocity sensor for detecting the above.
As a method for detecting the displacement of the vibration part, there are a method for detecting a change in capacitance due to the displacement of the vibration part, a method for detecting a change in stress due to the displacement of the vibration part by a piezoelectric effect, and the like.
As a configuration of a conventional angular velocity sensor, a vibration unit supported to be displaceable by an angular velocity from the outside, a detection electrode that detects and outputs a change in stress due to displacement of the vibration unit by a piezoelectric effect, and a drive that vibrates the vibration unit The structure which has an electrode is mentioned.
 具体的には、以下のような角速度センサが提案されている。
 特許文献1には、振動部を振動させる駆動信号が入力される2つのドライブ電極D1,D2と、4つの検出電極X1,X2,Y1,Y2とで構成される角速度センサが開示されている。
 Z軸方向に振動部を振動させるZ-Driveの場合は、ドライブ電極D1,D2に同相のsin波VdzをドライブしてZ軸方向に振動部を振動させる。そして、検出電極X1,X2,Y1,Y2から、駆動信号に対して位相が270°シフトしたsin波Vs_x1,Vs_x2,Vs_y1,Vs_y2を検出することができる。この検出信号により以下の搬送波及び角速度を検出することができる。
Specifically, the following angular velocity sensors have been proposed.
Patent Document 1 discloses an angular velocity sensor including two drive electrodes D1 and D2 to which a drive signal for vibrating a vibration unit is input and four detection electrodes X1, X2, Y1, and Y2.
In the case of Z-Drive that vibrates the vibration part in the Z-axis direction, an in-phase sine wave Vdz is driven to the drive electrodes D1 and D2 to vibrate the vibration part in the Z-axis direction. Then, sin waves Vs_x1, Vs_x2, Vs_y1, and Vs_y2 whose phases are shifted by 270 ° with respect to the drive signal can be detected from the detection electrodes X1, X2, Y1, and Y2. With this detection signal, the following carrier wave and angular velocity can be detected.
 搬送波Vsは、検出電極X1,X2,Y1,Y2から検出されるsin波Vs_x1,Vs_x2,Vs_y1,Vs_y2の平均値、すなわち「Vs=(Vs_x1+Vs_x2+Vs_y1+Vs_y2)/4」として検出できる。
 Y軸の角速度ωyは、検出電極X1と検出電極X2から検出されるsin波Vs_x1,Vs_x2の差分の直交成分に比例する値、すなわち「ωy∝(Vs_x1-Vs_x2)の直交成分」として検出できる。
 X軸の角速度ωxは、検出電極Y1とY2端子から検出されるsin波Vs_y1,Vs_y2の差分の直交成分に比例する値、すなわち「ωx∝(Vs_y1-Vs_y2)の直交成分」として検出できる。
The carrier wave Vs can be detected as an average value of the sin waves Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected from the detection electrodes X1, X2, Y1, and Y2, that is, “Vs = (Vs_x1 + Vs_x2 + Vs_y1 + Vs_y2) / 4”.
The angular velocity ωy of the Y axis can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vs_x1 and Vs_x2 detected from the detection electrode X1 and the detection electrode X2, that is, “the orthogonal component of ωyω (Vs_x1−Vs_x2)”.
The X-axis angular velocity ωx can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vs_y1 and Vs_y2 detected from the detection electrodes Y1 and Y2, that is, “the orthogonal component of ωx∝ (Vs_y1−Vs_y2)”.
 X軸方向に振動部を振動させるX-Driveの場合は、ドライブ電極D1,D2に逆相のsin波の発振制御部出力信号Vdrx,-VdrxをドライブしてX軸方向に振動部を振動させる。なお、以下、逆相の信号や電圧などを同一符号にマイナス符号(-)を付して表す場合がある。例えば上記の例では、sin波の発振制御部出力信号Vdrxとsin波の発振制御部出力信号-Vdrxとは、互いに位相が180°異なる信号であることを意味する。そして、検出電極Y1,Y2から、駆動信号に対して270°シフトしたsin波の発振制御部出力信号Vsx_X1,Vsx_X2,Vsx_Y1,Vsx_Y2を検出することができる。この検出信号により以下の搬送波及び角速度を検出することができる。 In the case of X-Drive that vibrates the vibration part in the X-axis direction, the oscillating control part output signals Vdrx and -Vdrx of sine waves having opposite phases are driven to the drive electrodes D1 and D2 to vibrate the vibration part in the X-axis direction. . In the following description, signals having opposite phases, voltages, and the like may be represented by adding a minus sign (−) to the same sign. For example, in the above example, the sine wave oscillation control unit output signal Vdrx and the sine wave oscillation control unit output signal −Vdrx are signals that are 180 ° out of phase with each other. From the detection electrodes Y1, Y2, it is possible to detect the sin wave oscillation control unit output signals Vsx_X1, Vsx_X2, Vsx_Y1, Vsx_Y2 shifted by 270 ° with respect to the drive signal. With this detection signal, the following carrier wave and angular velocity can be detected.
 搬送波Vsxは、検出電極X1,X2から検出されるsin波Vsx_X1,Vsx_X2の差分の1/2、すなわち「Vsx=(Vsx_X1-Vsx_X2)/2」として検出できる。
 Z軸の角速度ωzは、検出電極Y1とY2から検出されるsin波Vsx_Y1,Vsx_Y2の差分の直交成分に比例する値、すなわち「ωz∝(Vsx_Y1-Vsx_Y2)の直交成分」として検出できる。
 このように、複数の軸まわりの角速度を、振動部を振動させる方向である励振方向を順に切り換えて、角軸まわりの角速度を時分割的に検出する手法が知られている。
The carrier wave Vsx can be detected as ½ of the difference between the sin waves Vsx_X1 and Vsx_X2 detected from the detection electrodes X1 and X2, that is, “Vsx = (Vsx_X1−Vsx_X2) / 2”.
The Z-axis angular velocity ωz can be detected as a value proportional to the orthogonal component of the difference between the sin waves Vsx_Y1 and Vsx_Y2 detected from the detection electrodes Y1 and Y2, that is, “the orthogonal component of ωz∝ (Vsx_Y1−Vsx_Y2)”.
As described above, a method is known in which the angular velocities around the angular axes are detected in a time-division manner by sequentially switching the angular velocities around the plurality of axes and the excitation direction, which is the direction in which the vibration unit vibrates.
実用新案登録第3159045号公報Utility Model Registration No. 3159045 特開2011-38955号公報JP 2011-38955 A 特開2011-99818号公報JP 2011-99818 A 実用新案登録第3159045号公報Utility Model Registration No. 3159045 特開2011-99818号公報JP 2011-99818 A
 特許文献1から3は、振動部の振動方向を時分割で変更して角速度の検出を行う技術が開示された文献であるが、時分割動作において、振動部を安定して振動させる制御又は調整が不十分である。
 本発明の目的は、時分割動作において、振動部が安定して振動する安定発振を、実現することができる角速度センサ、その駆動回路及びその駆動方法並びに角速度検出センサ装置を提供することにある。
Patent Documents 1 to 3 disclose a technique for detecting angular velocity by changing the vibration direction of the vibration unit in a time-sharing manner. However, in the time-sharing operation, control or adjustment for stably vibrating the vibration unit. Is insufficient.
An object of the present invention is to provide an angular velocity sensor, a driving circuit thereof, a driving method thereof, and an angular velocity detecting sensor device capable of realizing a stable oscillation in which a vibration section stably vibrates in a time division operation.
 上記目的を達成するために、本発明の一態様による角速度センサ駆動回路は、駆動電極、検出電極、及び、振動部を有するセンサ部を振動させる角速度センサ駆動回路であり、振動開始信号を生成する振動開始信号生成回路と、前記検出電極からの検出信号に基づいて励振信号を生成する励振回路と、前記振動部の振動を開始する振動開始区間に、前記振動開始信号を前記駆動電極へ出力し、角速度を検出する角速度検出区間に、前記励振信号を前記駆動電極へ出力する出力部と、前記振動開始区間及び前記角速度検出区間が繰り返されるように前記出力部を制御する制御回路と、前記角速度検出区間の前記検出信号若しくは前記励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーを調整する調整部と、を備えることを特徴とする。 In order to achieve the above object, an angular velocity sensor drive circuit according to an aspect of the present invention is an angular velocity sensor drive circuit that vibrates a sensor unit having a drive electrode, a detection electrode, and a vibration unit, and generates a vibration start signal. A vibration start signal generation circuit, an excitation circuit that generates an excitation signal based on a detection signal from the detection electrode, and the vibration start signal that is output to the drive electrode in a vibration start section in which vibration of the vibration unit starts. An angular velocity detection section for detecting angular velocity, an output section for outputting the excitation signal to the drive electrode, a control circuit for controlling the output section so that the vibration start section and the angular velocity detection section are repeated, and the angular velocity Based on the amplitude of the detection signal or the excitation signal in the detection section or the fluctuation amount of the amplitude, the vibration start signal applied to the drive electrode during the next vibration start section Characterized in that it comprises a an adjustment unit that adjusts the Energy.
 また、上記目的を達成するために、本発明の一態様による角速度センサは、上記一態様による角速度センサ駆動回路と、駆動電極、検出電極、及び、振動部を有するセンサ部と、を備えることを特徴とする。 In order to achieve the above object, an angular velocity sensor according to an aspect of the present invention includes the angular velocity sensor drive circuit according to the above aspect, and a sensor unit including a drive electrode, a detection electrode, and a vibration unit. Features.
 また、上記目的を達成するために、本発明の一態様による角速度センサの駆動方法は、角速度センサ部の振動部の振動を開始する振動開始区間に、振動開始信号を前記角速度センサ部の駆動電極へ出力するステップと、角速度を検出する角速度検出区間に、前記角速度センサ部の検出電極からの検出信号に基づいて生成した励振信号を前記駆動電極へ出力するステップと、前記角速度検出区間の前記検出信号若しくは前記励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間に前記駆動電極へ出力する振動開始信号の振幅、又は、時間、を変更するステップと、を備えることを特徴とする。 In order to achieve the above object, the angular velocity sensor driving method according to one aspect of the present invention provides a vibration start signal in a vibration start section in which vibration of the vibration portion of the angular velocity sensor portion is started. Outputting to the drive electrode an excitation signal generated based on a detection signal from the detection electrode of the angular velocity sensor unit, and detecting the angular velocity detection interval Changing the amplitude or time of the vibration start signal to be output to the drive electrode in the next vibration start section based on the amplitude of the signal or the excitation signal or the fluctuation amount of the amplitude. To do.
 また、上記目的を達成するために、本発明の他の態様による角速度センサ駆動回路は、駆動電極を備えた錘部を駆動する角速度センサ駆動回路において、前記錘部を第1軸方向に振動させる第1駆動信号、前記錘部を第2軸方向に振動させる第2駆動信号及び前記錘部の前記第1軸方向の振動を静定する第1静定信号を生成して前記駆動電極へ出力する信号生成回路と、前記第2軸方向の角速度の検出から前記第1軸方向の角速度の検出までの区間において、前記信号生成回路から前記第1駆動信号が前記駆動電極に出力される第1発振区間を設定し、前記第1発振区間の後に前記錘部を自由に振動させる第1自由区間を設定し、前記第1自由区間の後に前記信号生成回路から前記第1静定信号が前記駆動電極に出力される第1発振停止区間を設定し、前記第1発振停止区間の直後に前記信号生成回路から前記第2駆動信号が前記駆動電極に出力される第2発振区間を設定する制御回路と、を備えることを特徴とする。 In order to achieve the above object, an angular velocity sensor drive circuit according to another aspect of the present invention is an angular velocity sensor drive circuit that drives a weight portion having a drive electrode, and vibrates the weight portion in a first axis direction. A first drive signal, a second drive signal that vibrates the weight portion in the second axis direction, and a first static signal that stabilizes the vibration of the weight portion in the first axis direction are generated and output to the drive electrode. And a signal generation circuit that outputs the first drive signal from the signal generation circuit to the drive electrode in a section from detection of the angular velocity in the second axis direction to detection of the angular velocity in the first axis direction. An oscillation section is set, a first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is driven by the signal generation circuit after the first free section. First oscillation stop zone output to the electrode Set, characterized in that it and a control circuit for the second driving signal to set the second oscillation interval to be output to the drive electrodes from the signal generating circuit immediately after the first oscillation stop period.
 また、上記目的を達成するために、本発明の一の態様による角速度検出センサ装置は、上記本発明の一の態様による角速度センサ駆動回路と、前記角速度センサ駆動回路によって駆動信号が供給される前記駆動電極と、前記駆動信号によって振動する前記錘部及び前記錘部の振動によって出力される検出信号を出力する検出電極を備えると、前記検出電極から出力される前記検出信号から角速度を検出する角速度検出回路と、を備える。 In order to achieve the above object, an angular velocity detection sensor device according to an aspect of the present invention includes an angular velocity sensor drive circuit according to an aspect of the present invention, and a drive signal supplied by the angular velocity sensor drive circuit. An angular velocity for detecting an angular velocity from the detection signal output from the detection electrode, comprising a drive electrode, the weight portion that vibrates by the drive signal, and a detection electrode that outputs a detection signal output by the vibration of the weight portion. A detection circuit.
 また、上記目的を達成するために、本発明の他の態様による角速度センサの駆動方法は、駆動電極を備えた錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、前記錘部を第1軸方向に振動させる第1発振区間に第1駆動信号を前記駆動電極へ出力し、前記第1発振区間の後の第1自由区間は、前記駆動電極に一定電圧を供給する又は前記駆動電極をフローティング状態とし、前記第1自由区間の後の第1発振停止区間に、前記錘部の前記第1軸方向の振動を静定する第1静定信号を前記駆動電極へ出力し、前記第1発振停止区間の直後の第2発振区間に、前記錘部を第2軸方向に振動させる第2駆動信号を前記駆動電極へ出力することを特徴とする。 In order to achieve the above object, a driving method of an angular velocity sensor according to another aspect of the present invention is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode. A first drive signal is output to the drive electrode in a first oscillation section that vibrates in one axial direction, and a first free section after the first oscillation section supplies a constant voltage to the drive electrode or the drive electrode In a floating state, and in a first oscillation stop section after the first free section, a first stabilization signal for stabilizing the vibration of the weight portion in the first axis direction is output to the drive electrode, and the first A second drive signal for vibrating the weight portion in the second axis direction is output to the drive electrode in a second oscillation section immediately after one oscillation stop section.
 本発明の各態様によれば、時分割動作において、振動部を安定して振動させることができ、安定発振を実現できる。 According to each aspect of the present invention, it is possible to stably vibrate the vibration part in the time-sharing operation and to realize stable oscillation.
外部ドライブによる角速度センサの周波数特性及びエンベロープ特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic and envelope characteristic of an angular velocity sensor by an external drive. 本発明の第1実施形態による角速度センサ1の概略構成を示す回路ブロック図である。1 is a circuit block diagram showing a schematic configuration of an angular velocity sensor 1 according to a first embodiment of the present invention. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5がZ-Driveとして機能する際の発振開始区間での発振制御部5の接続状態を示す図である。It is a figure which shows the connection state of the oscillation control part 5 in the oscillation start area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as Z-Drive. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5がZ-Driveとして機能する際の安定発振区間での発振制御部5の接続状態を示す図である。It is a figure which shows the connection state of the oscillation control part 5 in the stable oscillation area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as Z-Drive. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5がX-Driveとして機能する際の発振開始区間での発振制御部5の接続状態を示す図である。It is a figure which shows the connection state of the oscillation control part 5 in the oscillation start area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as X-Drive. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5がX-Driveとして機能する際の安定発振区間での発振制御部5の接続状態を示す図である。It is a figure which shows the connection state of the oscillation control part 5 in the stable oscillation area at the time of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped as X-Drive. 本発明の第1実施形態による角速度センサ1における時分割動作のイメージ図である。It is an image figure of the time division operation | movement in the angular velocity sensor 1 by 1st Embodiment of this invention. 本発明の第1実施形態による角速度センサ1を説明する図であって、モニタ部1a及びモニタ部1bから得られる情報を示す図である。It is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows the information obtained from the monitor part 1a and the monitor part 1b. 本発明の第1実施形態による角速度センサ1に備えられた矩形波発生器5bが出力する矩形波駆動信号の発振振幅の調整方法を説明する図である。It is a figure explaining the adjustment method of the oscillation amplitude of the rectangular wave drive signal which the rectangular wave generator 5b with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped outputs. 本発明の第1実施形態による角速度センサ1を説明する図であって、搬送波Vsにビートが生じるのを防止する例を示す図である。It is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows the example which prevents that a beat arises in the carrier wave Vs. 本発明の第1実施形態による角速度センサ1を説明する図であって、搬送波Vsにビートが生じるのを防止する他の例を示す図である。It is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows the other example which prevents that a beat arises in the carrier wave Vs. 本発明の第1実施形態による角速度センサ1の連続発振時における搬送波Vsの発振振幅特性を模式的に示す図である。It is a figure which shows typically the oscillation amplitude characteristic of the carrier wave Vs at the time of the continuous oscillation of the angular velocity sensor 1 by 1st Embodiment of this invention. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5のループ利得が1より大きい場合の搬送波Vsの発振振幅調整の一例を模式的に示す図である。It is a figure which shows typically an example of the oscillation amplitude adjustment of the carrier wave Vs when the loop gain of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped is larger than one. 本発明の第1実施形態による角速度センサ1に備えられた発振制御部5のループ利得が1より小さい場合の搬送波Vsの発振振幅調整の一例を模式的に示す図である。It is a figure which shows typically an example of the oscillation amplitude adjustment of the carrier wave Vs when the loop gain of the oscillation control part 5 with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped is smaller than 1. FIG. 本発明の第1実施形態による角速度センサ1の搬送波Vsの振幅調整の手順を説明する図であって、シリコンデバイスの調整手順の流れの一例を示すフローチャートである。It is a figure explaining the procedure of amplitude adjustment of the carrier wave Vs of the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a flowchart which shows an example of the flow of the adjustment procedure of a silicon device. 本発明の第1実施形態による角速度センサ1の搬送波Vsの振幅調整の手順を説明する図であって、センサモジュールの調整及び発振周波数制御の処理の流れの一例を示すフローチャートである。It is a figure explaining the procedure of amplitude adjustment of the carrier wave Vs of the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a flowchart which shows an example of the flow of a process of adjustment of a sensor module, and oscillation frequency control. 本発明の第1実施形態による角速度センサ1の搬送波Vsの振幅調整の手順を説明する図であって、センサモジュールの発振振幅制御及び通常動作時の発振制御の処理の流れの別の一例を示すフローチャートである。It is a figure explaining the procedure of amplitude adjustment of the carrier wave Vs of the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: Another example of the process flow of the oscillation amplitude control of a sensor module and the oscillation control at the time of normal operation is shown It is a flowchart. 本発明の第1実施形態による角速度センサ1に備えられた位相シフタ6cの回路構成と周波数特性とを示す図である。It is a figure which shows the circuit structure and frequency characteristic of the phase shifter 6c with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped. 本発明の第1実施形態による角速度センサ1に備えられた矩形波発生器5bの概略構成の一例を示す回路ブロックである。It is a circuit block which shows an example of schematic structure of the rectangular wave generator 5b with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped. 本発明の第1実施形態による角速度センサ1を説明する図であって、Z-Driveにおける発振開始区間T1での矩形波発生器5bの動作タイミングチャートの一例を示す図である。It is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows an example of the operation | movement timing chart of the rectangular wave generator 5b in the oscillation start area T1 in Z-Drive. 本発明の第1実施形態による角速度センサ1を説明する図であって、X-Driveにおける発振開始区間T1での矩形波発生器5bの動作タイミングチャートの一例を示す図である。It is a figure explaining the angular velocity sensor 1 by 1st Embodiment of this invention, Comprising: It is a figure which shows an example of the operation | movement timing chart of the rectangular wave generator 5b in the oscillation start area T1 in X-Drive. 本発明の第1実施形態による角速度センサ1に備えられたドライバ6e及び切替回路5cの概略構成の一例を示す回路ブロック図である。It is a circuit block diagram which shows an example of schematic structure of the driver 6e with which the angular velocity sensor 1 by 1st Embodiment of this invention was equipped, and the switching circuit 5c. 本発明の第1実施形態による角速度センサ1を説明する図であって、Z-Driveにおける発振開始区間T1でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation start section T1 in Z-Drive. It is. 本発明の第1実施形態による角速度センサ1を説明する図であって、Z-Driveにおける安定発振区間T2でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in a stable oscillation section T2 in Z-Drive. It is. 本発明の第1実施形態による角速度センサ1を説明する図であって、Z-Driveにおける発振停止区間T3でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation stop period T3 in Z-Drive. It is. 本発明の第1実施形態による角速度センサ1を説明する図であって、X-Driveにおける発振開始区間T1でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation start section T1 in X-Drive. It is. 本発明の第1実施形態による角速度センサ1を説明する図であって、X-Driveにおける安定発振区間T2でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in a stable oscillation section T2 in X-Drive. It is. 本発明の第1実施形態による角速度センサ1を説明する図であって、X-Driveにおける発振停止区間T3でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。FIG. 2 is a diagram for explaining an angular velocity sensor 1 according to a first embodiment of the present invention, and showing a schematic configuration of a connection state of a driver 6e, a rectangular wave generator 5b, and a switching circuit 5c in an oscillation stop period T3 in X-Drive. It is. 本発明の第1実施形態の変形例による角速度センサを説明する図であって、4端子のドライブ電極D1X,D2X,D1Y,D2Yを備えた角速度センサ部3の概略構成を示すブロック図である。It is a figure explaining the angular velocity sensor by the modification of 1st Embodiment of this invention, Comprising: It is a block diagram which shows schematic structure of the angular velocity sensor part 3 provided with the drive electrode D1X, D2X, D1Y, D2Y of 4 terminals. 本発明の第2-1実施形態から第2-4実施形態における角速度センサ1を説明するための図である。It is a figure for demonstrating the angular velocity sensor 1 in 2nd-1 embodiment from 2nd-1 embodiment of this invention. 本発明の第2-1実施形態から第2-3実施形態による集積回路を説明するための図である。FIG. 10 is a diagram for explaining an integrated circuit according to embodiments 2-1 to 2-3 of the present invention. 本発明の図30(a)に示した駆動電極に加えられる駆動信号を例示する図である。It is a figure which illustrates the drive signal applied to the drive electrode shown to Fig.30 (a) of this invention. 本発明の第2-1実施形態の角速度センサ駆動回路の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the angular velocity sensor drive circuit of 2nd-1 embodiment of this invention. 本発明の第2-1実施形態による駆動信号を説明するための図である。It is a figure for demonstrating the drive signal by 2nd-1 embodiment of this invention. 本発明の第2-2実施形態による駆動信号を説明するための図である。It is a figure for demonstrating the drive signal by 2nd-2 embodiment of this invention. 本発明の第2-3実施形態による駆動信号を説明するための図である。It is a figure for demonstrating the drive signal by 2nd-3 embodiment of this invention. 本発明の第2-4実施形態の角速度センサの集積回路のブロック図である。It is a block diagram of the integrated circuit of the angular velocity sensor of the 2-4 embodiment of the present invention. 図37に示した角速度センサ駆動回路を説明するためのブロック図である。It is a block diagram for demonstrating the angular velocity sensor drive circuit shown in FIG. 本発明の第2-4実施形態による駆動信号を説明するための図である。It is a figure for demonstrating the drive signal by 2-4 embodiment of this invention.
[第1実施形態]
 本発明の第1実施形態による角速度センサ及び角速度センサの調整方法について図1から図29を用いて説明する。本実施形態による角速度センサ及び角速度センサの調整方法を説明する前に、自励発振について説明する。本実施形態では、後述する振動部3aの振動する方向をXYZ直交座標系を設定して説明する。後述する発振制御部5がZ-Driveとして機能する場合、振動部3aはZ軸方向に振動する。また、発振制御部5がX-Driveとして機能する場合、振動部3aはXY座標平面内においてX軸方向に振動する。
[First Embodiment]
An angular velocity sensor and a method for adjusting the angular velocity sensor according to the first embodiment of the present invention will be described with reference to FIGS. Before explaining the angular velocity sensor and the adjustment method of the angular velocity sensor according to the present embodiment, self-excited oscillation will be explained. In the present embodiment, the direction in which a vibration unit 3a to be described later vibrates will be described by setting an XYZ orthogonal coordinate system. When an oscillation control unit 5 described later functions as a Z-Drive, the vibration unit 3a vibrates in the Z-axis direction. When the oscillation control unit 5 functions as an X-Drive, the vibration unit 3a vibrates in the X-axis direction within the XY coordinate plane.
<自励発振について>
 圧電素子など振動のエネルギー効率が高い角速度センサでは、自励発振が可能である。例えば、上述の従来のジャイロ(角速度センサ)では、検出電極X1,X2で検出される検出信号のいずれかをフィードバックして駆動信号として出力する発振ループを形成する。
 発振系のオープンループゲインが0dBになるような利得であれば、安定発振とすることが可能である。例えば、Z-Driveの場合は、搬送波Vsを90°位相シフトし、利得増幅した信号を、ドライブ電極D1,D2に同相のsin波の発振制御部出力信号Vdrとしてドライブする。一方、X-Driveの場合は、搬送波Vsxを90°位相シフトし、利得増幅した信号を、ドライブ電極D1,D2に逆相のsin波の発振制御部出力信号Vdrx,-Vdrxとしてドライブする。
<About self-excited oscillation>
An angular velocity sensor having high vibration energy efficiency such as a piezoelectric element can perform self-excited oscillation. For example, the above-described conventional gyro (angular velocity sensor) forms an oscillation loop that feeds back one of detection signals detected by the detection electrodes X1 and X2 and outputs it as a drive signal.
If the open loop gain of the oscillation system is 0 dB, stable oscillation can be achieved. For example, in the case of Z-Drive, the carrier wave Vs is phase-shifted by 90 °, and the gain-amplified signal is driven to the drive electrodes D1 and D2 as the sine wave oscillation control unit output signal Vdr. On the other hand, in the case of X-Drive, the carrier wave Vsx is phase-shifted by 90 ° and the gain-amplified signal is driven to the drive electrodes D1 and D2 as sin-phase oscillation control unit output signals Vdrx and -Vdrx.
 図1は、外部ドライブによる角速度センサの周波数特性及びエンベロープ特性の一例を示す図である。図1(a)は、角速度センサの周波数特性を示し、図1(b)は、図1(a)に示す周波数特性のピーク部分の拡大図であり、図1(c)は、角速度センサの振動部が発振して振動している際の振動軌跡のエンベロープ特性を示している。図1(a)及び図1(b)の横軸は周波数を示し、縦軸は利得を示している。図1(c)の横軸は時間を示し、縦軸は電圧を示している。
 図1(a)に示すように、角速度センサは、角速度センサ部のBPF(Band Path Filter)特性の利得最大値の周波数に追従して発振することができる。
FIG. 1 is a diagram illustrating an example of frequency characteristics and envelope characteristics of an angular velocity sensor by an external drive. 1A shows the frequency characteristic of the angular velocity sensor, FIG. 1B is an enlarged view of the peak portion of the frequency characteristic shown in FIG. 1A, and FIG. 1C shows the angular velocity sensor. The envelope characteristic of the vibration locus | trajectory at the time of the vibration part oscillating and vibrating is shown. In FIG. 1A and FIG. 1B, the horizontal axis indicates the frequency, and the vertical axis indicates the gain. In FIG. 1C, the horizontal axis indicates time, and the vertical axis indicates voltage.
As shown in FIG. 1A, the angular velocity sensor can oscillate following the frequency of the maximum gain value of the BPF (Band Path Filter) characteristic of the angular velocity sensor unit.
 本実施形態では、このような2つの自励発振において、高速に発振開始、安定発振、発振停止を実現し、Z-DriveとX-Driveとを時分割で動作して、3軸の角速度の検出が可能となる。
 例えば、ドライブ電極(駆動電極)へ一定の発振周波数の駆動信号を出力する従来の励振方法では、以下のような問題がある。
 角速度センサの利得ピークを発振周波数fsnsとし、外部ドライブの発振周波数をfdrとする。従来の方法では、外部ドライブの発振周期(周波数)は、マスタークロックの整数倍にしかならないので、図1(b)に示すように、外部ドライブの発振周波数fdrと角速度センサの利得ピークの発振周波数fsnsとの間には周波数誤差が発生する。
その結果、利得の損失は大きくなる。さらに、図1(c)に曲線L1で示すように、Δf=fsns-fdrのビートが発生して、安定発振しないこともある。なお、図1(c)に示す曲線L2は、自励発振のエンベロープを示している。
 一方、自励発振では、角速度センサの発振周波数は、自励発振でおのずと角速度センサ部のBPF特性の利得ピーク値に引き込まれる。そのため、温度により発振周波数が変動しても、安定発振を実現することができる。
In this embodiment, in such two self-excited oscillations, high-speed oscillation start, stable oscillation, and oscillation stop are realized, and Z-Drive and X-Drive are operated in a time-sharing manner to obtain a three-axis angular velocity. Detection is possible.
For example, the conventional excitation method for outputting a drive signal having a constant oscillation frequency to the drive electrode (drive electrode) has the following problems.
The gain peak of the angular velocity sensor is set as the oscillation frequency fsns, and the oscillation frequency of the external drive is set as fdr. In the conventional method, the oscillation period (frequency) of the external drive is only an integral multiple of the master clock. Therefore, as shown in FIG. 1B, the oscillation frequency fdr of the external drive and the oscillation frequency of the gain peak of the angular velocity sensor. A frequency error occurs between fsns.
As a result, the loss of gain increases. Further, as indicated by a curve L1 in FIG. 1C, a beat of Δf = fsns−fdr may occur and stable oscillation may not occur. A curve L2 shown in FIG. 1C shows an envelope of self-oscillation.
On the other hand, in self-excited oscillation, the oscillation frequency of the angular velocity sensor is naturally pulled into the gain peak value of the BPF characteristic of the angular velocity sensor unit. Therefore, stable oscillation can be realized even if the oscillation frequency varies with temperature.
<Z-Driveの発振回路と制御方法>
 図2は、角速度センサ1の概略構成を示す回路ブロック図である。
 図1に示すように、角速度センサ1は、角速度センサ部3と発振制御部5とを有している。角速度センサ部3はドライブ電極(駆動電極)D1,D2と、検出電極X1,X2,Y1,Y2と、振動部3aとを配する。
 発振制御部5は、発振ループを構成する自励発振回路5aと、矩形波発生器(駆動信号生成回路の一例)5bと、ドライブ電極D1,D2へ駆動信号を出力するか、自励発振信号を出力するかを切り替える切替回路(セレクタ)5cとを有する。さらに、発振制御部5は、振動部3aの振動を開始する振動開始区間及び角速度を検出する角速度検出区間が繰り返されるように切替回路(出力部の一例)5cを制御する制御部5fを有している。自励発振回路5aは、振動検出電極X1,X2,Y1,Y2で検出された検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2に基づいてドライブ電極D1,D2へ出力する自励発振信号を生成する。矩形波発生器5bは、ドライブ電極D1,D2へ出力する矩形波の駆動信号(矩形波駆動信号)を生成する。
 自励発振回路は、検出電極からの検出信号に基づいて励振信号を生成する励振回路である。
 矩形波発生器は、振動開始信号を生成する振動開始信号生成回路である。
 切替回路は、振動部の振動を開始する振動開始区間に、振動開始信号を駆動電極へ出力し、角速度を検出する角速度検出区間に、励振信号を駆動電極へ出力する出力部である。
<Z-Drive oscillation circuit and control method>
FIG. 2 is a circuit block diagram showing a schematic configuration of the angular velocity sensor 1.
As shown in FIG. 1, the angular velocity sensor 1 includes an angular velocity sensor unit 3 and an oscillation control unit 5. The angular velocity sensor unit 3 includes drive electrodes (drive electrodes) D1 and D2, detection electrodes X1, X2, Y1, and Y2, and a vibration unit 3a.
The oscillation control unit 5 outputs a drive signal to the self-excited oscillation circuit 5a constituting the oscillation loop, the rectangular wave generator (an example of the drive signal generation circuit) 5b, and the drive electrodes D1 and D2, or a self-excited oscillation signal. And a switching circuit (selector) 5c for switching whether to output. Furthermore, the oscillation control unit 5 includes a control unit 5f that controls the switching circuit (an example of the output unit) 5c so that the vibration start section for starting the vibration of the vibration section 3a and the angular velocity detection section for detecting the angular velocity are repeated. ing. The self-excited oscillation circuit 5a generates self-excited oscillation signals to be output to the drive electrodes D1 and D2 based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the vibration detection electrodes X1, X2, Y1, and Y2. The rectangular wave generator 5b generates a rectangular wave driving signal (rectangular wave driving signal) to be output to the drive electrodes D1, D2.
The self-excited oscillation circuit is an excitation circuit that generates an excitation signal based on a detection signal from the detection electrode.
The rectangular wave generator is a vibration start signal generation circuit that generates a vibration start signal.
The switching circuit is an output unit that outputs a vibration start signal to the drive electrode during a vibration start interval in which the vibration of the vibration unit is started, and outputs an excitation signal to the drive electrode during an angular velocity detection interval in which the angular velocity is detected.
 図3は、発振制御部5がZ-Driveとして機能する際の発振開始区間での発振制御部5の接続状態を示す図であり、図4は、発振制御部5がZ-Driveとして機能する際の安定発振区間での発振制御部5の接続状態を示す図である。
 図3に示すように、発振開始区間では、切替回路5cにより角速度センサ部3と矩形波発生器5bとが接続される。図3では、矩形波発生器5bの出力端子とドライブ電極D1,D2とを結ぶ直線により矩形波発生器5bとドライブ電極D1,D2との接続状態が示されている。矩形波発生器5bの2つの出力端子が互いに短絡され、当該2つの出力端子から出力する出力信号Rct1とRct2が発振制御部出力信号Vdrとしてドライブ電極D1,D2に入力する。発振開始区間では、矩形波発生器5bから出力された矩形波をドライブ電極D1,D2へドライブして、角速度センサ1の立ち上げ動作を行う。
FIG. 3 is a diagram showing a connection state of the oscillation control unit 5 in the oscillation start period when the oscillation control unit 5 functions as Z-Drive, and FIG. 4 shows the oscillation control unit 5 functioning as Z-Drive. It is a figure which shows the connection state of the oscillation control part 5 in the stable oscillation area at the time.
As shown in FIG. 3, in the oscillation start period, the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected by the switching circuit 5c. In FIG. 3, the connection state between the rectangular wave generator 5b and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the rectangular wave generator 5b and the drive electrodes D1, D2. The two output terminals of the rectangular wave generator 5b are short-circuited with each other, and the output signals Rct1 and Rct2 output from the two output terminals are input to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr. In the oscillation start period, the rectangular wave output from the rectangular wave generator 5b is driven to the drive electrodes D1 and D2, and the angular velocity sensor 1 is started up.
 図4に示すように、安定発振区間では、切替回路5cにより角速度センサ部3とドライバ6eとが接続される。図4では、ドライバ6eの一方の出力端子とドライブ電極D1,D2とを結ぶ直線により、ドライバ6eとドライブ電極D1,D2との接続状態が示されている。ドライバ6eの一方の出力端子から出力した自励発振信号Dr1が発振制御部出力信号Vdrとしてドライブ電極D1,D2に入力する。安定発振区間では、発振制御部5の自励発振回路5aは、検出電極X1,X2,Y1,Y2からの信号が、HPF(High Path Filter)6a、搬送波生成回路6b、位相シフタ6c、可変増幅器6d及びドライバ6eを経由してドライブ電極D1,D2に入力するように自励発振回路5aを制御し、360°発振(正帰還)ループを形成して安定発振させる。HPF(High Path Filter)6a、搬送波生成回路6b、位相シフタ6c、可変増幅器6d及びドライバ6eは、自励発振回路5aに備えられている。位相シフタ6cは、入力信号の位相を90°シフトして出力するようになっている。発振ループにおける信号の位相は、角速度センサ部3において270°シフトし、位相シフタ6cにおいて90°シフトする。これにより、発振ループにおける信号の位相は、360°シフトする。 As shown in FIG. 4, in the stable oscillation section, the angular velocity sensor unit 3 and the driver 6e are connected by the switching circuit 5c. In FIG. 4, the connection state between the driver 6e and the drive electrodes D1, D2 is shown by a straight line connecting one output terminal of the driver 6e and the drive electrodes D1, D2. The self-excited oscillation signal Dr1 output from one output terminal of the driver 6e is input to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr. In the stable oscillation section, the self-excited oscillation circuit 5a of the oscillation control unit 5 has signals from the detection electrodes X1, X2, Y1, and Y2 as HPF (High Path Filter) 6a, carrier wave generation circuit 6b, phase shifter 6c, and variable amplifier. The self-excited oscillation circuit 5a is controlled so as to be input to the drive electrodes D1 and D2 via 6d and the driver 6e, and a 360 ° oscillation (positive feedback) loop is formed to stably oscillate. An HPF (High Path Filter) 6a, a carrier wave generation circuit 6b, a phase shifter 6c, a variable amplifier 6d, and a driver 6e are provided in the self-excited oscillation circuit 5a. The phase shifter 6c shifts the phase of the input signal by 90 ° and outputs it. The phase of the signal in the oscillation loop is shifted by 270 ° in the angular velocity sensor unit 3 and shifted by 90 ° in the phase shifter 6c. As a result, the phase of the signal in the oscillation loop is shifted by 360 °.
 発振停止区間における接続状態は、安定発振区間と同様であるが、ドライバ6eは、安定発振区間では、ボルテージフォロアとして動作し、発振停止区間では、反転増幅器として動作するように切り替え可能に構成されている。発振停止区間は、安定発振区間の発振(正帰還)ループを反転し、動作コモン電圧VCOMに収束する180°発振停止(負帰還)ループが自励発振回路5aにおいて形成され、発振が停止する。
 この構成により、高速に立ち上げ、自励発振及び停止を繰り返す間欠駆動を実現することができる。
The connection state in the oscillation stop period is the same as that in the stable oscillation period, but the driver 6e can be switched to operate as a voltage follower in the stable oscillation period and to operate as an inverting amplifier in the oscillation stop period. Yes. In the oscillation stop period, the oscillation (positive feedback) loop in the stable oscillation period is inverted, and a 180 ° oscillation stop (negative feedback) loop that converges to the operating common voltage VCOM is formed in the self-excited oscillation circuit 5a, and the oscillation stops.
With this configuration, it is possible to realize intermittent driving that starts up at high speed and repeats self-excited oscillation and stoppage.
 また、発振制御部5は、マスタークロックと電圧源を生成する基準値発生部5dと、発振開始区間、安定発振区間及び発振停止区間における上記制御を実行するシーケンサ5eとを有する。
 シーケンサ5eは、矩形波発生器5bの駆動信号(矩形波駆動信号)の振幅を決定する振幅情報又は矩形波発生器5bの駆動信号が出力される時間を決定する時間情報が格納された格納部を有する。シーケンサ5eは、Z-Driveにおいて矩形波発生器5bが出力する矩形波駆動信号(第一の駆動信号の一例)の第一の振幅情報と、後述するX-Driveにおいて矩形波発生器5bが出力する矩形波発生器5bが出力する矩形波駆動信号(第二の駆動信号の一例)の第二の振幅情報と、を格納する。また、シーケンサ5eは、Z-Driveにおける矩形波駆動信号が出力される第一の時間情報と、X-Driveにおける矩形波駆動信号が出力される第二の時間情報と、を格納する。また、シーケンサ5eは、角速度検出区間の検出信号若しくは励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーを調整する調整部に相当する。
The oscillation control unit 5 includes a reference value generation unit 5d that generates a master clock and a voltage source, and a sequencer 5e that performs the above control in an oscillation start period, a stable oscillation period, and an oscillation stop period.
The sequencer 5e is a storage unit that stores amplitude information that determines the amplitude of the drive signal (rectangular wave drive signal) of the rectangular wave generator 5b or time information that determines the time during which the drive signal of the rectangular wave generator 5b is output. Have The sequencer 5e outputs the first amplitude information of the rectangular wave driving signal (an example of the first driving signal) output from the rectangular wave generator 5b in Z-Drive, and the rectangular wave generator 5b outputs in X-Drive described later. The second amplitude information of the rectangular wave driving signal (an example of the second driving signal) output from the rectangular wave generator 5b to be stored is stored. Further, the sequencer 5e stores first time information for outputting a rectangular wave drive signal in Z-Drive and second time information for outputting a rectangular wave drive signal in X-Drive. The sequencer 5e corresponds to an adjustment unit that adjusts the energy of the vibration start signal applied to the drive electrode during the next vibration start interval based on the amplitude of the detection signal or the excitation signal in the angular velocity detection interval or the amount of fluctuation of the amplitude. To do.
 この自励発振の制御は、角速度センサ部3のBPF特性と、矩形波発生器5bが出力する出力信号の立ち上がりの発振振幅特性とに基づいた制御値で制御する。
 角速度センサ1の発振振幅は、発振開始時の矩形波の振幅及びその駆動する時間の少なくとも一方によって制御する。
 自励発振において安定発振させるために、発振ループにおける位相シフタ6cでの位相シフト量と、可変増幅器6dでの利得調整の制御値とで制御することができる。
This self-excited oscillation is controlled by a control value based on the BPF characteristic of the angular velocity sensor unit 3 and the oscillation amplitude characteristic of the rising edge of the output signal output from the rectangular wave generator 5b.
The oscillation amplitude of the angular velocity sensor 1 is controlled by at least one of the amplitude of the rectangular wave at the start of oscillation and the driving time thereof.
In order to achieve stable oscillation in the self-excited oscillation, it is possible to control with the phase shift amount in the phase shifter 6c in the oscillation loop and the control value for gain adjustment in the variable amplifier 6d.
 Z-Driveにおいて、角速度センサ部3の振動部3aはZ軸方向で振動し、Y軸角速度ωyは、検出電極X1,X2の搬送波の直交成分に発生し、検出電極X1,X2からの検出信号Vs_x1,Vs_x2の差分または位相差として検出される。一方、X軸角速度ωxは、検出電極Y1,Y2の搬送波の直交成分に発生し、検出電極Y1,Y2からの検出信号Vs_y1,Vs_y2の差分または位相差として検出される。
 また、角速度センサ部3のBPF特性により、ドライブ電極D1,D2にそれぞれ印加された同相の発振制御部出力信号Vdrは、利得変動、及び270°位相シフトして、検出電極X1,X2,Y1,Y2から検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2として出力される。
In Z-Drive, the vibration unit 3a of the angular velocity sensor unit 3 vibrates in the Z-axis direction, and the Y-axis angular velocity ωy is generated in the orthogonal component of the carrier wave of the detection electrodes X1 and X2, and the detection signal from the detection electrodes X1 and X2 It is detected as a difference or phase difference between Vs_x1 and Vs_x2. On the other hand, the X-axis angular velocity ωx is generated in the orthogonal component of the carrier waves of the detection electrodes Y1 and Y2, and is detected as a difference or phase difference between the detection signals Vs_y1 and Vs_y2 from the detection electrodes Y1 and Y2.
Further, due to the BPF characteristics of the angular velocity sensor unit 3, the in-phase oscillation control unit output signal Vdr applied to the drive electrodes D1 and D2, respectively, undergoes gain fluctuation and 270 ° phase shift, and the detection electrodes X1, X2, Y1, The detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are output from Y2.
 次に、発振ループの内部の回路について詳細に説明する。
 HPF6aは、角速度センサ部3の検出電極X1,X2,Y1,Y2を一方の電極とする静電容量素子と、当該静電容量素子の他方の電極と動作コモン電圧VCOMとの間に接続する抵抗とでのみ構成される。すなわち、HPF6aは受動型のハイパスフィルタ回路である。HPF6aは、検出電極X1,X2,Y1,Y2毎に設けられている。
 搬送波生成回路6bは、前述のとおり搬送波Vsを生成する。搬送波Vsは、以下の式から求められる。
 Vs=(Vs_x1+Vs_x2+Vs_y1+Vs_y2)/4
 詳細は後述するが、位相シフタ6cは、いわゆるオールパスフィルタ(All Path Filter)回路を有し、そのオールパスフィルタ回路を構成する抵抗の抵抗値及び容量素子の容量値の少なくともいずれか一方を可変にすることにより位相シフト量Sftを調整することができる。
Next, a circuit inside the oscillation loop will be described in detail.
The HPF 6a is a resistor connected between the capacitive electrode having the detection electrodes X1, X2, Y1, and Y2 of the angular velocity sensor unit 3 as one electrode and the other electrode of the capacitive element and the operation common voltage VCOM. It consists only of and. That is, the HPF 6a is a passive high-pass filter circuit. The HPF 6a is provided for each of the detection electrodes X1, X2, Y1, and Y2.
The carrier wave generation circuit 6b generates the carrier wave Vs as described above. The carrier wave Vs is obtained from the following equation.
Vs = (Vs_x1 + Vs_x2 + Vs_y1 + Vs_y2) / 4
Although the details will be described later, the phase shifter 6c has a so-called all-pass filter circuit, and makes at least one of the resistance value of the resistor and the capacitance value of the capacitive element constituting the all-pass filter circuit variable. Thus, the phase shift amount Sft can be adjusted.
 可変増幅器6dは、反転増幅器や減衰器などで構成され、その抵抗値を可変にすることにより、利得Aを調整することができる。
 ドライバ6eは、360°発振(正帰還)ループを形成するときはボルテージフォロアとして動作し、180°発振停止(負帰還)ループを形成するときは、反転増幅器(反転利得-B)として動作する。Z-Driveの場合は、ドライバ6eが出力する2つの自励発振信号Dr1,Dr2は同じ信号である。
 矩形波発生器5bは、振動部3aをZ軸(第一軸の一例)方向に振動させる矩形波駆動信号(第一の駆動信号の一例)と、振動部3aをZ軸方向とは直交するX軸(第二軸の一例)に振動させる矩形波駆動信号(第二の駆動信号の一例)とを出力する。
The variable amplifier 6d is composed of an inverting amplifier, an attenuator, and the like, and the gain A can be adjusted by making the resistance value variable.
The driver 6e operates as a voltage follower when forming a 360 ° oscillation (positive feedback) loop, and operates as an inverting amplifier (inversion gain -B) when forming a 180 ° oscillation stop (negative feedback) loop. In the case of Z-Drive, the two self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are the same signal.
The rectangular wave generator 5b is orthogonal to the rectangular wave drive signal (an example of the first drive signal) that vibrates the vibration part 3a in the Z-axis (an example of the first axis) and the vibration part 3a in the Z-axis direction. A rectangular wave drive signal (an example of the second drive signal) that causes the X axis (an example of the second axis) to vibrate is output.
 矩形波発生器5bは、角速度センサ部3の発振周波数とほぼ同等な周波数fdrの矩形波駆動電圧Vrctを、振幅Vup、駆動時間Tupで出力する。振幅Vupと駆動時間Tupにほぼ比例して、自励発振の振幅を調整できる。矩形波発生器5bが出力する2つの矩形波駆動信号Rct1,Rct2は同じ信号である。
 切替回路5cは、ドライブ電極D1,D2を、矩形波駆動信号Rct1、Rct2とドライバ6eが出力する自励発振信号Dr1,Dr2とを選択して接続できる。切替回路5cは、矩形波駆動信号Vrctを出力して振動部3aを振動させた後、自励発振信号を出力するように切り替える。
 制御部5fは、第一振動開始区間、第一角速度検出区間、第二振動開始区間、及び、第二角速度検出区間(各区間の詳細は後述)が繰り返されるように出力部5cを制御する。
The rectangular wave generator 5b outputs a rectangular wave driving voltage Vrct having a frequency fdr substantially equal to the oscillation frequency of the angular velocity sensor unit 3 with an amplitude Vup and a driving time Tup. The amplitude of self-oscillation can be adjusted substantially in proportion to the amplitude Vup and the drive time Tup. The two rectangular wave drive signals Rct1 and Rct2 output from the rectangular wave generator 5b are the same signal.
The switching circuit 5c can connect the drive electrodes D1 and D2 by selecting the rectangular wave drive signals Rct1 and Rct2 and the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e. The switching circuit 5c outputs a rectangular wave drive signal Vrct to vibrate the vibration unit 3a, and then switches to output a self-excited oscillation signal.
The control unit 5f controls the output unit 5c so that the first vibration start section, the first angular velocity detection section, the second vibration start section, and the second angular speed detection section (details of each section will be described later) are repeated.
 基準値はある程度の精度は必要である。マスタークロックMCLKは搬送波と非同期の自走発振で良い。基準値発生部5dは、動作コモン電圧VCOM,基準電圧VREF,マスタークロックMCLK(発振周波数fclk)を出力する。
 角速度は搬送波と直交した成分であり、搬送波(図2では、例えば符号「Vs」で表されている)は、角速度検出において、90°または270°位相シフトした信号で直交信号Qと呼ばれる。さらに、搬送波から90°位相シフトした信号(図2には、例えば符号「Vi」,「Via」,「Vdr」でそれぞれ表されている)は、角速度検出において、0°または180°位相シフトした信号に同期した信号であり、同相信号Iと呼ばれる。角速度は、搬送波変調された状態で検出され、その検出信号を同相信号Iで復調して、直交成分である搬送波を除去することで検出する方法がとられる。図2において、可変増幅器6dの出力である出力信号Viaを、角速度検出における同相信号Iとして使用することもできる。
The reference value needs a certain degree of accuracy. The master clock MCLK may be free-running oscillation that is asynchronous with the carrier wave. The reference value generator 5d outputs an operation common voltage VCOM, a reference voltage VREF, and a master clock MCLK (oscillation frequency fclk).
The angular velocity is a component orthogonal to the carrier wave, and the carrier wave (represented by, for example, the symbol “Vs” in FIG. 2) is a signal that is phase-shifted by 90 ° or 270 ° in the angular velocity detection, and is called an orthogonal signal Q. Furthermore, signals that are 90 ° phase shifted from the carrier wave (represented by the symbols “Vi”, “Via”, and “Vdr” in FIG. 2, for example) are phase shifted by 0 ° or 180 ° in angular velocity detection. This signal is synchronized with the signal and is called an in-phase signal I. The angular velocity is detected in a state where the carrier wave is modulated, and the detection signal is demodulated by the in-phase signal I and detected by removing the carrier wave which is a quadrature component. In FIG. 2, the output signal Via which is the output of the variable amplifier 6d can be used as the in-phase signal I in the angular velocity detection.
 図2では、角速度センサ1は、搬送波Vsをモニタするモニタ部(振幅検出部の一例)1aと出力信号Viaをモニタするモニタ部(振幅検出部の一例)1bとを有し、モニタ部1aは直交信号Qをモニタし、モニタ部1bは同相信号Iをモニタする。モニタ部1a,1bは、自励発振回路5aにおける自励発振信号の振幅を検出し、検出した自励発振信号の振幅である振幅検出信号とモニタ部1a,1bが保有する搬送波の振幅情報及び周波数情報とに基づいて、矩形波発生器5bの矩形波駆動信号の振幅、又は、矩形波駆動信号が出力される時間(期間)が調整される構成でもあってもよい。 In FIG. 2, the angular velocity sensor 1 includes a monitor unit (an example of an amplitude detection unit) 1a that monitors a carrier wave Vs and a monitor unit (an example of an amplitude detection unit) 1b that monitors an output signal Via. The quadrature signal Q is monitored, and the monitor unit 1b monitors the in-phase signal I. The monitor units 1a and 1b detect the amplitude of the self-excited oscillation signal in the self-excited oscillation circuit 5a, the amplitude detection signal which is the amplitude of the detected self-excited oscillation signal, the amplitude information of the carrier wave held by the monitor units 1a and 1b, and Based on the frequency information, the amplitude of the rectangular wave drive signal of the rectangular wave generator 5b or the time (period) during which the rectangular wave drive signal is output may be adjusted.
 発振制御部5の制御データは、時分割動作を容易に行う為に、デジタル値であることが望ましい。シーケンサ5eに格納されるデータは以下のカウント値Nf、制御値dtsft及び利得制御値dtAである。ここで、カウント値Nfは、Z-Driveにおいて角速度センサ部3の発振周波数で発振している発振信号であるセンサ発振信号のカウント値及び矩形波駆動信号の矩形波周期CLKのカウント値である。矩形波駆動信号の周波数fdrは、Z-Driveにおいて角速度センサ部3の発振周波数fclkをカウンタ値Nfで除算した値(fclk/Nf)に設定される。制御値dtSftは、位相シフタ6cにおける搬送波Vszの位相シフト量Sftの制御値である。利得制御値dtAは、可変増幅器6dにおける搬送波利得Aの制御値である。 The control data of the oscillation controller 5 is preferably a digital value in order to easily perform a time division operation. Data stored in the sequencer 5e is the following count value Nf, control value dtsft, and gain control value dtA. Here, the count value Nf is a count value of a sensor oscillation signal that is an oscillation signal oscillating at an oscillation frequency of the angular velocity sensor unit 3 in Z-Drive and a count value of a rectangular wave period CLK of a rectangular wave drive signal. The frequency fdr of the rectangular wave drive signal is set to a value (fclk / Nf) obtained by dividing the oscillation frequency fclk of the angular velocity sensor unit 3 by the counter value Nf in Z-Drive. The control value dtSft is a control value of the phase shift amount Sft of the carrier wave Vsz in the phase shifter 6c. The gain control value dtA is a control value of the carrier wave gain A in the variable amplifier 6d.
 また、角速度センサ1の発振開始時から自励発振にいたるまでに、目標振幅となるよう、矩形波の振幅と制御時間を調整してシーケンサ5eに格納されるデータは、制御値dtRct及びマスタークロックカウント値Nupである。ここで、制御値dtRctは、矩形波駆動信号Rctの振幅である矩形波振幅Vrctを制御するための制御値であり、マスタークロックカウント値Nupは、矩形波駆動時間TupにおけるマスタークロックMCLKのカウント値である。矩形波駆動時間Tupは、矩形波発生器5bによってドライブ電極D1,D2を駆動する駆動時間である。 Further, the data stored in the sequencer 5e by adjusting the amplitude and control time of the rectangular wave so as to obtain the target amplitude from the start of oscillation of the angular velocity sensor 1 to the self-excited oscillation are the control value dtRct and the master clock. The count value Nup. Here, the control value dtRct is a control value for controlling the rectangular wave amplitude Vrct which is the amplitude of the rectangular wave drive signal Rct, and the master clock count value Nup is the count value of the master clock MCLK in the rectangular wave drive time Tup. It is. The rectangular wave driving time Tup is a driving time for driving the drive electrodes D1 and D2 by the rectangular wave generator 5b.
<X-Driveの発振回路と制御方法>
 次に、発振制御部5がX-Driveとして機能を発揮する構成について図2を参照しつつ、図5及び図6を用いて説明する。
 発振制御部5がX-Driveとして機能する場合の構成は、角速度センサ1の振る舞いは異なるが、搬送波生成回路6bの回路構成と切替回路5cの制御方法とが異なるだけで、発振制御部5がZ-Driveとして機能する場合の回路構成と同様である。このため、発振制御部5は、X-DriveとZ-Driveとで共用することが可能である。発振制御部5がX-Driveとして機能する場合とZ-Driveとして機能する場合との主な相違点について説明する。
<X-Drive Oscillator Circuit and Control Method>
Next, a configuration in which the oscillation control unit 5 functions as an X-Drive will be described with reference to FIGS. 5 and 6 with reference to FIG.
The configuration when the oscillation control unit 5 functions as X-Drive differs in the behavior of the angular velocity sensor 1, but the oscillation control unit 5 is different only in the circuit configuration of the carrier wave generation circuit 6b and the control method of the switching circuit 5c. The circuit configuration in the case of functioning as Z-Drive is the same. Therefore, the oscillation control unit 5 can be shared by X-Drive and Z-Drive. The main differences between the case where the oscillation control unit 5 functions as X-Drive and the case where it functions as Z-Drive will be described.
 角速度センサ部3の振動部3aをX軸方向で振動させると、Z軸角速度ωzは、検出電極Y1,Y2の搬送波の直交成分として発生し、検出信号Vsx_y1及び検出信号Vsx_y2の差分として検出される。
 また、角速度センサ部3のBPF特性により、ドライブ電極D1,D2に逆相で印加された発振制御部出力信号Vdrx及び発振制御部出力信号-Vdxrは、利得変動、270°位相シフトして検出電極X1,X2から逆相の検出信号Vsx_x1及び検出信号Vsx_x2が出力される。
 搬送波生成回路6bは、前述のとおり搬送波Vsxを検出する。搬送波Vsxは、以下のようにして得られる。
 Vsx=(Vsx_x1-Vsx_x2)/2
When the vibration unit 3a of the angular velocity sensor unit 3 is vibrated in the X-axis direction, the Z-axis angular velocity ωz is generated as a quadrature component of the carrier waves of the detection electrodes Y1 and Y2, and is detected as a difference between the detection signal Vsx_y1 and the detection signal Vsx_y2. .
Further, due to the BPF characteristics of the angular velocity sensor unit 3, the oscillation control unit output signal Vdrx and the oscillation control unit output signal −Vdxr applied to the drive electrodes D1 and D2 in reverse phase are phase-shifted by 270 ° to detect electrodes. A detection signal Vsx_x1 and a detection signal Vsx_x2 having opposite phases are output from X1 and X2.
The carrier wave generation circuit 6b detects the carrier wave Vsx as described above. The carrier wave Vsx is obtained as follows.
Vsx = (Vsx_x1-Vsx_x2) / 2
 図5は、発振制御部5がX-Driveとして機能する際の発振開始区間での発振制御部5の接続状態を示す図である。
 図5に示すように、発振開始区間では、切替回路5cにより角速度センサ部3と矩形波発生器5bとが接続される。図5では、矩形波発生器5bの出力端子とドライブ電極D1,D2とを結ぶ直線により矩形波発生器5bとドライブ電極D1,D2との接続状態が示されている。矩形波発生器5bの出力端子から出力する矩形波駆動信号Rct1が発振制御部出力信号Vdrxとしてドライブ電極D1に入力し、矩形波発生器5bのもう一つの出力端子から出力する矩形波駆動信号Rct2が発振制御部出力信号-Vdrxとしてドライブ電極D2に入力する。なお、矩形波発生器5bの矩形波駆動信号Rct1x,Rct2xは逆相の矩形波であり、発振制御部出力信号Vdrx,-Vdrxは逆相の信号である。
FIG. 5 is a diagram illustrating a connection state of the oscillation control unit 5 in the oscillation start period when the oscillation control unit 5 functions as an X-Drive.
As shown in FIG. 5, in the oscillation start section, the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected by the switching circuit 5c. In FIG. 5, the connection state between the rectangular wave generator 5b and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the rectangular wave generator 5b and the drive electrodes D1, D2. The rectangular wave drive signal Rct1 output from the output terminal of the rectangular wave generator 5b is input to the drive electrode D1 as the oscillation control unit output signal Vdrx, and is output from the other output terminal of the rectangular wave generator 5b. Is input to the drive electrode D2 as the oscillation control unit output signal -Vdrx. Note that the rectangular wave drive signals Rct1x and Rct2x of the rectangular wave generator 5b are rectangular waves having opposite phases, and the oscillation control unit output signals Vdrx and -Vdrx are signals having opposite phases.
 図6は、発振制御部5がX-Driveとして機能する際の安定発振区間での発振制御部5の接続状態を示す図である。安定発振区間では、切替回路5cにより角速度センサ部3とドライバ6eとが接続される。図6では、ドライバ6eの出力端子とドライブ電極D1,D2とを結ぶ直線によりドライバ6eとドライブ電極D1,D2との接続状態が示されている。ドライバ6eの一方の出力端子から出力した自励発振信号Dr1xが発振制御部出力信号Vdrxとしてドライブ電極D1に入力し、ドライバ6eの他方の出力端子から出力した自励発振信号Dr2xが発振制御部出力信号-Vdrxとしてドライブ電極D2に入力する。 FIG. 6 is a diagram illustrating a connection state of the oscillation control unit 5 in a stable oscillation section when the oscillation control unit 5 functions as an X-Drive. In the stable oscillation period, the angular velocity sensor unit 3 and the driver 6e are connected by the switching circuit 5c. In FIG. 6, the connection state between the driver 6e and the drive electrodes D1, D2 is shown by a straight line connecting the output terminal of the driver 6e and the drive electrodes D1, D2. The self-excited oscillation signal Dr1x output from one output terminal of the driver 6e is input to the drive electrode D1 as the oscillation control unit output signal Vdrx, and the self-excited oscillation signal Dr2x output from the other output terminal of the driver 6e is output from the oscillation control unit The signal -Vdrx is input to the drive electrode D2.
 発振制御部5がX-Driveとして機能する場合、ドライバ6eは、安定発振区間では360°発振(正帰還)ループ時にボルテージフォロアとして動作する。ドライバ6eは、発振停止区間では180°発振停止(負帰還)ループ時に反転増幅器として動作する。ここで、ドライバ6eの自励発振信号Dr1x,Dr2xは、互いに逆相の駆動信号である。
 矩形波発生器5bは、矩形波駆動信号の振幅及び駆動時間にほぼ比例して、自励発振の振幅を調整できる。
 切替回路5cは、ドライブ電極D1,D2に矩形波駆動信号Rct1x、Rct2xと自励発振信号Vdrx1,Vdr2xとを選択して発振制御部出力信号Vdrx,-Vdrxとして入力できる。
When the oscillation control unit 5 functions as X-Drive, the driver 6e operates as a voltage follower during a 360 ° oscillation (positive feedback) loop in a stable oscillation period. The driver 6e operates as an inverting amplifier during a 180 ° oscillation stop (negative feedback) loop in the oscillation stop period. Here, the self-excited oscillation signals Dr1x and Dr2x of the driver 6e are drive signals having opposite phases.
The rectangular wave generator 5b can adjust the amplitude of self-oscillation in substantially proportion to the amplitude and driving time of the rectangular wave driving signal.
The switching circuit 5c can select and input the rectangular wave drive signals Rct1x and Rct2x and the self-excited oscillation signals Vdrx1 and Vdr2x to the drive electrodes D1 and D2 as the oscillation control unit output signals Vdrx and −Vdrx.
 シーケンサ5eに格納されるデータも以下のとおりZ-Driveと同種のデータとなる。カウント値NfXは、X-Driveにおいて角速度センサ部3の発振周波数で発振している発振信号であるセンサ発振信号のカウント値及び矩形波駆動信号の矩形波周期CLKのカウント値である。矩形波駆動信号の周波数fdrは、X-Driveにおいて角速度センサ部3の発振周波数fclkをカウンタ値NfXで除算した値(fclk/NfX)に設定される。制御値dtSftXは、位相シフタ6cにおける搬送波Vsxの位相シフト量SftXの制御値である。利得制御値dtAXは、搬送波利得AXの制御値である。制御値dtRctXは、可変増幅器6dにおける矩形波振幅VrctXの制御値である。カウント値NupXは、矩形波駆動時間TupXの矩形波周期CLKのカウント値である。 The data stored in the sequencer 5e is the same type of data as Z-Drive as follows. The count value NfX is a count value of a sensor oscillation signal that is an oscillation signal oscillating at the oscillation frequency of the angular velocity sensor unit 3 in X-Drive, and a count value of a rectangular wave period CLK of the rectangular wave drive signal. The frequency fdr of the rectangular wave drive signal is set to a value (fclk / NfX) obtained by dividing the oscillation frequency fclk of the angular velocity sensor unit 3 by the counter value NfX in X-Drive. The control value dtSftX is a control value of the phase shift amount SftX of the carrier wave Vsx in the phase shifter 6c. The gain control value dtAX is a control value of the carrier wave gain AX. The control value dtRctX is a control value of the rectangular wave amplitude VrctX in the variable amplifier 6d. The count value NupX is a count value of the rectangular wave period CLK of the rectangular wave driving time TupX.
<Z-Drive及びX-Driveの時分割動作>
 図7は、角速度センサ1における時分割動作のイメージ図である。図7(a)は、角速度センサ1における次分割動作のタイミングチャートを示し、図7(b)は、Z-Driveにおけるタイミングチャートを拡大して示している。図7(a)の図中上段は、Z-Drive及びX-Driveの動作区間を模式的に示し、図中下段は、Z-Drive及びX-Driveの各動作区間における発振開始区間T1、安定発振区間T2及び発振停止区間T3のタイミングを示している。図7(b)の図中1段目はZ-Driveの動作区間を模式的に示し、図中2段目はZ-Driveの動作区間における発振開始区間T1、安定発振区間T2及び発振停止区間T3のタイミングを示し、図中3段目はドライブ電極D1,D2に入力する発振制御部出力信号Vdrの電圧波形を示し、図中4段目は搬送波Vszの電圧波形を示している。図7(a)及び図7(b)において横軸は時間を示し、図中左から右に向かって時の経過が表されている。Z-Driveの発振開始区間T1は、第一振動開始区間に相当し、Z-Driveの安定発振区間T2は第一角速度検出区間に相当し、X-Driveの発振開始区間T1は、第二振動開始区間に相当し、X-Driveの安定発振区間T2は第二角速度検出区間に相当する。
<Time-sharing operation of Z-Drive and X-Drive>
FIG. 7 is an image diagram of time-division operation in the angular velocity sensor 1. FIG. 7A shows a timing chart of the next division operation in the angular velocity sensor 1, and FIG. 7B shows an enlarged timing chart in Z-Drive. The upper part of FIG. 7A schematically shows Z-Drive and X-Drive operation sections, and the lower part of FIG. 7A shows the oscillation start section T1 and the stable state in each of the Z-Drive and X-Drive operation sections. The timings of the oscillation period T2 and the oscillation stop period T3 are shown. The first stage in FIG. 7B schematically shows the Z-Drive operation section, and the second stage in the figure shows the oscillation start section T1, the stable oscillation section T2, and the oscillation stop section in the Z-Drive operation section. The timing of T3 is shown, the third stage in the figure shows the voltage waveform of the oscillation control unit output signal Vdr inputted to the drive electrodes D1 and D2, and the fourth stage in the figure shows the voltage waveform of the carrier wave Vsz. In FIG. 7A and FIG. 7B, the horizontal axis indicates time, and the passage of time is represented from left to right in the drawing. The Z-Drive oscillation start interval T1 corresponds to the first vibration start interval, the Z-Drive stable oscillation interval T2 corresponds to the first angular velocity detection interval, and the X-Drive oscillation start interval T1 corresponds to the second vibration start interval T1. The X-Drive stable oscillation period T2 corresponds to the start period, and corresponds to the second angular velocity detection period.
 図7(a)に示すように、1回の測定時間をT(例えば10ミリ秒(ms))として、Z-Drive,X-Driveは各々、T1+T2+T3(たとえば4ms)を発振開始区間T1(例えば1ms)、安定発振区間T2(たとえば2ms)、発振停止区間T3(例えば1ms)の3ステートで発振制御する。角速度は安定発振区間T2に検出される。なお、Z-Drive及びX-Driveの各動作区間のインターバル区間は例えば1msである。 As shown in FIG. 7A, assuming that one measurement time is T (for example, 10 milliseconds (ms)), Z-Drive and X-Drive each have T1 + T2 + T3 (for example, 4 ms) as an oscillation start period T1 (for example, 1 ms), oscillation control is performed in three states of a stable oscillation period T2 (for example, 2 ms) and an oscillation stop period T3 (for example, 1 ms). The angular velocity is detected in the stable oscillation section T2. Note that the interval section of each of the Z-Drive and X-Drive operation sections is, for example, 1 ms.
 搬送波Vsに奇数次歪等の歪成分が発生すると、その歪成分は、搬送波Vsに対して位相が90°シフトして発生し、角速度の同相成分となってノイズ成分となる。そのため、搬送波は歪が少ない方が好ましい。
 本実施形態において、上記ステートの切り替えがドライバ6eと切替回路5cで行われる。切り替え時に発振制御部出力信号Vdrにはノイズが発生しても、そのノイズは搬送波Vsに伝搬しない。何故なら、角速度センサ部3は狭帯域のBPF特性を有しており、切り替え時に発生する発振制御部出力信号Vdrのノイズは除去されるからである。そのため、ステートの制御を発振信号と非同期の信号(例えばCLK信号)で制御としても、歪の少ない搬送波が得られる。なお、検出電極から出力される検出信号も角速度センサ部のBFP特性によって歪の少ない正弦波となる。
When a distortion component such as odd-order distortion is generated in the carrier wave Vs, the distortion component is generated with a phase shift of 90 ° with respect to the carrier wave Vs, and becomes an in-phase component of angular velocity and becomes a noise component. Therefore, it is preferable that the carrier wave has less distortion.
In the present embodiment, the state switching is performed by the driver 6e and the switching circuit 5c. Even if noise occurs in the oscillation control unit output signal Vdr at the time of switching, the noise does not propagate to the carrier wave Vs. This is because the angular velocity sensor unit 3 has a narrow band BPF characteristic, and noise of the oscillation control unit output signal Vdr generated at the time of switching is removed. Therefore, even when the state is controlled by a signal asynchronous with the oscillation signal (for example, the CLK signal), a carrier wave with less distortion can be obtained. Note that the detection signal output from the detection electrode also becomes a sine wave with less distortion due to the BFP characteristics of the angular velocity sensor unit.
<自励発振動作>
 図7に示すように、自励発振動作は以下の3ステートで構成される。
 図7(b)に示すように、発振開始区間T1では、角速度センサ部3の発振周波数fclkに近い周期fclk/Nfの矩形波駆動信号Rct1を発振制御部出力信号Vdrとしてドライブ電極D1,D2にドライブして振動部3aの振動を開始し、矩形波駆動信号Rct1、すなわち発振制御部出力信号Vdrが所望の振幅となるよう、振幅Vrct及び駆動時間DTrct(=Nup/fclk)を制御する。
<Self-excited oscillation>
As shown in FIG. 7, the self-excited oscillation operation is composed of the following three states.
As shown in FIG. 7B, in the oscillation start period T1, a rectangular wave drive signal Rct1 having a period fclk / Nf close to the oscillation frequency fclk of the angular velocity sensor unit 3 is applied to the drive electrodes D1 and D2 as an oscillation control unit output signal Vdr. Driving is performed to start the vibration of the vibration unit 3a, and the amplitude Vrct and the drive time DTrt (= Nup / fclk) are controlled so that the rectangular wave drive signal Rct1, that is, the oscillation control unit output signal Vdr, has a desired amplitude.
 安定発振区間T2では、位相シフタ6cの位相シフト量Sftと可変増幅器6dの利得Aを制御し、自励発振回路5aは、HPF6aと90°位相シフタ6cと可変増幅器6dとドライバ6eとで安定な360°発振(正帰還)ループを形成する。図7(b)に示すように、安定発振区間T2(自励発振区間)は短い区間なので、位相シフト量Sftや利得Aに若干誤差があっても自励発振信号Drの発振振幅、すなわち発振制御部出力信号Vdrの振幅は一定値に維持できる。この区間において、同相信号で角速度が検出される。
 発振停止区間T3では、自励発振回路5aは、上記発振(正帰還)ループを反転し、180°発振停止(負帰還)ループを形成する。それによって、振幅は小さくなり、動作コモン電圧VCOMに収束されて、発振は停止する。
 X-Driveの場合も、上記と同様の動作を行う。
In the stable oscillation period T2, the phase shift amount Sft of the phase shifter 6c and the gain A of the variable amplifier 6d are controlled. A 360 ° oscillation (positive feedback) loop is formed. As shown in FIG. 7B, since the stable oscillation period T2 (self-excited oscillation period) is a short period, even if there is a slight error in the phase shift amount Sft and the gain A, the oscillation amplitude of the self-excited oscillation signal Dr, that is, the oscillation The amplitude of the control unit output signal Vdr can be maintained at a constant value. In this section, the angular velocity is detected with the in-phase signal.
In the oscillation stop period T3, the self-excited oscillation circuit 5a inverts the oscillation (positive feedback) loop to form a 180 ° oscillation stop (negative feedback) loop. As a result, the amplitude is reduced, converged to the operating common voltage VCOM, and oscillation stops.
In the case of X-Drive, the same operation as described above is performed.
<調整値の設定方法>
 次に、角速度センサ1のオープンループ特性から、各調整値を設定する方法について説明する。
 振動部を安定して振動させるためには、駆動信号を、角速度センサの振動部の共振周波数に精度良く合わせる必要がある。そのため、ドライブ電極へ出力する駆動信号の発振周波数が高精度であることが必要であるが、通常、駆動信号の発振周波数の調整や制御は大変難しい。しかし、本実施形態における調整であれば、高精度で容易に調整又は制御を行うことができる。
 Z-Drive時の角速度センサ部3の周波数特性は、周波数スイープしたsin波の発振制御部出力信号Vdrをドライブ電極D1,D2にドライブして検出電極X1,X2,Y1,Y2で検出された搬送波Vsz(=(Vs_x1+Vs_x2+Vs_y1+Vs_y2)/4)の利得を測定することで得られる。角速度センサ部3の周波数特性は、狭帯域のBPF特性となる。
 角速度センサ部3の周波数特性より調整値が決まる。
  Nf:センサ発振周波数fz → 矩形波の周期、CLKカウント値
  Nsft:シフト量1/(4fz)となる位相シフタの調整値
  dtA:センサ利得1/A →発振制御部の利得がAとなるデータ(トータルゲイン0dBで安定発振となる調整値)この状態で安定発振が可能となる。
<Adjustment value setting method>
Next, a method for setting each adjustment value from the open loop characteristics of the angular velocity sensor 1 will be described.
In order to stably vibrate the vibration part, it is necessary to accurately match the drive signal with the resonance frequency of the vibration part of the angular velocity sensor. For this reason, it is necessary that the oscillation frequency of the drive signal output to the drive electrode be highly accurate, but it is usually very difficult to adjust and control the oscillation frequency of the drive signal. However, with the adjustment according to the present embodiment, adjustment or control can be easily performed with high accuracy.
The frequency characteristics of the angular velocity sensor unit 3 during Z-Drive are as follows. The carrier wave detected by the detection electrodes X1, X2, Y1, and Y2 by driving the frequency-swept sine wave oscillation control unit output signal Vdr to the drive electrodes D1 and D2. It is obtained by measuring the gain of Vsz (= (Vs_x1 + Vs_x2 + Vs_y1 + Vs_y2) / 4). The frequency characteristic of the angular velocity sensor unit 3 is a narrow band BPF characteristic.
The adjustment value is determined by the frequency characteristics of the angular velocity sensor unit 3.
Nf: sensor oscillation frequency fz → period of rectangular wave, CLK count value Nsft: adjustment value of phase shifter to be shift amount 1 / (4 fz) dtA: sensor gain 1 / A → data in which gain of oscillation control unit is A ( (Adjustment value for stable oscillation at a total gain of 0 dB) In this state, stable oscillation is possible.
<モニタを使用した調整値の設定方法>
 上述のとおり、角速度センサ部3のBPF特性より設定値を求めることはできるが、角速度センサ部3のBPF特性の測定時間は短くはないし、測定できるテスタも限られるので、角速度センサの生産性に欠ける。
 周波数の調整は、発振の為に必要不可欠であり、角速度は搬送波に比例するので、発振振幅を制御する必要もある。発振振幅は大きいに越したことはない。しかし、発振制御部5の電源限界や角速度センサ部3の振動限界等で発生する歪は、角速度と同期した信号ともなるので、角速度センサの周波数はシステムに適合した適当な値を選定する必要がある。
<Adjustment value setting method using monitor>
As described above, the set value can be obtained from the BPF characteristic of the angular velocity sensor unit 3, but the measurement time of the BPF characteristic of the angular velocity sensor unit 3 is not short, and the number of testers that can be measured is limited. Lack.
Adjustment of the frequency is indispensable for oscillation, and since the angular velocity is proportional to the carrier wave, it is also necessary to control the oscillation amplitude. The oscillation amplitude never exceeds a large. However, since the distortion generated by the power supply limit of the oscillation control unit 5 and the vibration limit of the angular velocity sensor unit 3 becomes a signal synchronized with the angular velocity, it is necessary to select an appropriate value suitable for the system as the frequency of the angular velocity sensor. is there.
 そこで、直交信号Q=Vsと同相信号I=Viaとをモニタする手段を追加した調整方法を提案する。ここでいうモニタする手段とは1つはコンパレータであり、もう1つは振幅を測定するADC(アナログデジタル変換器)である。コンパレータは、入力波と動作コモン電圧VCOMとを比較し、入力波のゼロクロスのタイミングを検出する。振幅測定用ADCは振幅値をデジタルコードに変換する。
 先述の通り、搬送波Vsは直交信号Qと呼ばれ、可変増幅器6dの出力信号Viaは同相信号Iと呼ばれる。よって、Z-Driveにおける搬送波Vszのモニタは、モニタ部1aを構成するコンパレータ及びADCで実行され、発振制御部出力信号Vdrのモニタは、モニタ部1bを構成するコンパレータのみで実行される。
Therefore, an adjustment method is proposed in which means for monitoring the quadrature signal Q = Vs and the in-phase signal I = Via is added. One means for monitoring here is a comparator, and the other is an ADC (analog-digital converter) for measuring amplitude. The comparator compares the input wave with the operating common voltage VCOM and detects the zero-cross timing of the input wave. The amplitude measurement ADC converts the amplitude value into a digital code.
As described above, the carrier wave Vs is called the quadrature signal Q, and the output signal Via of the variable amplifier 6d is called the in-phase signal I. Therefore, monitoring of the carrier wave Vsz in Z-Drive is executed by the comparator and ADC constituting the monitor unit 1a, and monitoring of the oscillation control unit output signal Vdr is executed only by the comparator constituting the monitor unit 1b.
 図8は、モニタ部1aに設けられたコンパレータの出力を出力信号COMPQ、モニタ部1bに設けられたコンパレータの出力を出力信号COMPIとした場合の各モニタから得られる情報を示している。図8の図中1段目は搬送波Vsの電圧波形Vqを示し、2段目はモニタ部1aのコンパレータQの出力信号COMPQの電圧波形を示し、3段目は可変増幅器6dの出力信号Viaの電圧波形を示し、4段目はモニタ部1bのコンパレータの出力信号COMPIの電圧波形を示している。縦軸は電圧を示し、横軸は時間を示し、図8において、左から右に向かって時の経過が表されている。 FIG. 8 shows information obtained from each monitor when the output of the comparator provided in the monitor unit 1a is the output signal COMPQ and the output of the comparator provided in the monitor unit 1b is the output signal COMPI. In FIG. 8, the first stage shows the voltage waveform Vq of the carrier wave Vs, the second stage shows the voltage waveform of the output signal COMPQ of the comparator Q of the monitor unit 1a, and the third stage shows the output signal Via of the variable amplifier 6d. The voltage waveform is shown, and the fourth stage shows the voltage waveform of the output signal COMPI of the comparator of the monitor unit 1b. The vertical axis represents voltage, the horizontal axis represents time, and in FIG. 8, the passage of time is represented from left to right.
 ADCによって検出される搬送波の振幅をAQと定義する。モニタ部1aのコンパレータの出力信号の1回目の立ち上がり時刻をtQ(0)と定義し、2回目の立ち上がり時刻をtQ(1)と定義し、n-1回目の立ち上がり時刻をtQ(n)と定義する。また、モニタ部1bのコンパレータの出力信号の1回目の立ち上がり時刻をtI(0)と定義し、2回目の立ち上がり時刻をtI(1)と定義し、n-1回目の立ち上がり時刻をtI(n)と定義する。ここで、矩形波周期クロック信号の周波数をfclkとすると、以下の情報が得られ、制御が可能となる。
 角速度センサ1の発振周期のカウント値Nfは、「tQ(n+1)-tQ(n))/fclk」によって得られる。位相シフタ6cの位相シフト量のカウント値Nsftは、「tI(n)-tQ(n))/fclk」によって得られる。
 そこで、位相シフタ6cは、カウント値Nfが位相シフト量のカウント値Nsftの4倍、すなわち「Nf=4×Nsft」となる制御値dtSftによって制御される。
The carrier wave amplitude detected by the ADC is defined as AQ. The first rise time of the output signal of the comparator of the monitor unit 1a is defined as tQ (0), the second rise time is defined as tQ (1), and the (n-1) th rise time is defined as tQ (n). Define. Also, the first rise time of the output signal of the comparator of the monitor unit 1b is defined as tI (0), the second rise time is defined as tI (1), and the (n-1) th rise time is defined as tI (n ). Here, if the frequency of the rectangular wave periodic clock signal is fclk, the following information is obtained and control is possible.
The count value Nf of the oscillation period of the angular velocity sensor 1 is obtained by “tQ (n + 1) −tQ (n)) / fclk”. The count value Nsft of the phase shift amount of the phase shifter 6c is obtained by “tI (n) −tQ (n)) / fclk”.
Therefore, the phase shifter 6c is controlled by a control value dtSft in which the count value Nf is four times the count value Nsft of the phase shift amount, that is, “Nf = 4 × Nsft”.
<周波数データの習得>
 先述の通り、自励発振回路5aが360°発振(正帰還)ループを形成して発振しているとき、角速度センサ部3は、角速度センサ部3のBPF特性の利得最大値を持つ周波数に引きこまれて発振する。よって、この時、先述の説明どおり搬送波Vs及び可変増幅器6dの出力信号Viaを測定すれば、センサ発振のカウント値Nf、矩形波周期クロック信号のカウント値Nf及び位相シフト量のカウント値Nsftが得られる。
<Acquisition of frequency data>
As described above, when the self-excited oscillation circuit 5a oscillates by forming a 360 ° oscillation (positive feedback) loop, the angular velocity sensor unit 3 pulls to a frequency having the maximum gain of the BPF characteristic of the angular velocity sensor unit 3. It oscillates. Therefore, at this time, if the carrier wave Vs and the output signal Via of the variable amplifier 6d are measured as described above, the sensor oscillation count value Nf, the rectangular wave period clock signal count value Nf, and the phase shift amount count value Nsft are obtained. It is done.
<発振開始時の調整方法>
 振動部3aの発振開始時の矩形波駆動信号を発振制御部出力信号とする場合のこの発振制御部出力信号の発振振幅の調整方法について図9から図11を用いて説明する。図9は、矩形波発生器5bが出力する矩形波駆動信号の発振振幅の調整方法を説明する図である。図9(a)は、発振開始区間及び安定発振区間での搬送波Vsのエンベロープ特性を示す図である。横軸は時間(ms)を示し、縦軸は搬送波Vsの振幅電圧(Vpp)を示している。振幅電圧は、搬送波Vsの最大電圧値と最小電圧値との電位差である。曲線L3は、矩形波駆動信号の発振振幅を調整しない場合の搬送波Vsのエンベロープ特性を示し、曲線L4は、自励発振のみで発振させた場合の搬送波Vsのエンベロープ特性を示し、曲線L5は、矩形波駆動信号の発振振幅を調整した場合の搬送波Vsのエンベロープ特性を示している。目標振幅値Vcwは、搬送波Vsの立ち上がり時間が短く、かつ安定発振期間でビートが生じさせないための目標値である。図9(b)は、ドライブ電極D1,D2に入力する発振制御部出力信号の振幅特性を示している。横軸は時間(ms)を示し、縦軸は発振制御部出力信号の振幅電圧(Vpp)を示している。図9(c)は、矩形波駆動信号を調整した後の搬送波Vsの振幅特性を示している。横軸は時間(ms)を示し、縦軸は搬送波Vsの振幅電圧(Vpp)を示している。
<Adjustment method at the start of oscillation>
A method for adjusting the oscillation amplitude of the oscillation control unit output signal when the rectangular wave drive signal at the start of oscillation of the oscillation unit 3a is used as the oscillation control unit output signal will be described with reference to FIGS. FIG. 9 is a diagram illustrating a method for adjusting the oscillation amplitude of the rectangular wave drive signal output from the rectangular wave generator 5b. FIG. 9A is a diagram illustrating envelope characteristics of the carrier wave Vs in the oscillation start period and the stable oscillation period. The horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the carrier wave Vs. The amplitude voltage is a potential difference between the maximum voltage value and the minimum voltage value of the carrier wave Vs. A curve L3 shows the envelope characteristic of the carrier wave Vs when the oscillation amplitude of the rectangular wave drive signal is not adjusted, a curve L4 shows the envelope characteristic of the carrier wave Vs when oscillated only by self-excited oscillation, and the curve L5 is The envelope characteristic of the carrier wave Vs when the oscillation amplitude of the rectangular wave drive signal is adjusted is shown. The target amplitude value Vcw is a target value for preventing the beat from occurring in the stable oscillation period with a short rise time of the carrier wave Vs. FIG. 9B shows the amplitude characteristics of the oscillation control unit output signal input to the drive electrodes D1 and D2. The horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the oscillation control unit output signal. FIG. 9C shows the amplitude characteristic of the carrier wave Vs after adjusting the rectangular wave drive signal. The horizontal axis represents time (ms), and the vertical axis represents the amplitude voltage (Vpp) of the carrier wave Vs.
 矩形波発生器5bが出力する矩形波駆動信号の周波数は、先に求めた矩形波周期クロック信号のカウント値Nfで制御する。当該矩形波の発振振幅はADCでモニタする。
 振動部3aの発振開始時は、角速度センサ部3と矩形波発生器5bとが接続されているため、オープンループであり、角速度センサ部3や発振制御部5の各利得とは無関係に動作する。しかしながら、本例では、センサ利得は1倍、発振制御部5の利得も1倍として説明する。つまり、安定発振時、搬送波Vsの振幅電圧Vppが0.5Vであるならば、発振制御部出力信号Vdrの振幅電圧Vppは0.5Vとなる。
The frequency of the rectangular wave driving signal output from the rectangular wave generator 5b is controlled by the count value Nf of the rectangular wave periodic clock signal obtained previously. The oscillation amplitude of the rectangular wave is monitored by the ADC.
At the start of oscillation of the vibration unit 3a, the angular velocity sensor unit 3 and the rectangular wave generator 5b are connected, so that the oscillation unit 3a is open loop and operates regardless of the gains of the angular velocity sensor unit 3 and the oscillation control unit 5. . However, in this example, description will be made assuming that the sensor gain is 1 time and the gain of the oscillation control unit 5 is also 1 time. That is, during stable oscillation, if the amplitude voltage Vpp of the carrier wave Vs is 0.5V, the amplitude voltage Vpp of the oscillation control unit output signal Vdr is 0.5V.
 ここで、たとえばsin波である搬送波Vsの振幅電圧が3倍(1.5Vpp)であり、周期がマスタークロックMCLKの整数倍であって角速度センサ部3の発振周期とは若干誤差を持つ矩形波をドライブ電極D1,D2にドライブし続けた場合、検出電極X1,X2,Y1,Y2で検出される検出信号の波形は、角速度センサ部3のBPF特性により、高調波は除去されて、きれいなsin波となる。また、図9(a)に示すように、外部ドライブ(すなわち矩形波発生器5bによるドライブ)による搬送波Vsのエンベロープ(曲線L3)の立ち上がりは、自励発振のエンベロープ(曲線L4)の立ち上りと比較して、直線的に3倍程度早く立ち上がる。また、外部ドライブによる搬送波Vsのエンベロープの立ち上がりは、リニア特性から徐々にエクスポーネンシャル特性に近づき、最終的には角速度センサ部3の発振周期とドライブ電極D1,D2をドライブする発振制御部出力信号の周期との周期誤差がビートとなって、搬送波Vsに揺らぎが発生する。 Here, for example, the amplitude voltage of the carrier wave Vs that is a sine wave is three times (1.5 Vpp), the period is an integral multiple of the master clock MCLK, and the rectangular wave has a slight error from the oscillation period of the angular velocity sensor unit 3. Is continuously driven to the drive electrodes D1 and D2, the detection signal waveforms detected by the detection electrodes X1, X2, Y1, and Y2 are removed from the harmonics due to the BPF characteristics of the angular velocity sensor unit 3, and clean sin. Become a wave. Further, as shown in FIG. 9A, the rise of the envelope (curve L3) of the carrier wave Vs by the external drive (that is, drive by the rectangular wave generator 5b) is compared with the rise of the self-excited oscillation envelope (curve L4). And it rises about 3 times faster in a straight line. The rise of the envelope of the carrier wave Vs due to the external drive gradually approaches the exponential characteristic from the linear characteristic, and finally the oscillation period of the angular velocity sensor unit 3 and the oscillation control unit output signal that drives the drive electrodes D1 and D2 The period error with the period becomes a beat, and the carrier wave Vs fluctuates.
 しかし、発振開始区間T1(たとえば1ms)の発振振幅特性はリニアな特性であり、ループ発振に切り替わると周波数誤差は無くなるので、揺らぎも発生しない。この発振振幅特性は矩形波駆動信号の振幅と駆動時間とに比例するので、以下のように制御できる。
 搬送波の目標振幅値Vcwは、振幅電圧Vppを0.5Vとして調整する。
 まず矩形波発生器5bは、矩形波駆動信号Rct1の矩形波駆動電圧Vrctの振幅電圧Vppを1.5Vとし、矩形波駆動時間Tupを1msとし、矩形波周期クロック信号のカウント値Nfでカウントされた周期の矩形波を出力する。
However, the oscillation amplitude characteristic in the oscillation start section T1 (for example, 1 ms) is a linear characteristic, and since there is no frequency error when switching to loop oscillation, no fluctuation occurs. Since this oscillation amplitude characteristic is proportional to the amplitude of the rectangular wave drive signal and the drive time, it can be controlled as follows.
The target amplitude value Vcw of the carrier wave is adjusted by setting the amplitude voltage Vpp to 0.5V.
First, the rectangular wave generator 5b sets the amplitude voltage Vpp of the rectangular wave driving voltage Vrct of the rectangular wave driving signal Rct1 to 1.5 V, sets the rectangular wave driving time Tup to 1 ms, and is counted by the count value Nf of the rectangular wave period clock signal. A rectangular wave with a specified period is output.
 この時得られた検出波がαVcw(=0.6Vpp、α=1.2)のsin波であったなら、矩形波駆動電圧Vrctの振幅電圧Vppを1.25倍(Vup/α=1.25Vpp)にする。または駆動時間Tupを0.8333倍(Tup/α=0.8333Tup)にする。このような制御により安定発振時の検出振幅制御が可能となる。
 矩形波駆動信号Rctの振幅調整値は、1.25Vppとなる調整値に決定され、矩形波駆動信号Rctで駆動する駆動時間Nupは、発振開始区間T1が1msとなる矩形波周期クロック信号のカウント値に決定される。
 または、以下のようにも調整値を決めることができる。
 矩形波駆動信号Rctの振幅調整値は、振幅電圧Vppの1.5倍(1.5Vpp)となる調整値に決定され、駆動時間Nupは、発振開始区間T1が矩形波周期クロック信号のカウント値に決定される。
If the detected wave obtained at this time is a sin wave of αVcw (= 0.6 Vpp, α = 1.2), the amplitude voltage Vpp of the rectangular wave drive voltage Vrct is 1.25 times (Vup / α = 1. 25Vpp). Alternatively, the driving time Tup is increased by 0.8333 times (Tup / α = 0.8333 Tup). Such control enables detection amplitude control during stable oscillation.
The amplitude adjustment value of the rectangular wave drive signal Rct is determined to be an adjustment value that is 1.25 Vpp, and the drive time Nup that is driven by the rectangular wave drive signal Rct is a count of the rectangular wave period clock signal that causes the oscillation start period T1 to be 1 ms. Determined by value.
Alternatively, the adjustment value can be determined as follows.
The amplitude adjustment value of the rectangular wave drive signal Rct is determined to be an adjustment value that is 1.5 times the amplitude voltage Vpp (1.5 Vpp), and the drive time Nup is the count value of the rectangular wave period clock signal during the oscillation start period T1. To be determined.
 図10及び図11は、矩形波発生器5bが出力する矩形波駆動信号の発振振幅の調整方法を説明する図である。図10は、矩形波駆動信号の発振振幅を調整することにより、搬送波Vsにビートが生じるのを防止する例を示している。図11は、矩形波駆動信号の駆動時間を調整することにより、搬送波Vsにビートが生じるのを防止する例を示している。図10(a)及び図11(a)は、図9(a)と同様の方法で図示されており、図10(b)及び図11(b)は、図9(b)と同様の方法で図示されており、図10(c)及び図11(c)は、図9(c)と同様の方法で図示されている。
 図10(b)に示すように、発振開始区間の矩形波駆動信号の矩形波駆動電圧Vrctを調整し、図10(c)に示すように、搬送波Vsの振幅電圧を目標振幅値Vcwに設定する。
 図11(b)に示すように、矩形波出力振幅でドライブ電極D1,D2を駆動する駆動時間が短くなるように調整し、図11(c)に示すように、搬送波Vsの振幅電圧を目標振幅値Vcwに設定する。
10 and 11 are diagrams for explaining a method of adjusting the oscillation amplitude of the rectangular wave drive signal output from the rectangular wave generator 5b. FIG. 10 shows an example in which a beat is prevented from occurring in the carrier wave Vs by adjusting the oscillation amplitude of the rectangular wave drive signal. FIG. 11 shows an example of preventing a beat from occurring in the carrier wave Vs by adjusting the driving time of the rectangular wave driving signal. 10 (a) and 11 (a) are illustrated in the same manner as in FIG. 9 (a), and FIGS. 10 (b) and 11 (b) are similar to those in FIG. 9 (b). 10 (c) and 11 (c) are illustrated in the same manner as FIG. 9 (c).
As shown in FIG. 10B, the rectangular wave drive voltage Vrct of the rectangular wave drive signal in the oscillation start period is adjusted, and the amplitude voltage of the carrier wave Vs is set to the target amplitude value Vcw as shown in FIG. To do.
As shown in FIG. 11B, the drive time for driving the drive electrodes D1, D2 is adjusted to be short with the rectangular wave output amplitude, and the amplitude voltage of the carrier wave Vs is set to the target as shown in FIG. 11C. Set to the amplitude value Vcw.
 このように、矩形波出力信号の振幅情報(第一の振幅情報の一例)と時間情報(第一の時間情報の一例)は、検出信号(例えば搬送波Vs)のエンベロープにより決定される。切替回路5cは、検出信号(例えば搬送波Vs)のエンベロープがリニア特性である間に、矩形波駆動信号Rctによる発振制御部出力信号から自励発振信号による発振制御部出力信号を出力するように切り替わる。切替回路5cが、矩形波駆動信号を発振制御部出力信号として出力して振動部3aを振動させてから自励発振回路5aから自励発振信号を出力するように切り替えるとき又はあとにおいて、モニタ部1a,1bがモニタする振幅検出信号が、所定値以上の場合には駆動信号の振幅を小さくする調整、又は、矩形波駆動信号が発振制御部出力信号として出力される時間を短くする調整を行う。また、検出信号(例えば搬送波Vs)の振幅が当該検出信号の出力時間に対してリニア特性でない場合、矩形波駆動信号の振幅を小さくする調整、又は、矩形波駆動信号が出力される時間を短くする調整を行う。 Thus, the amplitude information (an example of the first amplitude information) and the time information (an example of the first time information) of the rectangular wave output signal are determined by the envelope of the detection signal (for example, the carrier wave Vs). While the envelope of the detection signal (for example, the carrier wave Vs) has a linear characteristic, the switching circuit 5c switches so as to output the oscillation control unit output signal based on the self-excited oscillation signal from the oscillation control unit output signal based on the rectangular wave drive signal Rct. . When the switching circuit 5c switches to output a self-excited oscillation signal from the self-excited oscillation circuit 5a after outputting the rectangular wave drive signal as an oscillation control unit output signal to vibrate the vibration unit 3a, the monitor unit When the amplitude detection signals monitored by 1a and 1b are greater than or equal to a predetermined value, adjustment is made to reduce the amplitude of the drive signal, or adjustment to shorten the time during which the rectangular wave drive signal is output as the oscillation control unit output signal. . In addition, when the amplitude of the detection signal (for example, the carrier wave Vs) is not linear with respect to the output time of the detection signal, adjustment to reduce the amplitude of the rectangular wave drive signal or shorten the time for outputting the rectangular wave drive signal. Make adjustments.
<安定発振時の調整方法>
 図12は、角速度センサ1の連続発振時における搬送波Vsの発振振幅特性を模式的に示す図である。縦軸は搬送波Vsの振幅電圧Vppを示し、横軸は時間を示している。図中左から右に向かって時の経過が表されている。
 角速度センサ1の発振は停止動作を行わなければ、上記状態から発振を維持する。ここでループ利得が1(例えば、角速度センサ部3の利得が1/Aであり、可変増幅器6dの利得がAであるとする)であるならば、図12に曲線L5で示すように、搬送波Vsの発振振幅は一定値に維持される。一方、搬送波Vsの発振振幅は、ループ利得が1より大きければ徐々に大きくなり(曲線L6参照)、ループ利得が1より小さければ徐々に小さくなる(曲線L7参照)。ただし、比較的Q値が低い角速度センサ部の発振でも、その時間変化は小さい。
<Adjustment method for stable oscillation>
FIG. 12 is a diagram schematically showing the oscillation amplitude characteristic of the carrier wave Vs when the angular velocity sensor 1 continuously oscillates. The vertical axis represents the amplitude voltage Vpp of the carrier wave Vs, and the horizontal axis represents time. The passage of time is shown from left to right in the figure.
The oscillation of the angular velocity sensor 1 is maintained from the above state unless a stop operation is performed. Here, if the loop gain is 1 (for example, the gain of the angular velocity sensor unit 3 is 1 / A and the gain of the variable amplifier 6d is A), as shown by a curve L5 in FIG. The oscillation amplitude of Vs is maintained at a constant value. On the other hand, the oscillation amplitude of the carrier wave Vs gradually increases if the loop gain is greater than 1 (see curve L6), and gradually decreases if the loop gain is less than 1 (see curve L7). However, even with the oscillation of the angular velocity sensor unit having a relatively low Q value, the time change is small.
 先述の発振開始動作の後、発振ループを形成する。この際、モニタ部1aのADCにより、0.5ms程度のサンプリングレートで搬送波Vsの発振振幅を測定する。調整判定は1サンプリング前の振幅AQ(n-1)と、今回の振幅AQ(n)とを比較し、その差分が閾値+ΔTHを超えた場合にはループ利得が1より大きく、その差分が閾値-ΔTHを下回る場合にはループ利得が1より小さいため、可変増幅器6dの利得を変更する調整を行う。
 より具体的には、下記の通りである。
 「AQ(n)-AQ(n-1)」の差分が閾値+ΔTHを超えている場合には、可変増幅器6dの利得を下げる調整を行う。
 「AQ(n)-AQ(n-1)」の差分が閾値-ΔTH以下である(閾値THと絶対値が同じであって符号がマイナス(-)の閾値。負の閾値を「-TH」と表す場合がある)場合には、可変増幅器6dの利得を上げる調整を行う。
 「AQ(n)-AQ(n-1)」の差分が閾値+ΔTH以下、かつ、-ΔTH以上である場合には、可変増幅器6dの利得を維持する。
 これによって、自励発振ループを形成したときの安定発振を実現することができる。
 また先述の発振動作でも発振停止動作は必要である。
After the above-described oscillation start operation, an oscillation loop is formed. At this time, the oscillation amplitude of the carrier wave Vs is measured by the ADC of the monitor unit 1a at a sampling rate of about 0.5 ms. In the adjustment determination, the amplitude AQ (n−1) before one sampling is compared with the current amplitude AQ (n), and when the difference exceeds the threshold value + ΔTH, the loop gain is larger than 1, and the difference is the threshold value. When the value is less than −ΔTH, the loop gain is smaller than 1. Therefore, adjustment for changing the gain of the variable amplifier 6d is performed.
More specifically, it is as follows.
When the difference of “AQ (n) −AQ (n−1)” exceeds the threshold value + ΔTH, adjustment is performed to lower the gain of the variable amplifier 6d.
The difference between “AQ (n) −AQ (n−1)” is equal to or smaller than the threshold −ΔTH (threshold having the same absolute value as the threshold TH and having a minus sign (−). The negative threshold is “−TH”. In some cases, the gain of the variable amplifier 6d is adjusted to increase.
When the difference of “AQ (n) −AQ (n−1)” is equal to or less than the threshold + ΔTH and equal to or greater than −ΔTH, the gain of the variable amplifier 6d is maintained.
As a result, stable oscillation when a self-excited oscillation loop is formed can be realized.
Also, the oscillation stop operation is necessary even in the above-described oscillation operation.
 図13は、発振制御部5のループ利得が1より大きい場合の搬送波Vsの発振振幅調整の一例を模式的に示す図である。図13(a)及び図13(b)の図中上段には、発振制御部5の発振振幅特性が示され、図中中段には、発振制御部5のループ利得が示され、図中下段には、調整判定結果が示されている。図中上段の発振制御部5の発振振幅特性において、縦軸は搬送波Vsの振幅電圧Vppを示し、横軸は時間を示し、図中左から右に向かって時の経過が示されている。図中中段及び下段の長方形枠は、発振振幅調整のタイミングを示し、長方形枠毎に調整判定及び発振振幅調整が行われる。図中中段の当該長方形枠内の数値は、発振制御部5のループ利得を表している。図中下段の当該長方形枠内の等号は1サンプル前の振幅値と今回の振幅値とが等しいことを表し、不等号(>)は1サンプル前の振幅値が今回の振幅値よりも大きいことを表し、不等号(<)は1サンプル前の振幅値が今回の振幅値よりも小さいことを表し、等号(=)は1サンプル前の振幅値が今回の振幅値と同じことを表す。 FIG. 13 is a diagram schematically illustrating an example of the adjustment of the oscillation amplitude of the carrier wave Vs when the loop gain of the oscillation control unit 5 is greater than one. 13A and 13B show the oscillation amplitude characteristics of the oscillation control unit 5, the middle stage shows the loop gain of the oscillation control unit 5, and the lower part of the figure. Shows the adjustment determination result. In the oscillation amplitude characteristic of the oscillation control unit 5 in the upper stage in the figure, the vertical axis indicates the amplitude voltage Vpp of the carrier wave Vs, the horizontal axis indicates time, and the time passage is shown from left to right in the figure. In the figure, the middle and lower rectangular frames indicate the timing of oscillation amplitude adjustment, and adjustment determination and oscillation amplitude adjustment are performed for each rectangular frame. The numerical value in the rectangular frame in the middle of the figure represents the loop gain of the oscillation control unit 5. In the figure, the equal sign in the rectangular frame at the bottom indicates that the amplitude value of the previous sample is equal to the current amplitude value, and the inequality sign (>) indicates that the amplitude value of the previous sample is greater than the current amplitude value. The inequality sign (<) indicates that the amplitude value one sample before is smaller than the current amplitude value, and the equal sign (=) indicates that the amplitude value one sample before is the same as the current amplitude value.
 図13(a)の図中上段に示すように、発振制御部5の発振動作の後、すなわち矩形波駆動時間Tupの経過後、発振制御部5は発振ループを形成する。0.5ms程度のサンプリングレートで発振振幅を測定する。先述の調整判定に従い、発振制御部5の利得を調整する。図13(a)の図中下段に示すように、本例では、発振振幅が大きくなる調整判定が続き、図13(a)の図中中段に示すように、発振制御部5の発振ループの利得が0.88になると当該利得が保持される。その後、4回連続で、1サンプル前の振幅値と今回の振幅値とが等しい(=)という調整判定結果となる。これにより、発振制御部5は、振幅調整が終了したと判断し、-1倍の反転ループを形成し発振を停止する。目標振幅値Vcwは例えば1.2Vなので、発振制御部5は搬送波Vsの振幅値が問題ないと判断する。搬送波Vsの振幅値が目標振幅値Vcwから大きくずれているときは、調整利得に設定し、上述の動作をもう一度繰り返し、搬送波Vsの発振振幅のより正確な調整値を得られるようにしても良い。 As shown in the upper part of FIG. 13A, the oscillation control unit 5 forms an oscillation loop after the oscillation operation of the oscillation control unit 5, that is, after the rectangular wave driving time Tup has elapsed. The oscillation amplitude is measured at a sampling rate of about 0.5 ms. The gain of the oscillation control unit 5 is adjusted according to the adjustment determination described above. As shown in the lower part of FIG. 13A, in this example, the adjustment determination for increasing the oscillation amplitude continues, and as shown in the middle part of FIG. 13A, the oscillation loop of the oscillation control unit 5 is increased. When the gain reaches 0.88, the gain is maintained. After that, the adjustment determination result that the amplitude value one sample before and the current amplitude value are equal (=) is obtained four times in succession. As a result, the oscillation control unit 5 determines that the amplitude adjustment has been completed, forms a −1 times inversion loop, and stops oscillation. Since the target amplitude value Vcw is, for example, 1.2 V, the oscillation control unit 5 determines that there is no problem with the amplitude value of the carrier wave Vs. When the amplitude value of the carrier wave Vs is greatly deviated from the target amplitude value Vcw, the adjustment gain is set, and the above operation is repeated once more so that a more accurate adjustment value of the oscillation amplitude of the carrier wave Vs can be obtained. .
 上述の調整を行えば、図13(b)に示すように、搬送波Vsの発振振幅は矩形波発生器5bが出力する矩形波の出力信号Vrctで制御され目標振幅値Vcwとなる。搬送波Vsの発振振幅は利得調整もされているので目標振幅値Vcwを維持する。
 図14は、発振制御部5のループ利得が1より小さい場合の搬送波Vsの発振振幅調整の一例を模式的に示す図である。図14(a)における図示の方法は、図13(a)における図示の方法と同様であり、図14(b)における図示の方法は、図13(b)における図示の方法と同様であるため、説明は省略する。
 図14(a)の図中下段に示すように、本例では、発振振幅が小さくなる調整判定が続き、図14(a)の図中中段に示すように、発振制御部5の発振ループの利得が1.12になると当該利得が保持される。その後の制御は図13を用いて説明したのと同様の制御により、搬送波Vsの振幅調整が実行される。
If the above-described adjustment is performed, as shown in FIG. 13B, the oscillation amplitude of the carrier wave Vs is controlled by the rectangular wave output signal Vrct output from the rectangular wave generator 5b to become the target amplitude value Vcw. Since the oscillation amplitude of the carrier wave Vs is also adjusted in gain, the target amplitude value Vcw is maintained.
FIG. 14 is a diagram schematically illustrating an example of the oscillation amplitude adjustment of the carrier wave Vs when the loop gain of the oscillation control unit 5 is smaller than 1. The method shown in FIG. 14A is the same as the method shown in FIG. 13A, and the method shown in FIG. 14B is the same as the method shown in FIG. 13B. The description is omitted.
As shown in the lower part of FIG. 14A, in this example, the adjustment determination for decreasing the oscillation amplitude continues, and as shown in the middle part of FIG. 14A, the oscillation loop of the oscillation control unit 5 When the gain reaches 1.12, the gain is maintained. Thereafter, the amplitude adjustment of the carrier wave Vs is performed by the same control as described with reference to FIG.
<調整の手順>
 次に、図15から図17を用いて搬送波Vsの振幅調整の手順について説明する。
(シリコンデバイスの調整)
 まず、発振制御部5の調整が必要である。通常、発振制御部5はCMOS(Complementary MOS(Metal-Oxide-Semiconductor):相補型MOS)シリコンデバイスで製造される。
 温度や電源電圧のドリフト耐量の高い発振制御部5は配置できるが、発振制御部5は抵抗ばらつきや容量ばらつきには有感である。特に位相シフタ6cは抵抗ばらつきや容量ばらつきに有感でり、位相シフト量の調整が必要である。よって、電圧源、電流源、マスタークロックMCLKの周波数、位相シフタ6cの位相シフト量のターゲット値などを測定し、その調整値をEEPROM (Electrically Erasable Programmable ROM(Read Only Memory))やヒューズ型PROM(Programmable ROM)などの不揮発性メモリに格納する。当該不揮発性メモリは、例えばシーケンサ5eに設けられている。この手順はモジュール組立工程前でもできるので、CMOSデバイス単体の選別試験時に行うのが好適である。
<Adjustment procedure>
Next, the procedure for adjusting the amplitude of the carrier wave Vs will be described with reference to FIGS.
(Silicon device adjustment)
First, the oscillation control unit 5 needs to be adjusted. Usually, the oscillation control unit 5 is manufactured by a CMOS (Complementary MOS (Metal-Oxide-Semiconductor): complementary MOS) silicon device.
Although the oscillation control unit 5 having a high temperature and power supply voltage drift tolerance can be arranged, the oscillation control unit 5 is sensitive to variations in resistance and capacitance. In particular, the phase shifter 6c is sensitive to variations in resistance and capacitance, and it is necessary to adjust the amount of phase shift. Therefore, the voltage source, the current source, the frequency of the master clock MCLK, the target value of the phase shift amount of the phase shifter 6c, and the like are measured. Store in a nonvolatile memory such as Programmable ROM). The nonvolatile memory is provided in the sequencer 5e, for example. Since this procedure can be performed even before the module assembly process, it is preferable to perform this procedure at the time of a screening test of a single CMOS device.
 ここで、シリコンデバイスの調整手順について図15を用いて説明する。図15は、シリコンデバイスの調整手順の流れの一例を示すフローチャートである。
 図15に示す調整手順は、例えばモジュール組立工程前のCOMSデバイス単体の選別試験において実行される。
 シリコンデバイスの調整手順において、まず、ステップS1において、基準値発生部5dを調整し、ステップS3に移行する。ステップS1では、基準値発生部5dが出力する動作コモン電圧VCOMの電圧値、基準電圧VREFの電圧値及びマスタークロックMCLKの周波数が調整される。基準電圧VREFは、電圧源の出力電圧及び電流源の出力電流を生成するための基準電圧に用いられる。
Here, the adjustment procedure of the silicon device will be described with reference to FIG. FIG. 15 is a flowchart illustrating an example of a flow of a silicon device adjustment procedure.
The adjustment procedure shown in FIG. 15 is executed, for example, in a screening test for a single COMS device before the module assembly process.
In the adjustment procedure of the silicon device, first, in step S1, the reference value generating unit 5d is adjusted, and the process proceeds to step S3. In step S1, the voltage value of the operation common voltage VCOM output from the reference value generator 5d, the voltage value of the reference voltage VREF, and the frequency of the master clock MCLK are adjusted. The reference voltage VREF is used as a reference voltage for generating the output voltage of the voltage source and the output current of the current source.
 ステップS3では、位相シフタ特性を確認し、ステップS5に移行する。ステップS3では、位相シフタ6cの位相シフタ量や位相シフト量のターゲット値などが測定されて確認される。
 ステップS5では、ステップS3において確認された各値をメモリに書き込んでシリコンデバイスの調整手順は終了する。ステップS5では、シーケンサ5eに設けられた不揮発性メモリ(不図示)に、位相シフタ6cの位相シフタ量、位相シフタ量のターゲット値、マスタークロックMCLKの周波数などが不揮発性メモリに書き込まれる。
In step S3, the phase shifter characteristics are confirmed, and the process proceeds to step S5. In step S3, the phase shifter amount of the phase shifter 6c, the target value of the phase shift amount, and the like are measured and confirmed.
In step S5, each value confirmed in step S3 is written in the memory, and the silicon device adjustment procedure is completed. In step S5, the phase shifter amount of the phase shifter 6c, the target value of the phase shifter amount, the frequency of the master clock MCLK, and the like are written in the nonvolatile memory (not shown) provided in the sequencer 5e.
 次に、センサモジュールの調整及び発振周波数制御の具体的な処理について図16を用いて説明する。図16は、センサモジュールの調整及び発振周波数制御の処理の流れの一例を示すフローチャートである。
<センサモジュールの調整>
 発振制御調整は、モジュール組立工程後に、当該工程で組み立てられた角速度センサモジュール(角速度センサ部3)の発振周波数を測定して調整する。角速度センサモジュールの発振周波数の測定方法は、先述の各区間T1,T2,T3(図7参照)における動作(発振動作や自励発振動作)に従って振動部3aを振動させ、安定発振区間T2においてモニタ1a、1bからの出力信号を検出する。調整前の矩形波発生器5bが出力する矩形波発振周期のカウント値Nfと位相シフタ6cの制御値dtSftは、たとえば標準値(例えば量産実績の平均値)に設定され(ステップS11)、発振制御調整が開始される(ステップS13からステップS21)。
Next, specific processing of sensor module adjustment and oscillation frequency control will be described with reference to FIG. FIG. 16 is a flowchart illustrating an example of a flow of processing of sensor module adjustment and oscillation frequency control.
<Adjustment of sensor module>
In the oscillation control adjustment, after the module assembly process, the oscillation frequency of the angular velocity sensor module (angular velocity sensor unit 3) assembled in the process is measured and adjusted. The method of measuring the oscillation frequency of the angular velocity sensor module is to vibrate the vibrating part 3a according to the operation (oscillation operation or self-excited oscillation operation) in each of the above-described sections T1, T2, T3 (see FIG. 7) and monitor in the stable oscillation section T2. Output signals from 1a and 1b are detected. The square wave oscillation period count value Nf output from the square wave generator 5b before adjustment and the control value dtSft of the phase shifter 6c are set to, for example, standard values (for example, average values of mass production results) (step S11), and oscillation control is performed. Adjustment is started (from step S13 to step S21).
<発振周波数制御>
 Q値が比較的低い角速度センサ部3は、周波数誤差があっても発振は開始する。よって、矩形波発生器5bが出力する矩形波発振周期のカウント値Nfと位相シフタ6cの制御値dtSftを許容周波数誤差範囲でスィープしていけば、角速度センサ部3はいずれかの条件で発振を開始する(ステップS11の次のステップS13における発振開始処理)。角速度センサ部3が発振を開始して発振ループを構成すれば(安定発振区間T2の状態)、おのずと角速度センサ部3の発振周波数に引き込まれ、角速度センサ部3は、安定発振した状態をある程度維持する(ステップS13における自励発振処理)。このため、この安定発振した状態の角速度センサ部3の発振周期のカウント値Nfと位相シフト量のカウント値Nsftとを測定する(ステップS13の次のステップS15)ことにより、角速度センサ部3の発振周波数の正確な値がわかる。尚、位相シフタ6cの位相シフト調整は、シリコンデバイス調整時に発振周波数に対するターゲット値が求められているので、角速度センサ部3の1周期毎の調整は可能であり、角速度センサ部3の発振周波数への引き込みは早い。
<Oscillation frequency control>
The angular velocity sensor unit 3 having a relatively low Q value starts oscillating even if there is a frequency error. Therefore, if the rectangular wave oscillation cycle count value Nf output from the rectangular wave generator 5b and the control value dtSft of the phase shifter 6c are swept within the allowable frequency error range, the angular velocity sensor unit 3 oscillates under any condition. Start (oscillation start processing in step S13 following step S11). If the angular velocity sensor unit 3 starts oscillating to form an oscillation loop (state of the stable oscillation section T2), the angular velocity sensor unit 3 is naturally drawn into the oscillation frequency of the angular velocity sensor unit 3, and the angular velocity sensor unit 3 maintains the state of stable oscillation to some extent. (Self-excited oscillation process in step S13). Therefore, the oscillation speed of the angular velocity sensor unit 3 is measured by measuring the count value Nf of the oscillation period and the count value Nsft of the phase shift amount of the angular velocity sensor unit 3 in the stable oscillation state (step S15 after step S13). Know the exact frequency. The phase shift adjustment of the phase shifter 6c requires a target value for the oscillation frequency when adjusting the silicon device. Therefore, the angular velocity sensor unit 3 can be adjusted for each period, and the oscillation frequency of the angular velocity sensor unit 3 can be adjusted. Retraction is fast.
 搬送波生成回路6bが出力する搬送波Vsの振幅AQの測定も可能であり(ステップS15)、振幅AQが規定値Vs_minよりも大きくなった時点(ステップS15の次のステップS17におけるYes)で、角速度センサ部3の発振は成功したと判断し、角速度センサ部3の発振を停止させ(ステップS17のYesの次のステップS19)、発振周波数制御の処理を終了して次のステージに移る。
 一方、振幅AQが規定値Vs_minよりも小さい場合には(ステップS17のNo)、カウント値Nf及び制御値dtSftを変更し(ステップS17のNoの次のステップS21)、ステップS13に戻り、再度、センサモジュールの調整処理を開始する。
It is also possible to measure the amplitude AQ of the carrier wave Vs output from the carrier wave generation circuit 6b (step S15), and when the amplitude AQ becomes larger than the specified value Vs_min (Yes in step S17 following step S15), the angular velocity sensor. It is determined that the oscillation of the unit 3 has been successful, the oscillation of the angular velocity sensor unit 3 is stopped (step S19 after Yes in step S17), the oscillation frequency control process is terminated, and the process proceeds to the next stage.
On the other hand, when the amplitude AQ is smaller than the specified value Vs_min (No in step S17), the count value Nf and the control value dtSft are changed (step S21 next to No in step S17), the process returns to step S13, and again, The sensor module adjustment process is started.
 ここで、ステップS13は、信号出力ステップの一例に相当する。ステップS15は、信号検出ステップの一例に相当する。ステップS17は、信号比較ステップの一例に相当する。ステップS19及びステップS21はそれぞれ、信号調整ステップの一例に相当する。なお、カウント値Nf及び制御値dtSftを変更しないことも矩形波駆動信号の振幅(第一の振幅の一例)や時間(第一の時間の一例)の調整の一種であるため、ステップS19も信号調整ステップに相当することになる。
 図17は、センサモジュールの発振振幅制御及び通常動作時の発振制御の処理の流れの別の一例を示すフローチャートである。
Here, step S13 corresponds to an example of a signal output step. Step S15 corresponds to an example of a signal detection step. Step S17 corresponds to an example of a signal comparison step. Step S19 and step S21 each correspond to an example of a signal adjustment step. Note that not changing the count value Nf and the control value dtSft is a kind of adjustment of the amplitude (an example of the first amplitude) and the time (an example of the first time) of the rectangular wave drive signal, and thus the step S19 is also a signal. This corresponds to the adjustment step.
FIG. 17 is a flowchart showing another example of the processing flow of oscillation amplitude control of the sensor module and oscillation control during normal operation.
 まず、ステップS11において、図16に示すステップS11と同様の処理により、矩形波発振周期のカウント値Nfと位相シフタ6cの制御値dtSftを設定、ステップS53に移行する。
 次に、ステップS53において、矩形波駆動電圧Vrctをの振幅を制御するための制御値dtRct、及び、矩形波駆動時間TupにおけるマスタークロックMCLKのカウント値であるマスタークロックカウント値Nupを設定し、ステップS55に移行する。
 その後、ステップS55において、図16に示すステップS13の処理と同様に角速度センサ部3を発振開始して自励発振させ、次いでステップS57において振幅AQを測定し、ステップS59に移行する。
First, in step S11, the count value Nf of the rectangular wave oscillation period and the control value dtSft of the phase shifter 6c are set by the same processing as in step S11 shown in FIG. 16, and the process proceeds to step S53.
Next, in step S53, a control value dtRct for controlling the amplitude of the rectangular wave driving voltage Vrct and a master clock count value Nup that is a count value of the master clock MCLK in the rectangular wave driving time Tup are set. The process proceeds to S55.
Thereafter, in step S55, the angular velocity sensor unit 3 starts oscillating and self-oscillates similarly to the processing in step S13 shown in FIG. 16, and then in step S57, the amplitude AQ is measured, and the process proceeds to step S59.
 ここで、モニタ1aによる搬送波Vsの測定は、安定発振区間T2において複数回の機会があり、初めの1回目の調整判定の区間及び最後の調整判定の区間での振幅AQの測定値が調整手順で必要になる。
 本例の制御では、測定機会を仮に4回とし、1回目の調整判定区間での測定値を振幅AQ(1)、4回目(最後)の調整判定区間での測定値を振幅AQ(2)、目標値を振幅AQ(cw)とする。これら測定値を用いて、矩形波発生器5bが出力する矩形波駆動電圧Vrctの信号振幅及び可変増幅器6dの利得の少なくともいずれかを制御し、次回の発振時にデータをインクリメントして調整を行う。
Here, the measurement of the carrier wave Vs by the monitor 1a has a plurality of occasions in the stable oscillation section T2, and the measurement value of the amplitude AQ in the first adjustment determination section and the last adjustment determination section is an adjustment procedure. You will need it.
In the control of this example, the measurement opportunity is assumed to be four times, the measurement value in the first adjustment determination section is the amplitude AQ (1), and the measurement value in the fourth (last) adjustment determination section is the amplitude AQ (2). The target value is assumed to be amplitude AQ (cw). Using these measured values, at least one of the signal amplitude of the rectangular wave drive voltage Vrct output from the rectangular wave generator 5b and the gain of the variable amplifier 6d is controlled, and adjustment is performed by incrementing data at the next oscillation.
 ステップS59において、測定した振幅AQ(1)又は振幅AQ(2)が所定の閾値VTより小さいと判断されると(No)、ステップS71に移行する。
 ステップS71において、矩形波の周波数が共振周波数から大きく外れた設定であると判断され、発振が停止され、ステップS73に移行する。
 ステップS73において、ステップS51で設定された矩形波発振周期のカウント値Nfと位相シフタ6cの制御値DtSftを再設定し、ステップS53に戻る。再設定されたカウント値Nft及び制御値DtSftに基づいき、再度ステップS53以降の処理が実行される。
If it is determined in step S59 that the measured amplitude AQ (1) or amplitude AQ (2) is smaller than the predetermined threshold VT (No), the process proceeds to step S71.
In step S71, it is determined that the frequency of the rectangular wave is greatly deviated from the resonance frequency, the oscillation is stopped, and the process proceeds to step S73.
In step S73, the rectangular wave oscillation cycle count value Nf set in step S51 and the control value DtSft of the phase shifter 6c are reset, and the process returns to step S53. Based on the reset count value Nft and the control value DtSft, the processes after step S53 are executed again.
 一方、ステップS59において、測定した振幅AQ(1)又は振幅AQ(2)が所定の閾値VT以上である場合(Yes)、矩形波の周波数が共振周波数に近い設定であると判断され、ステップS61に移行する。なお、ステップS59における判断処理は、「振幅AQ(1)(又は振幅AQ(2))-振幅AQ(cw)」、すなわち振幅AQ(1)(又は振幅AQ(2))から振幅AQ(cw)を減算した値が所定の閾値以上であるか否かで判定を行う形態であってもよい。また、ステップS59では、測定した振幅(波形振幅の絶対値)と所定の閾値VTとを比較して判定を行う例を示したが、その他にも、測定した波形が-VT以上+VT以下であるか否かで判定を行う形態であってもよい。 On the other hand, in step S59, when the measured amplitude AQ (1) or amplitude AQ (2) is equal to or greater than the predetermined threshold VT (Yes), it is determined that the frequency of the rectangular wave is a setting close to the resonance frequency, and step S61. Migrate to The determination process in step S59 is “amplitude AQ (1) (or amplitude AQ (2)) − amplitude AQ (cw)”, that is, amplitude AQ (1) (or amplitude AQ (2)) to amplitude AQ (cw). ) May be determined based on whether or not the value obtained by subtracting) is equal to or greater than a predetermined threshold. In step S59, an example is shown in which the measured amplitude (absolute value of the waveform amplitude) is compared with a predetermined threshold value VT. In addition, the measured waveform is between -VT and + VT. It is also possible to make a determination based on whether or not.
 次に、ステップS61において、可変増幅器6dの利得の制御値dtAを設定してステップS63に移行する。
 ステップS63において、振幅AQの測定を開始し、ステップS65に移行する。
 次に、振幅AQを測定しながら、ステップS65において以下の判定を行う。
 ステップS65において、ΔAQ(n)(「=AQ(n)-AQ(n-1)」、本例では、n=2)が-ΔVTより小さい、又は、+ΔVTより大きい場合、自励発振ループの利得が1未満又は1より大きいと判定され(No)、ステップS75に移行する。
 ステップS75では、可変増幅器6dの利得の制御値dtAを変更し、ステップS63に戻る。変更した後の制御値dtAに基づき、再度ステップS63以降の処理が実行される。
Next, in step S61, the gain control value dtA of the variable amplifier 6d is set, and the process proceeds to step S63.
In step S63, measurement of the amplitude AQ is started, and the process proceeds to step S65.
Next, the following determination is made in step S65 while measuring the amplitude AQ.
In step S65, if ΔAQ (n) (“= AQ (n) −AQ (n−1)”, n = 2 in this example) is smaller than −ΔVT or larger than + ΔVT, the self-oscillation loop It is determined that the gain is less than 1 or greater than 1 (No), and the process proceeds to step S75.
In step S75, the gain control value dtA of the variable amplifier 6d is changed, and the process returns to step S63. Based on the control value dtA after the change, the processing after step S63 is executed again.
 より具体的には、ステップS65において、「AQ(2)-AQ(1)>+ΔVT」の関係を満たす場合に可変増幅器6dの利得が大きいと判定され(判定結果「>」(図13(a)参照))、利得が下がるように可変増幅器6dの制御値dtAを制御する。
 また、ステップS65において、「AQ(2)-AQ(1)<-ΔVT」の関係を満たす場合に可変増幅器6dの利得が小さいと判定され(判定結果「<」(図14(a)参照)))、利得が上がるように可変増幅器6dの制御値dtAを制御する。
 一方、ステップS65において、「+ΔVT≧AQ(2)-AQ(1)≧-ΔVT」の関係を満たす場合には可変増幅器6dの利得が妥当であると判定され(判定結果「=」(図13(b)及び図14(b)参照))、可変増幅器6dの利得を保持してステップS67に移行する。
More specifically, in step S65, it is determined that the gain of the variable amplifier 6d is large when the relationship of “AQ (2) −AQ (1)> + ΔVT” is satisfied (determination result “>” (FIG. 13 (a ))), The control value dtA of the variable amplifier 6d is controlled so that the gain decreases.
In step S65, it is determined that the gain of the variable amplifier 6d is small when the relationship of “AQ (2) −AQ (1) <− ΔVT” is satisfied (determination result “<” (see FIG. 14A)). )), The control value dtA of the variable amplifier 6d is controlled so as to increase the gain.
On the other hand, in step S65, when the relationship of “+ ΔVT ≧ AQ (2) −AQ (1) ≧ −ΔVT” is satisfied, it is determined that the gain of the variable amplifier 6d is appropriate (determination result “=” (FIG. 13 (See (b) and FIG. 14 (b))), the gain of the variable amplifier 6d is maintained, and the process proceeds to step S67.
 ステップS67において、発振が停止され、ステップS69に移行する。
 ステップS69において、シーケンサ5eに設けられたメモリに調整値、すなわち現時点で設定されている可変増幅器6dの制御値dtA、矩形波発振周期のカウント値Nf、位相シフタ6cの制御値dtSft、矩形波振幅制御値dtRct及び矩形波駆動時間Tupを書き込み、センサモジュールの発振振幅制御及び通常動作時の発振制御の調整が終了する。
 ここで、ステップS55は、信号出力ステップの一例に相当する。ステップS57は、信号検出ステップの一例に相当する。ステップS59は、信号比較ステップの一例に相当する。ステップS73は、信号調整ステップの一例に相当する。
In step S67, the oscillation is stopped and the process proceeds to step S69.
In step S69, adjustment values in the memory provided in the sequencer 5e, that is, the control value dtA of the variable amplifier 6d set at the present time, the count value Nf of the rectangular wave oscillation period, the control value dtSft of the phase shifter 6c, and the rectangular wave amplitude are set. The control value dtRct and the rectangular wave driving time Tup are written, and the adjustment of the oscillation amplitude control of the sensor module and the oscillation control during the normal operation are completed.
Here, step S55 corresponds to an example of a signal output step. Step S57 corresponds to an example of a signal detection step. Step S59 corresponds to an example of a signal comparison step. Step S73 corresponds to an example of a signal adjustment step.
<通常動作時の発振>
 調整フローによれば、発振制御はセンサが発振してしまえば、比較的調整は容易である。よって、発振周波数の制御値(カウント値)Nfのみ格納し、ある程度の区間内で他の制御値を求めるということも可能である。特に温度ドリフトにおいては、発振周波数の温度特性のみ把握すれば良いので、有効な手段である。
 また時分割動作時は、ドリフトに追従することができる。振動部の発振周波数は温度によって変動するため、従来の回路では振動部の発振周波数を温度ドリフトに追従させるのは困難であり、振動部を安定発振させることが難しい。また、従来の回路では、温度ドリフトに対するなんらかの制御回路が必要になり、回路面積が増大する。本実施形態によれば、温度ドリフトに追従することが可能となる。
 先述の通り、発振制御部5はモニタ1a,1bを内蔵しているので、矩形波発振周期のカウント値Nf,位相シフト量のカウント値Nsft,搬送波Vsの振幅AQというモニタ値から矩形波発振周期のカウント値Nfというカウント値、並びに位相シフタ6cの制御値dtSft,可変増幅器6dの利得の制御値dtA,矩形波振幅制御値dtRct及び矩形波の駆動時間の制御値Nupという制御値の更新が可能である。つまり、角速度検出区間の検出信号若しくは励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーが調整する。例えば、角速度検出区間の検出信号又は励振信号の振幅が基準値よりも大きい場合、及び、角速度検出区間の検出信号又は励振信号の振幅の変動量が基準値よりも大きい場合は、前の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーよりも、後に設定される振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーの方が小さくなるように調整する。また、角速度検出区間の検出信号又は励振信号の振幅が基準値よりも小さい場合、及び、角速度検出区間の検出信号又は励振信号の振幅の変動量が基準値よりも小さい場合は、前の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーよりも、後に設定される振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーの方が大きくなるように調整する。なお、振動開始信号のエネルギーは、振動開始信号の振幅と、駆動電極に出力される時間により、調整される。
<Oscillation during normal operation>
According to the adjustment flow, the oscillation control is relatively easy to adjust if the sensor oscillates. Therefore, it is also possible to store only the control value (count value) Nf of the oscillation frequency and obtain other control values within a certain interval. In particular, temperature drift is an effective means because it is only necessary to grasp the temperature characteristics of the oscillation frequency.
Also, drift can be followed during time-division operation. Since the oscillation frequency of the vibration unit varies depending on the temperature, it is difficult for the conventional circuit to make the oscillation frequency of the vibration unit follow the temperature drift, and it is difficult to stably oscillate the vibration unit. In addition, the conventional circuit requires some control circuit for temperature drift, and the circuit area increases. According to this embodiment, it becomes possible to follow the temperature drift.
As described above, since the oscillation control unit 5 includes the monitors 1a and 1b, the rectangular wave oscillation period is calculated from the monitor values of the square wave oscillation period count value Nf, the phase shift amount count value Nsft, and the carrier wave Vs amplitude AQ. And the control value dtSft of the phase shifter 6c, the gain control value dtA of the variable amplifier 6d, the rectangular wave amplitude control value dtRct, and the control value Nup of the rectangular wave drive time can be updated. It is. That is, the energy of the vibration start signal applied to the drive electrode during the next vibration start section is adjusted based on the amplitude of the detection signal or the excitation signal in the angular velocity detection section or the fluctuation amount of the amplitude. For example, if the amplitude of the detection signal or excitation signal in the angular velocity detection section is larger than the reference value, and if the variation amount of the detection signal or excitation signal in the angular velocity detection section is larger than the reference value, the previous vibration starts Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is smaller than the energy of the vibration start signal applied to the drive electrode during the interval. Also, if the amplitude of the detection signal or excitation signal in the angular velocity detection section is smaller than the reference value, and if the fluctuation amount of the detection signal or excitation signal in the angular velocity detection section is smaller than the reference value, the previous vibration starts Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is larger than the energy of the vibration start signal applied to the drive electrode during the interval. The energy of the vibration start signal is adjusted by the amplitude of the vibration start signal and the time output to the drive electrode.
 具体的には、図7をもとに説明する。Z軸の第1の振動開始区間に、第1のZ軸方向振動開始信号を駆動電極へ出力する。Z軸の第1の角速度検出区間に、第1のZ軸方向検出信号に基づいて生成した第1のZ軸方向励振信号を駆動電極へ出力する。この区間において、検出信号に対応する搬送波Vs又は励振信号に対応するドライバへ出力される出力信号Viaの振幅、又は、振幅の変動量を、モニタ1a、1b等でモニタする。なお、モニタは、角速度検出区間の全ての区間で行ってもよく、一部区間で行ってもよい。モニタ終了後、次の振動開始区間における第2の振動開始信号の振幅又は時間が決定される。Z軸の第1の発振停止区間に、第1のZ軸方向検出信号に基づいて第1のZ軸方向励振信号を反転した信号を駆動電極へ出力する。 Specifically, description will be made with reference to FIG. A first Z-axis vibration start signal is output to the drive electrode in the first vibration start section of the Z-axis. The first Z-axis direction excitation signal generated based on the first Z-axis direction detection signal is output to the drive electrode in the first Z-axis angular velocity detection section. In this section, the amplitude of the output signal Via output to the carrier Vs corresponding to the detection signal or the driver corresponding to the excitation signal, or the amount of fluctuation of the amplitude is monitored by the monitor 1a, 1b or the like. Note that monitoring may be performed in all sections of the angular velocity detection section, or may be performed in a partial section. After the end of monitoring, the amplitude or time of the second vibration start signal in the next vibration start section is determined. A signal obtained by inverting the first Z-axis direction excitation signal based on the first Z-axis direction detection signal is output to the drive electrode during the first oscillation stop period of the Z-axis.
 次に、X軸についてもZ軸と同様に駆動する。X軸の第1の振動開始区間に、第1のX軸方向振動開始信号を駆動電極へ出力する。X軸の第1の角速度検出区間に、第1のX軸方向検出信号に基づいて生成した第1のZ軸方向励振信号を駆動電極へ出力する。この区間において、検出信号に対応する搬送波Vs又は励振信号に対応するドライバへ出力される出力信号Viaの振幅、又は、振幅の変動量を、モニタ1a、1b等でモニタする。なお、モニタは、角速度検出区間の全ての区間で行ってもよく、一部区間で行ってもよい。X軸の第1の発振停止区間に、第1のX軸方向検出信号に基づいて第1のX軸方向励振信号を反転した信号を駆動電極へ出力する。 Next, the X axis is driven in the same manner as the Z axis. A first X-axis direction vibration start signal is output to the drive electrode in the first X-axis vibration start section. The first Z-axis direction excitation signal generated based on the first X-axis direction detection signal is output to the drive electrode in the first X-axis angular velocity detection section. In this section, the amplitude of the output signal Via output to the carrier Vs corresponding to the detection signal or the driver corresponding to the excitation signal, or the amount of fluctuation of the amplitude is monitored by the monitor 1a, 1b or the like. Note that monitoring may be performed in all sections of the angular velocity detection section, or may be performed in a partial section. In the first oscillation stop period of the X axis, a signal obtained by inverting the first X axis direction excitation signal based on the first X axis direction detection signal is output to the drive electrode.
 次に、更新された振幅又は時間を有する第2のZ軸方向振動開始信号でZ軸方向の振動の立ち上げを行う。例えば、シーケンサが、更新された振幅情報又は時間情報に基づいて、矩形波発生器の振幅や、振動開始信号が出力される時間を制御する。Z軸の第2の振動開始区間に、第2のZ軸方向振動開始信号を駆動電極へ出力する。Z軸の第2の角速度検出区間に、第2のZ軸方向検出信号に基づいて生成した第2のZ軸方向励振信号を駆動電極へ出力する。この区間において、先ほどと同様に、モニタと振幅又は時間の決定を行ってもよい。Z軸の第2の発振停止区間に、第2のZ軸方向検出信号に基づいて第2のZ軸方向励振信号を反転した信号を駆動電極へ出力する。 Next, the Z-axis direction vibration is started by the second Z-axis direction vibration start signal having the updated amplitude or time. For example, the sequencer controls the amplitude of the rectangular wave generator and the time at which the vibration start signal is output based on the updated amplitude information or time information. A second Z-axis vibration start signal is output to the drive electrode in the second vibration start section of the Z-axis. A second Z-axis direction excitation signal generated based on the second Z-axis direction detection signal is output to the drive electrode in the second Z-axis angular velocity detection section. In this section, the monitor and the amplitude or time may be determined as before. A signal obtained by inverting the second Z-axis direction excitation signal based on the second Z-axis direction detection signal is output to the drive electrode during the second oscillation stop period of the Z-axis.
 次に、更新された振幅又は時間を有する第2のX軸方向振動開始信号でX軸方向の振動の立ち上げを行う。例えば、シーケンサが、更新された振幅情報又は時間情報に基づいて、矩形波発生器の振幅や、振動開始信号が出力される時間を制御する。X軸の第2の振動開始区間に、第2のX軸方向振動開始信号を駆動電極へ出力する。X軸の第2の角速度検出区間に、第2のX軸方向検出信号に基づいて生成した第2のZ軸方向励振信号を駆動電極へ出力する。この区間において、先ほどと同様に、モニタと振幅又は時間の決定を行ってもよい。X軸の第2の発振停止区間に、第2のX軸方向検出信号に基づいて第2のX軸方向励振信号を反転した信号を駆動電極へ出力する。なお、各軸における振動開始信号の振幅又は時間の更新は、毎区間ごとに行ってもよく、数区間ごとに行ってもよく、片方の軸だけ行ってもよい。 Next, the vibration in the X-axis direction is started by the second X-axis direction vibration start signal having the updated amplitude or time. For example, the sequencer controls the amplitude of the rectangular wave generator and the time at which the vibration start signal is output based on the updated amplitude information or time information. A second X-axis direction vibration start signal is output to the drive electrode in the second X-axis vibration start section. A second Z-axis direction excitation signal generated based on the second X-axis direction detection signal is output to the drive electrode in the second X-axis angular velocity detection section. In this section, the monitor and the amplitude or time may be determined as before. A signal obtained by inverting the second X-axis direction excitation signal based on the second X-axis direction detection signal is output to the drive electrode during the second oscillation stop period of the X-axis. The amplitude or time of the vibration start signal on each axis may be updated every interval, every few intervals, or only one of the axes.
 この矩形波発振周期のカウント値Nf,位相シフト量のカウント値Nsft及び搬送波Vsの振幅AQのモニタは自励発振区間の一部区間の測定で充分である。温度変化は比較的遅いため、消費電力削減の観点から、時分割測定を間引くことも可能である。またシリコンデバイス内に温度計を配備することも可能で、温度がある程度変化したら、モニタ測定を行うという手段も有効である。 For the monitoring of the count value Nf of the rectangular wave oscillation period, the count value Nsft of the phase shift amount, and the amplitude AQ of the carrier wave Vs, it is sufficient to measure a part of the self-excited oscillation period. Since the temperature change is relatively slow, it is possible to thin out the time division measurement from the viewpoint of reducing power consumption. It is also possible to install a thermometer in the silicon device, and it is also effective to perform monitor measurement when the temperature changes to some extent.
<位相シフタ>
 図18は、位相シフタ6cの回路構成と周波数特性とを示す図である。図18(a)は、位相シフタ6cの回路構成を示し、図18(b)は、位相シフタ6cの周波数特性を示している。図18(b)の図中横軸は周波数(Hz)を示し、縦軸は位相(°)を示している。
 図18(a)に示すように、位相シフタ6cは、オールパスフィルタ回路161を有している。オールパスフィルタ回路161は、増幅器161aと、抵抗素子161bと、容量素子161cと、入力抵抗161dと、帰還抵抗161eとを有している。入力抵抗161dの一端子は搬送波生成回路6b(図18(a)では不図示)の出力端子と抵抗素子161bの一端子に接続され、他端子は増幅器161aの反転入力端子(-)と帰還抵抗161eの一端子に接続されている。帰還抵抗161eの他端子は増幅器161aの出力端子と可変増幅器6d(図18(a)では不図示)の入力端子とに接続され、一端子は増幅器161aの反転入力端子(-)にも接続されている。抵抗素子161bの他端子は、増幅器161aの非反転入力端子(+)と容量素子161cの一方の電極に接続されている。容量素子161cの他方の電極は動作コモン電圧VCOMの入力端子に接続され、一方の電極は増幅器161aの非反転入力端子(+)にも接続されている。増幅器161aの出力端子は、位相シフタ6cの出力端子であり、可変増幅器6d(図18(a)では不図示)の入力端子に接続されている。抵抗素子161bの抵抗値をR、容量素子161cの容量値をCとすると、図18(b)に示すように、オールパスフィルタ回路161は、f=1/(2πRC)で90°位相シフトする。位相シフタ6cは、抵抗素子161bの抵抗値R及び容量素子161cの容量値Cの少なくともいずれか一方を可変とし、位相シフタ6cが入力信号に対して90°位相シフトした出力信号を出力するように周波数が調整される。
<Phase shifter>
FIG. 18 is a diagram illustrating a circuit configuration and frequency characteristics of the phase shifter 6c. 18A shows the circuit configuration of the phase shifter 6c, and FIG. 18B shows the frequency characteristics of the phase shifter 6c. In FIG. 18B, the horizontal axis indicates the frequency (Hz), and the vertical axis indicates the phase (°).
As shown in FIG. 18A, the phase shifter 6c has an all-pass filter circuit 161. The all-pass filter circuit 161 includes an amplifier 161a, a resistor element 161b, a capacitor element 161c, an input resistor 161d, and a feedback resistor 161e. One terminal of the input resistor 161d is connected to the output terminal of the carrier wave generating circuit 6b (not shown in FIG. 18A) and one terminal of the resistor element 161b, and the other terminal is connected to the inverting input terminal (−) of the amplifier 161a and the feedback resistor. 161e is connected to one terminal. The other terminal of the feedback resistor 161e is connected to the output terminal of the amplifier 161a and the input terminal of the variable amplifier 6d (not shown in FIG. 18A), and one terminal is also connected to the inverting input terminal (−) of the amplifier 161a. ing. The other terminal of the resistive element 161b is connected to the non-inverting input terminal (+) of the amplifier 161a and one electrode of the capacitive element 161c. The other electrode of the capacitive element 161c is connected to the input terminal of the operating common voltage VCOM, and one electrode is also connected to the non-inverting input terminal (+) of the amplifier 161a. The output terminal of the amplifier 161a is the output terminal of the phase shifter 6c, and is connected to the input terminal of the variable amplifier 6d (not shown in FIG. 18A). Assuming that the resistance value of the resistance element 161b is R and the capacitance value of the capacitance element 161c is C, the all-pass filter circuit 161 is phase-shifted by 90 ° at f = 1 / (2πRC) as shown in FIG. The phase shifter 6c makes at least one of the resistance value R of the resistance element 161b and the capacitance value C of the capacitance element 161c variable, and the phase shifter 6c outputs an output signal that is 90 ° phase shifted with respect to the input signal. The frequency is adjusted.
<矩形波発生回路>
 矩形波発生器5bの概略構成及び動作タイミングチャートについて図19から図21を用いて説明する。図19は、矩形波発生器5bの概略構成の一例を示す回路ブロックである。図19に示すように、矩形波発生器5bは、可変電圧源(VR_RCT)51aと、増幅器(OP_U)51bと、増幅器(OP_D)51cと、スイッチ51d、51e、51f、51g、51h、51iと、スイッチ制御部51jとを有している。
<Rectangular wave generator>
A schematic configuration and an operation timing chart of the rectangular wave generator 5b will be described with reference to FIGS. FIG. 19 is a circuit block showing an example of a schematic configuration of the rectangular wave generator 5b. As shown in FIG. 19, the rectangular wave generator 5b includes a variable voltage source (VR_RCT) 51a, an amplifier (OP_U) 51b, an amplifier (OP_D) 51c, switches 51d, 51e, 51f, 51g, 51h, and 51i. And a switch control unit 51j.
 可変電圧源51aには、基準電圧VREFと、動作コモン電圧VCOMと、矩形波振幅制御値drRctとが入力するようになっている。可変電圧源51aは、矩形波振幅制御値dtRctに基づいて電圧値が調整される高レベル電圧VrctH及び低レベル電圧VrctLと、動作コモン電圧VCOMとを出力する。矩形波発生器5bが出力する矩形波出力駆動電圧Vrctの高レベル電圧VrctH及び低レベル電圧VrctLは以下のようになる。
 VrctH=VCOM+Vrct/2
 VrctL=VCOM-Vrct/2
 増幅器51b及び増幅器51cは、例えばボルテージフォロア回路として機能する。増幅器51bは、入力した高レベル電圧VrctHと同電位の出力信号を出力する。増幅器51cは、入力した低レベル電圧VrctLと同電位の出力信号を出力する。
A reference voltage VREF, an operation common voltage VCOM, and a rectangular wave amplitude control value drRct are input to the variable voltage source 51a. The variable voltage source 51a outputs a high level voltage VrctH and a low level voltage VrctL whose voltage values are adjusted based on the rectangular wave amplitude control value dtRct, and an operation common voltage VCOM. The high level voltage VrctH and the low level voltage VrctL of the rectangular wave output drive voltage Vrct output from the rectangular wave generator 5b are as follows.
VrctH = VCOM + Vrct / 2
VrctL = VCOM−Vrct / 2
The amplifier 51b and the amplifier 51c function as, for example, a voltage follower circuit. The amplifier 51b outputs an output signal having the same potential as the input high level voltage VrctH. The amplifier 51c outputs an output signal having the same potential as the input low level voltage VrctL.
 スイッチ51dは、オン状態になると増幅器51bの出力端子を矩形波発生器5bの一方の出力端子に接続する。スイッチ51eは、オン状態になると増幅器51bの出力端子を矩形波発生器5bの他方の出力端子に接続する。矩形波発生器5bの一方の出力端子は矩形波駆動信号Rct1を出力する端子であり、他方の出力端子は矩形波駆動信号Rct2を出力する端子である。スイッチ51fは、オン状態になると可変電圧源51aが動作コモン電圧VCOMを出力する出力端子(以下、「コモン電圧出力端子」と称する)を矩形波発生器5bの一方の出力端子に接続する。スイッチ51gは、オン状態になると可変電圧源51aがコモン電圧出力端子を矩形波発生器5bの他方の出力端子に接続する。スイッチ51hは、オン状態になると増幅器51cの出力端子を矩形波発生器5bの一方の出力端子に接続する。スイッチ51iは、オン状態になると増幅器51cの出力端子を矩形波発生器5bの他方の出力端子に接続する。 When the switch 51d is turned on, the output terminal of the amplifier 51b is connected to one output terminal of the rectangular wave generator 5b. When the switch 51e is turned on, the output terminal of the amplifier 51b is connected to the other output terminal of the rectangular wave generator 5b. One output terminal of the rectangular wave generator 5b is a terminal that outputs a rectangular wave drive signal Rct1, and the other output terminal is a terminal that outputs a rectangular wave drive signal Rct2. When the switch 51 f is turned on, the variable voltage source 51 a connects an output terminal (hereinafter referred to as “common voltage output terminal”) from which the operating common voltage VCOM is output to one output terminal of the rectangular wave generator 5 b. When the switch 51g is turned on, the variable voltage source 51a connects the common voltage output terminal to the other output terminal of the rectangular wave generator 5b. When the switch 51h is turned on, the output terminal of the amplifier 51c is connected to one output terminal of the rectangular wave generator 5b. When the switch 51i is turned on, the output terminal of the amplifier 51c is connected to the other output terminal of the rectangular wave generator 5b.
 スイッチ制御部51jは、スイッチ51d~51iのオン状態及びオフ状態(ON/OFF)を制御するようになっている。スイッチ制御部51jには、マスタークロックMCLK、発振開始ステート制御信号E_RCT、カウント値Nf及び矩形波の駆動時間Nupの各信号が入力する。スイッチ制御部51jは、入力した各信号の信号レベルに基づいてスイッチ51d~51iを制御する制御信号D1P,D2P,D1N,D2N,D0を出力する。制御信号D1P,D2P,D0,D1N,D2Nの信号レベルが高レベルになると、スイッチ51d~51iは例えばオン状態になり、制御信号D1P,D2P,D0,D1N,D2Nの信号レベルが低レベルになると、スイッチ51d~51iは例えばオフ状態になる。 The switch control unit 51j controls the on state and the off state (ON / OFF) of the switches 51d to 51i. Each signal of the master clock MCLK, the oscillation start state control signal E_RCT, the count value Nf, and the rectangular wave driving time Nup is input to the switch control unit 51j. The switch control unit 51j outputs control signals D1P, D2P, D1N, D2N, and D0 for controlling the switches 51d to 51i based on the signal levels of the input signals. When the signal levels of the control signals D1P, D2P, D0, D1N, and D2N become high, the switches 51d to 51i are turned on, for example, and when the signal levels of the control signals D1P, D2P, D0, D1N, and D2N become low. The switches 51d to 51i are turned off, for example.
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51dがオン状態になると増幅器51bの出力端子とドライブ電極D1(図19では不図示)とが接続され、増幅器51bは、高レベル電圧VrctHと同電位の電圧レベルの矩形波駆動信号Rct1をドライブ電極D1にチャージする。
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51eがオン状態になると増幅器51bの出力端子とドライブ電極D2(図19では不図示)とが接続され、増幅器51bは、高レベル電圧VrctHと同電位の電圧レベルの矩形波駆動信号Rct2をドライブ電極D2にチャージする。
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51d is turned on, the output terminal of the amplifier 51b and the drive electrode D1 (not shown in FIG. 19) are connected. 51b charges the drive electrode D1 with a rectangular wave drive signal Rct1 having the same voltage level as the high level voltage VrctH.
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51e is turned on, the output terminal of the amplifier 51b and the drive electrode D2 (not shown in FIG. 19) are connected. 51b charges the drive electrode D2 with a rectangular wave drive signal Rct2 having the same voltage level as the high level voltage VrctH.
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51hがオン状態になると増幅器51cの出力端子とドライブ電極D1とが接続され、増幅器51cは、低レベル電圧VrctLと同電位の電圧レベルの矩形波駆動信号Rct1をドライブ電極D1にチャージする。
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51iがオン状態になると増幅器51cの出力端子とドライブ電極D2とが接続され、増幅器51cは、低レベル電圧VrctLと同電位の電圧レベルの矩形波駆動信号Rct2をドライブ電極D2にチャージする。
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51h is turned on, the output terminal of the amplifier 51c and the drive electrode D1 are connected, and the amplifier 51c has the low level voltage VrctL. A rectangular wave drive signal Rct1 having a voltage level of the same potential as that of the drive electrode D1 is charged.
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51i is turned on, the output terminal of the amplifier 51c and the drive electrode D2 are connected, and the amplifier 51c has the low level voltage VrctL. A rectangular wave drive signal Rct2 having a voltage level of the same potential as that of the drive electrode D2 is charged.
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51fがオン状態になるとコモン電圧出力端子とドライブ電極D1とが接続され、可変電圧源51aは、動作コモン電圧VCOMと同電位の電圧レベルの出力信号をドライブ電極D1にチャージする。
 切替回路5c(図19では不図示)が矩形波発生器5b側に切り替わり、かつスイッチ51gがオン状態になるとコモン電圧出力端子とドライブ電極D2とが接続され、可変電圧源51aは、動作コモン電圧VCOMと同電位の電圧レベルの出力信号をドライブ電極D2にチャージする。スイッチ51f及びスイッチ51gは、いずれも制御信号D0に基づいて制御され、同時にオン状態となる。このため、ドライブ電極D1及びドライブ電極D2には、同時に動作コモン電圧VCOMと同電位の電圧がチャージされる。
 このように、矩形波発生器5bは、動作コモン電圧VCOM、高レベル電圧VrctH及び低レベル電圧VrctLを出力するトライステートバッファである。
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51f is turned on, the common voltage output terminal and the drive electrode D1 are connected, and the variable voltage source 51a An output signal having a voltage level equal to that of VCOM is charged to the drive electrode D1.
When the switching circuit 5c (not shown in FIG. 19) is switched to the rectangular wave generator 5b side and the switch 51g is turned on, the common voltage output terminal and the drive electrode D2 are connected, and the variable voltage source 51a An output signal having the same voltage level as that of VCOM is charged to the drive electrode D2. Both the switch 51f and the switch 51g are controlled based on the control signal D0 and are simultaneously turned on. Therefore, the drive electrode D1 and the drive electrode D2 are simultaneously charged with a voltage having the same potential as the operation common voltage VCOM.
As described above, the rectangular wave generator 5b is a tristate buffer that outputs the operation common voltage VCOM, the high level voltage VrctH, and the low level voltage VrctL.
 Z-Driveにおける発振開始区間T1での矩形波発生器5bの動作について図1及び図19を参照しつつ、図20を用いて説明する。図20は、Z-Driveにおける発振開始区間T1での矩形波発生器5bの動作タイミングチャートの一例を示している。図20の図中第1段目の「E_RCT」は、発振開始ステート制御信号E_RCTの信号波形を示し、2段目の「D1P,D2P」は、制御信号D1P及び制御信号D2Pの信号波形を示し、3段目の「D1N,D2N」は制御信号D1N及び制御信号D2Nの信号波形を示し、4段目の「D0」は制御信号D0の信号波形を示し、5段目の「Vdr」は、ドライブ電極D1,D2に入力する駆動電圧の電圧波形を示している。図中横軸は時間を示し、図中左から右に向かって時の経過が表されている。 The operation of the rectangular wave generator 5b in the oscillation start section T1 in Z-Drive will be described with reference to FIGS. 1 and 19 and FIG. FIG. 20 shows an example of an operation timing chart of the rectangular wave generator 5b in the oscillation start section T1 in Z-Drive. In FIG. 20, “E_RCT” in the first stage indicates the signal waveform of the oscillation start state control signal E_RCT, and “D1P, D2P” in the second stage indicates the signal waveforms of the control signal D1P and the control signal D2P. The third stage “D1N, D2N” indicates the signal waveforms of the control signal D1N and the control signal D2N, the fourth stage “D0” indicates the signal waveform of the control signal D0, and the fifth stage “Vdr” The voltage waveform of the drive voltage input into the drive electrodes D1 and D2 is shown. In the figure, the horizontal axis indicates time, and the passage of time is represented from left to right in the figure.
 図20に示すように、発振開始ステート制御信号E_RCTは、角速度センサ部3を発振開始区間T1のステートとするか否かを制御する信号である。発振開始ステート制御信号E_RCTの信号レベルが高レベルであると発振開始区間(本例では、「T1」の区間)となり、矩形波発生器5bが動作する。
 矩形波発生器5bの動作開始から「T1-Nup/fclk」で表される区間では、図19の図中4段目に示すように、制御信号D0の信号レベルが高レベルとなってスイッチ51f、51gはオン状態となる。一方、当該区間では、図20中2段目及び3段目に示すように、制御信号D1P,D2P,D1N,D2Nの信号レベルは低レベルとなってスイッチ51d,51e,51h,51iはオフ状態となる。このため、当該区間では、図中5段目に示すように、ドライブ電極D1、D2は、コモン電圧出力端子と接続する。これにより、ドライブ電極D1,D2には、動作コモン電圧VCOMが発振制御部出力信号Vdrとして印加される。
As shown in FIG. 20, the oscillation start state control signal E_RCT is a signal that controls whether or not the angular velocity sensor unit 3 is in the state of the oscillation start section T1. If the signal level of the oscillation start state control signal E_RCT is high, an oscillation start interval (in this example, “T1” interval) is entered, and the rectangular wave generator 5b operates.
In the section represented by “T1-Nup / fclk” from the start of the operation of the rectangular wave generator 5b, the signal level of the control signal D0 becomes high as shown in the fourth stage of FIG. 19, and the switch 51f , 51g are turned on. On the other hand, in the section, as shown in the second and third stages in FIG. 20, the signal levels of the control signals D1P, D2P, D1N, D2N are low and the switches 51d, 51e, 51h, 51i are in the off state. It becomes. Therefore, in the section, as shown in the fifth stage in the figure, the drive electrodes D1 and D2 are connected to the common voltage output terminal. Thereby, the operation common voltage VCOM is applied to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
 その後の「Nup/fclk」で表される区間では、図20中3段目に示すように、制御信号D0の信号レベルが低レベルとなってスイッチ51f、51gはオフ状態となる。一方、当該区間において、図20中2段目及び3段目に示すように、制御信号D1P,D2Pは、1周期が「Nf/fclk」の矩形波の信号となる。制御信号D1N,D2Nは、周期が「Nf/fclk」であって制御信号D1P,D2Pとは位相が180°反転した矩形波の信号となる。このため、当該区間において、スイッチ51d,51eがオン状態のときにはスイッチ51h,51iがオフ状態となり、スイッチ51d,51eがオフ状態のときにはスイッチ51h,51iがオン状態となる。これにより、当該区間において、図20中5段目に示すように、発振制御部出力信号Vdrは、中心電圧の値が動作コモン電圧VCOMであり、高レベルの電圧値が高レベル電圧VrctHであり、低レベルの電圧値が低レベル電圧VrctLであり、1周期が「Nf/fclk」である矩形状の電圧波形となる。発振制御部出力信号Vdrの振幅電圧は、高レベル電圧VrctHの絶対値に低レベル電圧VrctLの絶対値を加算した値となる。本例では、高レベル電圧VrctHの絶対値と低レベル電圧VrctLの絶対値Vrctとは等しいため、発振制御部出力信号Vdrの振幅電圧は、高レベル電圧VrctH又は低レベル電圧VrctLの電圧値の2倍となる。 In the subsequent section represented by “Nup / fclk”, as shown in the third row in FIG. 20, the signal level of the control signal D0 becomes low and the switches 51f and 51g are turned off. On the other hand, in the section, as shown in the second and third stages in FIG. 20, the control signals D1P and D2P are rectangular wave signals having one cycle of “Nf / fclk”. The control signals D1N and D2N are rectangular wave signals having a cycle of “Nf / fclk” and having a phase inverted by 180 ° from the control signals D1P and D2P. For this reason, in the section, the switches 51h and 51i are turned off when the switches 51d and 51e are on, and the switches 51h and 51i are turned on when the switches 51d and 51e are off. As a result, as shown in the fifth stage in FIG. 20, the oscillation control unit output signal Vdr has a center voltage value of the operation common voltage VCOM and a high level voltage value of the high level voltage VrctH. The low-level voltage value is the low-level voltage VrctL, and a rectangular voltage waveform having one cycle of “Nf / fclk” is obtained. The amplitude voltage of the oscillation control unit output signal Vdr is a value obtained by adding the absolute value of the low level voltage VrctL to the absolute value of the high level voltage VrctH. In this example, since the absolute value of the high level voltage VrctH is equal to the absolute value Vrct of the low level voltage VrctL, the amplitude voltage of the oscillation control unit output signal Vdr is 2 of the voltage value of the high level voltage VrctH or the low level voltage VrctL. Doubled.
 制御信号D1P及び制御信号D2Pが同じ信号となり、制御信号D1N及び制御信号D2Nが同じ信号となり、Z-Drive時では、ドライブ電極D1,D2を駆動する発振制御部出力信号は同じになる。
 発振開始区間T1が終了すると、安定発振区間T2が開始する。図20の図中1段目に示すように、安定発振区間T2では、発振開始ステート制御信号E_RCTが低レベル信号となり、発振開始区間T1のステートではないステートとなる。このため、図20中2段目から4段目に示すように、スイッチ制御部51jは、信号レベルが低レベルの制御信号D1P,D2P,D1N,D2N,D0を出力する。これにより、可変電圧源51aはドライブ電極D1,D2から電気的に切り離される。また、発振開始ステート制御信号E_RCTが低レベル信号になるのに同期して、切替回路5cはドライブ電極D1,D2とドライバ6eとを接続する。これにより、図20中5段目に示すように、ドライブ電極D1,D2には、角速度センサ部3の自励発振に基づく自励発振信号Dr1が発振制御部出力信号Vdrとして印加される。
The control signal D1P and the control signal D2P are the same signal, the control signal D1N and the control signal D2N are the same signal, and the output signals of the oscillation control units that drive the drive electrodes D1 and D2 are the same during Z-Drive.
When the oscillation start period T1 ends, the stable oscillation period T2 starts. As shown in the first stage of FIG. 20, in the stable oscillation period T2, the oscillation start state control signal E_RCT is a low level signal, and is not in the state of the oscillation start period T1. Therefore, as shown in the second to fourth stages in FIG. 20, the switch control unit 51j outputs control signals D1P, D2P, D1N, D2N, and D0 having low signal levels. Thereby, the variable voltage source 51a is electrically disconnected from the drive electrodes D1 and D2. Further, in synchronization with the oscillation start state control signal E_RCT becoming a low level signal, the switching circuit 5c connects the drive electrodes D1 and D2 and the driver 6e. As a result, as shown in the fifth row in FIG. 20, a self-excited oscillation signal Dr1 based on the self-excited oscillation of the angular velocity sensor unit 3 is applied to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr.
 X-Driveにおける発振開始区間T1での矩形波発生器5bの動作について図1及び図19を参照しつつ、図21を用いて説明する。図21は、X-Driveにおける発振開始区間T1での矩形波発生器5bの動作タイミングチャートの一例を示している。図21の図中第1段目の「E_RCT」は、発振開始ステート制御信号E_RCTの信号波形を示し、2段目の「D1P,D2N」は、制御信号D1P及び制御信号D2Nの信号波形を示し、3段目の「D1N,D2P」は制御信号D1N及び制御信号D2Pの信号波形を示し、4段目の「D0」は制御信号D0の信号波形を示し、図中第5段目の「Vdr」は、ドライブ電極D1に入力する発振制御部出力信号の電圧波形を示し、図中第6段目の「-Vdr」は、ドライブ電極D2に入力する発振制御部出力信号の電圧波形を示している。図中横軸は時間を示し、図中左から右に向かって時の経過が表されている。 The operation of the rectangular wave generator 5b in the oscillation start period T1 in X-Drive will be described with reference to FIGS. 1 and 19 and FIG. FIG. 21 shows an example of an operation timing chart of the rectangular wave generator 5b in the oscillation start section T1 in X-Drive. In FIG. 21, the first stage “E_RCT” indicates the signal waveform of the oscillation start state control signal E_RCT, and the second stage “D1P, D2N” indicates the signal waveforms of the control signal D1P and the control signal D2N. “D1N, D2P” in the third stage shows signal waveforms of the control signal D1N and the control signal D2P, “D0” in the fourth stage shows a signal waveform of the control signal D0, and “Vdr” in the fifth stage in the figure. "Indicates the voltage waveform of the oscillation control unit output signal input to the drive electrode D1, and" -Vdr "in the sixth stage in the figure indicates the voltage waveform of the oscillation control unit output signal input to the drive electrode D2. Yes. In the figure, the horizontal axis indicates time, and the passage of time is represented from left to right in the figure.
 図21の図中2段目及び3段目に示すように、X-Driveでは、Z-Driveと異なり、制御信号D1Pと制御信号D2Nとが同じ信号となり、制御信号D1Nと制御信号D2Pとが同じ信号であって制御信号D1Pと制御信号D2Nとは位相が180°反転した信号となる。このため、図21中5段目及び6段目に示すように、制御信号D1P及び制御信号D2Nの信号レベルが高レベルであり、かつ制御信号D1P及び制御信号D2Nの信号レベルが低レベルの場合に、ドライブ電極D1には電圧が高レベル電圧VrctHの駆動信号Vdrが印加され、ドライブ電極D2には電圧が低レベル電圧VrctLの駆動信号-Vdrが印加される。一方、制御信号D1P及び制御信号D2Nの信号レベルが低レベルであり、かつ制御信号D1N及び制御信号D2Pの信号レベルが高レベルの場合に、ドライブ電極D1には電圧が低レベル電圧VrctLの駆動信号Vdrが印加され、ドライブ電極D2には電圧が高レベル電圧VrctHの駆動信号-Vdrが印加される。
 このように、X-Driveのときは、カウント値Nf、制御値NupをZ-Driveのときと異ならせて、ドライブ電極D1及びドライブ電極D2には逆相の駆動信号Vdr,-Vdrが印加される。
 また、Z-Drive及びX-Driveのいずれの場合も発振開始動作は、搬送波と同期する必要はない。
As shown in the second and third stages in FIG. 21, in the X-Drive, unlike the Z-Drive, the control signal D1P and the control signal D2N are the same signal, and the control signal D1N and the control signal D2P are The control signal D1P and the control signal D2N are the same signal, and the phase is inverted by 180 °. Therefore, when the signal levels of the control signal D1P and the control signal D2N are high and the signal levels of the control signal D1P and the control signal D2N are low as shown in the fifth and sixth stages in FIG. In addition, a drive signal Vdr having a high level voltage VrctH is applied to the drive electrode D1, and a drive signal −Vdr having a low level voltage VrctL is applied to the drive electrode D2. On the other hand, when the signal levels of the control signal D1P and the control signal D2N are low and the signal levels of the control signal D1N and the control signal D2P are high, the drive electrode D1 is a drive signal having a low level voltage VrctL. Vdr is applied, and a drive signal −Vdr having a high level voltage VrctH is applied to the drive electrode D2.
As described above, in the case of X-Drive, the count value Nf and the control value Nup are different from those in the case of Z-Drive, and the drive signals Vdr and -Vdr having opposite phases are applied to the drive electrode D1 and the drive electrode D2. The
Further, in any case of Z-Drive and X-Drive, the oscillation start operation need not be synchronized with the carrier wave.
<センサ駆動部>
 次に、ドライバ6e及び切替回路5cの概略構成について図22から図28を用いて説明する。図22は、ドライバ6e及び切替回路5cの概略構成の一例を示す回路ブロック図である。図22では、理解を容易にするため、矩形波発生器5bも合わせて図示している。
 図22に示すように、ドライバ6eは、増幅器61a,62bと、帰還抵抗61b、62bと、入力抵抗61c、62cと、スイッチ63a,63b,63c,63dと、スイッチ64a,64b,64c,64dと、スイッチ65,66とを有している。
<Sensor drive unit>
Next, schematic configurations of the driver 6e and the switching circuit 5c will be described with reference to FIGS. FIG. 22 is a circuit block diagram illustrating an example of a schematic configuration of the driver 6e and the switching circuit 5c. In FIG. 22, the rectangular wave generator 5 b is also illustrated for easy understanding.
As shown in FIG. 22, the driver 6e includes amplifiers 61a and 62b, feedback resistors 61b and 62b, input resistors 61c and 62c, switches 63a, 63b, 63c and 63d, and switches 64a, 64b, 64c and 64d. , And switches 65 and 66.
 増幅器61aの出力端子と反転入力端子(-)との間には、並列接続された帰還抵抗61b及びスイッチ64bが接続されている。増幅器61aの反転入力端子(-)と、可変増幅器6d(図2参照)の出力端子に接続されたドライバ6eの入力端子との間には、直列接続されたスイッチ63a及び入力抵抗61cとが接続されている。スイッチ63aがドライバ6eの入力端子側に設けられ、入力抵抗61cが増幅器61a側に設けられている。増幅器61aの非反転入力端子(+)と、ドライバ6eの入力端子との間には、スイッチ64aが接続されている。当該非反転入力端子とスイッチ64aとの間と、動作コモン電圧VCOMの入力端子との間には、スイッチ63bが接続されている。増幅器61aの出力端子は、切替回路5cに設けられたスイッチ52a(詳細は後述)の入力端子に接続されている。 A feedback resistor 61b and a switch 64b connected in parallel are connected between the output terminal of the amplifier 61a and the inverting input terminal (−). A switch 63a and an input resistor 61c connected in series are connected between the inverting input terminal (−) of the amplifier 61a and the input terminal of the driver 6e connected to the output terminal of the variable amplifier 6d (see FIG. 2). Has been. The switch 63a is provided on the input terminal side of the driver 6e, and the input resistor 61c is provided on the amplifier 61a side. A switch 64a is connected between the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the driver 6e. A switch 63b is connected between the non-inverting input terminal and the switch 64a and between the input terminal of the operation common voltage VCOM. An output terminal of the amplifier 61a is connected to an input terminal of a switch 52a (details will be described later) provided in the switching circuit 5c.
 増幅器62aの出力端子と反転入力端子(-)との間には、並列接続された帰還抵抗62b及びスイッチ64dが接続されている。増幅器62aの反転入力端子(-)と、可変増幅器6dの出力端子に接続されたドライバ6eの入力端子との間には、直列接続されたスイッチ66、スイッチ63c及び入力抵抗62cとが接続されている。スイッチ66,63cがドライバ6eの入力端子側に設けられ、入力抵抗62cが増幅器62a側に設けられている。増幅器61aの非反転入力端子(+)と、ドライバ6eの入力端子との間には、直列接続されたスイッチ65及びスイッチ64cが接続されている。当該非反転入力端子(+)とスイッチ64cとの間と、動作コモン電圧VCOMの入力端子との間には、スイッチ63dが接続されている。増幅器62aの出力端子は、切替回路5cに設けられたスイッチ52b(詳細は後述)の入力端子に接続されている。 A feedback resistor 62b and a switch 64d connected in parallel are connected between the output terminal of the amplifier 62a and the inverting input terminal (−). A series-connected switch 66, switch 63c, and input resistor 62c are connected between the inverting input terminal (−) of the amplifier 62a and the input terminal of the driver 6e connected to the output terminal of the variable amplifier 6d. Yes. Switches 66 and 63c are provided on the input terminal side of the driver 6e, and an input resistor 62c is provided on the amplifier 62a side. A switch 65 and a switch 64c connected in series are connected between the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the driver 6e. A switch 63d is connected between the non-inverting input terminal (+) and the switch 64c and between the input terminal of the operation common voltage VCOM. An output terminal of the amplifier 62a is connected to an input terminal of a switch 52b (details will be described later) provided in the switching circuit 5c.
 スイッチ63a,63b,63c,63dは、これらの制御信号入力端子に入力する制御信号LP180に基づいて開閉状態が制御され、同時に閉状態(オン状態)又は開状態(オフ状態)となる。当該制御信号入力端子は例えば正論理入力である。
 スイッチ64a,64b,64c,64dは、制御信号入力端子に入力する制御信号LP360に基づいて開閉状態が制御され、同時に閉状態(オン状態)又は開状態(オフ状態)となる。当該制御信号入力端子は、スイッチ63a,63b,63c,63dの制御信号入力端子と同じ論理入力であり、例えば正論理入力である。
The switches 63a, 63b, 63c, and 63d are controlled to be opened / closed based on a control signal LP180 input to these control signal input terminals, and are simultaneously closed (on) or open (off). The control signal input terminal is, for example, a positive logic input.
The switches 64a, 64b, 64c, and 64d are controlled to open and close based on a control signal LP360 input to a control signal input terminal, and are simultaneously closed (on) or open (off). The control signal input terminal is the same logic input as the control signal input terminals of the switches 63a, 63b, 63c, and 63d, for example, a positive logic input.
 制御信号LP180と制御信号LP360とは逆位相の信号である。このため、スイッチ63a,63b,63c,63dがオン状態になると、スイッチ64a,64b,64c,64dはオフ状態になり、スイッチ63a,63b,63c,63dがオフ状態になると、スイッチ64a,64b,64c,64dはオン状態になる。詳細は図23から図28を用いて説明するが、スイッチ63a,63b,63c,63dのそれぞれがオン状態になり、スイッチ64a,64b,64c,64dのそれぞれがオフ状態になると、ドライバ6eは、反転増幅回路として機能する。また、スイッチ63a,63b,63c,63dのそれぞれがオフ状態になり、スイッチ64a,64b,64c,64dのそれぞれがオン状態になると、ドライバ6eは、ボルテージフォロア回路として機能する。 The control signal LP180 and the control signal LP360 are opposite phase signals. Therefore, when the switches 63a, 63b, 63c, and 63d are turned on, the switches 64a, 64b, 64c, and 64d are turned off, and when the switches 63a, 63b, 63c, and 63d are turned off, the switches 64a, 64b, 64c and 64d are turned on. Details will be described with reference to FIGS. 23 to 28. When the switches 63a, 63b, 63c, and 63d are turned on and the switches 64a, 64b, 64c, and 64d are turned off, the driver 6e Functions as an inverting amplifier circuit. When each of the switches 63a, 63b, 63c, and 63d is turned off and each of the switches 64a, 64b, 64c, and 64d is turned on, the driver 6e functions as a voltage follower circuit.
 スイッチ65は、スイッチ63aの入力端子とスイッチ64cの入力端子との間に接続され、制御信号入力端子に入力する制御信号ZDに基づいて開閉状態が制御される。当該制御入力端子は例えば正論理入力である。スイッチ65及び後述するスイッチ54は、発振制御部5がZ-Driveとして機能する場合にオン状態になり、発振制御部5がX-Driveとして機能する場合にはオフ状態になる。
 スイッチ66は、スイッチ64aの入力端子とスイッチ63cの入力端子との間に接続され、制御信号入力端子に入力する制御信号XDに基づいて開閉状態が制御される。当該制御入力端子は例えば正論理入力である。スイッチ66は、発振制御部5がZ-Driveとして機能する場合にオフ状態になり、発振制御部5がX-Driveとして機能する場合にはオン状態になる。
The switch 65 is connected between the input terminal of the switch 63a and the input terminal of the switch 64c, and the open / close state is controlled based on the control signal ZD input to the control signal input terminal. The control input terminal is, for example, a positive logic input. The switch 65 and a switch 54 described later are turned on when the oscillation control unit 5 functions as Z-Drive, and are turned off when the oscillation control unit 5 functions as X-Drive.
The switch 66 is connected between the input terminal of the switch 64a and the input terminal of the switch 63c, and the open / close state is controlled based on the control signal XD input to the control signal input terminal. The control input terminal is, for example, a positive logic input. The switch 66 is turned off when the oscillation control unit 5 functions as Z-Drive, and is turned on when the oscillation control unit 5 functions as X-Drive.
 切替回路5cは、スイッチ52a,52bと、スイッチ53a,53bと、スイッチ54とを有している。
 スイッチ52aは、ドライバ6eの増幅器61aの出力端子と、ドライブ電極D1との間に接続されている。スイッチ52aの出力端子はドライブ電極D1に接続されている。スイッチ52bは、ドライバ6eの増幅器62aの出力端子と、ドライブ電極D2との間に接続されている。スイッチ52bの出力端子はドライブ電極D2に接続されている。スイッチ52a及びスイッチ52bは、制御信号入力端子に入力する制御信号FBに基づいて開閉状態が制御される。当該制御入力端子は、例えば正論理入力である。
The switching circuit 5c includes switches 52a and 52b, switches 53a and 53b, and a switch 54.
The switch 52a is connected between the output terminal of the amplifier 61a of the driver 6e and the drive electrode D1. The output terminal of the switch 52a is connected to the drive electrode D1. The switch 52b is connected between the output terminal of the amplifier 62a of the driver 6e and the drive electrode D2. The output terminal of the switch 52b is connected to the drive electrode D2. The switch 52a and the switch 52b are controlled to be opened / closed based on a control signal FB input to a control signal input terminal. The control input terminal is, for example, a positive logic input.
 スイッチ53aは、矩形波発生器5bのスイッチ51d,51f,51hのそれぞれの出力端子(図19参照)と、ドライブ電極D1(図2参照)との間に接続されている。スイッチ53bは、矩形波発生器5bのスイッチ51e,51g,51iのそれぞれの出力端子(図19参照)と、ドライブ電極D2(図2参照)との間に接続されている。スイッチ53a及びスイッチ53bは、制御信号入力端子に入力する制御信号RCTに基づいて開閉状態が制御され、同時に閉状態(オン状態)又は開状態(オフ状態)のいずれかの状態となる。当該制御入力端子は、例えば正論理入力である。 The switch 53a is connected between the output terminals (see FIG. 19) of the switches 51d, 51f, and 51h of the rectangular wave generator 5b and the drive electrode D1 (see FIG. 2). The switch 53b is connected between the output terminals (see FIG. 19) of the switches 51e, 51g, and 51i of the rectangular wave generator 5b and the drive electrode D2 (see FIG. 2). The switch 53a and the switch 53b are controlled to open and close based on a control signal RCT input to the control signal input terminal, and are simultaneously in a closed state (on state) or an open state (off state). The control input terminal is, for example, a positive logic input.
 制御信号RCTと制御信号FBとは例えば逆位相の信号である。このため、スイッチ53a,53bがオン状態になるとスイッチ52a,52bはオフ状態になり、スイッチ53a,53bがオフ状態になるとスイッチ52a,52bはオン状態になる。発振開始区間T1では、スイッチ53a,53bがオン状態になって矩形波発生器5bとドライブ電極D1,D2が接続されるのに対し、スイッチ52a,52bがオフ状態になってドライバ6eはドライブ電極D1,D2から電気的に切り離される。また、安定発振区間T2及び発振停止区間T3では、スイッチ53a,53bがオフ状態になって矩形波発生器5bはドライブ電極D1,D2から電気的に切り離されるのに対し、スイッチ52a、52bがオン状態になってドライバ6eはドライブ電極D1,D2と接続される。 The control signal RCT and the control signal FB are, for example, signals having opposite phases. Therefore, when the switches 53a and 53b are turned on, the switches 52a and 52b are turned off, and when the switches 53a and 53b are turned off, the switches 52a and 52b are turned on. In the oscillation start period T1, the switches 53a and 53b are turned on and the rectangular wave generator 5b is connected to the drive electrodes D1 and D2, whereas the switches 52a and 52b are turned off and the driver 6e is driven. It is electrically disconnected from D1 and D2. In the stable oscillation period T2 and the oscillation stop period T3, the switches 53a and 53b are turned off and the rectangular wave generator 5b is electrically disconnected from the drive electrodes D1 and D2, whereas the switches 52a and 52b are turned on. In this state, the driver 6e is connected to the drive electrodes D1 and D2.
 次に、Z-Driveにおけるドライバ6e、矩形波発生器5b及び切替回路5cの接続関係及び角速度センサ1の動作について、図22を参照しつつ図23から図28を用いて説明する。図23は、Z-Driveにおける発振開始区間T1でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。図24は、Z-Driveにおける安定発振区間T2でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。図25は、Z-Driveにおける発振停止区間T3でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。なお、図23から図25及び後述する図26から図28では、スイッチ52a,52b,53a,53b,54,63a~63d、64a~64d、65、66は、オン状態の場合には直線で示し、オフ状態の場合には図示が省略されている。また、図23から図25及び後述する図26から図28では、スイッチがオフ状態になってドライバ6e、矩形波発生器5b又は切替回路5cから電気的に切り離された抵抗や配線の図示は省略されている。 Next, the connection relationship of the driver 6e, the rectangular wave generator 5b and the switching circuit 5c in Z-Drive and the operation of the angular velocity sensor 1 will be described with reference to FIGS. 23 to 28 with reference to FIGS. FIG. 23 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation start section T1 in Z-Drive. FIG. 24 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable oscillation section T2 in Z-Drive. FIG. 25 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 in Z-Drive. In FIGS. 23 to 25 and FIGS. 26 to 28 described later, the switches 52a, 52b, 53a, 53b, 54, 63a to 63d, 64a to 64d, 65 and 66 are shown as straight lines in the on state. In the off state, the illustration is omitted. Also, in FIGS. 23 to 25 and FIGS. 26 to 28 to be described later, illustration of resistors and wirings that are electrically disconnected from the driver 6e, the rectangular wave generator 5b, or the switching circuit 5c when the switch is turned off is omitted. Has been.
 Z-Driveにおける発振開始区間T1では、制御信号RCTの信号レベルが高レベルとなり、制御信号FBの信号レベルが低レベルとなり、スイッチ64a~64dの制御信号LP360の信号レベルが高レベルとなり、スイッチ63a~63dの制御信号LP180の信号レベルが低レベル状態となる。これにより、図22及び図23に示すように、Z-Driveにおける発振開始区間T1では、スイッチ53a、53bがオン状態となり、スイッチ52a,52bがオフ状態となるため、矩形波発生器5bとドライブ電極D1,D2とが接続され、ドライバ6eはドライブ電極D1,D2から切り離される。また、スイッチ54がオン状態となり、矩形波発生器5bの2つの出力端子間が接続され、ドライブ電極D1,D2間も接続される。 In the oscillation start period T1 in Z-Drive, the signal level of the control signal RCT is high, the signal level of the control signal FB is low, the signal level of the control signal LP360 of the switches 64a to 64d is high, and the switch 63a The signal level of the control signal LP180 of .about.63d becomes a low level state. As a result, as shown in FIGS. 22 and 23, in the oscillation start section T1 in Z-Drive, the switches 53a and 53b are turned on and the switches 52a and 52b are turned off, so that the rectangular wave generator 5b and the drive are driven. The electrodes D1 and D2 are connected, and the driver 6e is disconnected from the drive electrodes D1 and D2. Further, the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
 スイッチ63a~63dはオフ状態になり、スイッチ64a~64dはオン状態になる。このため、増幅器61aの出力端子と反転入力端子(-)とがスイッチ64b介して接続され、入力抵抗61cがスイッチ63aによってドライバ6eの入力端子から切り離され、増幅器61aの非反転入力端子(+)とドライバ6eの入力端子とがスイッチ64aを介して接続される。また、増幅器62aの出力端子と反転入力端子(-)とがスイッチ64d介して接続され、入力抵抗61cがスイッチ63aによってドライバ6eの入力端子から切り離され、増幅器62aの非反転入力端子(+)とドライバ6eの入力端子とがスイッチ64cを介して接続される。これにより、ドライバ6eは、ボルテージフォロアとして機能し、ドライバ6eの入力端子から入力する入力信号(すなわち可変増幅器6d(図2参照)が出力する出力信号と同じ信号を自励発振信号Dr1,Dr2として増幅器61a,62aの出力端子から出力する。 The switches 63a to 63d are turned off, and the switches 64a to 64d are turned on. Therefore, the output terminal of the amplifier 61a and the inverting input terminal (−) are connected via the switch 64b, the input resistor 61c is disconnected from the input terminal of the driver 6e by the switch 63a, and the non-inverting input terminal (+) of the amplifier 61a. And the input terminal of the driver 6e are connected via a switch 64a. The output terminal of the amplifier 62a and the inverting input terminal (−) are connected via the switch 64d, the input resistor 61c is disconnected from the input terminal of the driver 6e by the switch 63a, and the non-inverting input terminal (+) of the amplifier 62a. The input terminal of the driver 6e is connected via the switch 64c. Accordingly, the driver 6e functions as a voltage follower, and the same signal as the input signal input from the input terminal of the driver 6e (that is, the output signal output from the variable amplifier 6d (see FIG. 2)) is used as the self-excited oscillation signals Dr1 and Dr2. Output from the output terminals of the amplifiers 61a and 62a.
 切替回路5cは、Z-Drive時の発振開始区間T1において、矩形波発生器5b及びドライバ6eのうち矩形波発生器5bを選択し、矩形波発生器5bが生成した矩形波矩形波駆動信号Rct1,Rct2をドライブ電極D1,D2に出力する。このため、矩形波発生器5bが発生した矩形波駆動信号Rct1が切替回路5cを介して発振制御部出力信号Vdr,Vdrとしてドライブ電極D1,D2に入力される。図20を用いて説明したように、Z-Drive時の発振開始区間T1では、矩形波駆動信号Rct1及び矩形波駆動信号Rct2は、同じ信号であるため、矩形波発生器5bの2つの出力端子が接続されていても問題ない。 The switching circuit 5c selects the rectangular wave generator 5b from the rectangular wave generator 5b and the driver 6e in the oscillation start period T1 during Z-Drive, and the rectangular wave rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b. , Rct2 are output to the drive electrodes D1, D2. Therefore, the rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b is input to the drive electrodes D1 and D2 as the oscillation control unit output signals Vdr and Vdr via the switching circuit 5c. As described with reference to FIG. 20, in the oscillation start period T1 at the time of Z-Drive, the rectangular wave drive signal Rct1 and the rectangular wave drive signal Rct2 are the same signal, and therefore, two output terminals of the rectangular wave generator 5b. There is no problem even if is connected.
 ドライブ電極D1,D2に自励発振信号Dr1,Dr2が発振制御部出力信号Vdrとして入力されることにより、図2に示す振動部3aは、自励発振信号Dr1,Dr2の周波数での振動を開始し、振動振幅を増大させながら角速度センサ部3の発振周波数で振動する。これにより、検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2が検出電極X1,X2,Y1,Y2から検出される。検出電極X1,X2,Y1,Y2から検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2が検出されることに基づいて、搬送波生成回路6bから搬送波Vsが出力され、位相シフタ6cから出力信号Viが出力され、可変増幅器6dから出力信号Viaが出力される。出力信号Viの位相は、搬送波Vsの位相に対して90°シフトしている。ドライバ6eは、ボルテージフォロア回路として機能するため、ドライバ6eが出力する自励発振信号Dr1,Dr2は、出力信号Viaと同じ信号波形となる。 When the self-excited oscillation signals Dr1 and Dr2 are input to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr, the vibration unit 3a shown in FIG. 2 starts to vibrate at the frequency of the self-excited oscillation signals Dr1 and Dr2. Then, it vibrates at the oscillation frequency of the angular velocity sensor unit 3 while increasing the vibration amplitude. Thereby, the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are detected from the detection electrodes X1, X2, Y1, and Y2. Based on detection of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 from the detection electrodes X1, X2, Y1, and Y2, the carrier wave generation circuit 6b outputs the carrier wave Vs, and the phase shifter 6c outputs the output signal Vi. An output signal Via is output from the variable amplifier 6d. The phase of the output signal Vi is shifted by 90 ° with respect to the phase of the carrier wave Vs. Since the driver 6e functions as a voltage follower circuit, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e have the same signal waveform as the output signal Via.
 Z-Driveにおける安定発振区間T2では、制御信号RCTの信号レベルが低レベルとなり、制御信号FBの信号レベルが高レベルとなり、スイッチ64a~64dの制御信号LP360の信号レベルが高レベルとなり、スイッチ63a~63dの制御信号LP180の信号レベルが低レベル状態となる。これにより、図22及び図23に示すように、Z-Driveにおける安定発振区間T2では、スイッチ52a、52bがオン状態となり、スイッチ53a,53bがオフ状態となるため、図4に示すように、ドライバ6eとドライブ電極D1,D2とが接続され、矩形波発生器5bはドライブ電極D1,D2から切り離される。また、スイッチ54がオン状態となり、矩形波発生器5bの2つの出力端子間が接続され、ドライブ電極D1,D2間も接続される。 In the stable oscillation section T2 in Z-Drive, the signal level of the control signal RCT is low, the signal level of the control signal FB is high, the signal level of the control signal LP360 of the switches 64a to 64d is high, and the switch 63a The signal level of the control signal LP180 of .about.63d becomes a low level state. Accordingly, as shown in FIGS. 22 and 23, in the stable oscillation section T2 in Z-Drive, the switches 52a and 52b are turned on and the switches 53a and 53b are turned off. Therefore, as shown in FIG. Driver 6e and drive electrodes D1, D2 are connected, and rectangular wave generator 5b is disconnected from drive electrodes D1, D2. Further, the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
 Z-Driveにおける安定発振区間T2におけるスイッチ63a~63d及びスイッチ64a~64dの開閉状態は、Z-Driveにおける発振開始区間T1での開閉状態と同様であるため、ドライバ6eは、ボルテージフォロアとして機能し、ドライバ6eの入力端子から入力する入力信号(すなわち可変増幅器6d(図4参照)が出力する出力信号)と同じ信号を自励発振信号Dr1,Dr2として増幅器61a,62aの出力端子から出力する。 Since the open / close state of the switches 63a to 63d and the switches 64a to 64d in the stable oscillation section T2 in Z-Drive is the same as the open / close state in the oscillation start section T1 in Z-Drive, the driver 6e functions as a voltage follower. The same signal as the input signal input from the input terminal of the driver 6e (that is, the output signal output from the variable amplifier 6d (see FIG. 4)) is output from the output terminals of the amplifiers 61a and 62a as the self-excited oscillation signals Dr1 and Dr2.
 切替回路5cは、Z-Drive時の安定発振区間T2において、矩形波発生器5b及びドライバ6eのうち、ドライバ6eを選択してドライバ6eが出力した自励発振信号Dr1,Dr2を発振制御部出力信号Vdrとしてドライブ電極D1,D2に出力する。切替回路5cがドライバ6eを選択することにより自励発振回路5aにおいて360°発振ループが形成され、角速度センサ1は、角速度センサ部3の発振周波数に基づく自励発振を開始するとともに継続する。これにより、ドライバ6eが出力する、角速度センサ部3の自励発振に基づく自励発振信号Dr1,Dr2が切替回路5cを介して出力信号Vdrとしてドライブ電極D1,D2に入力される。Z-Drive時の安定発振区間T2では、自励発振信号Dr1及び自励発振信号Dr2は、同じ信号であるため、増幅器61aの出力端子と増幅器62aの出力端子とがスイッチ54を介して接続されていても問題ない。 In the stable oscillation section T2 during Z-Drive, the switching circuit 5c selects the driver 6e from the rectangular wave generator 5b and the driver 6e and outputs the self-excited oscillation signals Dr1 and Dr2 output by the driver 6e to the oscillation control unit output. The signal Vdr is output to the drive electrodes D1 and D2. When the switching circuit 5c selects the driver 6e, a 360 ° oscillation loop is formed in the self-excited oscillation circuit 5a, and the angular velocity sensor 1 starts and continues self-excited oscillation based on the oscillation frequency of the angular velocity sensor unit 3. As a result, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e and based on the self-excited oscillation of the angular velocity sensor unit 3 are input to the drive electrodes D1 and D2 as the output signal Vdr via the switching circuit 5c. In the stable oscillation section T2 at the time of Z-Drive, since the self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 are the same signal, the output terminal of the amplifier 61a and the output terminal of the amplifier 62a are connected via the switch 54. No problem.
 Z-Drive時の安定発振区間T2において、角速度センサ部3は自励発振を継続するため、検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2が検出電極X1,X2,Y1,Y2から検出される。検出電極X1,X2,Y1,Y2から検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2が検出されることに基づいて搬送波生成回路6bから搬送波Vsが出力され、位相シフタ6cから出力信号Viが出力され、可変増幅器6dから出力信号Viaが出力される。出力信号Viの位相は、搬送波Vsの位相に対して90°シフトしている。ドライバ6eは、ボルテージフォロア回路として機能するため、ドライバ6eが出力する自励発振信号Dr1,Dr2は、出力信号Viaと同じ信号波形となる。 In the stable oscillation section T2 during Z-Drive, the angular velocity sensor unit 3 continues self-excited oscillation, so that the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are detected from the detection electrodes X1, X2, Y1, and Y2. Based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected from the detection electrodes X1, X2, Y1, and Y2, the carrier wave Vs is output from the carrier wave generation circuit 6b, and the output signal Vi is output from the phase shifter 6c and is variable. An output signal Via is output from the amplifier 6d. The phase of the output signal Vi is shifted by 90 ° with respect to the phase of the carrier wave Vs. Since the driver 6e functions as a voltage follower circuit, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e have the same signal waveform as the output signal Via.
 また、Z-Drive時の安定発振区間T2では、矩形波発生器5bはパワーダウン状態(非動作状態)になる。このため、矩形波駆動信号Rct1,Rct2は矩形波発生器5bから出力されない。
 Z-Driveにおける発振停止区間T3では、制御信号RCTの信号レベルが低レベルとなり、制御信号FBの信号レベルが高レベルとなり、スイッチ64a~64dの制御信号LP360の信号レベルが低レベルとなり、スイッチ63a~63dの制御信号LP180の信号レベルが高レベル状態となる。これにより、図22及び図24に示すように、Z-Driveにおける発振停止区間T3では、スイッチ52a、52bがオン状態となり、スイッチ53a,53bがオフ状態となるため、ドライバ6eとドライブ電極D1,D2とが接続され、矩形波発生器5bはドライブ電極D1,D2から切り離される。また、スイッチ54がオン状態となり、矩形波発生器5bの2つの出力端子間が接続され、ドライブ電極D1,D2間も接続される。
Further, in the stable oscillation section T2 during Z-Drive, the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the rectangular wave drive signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
In the oscillation stop period T3 in Z-Drive, the signal level of the control signal RCT is low, the signal level of the control signal FB is high, the signal level of the control signal LP360 of the switches 64a to 64d is low, and the switch 63a The signal level of the control signal LP180 of .about.63d becomes a high level state. Accordingly, as shown in FIGS. 22 and 24, in the oscillation stop period T3 in Z-Drive, the switches 52a and 52b are turned on and the switches 53a and 53b are turned off, so that the driver 6e and the drive electrodes D1, D2 is connected, and the rectangular wave generator 5b is disconnected from the drive electrodes D1 and D2. Further, the switch 54 is turned on, the two output terminals of the rectangular wave generator 5b are connected, and the drive electrodes D1, D2 are also connected.
 スイッチ63a~63dはオン状態になり、スイッチ64a~64dはオフ状態になる。このため、増幅器61aの出力端子と反転入力端子(-)とが帰還抵抗61bを介して接続され、増幅器61aの非反転入力端子(+)と動作コモン電圧VCOMの入力端子とがスイッチ63bを介して接続される。また、当該反転入力端子(-)は入力抵抗61c及びスイッチ63aを介してドライバ6eの入力端子に接続される。また、増幅器62aの出力端子と反転入力端子(-)とが帰還抵抗62bを介して接続され、増幅器62aの非反転入力端子(+)と動作コモン電圧VCOMの入力端子とがスイッチ63dを介して接続される。さらに、当該反転入力端子(-)は入力抵抗62c及びスイッチ63cを介してドライバ6eの入力端子に接続される。
 ここで、帰還抵抗61b,62bのそれぞれの抵抗値をRとし、入力抵抗61c,62cの抵抗値をrとすると、ドライバ6eは、反転増幅率が「R/r」の反転増幅回路として機能する。
The switches 63a to 63d are turned on, and the switches 64a to 64d are turned off. Therefore, the output terminal of the amplifier 61a and the inverting input terminal (−) are connected via the feedback resistor 61b, and the non-inverting input terminal (+) of the amplifier 61a and the input terminal of the operating common voltage VCOM are connected via the switch 63b. Connected. The inverting input terminal (−) is connected to the input terminal of the driver 6e via the input resistor 61c and the switch 63a. The output terminal of the amplifier 62a and the inverting input terminal (−) are connected via the feedback resistor 62b, and the non-inverting input terminal (+) of the amplifier 62a and the input terminal of the operating common voltage VCOM are connected via the switch 63d. Connected. Further, the inverting input terminal (−) is connected to the input terminal of the driver 6e through the input resistor 62c and the switch 63c.
Here, when the resistance values of the feedback resistors 61b and 62b are R and the resistance values of the input resistors 61c and 62c are r, the driver 6e functions as an inverting amplifier circuit having an inverting amplification factor of “R / r”. .
 切替回路5cは、Z-Drive時の発振停止区間T3において、矩形波発生器5b及びドライバ6eのうち、ドライバ6eを選択してドライバ6eが出力した自励発振信号Dr1,Dr2をドライブ電極D1,D2に出力する。発振制御部5が反転増幅回路として機能するドライバ6eを選択することにより自励発振回路5aにおいて180°安定ループが形成される。このため、ドライバ6eが出力する自励発振信号Dr1,Dr2は、安定発振区間T2における自励発振信号Dr1,Dr2に対して位相が180°反転した信号になる。また、発振停止区間T3では、角速度センサ部3及び自励発振回路5cにおいて180°安定ループが形成されているため、角速度センサ部3の発振周波数に基づく自励発振の振幅が徐々に減少して自励発振が停止する。ドライバ6eが出力する自励発振信号Dr1,Dr2が切替回路5cを介して出力信号Vdrとしてドライブ電極D1,D2に入力される。Z-Drive時の発振停止区間T3では、自励発振信号Dr1及び自励発振信号Dr2は、同じ信号であるため、増幅器61aの出力端子と増幅器62aの出力端子とがスイッチ54を介して接続されていても問題ない。 The switching circuit 5c selects the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e by selecting the driver 6e from the rectangular wave generator 5b and the driver 6e in the oscillation stop period T3 during Z-Drive. Output to D2. When the oscillation control unit 5 selects the driver 6e that functions as an inverting amplifier circuit, a 180 ° stable loop is formed in the self-excited oscillation circuit 5a. Therefore, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are signals whose phases are inverted by 180 ° with respect to the self-excited oscillation signals Dr1 and Dr2 in the stable oscillation period T2. In the oscillation stop period T3, since the 180 ° stable loop is formed in the angular velocity sensor unit 3 and the self-excited oscillation circuit 5c, the amplitude of the self-excited oscillation based on the oscillation frequency of the angular velocity sensor unit 3 gradually decreases. Self-excited oscillation stops. The self-oscillation signals Dr1 and Dr2 output from the driver 6e are input to the drive electrodes D1 and D2 as the output signal Vdr through the switching circuit 5c. In the oscillation stop period T3 during Z-Drive, since the self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 are the same signal, the output terminal of the amplifier 61a and the output terminal of the amplifier 62a are connected via the switch 54. No problem.
 Z-Drive時の発振停止区間T3において、角速度センサ部3は自励発振を停止するため、検出電極X1,X2,Y1,Y2で検出される検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2の振幅は徐々に減少して最終的に0になる。これにより、図27の図中の7段目から9段目に示すように、搬送波生成回路6bが検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2に基づいて生成する搬送波Vs、搬送波Vsの位相を90°シフトした位相シフタ6cの出力信号Vi及び出力信号Viを入力とする可変増幅器6dが出力する出力信号Viaのそれぞれの振幅も徐々に減少して最終的に0になる。
 また、Z-Drive時の発振停止区間T3では、矩形波発生器5bはパワーダウン状態(非動作状態)になる。このため、矩形波駆動信号Rct1,Rct2は矩形波発生器5bから出力されない。
In the oscillation stop period T3 at the time of Z-Drive, the angular velocity sensor unit 3 stops self-excited oscillation, so that the amplitudes of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the detection electrodes X1, X2, Y1, and Y2 are gradually increased. Decreases to zero. Thereby, as shown in the seventh to ninth stages in FIG. 27, the phases of the carrier Vs and the carrier Vs generated by the carrier generation circuit 6b based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 are 90 °. The respective amplitudes of the output signal Via output from the variable amplifier 6d that receives the output signal Vi of the shifted phase shifter 6c and the output signal Vi are also gradually reduced to zero.
In addition, in the oscillation stop period T3 during Z-Drive, the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the rectangular wave drive signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
 次に、X-Driveにおけるドライバ6e、矩形波発生器5b及び切替回路5cの接続関係及び角速度センサ1の動作について、図22及び図26から図28を用いて説明する。図26は、X-Driveにおける発振開始区間T1でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。図27は、X-Driveにおける安定発振区間T2でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。図28は、X-Driveにおける発振停止区間T3でのドライバ6e、矩形波発生器5b及び切替回路5cの接続状態の概略構成を示す図である。 Next, the connection relationship between the driver 6e, the rectangular wave generator 5b and the switching circuit 5c in X-Drive and the operation of the angular velocity sensor 1 will be described with reference to FIGS. FIG. 26 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation start section T1 in X-Drive. FIG. 27 is a diagram showing a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable oscillation section T2 in X-Drive. FIG. 28 is a diagram illustrating a schematic configuration of a connection state of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 in X-Drive.
 図22及び図26に示すように、X-Driveの発振開始区間T1におけるドライバ6e、矩形波発生器5b及び切替回路5cの接続関係は、スイッチ54がオフ状態になることを除いて、Z-Driveにおける当該接続関係と同様である。図5に示すように、矩形波発生器5bの出力端子のうち、矩形波駆動信号Rct1が出力される一方の出力端子はドライブ電極D1に接続され、矩形波駆動信号Rct2が出力される他方の出力端子はドライブ電極D2に接続される。このため、矩形波発生器5bが発生した矩形波駆動信号Rct1が切替回路5cを介して発振制御部出力信号Vdrとしてドライブ電極D1に入力され、矩形波発生器5bが発生した矩形波駆動信号Rct2が切替回路5cを介して発振制御部出力信号-Vdrとしてドライブ電極D2に入力される。
 また、図21を用いて説明したように、矩形波駆動信号Rct1と矩形波駆動信号Rct2とは互いに逆位相の信号である。このため、発振制御部5は、X-Drive時の発振開始区間T1において、互いに逆相の矩形波駆動信号Rct1,Rct2を発振制御部出力信号Vdrとしてドライブ電極D1,D2に入力する。
As shown in FIGS. 22 and 26, the connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the X-Drive oscillation start period T1 is the same as that of the Z-Drive except that the switch 54 is turned off. This is the same as the connection relationship in Drive. As shown in FIG. 5, among the output terminals of the rectangular wave generator 5b, one output terminal from which the rectangular wave drive signal Rct1 is output is connected to the drive electrode D1, and the other output terminal from which the rectangular wave drive signal Rct2 is output. The output terminal is connected to the drive electrode D2. Therefore, the rectangular wave drive signal Rct1 generated by the rectangular wave generator 5b is input to the drive electrode D1 as the oscillation control unit output signal Vdr via the switching circuit 5c, and the rectangular wave drive signal Rct2 generated by the rectangular wave generator 5b. Is input to the drive electrode D2 as the oscillation control unit output signal -Vdr via the switching circuit 5c.
Further, as described with reference to FIG. 21, the rectangular wave drive signal Rct1 and the rectangular wave drive signal Rct2 are signals having opposite phases. Therefore, the oscillation control unit 5 inputs the rectangular wave drive signals Rct1 and Rct2 having opposite phases to the drive electrodes D1 and D2 as the oscillation control unit output signal Vdr in the oscillation start period T1 during X-Drive.
 X-Driveの安定発振区間T2では、図22及び図27に示すように、ドライバ6e、矩形波発生器5b及び切替回路5cの接続関係は、スイッチ54がオフ状態になることを除いて、Z-Driveの安定発振区間T2におけるドライバ6e、矩形波発生器5b及び切替回路5cの接続関係と同様である。発振制御部5は、ドライバ6eの増幅器61aが出力する自励発振信号Dr1をドライブ電極D1に入力し、ドライバ6eの増幅器62aが出力する自励発振信号Dr2をドライブ電極D2に入力する。自励発振信号Dr1及び自励発振信号Dr2は、角速度センサ部3(図5参照)の自励発振に基づく互いに逆相の信号である。このため、ドライブ電極D1及びドライブ電極D2は、発振開始区間T1のときと同様に、互いに逆相の自励発振信号Dr1及び自励発振信号Dr2でそれぞれドライブされる。自励発振回路5aは、360°発振ループを形成し、当該発振ループにおける信号の周波数は角速度センサ部3の発振周波数に引き込まれ、角速度センサ部3の振動部3aは、角速度センサ部3の発振周波数で振動し続ける。 In the stable oscillation section T2 of X-Drive, as shown in FIGS. 22 and 27, the connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c is Z except that the switch 54 is turned off. This is the same as the connection relationship of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the stable drive oscillation period T2. The oscillation controller 5 inputs the self-excited oscillation signal Dr1 output from the amplifier 61a of the driver 6e to the drive electrode D1, and inputs the self-excited oscillation signal Dr2 output from the amplifier 62a of the driver 6e to the drive electrode D2. The self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 are signals having opposite phases based on the self-excited oscillation of the angular velocity sensor unit 3 (see FIG. 5). For this reason, the drive electrode D1 and the drive electrode D2 are respectively driven by the self-excited oscillation signal Dr1 and the self-excited oscillation signal Dr2 having opposite phases, as in the oscillation start period T1. The self-excited oscillation circuit 5 a forms a 360 ° oscillation loop, and the frequency of the signal in the oscillation loop is drawn into the oscillation frequency of the angular velocity sensor unit 3, and the vibration unit 3 a of the angular velocity sensor unit 3 Continue to vibrate at frequency.
 X-Driveの発振停止区間T3では、図22及び図28に示すように、ドライバ6e、矩形波発生器5b及び切替回路5cの接続関係は、スイッチ54がオフ状態になることを除いて、Z-Driveの発振停止区間T3におけるドライバ6e、矩形波発生器5b及び切替回路5cの接続関係と同様である。発振制御部5は、ドライバ6eの増幅器61aが出力する出力信号(すなわち自励発振信号Dr1)をドライブ電極D1にドライブし、ドライバ6eの増幅器62aが出力する出力信号(すなわち自励発振信号Dr2)をドライブ電極D2にドライブする。ドライバ6eは反転増幅回路として機能するため、ドライバ6eが出力する自励発振信号Dr1,Dr2は、安定発振区間T2における自励発振信号Dr1,Dr2に対して位相が180°反転した信号になる。 In the X-Drive oscillation stop period T3, as shown in FIGS. 22 and 28, the connection relationship between the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c is Z except that the switch 54 is turned off. This is the same as the connection relationship of the driver 6e, the rectangular wave generator 5b, and the switching circuit 5c in the oscillation stop period T3 of -Drive. The oscillation controller 5 drives the output signal output from the amplifier 61a of the driver 6e (ie, the self-excited oscillation signal Dr1) to the drive electrode D1, and outputs the output signal output from the amplifier 62a of the driver 6e (ie, the self-excited oscillation signal Dr2). Is driven to the drive electrode D2. Since the driver 6e functions as an inverting amplifier circuit, the self-excited oscillation signals Dr1 and Dr2 output from the driver 6e are signals whose phases are inverted by 180 ° with respect to the self-excited oscillation signals Dr1 and Dr2 in the stable oscillation period T2.
 X-Drive時の発振停止区間T3において、自励発振回路5aは、180°安定ループを形成し、角速度センサ部3の発振周波数に基づく自励発振の振幅を減少して自励発振を停止する。このため、検出電極X1,X2,Y1,Y2で検出される検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2の振幅は徐々に減少して最終的に0になる。これにより、搬送波生成回路6bが検出信号Vs_x1,Vs_x2,Vs_y1,Vs_y2に基づいて生成する搬送波Vs、搬送波Vsの位相を90°シフトした位相シフタ6cの出力信号Vi及び出力信号Viを入力とする可変増幅器6dが出力する出力信号Viaのそれぞれの振幅も徐々に減少して最終的に0になる。
 また、X-Drive時の発振停止区間T3では、矩形波発生器5bはパワーダウン状態(非動作状態)になる。このため、出力信号Rct1,Rct2は矩形波発生器5bから出力されない。
In the oscillation stop period T3 during X-Drive, the self-excited oscillation circuit 5a forms a 180 ° stable loop, reduces the self-excited oscillation amplitude based on the oscillation frequency of the angular velocity sensor unit 3, and stops the self-excited oscillation. . Therefore, the amplitudes of the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2 detected by the detection electrodes X1, X2, Y1, and Y2 gradually decrease and finally become zero. Accordingly, the carrier wave generation circuit 6b generates the carrier wave Vs generated based on the detection signals Vs_x1, Vs_x2, Vs_y1, and Vs_y2, the output signal Vi of the phase shifter 6c obtained by shifting the phase of the carrier wave Vs by 90 °, and the output signal Vi. The amplitude of each output signal Via output from the amplifier 6d also gradually decreases and finally becomes zero.
In addition, in the oscillation stop period T3 during X-Drive, the rectangular wave generator 5b is in a power-down state (non-operating state). For this reason, the output signals Rct1 and Rct2 are not output from the rectangular wave generator 5b.
<4端子ドライブセンサの対応>
 上記実施の形態では、2端子のドライブ電極D1,D2の角速度センサについて説明したが、本発明はこれに限られない。図29に示すように、角速度センサは、ドライブ電極D1x,D2x,D1y,D2yの4端子の角速度センサであってもよい。図29は、4端子のドライブ電極D1x,D2x,D1y,D2yを備えた角速度センサ部3の概略構成を示すブロック図である。図29(a)は、Z-Driveにおいてドライブ電極D1x,D2x,D1y,D2yに入力される信号を示し、図29(b)は、X-Driveにおいてドライブ電極D1x,D2x,D1y,D2yに入力される信号を示している。
 図29(a)に示すように、Z-Driveの場合、ドライブ電極D1x,D2x,D1y,D2yには、同一の出力信号Vdrが入力される。図29(b)に示すように、X-Driveの場合、ドライブ電極D1xには出力信号Vdrxが入力され、ドライブ電極D2xには出力信号-Vdrxが入力され、ドライブ電極D1y,D2yには動作コモン電圧VCOMが入力される。
<Support for 4-terminal drive sensor>
In the above embodiment, the angular velocity sensor of the two-terminal drive electrodes D1, D2 has been described, but the present invention is not limited to this. As shown in FIG. 29, the angular velocity sensor may be a four-terminal angular velocity sensor of drive electrodes D1x, D2x, D1y, and D2y. FIG. 29 is a block diagram showing a schematic configuration of the angular velocity sensor unit 3 including four-terminal drive electrodes D1x, D2x, D1y, and D2y. FIG. 29A shows signals input to the drive electrodes D1x, D2x, D1y, and D2y in Z-Drive, and FIG. 29B shows inputs to the drive electrodes D1x, D2x, D1y, and D2y in X-Drive. The signal to be shown is shown.
As shown in FIG. 29A, in the case of Z-Drive, the same output signal Vdr is input to the drive electrodes D1x, D2x, D1y, D2y. As shown in FIG. 29B, in the case of X-Drive, an output signal Vdrx is input to the drive electrode D1x, an output signal -Vdrx is input to the drive electrode D2x, and an operation common is applied to the drive electrodes D1y and D2y. The voltage VCOM is input.
[第2実施形態]
 本発明の第2実施形態は、角速度センサ駆動回路、角速度センサ装置及び角度センサの駆動方法に関する。
[Second Embodiment]
The second embodiment of the present invention relates to an angular velocity sensor driving circuit, an angular velocity sensor device, and an angle sensor driving method.
 従来、内部に変位可能な振動部を有する角速度センサがある。振動部を有する角速度センサは、振動部を所定の周波数で振動させ、系に角速度が加わったとき振動部に生じるコリオリ力によって発生する変位を検出する。そして、検出された変位によって角速度を検出している。
 公知の角速度センサは、例えば、特許文献4、特許文献5に記載されている。特許文献4、特許文献5に記載の角速度センサは、いずれも駆動信号を与えて振動部を所定の軸方向に振動させて角速度を検出する。特許文献4、特許文献5に記載の角速度センサは、角速度の検出後、振動部の振動を静定し、他の軸方向に振動部を振動させている。なお、以下、「静定」とは、錘部を含む振動部に加わる力がつりあった状態にあり、振動部が静止しているとみなせる状態をいう。
2. Description of the Related Art Conventionally, there is an angular velocity sensor having a vibration part that can be displaced inside. An angular velocity sensor having a vibrating portion vibrates the vibrating portion at a predetermined frequency, and detects a displacement generated by a Coriolis force generated in the vibrating portion when an angular velocity is applied to the system. The angular velocity is detected based on the detected displacement.
Known angular velocity sensors are described in, for example, Patent Document 4 and Patent Document 5. The angular velocity sensors described in Patent Literature 4 and Patent Literature 5 both provide a drive signal to vibrate the vibrating portion in a predetermined axial direction and detect the angular velocity. In the angular velocity sensors described in Patent Literature 4 and Patent Literature 5, after the angular velocity is detected, the vibration of the vibration portion is stabilized, and the vibration portion is vibrated in another axial direction. In the following description, “statically” refers to a state in which the force applied to the vibrating portion including the weight portion is balanced and the vibrating portion can be regarded as stationary.
 しかしながら、公知の振動部を有する角速度センサでは、振動部が静止中、あるいはいずれかの方向に振動する以前に、振動部に含まれる錘に外力が加わる可能性がある。錘に外力が加わった場合、振動部が意図しない方向に振動し、所望の方向の角速度を検出することができなくなる。
 例えば、振動部がX軸方向に振動する以前の区間または停止中であるとき、外力等によって振動部がX軸方向以外の方向に振動することが考えられる。このような場合、Y軸方向及びZ軸方向の振動成分がX軸方向の振動成分に影響し、X軸方向の角速度の検出精度が低下する。なお、このような現象は、X軸方向のみならず、他の方向の角速度を検出する際にも起こる。
 本実施形態は、このような点に鑑みてなされたものであり、振動部の錘を一の軸方向に振動させて角速度を検出する場合に、一の軸方向以外の方向に錘が振動することを防ぎ、角速度の検出精度が高い角速度センサ駆動回路、角速度センサ装置及び角度センサの駆動方法を提供することを目的とする。
However, in the angular velocity sensor having a known vibration part, there is a possibility that an external force is applied to the weight included in the vibration part while the vibration part is stationary or before vibrating in any direction. When an external force is applied to the weight, the vibration unit vibrates in an unintended direction, and the angular velocity in a desired direction cannot be detected.
For example, it is conceivable that the vibration part vibrates in a direction other than the X-axis direction due to an external force or the like when the vibration part is in a section before being vibrated in the X-axis direction or is stopped. In such a case, the vibration component in the Y-axis direction and the Z-axis direction affects the vibration component in the X-axis direction, and the detection accuracy of the angular velocity in the X-axis direction decreases. Such a phenomenon occurs not only in the X-axis direction but also in detecting angular velocities in other directions.
The present embodiment has been made in view of such points, and when the angular velocity is detected by vibrating the weight of the vibrating portion in one axial direction, the weight vibrates in a direction other than the one axial direction. An object of the present invention is to provide an angular velocity sensor driving circuit, an angular velocity sensor device, and an angle sensor driving method that prevent this and has high angular velocity detection accuracy.
 本実施形態における上記課題を解決するため、本実施形態の一態様の角速度センサ駆動回路は、駆動電極を備えた錘部を駆動する角速度センサ駆動回路において、前記錘部を第1軸方向に振動させる第1駆動信号、前記錘部を前記第2軸方向に振動させる第2駆動信号及び前記錘部の前記第1軸方向の振動を静定する第1静定信号を生成して前記駆動電極へ出力する信号生成回路と、前記第2軸方向の角速度の検出から前記第1軸方向の角速度の検出までの区間において、前記信号生成回路から前記第1駆動信号が前記駆動電極に出力される第1発振区間を設定し、前記第1発振区間の後に前記錘部を自由に振動させる第1自由区間を設定し、前記第1自由区間の後に前記信号生成回路から前記第1静定信号が前記駆動電極に出力される第1発振停止区間を設定し、前記第1発振停止区間の直後に前記信号生成回路から前記第2駆動信号が前記駆動電極に出力される第2発振区間を設定する制御回路と、を備えることを特徴とする。 In order to solve the above-described problem in the present embodiment, an angular velocity sensor drive circuit according to one aspect of the present embodiment is an angular velocity sensor drive circuit that drives a weight portion including a drive electrode, and vibrates the weight portion in the first axis direction. Generating the first drive signal to be generated, the second drive signal for vibrating the weight portion in the second axis direction, and the first static signal for stabilizing the vibration of the weight portion in the first axis direction to generate the drive electrode And a signal generation circuit that outputs the first drive signal from the signal generation circuit to the drive electrode in a section from the detection of the angular velocity in the second axis direction to the detection of the angular velocity in the first axis direction. A first oscillation section is set, a first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is sent from the signal generation circuit after the first free section. The first output to the drive electrode A control circuit that sets an oscillation stop period and sets a second oscillation period in which the second drive signal is output from the signal generation circuit to the drive electrode immediately after the first oscillation stop period. And
 本実施形態の一態様の角速度センサの駆動方法は、錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、錘部を第1軸方向に振動させる第1発振区間に第2軸方向の角速度を検出し、第1発振区間の後の第1自由区間に、錘部を自由振動させ、第1自由区間の後の錘部の第1軸方向の振動を静定する第1発振停止区間に、錘部の第1軸方向の振動を静定し、第1発振停止区間の直後の錘部を第2軸方向に振動させる第2発振区間に、第1軸方向の角速度を検出することを特徴とする。 An angular velocity sensor driving method according to one aspect of the present embodiment is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion, and the second oscillation direction is set in a first oscillation section that vibrates the weight portion in the first axis direction. A first oscillation stop period in which the angular velocity is detected, the weight portion is freely vibrated in the first free section after the first oscillation section, and the vibration in the first axial direction of the weight section after the first free section is stabilized. In addition, the vibration in the first axis direction of the weight part is settled, and the angular velocity in the first axis direction is detected in the second oscillation section in which the weight part immediately after the first oscillation stop section is vibrated in the second axis direction. It is characterized by.
 本実施形態の一態様の角速度センサの駆動方法は、駆動電極を備えた錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、錘部を第1軸方向に振動させる第1発振区間に第1駆動信号を駆動電極へ出力し、第1発振区間の後の第1自由区間は、駆動電極に一定電圧を供給する又は駆動電極をフローティング状態とし、第1自由区間の後の第1発振停止区間に、錘部の第1軸方向の振動を静定する第1静定信号を駆動電極へ出力し、第1発振停止区間の直後の第2発振区間に、錘部を第2軸方向に振動させる第2駆動信号を駆動電極へ出力することを特徴とする。 The driving method of the angular velocity sensor according to one aspect of the present embodiment is an angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode. In the first oscillation section that vibrates the weight portion in the first axis direction. The first drive signal is output to the drive electrode, and in the first free period after the first oscillation period, a constant voltage is supplied to the drive electrode or the drive electrode is in a floating state, and the first oscillation after the first free period In the stop period, a first stabilization signal for stabilizing the vibration in the first axis direction of the weight part is output to the drive electrode, and the weight part is placed in the second axis direction in the second oscillation period immediately after the first oscillation stop period. The second drive signal to be vibrated is output to the drive electrode.
 本実施形態の一態様によれば、振動部の錘を一の軸方向に振動させて角速度を検出する場合に、一の軸方向以外の方向に錘が振動することを防ぎ、角速度の検出精度が高い角速度センサ駆動回路、角速度センサ装置及び角度センサの駆動方法を提供することができる。 According to one aspect of this embodiment, when the angular velocity is detected by vibrating the weight of the vibrating portion in one axial direction, the weight is prevented from vibrating in directions other than the one axial direction, and the angular velocity detection accuracy is reduced. Can provide a high angular velocity sensor driving circuit, an angular velocity sensor device, and a driving method of the angle sensor.
 以下、本発明の角速度センサの第2実施形態(第2-1実施形態から第2-4実施形態)について説明する。なお、本実施形態における構成要件と上記第1実施形態における構成要件とは、以下のように対応付けられる。前者が本実施形態における構成要件であり後者が上記第1実施形態における構成要件である。錘部223は振動部3aに対応し、駆動電極はドライブ電極に対応し、角速度センサ駆動回路231は発振制御部5に対応し、角速度検出回路に対応しモニタ部1aに対応し、信号生成回路310は自励発振回路5a、矩形波発生器5b及び切替回路5cによって構成される回路に対応し、立ち上げ信号生成回路311は矩形波発生器5bに対応し、フィードバック回路312はHPF6a、搬送波生成回路6b、位相シフタ回路6c、可変増幅器6d及びドライバ6eによって構成される回路に相当し、出力ドライバ313はドライバ6e及び切替回路5cによって構成される回路に相当する。 Hereinafter, a second embodiment (second embodiment to second to fourth embodiments) of the angular velocity sensor of the present invention will be described. The configuration requirements in the present embodiment and the configuration requirements in the first embodiment are associated as follows. The former is a configuration requirement in the present embodiment, and the latter is a configuration requirement in the first embodiment. The weight portion 223 corresponds to the vibration portion 3a, the drive electrode corresponds to the drive electrode, the angular velocity sensor drive circuit 231 corresponds to the oscillation control portion 5, the angular velocity detection circuit corresponds to the monitor portion 1a, and the signal generation circuit 310 corresponds to a circuit constituted by the self-excited oscillation circuit 5a, the rectangular wave generator 5b, and the switching circuit 5c, the rising signal generation circuit 311 corresponds to the rectangular wave generator 5b, and the feedback circuit 312 includes the HPF 6a and the carrier wave generation. The circuit 6b, a phase shifter circuit 6c, a variable amplifier 6d, and a driver 6e correspond to the circuit, and the output driver 313 corresponds to a circuit that includes the driver 6e and the switching circuit 5c.
 先ず、第2実施形態の説明に先立って、第2-1実施形態から第2-4実施形態に共通の角速度センサの構成を説明する。
・角速度センサ
 図30(a)、図30(b)は、第2-1実施形態から第2-4実施形態における角速度センサ201を説明するための図である。図30(a)は角速度センサ201が備える角速度センサ部210の上面図であり、図30(b)は、図30(a)中に示した線分b-bに沿う角速度センサ部210の断面図である。
 角速度センサ201は、支持部221と、錘部223と、支持部221と錘部223とを接続する可撓部219と、を備えている。支持部221、錘部223と及び可撓部219は、角速度センサ部210の振動部としての基本構造体を構成する。
First, prior to the description of the second embodiment, the configuration of the angular velocity sensor common to the 2-1 to 2-4 embodiments will be described.
Angular Velocity Sensor FIGS. 30A and 30B are diagrams for explaining the angular velocity sensor 201 according to the 2-1 embodiment to the 2-4 embodiment. 30A is a top view of the angular velocity sensor unit 210 included in the angular velocity sensor 201, and FIG. 30B is a cross-sectional view of the angular velocity sensor unit 210 along the line bb shown in FIG. 30A. FIG.
The angular velocity sensor 201 includes a support part 221, a weight part 223, and a flexible part 219 that connects the support part 221 and the weight part 223. The support part 221, the weight part 223, and the flexible part 219 constitute a basic structure as a vibration part of the angular velocity sensor part 210.
 可撓部219の支持部221に支持されていない面(可撓部219の上面)には電極層217が設けられていて、電極層217の可撓部219と接する面の裏面(以下、「電極層217の上面」と記す)には圧電層215が設けられている。また、圧電層215の電極層217の上面と接する面の裏面(圧電層215の上面)には駆動電極211Xa、211Xb、211Ya、211Yb、検出電極213Xa、213Xb、213Ya、213Ybが設けられている。
 なお、図30(a)、(b)においては、図30(b)中に示した座標系のようにX軸方向、Y軸方向、Z軸方向を規定する。Z軸は、可撓部219、圧電層215の面の法線に沿う軸である。X軸及びY軸は、互いに直交し、かつ、Z軸とも直交する軸である。錘部223は、X軸、Y軸及びZ軸の各軸方向に振動し得る。
The electrode layer 217 is provided on the surface of the flexible portion 219 that is not supported by the support portion 221 (the upper surface of the flexible portion 219), and the back surface of the electrode layer 217 in contact with the flexible portion 219 (hereinafter, “ A piezoelectric layer 215 is provided on the upper surface of the electrode layer 217). Further, the drive electrode 211 Xa , 211 Xb , 211 Ya , 211 Yb , the detection electrode 213 Xa , 213 Xb , 213 Ya , and the back surface (the upper surface of the piezoelectric layer 215) of the surface in contact with the upper surface of the electrode layer 217 of the piezoelectric layer 215 213 Yb is provided.
30A and 30B, the X-axis direction, the Y-axis direction, and the Z-axis direction are defined as in the coordinate system shown in FIG. The Z axis is an axis along the normal line of the surfaces of the flexible portion 219 and the piezoelectric layer 215. The X axis and the Y axis are orthogonal to each other and also orthogonal to the Z axis. The weight part 223 can vibrate in the X-axis, Y-axis, and Z-axis directions.
 図30(a)に示すように、駆動電極211Xa、211Xb、211Ya、211Ybは、円環を構成するように配置される。駆動電極211Xaと駆動電極211Xbとは対向し、駆動電極211Yaと駆動電極211Ybとは対向する。検出電極213Xa、213Xb、213Ya、213Ybは、駆動電極211Xa、211Xb、211Ya、211Ybによって構成される円環と同心円上にあって、かつ駆動電極211Xa、211Xb、211Ya、211Ybによって構成される円環の外周の円環を構成するように配置される。検出電極213Xaと検出電極213Xbとは対向し、検出電極213Yaと検出電極213Ybとは対向する。 As shown in FIG. 30 (a), the drive electrodes 211Xa , 211Xb , 211Ya , 211Yb are arranged so as to form a ring. The drive electrode 211 Xa and the drive electrode 211 Xb face each other, and the drive electrode 211 Ya and the drive electrode 211 Yb face each other. The detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb are concentric with the ring formed by the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , and the drive electrodes 211 Xa , 211 Xb , It arrange | positions so that the annular ring of the outer periphery of the annular ring comprised by 211 Ya and 211 Yb may be comprised. The detection electrode 213 Xa and the detection electrode 213 Xb face each other, and the detection electrode 213 Ya and the detection electrode 213 Yb face each other.
 駆動電極211Xa、211Xb、211Ya、211Ybに駆動信号が入力されると、圧電層215が歪む。圧電層215が歪むことにより、錘部223が図中に示したZ軸方向またはX軸方向に振動する。具体的には、図30(b)に示した電極層217を接地した状態で駆動電極211Xa、211Xb、211Ya、211Ybに駆動信号が供給される。このとき、電極層217において駆動電極211Xa、211Xb、211Ya、211Ybの下部に位置する部分が伸縮し、電極層217の伸縮に応じて錘部223が可撓部219を介してZ軸方向またはX軸方向に振動する。 When a drive signal is input to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , the piezoelectric layer 215 is distorted. When the piezoelectric layer 215 is distorted, the weight portion 223 vibrates in the Z-axis direction or the X-axis direction shown in the drawing. Specifically, the drive signal is supplied to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb with the electrode layer 217 shown in FIG. 30B grounded. At this time, the portions of the electrode layer 217 located below the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb expand and contract, and the weight portion 223 extends through the flexible portion 219 according to the expansion and contraction of the electrode layer 217. Vibrates in the axial direction or X-axis direction.
 一方、角速度の検出時、振動している錘部223にコリオリ力が加わると、錘部223が振動方向と直交する方向に変位する。変位によって圧電層215が伸長する。検出電極213Xa、213Xb、213Ya、213Ybは、圧電層215の伸長によって発生する電圧を検出する。例えば、錘部223をX軸方向に振動させると、X軸方向に垂直なZ軸方向にコリオリ力が生じ、生じたコリオリ力を検出電極213Xa、213Xb、213Ya、213Ybが電気的な検出信号として検出する。検出電極213Xa、213Xb、213Ya、213Ybの検出した検出信号の値からZ軸方向の角速度が検出される。
 同様に、錘部223をZ軸方向に振動させると、Z軸方向に垂直なX軸方向またはY軸方向にコリオリ力が生じ、生じたコリオリ力を検出電極213Xa、213Xb、213Ya、213Ybが電気的に検出する。検出電極213Xa、213Xb、213Ya、213Ybの検出した電気的な値からX軸方向またはY軸方向の角速度が検出される。
On the other hand, when the angular velocity is detected, if the Coriolis force is applied to the vibrating weight portion 223, the weight portion 223 is displaced in a direction orthogonal to the vibration direction. The piezoelectric layer 215 expands due to the displacement. The detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb detect voltages generated by the expansion of the piezoelectric layer 215. For example, when the weight portion 223 is vibrated in the X-axis direction, Coriolis force is generated in the Z-axis direction perpendicular to the X-axis direction, and the generated Coriolis force is electrically transmitted to the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb . It is detected as a simple detection signal. The angular velocity of the Z-axis direction is detected from the value of the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 Yb detected by the detection signal.
Similarly, when the weight portion 223 is vibrated in the Z-axis direction, Coriolis force is generated in the X-axis direction or Y-axis direction perpendicular to the Z-axis direction, and the generated Coriolis force is detected by the detection electrodes 213 Xa , 213 Xb , 213 Ya , 213 Yb detects electrically. The angular velocity in the X-axis direction or the Y-axis direction is detected from the electrical values detected by the detection electrodes 213 Xa , 213 Xb , 213 Ya , and 213 Yb .
 なお、角速度センサ部210は、図30(a)、図30(b)に示した構成に限定されるものではない。角速度センサ部は、2軸以上の方向に錘部を振動させる角速度センサ部であれば、どのような構成であってもよい。錘部は、少なくとも、第1軸方向と、第1軸方向と異なる第2軸方向とに振動し得るものであればよい。つまり、2軸以上の方向に錘部が振動し、2軸方向以上の角速度が検出できる構成であればよい。角速度センサ部の他の構成としては、例えば、圧電層を用いるものの他、容量素子で駆動信号を供給し、電圧を検出するものが考えらえる。さらに、第2-1実施形態から第2-4実施形態では、駆動電極及び検出電極の個数が限定されるものではない。 The angular velocity sensor unit 210 is not limited to the configuration shown in FIGS. 30 (a) and 30 (b). The angular velocity sensor unit may have any configuration as long as it is an angular velocity sensor unit that vibrates the weight part in directions of two or more axes. The weight portion only needs to be able to vibrate at least in the first axis direction and in the second axis direction different from the first axis direction. That is, any configuration may be used as long as the weight portion vibrates in two or more directions and angular velocity in two or more directions can be detected. As other configurations of the angular velocity sensor unit, for example, a device that uses a piezoelectric layer and supplies a drive signal with a capacitive element to detect a voltage can be considered. Furthermore, in the 2-1 embodiment to the 2-4 embodiment, the number of drive electrodes and detection electrodes is not limited.
・集積回路
 図31は、第2-1実施形態から第2-3実施形態による角速度センサの駆動信号を検出し、電気的な信号を検出する特定用途向け集積回路(以下、単に「集積回路」と記す:ASIC(Application Specific Integrated Circuit))のブロック図である。図31に示した集積回路203は、角速度センサ駆動回路231と、角速度検出回路232と、を備えている。
Integrated Circuit FIG. 31 shows an application-specific integrated circuit (hereinafter simply referred to as “integrated circuit”) that detects an electrical signal by detecting a driving signal of the angular velocity sensor according to the 2-1 to 2-3 embodiments. Is a block diagram of ASIC (Application Specific Integrated Circuit). The integrated circuit 203 illustrated in FIG. 31 includes an angular velocity sensor drive circuit 231 and an angular velocity detection circuit 232.
 図30(a)に示したように、角速度センサ部210は、駆動電極211Xa、211Xb、211Ya、211Ybと、検出電極213Xa、213Xb、213Ya、213Ybと、を有している。角速度センサ駆動回路231は、駆動電極211Xa、211Xb、211Ya、211Ybに駆動信号DX1、DX2、DY1、DY2を供給する回路である。角速度検出回路232は、検出電極213Xa、213Xb、213Ya、213Ybから検出信号SX1、SX2、SY1、SY2を検出する。 As shown in FIG. 30 (a), the angular velocity sensor unit 210 has the drive electrodes 211 Xa, 211 Xb, and 211 Ya, 211 Yb, and the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 Yb, the ing. The angular velocity sensor driving circuit 231 is a circuit for supplying a driving signal DX1, DX2, DY1, DY2 to the drive electrodes 211 Xa, 211 Xb, 211 Ya , 211 Yb. Angular velocity detecting circuit 232 detects a detection signal SX1, SX2, SY1, SY2 from the detection electrode 213 Xa, 213 Xb, 213 Ya , 213 Yb.
 図31において、角速度センサ駆動回路231が出力する駆動信号DX1は、駆動電極211Xaに供給される信号であり、駆動信号DX2は、駆動電極211Xbに供給される信号である。また、角速度センサ駆動回路231が出力する駆動信号DY1は、駆動電極211Yaに供給される信号であり、駆動信号DY2は、駆動電極211Ybに供給される信号である。
 また、図31において、角速度センサ部210が出力する検出信号SX1は、検出電極213Xaから供給される信号であり、検出信号SX2は、検出電極213Xbから供給される信号である。角速度センサ部210が出力する検出信号SY1は、検出電極213Yaから供給される信号であり、検出信号SY2は、検出電極213Ybから供給される信号である。
 角速度センサ駆動回路231は、検出信号SX1、SX2、SY1、SY2を信号処理して駆動信号DX1、DX2、DY1、DY2を生成し、駆動電極211Xa、211Xb、211Ya、211Ybに出力する自励発振ループとして構成することができる。
In FIG. 31, the drive signal DX1 output from the angular velocity sensor drive circuit 231 is a signal supplied to the drive electrode 211 Xa , and the drive signal DX2 is a signal supplied to the drive electrode 211 Xb . The drive signal DY1 output from the angular velocity sensor drive circuit 231 is a signal supplied to the drive electrode 211 Ya , and the drive signal DY2 is a signal supplied to the drive electrode 211 Yb .
In FIG. 31, the detection signal SX1 output from the angular velocity sensor unit 210 is a signal supplied from the detection electrode 213 Xa , and the detection signal SX2 is a signal supplied from the detection electrode 213 Xb . The detection signal SY1 output from the angular velocity sensor unit 210 is a signal supplied from the detection electrode 213 Ya , and the detection signal SY2 is a signal supplied from the detection electrode 213 Yb .
The angular velocity sensor drive circuit 231 processes the detection signals SX1, SX2, SY1, and SY2 to generate drive signals DX1, DX2, DY1, and DY2, and outputs them to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb . It can be configured as a self-oscillation loop.
・駆動信号
 図32は、図30(a)に示した駆動電極211Xa、211Xb、211Ya、211Ybに加えられる駆動信号を例示する図である。図32の横軸は時間、縦軸は駆動信号としての電圧値を示している。駆動信号は、「発振開始区間」、「安定発振区間」、「発振停止区間」の3つの区間の各々に応じて異なる波形を有している。発振開始区間は、駆動信号が錘部223を振動させたい方向に励振するための波形を有する区間である。安定発振区間は、駆動信号が錘部223を安定に振動させるための波形を有する区間である。発振停止区間は、駆動信号が錘部223の振動を停止させるための波形を有する区間である。
Drive Signal FIG. 32 is a diagram illustrating drive signals applied to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb shown in FIG. In FIG. 32, the horizontal axis indicates time, and the vertical axis indicates a voltage value as a drive signal. The drive signal has a different waveform depending on each of the three sections of “oscillation start section”, “stable oscillation section”, and “oscillation stop section”. The oscillation start section is a section having a waveform for exciting the drive signal in the direction in which the weight portion 223 is desired to vibrate. The stable oscillation section is a section in which the drive signal has a waveform for stably vibrating the weight portion 223. The oscillation stop section is a section in which the drive signal has a waveform for stopping the vibration of the weight portion 223.
 第2-1実施形態から第2-4実施形態においては、発振開始区間と、それに続く安定発振区間とを合わせて「発振区間」とも記す。換言すれば、発振区間は、発振開始区間と安定発振区間とを含んでいる。
 発振開始区間において、駆動信号の波形は、錘部223の振幅を短時間で一定の値にするために振幅が大きくなっている。発振開始区間に出力される駆動信号を、第2-1実施形態から第2-4実施形態においては、「立上信号」とも記す。
In the 2-1 to 2-4 embodiments, the oscillation start interval and the subsequent stable oscillation interval are also referred to as “oscillation interval”. In other words, the oscillation period includes an oscillation start period and a stable oscillation period.
In the oscillation start period, the amplitude of the waveform of the drive signal is large so that the amplitude of the weight portion 223 becomes a constant value in a short time. The drive signal output in the oscillation start period is also referred to as a “rising signal” in the second to second to fourth embodiments.
 安定発振区間において、駆動信号は、一定の振幅及び位相を有する信号となっている。角速度センサ部210は、安定発振区間中に角速度の検出を行う。安定発振区間に出力される駆動信号を、第2-1実施形態から第2-4実施形態においては、「安定駆動信号」とも記す。
 発振停止区間において、駆動信号は、錘部223の振動を停止させるための波形を有している。発振停止区間に出力される駆動信号を、第2-1実施形態から第2-4実施形態においては、「静定信号」とも記す。
 図32に示した静定信号は、角速度センサ駆動回路231が自励発振ループを構成する場合に得られる。角速度センサ駆動回路231が自励発振ループを構成する場合の静定信号の振幅は、錘部223の振動の静定に従って小さくなる。また、静定信号を出力して錘部223の振動を静定することを、本明細書では「静定処理」とも記す。
In the stable oscillation period, the drive signal is a signal having a constant amplitude and phase. The angular velocity sensor unit 210 detects angular velocity during the stable oscillation period. The drive signal output in the stable oscillation section is also referred to as “stable drive signal” in the 2-1 to 2-4 embodiments.
In the oscillation stop period, the drive signal has a waveform for stopping the vibration of the weight portion 223. The drive signal output in the oscillation stop period is also referred to as a “static signal” in the 2-1 to 2-4 embodiments.
The static signal shown in FIG. 32 is obtained when the angular velocity sensor drive circuit 231 constitutes a self-excited oscillation loop. When the angular velocity sensor drive circuit 231 forms a self-excited oscillation loop, the amplitude of the static signal decreases as the vibration of the weight portion 223 stabilizes. In addition, outputting the stabilization signal to stabilize the vibration of the weight part 223 is also referred to as “static stabilization processing” in this specification.
 次に、本発明の第2-1実施形態による角速度センサ駆動回路を説明する。
[第2-1実施形態]
 図33は、第2-1実施形態の角速度センサ駆動回路231の構成を説明するためのブロック図である。角速度センサ駆動回路231は、信号生成回路310と、出力ドライバ313及び制御回路314を備えている。信号生成回路310は、立ち上げ信号生成回路311、フィードバック回路312及び出力ドライバ313を備えている。
Next, an angular velocity sensor driving circuit according to the 2-1 embodiment of the present invention will be described.
[Second Embodiment]
FIG. 33 is a block diagram for explaining a configuration of an angular velocity sensor drive circuit 231 according to the 2-1 embodiment. The angular velocity sensor drive circuit 231 includes a signal generation circuit 310, an output driver 313, and a control circuit 314. The signal generation circuit 310 includes a rising signal generation circuit 311, a feedback circuit 312, and an output driver 313.
 立上信号生成回路311は、発振開始区間において、図32に示したように、振幅が大きい立上信号SUを出力する。立上信号USは、錘部223の振幅を短時間で一定の値にすることを目的にした信号である。また、図32に示した立ち上げ信号SUはパルス波であるが、立ち上げ信号SUはパルス波に限定されるものではなく、正弦波であってもよい。
 フィードバック回路312は、検出信号SX1、SX2、SY1、SY2に基づくフィードバック信号SFbを生成し、生成したフィードバック信号SFbを出力ドライバ313に出力する。フィードバック信号SFbは、錘部223を安定に振動させるための信号である。フィードバック信号SFbは、例えば、2つまたは4つの検出信号を加算して位相を所定量シフトさせ、ゲインを適宜増幅する等の方法によって生成される。
The rising signal generation circuit 311 outputs the rising signal SU having a large amplitude as shown in FIG. 32 in the oscillation start period. The rising signal US is a signal intended to set the amplitude of the weight portion 223 to a constant value in a short time. The rising signal SU shown in FIG. 32 is a pulse wave, but the rising signal SU is not limited to a pulse wave, and may be a sine wave.
The feedback circuit 312 generates a feedback signal SFb based on the detection signals SX1, SX2, SY1, and SY2, and outputs the generated feedback signal SFb to the output driver 313. The feedback signal SFb is a signal for stably vibrating the weight portion 223. The feedback signal SFb is generated by, for example, a method of adding two or four detection signals, shifting the phase by a predetermined amount, and appropriately amplifying the gain.
 出力ドライバ313には、立ち上げ信号SUとフィードバック信号SFbとが入力される。出力ドライバ313は、発振開始区間においては立ち上げ信号SUに基づく駆動信号DX1、DX2、DY1、DY2を角度センサ部210に出力する。
 また、出力ドライバ313は、安定発振区間においては制御回路314の制御に従ってフィードバック信号SFbを信号処理して駆動信号DX1、DX2、DY1、DY2を生成し、生成された駆動信号DX1、DX2、DY1、DY2を角速度センサ部210に出力する。このとき、検出信号SX1、SX2、SY1、SY2に基づくフィードバック信号SFbから生成された駆動信号DX1、DX2、DY1、DY2が角度センサ部210にフィードバックされる。これにより、「角速度センサ部210→フィードバック回路312、出力ドライバ313、角速度センサ部210」の自励発振ループが形成される。
The output driver 313 receives the rising signal SU and the feedback signal SFb. The output driver 313 outputs drive signals DX1, DX2, DY1, and DY2 based on the rising signal SU to the angle sensor unit 210 in the oscillation start period.
Further, the output driver 313 generates a drive signal DX1, DX2, DY1, DY2 by processing the feedback signal SFb in accordance with the control of the control circuit 314 in the stable oscillation period, and generates the generated drive signals DX1, DX2, DY1, DY2 is output to the angular velocity sensor unit 210. At this time, the drive signals DX1, DX2, DY1, and DY2 generated from the feedback signal SFb based on the detection signals SX1, SX2, SY1, and SY2 are fed back to the angle sensor unit 210. As a result, a self-excited oscillation loop of “angular velocity sensor unit 210 → feedback circuit 312, output driver 313, angular velocity sensor unit 210” is formed.
 以上の動作により、信号生成回路310は、立ち上げ信号生成回路311によって発振の立ち上げを行った後、フィードバック回路312で構成された自励発振ループで角速度センサ部210の錘部223を安定に発振させることができる。
 さらに、信号生成回路310のフィードバック回路312は、発振停止区間において、検出電極213Xa、213Xb、213Ya、213Ybから入力した検出信号SX1、SX2、SY1、SY2に基づいて錘部223の振動を停止させる静定信号を、出力ドライバ313を介して角速度センサ部210に出力する。静定信号は、例えば、安定発振区間に出力される安定駆動信号の位相を反転させることによって生成することができる。また、第2-1実施形態の角速度センサ駆動回路231は、フィードバック回路312が、駆動電極211Xa、211Xb、211Ya、211Ybの駆動方向の切り替えに伴って、静定信号の生成に用いることに適切な検出信号を選択する機能を有するようにしてもよい。
With the above operation, the signal generation circuit 310 stabilizes the weight portion 223 of the angular velocity sensor unit 210 in the self-excited oscillation loop configured by the feedback circuit 312 after the oscillation is started by the start signal generation circuit 311. It can oscillate.
Further, the feedback circuit 312 of the signal generating circuit 310, the oscillation stop period, the vibration of the detection electrodes 213 Xa, 213 Xb, 213 Ya , 213 detection signals SX1 input from Yb, SX2, SY1, weight portion 223 on the basis of the SY2 Is output to the angular velocity sensor unit 210 via the output driver 313. The static signal can be generated, for example, by inverting the phase of the stable drive signal output in the stable oscillation period. Further, in the angular velocity sensor driving circuit 231 of the second to first embodiments, the feedback circuit 312 is used to generate a static signal in accordance with the switching of the driving direction of the driving electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb. In particular, it may have a function of selecting an appropriate detection signal.
 また、制御回路314は、錘部223をZ軸方向に振動させる第1発振区間、錘部をX軸またはY軸方向に振動させる第2発振区間、錘部223に外力を加えることなく自由に振動させる第1自由区間及び錘部223のX軸方向の振動を静定する第1発振停止区間を設定する。各区間の設定は、例えば、図示しないクロック信号に基づいて各区間を定め、区間に応じてフィードバック信号SFbの位相や振幅を制御する、あるいは出力ドライバ313から駆動信号が出力される駆動電極を切替えることによって行うことができる。各区間に出力される信号については後の図34で説明する。 In addition, the control circuit 314 is free to apply a first oscillation section that vibrates the weight portion 223 in the Z-axis direction, a second oscillation section that vibrates the weight portion in the X-axis or Y-axis direction, and without applying external force to the weight portion 223. A first oscillation stop section in which the first free section to be vibrated and the vibration of the weight portion 223 in the X-axis direction are settled is set. For example, each section is set based on a clock signal (not shown), and the phase and amplitude of the feedback signal SFb are controlled according to the section, or the drive electrode to which the drive signal is output from the output driver 313 is switched. Can be done. The signals output in each section will be described later with reference to FIG.
 また、制御回路314は、発振開始区間における立ち上げ信号生成回路311のパワーアップやパワーダウンを制御する。また、制御回路314は、安定発振区間から発振停止区間への遷移に伴ってフィードバック信号SFbの位相を反転させるようにフィードバック回路312あるいは出力ドライバ313を制御する。フィードバック信号SFbの位相を反転することにより、フィードバック信号SFbに基づく静定信号が生成できる。 Further, the control circuit 314 controls the power-up and power-down of the start signal generation circuit 311 in the oscillation start period. In addition, the control circuit 314 controls the feedback circuit 312 or the output driver 313 so as to invert the phase of the feedback signal SFb with the transition from the stable oscillation period to the oscillation stop period. By inverting the phase of the feedback signal SFb, a static signal based on the feedback signal SFb can be generated.
 さらに、制御回路314は、駆動電極211Xa、211Xb、211Ya、211Ybの駆動方向の切り替えや発振開始区間から安定発振区間への遷移に伴って、出力ドライバ313からの駆動信号DX1、DX2、DY1及びDY2の出力を制御する。
 なお、立上信号SUの増幅や位相の反転といった信号処理は、立上信号生成回路311及び出力ドライバ313のいずれで行うことも可能である。フィードバック信号SFbの増幅や位相の反転といった信号処理は、フィードバック回路312及び出力ドライバ313のいずれで行うことも可能である。
Further, the control circuit 314 switches the drive signals 211 Xa , 211 Xb , 211 Ya , 211 Yb and drives signals DX 1, DX 2 from the output driver 313 along with switching of the drive direction and transition from the oscillation start period to the stable oscillation period. , DY1 and DY2 are controlled.
Signal processing such as amplification of the rising signal SU and phase inversion can be performed by either the rising signal generation circuit 311 or the output driver 313. Signal processing such as amplification of the feedback signal SFb and phase inversion can be performed by either the feedback circuit 312 or the output driver 313.
 第2-1実施形態による出力ドライバ313は、制御回路314の制御により、駆動電極211Xa、211Xb、211Ya、211Ybの駆動方向の切り替えに伴って、駆動信号を駆動電極211Xa、211Xb、211Ya、211Ybのうちの4つに同相信号として出力するか、2つの駆動電極に互いの逆相信号として出力するかを切り替えることも可能である。制御回路は信号生成回路を制御して、上述のような駆動信号の生成、静定信号への切り替え、駆動する軸方向の切り替えなどを行う。 The output driver 313 according to the second-first embodiment controls the drive signal 211 Xa , 211 by switching the drive direction of the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb under the control of the control circuit 314. It is also possible to switch whether four of Xb , 211 Ya , and 211 Yb are output as in-phase signals, or output to the two drive electrodes as mutually opposite-phase signals. The control circuit controls the signal generation circuit to generate the drive signal as described above, switch to a static signal, switch the driving axial direction, and the like.
・動作
 次に、以上説明した構成の動作を具体的に説明する。
 図34は、第2-1実施形態による駆動電極211Xa、211Xb、211Ya、211Ybの各々に出力される駆動信号を説明するための図である。図34は、図33に示した駆動信号DX1、DX2、DY1、DY2の各々の波形を示している。各駆動信号の横軸は時間であり、縦軸は電圧値である。
Operation Next, the operation of the configuration described above will be specifically described.
FIG. 34 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the 2-1 embodiment. FIG. 34 shows waveforms of the drive signals DX1, DX2, DY1, and DY2 shown in FIG. The horizontal axis of each drive signal is time, and the vertical axis is voltage value.
 また、図34において、「X stop」、「Y stop」、「Z Stop」はそれぞれX軸方向、Y軸方向及びZ方向の発振停止区間を示している。「Start up」は、Z軸方向及びX軸方向の発振開始区間を示し、「Measure」はX軸方向、Y軸方向及びZ軸方向の角速度が検出される安定発振区間を示している。「自由区間」は、錘部223が外力を受けることなく振動する区間である。 Further, in FIG. 34, “X stop”, “Y stop”, and “Z stop” indicate the oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively. “Start up” indicates an oscillation start interval in the Z-axis direction and the X-axis direction, and “Measure” indicates a stable oscillation interval in which angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected. The “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
 第2-1実施形態においては、Z軸方向が第1軸、X軸方向及びY軸方向が第2軸に対応する。図34に示した「Measure(ωX、ωY検出)」の区間が錘部223をZ軸方向に振動させてX軸方向の角速度ωX、あるいはY軸方向の角速度ωYを検出する第1安定発振区間に対応する。また、図34に示した「Measure(ωZ検出)」の区間が、錘部223をX軸方向に振動させてZ軸方向の角速度ωZを検出する第2安定発振区間に対応する。さらに、図34に示した「X stop」、「Y stop」の区間が第2発振停止区間に対応し、「Z stop」の区間が第1発振停止区間に対応する。 In the 2-1 embodiment, the Z-axis direction corresponds to the first axis, and the X-axis direction and the Y-axis direction correspond to the second axis. A section “Measure (ωX, ωY detection)” shown in FIG. 34 detects the angular velocity ωX in the X-axis direction or the angular velocity ωY in the Y-axis direction by vibrating the weight portion 223 in the Z-axis direction. Corresponding to Further, the section “Measure (ωZ detection)” shown in FIG. 34 corresponds to the second stable oscillation section in which the weight portion 223 is vibrated in the X-axis direction to detect the angular velocity ωZ in the Z-axis direction. Furthermore, the sections “X stop” and “Y stop” shown in FIG. 34 correspond to the second oscillation stop section, and the section “Z stop” corresponds to the first oscillation stop section.
 第2-1実施形態では、先ず、X軸方向の角速度ωX、あるいはY軸方向の角速度ωYを検出するため、発振開始区間において、錘部223をZ軸方向に振動させる。これに先立ち、第2-1実施形態の角速度センサでは、「X stop」、「Y stop」の発振停止区間において、Z軸方向以外のX軸方向及びY軸方向の振動を静定する。
 図34に示した例では、信号生成回路310は、フィードバック信号SFbに基づいてX軸方向の静定信号となる駆動信号DX1、DX2を生成し、角速度センサ部210の駆動電極211Xa、211Xbに供給する。続いて、信号生成回路310は、フィードバック信号SFbに基づいてY軸方向の静定信号となる駆動信号DY1、DY2を生成し、角速度センサ部210の駆動電極211Ya、211Ybに供給する。
In the second-first embodiment, first, in order to detect the angular velocity ωX in the X-axis direction or the angular velocity ωY in the Y-axis direction, the weight portion 223 is vibrated in the Z-axis direction in the oscillation start period. Prior to this, in the angular velocity sensor of the 2-1 embodiment, vibrations in the X-axis direction and the Y-axis direction other than the Z-axis direction are settled in the oscillation stop period of “X stop” and “Y stop”.
In the example shown in FIG. 34, the signal generating circuit 310 generates a drive signal DX1, DX2 as the X-axis direction of the settling signals based on the feedback signal SFb, the driving electrodes 211 of the angular velocity sensor unit 210 Xa, 211 Xb To supply. Subsequently, the signal generating circuit 310 generates a drive signal DY1, DY2 as a Y-axis direction of the settling signals based on the feedback signal SFb, supplied to the drive electrodes 211 Ya, 211 Yb of the angular velocity sensor unit 210.
 Z軸方向以外の振動を停止した後、図33に示した立上信号生成回路311が、Z軸方向の発振開始区間において立上げ信号SUであるパルス波を出力ドライバ313に出力する。出力ドライバ313は、立上信号SUを駆動信号DX1、DX2、DY1、DY2として出力する。駆動信号DX1、DX2、DY1、DY2は、4つの駆動電極211Xa、211Xb、211Ya、211Ybの各々に供給される同相のパルス信号である。 After stopping vibrations other than in the Z-axis direction, the rising signal generation circuit 311 shown in FIG. 33 outputs a pulse wave that is the rising signal SU to the output driver 313 in the oscillation start period in the Z-axis direction. The output driver 313 outputs the rising signal SU as drive signals DX1, DX2, DY1, and DY2. Driving signals DX1, DX2, DY1, DY2 is a phase pulse signal supplied to each of the four drive electrodes 211 Xa, 211 Xb, 211 Ya , 211 Yb.
 Z軸方向の安定発振区間では、制御回路314が、フィードバック回路312から出力されたフィードバック信号SFbに基づく安定駆動信号となる駆動信号DX1、DX2、DY1、DY2が角速度センサ部210から出力されるように出力ドライバ313を制御する。このため、安定発振区間では、検出信号SX1、SX2、SY1、SY2に基づく同相の駆動信号DX1、DX2、DY1、DY2が駆動電極211Xa、211Xb、211Ya、211Ybの各々に出力される。角速度センサ部210は、Z軸方向の安定発振区間中に、X軸方向及びY軸方向の角速度ωX、ωYを検出する。 In the stable oscillation section in the Z-axis direction, the control circuit 314 outputs the drive signals DX1, DX2, DY1, and DY2 that are stable drive signals based on the feedback signal SFb output from the feedback circuit 312 from the angular velocity sensor unit 210. The output driver 313 is controlled. For this reason, in the stable oscillation section, in-phase drive signals DX1, DX2, DY1, and DY2 based on the detection signals SX1, SX2, SY1, and SY2 are output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb , respectively. . The angular velocity sensor unit 210 detects angular velocities ωX and ωY in the X-axis direction and the Y-axis direction during the stable oscillation section in the Z-axis direction.
 次に、制御回路314は、Z軸方向の安定発振区間の後、錘部223を自由に振動させる自由振動区間を設定する。自由振動区間の設定により、X軸方向及びY軸方向の角速度を検出した後にZ軸方向の角速度を検出する場合、X軸方向またはY軸方向の角速度の検出からZ軸方向の角速度の検出までの間に一定の空白時間が設けられる。このように空白区間が設けられることとなるのは、例えば、角速度検出の時分割動作の周波数を低くする、あるいは消費電力を低くするモードの場合である。 Next, the control circuit 314 sets a free vibration section for freely vibrating the weight portion 223 after the stable oscillation section in the Z-axis direction. When detecting the angular velocity in the Z-axis direction after detecting the angular velocity in the X-axis direction and the Y-axis direction by setting the free vibration section, from detecting the angular velocity in the X-axis direction or the Y-axis direction to detecting the angular velocity in the Z-axis direction A certain blank time is provided between. The blank section is provided in this way, for example, in a mode in which the frequency of the time division operation for detecting the angular velocity is lowered or the power consumption is lowered.
 第2-1実施形態の角速度センサ駆動回路は、Z軸方向の安定発振区間の後に自由区間を設け、自由区間の後にZ軸方向の振動を静定した直後にX軸方向の振動を開始させている。それによって、空白区間に外力によって振動が生じても、次の軸方向の駆動の手前で余分な軸方向の振動成分を静定するため、精度よく角速度を検出することができる。
 自由区間において、錘部223は外力の影響を受けることなく自由振動をする。錘部223の自由振動は、駆動電極211Xa、211Xb、211Ya、211Ybのいずれにも駆動信号を出力しないことによって実現することができる。また、自由振動は、図33に示した出力ドライバ313が駆動電極211Xa、211Xb、211Ya、211Ybに一定の電圧を出力することによっても実現することができる。また、第2-1実施形態の角速度センサ駆動回路は、自由振動が行われる自由区間において、出力ドライバ313が駆動電極211Xa、211Xb、211Ya、211Ybをフローティング状態にしてもよい。
The angular velocity sensor drive circuit according to the second to first embodiments provides a free section after the stable oscillation section in the Z-axis direction, and starts vibration in the X-axis direction immediately after stabilizing the Z-axis direction vibration after the free section. ing. As a result, even if vibration is generated by an external force in the blank section, the excess axial vibration component is settled before driving in the next axial direction, so that the angular velocity can be detected with high accuracy.
In the free section, the weight portion 223 vibrates freely without being affected by external force. The free vibration of the weight portion 223 can be realized by not outputting a drive signal to any of the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb . Free vibration can also be realized by the output driver 313 shown in FIG. 33 outputting a constant voltage to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb . Further, in the angular velocity sensor drive circuit of the 2-1 embodiment, the output driver 313 may place the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb in a floating state in a free section where free vibration is performed.
 さらに、第2-1実施形態の角速度センサ駆動回路は、自由区間において、駆動電極211Xa、211Xb、211Ya、211Ybに抵抗素子を介して接地し、錘部223の振動エネルギーを吸収させてもよいし、錘部223の振動を自然に減衰させてもよい。
 また、第2-1実施形態の角速度センサ駆動回路は、自由区間において制御回路314以外の構成に供給されている電力を低減またはなくしてもよい。このような動作により、第1実施形態の角速度センサ駆動回路は、角速度センサ201の消費電力を低減することができる。
Further, the angular velocity sensor drive circuit of the second to first embodiments grounds the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb via a resistance element in the free section to absorb the vibration energy of the weight part 223. Alternatively, the vibration of the weight portion 223 may be naturally damped.
Further, the angular velocity sensor drive circuit according to the 2-1 embodiment may reduce or eliminate the power supplied to the configuration other than the control circuit 314 in the free section. With such an operation, the angular velocity sensor drive circuit of the first embodiment can reduce the power consumption of the angular velocity sensor 201.
 また、第2-1実施形態では、自由区間の直後にZ軸方向の振動を静定するため、出力ドライバ313が駆動電極211Xa、211Xb、211Ya、211YbにZ軸方向の静定信号を出力する。Z軸方向の静定信号は、例えば、安定駆動信号としての駆動信号DX1、DX2、DY1、DY2と振幅及び周期が等しい信号の位相を反転した信号であってもよい。また、Z軸方向の静定信号は、例えば、安定駆動信号としての駆動信号DX1、DX2、DY1、DY2の振幅を増幅し、周期が等しい信号の位相を反転させた信号であってもよい。 In the 2-1 embodiment, since the vibration in the Z-axis direction is stabilized immediately after the free section, the output driver 313 stabilizes the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb in the Z-axis direction. Output a signal. The static signal in the Z-axis direction may be, for example, a signal obtained by inverting the phase of a signal having the same amplitude and cycle as the drive signals DX1, DX2, DY1, and DY2 as stable drive signals. The static signal in the Z-axis direction may be, for example, a signal obtained by amplifying the amplitudes of the drive signals DX1, DX2, DY1, and DY2 as stable drive signals and inverting the phase of a signal having the same period.
 さらに、第2-1実施形態では、Z軸方向の発振停止区間の後、図33に示した立上信号生成回路311がX軸方向の立上信号SUとしてのパルス波を生成する。出力ドライバ313は、制御回路313の制御によって立上信号SUを互いに逆相の信号とし、駆動電極211Xa、211Xbに出力する。立上信号SUが出力される間、第1実施形態の角速度センサ駆動回路10は、X軸方向の発振開始区間の状態にある。X軸方向の発振開始区間の後、角速度センサ駆動回路10は、X軸方向の安定発振区間に入る。 Further, in the 2-1 embodiment, after the oscillation stop period in the Z-axis direction, the rising signal generating circuit 311 shown in FIG. 33 generates a pulse wave as the rising signal SU in the X-axis direction. The output driver 313 controls the control circuit 313 to convert the rising signal SU into signals having opposite phases to each other and outputs the signals to the drive electrodes 211 Xa and 211 Xb . While the rising signal SU is output, the angular velocity sensor drive circuit 10 of the first embodiment is in the state of the oscillation start interval in the X-axis direction. After the oscillation start interval in the X-axis direction, the angular velocity sensor drive circuit 10 enters a stable oscillation interval in the X-axis direction.
 X軸方向の安定発振区間では、制御回路314が、立上信号SUに代えてフィードバック信号SFbを出力するように出力ドライバ313を制御する。フィードバック回路312は、検出信号SX1、SX2に基づいてフィードバック信号SFbを生成する。出力ドライバ313は、フィードバック信号SFbを互いに逆相の駆動信号DX1、DX2として駆動電極211Xa、211Xbに出力する。X軸方向の安定発振区間においては、Z軸方向の角速度が検出される。 In the stable oscillation section in the X-axis direction, the control circuit 314 controls the output driver 313 so as to output the feedback signal SFb instead of the rising signal SU. The feedback circuit 312 generates a feedback signal SFb based on the detection signals SX1 and SX2. The output driver 313 outputs the feedback signal SFb to the drive electrodes 211 Xa and 211 Xb as drive signals DX1 and DX2 having opposite phases. In the stable oscillation section in the X-axis direction, the angular velocity in the Z-axis direction is detected.
 以上説明したように、第2-1実施形態の角速度センサ駆動回路は、振動させたい方向以外の錘部223の振動を停止させた直後、振動させたい方向への振動を開始する。このため、第2-1実施形態の角速度センサ駆動回路は、振動させたい方向以外の方向の振動が角速度の検出に与える影響を低減し、角速度の検出精度を高めることができる。また、第2-1実施形態の角速度センサ駆動回路は、所定の方向の角速度を検出した後、他の方向の角速度の検出までの間の自由区間にノイズが入ったとしても、所定の方向の静定処理を行った後に角速度を検出しているから、錘部223を安定して振動させながら高い精度で角速度の検出を行うことができる。 As described above, the angular velocity sensor drive circuit according to the 2-1 embodiment starts vibration in the desired direction immediately after stopping the vibration of the weight part 223 other than the desired direction. For this reason, the angular velocity sensor drive circuit according to the 2-1 embodiment can reduce the influence of vibration in a direction other than the direction desired to vibrate on the detection of the angular velocity, and can increase the detection accuracy of the angular velocity. In addition, the angular velocity sensor driving circuit according to the second to first embodiments can detect a predetermined direction in a predetermined direction even if noise enters a free section between the detection of the angular velocity in a predetermined direction and the detection of the angular velocity in another direction. Since the angular velocity is detected after performing the stabilization process, the angular velocity can be detected with high accuracy while stably vibrating the weight portion 223.
 図34に示した例では、X軸方向の発振停止区間において、安定駆動信号としての駆動信号DX1、DX2と振幅及び周期が等しく、位相が反転した信号を静定信号としている。出力ドライバ313は、静定信号を互いに逆相の信号として駆動電極211Xa、211Xbに出力する。その後、出力ドライバ313は、安定駆動信号としての駆動信号DY1、DY2と振幅及び周期が等しく、位相が反転した静定信号を互いに逆相の信号として駆動電極211Ya、211Ybに出力する。 In the example shown in FIG. 34, in the oscillation stop period in the X-axis direction, the signals having the same amplitude and cycle as those of the drive signals DX1 and DX2 as the stable drive signals and having the phase inverted are set as the static signals. The output driver 313 outputs the static signal to the drive electrodes 211 Xa and 211 Xb as signals having opposite phases to each other. Thereafter, the output driver 313 outputs, to the drive electrodes 211 Ya and 211 Yb , static signals having the same amplitude and cycle as the stable drive signals DY1 and DY2 and having the phases reversed, as signals having opposite phases.
 ただし、第2-1実施形態の角速度センサ駆動回路は、このような構成に限定されるものではない。例えば、立上信号生成回路311が互いに逆相の立上信号SUを生成し、出力ドライバ313が逆相の立上信号を静定信号として駆動電極211Xa、211Xb、211Ya、211Ybに出力することもできる。さらに、第2-1実施形態の角速度センサ駆動回路は、フィードバック回路312が互いに逆相のフィードバック信号SFbを生成し、生成されたフィードバック信号SFbを制御回路314がスイッチングすることもできる。 However, the angular velocity sensor driving circuit according to the second-first embodiment is not limited to such a configuration. For example, the rising signal generation circuit 311 generates rising signals SU having opposite phases, and the output driver 313 outputs the rising signals having opposite phases to the drive electrodes 211 Xa , 211 Xb , 211 Ya , 211 Yb as static signals. It can also be output. Further, in the angular velocity sensor driving circuit of the second to first embodiments, the feedback circuit 312 can generate feedback signals SFb having opposite phases, and the control circuit 314 can switch the generated feedback signal SFb.
 [第2-2実施形態]
 次に、本発明の第2-2実施形態による角速度センサ駆動回路を説明する。第2-2実施形態による角速度センサ駆動回路は、角速度センサや集積回路が第1実施形態と同様の構成を有している。このため、角速度センサや集積回路の構成についての図示及び説明を略し、駆動信号による制御についてのみ説明する。
[Second Embodiment]
Next, an angular velocity sensor driving circuit according to a second to second embodiment of the present invention will be described. In the angular velocity sensor driving circuit according to the 2-2 embodiment, the angular velocity sensor and the integrated circuit have the same configuration as that of the first embodiment. For this reason, illustration and description of the configuration of the angular velocity sensor and the integrated circuit are omitted, and only control by the drive signal will be described.
 図35は、第2-2実施形態による駆動電極211Xa、211Xb、211Ya、211Ybの各々に出力される駆動信号を説明するための図である。図35の各駆動信号の横軸は時間であり、縦軸は電圧値である。
 また、図35において、「X stop」、「Y stop」、「Z Stop」はそれぞれX軸方向、Y軸方向及びZ方向の発振停止区間を示している。「Start up」は、X軸方向及びZ軸方向の発振開始区間を示し、「Measure」は角速度が検出される安定発振区間を示している。「自由区間」は、錘部223が外力を受けることなく振動する区間である。
FIG. 35 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the 2-2 embodiment. The horizontal axis of each drive signal in FIG. 35 is time, and the vertical axis is voltage value.
In FIG. 35, “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively. “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction, and “Measure” indicates a stable oscillation interval in which the angular velocity is detected. The “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
 第2-2実施形態の角速度センサ駆動回路は、Z軸方向の発振停止区間の後、Y軸方向の錘部223の振動を停止するY軸方向の発振停止区間を含む点で第2-1実施形態の角速度センサ駆動回路と相違している。
 第2-1実施形態では、図34に示したように、Z軸方向の角速度の検出に先だち、Z軸方向の静定処理を行っている。しかし、錘部223の振動には、Z軸方向以外の振動の成分も含まれていると考えられる。第2-2実施形態の角速度センサ駆動回路は、この点に着目したものであり、Z軸方向の静定処理に続けてY軸方向にも静定処理を行っている。第2-2実施形態の角速度センサ駆動回路は、Y軸方向の錘部223の振動を静定した後にX軸方向の立上信号を駆動電極211Xa、211Xbに出力して錘部223をX軸方向に振動させる。
The angular velocity sensor drive circuit according to the second to second embodiments includes a second oscillation stop section in the Y-axis direction that stops the oscillation of the weight portion 223 in the Y-axis direction after the oscillation stop section in the Z-axis direction. This is different from the angular velocity sensor driving circuit of the embodiment.
In the second-first embodiment, as shown in FIG. 34, the static stabilization process in the Z-axis direction is performed prior to the detection of the angular velocity in the Z-axis direction. However, it is considered that the vibration of the weight portion 223 includes vibration components other than the Z-axis direction. The angular velocity sensor drive circuit according to the second to second embodiments pays attention to this point, and performs the stabilization process in the Y-axis direction following the stabilization process in the Z-axis direction. The angular velocity sensor drive circuit according to the 2-2 embodiment stabilizes the vibration of the weight portion 223 in the Y-axis direction, and then outputs a rising signal in the X-axis direction to the drive electrodes 211 Xa and 211 Xb to cause the weight portion 223 to move. Vibrate in the X-axis direction.
 このような第2-2実施形態の角速度センサ駆動回路は、X軸方向の安定発振区間にZ軸方向の角速度を高い精度で検出することができる。また、第2-2実施形態の角速度センサ駆動回路は、X軸方向あるいはY軸方向の角速度の検出からZ軸方向の角速度の検出までの間にノイズが入ったとしても、Z軸方向及びY軸方向の静定処理を行っているから、錘部223を安定に振動させてZ軸方向の角速度を高い精度で検出することができる。 Such an angular velocity sensor driving circuit according to the 2-2 embodiment can detect the angular velocity in the Z-axis direction with high accuracy in the stable oscillation section in the X-axis direction. In addition, the angular velocity sensor drive circuit of the 2-2 embodiment is configured so that the noise in the Z-axis direction and the Y-axis can be detected even if noise occurs between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of angular velocity in the Z-axis direction. Since the axial stabilization process is performed, the weight 223 can be stably vibrated and the angular velocity in the Z-axis direction can be detected with high accuracy.
 [第2-3実施形態]
 次に、本発明の第2-3実施形態による角速度センサ駆動回路を説明する。第2-3実施形態による角速度センサ駆動回路は、角速度センサや集積回路が第2-1実施形態と同様の構成を有している。このため、角速度センサや集積回路の構成についての図示及び説明を略し、駆動信号による制御についてのみ説明する。
[Second to Third Embodiment]
Next, an angular velocity sensor driving circuit according to the second to third embodiments of the present invention will be described. In the angular velocity sensor driving circuit according to the second to third embodiments, the angular velocity sensor and the integrated circuit have the same configuration as that of the second to first embodiments. For this reason, illustration and description of the configuration of the angular velocity sensor and the integrated circuit are omitted, and only control by the drive signal will be described.
 図36は、第2-3実施形態による駆動電極211Xa、211Xb、211Ya、211Ybの各々に出力される駆動信号を説明するための図である。図35の各駆動信号の横軸は時間であり、縦軸は電圧値である。
 また、図36において、「X stop」、「Y stop」、「Z Stop」はそれぞれX軸方向、Y軸方向及びZ方向の発振停止区間を示している。「Start up」は、X軸方向及びZ軸方向の発振開始区間を示し、「Measure」はX軸方向、Y軸方向及びZ軸方向の角速度が検出される安定発振区間を示している。「自由区間」は、錘部223が外力を受けることなく振動する区間である。
FIG. 36 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the second to third embodiments. The horizontal axis of each drive signal in FIG. 35 is time, and the vertical axis is voltage value.
In FIG. 36, “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively. “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction, and “Measure” indicates a stable oscillation interval in which angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected. The “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
 第2-3実施形態の角速度センサ駆動回路は、X軸方向の発振開始区間と並行してY軸方向の発振停止区間を設定している点が第2-1実施形態と相違している。第2-3実施形態では、X軸方向の立上信号とY軸方向の静定信号とが並行して出力される。
 このような第2-3実施形態の角速度センサ駆動回路は、Z軸方向の角速度の検出に先だち、Z軸方向の発振停止区間において静定処理を行い、Z軸方向の発振開始区間中にY軸方向にも静定処理を行っている。第2-3実施形態の角速度センサ駆動回路は、X軸方向の安定発振区間中にZ軸方向の角速度を高い精度で検出することができる。また、第2-3実施形態の角速度センサ駆動回路は、X軸方向あるいはY軸方向の角速度の検出からZ軸方向の角速度の検出までの間にノイズが入ったとしても、Z軸方向及びY軸方向の静定処理を行っているから、Z軸方向の角速度を高い精度で検出することができる。
 その上、第2-3実施形態の角速度センサ駆動回路は、Z軸方向の静定処理とX軸方向の発振開始とを同時に行うことにより、角速度検出のサンプリング周波数を高めることができる。
The angular velocity sensor drive circuit of the second to third embodiments is different from the second to first embodiments in that an oscillation stop interval in the Y-axis direction is set in parallel with an oscillation start interval in the X-axis direction. In the second to third embodiments, the rising signal in the X-axis direction and the static signal in the Y-axis direction are output in parallel.
The angular velocity sensor drive circuit according to the second to third embodiments performs a stabilization process in the oscillation stop period in the Z-axis direction prior to the detection of the angular velocity in the Z-axis direction, and performs Y during the oscillation start period in the Z-axis direction. The settling process is also performed in the axial direction. The angular velocity sensor drive circuit according to the second to third embodiments can detect the angular velocity in the Z-axis direction with high accuracy during the stable oscillation section in the X-axis direction. Further, the angular velocity sensor drive circuit according to the second to third embodiments can detect the Z-axis direction and the Y-axis even if noise occurs between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of the angular velocity in the Z-axis direction. Since the axial stabilization process is performed, the angular velocity in the Z-axis direction can be detected with high accuracy.
In addition, the angular velocity sensor driving circuit according to the second to third embodiments can increase the sampling frequency for angular velocity detection by simultaneously performing the stabilization process in the Z-axis direction and the start of oscillation in the X-axis direction.
 [第2-4実施形態]
 次に、本発明の第2-4実施形態による角速度センサ駆動回路を説明する。第2-4実施形態による角速度センサ駆動回路は、角速度センサが第2-1実施形態と同様の構成を有している。このため、第2-4実施形態では、角速度センサの構成についての図示及び説明を略し、集積回路及び駆動信号による制御について説明する。
[2-4 Embodiment]
Next, an angular velocity sensor driving circuit according to a second to fourth embodiment of the present invention will be described. In the angular velocity sensor drive circuit according to the 2-4 embodiment, the angular velocity sensor has the same configuration as that of the 2-1 embodiment. For this reason, in the second to fourth embodiments, illustration and description of the configuration of the angular velocity sensor are omitted, and control by the integrated circuit and the drive signal will be described.
 図37は、第2-4実施形態の角速度センサの集積回路205のブロック図である。集積回路205は、角度センサ駆動回路34及び角速度検出回路232を有している。第2-4実施形態の角速度センサ駆動回路234は、角速度検出回路232に入力される検出信号SX1、SX2、SY1、SY2を入力することなく動作する点で第2-1実施形態の角速度センサ駆動回路231と相違する。 FIG. 37 is a block diagram of the integrated circuit 205 of the angular velocity sensor according to the second to fourth embodiments. The integrated circuit 205 includes an angle sensor drive circuit 34 and an angular velocity detection circuit 232. The angular velocity sensor drive circuit 234 of the second to fourth embodiments operates without inputting the detection signals SX1, SX2, SY1, and SY2 input to the angular velocity detection circuit 232, and the angular velocity sensor drive of the 2-1 embodiment. This is different from the circuit 231.
 図38は、図37に示した角速度センサ駆動回路234を説明するためのブロック図である。角速度センサ駆動回路234は、信号生成回路318及び制御回路323を備えている。信号生成回路318は、駆動信号生成回路319及びスイッチ回路315を備えている。駆動信号生成回路319は、制御回路323の制御に従って駆動信号Sdを生成する。スイッチ回路315は、制御回路323の制御に従って、駆動信号Sdに基づき、駆動信号DX1、DX2、DY1、DY2を生成する。このとき、第2-4実施形態では、スイッチ回路315が、制御回路323の制御に従って安定発振区間に出力される駆動信号DX1、DX2、DY1、DY2の位相をそれぞれ反転させて静定信号を生成する。また、スイッチ回路315は、駆動信号DX1、DX2、DY1、DY2が出力される駆動電極211Xa、211Xb、211Ya、211Ybを切替える。 FIG. 38 is a block diagram for explaining the angular velocity sensor drive circuit 234 shown in FIG. The angular velocity sensor drive circuit 234 includes a signal generation circuit 318 and a control circuit 323. The signal generation circuit 318 includes a drive signal generation circuit 319 and a switch circuit 315. The drive signal generation circuit 319 generates the drive signal Sd according to the control of the control circuit 323. The switch circuit 315 generates drive signals DX1, DX2, DY1, and DY2 based on the drive signal Sd under the control of the control circuit 323. At this time, in the second to fourth embodiments, the switch circuit 315 generates a static signal by inverting the phases of the drive signals DX1, DX2, DY1, and DY2 output in the stable oscillation period according to the control of the control circuit 323, respectively. To do. The switch circuit 315 switches the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb from which the drive signals DX 1, DX 2, DY 1, and DY 2 are output.
 図39は、第2-4実施形態による駆動電極211Xa、211Xb、211Ya、211Ybの各々に出力される駆動信号を説明するための図である。図39の各駆動信号の横軸は時間であり、縦軸は電圧値である。
 また、図39において、「X stop」、「Y stop」、「Z Stop」はそれぞれX軸方向、Y軸方向及びZ方向の発振停止区間を示している。「Start up」は、X軸方向及びZ軸方向の発振開始区間を示し、「Measure」は角速度が検出される安定発振区間を示している。「自由区間」は、錘部223が外力を受けることなく振動する区間である。
FIG. 39 is a diagram for explaining drive signals output to the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb according to the second to fourth embodiments. The horizontal axis of each drive signal in FIG. 39 is time, and the vertical axis is voltage value.
In FIG. 39, “X stop”, “Y stop”, and “Z Stop” indicate oscillation stop sections in the X axis direction, the Y axis direction, and the Z direction, respectively. “Start up” indicates an oscillation start interval in the X-axis direction and the Z-axis direction, and “Measure” indicates a stable oscillation interval in which the angular velocity is detected. The “free section” is a section in which the weight portion 223 vibrates without receiving an external force.
 第2-4実施形態の角速度センサ駆動回路では、図39に示すように、安定発振区間の駆動信号が正弦波でなく、パルス波になっている。このような第2-1実施形態等との相違は、第2-4実施形態の駆動信号DX1、DX2、DY1、DY2がフィードバック信号SFbに基づいて生成された信号ではないために生じるものである。
 また、第2-4実施形態のスイッチ回路315は、自由区間においては錘部223の駆動電極211Xa、211Xb、211Ya、211Ybの各々がフローティング状態になるように制御している。
In the angular velocity sensor drive circuit of the second to fourth embodiments, as shown in FIG. 39, the drive signal in the stable oscillation section is not a sine wave but a pulse wave. Such a difference from the 2-1 embodiment and the like occurs because the drive signals DX1, DX2, DY1, and DY2 of the 2-4 embodiment are not signals generated based on the feedback signal SFb. .
In addition, the switch circuit 315 of the second to fourth embodiments controls each of the drive electrodes 211 Xa , 211 Xb , 211 Ya , and 211 Yb of the weight part 223 to be in a floating state in the free section.
 以上説明した第2-4実施形態の角速度センサ駆動回路は、第2-3実施形態の角速度センサ駆動回路と同様に、X軸方向の安定発振区間にZ軸方向の角速度を高い精度で検出することができる。また、第2-4実施形態の角速度センサ駆動回路は、X軸方向あるいはY軸方向の角速度の検出からZ軸方向の角速度の検出までの間にノイズが入ったとしても、Z軸方向の角速度を高い精度で検出することができる。
 さらに、第2-4実施形態の角速度センサ駆動回路は、第2-1実施形態から第2-3実施形態の角速度センサ駆動回路のフィードバック回路312を使用することがない。このため、第2-1実施形態から第2-3実施形態に比べて角速度センサ駆動回路における信号処理を簡易化することができる。
The angular velocity sensor driving circuit according to the second to fourth embodiments described above detects the angular velocity in the Z-axis direction with high accuracy during the stable oscillation section in the X-axis direction, similarly to the angular velocity sensor driving circuit according to the second to third embodiments. be able to. In addition, the angular velocity sensor drive circuit of the second to fourth embodiments can prevent the angular velocity in the Z-axis direction even if noise enters between the detection of the angular velocity in the X-axis direction or the Y-axis direction and the detection of the angular velocity in the Z-axis direction. Can be detected with high accuracy.
Further, the angular velocity sensor drive circuit of the second to fourth embodiments does not use the feedback circuit 312 of the angular velocity sensor drive circuit of the second to third embodiments. Therefore, the signal processing in the angular velocity sensor driving circuit can be simplified as compared with the second to third embodiments.
 また、本発明の第2-1実施形態から第2-4実施形態の角速度センサ駆動回路は、以上説明した構成に限定されるものではない。例えば、以上説明した第2-1実施形態から第2-4実施形態の角速度センサ駆動回路では、いずれもZ軸方向とX軸方向及びY軸方向の三軸の方向について角速度の検出を行っている。しかし、第2-1実施形態から第2-4実施形態の角速度センサ駆動回路は、一軸の方向のみの角速度を検出するものであってもよい。 In addition, the angular velocity sensor drive circuit according to the 2-1 to 2-4 embodiments of the present invention is not limited to the configuration described above. For example, in the angular velocity sensor drive circuits according to the 2-1 embodiment to the 2-4 embodiment described above, the angular velocity is detected in the three axis directions of the Z-axis direction, the X-axis direction, and the Y-axis direction. Yes. However, the angular velocity sensor drive circuit of the 2-1 to 2-4 embodiments may detect an angular velocity only in the direction of one axis.
 一軸の方向のみの角速度を検出する場合、第2-1実施形態から第2-4実施形態の角速度センサ駆動回路は、例えば、X軸方向の発振開始の前にZ軸方向及びY軸方向の振動を静定し、錘部223の振動を安定させてからX軸方向の発振を開始させてもよい。同様に、Y軸方向の発振開始の前にZ軸方向及びX軸方向の振動を静定し、錘部223の振動を安定させてからY軸方向の発振を開始させてもよい。 When detecting the angular velocity only in the direction of one axis, the angular velocity sensor drive circuits of the second to second to second embodiments can perform, for example, the Z-axis direction and the Y-axis direction before starting the oscillation in the X-axis direction. Oscillation in the X-axis direction may be started after stabilizing the vibration and stabilizing the vibration of the weight portion 223. Similarly, the oscillation in the Z-axis direction and the X-axis direction may be stabilized before the oscillation in the Y-axis direction is started, and the oscillation in the Y-axis direction may be started after stabilizing the oscillation of the weight portion 223.
 さらに、第2-1実施形態から第2-4実施形態の角速度センサ駆動回路は、角速度検出時に駆動電極に出力される駆動信号が立上信号を含むものに限定されるものではない。
 なお、自由区間の後の発振停止区間において、4つの検出電極の内、2つの検出電極からの信号をフィードバックして駆動電極へ静定信号を出力する場合、残り2つの検出電極同士を短絡してもよく、また、同じ共通電位を与える形態であってもよい。
 なお、本発明は、以上に記載した実施形態に限定されるものではない。当業者の知識に基づいて実施形態に設計の変更等を加えてもよく、また、実施形態を任意に組み合わせてもよく、そのような変更等を加えた態様も本発明の技術的範囲に含まれる。
Furthermore, the angular velocity sensor drive circuits of the 2-1 to 2-4 embodiments are not limited to those in which the drive signal output to the drive electrode when the angular velocity is detected includes a rising signal.
In addition, in the oscillation stop period after the free period, when the signal from the two detection electrodes among the four detection electrodes is fed back and the static signal is output to the drive electrode, the remaining two detection electrodes are short-circuited. Alternatively, the same common potential may be applied.
The present invention is not limited to the embodiment described above. Based on the knowledge of a person skilled in the art, design changes or the like may be added to the embodiments, and the embodiments may be arbitrarily combined, and aspects including such changes are also included in the technical scope of the present invention. It is.
 以上説明した上記第1実施形態の一態様は以下のようにまとめられる。
(付記1)
 ドライブ電極と振動検出電極と振動部とを有する角速度センサ部と、
 前記振動検出電極からの検出信号に基づいて、前記ドライブ電極へ出力する自励発振信号を生成する自励発振回路と、
 前記ドライブ電極へ出力する駆動信号を生成する駆動信号生成回路と、
 前記ドライブ電極へ、前記駆動信号を出力するか、前記自励発振信号を出力するかを切り替える切替回路と、
 前記駆動信号生成回路の前記駆動信号の振幅を決定する振幅情報、又は、前記駆動信号が出力される時間を決定する時間情報が格納された格納部と、
を備えた角速度センサ。
(付記2)
 前記切替回路は、前記駆動信号を出力して前記振動部を振動させた後、前記自励発振信号を出力するように切り替える付記1に記載の角速度センサ。
(付記3)
 前記駆動信号生成回路は、前記振動部を第一軸方向に振動させる第一の駆動信号と、前記振動部を第一軸方向とは直交する第二軸に振動させる第二の駆動信号とを出力する付記1又は2に記載の角速度センサ。
(付記4)
 前記格納部は、前記第一の駆動信号の第一の振幅情報と、前記第二の駆動信号の第二の振幅情報と、を格納する付記3に記載の角速度センサ。
(付記5)
 前記格納部は、前記第一の駆動信号が出力される第一の時間情報と、前記第二の駆動信号が出力される第二の時間情報と、を格納する付記3又は4に記載の角速度センサ。
(付記6)
 前記駆動信号は、矩形波である付記1~5のいずれか一項に記載の角速度センサ。
(付記7)
 前記振幅情報と前記時間情報は、前記検出信号のエンベロープにより決定される付記1~6のいずれか一項に記載の角速度センサ。
(付記8)
 前記切替回路は、前記検出信号のエンベロープがリニア特性である間に、前記駆動信号から前記自励発振信号を出力するように切り替える付記1~7のいずれか一項に記載の角速度センサ。
(付記9)
 ドライブ電極と振動検出電極と振動部とを有する角速度センサ部と、
 前記振動検出電極からの検出信号に基づいて、前記ドライブ電極へ出力する自励発振信号を生成する自励発振回路と、
 前記ドライブ電極へ出力する駆動信号を生成する駆動信号生成回路と、
 前記ドライブ電極へ、前記駆動信号を出力するか、前記自励発振信号を出力するかを切り替える切替回路と、
 前記自励発振信号の振幅を検出する振幅検出部と、を備え、
 前記振幅検出部の振幅検出信号に基づいて、前記駆動信号生成回路の前記駆動信号の振幅、又は、前記駆動信号が出力される時間が調整される角速度センサ。
(付記10)
 前記切替回路が前記駆動信号を出力して前記振動部を振動させてから前記自励発振信号を出力するように切り替えるとき又はあとにおいて、前記振幅検出部の前記振幅検出信号が、所定値以上の場合、前記駆動信号の振幅を小さくする調整、又は、前記駆動信号が出力される時間を短くする調整を行う付記9に記載の角速度センサ。
(付記11)
 ドライブ電極と振動検出電極と振動部とを有する角速度センサ部の前記ドライブ電極へ、第一の振幅の駆動信号を出力する信号出力ステップと、
 第一の時間経過後、前記振動検出電極からの検出信号を検出する信号検出ステップと、
 前記検出信号の振幅を検出して、目標値と比較する信号比較ステップと、
 前記比較した結果に基づいて、前記第一の振幅又は前記第一の時間を調整する信号調整ステップと、
 を備えた角速度センサの調整方法。
(付記12)
 前記検出信号の振幅が、時間に対してリニア特性でない場合、前記駆動信号の振幅を小さくする調整、又は、前記駆動信号が出力される時間を短くする調整を行う付記11に記載の角速度センサの調整方法。
(付記13)
 前記比較した結果、前記振幅検出信号が目標値より大きい場合、前記駆動信号の振幅を小さくする調整、又は、前記駆動信号が出力される時間を短くする調整を行う付記11又は12に記載の角速度センサの調整方法。
(付記14)
 前記比較した結果、前記振幅検出信号が目標値より小さい場合、前記駆動信号の振幅を大きくする調整、又は、前記駆動信号が出力される時間を長くする調整を行う付記11~13までのいずれか一項に記載の角速度センサの調整方法。
One aspect of the first embodiment described above can be summarized as follows.
(Appendix 1)
An angular velocity sensor unit having a drive electrode, a vibration detection electrode, and a vibration unit;
A self-excited oscillation circuit that generates a self-excited oscillation signal to be output to the drive electrode based on a detection signal from the vibration detection electrode;
A drive signal generation circuit for generating a drive signal to be output to the drive electrode;
A switching circuit for switching whether to output the drive signal or the self-excited oscillation signal to the drive electrode;
A storage unit storing amplitude information for determining the amplitude of the drive signal of the drive signal generation circuit, or time information for determining the time for which the drive signal is output;
Angular velocity sensor with
(Appendix 2)
The angular velocity sensor according to claim 1, wherein the switching circuit switches the output to output the self-excited oscillation signal after the drive signal is output to vibrate the vibration unit.
(Appendix 3)
The drive signal generation circuit includes: a first drive signal that vibrates the vibration unit in a first axis direction; and a second drive signal that vibrates the vibration unit on a second axis that is orthogonal to the first axis direction. The angular velocity sensor according to appendix 1 or 2, which outputs.
(Appendix 4)
The angular velocity sensor according to appendix 3, wherein the storage unit stores first amplitude information of the first drive signal and second amplitude information of the second drive signal.
(Appendix 5)
The angular velocity according to appendix 3 or 4, wherein the storage unit stores first time information at which the first drive signal is output and second time information at which the second drive signal is output. Sensor.
(Appendix 6)
The angular velocity sensor according to any one of appendices 1 to 5, wherein the drive signal is a rectangular wave.
(Appendix 7)
The angular velocity sensor according to any one of appendices 1 to 6, wherein the amplitude information and the time information are determined by an envelope of the detection signal.
(Appendix 8)
The angular velocity sensor according to any one of appendices 1 to 7, wherein the switching circuit switches to output the self-oscillation signal from the drive signal while an envelope of the detection signal has a linear characteristic.
(Appendix 9)
An angular velocity sensor unit having a drive electrode, a vibration detection electrode, and a vibration unit;
A self-excited oscillation circuit that generates a self-excited oscillation signal to be output to the drive electrode based on a detection signal from the vibration detection electrode;
A drive signal generation circuit for generating a drive signal to be output to the drive electrode;
A switching circuit for switching whether to output the drive signal or the self-excited oscillation signal to the drive electrode;
An amplitude detection unit for detecting the amplitude of the self-excited oscillation signal,
An angular velocity sensor that adjusts an amplitude of the drive signal of the drive signal generation circuit or a time during which the drive signal is output based on an amplitude detection signal of the amplitude detector.
(Appendix 10)
When the switching circuit outputs the drive signal to vibrate the vibration unit and then switches to output the self-excited oscillation signal, or after, the amplitude detection signal of the amplitude detection unit is greater than or equal to a predetermined value. In the case, the angular velocity sensor according to appendix 9, wherein an adjustment for reducing the amplitude of the drive signal or an adjustment for shortening the time during which the drive signal is output is performed.
(Appendix 11)
A signal output step of outputting a drive signal having a first amplitude to the drive electrode of the angular velocity sensor unit having a drive electrode, a vibration detection electrode, and a vibration unit;
A signal detection step of detecting a detection signal from the vibration detection electrode after elapse of a first time;
A signal comparison step of detecting the amplitude of the detection signal and comparing it with a target value;
A signal adjustment step for adjusting the first amplitude or the first time based on the comparison result;
Adjusting method of angular velocity sensor provided with
(Appendix 12)
The angular velocity sensor according to appendix 11, wherein when the amplitude of the detection signal is not a linear characteristic with respect to time, an adjustment for decreasing the amplitude of the drive signal or an adjustment for shortening the time during which the drive signal is output is performed. Adjustment method.
(Appendix 13)
As a result of the comparison, if the amplitude detection signal is larger than a target value, the angular velocity according to appendix 11 or 12, wherein an adjustment for decreasing the amplitude of the drive signal or an adjustment for shortening the time during which the drive signal is output is performed. Sensor adjustment method.
(Appendix 14)
As a result of the comparison, when the amplitude detection signal is smaller than a target value, any one of Supplementary notes 11 to 13 is performed to adjust the drive signal to increase the amplitude or to increase the drive signal output time. An adjustment method of the angular velocity sensor according to one item.
 以上説明した上記第2実施形態の一態様は以下のようにまとめられる。
(付記1)
 駆動電極を備えた錘部を駆動する角速度センサ駆動回路において、
 前記錘部を第1軸方向に振動させる第1駆動信号、前記錘部を第2軸方向に振動させる第2駆動信号及び前記錘部の前記第1軸方向の振動を静定する第1静定信号を生成して前記駆動電極へ出力する信号生成回路と、
 前記第2軸方向の角速度の検出から前記第1軸方向の角速度の検出までの区間において、前記信号生成回路から前記第1駆動信号が前記駆動電極に出力される第1発振区間を設定し、前記第1発振区間の後に前記錘部を自由に振動させる第1自由区間を設定し、前記第1自由区間の後に前記信号生成回路から前記第1静定信号が前記駆動電極に出力される第1発振停止区間を設定し、前記第1発振停止区間の直後に前記信号生成回路から前記第2駆動信号が前記駆動電極に出力される第2発振区間を設定する制御回路と、
 を備える角速度センサ駆動回路。
(付記2)
 前記信号生成回路は、さらに、前記錘部の前記第2軸方向の振動を静定する第2静定信号を生成して前記駆動電極へ出力し、
 前記制御回路は、前記第2発振区間の後に前記錘部を自由振動させる第2自由区間を設定し、前記第2自由区間の後に前記信号生成回路から前記駆動電極に前記第2静定信号が出力される第2発振停止区間を設定し、前記第2発振停止区間の直後に前記第1発振区間を設定する付記1に記載の角速度センサ駆動回路。
(付記3)
 前記第1駆動信号は、前記錘部に前記第1軸方向の振動を開始させる第1立上信号及び前記第1軸方向の振動を安定させる第1安定駆動信号を含み、前記第2駆動信号は、前記錘部に前記第2軸方向の振動を開始させる第2立上信号及び前記第2軸方向の振動を安定させる第2安定駆動信号を含み、
 前記制御回路は、前記第1発振区間において前記信号生成回路から前記第1立上信号が前記駆動電極に出力される第1発振開始区間を設定し、前記第1発振開始区間の後に前記第1安定駆動信号が前記駆動電極に出力される第1安定発振区間を設定し、前記第2発振区間において前記信号生成回路から前記第2立上信号が前記駆動電極に出力される第2発振開始区間を設定し、前記第2発振開始区間の後に前記第2安定駆動信号が前記駆動電極に出力される第2安定発振区間を設定する付記2に記載の角速度センサ駆動回路。
(付記4)
 前記制御回路は、前記第1発振停止区間の直後に前記第2発振開始区間を設定し、前記第2発振停止区間の直後に前記第1発振開始区間を設定する付記3に記載の角速度センサ駆動回路。
(付記5)
 付記1から付記4のいずれか1項に記載の角速度センサ駆動回路と、
 前記角速度センサ駆動回路によって駆動信号が供給される前記駆動電極と、前記駆動信号によって振動する前記錘部及び前記錘部の振動によって出力される検出信号を出力する検出電極を備える角速度センサと、
 前記検出電極から出力される前記検出信号から角速度を検出する角速度検出回路と、
 を備える角速度検出センサ装置。
(付記6)
 錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、
 前記錘部を第1軸方向に振動させる第1発振区間に第2軸方向の角速度を検出し、
 前記第1発振区間の後の第1自由区間に、前記錘部を自由振動させ、
 前記第1自由区間の後の前記錘部の前記第1軸方向の振動を静定する第1発振停止区間に、前記錘部の前記第1軸方向の振動を静定し、
 前記第1発振停止区間の直後の前記錘部を前記第2軸方向に振動させる第2発振区間に、前記第1軸方向の角速度を検出する角速度センサの駆動方法。
(付記7)
 駆動電極を備えた錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、
 前記錘部を第1軸方向に振動させる第1発振区間に第1駆動信号を前記駆動電極へ出力し、
 前記第1発振区間の後の第1自由区間は、前記駆動電極に一定電圧を供給する又は前記駆動電極をフローティング状態とし、
 前記第1自由区間の後の第1発振停止区間に、前記錘部の前記第1軸方向の振動を静定する第1静定信号を前記駆動電極へ出力し、
 前記第1発振停止区間の直後の第2発振区間に、前記錘部を第2軸方向に振動させる第2駆動信号を前記駆動電極へ出力する角速度センサの駆動方法。
One aspect of the second embodiment described above can be summarized as follows.
(Appendix 1)
In the angular velocity sensor drive circuit for driving the weight portion provided with the drive electrode,
A first driving signal that vibrates the weight portion in the first axis direction, a second driving signal that vibrates the weight portion in the second axis direction, and a first static that stabilizes the vibration of the weight portion in the first axis direction. A signal generation circuit that generates a constant signal and outputs the constant signal to the drive electrode;
In a section from detection of the angular velocity in the second axis direction to detection of the angular velocity in the first axis direction, a first oscillation section in which the first drive signal is output from the signal generation circuit to the drive electrode is set. A first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is output from the signal generation circuit to the drive electrode after the first free section. A control circuit that sets one oscillation stop period and sets a second oscillation period in which the second drive signal is output from the signal generation circuit to the drive electrode immediately after the first oscillation stop period;
An angular velocity sensor driving circuit comprising:
(Appendix 2)
The signal generation circuit further generates a second static signal for stabilizing the vibration of the weight portion in the second axis direction, and outputs the second static signal to the drive electrode.
The control circuit sets a second free section in which the weight portion freely vibrates after the second oscillation section, and after the second free section, the second static signal is sent from the signal generation circuit to the drive electrode. The angular velocity sensor drive circuit according to appendix 1, wherein a second oscillation stop period to be output is set, and the first oscillation period is set immediately after the second oscillation stop period.
(Appendix 3)
The first drive signal includes a first rising signal for causing the weight portion to start vibration in the first axial direction, and a first stable drive signal for stabilizing the vibration in the first axial direction, and the second drive signal. Includes a second rising signal for causing the weight portion to start vibration in the second axial direction and a second stable drive signal for stabilizing the vibration in the second axial direction,
The control circuit sets a first oscillation start period in which the first rising signal is output from the signal generation circuit to the drive electrode in the first oscillation period, and the first oscillation start period is followed by the first oscillation period. A first oscillation oscillation period in which a stable drive signal is output to the drive electrode is set, and a second oscillation start period in which the second rising signal is output from the signal generation circuit to the drive electrode in the second oscillation period. The angular velocity sensor drive circuit according to appendix 2, wherein a second stable oscillation section in which the second stable drive signal is output to the drive electrode is set after the second oscillation start section.
(Appendix 4)
The angular velocity sensor drive according to appendix 3, wherein the control circuit sets the second oscillation start interval immediately after the first oscillation stop interval and sets the first oscillation start interval immediately after the second oscillation stop interval. circuit.
(Appendix 5)
The angular velocity sensor drive circuit according to any one of appendix 1 to appendix 4,
An angular velocity sensor comprising: the drive electrode to which a drive signal is supplied by the angular velocity sensor drive circuit; the weight portion that vibrates according to the drive signal; and a detection electrode that outputs a detection signal output by vibration of the weight portion;
An angular velocity detection circuit for detecting an angular velocity from the detection signal output from the detection electrode;
An angular velocity detection sensor device comprising:
(Appendix 6)
An angular velocity sensor driving method for driving an angular velocity sensor having a weight portion,
Detecting an angular velocity in the second axis direction in a first oscillation section that vibrates the weight portion in the first axis direction;
In the first free section after the first oscillation section, the weight portion is allowed to freely vibrate,
In the first oscillation stop section for stabilizing the vibration in the first axial direction of the weight portion after the first free section, the vibration in the first axial direction of the weight portion is stabilized.
An angular velocity sensor driving method for detecting an angular velocity in the first axis direction in a second oscillation interval in which the weight portion immediately after the first oscillation stop interval is vibrated in the second axis direction.
(Appendix 7)
An angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode,
Outputting a first drive signal to the drive electrode in a first oscillation section that vibrates the weight portion in a first axis direction;
The first free section after the first oscillation section supplies a constant voltage to the drive electrode or sets the drive electrode in a floating state,
In a first oscillation stop section after the first free section, a first static signal for stabilizing the vibration in the first axial direction of the weight portion is output to the drive electrode,
A method for driving an angular velocity sensor, wherein a second drive signal for oscillating the weight portion in a second axis direction is output to the drive electrode in a second oscillation section immediately after the first oscillation stop section.
1,201 角速度センサ
1a、1b モニタ部
3,210 角速度センサ部
3a 振動部
5 発振制御部
5a 自励発振回路
5b 矩形波発生器
5c 切替回路
5d 基準値発生部
5e シーケンサ
5f 制御部
6a HPF
6b 搬送波生成回路
6c 位相シフタ
6d 可変増幅器
6e ドライバ
203,205 集積回路
215 圧電層
217 電極層
219 可撓部
221 支持部
223 錘部
231,233,234 角速度センサ駆動回路
232 角速度検出回路
310,318 信号生成回路
311,316 立ち上げ信号生成回路
312,317 フィードバック回路
313 出力ドライバ
314,323 制御回路
315 スイッチ回路
319 駆動信号生成回路
1,201 Angular velocity sensor 1a, 1b Monitor unit 3,210 Angular velocity sensor unit 3a Vibration unit 5 Oscillation control unit 5a Self-excited oscillation circuit 5b Rectangular wave generator 5c Switching circuit 5d Reference value generation unit 5e Sequencer 5f Control unit 6a HPF
6b Carrier wave generation circuit 6c Phase shifter 6d Variable amplifier 6e Driver 203, 205 Integrated circuit 215 Piezoelectric layer 217 Electrode layer 219 Flexible portion 221 Support portion 223 Weight portions 231, 233, 234 Angular velocity sensor drive circuit 232 Angular velocity detection circuit 310, 318 Signal Generation circuits 311 and 316 Rising signal generation circuits 312 and 317 Feedback circuit 313 Output drivers 314 and 323 Control circuit 315 Switch circuit 319 Drive signal generation circuit

Claims (14)

  1.  駆動電極、検出電極、及び、振動部を有するセンサ部を振動させる角速度センサ駆動回路であり、
     振動開始信号を生成する振動開始信号生成回路と、
     前記検出電極からの検出信号に基づいて励振信号を生成する励振回路と、
     前記振動部の振動を開始する振動開始区間に、前記振動開始信号を前記駆動電極へ出力し、角速度を検出する角速度検出区間に、前記励振信号を前記駆動電極へ出力する出力部と、
     前記振動開始区間及び前記角速度検出区間が繰り返されるように前記出力部を制御する制御部と、
    前記角速度検出区間の前記検出信号又は前記励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間中に駆動電極に与えられる振動開始信号のエネルギーを調整する調整部と、
     を備える角速度センサ駆動回路。
    An angular velocity sensor drive circuit that vibrates a drive electrode, a detection electrode, and a sensor unit having a vibration unit,
    A vibration start signal generation circuit for generating a vibration start signal;
    An excitation circuit that generates an excitation signal based on a detection signal from the detection electrode;
    An output unit for outputting the vibration start signal to the drive electrode in a vibration start period for starting vibration of the vibration unit, and outputting the excitation signal to the drive electrode in an angular velocity detection section for detecting an angular velocity;
    A control unit that controls the output unit so that the vibration start section and the angular velocity detection section are repeated;
    An adjustment unit that adjusts the energy of the vibration start signal applied to the drive electrode during the next vibration start interval based on the amplitude of the detection signal or the excitation signal of the angular velocity detection interval or the variation amount of the amplitude;
    An angular velocity sensor driving circuit comprising:
  2.  前記調整部は、
     前記角速度検出区間の前記検出信号又は前記励振信号の振幅が基準値よりも大きい場合、及び、前記角速度検出区間の前記検出信号又は前記励振信号の振幅の変動量が基準値よりも大きい場合は、前の振動開始区間中に前記駆動電極に与えられる振動開始信号のエネルギーよりも、後に設定される振動開始区間中に前記駆動電極に与えられる振動開始信号のエネルギーの方が小さくなるように調整し、
     前記角速度検出区間の前記検出信号又は前記励振信号の振幅が基準値よりも小さい場合、及び、前記角速度検出区間の前記検出信号又は前記励振信号の振幅の変動量が基準値よりも小さい場合は、前の振動開始区間中に前記駆動電極に与えられる振動開始信号のエネルギーよりも、後に設定される振動開始区間中に前記駆動電極に与えられる振動開始信号のエネルギーの方が大きくなるように調整する
     請求項1に記載の角速度センサ駆動回路。
    The adjustment unit is
    When the amplitude of the detection signal or the excitation signal in the angular velocity detection section is larger than a reference value, and when the variation amount of the amplitude of the detection signal or the excitation signal in the angular velocity detection section is larger than a reference value, Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is smaller than the energy of the vibration start signal applied to the drive electrode during the previous vibration start interval. ,
    When the amplitude of the detection signal or the excitation signal in the angular velocity detection section is smaller than a reference value, and when the variation amount of the amplitude of the detection signal or the excitation signal in the angular velocity detection section is smaller than a reference value, Adjustment is made so that the energy of the vibration start signal applied to the drive electrode during the vibration start interval set later is larger than the energy of the vibration start signal applied to the drive electrode during the previous vibration start interval. The angular velocity sensor drive circuit according to claim 1.
  3.  前記調整部は、前記振動開始信号の振幅、又は、前記振動開始信号が前記駆動電極に出力される時間を調整する
     請求項1又は2に記載の角速度センサ駆動回路。
    The angular velocity sensor drive circuit according to claim 1, wherein the adjustment unit adjusts an amplitude of the vibration start signal or a time during which the vibration start signal is output to the drive electrode.
  4.  前記振動開始信号生成回路は、前記振動部を第一軸方向に振動させる第一振動開始信号と、前記振動部を第一軸方向とは直交する第二軸に振動させる第二振動開始信号と、を生成し、
     前記出力部は、前記振動部の第一軸方向へ振動を開始する第一振動開始区間に、前記第一振動開始信号を前記駆動電極へ出力し、第一の角速度を検出する第一角速度検出区間に、前記励振信号を前記駆動電極へ出力し、前記振動部の第二軸方向へ振動を開始する第二振動開始区間に、前記第二振動開始信号を前記駆動電極へ出力し、第二の角速度を検出する第二角速度検出区間に、前記励振信号を前記駆動電極へ出力し、
     前記制御部は、前記第一振動開始区間、前記第一角速度検出区間、前記第二振動開始区間、及び、前記第二角速度検出区間、が繰り返されるように前記出力部を制御する
     請求項1~3のいずれか一項に記載の角速度センサ駆動回路。
    The vibration start signal generation circuit includes a first vibration start signal that vibrates the vibration part in a first axis direction, and a second vibration start signal that vibrates the vibration part on a second axis that is orthogonal to the first axis direction. Generate,
    The output unit outputs a first vibration start signal to the drive electrode and detects a first angular velocity in a first vibration start section in which vibration starts in the first axis direction of the vibration unit, and detects a first angular velocity. In the section, the excitation signal is output to the drive electrode, the second vibration start signal is output to the drive electrode in a second vibration start section that starts vibration in the second axial direction of the vibration unit, and the second In the second angular velocity detection section for detecting the angular velocity, the excitation signal is output to the drive electrode,
    The control unit controls the output unit such that the first vibration start section, the first angular velocity detection section, the second vibration start section, and the second angular speed detection section are repeated. The angular velocity sensor drive circuit according to any one of claims 3 to 4.
  5.  前記調整部は、前記第一角速度検出区間の前記検出信号若しくは前記励振信号の振幅又は振幅の変動量に基づいて、次の第一振動開始区間中に駆動電極に与えられる第一振動開始信号のエネルギーを調整し、前記第二角速度検出区間の前記検出信号若しくは前記励振信号の振幅又は振幅の変動量に基づいて、次の第二振動開始区間中に駆動電極に与えられる第二振動開始信号のエネルギーを調整する請求項4に記載の角速度センサ駆動回路。 The adjustment unit is configured to detect a first vibration start signal applied to the drive electrode during the next first vibration start section based on the amplitude of the detection signal or the excitation signal in the first angular velocity detection section or the variation amount of the amplitude. The energy of the second vibration start signal applied to the drive electrode during the next second vibration start section is adjusted based on the amplitude of the detection signal or the excitation signal in the second angular velocity detection section or the amount of fluctuation of the amplitude. The angular velocity sensor drive circuit according to claim 4, wherein the energy is adjusted.
  6.  請求項1~5のいずれか一項に記載の角速度センサ駆動回路と、
     駆動電極、検出電極、及び、振動部を有するセンサ部と、
     を備える角速度センサ。
    An angular velocity sensor drive circuit according to any one of claims 1 to 5,
    A drive electrode, a detection electrode, and a sensor unit having a vibration unit;
    An angular velocity sensor comprising:
  7.  角速度センサ部の振動部の振動を開始する振動開始区間に、振動開始信号を前記角速度センサ部の駆動電極へ出力するステップと、
     角速度を検出する角速度検出区間に、前記角速度センサ部の検出電極からの検出信号に基づいて生成した励振信号を前記駆動電極へ出力するステップと、
     前記角速度検出区間の前記検出信号又は前記励振信号の振幅又は振幅の変動量に基づいて、次の振動開始区間に前記駆動電極へ出力する振動開始信号の振幅、又は、時間、を変更するステップと、
     を備える角速度センサの駆動方法。
    Outputting a vibration start signal to the drive electrode of the angular velocity sensor unit in a vibration start section in which vibration of the vibration unit of the angular velocity sensor unit is started;
    Outputting an excitation signal generated based on a detection signal from a detection electrode of the angular velocity sensor unit to the drive electrode in an angular velocity detection section for detecting an angular velocity;
    Changing the amplitude or time of the vibration start signal to be output to the drive electrode in the next vibration start section based on the amplitude of the detection signal or the excitation signal in the angular velocity detection section or the variation amount of the amplitude; and ,
    An angular velocity sensor driving method comprising:
  8.  駆動電極を備えた錘部を駆動する角速度センサ駆動回路において、
     前記錘部を第1軸方向に振動させる第1駆動信号、前記錘部を第2軸方向に振動させる第2駆動信号及び前記錘部の前記第1軸方向の振動を静定する第1静定信号を生成して前記駆動電極へ出力する信号生成回路と、
     前記第2軸方向の角速度の検出から前記第1軸方向の角速度の検出までの区間において、前記信号生成回路から前記第1駆動信号が前記駆動電極に出力される第1発振区間を設定し、前記第1発振区間の後に前記錘部を自由に振動させる第1自由区間を設定し、前記第1自由区間の後に前記信号生成回路から前記第1静定信号が前記駆動電極に出力される第1発振停止区間を設定し、前記第1発振停止区間の直後に前記信号生成回路から前記第2駆動信号が前記駆動電極に出力される第2発振区間を設定する制御回路と、
     を備える角速度センサ駆動回路。
    In the angular velocity sensor drive circuit for driving the weight portion provided with the drive electrode,
    A first driving signal that vibrates the weight portion in the first axis direction, a second driving signal that vibrates the weight portion in the second axis direction, and a first static that stabilizes the vibration of the weight portion in the first axis direction. A signal generation circuit that generates a constant signal and outputs the constant signal to the drive electrode;
    In a section from detection of the angular velocity in the second axis direction to detection of the angular velocity in the first axis direction, a first oscillation section in which the first drive signal is output from the signal generation circuit to the drive electrode is set. A first free section for freely vibrating the weight portion is set after the first oscillation section, and the first static signal is output from the signal generation circuit to the drive electrode after the first free section. A control circuit that sets one oscillation stop period and sets a second oscillation period in which the second drive signal is output from the signal generation circuit to the drive electrode immediately after the first oscillation stop period;
    An angular velocity sensor driving circuit comprising:
  9.  前記信号生成回路は、さらに、前記錘部の前記第2軸方向の振動を静定する第2静定信号を生成して前記駆動電極へ出力し、
     前記制御回路は、前記第2発振区間の後に前記錘部を自由振動させる第2自由区間を設定し、前記第2自由区間の後に前記信号生成回路から前記駆動電極に前記第2静定信号が出力される第2発振停止区間を設定し、前記第2発振停止区間の直後に前記第1発振区間を設定する
     請求項8に記載の角速度センサ駆動回路。
    The signal generation circuit further generates a second static signal for stabilizing the vibration of the weight portion in the second axis direction, and outputs the second static signal to the drive electrode.
    The control circuit sets a second free section in which the weight portion freely vibrates after the second oscillation section, and after the second free section, the second static signal is sent from the signal generation circuit to the drive electrode. The angular velocity sensor drive circuit according to claim 8, wherein an output second oscillation stop section is set, and the first oscillation section is set immediately after the second oscillation stop section.
  10.  前記第1駆動信号は、前記錘部に前記第1軸方向の振動を開始させる第1立上信号及び前記第1軸方向の振動を安定させる第1安定駆動信号を含み、前記第2駆動信号は、前記錘部に前記第2軸方向の振動を開始させる第2立上信号及び前記第2軸方向の振動を安定させる第2安定駆動信号を含み、
     前記制御回路は、前記第1発振区間において前記信号生成回路から前記第1立上信号が前記駆動電極に出力される第1発振開始区間を設定し、前記第1発振開始区間の後に前記第1安定駆動信号が前記駆動電極に出力される第1安定発振区間を設定し、前記第2発振区間において前記信号生成回路から前記第2立上信号が前記駆動電極に出力される第2発振開始区間を設定し、前記第2発振開始区間の後に前記第2安定駆動信号が前記駆動電極に出力される第2安定発振区間を設定する
     請求項9に記載の角速度センサ駆動回路。
    The first drive signal includes a first rising signal for causing the weight portion to start vibration in the first axial direction, and a first stable drive signal for stabilizing the vibration in the first axial direction, and the second drive signal. Includes a second rising signal for causing the weight portion to start vibration in the second axial direction and a second stable drive signal for stabilizing the vibration in the second axial direction,
    The control circuit sets a first oscillation start period in which the first rising signal is output from the signal generation circuit to the drive electrode in the first oscillation period, and the first oscillation start period is followed by the first oscillation period. A first oscillation oscillation period in which a stable drive signal is output to the drive electrode is set, and a second oscillation start period in which the second rising signal is output from the signal generation circuit to the drive electrode in the second oscillation period. The angular velocity sensor drive circuit according to claim 9, wherein a second stable oscillation section in which the second stable drive signal is output to the drive electrode is set after the second oscillation start section.
  11.  前記制御回路は、前記第1発振停止区間の直後に前記第2発振開始区間を設定し、前記第2発振停止区間の直後に前記第1発振開始区間を設定する請求項10に記載の角速度センサ駆動回路。 The angular velocity sensor according to claim 10, wherein the control circuit sets the second oscillation start period immediately after the first oscillation stop period and sets the first oscillation start period immediately after the second oscillation stop period. Driving circuit.
  12.  請求項1から請求項4のいずれか1項に記載の角速度センサ駆動回路と、
     前記角速度センサ駆動回路によって駆動信号が供給される前記駆動電極と、前記駆動信号によって振動する前記錘部及び前記錘部の振動によって出力される検出信号を出力する検出電極を備える角速度センサと、
     前記検出電極から出力される前記検出信号から角速度を検出する角速度検出回路と、
     を備える角速度検出センサ装置。
    The angular velocity sensor drive circuit according to any one of claims 1 to 4,
    An angular velocity sensor comprising: the drive electrode to which a drive signal is supplied by the angular velocity sensor drive circuit; the weight portion that vibrates according to the drive signal; and a detection electrode that outputs a detection signal output by vibration of the weight portion;
    An angular velocity detection circuit for detecting an angular velocity from the detection signal output from the detection electrode;
    An angular velocity detection sensor device comprising:
  13.  錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、
     前記錘部を第1軸方向に振動させる第1発振区間に第2軸方向の角速度を検出し、
     前記第1発振区間の後の第1自由区間に、前記錘部を自由振動させ、
     前記第1自由区間の後の前記錘部の前記第1軸方向の振動を静定する第1発振停止区間に、前記錘部の前記第1軸方向の振動を静定し、
     前記第1発振停止区間の直後の前記錘部を前記第2軸方向に振動させる第2発振区間に、前記第1軸方向の角速度を検出する角速度センサの駆動方法。
    An angular velocity sensor driving method for driving an angular velocity sensor having a weight portion,
    Detecting an angular velocity in the second axis direction in a first oscillation section that vibrates the weight portion in the first axis direction;
    In the first free section after the first oscillation section, the weight portion is allowed to freely vibrate,
    In the first oscillation stop section for stabilizing the vibration in the first axial direction of the weight portion after the first free section, the vibration in the first axial direction of the weight portion is stabilized.
    An angular velocity sensor driving method for detecting an angular velocity in the first axis direction in a second oscillation interval in which the weight portion immediately after the first oscillation stop interval is vibrated in the second axis direction.
  14.  駆動電極を備えた錘部を有する角速度センサを駆動する角速度センサ駆動方法であり、
     前記錘部を第1軸方向に振動させる第1発振区間に第1駆動信号を前記駆動電極へ出力し、
     前記第1発振区間の後の第1自由区間は、前記駆動電極に一定電圧を供給する又は前記駆動電極をフローティング状態とし、
     前記第1自由区間の後の第1発振停止区間に、前記錘部の前記第1軸方向の振動を静定する第1静定信号を前記駆動電極へ出力し、
     前記第1発振停止区間の直後の第2発振区間に、前記錘部を第2軸方向に振動させる第2駆動信号を前記駆動電極へ出力する
     角速度センサの駆動方法。
    An angular velocity sensor driving method for driving an angular velocity sensor having a weight portion provided with a drive electrode,
    Outputting a first drive signal to the drive electrode in a first oscillation section that vibrates the weight portion in a first axis direction;
    The first free section after the first oscillation section supplies a constant voltage to the drive electrode or sets the drive electrode in a floating state,
    In a first oscillation stop section after the first free section, a first static signal for stabilizing the vibration in the first axial direction of the weight portion is output to the drive electrode,
    A method for driving an angular velocity sensor, wherein a second drive signal for causing the weight portion to vibrate in a second axis direction is output to the drive electrode in a second oscillation section immediately after the first oscillation stop section.
PCT/JP2015/001693 2014-03-25 2015-03-25 Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device WO2015146165A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014062365 2014-03-25
JP2014-062365 2014-03-25
JP2014231420 2014-11-14
JP2014-231420 2014-11-14

Publications (1)

Publication Number Publication Date
WO2015146165A1 true WO2015146165A1 (en) 2015-10-01

Family

ID=54194709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001693 WO2015146165A1 (en) 2014-03-25 2015-03-25 Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device

Country Status (1)

Country Link
WO (1) WO2015146165A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174520A (en) * 2000-12-08 2002-06-21 Kinseki Ltd Oscillating circuit and angular velocity sensor using the same
JP2005308657A (en) * 2004-04-23 2005-11-04 Matsushita Electric Works Ltd Angular velocity sensor
JP2011038955A (en) * 2009-08-17 2011-02-24 Wacoh Corp Angular velocity sensor
JP2015090351A (en) * 2013-11-07 2015-05-11 セイコーエプソン株式会社 Detector, sensor, electronic apparatus and movable body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174520A (en) * 2000-12-08 2002-06-21 Kinseki Ltd Oscillating circuit and angular velocity sensor using the same
JP2005308657A (en) * 2004-04-23 2005-11-04 Matsushita Electric Works Ltd Angular velocity sensor
JP2011038955A (en) * 2009-08-17 2011-02-24 Wacoh Corp Angular velocity sensor
JP2015090351A (en) * 2013-11-07 2015-05-11 セイコーエプソン株式会社 Detector, sensor, electronic apparatus and movable body

Similar Documents

Publication Publication Date Title
US8026771B2 (en) Driver device, physical quantity measuring device, and electronic instrument
US8618889B2 (en) Oscillation drive device, physical quantity measurement device and electronic apparatus
CN101792107B (en) Variable capacitance electronic device and microelectromechanical device incorporating such electronic device
CN106052667B (en) Resonator and the system of Coriolis axis control, device, method in vibratory gyroscope
CN111947637B (en) Sensor for detecting a position of a body
EP3460397B1 (en) Driving circuit and method for a mems gyroscope and corresponding mems gyroscope
CN109073382B (en) Method and apparatus for demodulating gyroscope signals
US20160231119A1 (en) System comprising a mechanical resonator and method therefor
JP2008157926A (en) Drive unit, physical quantity measuring instrument, and electronic equipment
JP5348408B2 (en) Physical quantity detection device, physical quantity detection device abnormality diagnosis system, and physical quantity detection device abnormality diagnosis method
US10401171B2 (en) System comprising a mechanical resonator and method therefor
JP2018151200A (en) Vibration-type angular velocity sensor
KR101829027B1 (en) Method for optimizing the switch-on time of a coriolis gyroscope and coriolis gyroscope suitable therefor
WO2015146165A1 (en) Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device
JP2007511761A (en) Modulation method for mitigating signal crosstalk in electrostatic drives
US10566974B2 (en) Radiation-hard precision voltage reference
US11591209B2 (en) Method for operating a capacitive MEMS sensor, and capacitive MEMS sensor
JP2006329634A (en) Device for detecting angular velocity
JP5589171B2 (en) Circuit for physical quantity detection device
JP2008134216A (en) Drive unit, physical quantity measuring instrument, and electronic equipment
JP5320087B2 (en) Physical quantity detection device, physical quantity detection system, and zero point voltage adjustment method for physical quantity detection device
US11855653B2 (en) Physical quantity detection circuit, physical quantity sensor, and method of operation of physical quantity detection circuit
JP6602274B2 (en) Inertial detection device
US10466065B2 (en) Method and system for correcting driving amplitude of gyro sensor
JP6206113B2 (en) Vibrator drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15770006

Country of ref document: EP

Kind code of ref document: A1