[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015144956A1 - Device for generating electricity from wave energy - Google Patents

Device for generating electricity from wave energy Download PDF

Info

Publication number
WO2015144956A1
WO2015144956A1 PCT/ES2015/070209 ES2015070209W WO2015144956A1 WO 2015144956 A1 WO2015144956 A1 WO 2015144956A1 ES 2015070209 W ES2015070209 W ES 2015070209W WO 2015144956 A1 WO2015144956 A1 WO 2015144956A1
Authority
WO
WIPO (PCT)
Prior art keywords
stern
bow
floating body
mass
pendulum
Prior art date
Application number
PCT/ES2015/070209
Other languages
Spanish (es)
French (fr)
Inventor
Alejandro GONZÁLEZ ANDREU
Alberto PIZA SEÑAS
Enrique MUÑOZ ARJONA
Francisco Javier MARÍN RODRÍGUEZ
Remy Pascal
Ángel MARTÍN - BEJARANO SÁNCHEZ
Cristina RODRÍGUEZ BORDALLO
Alejandro Torres Molina
Antonio CAMPOS MARÍN
Antonio Luis RUIZ MONTERO
Francisco MONTERO CHACÓN
Franciso Javier MARÍN RODRÍGUEZ
César VIDAL PASCUAL
Raúl GUANCHE GARCÍA
Original Assignee
Abengoa Seapower, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Seapower, S.A. filed Critical Abengoa Seapower, S.A.
Publication of WO2015144956A1 publication Critical patent/WO2015144956A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/44Movement of component one element moving inside another one, e.g. wave-operated member (wom) moving inside another member (rem)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention falls within! field of marine electricity generating devices and, particularly, in the field of electric power generating devices from wave energy.
  • Electric power generating devices from wave energy use the energy inherent in waves in seas and oceans to generate electricity. Contrary to tidal devices do not take advantage of the energy difference between low tide and high tide, but the continuous movement of sea waves.
  • inertial devices such as those described in patent documents US8289365B2 (Clemenf et al.), US2013 / 033039A1 (Gordilio) and US2010 / 01 1539A1 (Paakinen), such as the WELLO PENGUIN device of the Finnish firm WELLO OY and the SEAREV device, both inertial devices with solid internal masses, or devices with reference mass constituted of water such as devices such as the so-called UGEN described in "Fonseca, N. , & Pessoa, J. (2013). Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column. Applied Ocean Research, 40, 60-73.
  • wave devices extract energy from the waves by damping the movement of the device excited by the waves.
  • a kinetic reference is needed in order to obtain a relative movement between this body and a second body.
  • Inertial devices usually refer to a category of wave device that uses the energy generated by the damping of the relative movement between the main body of the device and an internal mass associated with the device that acts as an inertial reference.
  • This mass can be a solid or a liquid, and energy can be used to generate electricity or other products to be exported (desalinated water in the case of the DUCK device).
  • AND! document PT105388B relating to the aforementioned UGEN device describes a device provided with a chamber with a water column for producing energy, and mention is made of a specific geometry of the floating body, this being described as asymmetric. Thanks to this geometry, the floating device allows coupling with drift and pitch movements.
  • a floating body with a stern, a bow, a bottom bottom that extends between the stern and bow, a width, an interior space and an upper base that extends between the stern and bow and a defined length between a foreground transverse that, seen in profile, passes through a rear end point at an intermediate height of the stern, as well as a second transverse piano that passes through a front end point in an upper part of the bow;
  • a mass inertia! selected between solid inertial masses and masses inertia! is liquid, and combinations of such masses, housed in the interior space of the floating body so that it is capable of maintaining an inertial position inside the floating body when performing oscillating movements in response to sea waves;
  • a power extraction system connected to an electricity generating system mounted on the floating body, capable of generating electrical energy from relative movements between the inertial mass and the float device;
  • At least one anchoring device connectable to a anchoring system that allows the floating body to keep its bow facing the waves and prevents translation of the floating body beyond a distance of a predetermined anchoring position;
  • the stern comprises an outer face that has a convex contour in the form of a surface of a first segment of rectangular transverse cylinder extending between opposite sides of the stern;
  • the external face of the stern comprises a lower convex section and an upper convex section which, seen in lateral profile, are joined at the rear end point at the intermediate height of the stern and extend from there each in the direction of the bow;
  • the bow comprises an external face having a surface-shaped convex contour of a second segment of rectangular transverse cylinder extending between opposite sides of the bow;
  • the outer face of the bow extends between the front part of the lower section and, seen in lateral profile, the front end point at the top of the bow; the external face of the stern and the external face of the bow extend between a lower piano and a coplanar upper plane with the upper base of the floating body; the outer face of the stern extends along a first arc of at least 180 ° and the external face of the bow extends along a second arc of at most 90 °,
  • the mass inertia! located in the interior space of the floating body can represent between 20% and 40% by weight of the volume of seawater displaced by the device generator.
  • the geometry of the floating body maximizes the pitching movements, while ensuring longitudinal stability and minimizing the generation of waves caused by the floating body, so that the dissipation of energy inherent in the waves is reduced and the energy is maximized of the waves transmitted to the inertial mass
  • the shape of the stern minimizes the resistance to the longitudinal oscillation of the floating body, minimizing the generation of waves radiated by the ship.
  • the closed shape of the floating body allows the essential components to be accommodated in its interior space, which allows to reduce the effect of corrosion caused by the marine environment.
  • the anchoring system is designed to allow an anchoring of the floating body at the bottom of the sea.
  • the anchoring system is adapted so that the floating body maintains its position while limiting as little as possible its ability to convert wave energy into movement of altered, balancing and pitching, that is, the floating body is anchored at the bottom of the sea , but with freedom of movement.
  • the anchor what is to avoid is excessive movement or displacement of the device in the plane (translations greater than 3 meters).
  • the inertial mass acts as a reference so that, when the floating body moves in pitch, a relative movement is generated between the reference mass and the floating body. Energy is extracted from this relative movement and converted into electricity.
  • this comprises three flexible linear elements, such as chains or ends, whose upper ends are connected to a common anchoring device located at the point of rotation of the floating body, and whose lower ends are subject to each other.
  • anchoring blocks such as concrete blocks, arranged at the bottom of the sea in radial positions spaced apart from 120 °.
  • the stern of the floating device has a maximum longitudinal extension between said first transverse piano and a third transverse piano that passes through a first intermediate point that delimits the bottom bottom in front of the stern of the floating body and a second intermediate point that delimits the back of the upper base in front of the stern.
  • the upper base of the floating body extends between the third transverse plane and the second transverse piano.
  • the bow has a maximum longitudinal extension between the second transverse plane and a fourth transverse plane that passes through a third intermediate point that delimits the bottom bottom in front of the bow and a fourth intermediate point that delimits the upper base in front of the bow.
  • the bottom bottom has a defined length between the third and the fourth transverse piano.
  • the longitudinal extension of the bow can be between 80% and 150% greater, preferably between 90% and 120% greater, and more preferably 100% greater, than the maximum longitudinal extension of the stern, while the length
  • the bottom bottom may be between 80% and 30% smaller, preferably between 60% and 40% less, and more preferably 50% smaller, than the maximum longitudinal extension of the stern.
  • the lower convex section of the stern's outer face may have a height greater than the upper convex section or, alternatively, a height smaller than the upper convex section. This allows the convex sections of the outer face of the stern to be asymmetrical with respect to their shapes.
  • the lower convex section of the external side of the stern has a height equal to the upper convex section, which leads to a symmetrical shape of the convex sections of the external face of the stern.
  • the external side of the stern has a semicircular longitudinal section with a first radius corresponding to the maximum longitudinal extension of the stern and the external face of the bow has a longitudinal section of a quarter-quarter segment. circle defined by a second corresponding radius a! a maximum longitudinal extension of the bow.
  • the first radius is less long than the second radius, while the length of the bottom bottom is less than the first radius.
  • Ri is e! first radius
  • R2 is ef second radius
  • d is the length of! bottom bottom
  • L is the length
  • n is a real number greater than or equal to 1 and less than 4.
  • the length of the bottom bottom is shorter, preferably 50% shorter, than the first radius.
  • the solid inertial mass comprises at least one main pendulum connected to a transverse axis arranged in the interior space of the floating body. This transverse axis is in turn connected to the power extraction system.
  • the inertia mass! it can comprise two main pendulums of equal masses, or a main pendulum and at least one additional pendulum of greater or lesser mass than the main pendulum.
  • the main pendulum can be arranged between at least one pair of additional pendulums, which guarantees the transverse stability of the device, arranged in the interior space of the floating body, each of the additional pendulums connected to a individual transverse axis connected in turn to the power extraction system.
  • Each pendulum of each pair of additional pendulums can have a mass less or greater than the main pendulum that will be established according to the resonance period that is to be achieved, that is, for small masses resonances will be achieved at large frequencies and for large masses will be achieved a resonance at smaller frequencies.
  • each additional pendulum of a pair may be arranged next to one of the additional pendulums closest to the main pendulum.
  • each pendulum can be connected to an individual axis, or some or all of the pendulums can share a common axis. In another embodiment some pendulums may be connected in group to a common axis and others in another group to another common axis or to individual axes. Each axis can be individually connected to its own electricity generator, or some or all axes can be connected to one or more shared electricity generators.
  • the inertial mass comprises a single main pendulum free to move in any degree of freedom and connected to the power extraction system, by means of a converter mechanism, so that the single main pendulum transmits the movements of the floating body caused by waves to the converter mechanism.
  • the inertial mass can also comprise at least one complementary pendulum connected to a longitudinal axis arranged in the interior space of the floating body.
  • the power extraction system may be electro-mechanical, such as an electro-mechanical system with a rotation axis of the electricity generator perpendicular to the oscillation axis of the pendulum in which case the oscillation axis is physically connected to the generating device, or a hydraulic system, such as a hydraulic system in which the rotation axis of the electricity generator is jointly and severally connected to a hydraulic pump, preferably of oil, connected on the one hand to the oscillation axis of the pendulum and, on the other, to a motor hydraulic.
  • the oscillating movement of the floating body due to the waves causes the pendulum to move, whose axis activates the electro-mechanical generator or the hydraulic pump.
  • electric power is produced directly
  • the hydraulic fluid would be pumped to a hydraulic motor of the electricity generator.
  • the generated electrical energy is poured into the network through a cable that connects the device to the mainland power grid.
  • the center of gravity of the pendulum be as far as possible from the center of gravity of the ship. Because the center of gravity of the pendulum is a constant variable over time, the only variable that can be modified is the center of gravity of! ship.
  • the liquid inertial mass comprises a mass of liquid confined in at least one tank module with an annular closed circuit comprising an underpass and an overpass as well as a rear passage and a forward passage through from which the underpass and the overpass communicate.
  • the mass of the liquid forms a column leaving the underpass completely filled and partially the front and back passage are completely filled.
  • the overpass will be filled with gas along with the parts of the front and rear pass that do not contain liquid.
  • the annular circuit extends longitudinally in the interior space of the floating body between the stern and the bow, which allows the mass of liquid to move in the annular closed circuit towards the stern or towards the bow of the floating body , depending on the oscillating movements made by the floating body in response to sea waves.
  • the power extraction system may comprise at least one turbine selected from pneumatic turbines arranged in pneumatic connection with an overpass of the annular closed circuit that is filled with gas, hydraulic turbines arranged in hydraulic connection with an underpass of the annular closed circuit, and combinations of such turbines.
  • the electricity generator can be located inside or outside the closed circuit.
  • an arrangement can be used in which two or more annular closed circuits share the turbine. This can be done by connecting the overpasses of said circuits through a conduit and introducing the turbine into that conduit.
  • a plurality of tank modules when, according to this other particular embodiment, a plurality of tank modules is provided, at least one of them may contain a mass of water greater than the mass of water contained in other tank modules, so that the The volume of water mass contained in each tank module is adapted to a particular type of swell whose waves cause oscillating movements of the floating body.
  • a membrane or plate In the case of pneumatic turbines, it is convenient that the liquid does not come into contact with the pneumatic turbine, so to avoid this problem a membrane or plate could be coupled between the liquid and the gas.
  • the pneumatic connection may comprise a pneumatic connection system selected between individual pneumatic connection systems that connect a tank module with a single individual pneumatic turbine, common pneumatic connection systems that connect several tank modules with a shared pneumatic turbine, and combinations of Such pneumatic connection systems.
  • the hydraulic connection may comprise a hydraulic connection system selected from individual hydraulic connection systems that connect a tank module with a single individual hydraulic turbine, shared hydraulic connection systems that connect several tank modules with a shared hydraulic turbine , and combinations of such hydraulic connection systems.
  • the height at which the liquid column has to reach in the annular closed circuit depends on the draft of the floating body, that is, the part of the floating body submerged in seawater.
  • the draft influences the total weight of the generating device and the location of its center of gravity.
  • the draft depends on the height of the wave. For small waves, smaller than 4 m, the draft must be greater than the operating draft (10 m in a preferred embodiment), being lower for the opposite case (heights of waves greater than 4 m).
  • the shape of the floating body and the distribution of the weights of the generating device are designed to maximize pitching movement over a wider range of incident wave periods. Additionally, the ability to extract energy from the device to convert the energy from the incident wave can Be controlled in multiple ways.
  • the distribution of weights in the floating body can be altered to adapt to the typical period of the sea state.
  • at least one chamber with ballast water is added to modify the center of gravity of the floating body.
  • the inertia of the inertial mass can be regulated to vary its resonance periods.
  • this can be achieved, for example, by varying the radius of inertia of the pendulum of its connecting element to its oscillation axis. In this way this length can vary, for example, depending on the type of sea.
  • a low peak period such as the Mediterranean Sea
  • the interaction between the floating body and the pendulum can be maximized, increasing the length of the radius of the pendulum, while in seas with a period of High peak (Tp> 1 1 sg), such as the Pacific Ocean, the length of the pendulum can be reduced to maximize that interaction between the floating body and the pendulum.
  • the gas pressure inside the annular closed circuit can be regulated, to adapt the characteristics of the turbines to the hydrodynamic needs of the generating device, for which valves can be arranged to regulate the gas pressure in the circuit.
  • the gas pressure in the circuit is the atmospheric pressure, but it could be given some pressure to extract more energy (the higher the pressure, the more energy can be obtained from the turbine). This pressure increase has to reach a balance with the size of the device.
  • the generating device according to the present invention is very versatile in terms of the use of wave energy for the generation of electrical energy.
  • this allows, based on the external geometry of its floating body, to capture energy, by choosing the arrangement of its inertial mass in parallel or perpendicular to the direction of the waves, the device being able to absorb most of the degrees of freedom, such as forward movement in the direction of the waves corresponding to the X axis in the coordinate system, altered corresponding to the Z axis in the coordinate system, pitch corresponding to rotations with respect to the X axis, and balancing corresponding to rotations with respect to the Y axis, perpendicular to the direction of the waves.
  • Figure 1 is a schematic profile view showing the external geometry of a first embodiment of the floating body of a device according to the invention.
  • Figure 2 is a schematic rear perspective view of the floating body shown in Figure 1, inside which a first embodiment of an inertial mass is arranged.
  • Figure 3 is a schematic rear perspective view of the floating body shown in Figure 1, in which a second embodiment of an inertial mass is arranged.
  • Figure 4 is a schematic view in longitudinal section of the illustrated floating body in figure 2
  • Figure 5 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a third embodiment of an inertial mass is arranged.
  • Figure 6 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a fourth embodiment of an inertial mass is arranged,
  • Figure 7 is a schematic sectional view along the line l-l that can be seen in Figure 6.
  • Figure 8 is a schematic sectional view along the line ⁇ - ⁇ that can be seen in Figure 8.
  • Figures 9A-9C show a sequence of movements of the floating body shown in Figure 1 floating in waves of the sea.
  • Figure 10 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a fifth embodiment of an inertial mass is arranged.
  • Figure 1 1 is a schematic view in iongitudinal section of the floating body illustrated in Figure 1, in which a sixth embodiment of an inertial mass is arranged.
  • Figure 12 is a side plan view of an embodiment of the mooring system for the floating body illustrated in Figure 1.
  • the floating body -1 - shown in Figures 1 to 3 comprises an interior space -1 a-, an upper base -1 b, a stern -2-, a bow -3-, and a lower bottom -4- which extends between the stern -2- and the bow -3-, AND! floating body has a siora -L- defined between a transverse foreground! - ⁇ - vertical that passes through a rear end point - ⁇ - at an intermediate height of the stern -2-, as well as a second transverse plane -PT 2 - vertical that passes through a front end point -PED- at the top from the bow -3-,
  • the floating body -1- has a uniform width -A- along its length -L-.
  • the stern -2- is defined longitudinally between the first transverse plane -PTi- and a third transverse plane -PT3- vertical that passes through a first intermediate point -PI 1 - which delimits the rear part of the bottom bottom -4- of the stern -2- and by a second intermediate point -Pl 2 - which delimits the rear part of the upper base -1 b- in front of the stern - 2-.
  • the upper base -1 b- of the floating body -1- extends between this third transverse piano -PT3- and the mentioned second transverse plane -PT2-.
  • the bow -3- is defined longitudinally between the second transverse plane -PT 2 - and a fourth transverse piano -PT 4 - vertical that passes through a third intermediate point -PI3- that separates the front part of the bottom bottom - 4- from the bow -3- and by a fourth intermediate point -Pl 4 - which separates the upper base -1 b- from the floating body - 1- from the bow -3-.
  • the bottom bottom -4- has a length -d- defined between the third -PT3- and the fourth transverse plane -PT 4 -.
  • the stern -2- comprises an outer face -5- which has a convex contour in the form of a surface of a first segment of rectangular transverse cylinder that extends between opposite sides of the stern -2-, and which has a lower convex section - 5a- and an upper convex section -5b-.
  • the bow -3- comprises an outer face - 6- which has a convex contour in the form of a surface of a second segment of rectangular rectangular cylinder that extends between opposite sides of the stern -2-, and which also has a lower convex section -6a- and an upper convex section - 6b-.
  • the lower convex sections -5a, 6a-and the convex sections upper -5b, 8b- extend between a lower plane -Pl- coplanar with the bottom -4- of the floating body -1 - and an upper plane -PS- coplanar with the upper base -1 b- of the floating body -1 - .
  • the lower convex section -5a- of the outer face -5- of the stern -2- extends from the first transverse plane - ⁇ - downwards in the direction of the third transverse plane -PT 3 - until joining the bottom -4- of the floating body -1 -, while the upper convex section -5b- of the external face -5- of the stern -2- extends from the first transverse piano -PTi- upwards towards the third transverse plane -PT 3 - until joining the upper base -1 b- of the floating body -1 -.
  • the first circular cylinder segment corresponding to the outer face -5- of the stern -2- has a semicircular section with a first radius -R1 -, and extends in correspondence with a first arc of a first angle- ⁇ - 180 °.
  • the lower convex section -6a- of the outer face -8- of the bow -3- extends-, starting from the bottom bottom -4-, from the fourth vertical plane -PT 4 -upwards towards the base upper -1 b- of the floating body -1 - moving away from the bottom bottom -4-, while the upper convex section -6b- of the outer face -8- of the bow -3- extends from the lower convex section -6a - until reaching the second transverse plane -PT 2 - at the height of the upper plane -PS- of the floating body -1 -.
  • the second arc is defined between the upper plane -PS- and the fourth transverse plane -PT4-.
  • the second circular cylinder segment corresponding to the outer face -8- of the bow -3- has a quarter circle section with a second radius R2, and extends in correspondence with a second arc with a second angle - ⁇ - of 90 °,
  • the angles - ⁇ , ⁇ - of the respective convex contours of the external face -5- of the stern -2- and of the bow -3- total a total of 270 °.
  • the width -A- of the floating body -1 - is determined based on the energy to be absorbed. If the wave front is larger, a wider width is convenient for greater energy extraction. The width -A- will also give stability to the floating body -1 -.
  • the total length L of the floating body -1 - can be, for a preferred case of the invention, between 20m and 40m, while the permissible width -A- could be at least 15 m for a length of 40 m.
  • n 2
  • n 2
  • Figures 2 and 4 show an embodiment of! generating device, in which the inertial mass is formed by a set of pendulums -7, 7a, 7b- arranged in the interior space -1 a- of the floating body -1-, These figures show (like figures 5- 8 and 10-12) the floating body -1 - floating in a resting state on the surface -S- of! seawater.
  • the set of pendulums -7, 7a, 7b- comprises a main pendulum -7- of greater mass, a first pair of additional pendulums -7a- of medium mass and arranged on both sides of the central pendulum -7-, as well as a second pair of additional pendulums - 7b- of reduced mass and arranged on respective sides of the first pair of the second additional pendulums -7a-.
  • the pendulums -7, 7a, 7b- are connected through individual rods -8- to respective individual transverse axes -9- mounted on the floating body -1-,
  • the pendulums -7, 7a, 7b- are connected to the same transverse energy extraction line or to the same turbine in the case of cameras.
  • the pendulums -7, 7a, 7b- are arranged in such a way that the center of gravity of the device is at the point that allows the relative velocity between the pendulum -7, 7a, 7b- and the floating body -1- to be as much as possible For this, it is necessary that the center of gravity of the mass of each pendulum -7, 7a, 7b- be as far away from the center of gravity of the floating device -1-.
  • the center of gravity of the pendulums -7, 7a, 7b- is a constant variable over time, the only possible variable that can be modified is the center of gravity of the floating body -1-. It is possible to modify the center of gravity of the floating body -1- in a conventional way, by means of a change of liquid ballast, for example water, through hydraulic pumps (not shown in the figures) mounted on the floating body -1 - for this purpose.
  • This ballast can comprise water chambers (not shown in the figures).
  • the pitching of the floating body -1- due to the incident waves causes relative movements between the pendulum -7, 7a, 7b-, and its transverse axis -9-. These relative movements are used to drive, for example, an electro-mechanical generator that produces electric power directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to an electricity generator (not shown in the figures).
  • the adaptation to the wave brake incident on the floating body of the generating device occurs depending on the number of pendulums -7, 7a, 7b- and the size of each of them, in order to allow a maximum of power of the pendulum assembly -7, 7a, 7b-.
  • FIGs 3 to 8 show an embodiment of the generating device, in which the inertial mass is formed by a mass of liquid -10-, such as seawater, fresh water or other type of liquid, confined in three tank modules - 1 1- independent.
  • Each tank module -1 1- comprises an annular closed circuit with an underpass -1 1 a-, an overpass -1 1 b- that are connected to each other by a rear passage -1 1 c- and a forward passage - 1 1 d-.
  • the mass of liquid -10- is contained in the lower passage -1 1 a- and up to a liquid level -10a- in the lateral rear-1 1 c- and forward -1 1 d- side steps, due to the effect of ⁇ The communicating vessels.
  • the steps ⁇ atera ⁇ es -1 1 c- and the upper step -1 1 b- are filled with a gas, such as air.
  • a gas such as air.
  • the transition elbows between the respective steps -1 1 a, 1 1 b, 1 1 c, 1 1 ⁇ are preferably rounded to reduce flow losses, although they can be bevel bevels.
  • a pneumatic turbine -12- connected to an electric generator is intercalated in an intermediate part of overpass -1 1 b- in a plane normal to the main direction of the swell.
  • the pneumatic turbine -12- limits the movement of the gas displaced by the liquid -10- caused by the swell incident on the floating body -1-.
  • a hydraulic turbine -13- connected to an electricity generator is interspersed in an intermediate part of the underpass - 1 1 a- in a plane normal to the main direction of the swell.
  • the hydraulic turbine -13- limits the movement of the liquid -10- with respect to the annular closed circuit, caused by the swell incident on the floating body -1-.
  • Tank modules -1 1- can be designed to have different sizes to accommodate different volumes of water masses in their closed circuits -10-, In this way and analogously to what is described above with reference to Figures 2 and 4, it allows each water body -10- to act in a different optimal way depending on the wave train that arrives. Not all bodies of water will be optimal for the same wave, but as a whole they will achieve an optimum for the use of the energy of all the incident waves in the floating body -1-
  • Pneumatic turbine systems -12- are especially useful in rough seas and, therefore, very energetic with greater swell frequency, while hydraulic turbine systems -13- are especially useful in quieter and therefore less seas Energetic with less frequency of waves, since the hydraulic turbines -13- require lower flow velocity of the water masses -1 1- than the pneumatic turbines -12-.
  • Figures 9A-9C illustrate three stages of the pitching movement of the float body -1- against the swell that moves in the direction of the arrow with white fill shown in both these figures and in Figures 4-8, 8 and 10-12 .
  • Figure 10 shows another embodiment of the generating device comprising, in addition to the pendulums -7, 7a, 7b- described above with reference to Figures 2 and 4, a complementary pendulum -T- connected through its rod -8'- to a longitudinal axis -9'-.
  • this complementary pendulum -7'- is to take advantage of the balancing movements of the floating body -1- for the generation of electrical energy, for which its longitudinal axis -9'- can be connected, for example and in analogy to the above described with respect to the transverse axis -9-, for example to an electro-mechanical generator that produces electric power directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to a generator of electricity (not shown in the figures).
  • Figure 1 1 shows another embodiment of the generating device comprising a main pendulum -7 "- unique with a rod -8" connected to a conventional conversational device -9 "- which in turn is connected to, for example, a generator electromechanical that produces electricity directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to an electricity generator (not shown in the figures).
  • the single pendulum -7 "- is free to move in any degree of freedom and transmits the movements of the floating body -1- caused by the swell through its rod -8" - to the converter device -9 "- .
  • Figure 12 illustrates an embodiment of a funding system whereby the floating body -1- is anchored at the bottom -F- of the sea.
  • the anchoring system comprises three flexible linear elements -14-, such as chains or ends, whose upper ends are connected to a common anchoring device -15- located at the point of rotation of the floating body -1-, and whose lower ends are subject to two anchoring blocks -16-, such as concrete blocks, arranged at the bottom -F- in radial positions spaced apart from each other at 120 °.
  • Figure 12 also shows an electrical cable -17- through which the electrical energy generated by the electricity generator is transmitted, in a conventional manner, to an electrical network that connects to the ground.
  • the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average person skilled in the art (for example, as regards the choice of materials, dimensions, components, configuration, etc.), within what follows from the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Device for generating electricity from wave energy comprising a floating body (1) with an internal space (1a) containing an inertial mass (7, 7a, 7b, 7', 7'', 10) connected to a power extraction system and an anchoring device (15), in which the external face (5) of the stern (2) of the floating body has a convex shape in the form of the surface of a first transverse rectangular cylinder segment that extends between opposing sides of the stern (2), while the external face (6) of the bow (3) of same has a convex shape in the form of the surface of a second transverse rectangular cylinder segment that extends between opposing sides of the bow (3), the external face (5) of the stern (2) extending along a first arc (α) of at least 180° and the external face (6) of the bow (3) extending along a second arc (β) of no more than 90°.

Description

DISPOSITIVO GENERADOR DE ENERGIA ELECTRICA A PARTIR DE ENERGIA  ELECTRICAL ENERGY GENERATOR DEVICE FROM ENERGY
La presente invención se encuadra dentro de! campo de los dispositivos generadores de electricidad marinos y, particularmente, en el de los dispositivos generadores de energía eléctrica a partir de la energía undimotriz. ANTECEDENTES DE LA INVENCIÓN The present invention falls within! field of marine electricity generating devices and, particularly, in the field of electric power generating devices from wave energy. BACKGROUND OF THE INVENTION
Los dispositivos generadores de energía eléctrica a partir de la energía undimotriz aprovechan la energía inherente en el oleaje en mares y océanos para generar energía eléctrica. Contrariamente a los dispositivos mareomotrices no aprovechan la diferencia energética entre marea baja y marea alta, sino el movimiento continuo de las olas marinas. Electric power generating devices from wave energy use the energy inherent in waves in seas and oceans to generate electricity. Contrary to tidal devices do not take advantage of the energy difference between low tide and high tide, but the continuous movement of sea waves.
La investigación moderna sobre los medios de conversión del oleaje gravitacionai debido al viento empezó en 1974 con una publicación de Saíter (Saíter, S. H. (1974). Wave power. Naíure, 249(3), 720-724. doi: 10.1049/esej:20000303). En este artículo, se presenta un dispositivo llamado DUCK, Este es un dispositivo que convierte la energía undimotriz en movimiento rotativo de cabeceo. La energía es extraída del movimiento de cabeceo. Desde esta primera publicación, fueron concebidos un gran número de dispositivos de conversión de la energía undimotriz. Entre los dispositivos más relevantes pueden figuran el denominado PELAMIS descrito en "Yemm, R., Pizer, D., Retzler, C, & Henderson, R. (2012). Pelamis: experience from concept to connection. Phiiosophical Transactions of the Royal Society A: athematical, Physical and Engineering Sciences, 370(1959), 365-380. doi: 10.1098/rsta.201 1.0312", el dispositivo denominado OYSTER descrito en "Whíttaker, T. J., Coliier, D., Foiíey, M., Osterried, M., Henry, A,, & Crowley, M, (2007). The development of Oyster-A shallow water surging wave energy converter; Proceedings of the 7th European Wave and Tidal Energy Conference. Porto, Portugal", y las plantas tipo OWC descritas en "Heath, T. V. (2012). A review of oscillating water coíumns. Phiiosophical transactions. Series A, Maíhemaíical, physica!, and engineering sciences, 370(1959), 235-45. doi: 10.1098/rsta.201 1.0184. Existen otros muchos sistemas con diferentes niveles de desarrollo. Se pueden encontrar diferentes clasificaciones y tipos de tecnología en la publicación Faicáo, A. F. D. O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14(3), 899-918. doi: 10.1018/j.rser.2009.1 1.003". Modern research on the means of conversion of gravitational waves due to wind began in 1974 with a publication by Saíter (Saíter, SH (1974). Wave power. Naíure, 249 (3), 720-724. Doi: 10.1049 / esej: 20000303). In this article, a device called DUCK is presented. This is a device that converts wave energy into a rotary pitch movement. The energy is extracted from the pitching movement. Since this first publication, a large number of wave energy conversion devices were conceived. Among the most relevant devices are the so-called PELAMIS described in "Yemm, R., Pizer, D., Retzler, C, & Henderson, R. (2012). Pelamis: experience from concept to connection. Phiiosophical Transactions of the Royal Society A: athematical, Physical and Engineering Sciences, 370 (1959), 365-380. Doi: 10.1098 / rsta.201 1.0312 ", the device called OYSTER described in" Whíttaker, TJ, Coliier, D., Foiíey, M., Osterried , M., Henry, A ,, & Crowley, M, (2007). The development of Oyster-A shallow water surging wave energy converter; Proceedings of the 7th European Wave and Tidal Energy Conference. Porto, Portugal ", and plants type OWC described in "Heath, TV (2012). A review of oscillating water coíumns. Phiiosophical transactions. Series A, Maíhemaíical, physica !, and engineering sciences, 370 (1959), 235-45. doi: 10.1098 / rsta.201 1.0184. There are many other systems with different levels of development. Different classifications and types of technology can be found in the publication Faicáo, AFDO (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14 (3), 899-918. doi: 10.1018 / j.rser.2009.1 1.003 ".
Entre los dispositivos generadores de energía eléctrica a partir de la energía undímotriz existen dispositivos inerciales como los que se describen en los documentos de patente US8289365B2 (Clemenf et al.), US2013/033039A1 (Gordilio) y US2010/01 1539A1 (Paakinen), tales como el dispositivo WELLO PENGUIN de la firma finlandesa WELLO OY y el dispositivo SEAREV, ambos dispositivos inerciales con masas internas solidas, o los dispositivos con masa de referencia constituida de agua tal como son los dispositivos como el denominado UGEN descrito en "Fonseca, N., & Pessoa, J. (2013). Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column. Applied Ocean Research, 40, 60-73. doi: 10.1016/j.apor.2013.01 .002", en el documento PT105368B, y en la versión de desalinízación del dispositivo denominado DUCK descrito en "Sa!ter, S. H., Cruz, J., Lucas, J., & Pascal, R. (2007). Wave powered desalination; Proceedings of the International Conference on Integrated Sustainable Energy Resources in Arid Regíons. Abu Dhabi". Among the electric power generating devices from wave energy there are inertial devices such as those described in patent documents US8289365B2 (Clemenf et al.), US2013 / 033039A1 (Gordilio) and US2010 / 01 1539A1 (Paakinen), such such as the WELLO PENGUIN device of the Finnish firm WELLO OY and the SEAREV device, both inertial devices with solid internal masses, or devices with reference mass constituted of water such as devices such as the so-called UGEN described in "Fonseca, N. , & Pessoa, J. (2013). Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column. Applied Ocean Research, 40, 60-73. Doi: 10.1016 / j.apor. 2013.01 .002 ", in document PT105368B, and in the desalination version of the device called DUCK described in "Sa! ter, SH, Cruz, J., Lucas, J., & Pascal, R. (2007). Wave powered desalination; Proceedings of the International Conference on Inte grated Sustainable Energy Resources in Arid Regíons. Abu Dhabi. "
Convencionalmente, los dispositivos undimotrices extraen energía de las olas amortiguando el movimiento del dispositivo excitado por el oleaje. Para esto, se necesita una referencia cinética con el fin de obtener un movimiento relativo entre este cuerpo y un segundo cuerpo. Conventionally, wave devices extract energy from the waves by damping the movement of the device excited by the waves. For this, a kinetic reference is needed in order to obtain a relative movement between this body and a second body.
Los dispositivos inerciales suelen referirse a una categoría de dispositivo undimotriz que usa la energía generada por la amortiguación del movimiento relativo entre el cuerpo principal del dispositivo y una masa interna asociada al dispositivo que actúa como referencia inercial. Esta masa puede ser un sólido o un líquido, y se puede usar la energía para generar electricidad u otros productos a exportar (agua desalinizada en el caso del dispositivo DUCK). E! documento PT105388B relativo al dispositivo UGEN antes mencionado, describe un dispositivo dotado de una cámara con una columna de agua para producir energía, y se hace mención a una geometría específica del cuerpo flotante, describiéndose éste como asimétrico. Gracias a esta geometría el dispositivo flotante permite el acoplamiento con los movimientos de deriva y cabeceo. Inertial devices usually refer to a category of wave device that uses the energy generated by the damping of the relative movement between the main body of the device and an internal mass associated with the device that acts as an inertial reference. This mass can be a solid or a liquid, and energy can be used to generate electricity or other products to be exported (desalinated water in the case of the DUCK device). AND! document PT105388B relating to the aforementioned UGEN device, describes a device provided with a chamber with a water column for producing energy, and mention is made of a specific geometry of the floating body, this being described as asymmetric. Thanks to this geometry, the floating device allows coupling with drift and pitch movements.
El documento US20130033039A1 describe un dispositivo que utiliza el movimiento mecánico de un péndulo para la producción de energía. En este documento se mencionan las tres posibilidades de extracción de energía, mecánica, neumática e hidráulica, si bien no menciona la posibilidad de un dispositivo con la combinación de todos los métodos. Document US20130033039A1 describes a device that uses the mechanical movement of a pendulum for energy production. This document mentions the three possibilities of energy extraction, mechanical, pneumatic and hydraulic, although it does not mention the possibility of a device with the combination of all methods.
En la mayoría de los dispositivos actuales, el sistema de extracción de potencia (PTO - Power Take Off system) y los equipos auxiliares están en contacto con el medio marino. Esto incrementa las posibilidades de corrosión, incrementando de este modo el coste de la operación y del mantenimiento (O&M) del dispositivo. In most current devices, the power extraction system (PTO - Power Take Off system) and auxiliary equipment are in contact with the marine environment. This increases the chances of corrosion, thereby increasing the cost of operation and maintenance (O&M) of the device.
Por otra parte, el estado de la técnica presenta cuerpos flotantes cuya geometría externa es mejorabie en cuanto a la extracción de la potencia inherente en la energía undimotriz. On the other hand, the state of the art has floating bodies whose external geometry is improved in terms of extracting the power inherent in wave energy.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención tiene por objeto mejorar las cualidades de ios dispositivos undimotrices del estado de la técnica medíante un dispositivo generador de energía eléctrica a partir de energía undimotriz que comprende The object of the present invention is to improve the qualities of the wave devices of the state of the art by means of an electric power generating device from wave energy comprising
un cuerpo flotante con una popa, una proa, un fondo inferior que se extiende entre la popa y la proa, un ancho, un espacio interior y una base superior que se extiende entre la popa y la proa y una eslora definida entre un primer plano transversal que, visto de perfil, pasa por un punto extremo trasero a una altura intermedia de la popa, así como un segundo piano transversal que pasa por un punto extremo delantero en una parte superior de la proa;  a floating body with a stern, a bow, a bottom bottom that extends between the stern and bow, a width, an interior space and an upper base that extends between the stern and bow and a defined length between a foreground transverse that, seen in profile, passes through a rear end point at an intermediate height of the stern, as well as a second transverse piano that passes through a front end point in an upper part of the bow;
una masa inercia! seleccionada entre masas inerciaíes sólidas y masas inercia!es líquidas, y combinaciones de tales masas, alojada en el espacio interior del cuerpo flotante de manera que es susceptible de mantener una posición inercial en el interior del cuerpo flotante cuando realiza movimientos oscilantes en respuesta a olas marinas; a mass inertia! selected between solid inertial masses and masses inertia! is liquid, and combinations of such masses, housed in the interior space of the floating body so that it is capable of maintaining an inertial position inside the floating body when performing oscillating movements in response to sea waves;
un sistema de extracción de potencia conectado a un sistema generador de electricidad montado en el cuerpo flotante, susceptible de generar energía eléctrica a partir de movimientos relativos entre la masa inercial y el dispositivo flotador;  a power extraction system connected to an electricity generating system mounted on the floating body, capable of generating electrical energy from relative movements between the inertial mass and the float device;
al menos un dispositivo de anclaje conectable a un sistema de fondeo que permite que el cuerpo flotador mantenga su proa enfrentada a las olas y evita traslaciones del cuerpo flotador más allá de una distancia de una posición de fondeo predeterminada; en el que la popa comprende una cara externa que presenta un contorno convexo en forma de superficie de un primer segmento de cilindro rectangular transversal que se extiende entre lados opuestos de la popa;  at least one anchoring device connectable to a anchoring system that allows the floating body to keep its bow facing the waves and prevents translation of the floating body beyond a distance of a predetermined anchoring position; wherein the stern comprises an outer face that has a convex contour in the form of a surface of a first segment of rectangular transverse cylinder extending between opposite sides of the stern;
la cara externa de la popa comprende un tramo convexo inferior y un tramo convexo superior que, vista en perfil lateral, se unen en el punto extremo trasero a la altura intermedia de la popa y se extienden desde allí cada uno en dirección a la proa; la proa comprende una cara externa que presenta un contorno convexo en forma de superficie de un segundo segmento de cilindro rectangular transversal que se extiende entre lados opuestos de la proa;  the external face of the stern comprises a lower convex section and an upper convex section which, seen in lateral profile, are joined at the rear end point at the intermediate height of the stern and extend from there each in the direction of the bow; the bow comprises an external face having a surface-shaped convex contour of a second segment of rectangular transverse cylinder extending between opposite sides of the bow;
la cara externa de la proa se extiende entre la parte delantera del tramo inferior y, vista en perfil lateral, el punto extremo delantero en la parte superior de la proa; la cara externa de la popa y la cara externa de la proa se extienden entre un piano inferior y un plano superior coplanario con la base superior del cuerpo flotante; la cara externa de la popa se extiende a lo largo de un primer arco de al menos 180° y la cara externa de la proa se extiende a lo largo de un segundo arco de como máximo 90°,  the outer face of the bow extends between the front part of the lower section and, seen in lateral profile, the front end point at the top of the bow; the external face of the stern and the external face of the bow extend between a lower piano and a coplanar upper plane with the upper base of the floating body; the outer face of the stern extends along a first arc of at least 180 ° and the external face of the bow extends along a second arc of at most 90 °,
La masa inercia! localizada en el espacio interior del cuerpo flotante puede representar entre 20% y 40% en peso del volumen de agua marina desplazado por el dispositivo generador. The mass inertia! located in the interior space of the floating body can represent between 20% and 40% by weight of the volume of seawater displaced by the device generator.
Estas características permiten el movimiento del cuerpo flotante en cualquier grado de libertad. Particularmente, la geometría del cuerpo flotante maximiza ios movimientos de cabeceo, garantizando a la vez la estabilidad longitudinal y minimizando la generación de olas causadas por el cuerpo flotante, de manera que se reduce la disipación de energía inherente en las olas y se maximiza la energía de las olas transmitida a la masa inercial, La forma de la popa minimiza la resistencia a la oscilación longitudinal del cuerpo flotante, minimizando la generación de olas irradiadas por el barco. La forma cerrada del cuerpo flotante permite alojar a los componentes esenciales en su espacio interior, lo cual permite disminuir el efecto de corrosión provocada por el ambiente marino, El sistema de fondeo está diseñado para permitir un anclaje del cuerpo flotante al fondo del mar. El sistema de fondeo está adaptado para que el cuerpo flotante mantenga su posición a la vez que limite lo menos posible su capacidad de convertir la energía undimotriz en movimiento de alteada, balanceo y cabeceo, es decir, el cuerpo flotante queda anclado ai fondo del mar, pero contando con libertad de movimiento. Con el anclaje, lo que se trata de evitar es un excesivo movimiento o desplazamiento del dispositivo en el plano (traslaciones mayores a 3 metros). These characteristics allow the movement of the floating body in any degree of freedom. Particularly, the geometry of the floating body maximizes the pitching movements, while ensuring longitudinal stability and minimizing the generation of waves caused by the floating body, so that the dissipation of energy inherent in the waves is reduced and the energy is maximized of the waves transmitted to the inertial mass, The shape of the stern minimizes the resistance to the longitudinal oscillation of the floating body, minimizing the generation of waves radiated by the ship. The closed shape of the floating body allows the essential components to be accommodated in its interior space, which allows to reduce the effect of corrosion caused by the marine environment. The anchoring system is designed to allow an anchoring of the floating body at the bottom of the sea. The anchoring system is adapted so that the floating body maintains its position while limiting as little as possible its ability to convert wave energy into movement of altered, balancing and pitching, that is, the floating body is anchored at the bottom of the sea , but with freedom of movement. With the anchor, what is to avoid is excessive movement or displacement of the device in the plane (translations greater than 3 meters).
La masa inercial actúa como referencia de manera que, cuando el cuerpo flotante se mueve en cabeceo, se genera un movimiento relativo entre la masa de referencia y el cuerpo flotante. La energía se extrae de este movimiento relativo y se convierte en electricidad. The inertial mass acts as a reference so that, when the floating body moves in pitch, a relative movement is generated between the reference mass and the floating body. Energy is extracted from this relative movement and converted into electricity.
Según una realización del sistema de fondeo, este comprende tres elementos lineales flexibles, tales como cadenas o cabos, cuyos extremos superiores están conectados a un dispositivo de anclaje común localizado en el punto de rotación del cuerpo flotante, y cuyos extremos inferiores están sujetos a sendos bloques de fondeo, como por ejemplo bloques de hormigón, dispuestos en el fondo del mar en posiciones radiales distanciadas entre sí de 120°. En una realización de ia invención, la popa del dispositivo flotante presenta una extensión longitudinal máxima entre el mencionado primer piano transversal y un tercer piano transversal que pasa por un primer punto intermedio que delimita el fondo inferior frente a la popa del cuerpo flotante y por un segundo punto intermedio que delimita la parte trasera de ia base superior frente a la popa. La base superior del cuerpo flotante se extiende entre el tercer plano transversal y el segundo piano transversal. La proa presenta una extensión longitudinal máxima entre el segundo plano transversal y un cuarto plano transversal que pasa por un tercer punto intermedio que delimita el fondo inferior frente a ia proa y por un cuarto punto intermedio que delimita ia base superior frente a la proa. Por otra parte y según esta realización, el fondo inferior tiene una longitud definida entre el tercer y el cuarto piano transversal. According to an embodiment of the anchoring system, this comprises three flexible linear elements, such as chains or ends, whose upper ends are connected to a common anchoring device located at the point of rotation of the floating body, and whose lower ends are subject to each other. anchoring blocks, such as concrete blocks, arranged at the bottom of the sea in radial positions spaced apart from 120 °. In an embodiment of the invention, the stern of the floating device has a maximum longitudinal extension between said first transverse piano and a third transverse piano that passes through a first intermediate point that delimits the bottom bottom in front of the stern of the floating body and a second intermediate point that delimits the back of the upper base in front of the stern. The upper base of the floating body extends between the third transverse plane and the second transverse piano. The bow has a maximum longitudinal extension between the second transverse plane and a fourth transverse plane that passes through a third intermediate point that delimits the bottom bottom in front of the bow and a fourth intermediate point that delimits the upper base in front of the bow. On the other hand and according to this embodiment, the bottom bottom has a defined length between the third and the fourth transverse piano.
La extensión longitudinal de la proa puede ser entre un 80% y un 150% mayor, preferentemente entre un 90% y un 120% mayor, y más preferentemente un 100% mayor, que la extensión longitudinal máxima de la popa, mientras que ia longitud del fondo inferior puede ser entre un 80% y un 30% menor, preferentemente entre un 60% y un 40% menor, y más preferentemente un 50% menor, que la extensión longitudinal máxima de ia popa. The longitudinal extension of the bow can be between 80% and 150% greater, preferably between 90% and 120% greater, and more preferably 100% greater, than the maximum longitudinal extension of the stern, while the length The bottom bottom may be between 80% and 30% smaller, preferably between 60% and 40% less, and more preferably 50% smaller, than the maximum longitudinal extension of the stern.
El tramo convexo inferior de la cara externa de la popa puede tener una altura mayor que el tramo convexo superior o, alternativamente, una altura menor que el tramo convexo superior. Esto permite que los tramos convexos de ia cara externa de ia popa sean asimétricos entre sí en cuanto a sus formas. The lower convex section of the stern's outer face may have a height greater than the upper convex section or, alternatively, a height smaller than the upper convex section. This allows the convex sections of the outer face of the stern to be asymmetrical with respect to their shapes.
Preferentemente, el tramo convexo inferior de la cara externa de la popa tiene una altura igual que el tramo convexo superior, lo que lleva a una forma simétrica de los tramos convexos de ia cara externa de ia popa. En una realización preferente de la invención, la cara externa de la popa tiene una sección longitudinal semicircular con un primer radio correspondiente a la extensión longitudinal máxima de ia popa y la cara externa de la proa tiene una sección longitudinal de un segmento de un cuarto de círculo definido por un segundo radio correspondiente a !a extensión longitudinal máxima de la proa. A su vez, según esta realización, el primer radio es menos largo que el segundo radio, mientras que la longitud del fondo inferior es menor que el primer radio. Esta relación dimensional entre los radios y el fondo, que determina la geometría externa del cuerpo flotante, se puede representar mediante las siguientes ecuaciones: 2 = n*R1 d - R1/n Preferably, the lower convex section of the external side of the stern has a height equal to the upper convex section, which leads to a symmetrical shape of the convex sections of the external face of the stern. In a preferred embodiment of the invention, the external side of the stern has a semicircular longitudinal section with a first radius corresponding to the maximum longitudinal extension of the stern and the external face of the bow has a longitudinal section of a quarter-quarter segment. circle defined by a second corresponding radius a! a maximum longitudinal extension of the bow. In turn, according to this embodiment, the first radius is less long than the second radius, while the length of the bottom bottom is less than the first radius. This dimensional relationship between the radii and the bottom, which determines the external geometry of the floating body, can be represented by the following equations: 2 = n * R1 d - R1 / n
L-R2÷d÷R1 para 1<n<2 L- R1÷d÷R2*sin (aeos(1 -2/n)) para 4>n>2 L-R2 ÷ d ÷ R1 for 1 <n <2 L- R1 ÷ d ÷ R2 * sin (years (1 -2 / n)) for 4> n> 2
donde Ri es e! primer radio, R2 es ef segundo radio, d es ia longitud de! fondo inferior, L es la eslora y n es un número real mayor o igual que 1 y menor a 4. where Ri is e! first radius, R2 is ef second radius, d is the length of! bottom bottom, L is the length and n is a real number greater than or equal to 1 and less than 4.
Estas ecuaciones permiten calcular la geometría externa del cuerpo flotante a partir de cualquier valor de n y en base a un valor preestablecido de su eslora, su primer radio, su segundo radio o de la longitud de su fondo. Esta realización es particularmente ventajosa ya que maximiza los movimientos de cabeceo del barco, garantizando la estabilidad longitudinal y minimizando la generación de olas. Este fenómeno permite disipar energía no trasmitida al péndulo o columna de agua. La forma de la embarcación es tai que permite absorber la mayor cantidad de energía transmitida por el oleaje debido a su forma circular en ia proa, y la forma circular de la popa minimiza la resistencia a la oscilación del barco, minimizando la generación de olas irradiadas por el barco. La forma cerrada garantizará que los componentes queden dentro del recipiente o barco, disminuyendo el efecto de corrosión. Preferentemente, el primer radio es un 50% menos iargo que e! segundo radio. También preferentemente, These equations allow to calculate the external geometry of the floating body from any value of n and based on a preset value of its length, its first radius, its second radius or the length of its bottom. This embodiment is particularly advantageous since it maximizes the boat's pitching movements, guaranteeing longitudinal stability and minimizing the generation of waves. This phenomenon allows to dissipate energy not transmitted to the pendulum or water column. The shape of the boat is so that it can absorb the greatest amount of energy transmitted by the waves due to its circular shape on the bow, and the circular shape of the stern minimizes the resistance to the boat's oscillation, minimizing the generation of irradiated waves by the ship The closed shape will ensure that the components remain inside the vessel or vessel, reducing the corrosion effect. Preferably, the first radius is 50% less iargo than e! second radius Also preferably,
la longitud del fondo inferior es menor, preferentemente un 50% menor, que el primer radio. Esto valores correspondería a n=2 en las ecuaciones anteriormente indicadas. the length of the bottom bottom is shorter, preferably 50% shorter, than the first radius. These values would correspond to n = 2 in the equations indicated above.
En una realización particular de la invención, la masa inercial sólida comprende ai menos un péndulo principal conectado a un eje transversal dispuesto en el espacio interior del cuerpo flotante. Este eje transversal está a su vez conectado al sistema de extracción de potencia. In a particular embodiment of the invention, the solid inertial mass comprises at least one main pendulum connected to a transverse axis arranged in the interior space of the floating body. This transverse axis is in turn connected to the power extraction system.
Según una alternativa de esta realización particular, la masa inercia! puede comprender dos péndulos principales de masas iguales, o un péndulo principal y al menos un péndulo adicional de mayor o menor masa que el péndulo principal. According to an alternative of this particular embodiment, the inertia mass! it can comprise two main pendulums of equal masses, or a main pendulum and at least one additional pendulum of greater or lesser mass than the main pendulum.
Según otra alternativa de esta realización particular, el péndulo principal puede estar dispuesto entre ai menos una pareja de péndulos adicionales, lo que garantiza la estabilidad trasversal del dispositivo, dispuestos en el espacio interior del cuerpo flotante, cada uno de ios péndulos adicionales conectado a un eje transversal individual conectado a su vez al sistema de extracción de potencia. Cada péndulo de cada pareja de péndulos adicionales puede tener una masa menor o mayor que el péndulo principal que se establecerá según el periodo de resonancia que se quiera conseguir, es decir, para masas pequeñas se conseguirán resonancias a frecuencias grandes y para masas grandes se conseguirá una resonancia a frecuencias más pequeñas. Cuando están previstas varias parejas de péndulos adicionales, cada péndulo adicional de una pareja puede estar dispuesto al lado de uno de los péndulos adicionales más cercanos al péndulo principal. According to another alternative of this particular embodiment, the main pendulum can be arranged between at least one pair of additional pendulums, which guarantees the transverse stability of the device, arranged in the interior space of the floating body, each of the additional pendulums connected to a individual transverse axis connected in turn to the power extraction system. Each pendulum of each pair of additional pendulums can have a mass less or greater than the main pendulum that will be established according to the resonance period that is to be achieved, that is, for small masses resonances will be achieved at large frequencies and for large masses will be achieved a resonance at smaller frequencies. When several pairs of additional pendulums are provided, each additional pendulum of a pair may be arranged next to one of the additional pendulums closest to the main pendulum.
Cada péndulo puede estar conectado a un eje individual, o algunos o todos ios péndulos pueden compartir un eje común. En otra realización algunos péndulos pueden estar conectados en grupo a un eje común y otros en otro grupo a otro eje común o a sendos ejes individuales. Cada eje puede estar conectado individualmente a su propio generador de electricidad, o algunos o todos los ejes pueden estar conectados a uno o varios generadores de electricidad compartidos. Según otra realización particular la invención, la masa inercial comprende un péndulo principal único libre de moverse en cualquier grado de libertad y conectado ai sistema de extracción de potencia, mediante un mecanismo conversor, de manera que el péndulo principal único transmite los movimientos del cuerpo flotante causados por el oleaje al mecanismo conversor. Each pendulum can be connected to an individual axis, or some or all of the pendulums can share a common axis. In another embodiment some pendulums may be connected in group to a common axis and others in another group to another common axis or to individual axes. Each axis can be individually connected to its own electricity generator, or some or all axes can be connected to one or more shared electricity generators. According to another particular embodiment of the invention, the inertial mass comprises a single main pendulum free to move in any degree of freedom and connected to the power extraction system, by means of a converter mechanism, so that the single main pendulum transmits the movements of the floating body caused by waves to the converter mechanism.
Conforme la invención, la masa inercial también puede comprender al menos un péndulo complementario conectado a un eje longitudinal dispuesto en el espacio interior del cuerpo flotante. El sistema de extracción de potencia puede ser electro-mecánico, tal como un sistema electro-mecánico con un eje de rotación del generador de electricidad perpendicular al eje de oscilación del péndulo en cuyo caso el eje de oscilación está conectado físicamente al dispositivo generador, o un sistema hidráulico, tal como un sistema hidráulico en el que el eje de rotación del generador de electricidad está unido solidariamente a una bomba hidráulica, preferentemente de aceite, conectada por una parte al eje de oscilación del péndulo y, por otra, a un motor hidráulico. According to the invention, the inertial mass can also comprise at least one complementary pendulum connected to a longitudinal axis arranged in the interior space of the floating body. The power extraction system may be electro-mechanical, such as an electro-mechanical system with a rotation axis of the electricity generator perpendicular to the oscillation axis of the pendulum in which case the oscillation axis is physically connected to the generating device, or a hydraulic system, such as a hydraulic system in which the rotation axis of the electricity generator is jointly and severally connected to a hydraulic pump, preferably of oil, connected on the one hand to the oscillation axis of the pendulum and, on the other, to a motor hydraulic.
El movimiento oscilante del cuerpo flotante debido al oleaje provoca el movimiento del péndulo, cuyo eje activa el generador electro-mecánico o la bomba hidráulica. En el primer caso se produce energía eléctrica directamente, mientras que en segundo caso se bombearía el fluido hidráulico a un motor hidráulico del generador de electricidad. En ambos casos la energía eléctrica generada se vierte a red a través de un cable que conecta el dispositivo con la red eléctrica en tierra firme. Para que la velocidad relativa entre el péndulo y la embarcación sea la mayor posible, es conveniente que el centro de gravedad del péndulo esté lo más alejado posible del centro de gravedad del barco. Debido a que el centro de gravedad del péndulo es una variable constante en el tiempo, la única variable susceptible de ser modificable es el centro de gravedad de! barco. Esto puede conseguirse mediante un cambio de lastre a través de bombas especialmente incluidas en el dispositivo generador para este cometido. Este lastre puede comprender cámaras de agua de lastre. En otra realización particular de la invención, la masa inercial líquida comprende una masa de líquido confinada en al menos un módulo de tanque con un circuito cerrado anular que comprende un paso inferior y un paso superior así como un paso trasero y un paso delantero a través del que se comunican el paso inferior y el paso superior. La masa del líquido forma una columna dejando completamente lleno el paso inferior y parcialmente líenos el paso delantero y paso trasero. Del mismo modo, el paso superior quedará lleno de gas junto con las partes del paso delantero y trasero que no contengan líquido. Conforme a esta realización, el circuito anular se extiende longitudinalmente en el espacio interior del cuerpo flotante entre la popa y la proa, lo que permite que la masa de líquido se desplace en el circuito cerrado anular hacia la popa o hacia la proa del cuerpo flotante, en función a los movimientos oscilantes realizados por el cuerpo flotante en respuesta a olas marinas. El sistema de extracción de potencia puede comprender al menos una turbina seleccionada entre turbinas neumáticas dispuestas en conexión neumática con un paso superior del circuito cerrado anular que está relleno de gas, turbinas hidráulicas dispuestas en conexión hidráulica con un paso inferior del circuito cerrado anular, y combinaciones de tales turbinas. En el caso de ambos tipos de turbinas el generador de electricidad puede estar situado dentro o fuera del circuito cerrado. En el caso de la turbina neumática se puede utilizar una disposición en la que dos o más circuitos cerrados anulares compartan turbina. Esto se puede realizar conectando mediante un conducto los pasos superiores de dichos circuitos e introduciendo la turbina en ese conducto. The oscillating movement of the floating body due to the waves causes the pendulum to move, whose axis activates the electro-mechanical generator or the hydraulic pump. In the first case, electric power is produced directly, while in the second case the hydraulic fluid would be pumped to a hydraulic motor of the electricity generator. In both cases the generated electrical energy is poured into the network through a cable that connects the device to the mainland power grid. In order for the relative speed between the pendulum and the vessel to be as high as possible, it is desirable that the center of gravity of the pendulum be as far as possible from the center of gravity of the ship. Because the center of gravity of the pendulum is a constant variable over time, the only variable that can be modified is the center of gravity of! ship. This can be achieved by a change of ballast through pumps specially included in the generating device for this purpose. This ballast can comprise ballast water chambers. In another particular embodiment of the invention, the liquid inertial mass comprises a mass of liquid confined in at least one tank module with an annular closed circuit comprising an underpass and an overpass as well as a rear passage and a forward passage through from which the underpass and the overpass communicate. The mass of the liquid forms a column leaving the underpass completely filled and partially the front and back passage are completely filled. Similarly, the overpass will be filled with gas along with the parts of the front and rear pass that do not contain liquid. According to this embodiment, the annular circuit extends longitudinally in the interior space of the floating body between the stern and the bow, which allows the mass of liquid to move in the annular closed circuit towards the stern or towards the bow of the floating body , depending on the oscillating movements made by the floating body in response to sea waves. The power extraction system may comprise at least one turbine selected from pneumatic turbines arranged in pneumatic connection with an overpass of the annular closed circuit that is filled with gas, hydraulic turbines arranged in hydraulic connection with an underpass of the annular closed circuit, and combinations of such turbines. In the case of both types of turbines the electricity generator can be located inside or outside the closed circuit. In the case of the pneumatic turbine, an arrangement can be used in which two or more annular closed circuits share the turbine. This can be done by connecting the overpasses of said circuits through a conduit and introducing the turbine into that conduit.
Asimismo, cuando, según esta otra realización particular, está prevista una pluralidad de módulos de tanque, ai menos uno de ios mismos puede contener una masa de agua mayor que la masa de agua contenida en otros módulos de tanque, de manera que el volumen de la masa de agua contenida en cada módulo de tanque está adaptado a un tipo de oleaje particular cuyas olas provocan los movimientos oscilantes del cuerpo flotante. En el caso de las turbinas neumáticas, es conveniente que el líquido no entre en contacto con la turbina neumática, por lo que para evitar este problema se podría acoplar una membrana o placa entre el líquido y el gas. Also, when, according to this other particular embodiment, a plurality of tank modules is provided, at least one of them may contain a mass of water greater than the mass of water contained in other tank modules, so that the The volume of water mass contained in each tank module is adapted to a particular type of swell whose waves cause oscillating movements of the floating body. In the case of pneumatic turbines, it is convenient that the liquid does not come into contact with the pneumatic turbine, so to avoid this problem a membrane or plate could be coupled between the liquid and the gas.
La conexión neumática puede comprender un sistema de conexión neumática seleccionado entre sistemas de conexión neumática individuales que conectan un módulo de tanque con una sola turbina neumática individual, sistemas de conexión neumática comunes que conectan varios módulos de tanque con una turbina neumática compartida, y combinaciones de tales sistemas de conexión neumática. A su vez, la conexión hidráulica puede comprender un sistema de conexión hidráulica seleccionado entre sistemas de conexión hidráulica individuales que conectan un módulo de tanque con una sola turbina hidráulica individual, sistemas de conexión hidráulica compartidos que conectan varios módulos de tanque con una turbina hidráulica compartida, y combinaciones de tales sistemas de conexión hidráulica. La ubicación física de la distribución de masa líquida será aquella en la que el periodo de resonancia de la columna de agua coincida con la frecuencia de resonancia de máxima ocurrencia del emplazamiento donde se instale el dispositivo. Esto hace que en cada fase de ingeniería del dispositivo generador se tenga que realizar un diseño ajustado teniendo en cuenta el emplazamiento. Cuando el cuerpo flotante se mueve, el líquido esta forzado a moverse en la dirección opuesta, creando un corriente dentro del circuito cerrado anular, y desplazando el aire que cierra el circuito. The pneumatic connection may comprise a pneumatic connection system selected between individual pneumatic connection systems that connect a tank module with a single individual pneumatic turbine, common pneumatic connection systems that connect several tank modules with a shared pneumatic turbine, and combinations of Such pneumatic connection systems. In turn, the hydraulic connection may comprise a hydraulic connection system selected from individual hydraulic connection systems that connect a tank module with a single individual hydraulic turbine, shared hydraulic connection systems that connect several tank modules with a shared hydraulic turbine , and combinations of such hydraulic connection systems. The physical location of the liquid mass distribution will be that in which the resonance period of the water column coincides with the maximum resonance frequency of the location where the device is installed. This means that in each engineering phase of the generating device, an adjusted design must be carried out taking into account the location. When the floating body moves, the liquid is forced to move in the opposite direction, creating a current within the annular closed circuit, and displacing the air that closes the circuit.
La altura a la que tiene que llegar la columna de líquido en el circuito cerrado anular depende del calado del cuerpo flotante, es decir, la parte del cuerpo flotante sumergida en el agua de mar. El calado influye en el peso total del dispositivo generador y en la localización de su centro de gravedad. El calado depende de la altura de la ola. Para olas pequeñas, menores de 4 m, el calado tiene que ser mayor ai calado de operación (10 m en una realización preferente), siendo inferior para el caso contrario (alturas de olas mayores de 4 m). The height at which the liquid column has to reach in the annular closed circuit depends on the draft of the floating body, that is, the part of the floating body submerged in seawater. The draft influences the total weight of the generating device and the location of its center of gravity. The draft depends on the height of the wave. For small waves, smaller than 4 m, the draft must be greater than the operating draft (10 m in a preferred embodiment), being lower for the opposite case (heights of waves greater than 4 m).
La forma del cuerpo flotante y la distribución de los pesos del dispositivo generador están diseñadas para maxímízar el movimiento de cabeceo en un rango más amplio de periodos de oleaje incidente, Adicionalmente, la capacidad de extraer energía del dispositivo para convertir ia energía del oleaje incidente puede ser controlada de múltiples maneras. The shape of the floating body and the distribution of the weights of the generating device are designed to maximize pitching movement over a wider range of incident wave periods. Additionally, the ability to extract energy from the device to convert the energy from the incident wave can Be controlled in multiple ways.
Así, mediante el sistema de lastre anteriormente descrito la distribución de pesos en el cuerpo flotante puede ser alterada para adaptarse al periodo típico del estado de mar. Para ello se añade al menos una cámara con agua de lastre para modificar el centro de gravedad del cuerpo flotante. Thus, by means of the ballast system described above, the distribution of weights in the floating body can be altered to adapt to the typical period of the sea state. For this, at least one chamber with ballast water is added to modify the center of gravity of the floating body.
Asimismo, la inercia de la masa inercial puede ser regulada para variar sus periodos de resonancia. Also, the inertia of the inertial mass can be regulated to vary its resonance periods.
En el caso de una masa inercial sólida, esto se puede conseguir, por ejemplo, variando el radio de inercia del péndulo de su elemento de conexión a su eje de oscilación. De esta manera esta longitud puede variar, por ejemplo, según el tipo de mar. En mares con un periodo de pico bajo (Tp < 7 sg), como por ejemplo el mar Mediterráneo, se puede maximizar la interacción entre cuerpo flotante y el péndulo, incrementando la longitud del radio del péndulo, mientras que en mares con un periodo de pico alto (Tp > 1 1 sg), tales como el océano Pacífico, se puede reducir ia longitud del péndulo para maximizar esa interacción entre el cuerpo flotante y el péndulo. In the case of a solid inertial mass, this can be achieved, for example, by varying the radius of inertia of the pendulum of its connecting element to its oscillation axis. In this way this length can vary, for example, depending on the type of sea. In seas with a low peak period (Tp <7 sg), such as the Mediterranean Sea, the interaction between the floating body and the pendulum can be maximized, increasing the length of the radius of the pendulum, while in seas with a period of High peak (Tp> 1 1 sg), such as the Pacific Ocean, the length of the pendulum can be reduced to maximize that interaction between the floating body and the pendulum.
En el caso de una masa inercial líquida en un dispositivo generador en el que se emplean turbinas neumáticas, se puede regular la presión del gas en el interior del circuito cerrado anular, para adecuar las características de las turbinas a la necesidades hidrodinámicas del dispositivo generador, para lo cual pueden disponerse válvulas que permiten regular la presión de gas en el circuito. Normalmente la presión de gas en el circuito es la presión atmosférica, pero se le podría dar cierta presión para extraer mayor energía (a mayor presión mayor energía se puede obtener de ia turbina). Este aumento de presión tiene que llegar a un equilibrio con el tamaño del dispositivo. Como se puede deducir de lo anteriormente indicado, el dispositivo generador conforme a la presente invención es muy versátil en cuanto ai aprovechamiento de la energía undimotriz para la generación de energía eléctrica. Así, por una parte, éste permite, en base a la geometría externa de su cuerpo flotante, captar energía, mediante la elección de la disposición de su masa inercial en paralelo o perpendicularmente a la dirección de las olas, pudiendo el dispositivo absorber la mayoría de los grados de libertad, como por ejemplo movimientos de avance en dirección a las olas correspondiente al eje X en el sistema de coordenadas, alteada correspondiente al eje Z en el sistema de coordenadas, cabeceo correspondiente a rotaciones con respecto al eje X, y balanceo correspondientes a rotaciones con respecto ai eje Y, perpendicular a la dirección de las olas. In the case of a liquid inertial mass in a generating device in which pneumatic turbines are used, the gas pressure inside the annular closed circuit can be regulated, to adapt the characteristics of the turbines to the hydrodynamic needs of the generating device, for which valves can be arranged to regulate the gas pressure in the circuit. Normally the gas pressure in the circuit is the atmospheric pressure, but it could be given some pressure to extract more energy (the higher the pressure, the more energy can be obtained from the turbine). This pressure increase has to reach a balance with the size of the device. As can be deduced from the above, the generating device according to the present invention is very versatile in terms of the use of wave energy for the generation of electrical energy. Thus, on the one hand, this allows, based on the external geometry of its floating body, to capture energy, by choosing the arrangement of its inertial mass in parallel or perpendicular to the direction of the waves, the device being able to absorb most of the degrees of freedom, such as forward movement in the direction of the waves corresponding to the X axis in the coordinate system, altered corresponding to the Z axis in the coordinate system, pitch corresponding to rotations with respect to the X axis, and balancing corresponding to rotations with respect to the Y axis, perpendicular to the direction of the waves.
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description and in order to help a better understanding of the characteristics of the invention, according to an example of practical implementation thereof, a set of figures in which with character is accompanied as an integral part of the description Illustrative and not limiting, the following has been represented:
La figura 1 es una vista esquemática en perfil que muestra la geometría externa de una primera realización del cuerpo flotante de un dispositivo conforme a la invención. La figura 2 es una vista esquemática en perspectiva posterior del cuerpo flotante mostrado en la figura 1 , en cuyo interior está dispuesta una primera realización de una masa inercial. Figure 1 is a schematic profile view showing the external geometry of a first embodiment of the floating body of a device according to the invention. Figure 2 is a schematic rear perspective view of the floating body shown in Figure 1, inside which a first embodiment of an inertial mass is arranged.
La figura 3 es una vista esquemática en perspectiva posterior del cuerpo flotante mostrado en la figura 1 , en cuyo interior está dispuesta una segunda realización de una masa inercial. Figure 3 is a schematic rear perspective view of the floating body shown in Figure 1, in which a second embodiment of an inertial mass is arranged.
La figura 4 es una vista esquemática en sección longitudinal del cuerpo flotante ilustrado en la figura 2, Figure 4 is a schematic view in longitudinal section of the illustrated floating body in figure 2,
La figura 5 es una vista esquemática en sección longitudinal del cuerpo flotante ilustrado en la figura 1 , en cuyo interior está dispuesta una tercera realización de una masa inercial. Figure 5 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a third embodiment of an inertial mass is arranged.
La figura 6 es una vista esquemática en sección longitudinal del cuerpo flotante ilustrado en la figura 1 , en cuyo interior está dispuesta una cuarta realización de una masa inercial, Figure 6 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a fourth embodiment of an inertial mass is arranged,
La figura 7 es una vista esquemática en sección por la línea l-l que se puede apreciar en la figura 6. Figure 7 is a schematic sectional view along the line l-l that can be seen in Figure 6.
La figura 8 es una vista esquemática en sección por la línea Π-Π que se puede apreciar en la figura 8. Figure 8 is a schematic sectional view along the line Π-Π that can be seen in Figure 8.
Las figuras 9A - 9C muestran una secuencia de movimientos del cuerpo flotante mostrado en la figura 1 flotando en olas del mar. La figura 10 es una vista esquemática en sección longitudinal del cuerpo flotante ilustrado en la figura 1 , en cuyo interior está dispuesta una quinta realización de una masa inercial. Figures 9A-9C show a sequence of movements of the floating body shown in Figure 1 floating in waves of the sea. Figure 10 is a schematic view in longitudinal section of the floating body illustrated in Figure 1, in which a fifth embodiment of an inertial mass is arranged.
La figura 1 1 es una vista esquemática en sección iongitudinal del cuerpo flotante ilustrado en la figura 1 , en cuyo interior está dispuesta una sexta realización de una masa inercial. Figure 1 1 is a schematic view in iongitudinal section of the floating body illustrated in Figure 1, in which a sixth embodiment of an inertial mass is arranged.
La figura 12 es una vista en planta lateral de una realización del sistema de amarre para el cuerpo flotante ilustrado en la figura 1 . Figure 12 is a side plan view of an embodiment of the mooring system for the floating body illustrated in Figure 1.
Estas figuras comprenden signos de referencia que identifican ios siguientes elementos: 1 cuerpo flotante These figures include reference signs that identify the following elements: 1 floating body
1 a espacio interior  1st to inner space
1 b base superior 1 b upper base
2 popa  2 stern
3 proa  3 bow
4 fondo inferior  4 bottom bottom
5 cara externa de ¡a popa 5 external face from aft
5a tramo convexo inferior5th lower convex section
5b tramo convexo superior5b upper convex section
6 cara externa de ia proa6 external face of the bow
6a tramo convexo inferior6th lower convex section
6b tramo convexo superior6b upper convex section
7 péndulo principal7 main pendulum
7a péndulo adicional7th additional pendulum
7b péndulo adicional7b additional pendulum
T péndulo complementario péndulo principal únicoT complementary pendulum single main pendulum
8, 8', 8" vara 8, 8 ', 8 "wand
9 eje transversal 9 transverse axis
9' eje longitudinal  9 'longitudinal axis
9" dispositivo conversor 9 "converter device
10 masa de agua 10 body of water
10a nivel de la masa de agua 10th level of water body
1 1 módulo de tanque1 1 tank module
1 1 a paso inferior 1 1 at underpass
1 1 b paso superior  1 1 b overpass
1 1 c paso trasero  1 1 c rear step
1 1 d paso delantero  1 1 d front step
12 turbina neumática 12 pneumatic turbine
13 turbina hidráulica13 hydraulic turbine
14 elemento lineal elástico14 elastic linear element
15 dispositivo de anclaje15 anchoring device
16 bloque de fondeo 17 cable eléctrico 16 anchoring block 17 power cord
A ancho del cuerpo flotante Floating body width
d longitud del fondo inferior d bottom bottom length
F fondo marino  F seabed
L eslora del cuerpo flotante  L length of the floating body
O ola  Or wave
OI cresta de ola  OI wave crest
02 valle entre olas  02 valley between waves
Pl plano inferior  Lower plane pl
PED punto extremo delantero PE D front end point
PET punto extremo trasero PE T rear end point
Ph primer punto intermedio  Ph first intermediate point
PÍ2 segundo punto intermedio  PÍ2 second intermediate point
Pl3 tercer punto intermedio Pl 3 third intermediate point
PU cuarto punto intermedio  PU fourth intermediate point
PS plano superior  PS flat top
PTi primer plano transversal  PTi transverse foreground
PT2 segundo plano transversal PT 2 transversal background
PT3 tercer plano transversal PT 3 third transversal plane
PT4 cuarto plano transversal PT 4 fourth transverse plane
R1 primer radio  R1 first radio
R2 segundo radio  R2 second radius
S superficie del mar  S sea surface
α primer arco α first arc
β segundo arco β second arc
DESCRIPCIÓN DE MODOS DE REALIZACIÓN DE LA INVENCIÓN DESCRIPTION OF EMBODIMENTS OF THE INVENTION
El cuerpo flotante -1 - mostrado en las figuras 1 a 3 comprende un espacio interior -1 a-, una base superior -1 b,-una popa -2-, una proa -3-, y un fondo inferior -4- que se extiende entre la popa -2- y la proa -3-, E! cuerpo flotante tiene una esiora -L- definida entre un primer plano transversa! -ΡΤΊ- vertical que pasa por un punto extremo trasero -ΡΕτ- a una altura intermedia de la popa -2-, así como un segundo plano transversal -PT2- vertical que pasa por un punto extremo delantero -PED- en la parte superior de la proa -3-, El cuerpo flotante -1- tiene un ancho -A- uniforme a lo largo de su eslora -L-. The floating body -1 - shown in Figures 1 to 3 comprises an interior space -1 a-, an upper base -1 b, a stern -2-, a bow -3-, and a lower bottom -4- which extends between the stern -2- and the bow -3-, AND! floating body has a siora -L- defined between a transverse foreground! -ΡΤΊ- vertical that passes through a rear end point -ΡΕτ- at an intermediate height of the stern -2-, as well as a second transverse plane -PT 2 - vertical that passes through a front end point -PED- at the top from the bow -3-, The floating body -1- has a uniform width -A- along its length -L-.
La popa -2- está definida longitudinalmente entre el primer plano transversal -PTi- y un tercer plano transversal -PT3- vertical que pasa por un primer punto intermedio -PI1- que delimita la parte trasera del fondo inferior -4- de la popa -2- y por un segundo punto intermedio -Pl2- que delimita ia parte trasera de la base superior -1 b- frente a ia popa - 2-. La base superior -1 b- del cuerpo flotante -1- se extiende entre este tercer piano transversal -PT3- y el mencionado segundo plano transversal -PT2-. A su vez, la proa -3- está definida longitudinalmente entre el segundo plano transversal -PT2- y un cuarto piano transversal -PT4- vertical que pasa por un tercer punto intermedio -PI3- que separa ia parte delantera del fondo inferior -4- de la proa -3- y por un cuarto punto intermedio -Pl4- que separa la base superior -1 b- del cuerpo flotante - 1- de ia proa -3-. The stern -2- is defined longitudinally between the first transverse plane -PTi- and a third transverse plane -PT3- vertical that passes through a first intermediate point -PI 1 - which delimits the rear part of the bottom bottom -4- of the stern -2- and by a second intermediate point -Pl 2 - which delimits the rear part of the upper base -1 b- in front of the stern - 2-. The upper base -1 b- of the floating body -1- extends between this third transverse piano -PT3- and the mentioned second transverse plane -PT2-. In turn, the bow -3- is defined longitudinally between the second transverse plane -PT 2 - and a fourth transverse piano -PT 4 - vertical that passes through a third intermediate point -PI3- that separates the front part of the bottom bottom - 4- from the bow -3- and by a fourth intermediate point -Pl 4 - which separates the upper base -1 b- from the floating body - 1- from the bow -3-.
El fondo inferior -4- tiene una longitud -d- definida entre el tercer -PT3- y el cuarto plano transversal -PT4-. The bottom bottom -4- has a length -d- defined between the third -PT3- and the fourth transverse plane -PT 4 -.
La popa -2- comprende una cara externa -5- que presenta un contorno convexo en forma de superficie de un primer segmento de cilindro rectangular transversal que se extiende entre lados opuestos de la popa -2-, y que presenta un tramo convexo inferior -5a- y un tramo convexo superior -5b-. Por otra parte, ia proa -3- comprende una cara externa - 6- que presenta un contorno convexo en forma de superficie de un segundo segmento de cilindro rectangular transversal que se extiende entre lados opuestos de ia popa -2- , y que también presenta un tramo convexo inferior -6a- y un tramo convexo superior - 6b-. The stern -2- comprises an outer face -5- which has a convex contour in the form of a surface of a first segment of rectangular transverse cylinder that extends between opposite sides of the stern -2-, and which has a lower convex section - 5a- and an upper convex section -5b-. On the other hand, the bow -3- comprises an outer face - 6- which has a convex contour in the form of a surface of a second segment of rectangular rectangular cylinder that extends between opposite sides of the stern -2-, and which also has a lower convex section -6a- and an upper convex section - 6b-.
Como se puede apreciar, los tramos convexos inferiores -5a, 6a-y los tramos convexos superiores -5b, 8b- se extienden entre un plano inferior -Pl- coplanario con el fondo -4- del cuerpo flotante -1 - y un plano superior -PS- coplanario con ia base superior -1 b- del cuerpo flotante -1 -. El tramo convexo inferior -5a- de la cara externa -5- de la popa -2- se extiende desde el primer plano transversal -ΡΤΊ- hacia abajo en dirección ai tercer plano transversal -PT3- hasta unirse al fondo -4- del cuerpo flotante -1 -, mientras que el tramo convexo superior -5b- de la cara externa -5- de la popa -2- se extiende desde el primer piano transversal -PTi- hacia arriba en dirección al tercer plano transversal -PT3- hasta unirse a la base superior -1 b- del cuerpo flotante -1 -. De esta manera, el primer segmento de cilindro circular correspondiente a ia cara externa -5- de ia popa -2- tiene una sección semicircular con un primer radio -R1 -, y se extiende en correspondencia con un primer arco de un primer ángulo-α- de 180°. Así, el tramo convexo inferior -6a- de ia cara externa -8- de ia proa -3- se extiende-, partiendo del fondo inferior -4-, desde el cuarto plano vertical -PT4-hacia arriba en dirección a la base superior -1 b- del cuerpo flotante -1 - alejándose del fondo inferior -4- , mientras que el tramo convexo superior -6b- de la cara externa -8- de la proa -3- se extiende desde el tramo convexo inferior -6a- hasta llegar al segundo plano transversal -PT2- a ia altura del plano superior -PS- del cuerpo flotante -1 -. De esta manera, el segundo arco queda definido entre el plano superior -PS- y el cuarto plano transversal -PT4-. Con ello, el segundo segmento de cilindro circular correspondiente a la cara externa -8- de la proa -3- tiene sección de un cuarto de círculo con un segundo radio R2, y se extiende en correspondencia con un segundo arco con un segundo ángulo -β- de 90°, As you can see, the lower convex sections -5a, 6a-and the convex sections upper -5b, 8b- extend between a lower plane -Pl- coplanar with the bottom -4- of the floating body -1 - and an upper plane -PS- coplanar with the upper base -1 b- of the floating body -1 - . The lower convex section -5a- of the outer face -5- of the stern -2- extends from the first transverse plane -ΡΤΊ- downwards in the direction of the third transverse plane -PT 3 - until joining the bottom -4- of the floating body -1 -, while the upper convex section -5b- of the external face -5- of the stern -2- extends from the first transverse piano -PTi- upwards towards the third transverse plane -PT 3 - until joining the upper base -1 b- of the floating body -1 -. Thus, the first circular cylinder segment corresponding to the outer face -5- of the stern -2- has a semicircular section with a first radius -R1 -, and extends in correspondence with a first arc of a first angle- α- 180 °. Thus, the lower convex section -6a- of the outer face -8- of the bow -3- extends-, starting from the bottom bottom -4-, from the fourth vertical plane -PT 4 -upwards towards the base upper -1 b- of the floating body -1 - moving away from the bottom bottom -4-, while the upper convex section -6b- of the outer face -8- of the bow -3- extends from the lower convex section -6a - until reaching the second transverse plane -PT 2 - at the height of the upper plane -PS- of the floating body -1 -. In this way, the second arc is defined between the upper plane -PS- and the fourth transverse plane -PT4-. With this, the second circular cylinder segment corresponding to the outer face -8- of the bow -3- has a quarter circle section with a second radius R2, and extends in correspondence with a second arc with a second angle - β- of 90 °,
Los ángulos -α, β - de ios respectivos contornos convexos de la cara externa -5- de la popa -2- y de la proa -3- suman un total de 270°. La geometría externa de la realización del cuerpo flotante -1 - ilustrado en la figura 1 está definida por el primer radio -R1 -, el segundo radio -R2-, la longitud -d- del fondo inferior -4- y la eslora -L- relacionadas conforme a las ecuaciones ya anteriormente indicadas: 2 = n*R1 The angles -α, β - of the respective convex contours of the external face -5- of the stern -2- and of the bow -3- total a total of 270 °. The external geometry of the embodiment of the floating body -1 - illustrated in Figure 1 is defined by the first radius -R1 -, the second radius -R2-, the length -d- of the bottom bottom -4- and the length -L - related according to the equations already indicated above: 2 = n * R1
d ~ R1/n  d ~ R1 / n
L=R2÷d÷R1 para 1<n<2  L = R2 ÷ d ÷ R1 for 1 <n <2
L-R1÷d÷R2*(ssn (acos(1-2/n)) para 4>n>2 donde n es un número reaf mayor o igual a 1 y menor a 4.  L-R1 ÷ d ÷ R2 * (ssn (acos (1-2 / n)) for 4> n> 2 where n is a reaf number greater than or equal to 1 and less than 4.
El ancho -A- del cuerpo flotante -1 - se determina en función de la energía que se quiera absorber. Si el frente de ola es mayor es conveniente un ancho mayor para una mayor extracción de la energía. El ancho -A- dará también estabilidad al cuerpo flotante -1 -. The width -A- of the floating body -1 - is determined based on the energy to be absorbed. If the wave front is larger, a wider width is convenient for greater energy extraction. The width -A- will also give stability to the floating body -1 -.
La eslora total L del cuerpo flotante -1 - puede ser, para un caso preferente de la invención, entre 20m y 40m, mientras que el ancho -A- admisible podría ser como mínimo 15 m para una eslora de 40 m. The total length L of the floating body -1 - can be, for a preferred case of the invention, between 20m and 40m, while the permissible width -A- could be at least 15 m for a length of 40 m.
Preferentemente, n=2. Para calcular las dimensiones de ios radios R1 y R2 y de la longitud -d- del tramo inferior -4- según la realización de la figura 1 en la que n=2, para un cuerpo flotante con una eslora -L- es, por ejemplo, de 28 m, aplicando las ecuaciones antes indicadas, resulta lo siguiente: Preferably, n = 2. To calculate the dimensions of the radii R1 and R2 and the length -d- of the lower section -4- according to the embodiment of figure 1 in which n = 2, for a floating body with a length -L- is, by For example, of 28 m, applying the equations indicated above, the following results:
28m = 2*R1 + R1 /2 + R1→ 3,5R1 = 28 m→ R1 = 28/3, 5m→ R1 = 8m d = 8m/2→ d = 4m 28m = 2 * R1 + R1 / 2 + R1 → 3.5R1 = 28 m → R1 = 28/3, 5m → R1 = 8m d = 8m / 2 → d = 4m
R2 = 2*8m→ R2 = 16m R2 = 2 * 8m → R2 = 16m
Como se puede observar, las ecuaciones permiten calcular la geometría externa del cuerpo flotante -1 - a partir de cualquier valor de n y en base a un valor preestablecido de su eslora -L-, su primer radio -R1 -, su segundo radio -R2- o de la longitud -d- su fondo -4-. Las figuras 2 y 4 muestran una realización de! dispositivo generador, en la que la masa inercial está formada por un conjunto de péndulos -7, 7a, 7b- dispuestos en el espacio interior -1 a- del cuerpo flotante -1-, Estas figuras muestran (al igual que las figuras 5-8 y 10-12) el cuerpo flotante -1 - flotando en estado de reposo en la superficie -S- de! agua de mar. As you can see, the equations allow to calculate the external geometry of the floating body -1 - from any value of n and based on a preset value of its length -L-, its first radius -R1 -, its second radius -R2 - or of the length -d- its bottom -4-. Figures 2 and 4 show an embodiment of! generating device, in which the inertial mass is formed by a set of pendulums -7, 7a, 7b- arranged in the interior space -1 a- of the floating body -1-, These figures show (like figures 5- 8 and 10-12) the floating body -1 - floating in a resting state on the surface -S- of! seawater.
El conjunto de péndulos -7, 7a, 7b- comprende un péndulo -7- principal de mayor masa, una primera pareja de péndulos adicionales -7a- de masa media y dispuestos a ambos lados del péndulo central -7-, así como una segunda pareja de péndulos adicionales - 7b- de masa reducida y dispuestos en respectivos lados de la primera pareja de los segundos péndulos adicionales -7a-. Los péndulos -7, 7a, 7b- están conectados a través de sendas varas -8- a respectivos ejes transversales -9- individuales montados en el cuerpo flotante -1-, Cada eje transversal -9- está conectado, de manera en sí convencional, a un sistema de extracción de energía ("Power Take Off" = "PTO" - no mostrado en las figuras) para convertir energía cinética generada por desplazamientos relativos entre de ios péndulos -7, 7a, 7b- y el cuerpo flotante -1 - que provocan el movimiento en vaivén del eje transversal -9-, en energía propulsora para propulsar un generador de electricidad (no mostrado en las figuras), también de forma en sí convencional. Todos estos elementos se encuentran dentro del espacio interior -1 b- del cuerpo flotante -1-. Existe la posibilidad de que los péndulos -7, 7a, 7b- estén conectados a una misma línea transversal de extracción de energía o a la misma turbina en el caso de cámaras. Los péndulos -7, 7a, 7b- están dispuestos de tal manera que el centro de gravedad del dispositivo se encuentra en el punto que permite que la velocidad relativa entre el péndulo -7, 7a, 7b- y el cuerpo flotante -1- sea la mayor posible. Para ello es necesario que el centro de gravedad de la masa de cada péndulo -7, 7a, 7b- esté lo más alejado del centro de gravedad del dispositivo flotante -1-. Debido a que el centro de gravedad de los péndulos -7, 7a, 7b- es una variable constante en el tiempo, la única variable posible susceptible de ser modificable es el centro de gravedad del cuerpo flotante -1-. Se consigue modificar el centro de gravedad del cuerpo flotante -1- de manera en sí convencional, mediante un cambio de lastre líquido, por ejemplo agua, a través de bombas hidráulicas (no mostradas en las figuras) montadas en el cuerpo flotante -1 - para este cometido. Este lastre puede comprender cámaras de agua (no mostradas en las figuras). El cabeceo del cuerpo flotante -1- debido al oleaje incidente provoca movimientos relativos entre el péndulo -7, 7a, 7b-, y su eje transversal -9-. Estos movimientos relativos se usan para accionar, por ejemplo, un generador electro-mecánico que produce energía eléctrica directamente, o una bomba hidráulica que bombea aceite para propulsar un generador electro-mecánico, o un dispositivo multiplicador conectado a un generador de electricidad (no mostrados en las figuras). The set of pendulums -7, 7a, 7b- comprises a main pendulum -7- of greater mass, a first pair of additional pendulums -7a- of medium mass and arranged on both sides of the central pendulum -7-, as well as a second pair of additional pendulums - 7b- of reduced mass and arranged on respective sides of the first pair of the second additional pendulums -7a-. The pendulums -7, 7a, 7b- are connected through individual rods -8- to respective individual transverse axes -9- mounted on the floating body -1-, Each transverse axis -9- is connected, in a conventional way , to an energy extraction system ("Power Take Off" = "PTO" - not shown in the figures) to convert kinetic energy generated by relative displacements between the pendulums -7, 7a, 7b- and the floating body -1 - which cause the reciprocating movement of the transverse axis -9-, in propellant energy to propel an electricity generator (not shown in the figures), also in a conventional manner. All these elements are within the interior space -1 b- of the floating body -1-. There is a possibility that the pendulums -7, 7a, 7b- are connected to the same transverse energy extraction line or to the same turbine in the case of cameras. The pendulums -7, 7a, 7b- are arranged in such a way that the center of gravity of the device is at the point that allows the relative velocity between the pendulum -7, 7a, 7b- and the floating body -1- to be as much as possible For this, it is necessary that the center of gravity of the mass of each pendulum -7, 7a, 7b- be as far away from the center of gravity of the floating device -1-. Because the center of gravity of the pendulums -7, 7a, 7b- is a constant variable over time, the only possible variable that can be modified is the center of gravity of the floating body -1-. It is possible to modify the center of gravity of the floating body -1- in a conventional way, by means of a change of liquid ballast, for example water, through hydraulic pumps (not shown in the figures) mounted on the floating body -1 - for this purpose. This ballast can comprise water chambers (not shown in the figures). The pitching of the floating body -1- due to the incident waves causes relative movements between the pendulum -7, 7a, 7b-, and its transverse axis -9-. These relative movements are used to drive, for example, an electro-mechanical generator that produces electric power directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to an electricity generator (not shown in the figures).
Los diferentes tamaños de los péndulos -7, 7a, 7b-permiten que el de cada tamaño (mayor, medio, reducido) se adapte a los distintos estados de oleaje respondiendo a las distintas frecuencias de resonancia del mismo. Como regla, la adaptación al fren de olas incidente en el cuerpo flotante del dispositivo generador se produce en función del número de péndulos -7, 7a, 7b- y del tamaño de cada uno de ¡os mismos, a fin de permitir un máximo de potencia del conjunto de los péndulos -7, 7a, 7b-. The different sizes of the pendulums -7, 7a, 7b-allow that of each size (larger, medium, reduced) to adapt to the different wave states responding to the different resonance frequencies of the same. As a rule, the adaptation to the wave brake incident on the floating body of the generating device occurs depending on the number of pendulums -7, 7a, 7b- and the size of each of them, in order to allow a maximum of power of the pendulum assembly -7, 7a, 7b-.
Las figuras 3 a 8 muestran una realización del dispositivo generador, en la que la masa inercial está formada por una masa de líquido -10-, tal como agua de mar, agua dulce u otro tipo de líquido, confinada en tres módulos de tanque -1 1- independientes. Cada módulo de tanque -1 1- comprende un circuito cerrado anular con un paso inferior -1 1 a- , un paso superior -1 1 b- que están comunicados entre sí por un paso trasero -1 1 c- y un paso delantero -1 1 d-. La masa de líquido -10- está contenida en el paso inferior -1 1 a- y hasta un nivel de líquido -10a- en ¡os pasos laterales trasero-1 1 c- y delantero -1 1 d-, por efecto de ¡os vasos comunicantes. Encima del nivel de líquido -10a-, ios pasos ¡atera¡es -1 1 c- y e¡ paso superior -1 1 b- están rellenos de un gas, como por ejemplo aire. Los codos de transición entre ¡os respectivos pasos -1 1 a, 1 1 b, 1 1 c, 1 1 d~ son preferentemente redondeados para reducir perdidas de flujo, si bien pueden ser codos en chaflán. Figures 3 to 8 show an embodiment of the generating device, in which the inertial mass is formed by a mass of liquid -10-, such as seawater, fresh water or other type of liquid, confined in three tank modules - 1 1- independent. Each tank module -1 1- comprises an annular closed circuit with an underpass -1 1 a-, an overpass -1 1 b- that are connected to each other by a rear passage -1 1 c- and a forward passage - 1 1 d-. The mass of liquid -10- is contained in the lower passage -1 1 a- and up to a liquid level -10a- in the lateral rear-1 1 c- and forward -1 1 d- side steps, due to the effect of ¡ The communicating vessels. Above the liquid level -10a-, the steps ¡atera¡es -1 1 c- and the upper step -1 1 b- are filled with a gas, such as air. The transition elbows between the respective steps -1 1 a, 1 1 b, 1 1 c, 1 1 ~ are preferably rounded to reduce flow losses, although they can be bevel bevels.
De acuerdo con la realización ilustrada en ¡a figura 5, una turbina neumática -12- conectada a un generador de eiectricidad, está intercaiada en una parte intermedia de¡ paso superior -1 1 b- en un plano normal a la dirección principal del oleaje. La turbina neumática -12- limita el movimiento del gas desplazado por el líquido -10- provocado por el oleaje incidente en el cuerpo flotante -1-. Según la realización ilustrada en la figura 5, cuando, en respuesta a una ola incidente, la proa -3- del cuerpo flotador -1- se eleva respecto de su popa -2-, el nivel de líquido - 10a- ocupará progresivamente una proporción mayor del paso trasero -1 1 c- y una menor proporción del paso delantero -1 1 d-, de manera que el gas contenido entre el nivel de líquido -10a- en el paso trasero -1 1 c- y la turbina neumática -12- es comprimido para luego fluir bajo presión a través de la turbina neumática -12-, propulsándola, hacia el paso delantero -1 1 d~. Por otra parte, cuando, después de que haya pasado la ola y la proa -3- desciende hacia un valle entre olas y desciende respecto de la popa -2- del cuerpo flotante -1-, la masa de líquido -10- ocupará progresivamente una proporción mayor del paso delantero - 1 d- y una menor proporción del paso trasero -1 1 c-, de manera que el gas contenido entre el nivel de líquido -10a- y la turbina neumática -12- es comprimido para luego fluir bajo presión a través de la turbina neumática -12-, propulsando el aire para el movimiento del rotor y generar energía de esta manera, According to the embodiment illustrated in Figure 5, a pneumatic turbine -12- connected to an electric generator is intercalated in an intermediate part of overpass -1 1 b- in a plane normal to the main direction of the swell. The pneumatic turbine -12- limits the movement of the gas displaced by the liquid -10- caused by the swell incident on the floating body -1-. According to the embodiment illustrated in Figure 5, when, in response to an incident wave, the bow -3- of the float body -1- rises from its stern -2-, the liquid level - 10a- will progressively occupy a proportion greater than the rear passage -1 1 c- and a smaller proportion of the front passage -1 1 d-, so that the gas contained between the liquid level -10a- in the rear passage -1 1 c- and the pneumatic turbine - 12- is compressed to then flow under pressure through the pneumatic turbine -12-, propelling it, towards the forward passage -1 1 d ~. On the other hand, when, after the wave has passed and the bow -3- descends into a valley between waves and descends from the stern -2- of the floating body -1-, the mass of liquid -10- will progressively occupy a greater proportion of the front passage - 1 d- and a smaller proportion of the rear passage -1 1 c-, so that the gas contained between the liquid level -10a- and the pneumatic turbine -12- is compressed to then flow under pressure through the pneumatic turbine -12-, propelling the air for rotor movement and generating energy in this way,
En la realización ilustrada en la figura 8, una turbina hidráulica -13- conectada a un generador de electricidad, está intercalada en una parte intermedia del paso inferior - 1 1 a- en un plano normal a la dirección principal del oleaje. La turbina hidráulica -13- limita el movimiento del líquido -10- respecto del circuito cerrado anular, provocado por el oleaje incidente en el cuerpo flotante -1-. Según la realización ilustrada en la figura 6, cuando, en respuesta a una ola incidente, la proa -3- del cuerpo flotador -1- se eleva respecto de su popa -2-, el nivel de líquido - 10a- ocupará progresivamente una proporción mayor del paso trasero -1 1 c- y una menor proporción del paso delantero -1 1 d-, de manera que se produce un flujo de líquido a través de la turbina hidráulica -13-, produciendo el movimiento del rotor de la turbina para la generación de energía. Por otra parte, cuando, después de que haya pasado la ola y la proa -3- desciende hacia un valle entre olas y desciende respecto de la popa - 2- dei cuerpo flotante -1 -, la masa de líquido -10- ocupará progresivamente una proporción mayor del paso delantero - 1 d- y una menor proporción del paso trasero - 1 1 c-, de manera que se produce un flujo de líquido hacia el paso delantero -1 1 d- que propulsa la turbina hidráulica -13-. In the embodiment illustrated in Figure 8, a hydraulic turbine -13- connected to an electricity generator, is interspersed in an intermediate part of the underpass - 1 1 a- in a plane normal to the main direction of the swell. The hydraulic turbine -13- limits the movement of the liquid -10- with respect to the annular closed circuit, caused by the swell incident on the floating body -1-. According to the embodiment illustrated in Figure 6, when, in response to an incident wave, the bow -3- of the float body -1- rises from its stern -2-, the liquid level - 10a- will progressively occupy a proportion greater than the rear passage -1 1 c- and a smaller proportion of the forward passage -1 1 d-, so that a flow of liquid occurs through the hydraulic turbine -13-, producing the movement of the turbine rotor to Power generation On the other hand, when, after the wave has passed and the bow -3- descends into a valley between waves and descends with respect to the stern - 2- of the floating body -1 -, the mass of liquid -10- will progressively occupy a greater proportion of the front step - 1 d- and a smaller proportion of the rear step - 1 1 c-, so that there is a flow of liquid towards the forward passage -1 1 d- that propels the hydraulic turbine -13-.
Los módulos de tanque -1 1- pueden estar diseñados para tener tamaños distintos para alojar en sus circuitos cerrados distintos volúmenes de masas de agua -10-, De esta forma y análogamente a lo descrito anteriormente con referencia a las figuras 2 y 4, se permite que cada masa de agua -10- actúe de una manera óptima diferente según el tren de ola que llegue. No todas las masas de agua serán óptimas para una misma ola, pero en su conjunto conseguirán un óptimo para el aprovechamiento de la energía de todo el oleaje incidente en el cuerpo flotante -1- Tank modules -1 1- can be designed to have different sizes to accommodate different volumes of water masses in their closed circuits -10-, In this way and analogously to what is described above with reference to Figures 2 and 4, it allows each water body -10- to act in a different optimal way depending on the wave train that arrives. Not all bodies of water will be optimal for the same wave, but as a whole they will achieve an optimum for the use of the energy of all the incident waves in the floating body -1-
Los sistemas con turbina neumática -12- son especialmente útiles en mares revueltos y, por tante, muy energéticos con mayor frecuencia de oleaje, mientras que los sistemas con turbina hidráulica -13- son especialmente útiles en mares más tranquilos y, por tanto, menos energéticos con menor frecuencia de oleaje, ya que las turbinas hidráulicas -13- precisan menor velocidad de flujo de las masas de agua -1 1- que las turbinas neumáticas -12-. Pneumatic turbine systems -12- are especially useful in rough seas and, therefore, very energetic with greater swell frequency, while hydraulic turbine systems -13- are especially useful in quieter and therefore less seas Energetic with less frequency of waves, since the hydraulic turbines -13- require lower flow velocity of the water masses -1 1- than the pneumatic turbines -12-.
Las figuras 9A - 9C ilustran tres etapas del movimiento de cabeceo del cuerpo flotador -1- frente ai oleaje que se mueve en dirección de la flecha con relleno blanco mostrada tanto en estas figuras como en las figuras 4-8, 8 y 10-12. Figures 9A-9C illustrate three stages of the pitching movement of the float body -1- against the swell that moves in the direction of the arrow with white fill shown in both these figures and in Figures 4-8, 8 and 10-12 .
Así, en la figura 9A puede apreciarse que, cuando una ola -O- incide en el cuerpo flotante -1-, su proa -3- emerge del agua y queda en una posición elevada respecto de la popa -2-. Según va pasando la ola -O- a lo largo del cuerpo flotante -1-, la proa -3- vuelve a descender hasta nivelarse con la popa -2-, como muestra la figura 9B, cuando el cuerpo flotante -1- se encuentra en la cresta -OI - de la ola -O. A continuación, según la ola -O- va pasando por el cuerpo flotante -1-, su proa -3- desciende hacia un valle - 02- entre olas -O- y queda en una posición inferior respecto de su popa -2-, como muestra la figura 9C, y la proa -3- queda enfrentada a una nueva ola -O-, Debido a la geometría especifica del cuerpo flotador -1- anteriormente descrita, se maximizan los movimientos de cabeceo del cuerpo flotante -1-, garantizando su estabilidad longitudinal y minimizando la generación de olas de estela minimizando así la disipación de energía no trasmitida a la masa inercial. Thus, in Figure 9A it can be seen that, when a wave -O- hits the floating body -1-, its bow -3- emerges from the water and remains in an elevated position with respect to the stern -2-. As the wave passes -O- along the floating body -1-, the bow -3- descends again until leveling with the stern -2-, as shown in Figure 9B, when the floating body -1- is found on the crest -OI - of the wave -O. Then, according to the wave -O- goes through the floating body -1-, its bow -3- descends into a valley - 02- between waves -O- and is in a lower position with respect to its stern -2-, as Figure 9C shows, and the bow -3- is faced with a new wave -O-, Due to the specific geometry of the float body -1- previously described, the pitching movements of the floating body -1- are maximized, guaranteeing its longitudinal stability and minimizing the generation of wake waves thus minimizing energy dissipation not transmitted to the inertial mass.
La figura 10 muestra otra realización del dispositivo generador que comprende, adicionalmente a los péndulos -7, 7a, 7b- anteriormente descritos con referencia a las figuras 2 y 4, un péndulo complementario -T- conectado a través de su vara -8'- a un eje longitudinal -9'-. La función de este péndulo complementario -7'- es la de aprovechar los movimientos de balanceo del cuerpo flotante -1- para la generación de energía eléctrica , para lo cual su eje longitudinal -9'- puede estar conectado, por ejemplo y en analogía a lo anteriormente descrito con respecto al eje transversal -9-, por ejemplo a un generador electro-mecánico que produce energía eléctrica directamente, o una bomba hidráulica que bombea aceite para propulsar un generador electro-mecánico, o un dispositivo multiplicador conectado a un generador de electricidad (no mostrados en las figuras). La figura 1 1 muestra otra realización del dispositivo generador que comprende un péndulo principal -7"- único con una vara -8" conectado a un dispositivo conversar -9"- en sí convencional que a su vez está conectado a, por ejemplo un generador electromecánico que produce energía eléctrica directamente, o una bomba hidráulica que bombea aceite para propulsar un generador electro-mecánico, o un dispositivo multiplicador conectado a un generador de electricidad (no mostrados en las figuras). Figure 10 shows another embodiment of the generating device comprising, in addition to the pendulums -7, 7a, 7b- described above with reference to Figures 2 and 4, a complementary pendulum -T- connected through its rod -8'- to a longitudinal axis -9'-. The function of this complementary pendulum -7'- is to take advantage of the balancing movements of the floating body -1- for the generation of electrical energy, for which its longitudinal axis -9'- can be connected, for example and in analogy to the above described with respect to the transverse axis -9-, for example to an electro-mechanical generator that produces electric power directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to a generator of electricity (not shown in the figures). Figure 1 1 shows another embodiment of the generating device comprising a main pendulum -7 "- unique with a rod -8" connected to a conventional conversational device -9 "- which in turn is connected to, for example, a generator electromechanical that produces electricity directly, or a hydraulic pump that pumps oil to propel an electro-mechanical generator, or a multiplier device connected to an electricity generator (not shown in the figures).
Según la realización, el péndulo único -7"- es libre de moverse en cualquier grado de libertad y transmite los movimientos del cuerpo flotante -1- causados por el oleaje a través de su vara -8"- al dispositivo conversor -9"-. According to the embodiment, the single pendulum -7 "- is free to move in any degree of freedom and transmits the movements of the floating body -1- caused by the swell through its rod -8" - to the converter device -9 "- .
La figura 12 ilustra una realización de un sistema de fondeo mediante el que el cuerpo flotante -1- se ancla en el fondo -F- del mar. Según esta realización, el sistema de fondeo comprende tres elementos lineales flexibles -14-, tales como cadenas o cabos, cuyos extremos superiores están conectados a un dispositivo de anclaje -15- común localizado en el punto de rotación del cuerpo flotante -1-, y cuyos extremos inferiores están sujetos a sendos bloques de fondeo -16-, como por ejemplo bloques de hormigón, dispuestos en el fondo -F- en posiciones radiales distanciadas entre sí a 120°. La figura 12 también muestra un cable eléctrico -17- a través del cual la energía eléctrica generada por el generador de electricidad se transmite, de forma en sí convencional, a una red eléctrica que conecta con tierra. Figure 12 illustrates an embodiment of a funding system whereby the floating body -1- is anchored at the bottom -F- of the sea. According to this embodiment, the anchoring system comprises three flexible linear elements -14-, such as chains or ends, whose upper ends are connected to a common anchoring device -15- located at the point of rotation of the floating body -1-, and whose lower ends are subject to two anchoring blocks -16-, such as concrete blocks, arranged at the bottom -F- in radial positions spaced apart from each other at 120 °. Figure 12 also shows an electrical cable -17- through which the electrical energy generated by the electricity generator is transmitted, in a conventional manner, to an electrical network that connects to the ground.
En este texto, la palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma exciuyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc. In this text, the word "understand" and its variants (such as "understanding", etc.) should not be interpreted in an exciting way, that is, they do not exclude the possibility that what is described includes other elements, steps, etc.
Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito sino que abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro de lo que se desprende de las reivindicaciones. On the other hand, the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average person skilled in the art (for example, as regards the choice of materials, dimensions, components, configuration, etc.), within what follows from the claims.

Claims

REIVINDICACIONES
1.- Dispositivo generador de energía eléctrica a partir de energía undimotriz que comprende 1.- Electrical energy generating device from wave energy that includes
un cuerpo flotante (1 ) con una popa (2), una proa (3), un fondo inferior (4) que se extiende entre la popa (2) y la proa (3), un ancho (A), un espacio interior (1 a) y una base superior (1 b) que se extiende entre la popa (2) y la proa (3), y una eslora (L) definida entre un primer plano transversal (ΡΤΊ ) que, visto en perfil lateral, pasa por un punto extremo trasero (ΡΕτ) a una altura intermedia de la popa (2), así como un segundo piano transversal (PT2) que pasa por un punto extremo delantero (PED) en una parte superior de la proa (3); a floating body (1) with a stern (2), a bow (3), a lower bottom (4) that extends between the stern (2) and the bow (3), a width (A), an interior space (1 a) and an upper base (1 b) that extends between the stern (2) and the bow (3), and a length (L) defined between a first transverse plane (ΡΤΊ) that, seen in side profile, passes through a rear end point (ΡΕτ) at an intermediate height of the stern (2), as well as a second transverse plane (PT 2 ) that passes through a forward end point (PED) at an upper part of the bow (3) ;
una masa inercia! (7, 7a, 7b, 7', 7", 10) seleccionada entre masas inerciaies sólidas (7, 7a, 7b, 7', 7") y masas inerciaies líquidas (10), y combinaciones de tales masas, alojada en el especio interior (1 a) del cuerpo flotante (1 ), de manera que es susceptible de mantener una posición inercial en el interior del cuerpo flotante (1 ) cuando realiza movimientos oscilantes en respuesta a olas (O) marinas; an inertia mass! (7, 7a, 7b, 7', 7", 10) selected from solid inertial masses (7, 7a, 7b, 7', 7") and liquid inertial masses (10), and combinations of such masses, housed in the interior space (1 a) of the floating body (1), so that it is capable of maintaining an inertial position inside the floating body (1) when it makes oscillating movements in response to sea waves (O);
un sistema de extracción de potencia conectado a un sistema generador de electricidad montado en el cuerpo flotante (1 ), susceptible de generar energía eléctrica a partir de movimientos relativos entre la masa inercia! (7, 7a, 7b, 7', 7", 10) y ei dispositivo flotador (1 ); a power extraction system connected to an electricity generating system mounted on the floating body (1), capable of generating electrical energy from relative movements between the inertia mass! (7, 7a, 7b, 7', 7", 10) and the float device (1);
al menos un dispositivo de anclaje (15) conectable a un sistema de fondeo (14, 16) que permite que el cuerpo flotador (1 ) mantenga su proa (3) enfrentada a las olas (O) y evita traslaciones del cuerpo flotador (1 ) más allá de una distancia de una posición de fondeo predeterminada; at least one anchoring device (15) connectable to an anchoring system (14, 16) that allows the floating body (1) to keep its bow (3) facing the waves (O) and prevents translations of the floating body (1 ) beyond a distance from a predetermined anchoring position;
caracterizado porque characterized because
ia popa (2) comprende una cara externa (5) que presenta un contorno convexo en forma de superficie de un primer segmento de cilindro rectangular transversal que se extiende entre lados opuestos de la popa (2); The stern (2) comprises an external face (5) that has a convex contour in the form of the surface of a first transverse rectangular cylinder segment that extends between opposite sides of the stern (2);
ia cara externa (5) de !a popa (2) comprende un tramo convexo inferior (5a) y un tramo convexo superior (5b) que, vista en perfil lateral, se unen en el punto extremo trasero (ΡΕτ) a la altura intermedia de la popa (2) y se extienden desde allí cada uno en dirección a la proa (3); The external face (5) of the stern (2) comprises a lower convex section (5a) and an upper convex section (5b) which, seen in side profile, join at the rear end point (ΡΕτ) at the intermediate height from the stern (2) and extend from there each in the direction of the bow (3);
ia proa (3) comprende una cara externa (6) que presenta un contorno convexo en forma de superficie de un segundo segmento circular rectangular transversal que se extiende entre lados opuestos de la proa (3); The bow (3) comprises an external face (6) that has a convex contour in the form of a surface of a second transverse rectangular circular segment that extends between opposite sides of the bow (3);
ia cara externa (6) de la proa (3) se extiende, vista en perfil lateral, entre la parte delantera del tramo inferior (4) y el punto extremo delantero (PED) en la parte superior de la proa (3); The external face (6) of the bow (3) extends, seen in side profile, between the front part of the lower section (4) and the front end point (PED) at the top of the bow (3);
ia cara extema (5) de la popa (2) y ia cara extema (6) de la proa (3) se extienden entre un piano inferior (Pi) y un piano superior (PS) coplanario con la base superior (1 b) del cuerpo flotante (1 ); The outer face (5) of the stern (2) and the outer face (6) of the bow (3) extend between a lower plane (Pi) and an upper plane (PS) coplanar with the upper base (1 b) of the floating body (1);
la cara externa (5) de la popa (2) se extiende a lo largo de un primer arco (a) de ai menos 180° y la cara externa (8) de la proa (3) se extiende a lo largo de un segundo arco (β) de como máximo 90°. The external face (5) of the stern (2) extends along a first arc (a) of at least 180° and the external face (8) of the bow (3) extends along a second arc (β) of maximum 90°.
2. - Dispositivo, según la reivindicación 1 , caracterizado porque 2. - Device, according to claim 1, characterized in that
la popa (2) presenta una extensión longitudinal máxima entre el primer plano transversal (ΡΤΊ) y un tercer plano transversal (PT3) que pasa por un primer punto intermedio (P ) que delimita el fondo inferior (4) frente a la popa (2) y por un segundo punto intermedio (Pi2) que delimita la parte trasera de la base superior (1 b) frente a ia popa (2); The stern (2) has a maximum longitudinal extension between the first transverse plane (ΡΤΊ) and a third transverse plane (PT 3 ) that passes through a first intermediate point (P) that delimits the lower bottom (4) in front of the stern ( 2) and by a second intermediate point (Pi 2 ) that delimits the rear part of the upper base (1 b) in front of the stern (2);
la base superior (1 b) del cuerpo flotante (1 ) se extiende entre el tercer piano transversal (PT3) y el segundo plano transversal (PT2); the upper base (1 b) of the floating body (1) extends between the third transverse plane (PT 3 ) and the second transverse plane (PT 2 );
la proa (3) presenta una extensión longitudinal máxima entre el segundo plano transversal (PT2) y un cuarto plano transversal (PT4) que pasa por un tercer punto intermedio (Pl3) que delimita el fondo inferior (4) frente a ia proa (3) y por un cuarto punto intermedio (Pl4) que delimita ia base superior (1 b) frente a la proa (3); The bow (3) has a maximum longitudinal extension between the second transverse plane (PT 2 ) and a fourth transverse plane (PT 4 ) that passes through a third intermediate point (Pl 3 ) that delimits the lower bottom (4) in front of the bow (3) and by a fourth intermediate point (Pl 4 ) that delimits the upper base (1 b) in front of the bow (3);
el fondo inferior (4) tiene una longitud (d) definida entre el tercer (PT3) y el cuarto plano transversal (PT4). The lower bottom (4) has a length (d) defined between the third (PT 3 ) and the fourth transverse plane (PT 4 ).
3. - Dispositivo, según la reivindicación 2, caracterizado porque la extensión longitudinal de la proa (3) es entre un 80% y un 150% mayor, preferentemente entre un 90% y un 120% mayor, y más preferentemente un 100% mayor, que la extensión longitudinal máxima de ia popa (2). 3. - Device, according to claim 2, characterized in that the longitudinal extension of the bow (3) is between 80% and 150% greater, preferably between 90% and 120% greater, and more preferably 100% greater , than the maximum longitudinal extension of the stern (2).
4 - Dispositivo, según ia reivindicación 2 ó 3, caracterizado porque la longitud (d) del fondo inferior (4) es entre un 80% y un 30% menor, preferentemente entre un 60% y un 40% menor, y más preferentemente un 50% menor, que la extensión longitudinal máxima de ia popa (2). 4 - Device, according to claim 2 or 3, characterized in that the length (d) of the lower depth (4) is between 80% and 30% smaller, preferably between 60% and 40% smaller, and more preferably 50% smaller, than the maximum longitudinal extension of the stern (2).
5.- Dispositivo, según la reivindicación 2, 3 ó 4, caracterizado porque el tramo convexo inferior (5a) de la cara externa de la popa (2) tiene una altura seleccionada entre alturas mayores y alturas menores y una altura sustancialmente igual, que el tramo convexo superior (5b). 5.- Device, according to claim 2, 3 or 4, characterized in that the lower convex section (5a) of the external face of the stern (2) has a height selected between higher heights and lower heights and a substantially equal height, which the upper convex section (5b).
6.- Dispositivo, según la reivindicación 2, caracterizado porque 6.- Device, according to claim 2, characterized in that
la cara externa de ia popa (2) tiene una sección longitudinal semicircular con un primer radio (R1 ) correspondiente a la extensión longitudinal máxima de ia popa (2); la cara externa de la proa (3) tiene una sección longitudinal de un segmento de un cuarto de círculo definido por un segundo radio (R2) correspondiente a la extensión longitudinal máxima de la proa (3); The external face of the stern (2) has a semicircular longitudinal section with a first radius (R1) corresponding to the maximum longitudinal extension of the stern (2); the external face of the bow (3) has a longitudinal section of a segment of a quarter circle defined by a second radius (R2) corresponding to the maximum longitudinal extension of the bow (3);
el primer radio (R1 ) es menos largo, preferentemente el 50% menos largo, que el segundo radio (R2), the first spoke (R1) is less long, preferably 50% less long, than the second spoke (R2),
7.- Dispositivo, según ia reivindicación 6, caracterizado porque ia longitud (d) del fondo inferior (4) es menor, preferentemente un 50% menor, que el primer radio (R1 ). 7. Device, according to claim 6, characterized in that the length (d) of the lower bottom (4) is shorter, preferably 50% shorter, than the first radius (R1).
8- . Dispositivo, según una cualquiera de las reivindicaciones precedentes, caracterizado porque la masa inercial representa entre 20% y 40% en peso del volumen de agua marina desplazado por el dispositivo generador. 8-. Device, according to any one of the preceding claims, characterized in that the inertial mass represents between 20% and 40% by weight of the volume of seawater displaced by the generating device.
9- , Dispositivo, según una cualquiera de las reivindicaciones precedentes, caracterizado porque la masa inercia! sólida comprende al menos un péndulo principal (7) conectado a un eje transversal (9) dispuesto en el espacio interior (1 a) del cuerpo flotante (1 ), estando el eje transversal (9) a su vez conectado ai sistema de extracción de potencia. 9-, Device, according to any one of the preceding claims, characterized in that the mass inertia! solid comprises at least one main pendulum (7) connected to a transverse axis (9) arranged in the interior space (1 a) of the floating body (1), the transverse axis (9) being in turn connected to the extraction system of power.
10.- Dispositivo, según la reivindicación 9, caracterizado porque comprende al menos un péndulo adicional (7a, 7b) que tiene una masa menor que el péndulo principal (7') conectado al sistema de extracción de potencia, estando cada péndulo (7, 7a, 7b) conectado al sistema de extracción de potencia, mediante un eje transversal (9) seleccionado entre ejes transversales individuales para cada péndulo (7, 7a, 7b), ejes transversales comunes que agrupan la conexión de ai menos dos péndulos (7, 7a, 7b), y combinaciones de tales ejes transversales. 10.- Device, according to claim 9, characterized in that it comprises at least one additional pendulum (7a, 7b) that has a mass less than the main pendulum (7') connected to the power extraction system, each pendulum (7, 7a, 7b) connected to the power extraction system, through a transverse axis (9) selected from individual transverse axes for each pendulum (7, 7a, 7b), common transverse axes that group the connection of at least two pendulums (7, 7a, 7b) , and combinations of such transverse axes.
1 1 . - Dispositivo, según la reivindicación 9 ó 10, caracterizado porque eleven . - Device, according to claim 9 or 10, characterized in that
el péndulo principal (7) está dispuesto entre ai menos una pareja de péndulos adicionales (7a, 7b) dispuesta en el espacio interior (1 a) del cuerpo flotante (1 ), The main pendulum (7) is arranged between at least one pair of additional pendulums (7a, 7b) arranged in the interior space (1 a) of the floating body (1),
cada uno de los péndulos adicionales (7a, 7b) está conectado al sistema de extracción de potencia; each of the additional pendulums (7a, 7b) is connected to the power extraction system;
cada péndulo (7a, 7b) de cada pareja de péndulos adicionales (7a, 7b) tiene una masa menor que el péndulo principal (7). Each pendulum (7a, 7b) of each pair of additional pendulums (7a, 7b) has a smaller mass than the main pendulum (7).
12. - Dispositivo, según una de las reivindicaciones 1 a 8, caracterizado porque comprende un péndulo principal (7") único libre de moverse en cualquier grado de libertad y conectado al sistema de extracción de potencia, mediante un mecanismo conversor -9"-, de manera que el péndulo principal -7"- único transmite los movimientos del cuerpo flotante -1 - causados por el oleaje al mecanismo conversor -9"-. 12. - Device, according to one of claims 1 to 8, characterized in that it comprises a single main pendulum (7 " ) free to move in any degree of freedom and connected to the power extraction system, by means of a converter mechanism -9"- , so that the single main pendulum -7"- transmits the movements of the floating body -1 - caused by the waves to the converter mechanism -9"-.
13.- Dispositivo, según una cualquiera de las reivindicaciones precedentes, caracterizado porque comprende al menos un péndulo complementario (7') conectado a un eje longitudinal (9') dispuesto en el espacio interior (1 a) del cuerpo flotante (1 ). 13.- Device, according to any one of the preceding claims, characterized in that it comprises at least one complementary pendulum (7') connected to a longitudinal axis (9') arranged in the interior space (1 a) of the floating body (1).
14.- Dispositivo, según una cualquiera de las reivindicaciones precedentes, caracterizado porque 14.- Device, according to any one of the preceding claims, characterized in that
la masa inercial líquida comprende una masa de líquido (10) confinada en al menos un módulo de tanque (1 1 ) que comprende un circuito cerrado anular (1 1 a, 1 1 b, 1 1 c, 1 1 d) que comprende un paso inferior (1 1 a) y un paso superior (1 1 b) así como un paso trasero (1 1 c) y un paso delantero (1 1 d) a través de ios que se comunican el paso inferior (1 1 a) y el paso superior (1 1 b); The liquid inertial mass comprises a mass of liquid (10) confined in at least one tank module (1 1) comprising an annular closed circuit (1 1 a, 1 1 b, 1 1 c, 1 1 d) comprising a lower pass (1 1 a) and an upper pass (1 1 b) as well as a rear pass (1 1 c) and a front pass (1 1 d) through which the lower pass (1 1 a) communicate and the upper step (1 1 b);
la masa de líquido (10) forma una columna de agua contenida en el paso inferior (1 1 a), una parte inferior del paso delantero (1 1 d) y una parte inferior de un paso trasero (1 1 c) hasta un nivel de líquido (10a); encima de! nivel de líquido (10a), el paso delantero (1 1 d) y el paso trasero (1 1 c) y el paso superior (1 1 b) están rellenos de gas; The mass of liquid (10) forms a column of water contained in the lower passage (1 1 a), a lower part of the front passage (1 1 d) and a lower part of a rear passage (1 1 c) up to a level of liquid (10a); Above! liquid level (10a), the front passage (1 1 d) and the rear passage (1 1 c) and the upper passage (1 1 b) are filled with gas;
el circuito anular (1 1 a, 1 1 b, 1 1 c, 1 1 d) se extiende longitudinalmente en el espacio interior (1 a) de! cuerpo flotante (1 ) entre la popa (2) y la proa (3); the annular circuit (1 1 a, 1 1 b, 1 1 c, 1 1 d) extends longitudinally in the interior space (1 a) of! floating body (1) between the stern (2) and the bow (3);
la masa de líquido (10) se desplaza en el circuito cerrado anular (1 1 a, 1 1 b, 1 1 c, The mass of liquid (10) moves in the closed annular circuit (1 1 a, 1 1 b, 1 1 c,
1 1 d) hacia la popa (2) o hacia la proa (2) del cuerpo flotante (1 ), en función a los movimientos oscilantes realizados por el cuerpo flotante (1 ) en respuesta a olas (O) marinas; 1 1 d) towards the stern (2) or towards the bow (2) of the floating body (1), depending on the oscillating movements made by the floating body (1) in response to sea waves (O);
el sistema de extracción de potencia comprende a! menos una turbina seleccionada entre turbinas neumáticas (12) dispuestas en conexión neumática con un paso superior (1 1 b) del circuito cerrado anular que está relleno de gas; turbinas hidráulicas (13) dispuestas en conexión hidráulica con un paso inferior (1 1 a) del circuito cerrado anular, y combinaciones de tales turbinas. The power extraction system includes a! at least one turbine selected from pneumatic turbines (12) arranged in pneumatic connection with an upper passage (1 1 b) of the annular closed circuit that is filled with gas; hydraulic turbines (13) arranged in hydraulic connection with a lower passage (1 1 a) of the annular closed circuit, and combinations of such turbines.
15.- Dispositivo, según la reivindicación 14, caracterizado porque 15.- Device, according to claim 14, characterized in that
comprende una pluralidad de módulos de tanque (1 1 ); comprises a plurality of tank modules (1 1);
ai menos un módulo de tanque (1 1 ) contiene una masa de agua (10) mayor que la masa de agua (10) contenida en al menos otro módulo de tanque (1 1 ); at least one tank module (1 1) contains a mass of water (10) greater than the mass of water (10) contained in at least another tank module (1 1);
el volumen de la masa de agua (10) contenida en cada uno de los respectivos módulos de tanque (1 1 ) está adaptado a un tipo de oleaje particular cuyas olas (O) provocan los movimientos oscilantes de! cuerpo flotante (1 ); The volume of the mass of water (10) contained in each of the respective tank modules (1 1) is adapted to a particular type of wave whose waves (O) cause the oscillating movements of! floatbody (1);
la conexión neumática comprende un sistema de conexión neumática seleccionado entre sistemas de conexión neumática individuales que conectan un módulo de tanque (1 1 ) con una sola turbina neumática (12) individual, sistemas de conexión neumática comunes que conectan varios módulos de tanque (1 1 ) con una turbina neumática (12) compartida, y combinaciones de tales sistemas de conexión neumática; y The pneumatic connection comprises a pneumatic connection system selected from individual pneumatic connection systems that connect a tank module (1 1) with a single individual pneumatic turbine (12), common pneumatic connection systems that connect several tank modules (1 1 ) with a shared pneumatic turbine (12), and combinations of such pneumatic connection systems; and
la conexión hidráulica comprende un sistema de conexión hidráulica seleccionado entre sistemas de conexión hidráulica individuales que conectan un módulo de tanque (1 1 ) con una sola turbina hidráulica (13) individua!, sistemas de conexión hidráulica compartidos que conectan varios módulos de tanque (1 1 ) con una turbina hidráulica (13) compartida, y combinaciones de tales sistemas de conexión hidráulica. The hydraulic connection comprises a hydraulic connection system selected from individual hydraulic connection systems that connect a tank module (1 1) with a single individual hydraulic turbine (13), shared hydraulic connection systems that connect several tank modules (1 1) with a shared hydraulic turbine (13), and combinations of such hydraulic connection systems.
PCT/ES2015/070209 2014-03-27 2015-03-23 Device for generating electricity from wave energy WO2015144956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430438A ES2549369B1 (en) 2014-03-27 2014-03-27 ELECTRICAL ENERGY GENERATOR DEVICE FROM UNDIMOTRIC ENERGY
ESP201430438 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015144956A1 true WO2015144956A1 (en) 2015-10-01

Family

ID=54194006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070209 WO2015144956A1 (en) 2014-03-27 2015-03-23 Device for generating electricity from wave energy

Country Status (2)

Country Link
ES (1) ES2549369B1 (en)
WO (1) WO2015144956A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081659A1 (en) * 2017-10-26 2019-05-02 Seaturns Floating wave energy device
WO2022079096A1 (en) * 2020-10-13 2022-04-21 Luxembourg Institute Of Science And Technology (List) Ocean wave energy harvesting system
TWI830128B (en) * 2022-01-22 2024-01-21 童瑞祺 Wave power generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110630A (en) * 1977-04-01 1978-08-29 Hendel Frank J Wave powered electric generator
US4258269A (en) * 1979-05-03 1981-03-24 Junjiro Tsubota Wave power generator
US20110169265A1 (en) * 2010-01-12 2011-07-14 Shih-Hsiung Chen Seesaw-type wave power generating device
US20120001432A1 (en) * 2004-10-15 2012-01-05 Alain Clement Apparatus for converting wave energy into electric power
US20130033039A1 (en) * 2010-01-21 2013-02-07 Echenique Gordillo Inigo Balance wave energy-electricity generation system
CN203796483U (en) * 2013-09-30 2014-08-27 无锡津天阳激光电子有限公司 Ship form pendulum bob type sea wave electric generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110630A (en) * 1977-04-01 1978-08-29 Hendel Frank J Wave powered electric generator
US4258269A (en) * 1979-05-03 1981-03-24 Junjiro Tsubota Wave power generator
US20120001432A1 (en) * 2004-10-15 2012-01-05 Alain Clement Apparatus for converting wave energy into electric power
US20110169265A1 (en) * 2010-01-12 2011-07-14 Shih-Hsiung Chen Seesaw-type wave power generating device
US20130033039A1 (en) * 2010-01-21 2013-02-07 Echenique Gordillo Inigo Balance wave energy-electricity generation system
CN203796483U (en) * 2013-09-30 2014-08-27 无锡津天阳激光电子有限公司 Ship form pendulum bob type sea wave electric generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081659A1 (en) * 2017-10-26 2019-05-02 Seaturns Floating wave energy device
FR3073013A1 (en) * 2017-10-26 2019-05-03 Seaturns FLOATING HOOTING DEVICE
CN111373141A (en) * 2017-10-26 2020-07-03 希特恩斯公司 Floating wave energy converter
US11174830B2 (en) 2017-10-26 2021-11-16 Seaturns Floating wave energy device
WO2022079096A1 (en) * 2020-10-13 2022-04-21 Luxembourg Institute Of Science And Technology (List) Ocean wave energy harvesting system
US12123389B2 (en) 2020-10-13 2024-10-22 Luxemoburg Institute Of Science And Technology Ocean wave energy harvesting system
TWI830128B (en) * 2022-01-22 2024-01-21 童瑞祺 Wave power generation device

Also Published As

Publication number Publication date
ES2549369B1 (en) 2016-08-05
ES2549369A1 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
ES2389361T3 (en) Freely floating wave energy converter
ES2682600T3 (en) Wave power generator
ES2820299T3 (en) Floating turbine
KR20090038455A (en) Wave energy converter
KR101548433B1 (en) Oscillating Water Column Type Wave Energy Harvest
ES2320846B1 (en) PLATFORM TO CAPTURE ENERGY OF THE WAVES.
ES2545553A1 (en) Floating platform for the use of wind power (Machine-translation by Google Translate, not legally binding)
WO2015144956A1 (en) Device for generating electricity from wave energy
US8405240B2 (en) Augmented velocity hydro-electric turbine generator
WO2012095669A1 (en) Wave energy converter
WO2010086474A1 (en) System for generating electric energy making use of water currents
WO2014195538A2 (en) Hydraulic system for generating electrical energy from wave power
ES2387441B1 (en) FLEXIBLE POWER GENERATOR FROM THE POWER OF THE WAVES.
ES2526240B1 (en) Mechanical system for generating electric power from wave energy
ES2948017B2 (en) Submerged kinetic energy tidal generator
WO2014113899A1 (en) Improved ocean energy capture system
KR101532385B1 (en) Wave Energy Conversion Apparatus
WO2012116459A1 (en) Hydrostatic wave-powered generator
PT105368A (en) ASYMMETRIC FLOATING TANK WAVES ENERGY CONVERTER
WO2018026256A1 (en) Hydrostatic equipment for generating renewable electric energy from waves
KR20110047089A (en) Multy Screw Type Hydraulic Turbine
ES2312294B1 (en) APPLIANCE TO CONVERT THE POWER OF THE SWELL IN ELECTRICITY.
PT109903B (en) FLOATING WAVE ENERGY CONVERSION DEVICE
ES2429593A2 (en) Wireless water column undimoter converter, owc-dpst. (Machine-translation by Google Translate, not legally binding)
WO2020089776A1 (en) System for transmitting wave energy absorbed by one or more floating bodies to an energy conversion system located on the coast, and method for transmitting energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767760

Country of ref document: EP

Kind code of ref document: A1