[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015143908A1 - 一种高导热石墨膜的制备方法 - Google Patents

一种高导热石墨膜的制备方法 Download PDF

Info

Publication number
WO2015143908A1
WO2015143908A1 PCT/CN2014/095471 CN2014095471W WO2015143908A1 WO 2015143908 A1 WO2015143908 A1 WO 2015143908A1 CN 2014095471 W CN2014095471 W CN 2014095471W WO 2015143908 A1 WO2015143908 A1 WO 2015143908A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
high temperature
graphite film
film
conductive graphite
Prior art date
Application number
PCT/CN2014/095471
Other languages
English (en)
French (fr)
Inventor
赖优萍
Original Assignee
苏州格优碳素新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州格优碳素新材料有限公司 filed Critical 苏州格优碳素新材料有限公司
Publication of WO2015143908A1 publication Critical patent/WO2015143908A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Definitions

  • the invention particularly relates to a method for preparing a highly thermally conductive graphite film.
  • the traditional heat dissipating material is a high thermal conductivity metal such as copper, silver or aluminum.
  • the product needs cannot be met, and the natural graphite film has higher thermal conductivity and lower density. , good material stability, so gradually in the electronics industry is widely used.
  • the natural graphite film is made of natural flake graphite or coal tar pitch. After acidifying the raw material, the natural graphite layer is expanded by heating to obtain a worm-like structure, and then calendered under high temperature and high pressure conditions with the bonding material to obtain a film-like graphite sheet.
  • the thermal conductivity of natural graphite film generally does not exceed 400W/(m•K), and there are disadvantages such as easy powder drop, so it is increasingly unable to meet the heat dissipation requirements of current portable digital products.
  • the patent application No. 201210227634.8 discloses a method for manufacturing a highly thermally conductive graphite film, which uses the most raw material of polyimide film, and is carbonized and graphite. The two processes are as follows: a.
  • a polyimide film as a raw material, adding graphite paper between each layer of polyimide film; b, a polyimide layer separated by graphite paper at intervals
  • the amine film is placed in a carbonization furnace and carbonized in a nitrogen or argon atmosphere at a carbonization temperature of 100 ° C to 1400 ° C for a period of time ranging from 1 hour to 6 hours; c, graphitization after carbonization, and graphitization in a nitrogen or argon atmosphere In the middle, the temperature is controlled at about 2500 ° C -3000 ° C, controlled within 12 hours.
  • the thermal conductivity of the graphite film prepared by this method is still not very satisfactory.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for preparing a graphite film having a soft surface, a uniform thickness, and a high thermal conductivity.
  • the technical solution adopted by the present invention is:
  • a method for preparing a high thermal conductivity graphite film comprising the steps of:
  • step b Put the treated original film in step a into a high temperature furnace, close the furnace, raise the temperature and control the temperature at 300 °C-700 °C, and keep the pressure in the furnace at 0.05 Pa-15. Pa, time control is 1-10 hours;
  • the carbon foam film obtained in the step e is rolled or laminated to obtain a highly thermally conductive graphite film.
  • the original film in the step a is one of a polyamide film or a polyimide film.
  • the inert gas in step c is nitrogen.
  • the inert gas in step d is argon.
  • the inert gas in step e is argon.
  • the original film is fixed with a graphite frame in the high temperature furnace.
  • the tension is controlled between 0.1 kg and 20 kg.
  • step b the high temperature furnaces in step b, step c, step d and step e are the same.
  • step b the high temperature furnaces in step b, step c, step d and step e are not the same.
  • the invention adopts a polymer film as a main raw material, activates a surface group of the film by plasma treatment, and then heats the temperature in stages and simultaneously controls factors such as atmosphere and pressure to prepare a crystalline carbon foam film whose main component is carbon element, and then passes through rolling. Or a lamination process to obtain a highly thermally conductive graphite film having a soft surface and a uniform thickness.
  • the present invention has the following advantages compared with the prior art:
  • Plasma treatment makes the surface of the original film clean and surface activated, and at the same time, the shrinkage rate of the graphite film and the surface spot defects can be reduced.
  • a carbon foam film having a good self-foaming effect can be obtained by using different atmospheres and pressures (inert atmosphere or reduced pressure) and temperature changes in different time periods during the heating process.
  • the polyamide film is used as the original film, and the treated polyamide film is fixed by a graphite frame in a high-temperature furnace for heat treatment, and the heat treatment is performed in the same high-temperature furnace.
  • the process is: closing the high-temperature furnace, The temperature in the furnace was raised to 500 ° C, and the pressure was reduced to 10 Pa using a vacuum pump. The temperature was maintained for 1 hour and then the temperature was raised, and the temperature was raised to 2 hours. At 1000 ° C, nitrogen gas is introduced into the high temperature furnace, while the vacuum pump is continuously used to maintain the pressure in the furnace at 40 Pa. The temperature is maintained for 2 hours, the temperature is increased, and the temperature is raised to 2400 ° C in 3 hours. Argon gas is introduced into the high temperature furnace to maintain the furnace.
  • the internal pressure is 30Pa
  • the temperature is maintained for 2 hours, and the temperature is raised to 2900 °C in one hour.
  • the argon flow rate is increased and the vacuum pump displacement is reduced.
  • the pressure in the furnace is controlled at 1.5 atm for 3 hours, and then naturally cooled and cooled.
  • the foamed graphite film was finally rolled by a foamed graphite film, and the tension was controlled to 8 kg to obtain a highly thermally conductive graphite film having a soft surface.
  • the polyimide film is used as the original film, and the treated polyamide film is fixed by a graphite frame in a high-temperature furnace for heat treatment, and the heat treatment is performed in the same high-temperature furnace.
  • the process is: closing the high-temperature furnace , the temperature in the furnace was raised to 300 ° C, and the pressure was reduced to 1 Pa using a vacuum pump, and the temperature was maintained for 5 hours, and the temperature was raised to 2 hours.
  • nitrogen gas was introduced into the high temperature furnace, while the vacuum pump was continuously used to maintain the pressure in the furnace at 10 Pa.
  • the temperature was maintained for 3 hours, and the temperature was raised to 1600 ° C in 3 hours.
  • the nitrogen gas was continuously introduced into the high temperature furnace to maintain the furnace.
  • the internal pressure is 10Pa
  • the temperature is maintained for 2 hours
  • the temperature is increased to 2600 ° C in 1 hour
  • the nitrogen flow rate is increased and the vacuum pump displacement is reduced
  • the pressure in the furnace is controlled at 0.5 atm
  • the time is maintained for 3 hours
  • the natural cooling is cooled and the hair is obtained.
  • the foamed graphite film was finally rolled and the graphite film was rolled, and the tension was controlled at 2 kg to obtain a highly thermally conductive graphite film having a soft surface.
  • the polyimide film is used as the original film, and the treated polyamide film is fixed by a graphite frame in a high temperature furnace for heat treatment, and the heat treatment is performed in different high temperature furnaces.
  • the process is as follows: In a high temperature furnace, the high temperature furnace is closed, the temperature in the furnace is raised to 650 ° C, and the pressure is reduced to 15 Pa using a vacuum pump. The temperature is maintained for 1 hour and then the temperature is raised, and the temperature is raised to 2 hours. At 1100 ° C, argon gas was introduced into the high temperature furnace while continuing to use the vacuum pump to maintain the pressure in the furnace at 50 Pa for 1 hour; then in the second high temperature furnace, the high temperature furnace was closed and the temperature in the furnace was raised within 2 hours.
  • argon gas is introduced into the high temperature furnace, while the vacuum pump is continuously used to maintain the pressure in the furnace at 30 Pa, and the temperature is maintained for 1 hour, and the temperature is raised to 2900 ° C in one hour to increase the flow rate of the argon gas and reduce the displacement of the vacuum pump.
  • the pressure in the furnace is controlled at 1.5 atm for 2 hours, and then naturally cooled down to obtain a foamed graphite film. Finally, the foamed graphite film is rolled, and the tension is controlled at 10 kg to obtain a soft and smooth surface. Thermally conductive graphite film.
  • a polyimide film is used as a raw material, graphite paper is added between each layer of polyimide film, and a polyimide film which is cross-laminated with graphite paper is placed in a carbonization furnace to be carbonized and carbonized in a nitrogen atmosphere.
  • the temperature is 1200 ° C, the time is controlled at 3 hours; the graphitization is carried out in an argon atmosphere, the temperature is controlled at about 2800 ° C, and the temperature is controlled at 5 hours.
  • the experimental results show that the plane of thermal conductivity of the graphite film is ⁇ 1600 W/mK; vertical direction 5.3 W/mK.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种高导热石墨膜的制备方法,以高分子薄膜为主要原料,通过等离子处理活化薄膜表面基团,然后分段升温并同时控制气氛和压力等因素,制备出主要成分为碳元素的结晶性碳泡沫膜,再通过辊压或层压工艺,得到表面柔软光滑、厚度均匀的高导热石墨膜。应用本发明方法制备的石墨膜厚度均匀,导热系数高。

Description

一种高导热石墨膜的制备方法
技术领域
本发明具体涉及一种高导热石墨膜的制备方法。
背景技术
随着半导体技术的快速发展,以及数码产品(如手机、平板电脑等)对便携性能的要求越来越高,这使得相关厂家迫切需要提高电子产品内部空间的利用率,但是,运行中所产生的热量不易排出、易于迅速积累而形成高温,很显然,高温会降低电子设备的性能、可靠性和使用寿命。因此,当前电子行业对于作为热控系统核心部件的散热材料提出越来越高的要求,迫切需要一种高效导热、轻便的材料迅速将热量传递出去,保障电子设备正常运行。
传统的散热材料是铜、银、铝之类的高导热的金属,但是随着电子元器件发热量的提高,已无法满足产品需要,而天然石墨膜具有更高的导热性,较低的密度,良好的材料稳定性,所以逐步在电子行业得到广泛的应用。
天然石墨膜是以天然鳞片石墨或煤沥青为原料,将原料酸化后,加热使得天然石墨层间膨胀,得到蠕虫状结构,然后通过与粘结材料高温高压条件下压延,得到膜状的石墨片,但是天然石墨膜的导热系数一般不超过400W/(m•K),还有易于掉粉等缺点,所以日益无法满足当前便携式数码产品的散热要求。
目前,为满足散热的要求,人工合成石墨膜也已经在研发中,申请号为201210227634.8的专利公开了一种高导热石墨膜的制造方法,它采用聚酰亚胺薄膜最为原材料,经过碳化与石墨化二个过程,其工艺过程如下:a、选择聚酰亚胺薄膜作为原材料,在每一层聚酰亚胺薄膜之间加入石墨纸;b、将间隔有石墨纸交叉层叠后的聚酰亚胺薄膜放入炭化炉中在氮气或氩气环境中碳化,碳化温度100℃-1400℃,时间控制在1小时-6小时;c、碳化后进行石墨化,石墨化也是在氮气或氩气环境中进行,温度控制在2500℃-3000℃左右,控制在12小时以内。该方法制备的石墨膜导热系数仍然不是很理想。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种表面柔软光滑、厚度均匀、高导热石墨膜的制备方法。
为解决以上技术问题,本发明采取的技术方案是:
一种高导热石墨膜的制备方法,包括如下步骤:
a、对原膜进行等离子处理;
b、将步骤a中经过处理的原膜放入高温炉中,封闭炉子,升温并控制温度在300℃-700℃,保持炉内压力在0.05 Pa-15 Pa,时间控制在1-10小时;
c、继续升温,控制高温炉温度在700℃-1200℃,向高温炉中通入惰性气体,保持炉内压力在10 Pa-50 Pa,时间控制在1-10小时;
d、继续升温,控制高温炉温度在1600℃-2500℃,向高温炉中继续通入惰性气体,保持炉内压力在5 Pa-30 Pa,时间控制在1-10小时;
e、继续升温,控制高温炉温度在2500℃-3000℃,向高温炉中增加惰性气体流量,保持炉内压力在0.5 atm-1.5 atm,时间控制在1-10小时,自然降温冷却后,得到碳泡沫膜;
f、将步骤e中得到的碳泡沫膜进行辊压或层压,得到高导热石墨膜。
优选地,步骤a中的原膜为聚酰胺膜或聚酰亚胺膜中的一种。
优选地,步骤c中的惰性气体为氮气。
优选地,步骤d中的惰性气体为氩气。
优选地,步骤e中的惰性气体为氩气。
优选地,所述原膜在所述高温炉中时用石墨框固定。
优选地,在步骤f中,张力控制在0.1 kg-20 kg。
优选地,步骤b、步骤c、步骤d和步骤e中的高温炉为同一个。
优选地,步骤b、步骤c、步骤d和步骤e中的高温炉不是同一个。
本发明以高分子薄膜为主要原料,通过等离子处理活化薄膜表面基团,然后分段升温并同时控制气氛和压力等因素,制备出主要成分为碳元素的结晶性碳泡沫膜,再通过辊压或层压工艺,得到表面柔软光滑、厚度均匀的高导热石墨膜。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
(1)等离子处理使得原膜表面清洁和表面活化,同时可以减少石墨膜的收缩率和表面点状不良。
(2)采用石墨框固定原膜,可以减少原膜加工过程中的收缩率。
(3)升温过程中在不同时间段采用不同的气氛和压力(惰性气氛或减压)以及温度变化,能够得到良好自发泡效果的碳泡沫膜。
具体实施方式
以下结合具体实施例对本发明做进一步详细说明。应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制。实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
实施例1
以聚酰胺膜作为原膜,对其进行等离子处理,将经过处理的聚酰胺膜用石墨框固定放入高温炉中进行热处理,热处理在同一高温炉中进行,其过程为:封闭高温炉,将炉内温度升至500℃,并使用真空泵减压至10Pa,时间保持1小时之后继续升温,2小时升温至 1000℃,向高温炉中通入氮气,同时继续使用真空泵,保持炉内压力为40Pa,时间保持2小时之后继续升温,3小时内升温至2400℃,向高温炉中通入氩气,保持炉内压力在30Pa,时间保持2小时之后继续升温,1小时内升温至2900℃,提高氩气流量并降低真空泵排量,控制炉内压力在1.5atm,时间保持3小时,之后自然降温冷却,得到发泡状的石墨膜,最后将发泡状的石墨膜进行辊压,张力控制在8kg,得到表面柔软光滑的高导热石墨膜。
实验测得导热系数≥1700 W/mK。
实施例2
以聚酰亚胺膜作为原膜,对其进行等离子处理,将经过处理的聚酰胺膜用石墨框固定放入高温炉中进行热处理,热处理在同一高温炉中进行,其过程为:封闭高温炉,将炉内温度升至300℃,并使用真空泵减压至1Pa,时间保持5小时之后继续升温,2小时升温至 720℃,向高温炉中通入氮气,同时继续使用真空泵,保持炉内压力为10Pa,时间保持3小时之后继续升温,3小时内升温至1600℃,继续向高温炉中通入氮气,保持炉内压力在10Pa,时间保持2小时之后继续升温,1小时内升温至2600℃,提高氮气流量并降低真空泵排量,控制炉内压力在0.5atm,时间保持3小时,之后自然降温冷却,得到发泡状的石墨膜,最后将发泡状的石墨膜进行辊压,张力控制在2kg,得到表面柔软光滑的高导热石墨膜。
实验测得导热系数≥1700 W/mK。
实施例3
以聚酰亚胺膜作为原膜,对其进行等离子处理,将经过处理的聚酰胺膜用石墨框固定放入高温炉中进行热处理,热处理在不同高温炉中进行,其过程为:在第一个高温炉中,封闭高温炉,将炉内温度升至650℃,并使用真空泵减压至15Pa,时间保持1小时之后继续升温,2小时升温至 1100℃,向高温炉中通入氩气,同时继续使用真空泵,保持炉内压力为50Pa,时间保持1小时;之后在第二个高温炉中,封闭高温炉,将炉内温度2小时内升温至2400℃,向高温炉中通入氩气,同时继续使用真空泵,保持炉内压力在30Pa,时间保持1小时之后继续升温,1小时内升温至2900℃,提高氩气流量并降低真空泵排量,控制炉内压力在1.5atm,时间保持2小时,之后自然降温冷却,得到发泡状的石墨膜,最后将发泡状的石墨膜进行辊压,张力控制在10kg,得到表面柔软光滑的高导热石墨膜。
实验测得导热系数≥1700 W/mK。
对比例1
采用聚酰亚胺薄膜作为原材料,在每一层聚酰亚胺薄膜之间加入石墨纸,将间隔有石墨纸交叉层叠后的聚酰亚胺薄膜放入炭化炉中在氮气环境中碳化,碳化温度1200℃,时间控制在3小时;石墨化是在氩气环境中进行,温度控制在2800℃左右,控制在5小时。实验测得该石墨膜的导热系数平面向≥1600 W/mK;垂直向5.3 W/mK。
以上对本发明做了详尽的描述,实施例的说明只是用于帮助理解本发明的方法及其核心思想,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1. 一种高导热石墨膜的制备方法,其特征在于:包括如下步骤:
a、对原膜进行等离子处理;
b、将步骤a中经过处理的原膜放入高温炉中,封闭炉子,升温并控制温度在300℃-700℃,保持炉内压力在0.05 Pa-15 Pa,时间控制在1-10小时;
c、继续升温,控制高温炉温度在700℃-1200℃,向高温炉中通入惰性气体,保持炉内压力在10 Pa-50 Pa,时间控制在1-10小时;
d、继续升温,控制高温炉温度在1600℃-2500℃,向高温炉中继续通入惰性气体,保持炉内压力在5 Pa-30 Pa,时间控制在1-10小时;
e、继续升温,控制高温炉温度在2500℃-3000℃,向高温炉中增加惰性气体流量,保持炉内压力在0.5 atm-1.5 atm,时间控制在1-10小时,自然降温冷却后,得到碳泡沫膜;
f、将步骤e中得到的碳泡沫膜进行辊压或层压,得到高导热石墨膜。
2. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤a中的原膜为聚酰胺或聚酰亚胺膜中的一种。
3. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤c中的惰性气体为氮气。
4. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤d中的惰性气体为氩气。
5. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤e中的惰性气体为氩气。
6. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:所述原膜在所述高温炉中时用石墨框固定。
7. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:在步骤f中,张力控制在0.1 kg-20 kg。
8. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤b、步骤c、步骤d和步骤e中的高温炉为同一个。
9. 根据权利要求1所述的高导热石墨膜的制备方法,其特征在于:步骤b、步骤c、步骤d和步骤e中的高温炉不是同一个。
PCT/CN2014/095471 2014-03-26 2014-12-30 一种高导热石墨膜的制备方法 WO2015143908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410114472.XA CN103864068B (zh) 2014-03-26 2014-03-26 一种高导热石墨膜的制备方法
CN201410114472.X 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015143908A1 true WO2015143908A1 (zh) 2015-10-01

Family

ID=50903172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095471 WO2015143908A1 (zh) 2014-03-26 2014-12-30 一种高导热石墨膜的制备方法

Country Status (2)

Country Link
CN (1) CN103864068B (zh)
WO (1) WO2015143908A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548161A (zh) * 2020-04-26 2020-08-18 安徽恒炭新材料科技有限公司 一种超厚人工石墨膜的制造方法
CN114437673A (zh) * 2022-01-19 2022-05-06 东莞市鸿亿导热材料有限公司 一种绝缘高导热石墨烯散热膜的生产工艺
CN115520862A (zh) * 2022-10-10 2022-12-27 中汇睿能凤阳新材料科技有限公司 一种人工高导热超薄石墨膜的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864068B (zh) * 2014-03-26 2016-02-17 苏州格优碳素新材料有限公司 一种高导热石墨膜的制备方法
CN104495798B (zh) * 2014-11-28 2016-05-11 苏州格优碳素新材料有限公司 一种石墨导热膜的制造方法
CN104445174A (zh) * 2014-12-12 2015-03-25 碳元科技股份有限公司 一种超薄高导热石墨膜及其制备方法
CN105000885A (zh) * 2015-06-30 2015-10-28 东莞市思泉实业有限公司 石墨膜制造方法
CN106115670A (zh) * 2016-06-23 2016-11-16 苏州格优碳素新材料有限公司 一种卷装人造石墨散热膜制造方法
CN106829930B (zh) * 2017-02-27 2019-09-13 深圳丹邦科技股份有限公司 一种卷状连续石墨烯薄膜及其制备方法
US10676362B2 (en) 2017-02-27 2020-06-09 Shenzhen Danbond Technology Co., Ltd Roll-shaped and continuous graphene film and manufacturing method therefor
CN108545733A (zh) * 2018-04-28 2018-09-18 苏州格优碳素新材料有限公司 一种石墨膜的制备方法及其产品和用途
CN110854214A (zh) * 2018-07-27 2020-02-28 东泰高科装备科技(北京)有限公司 石墨纸、石墨纸的制作方法、太阳能电池与其制作方法
CN110828798B (zh) * 2019-10-31 2022-06-07 方大炭素新材料科技股份有限公司 一种湿法加压包覆涂层制备锂离子电池石墨负极材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112086A (zh) * 1993-06-09 1995-11-22 中国科学院山西煤炭化学研究所 高结晶度石墨薄膜材料及其制法
JPH08143307A (ja) * 1994-11-18 1996-06-04 Toho Rayon Co Ltd 黒鉛質フィルム、黒鉛質成形体、その前駆体フィルム及びそれらの製造方法
CN103011141A (zh) * 2012-12-20 2013-04-03 宁波今山新材料有限公司 高导热石墨膜的制造方法
CN103045119A (zh) * 2012-12-28 2013-04-17 苏州斯迪克新材料科技股份有限公司 超高导热系数散热双面胶带
CN103864068A (zh) * 2014-03-26 2014-06-18 苏州格优碳素新材料有限公司 一种高导热石墨膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745674B (zh) * 2012-06-25 2014-07-09 孙伟峰 片状石墨膜的制造模具及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112086A (zh) * 1993-06-09 1995-11-22 中国科学院山西煤炭化学研究所 高结晶度石墨薄膜材料及其制法
JPH08143307A (ja) * 1994-11-18 1996-06-04 Toho Rayon Co Ltd 黒鉛質フィルム、黒鉛質成形体、その前駆体フィルム及びそれらの製造方法
CN103011141A (zh) * 2012-12-20 2013-04-03 宁波今山新材料有限公司 高导热石墨膜的制造方法
CN103045119A (zh) * 2012-12-28 2013-04-17 苏州斯迪克新材料科技股份有限公司 超高导热系数散热双面胶带
CN103864068A (zh) * 2014-03-26 2014-06-18 苏州格优碳素新材料有限公司 一种高导热石墨膜的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548161A (zh) * 2020-04-26 2020-08-18 安徽恒炭新材料科技有限公司 一种超厚人工石墨膜的制造方法
CN114437673A (zh) * 2022-01-19 2022-05-06 东莞市鸿亿导热材料有限公司 一种绝缘高导热石墨烯散热膜的生产工艺
CN114437673B (zh) * 2022-01-19 2023-09-08 东莞市鸿亿导热材料有限公司 一种绝缘高导热石墨烯散热膜的生产工艺
CN115520862A (zh) * 2022-10-10 2022-12-27 中汇睿能凤阳新材料科技有限公司 一种人工高导热超薄石墨膜的制备方法
CN115520862B (zh) * 2022-10-10 2023-05-30 中汇睿能凤阳新材料科技有限公司 一种人工高导热超薄石墨膜的制备方法

Also Published As

Publication number Publication date
CN103864068B (zh) 2016-02-17
CN103864068A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2015143908A1 (zh) 一种高导热石墨膜的制备方法
CN107804843B (zh) 一种均匀高导热石墨膜卷材的制备工艺
WO2015143907A1 (zh) 一种高导热石墨膜-铜复合材料的制备方法
CN104495795B (zh) 一种石墨片及其制备方法
CN104495798B (zh) 一种石墨导热膜的制造方法
WO2017148105A1 (zh) 一种柔性聚酰亚胺制备的碳膜及其制备方法
CN109811175A (zh) 一种石墨烯-铜复合材料制备方法
JP2020090433A (ja) グラファイトシート、高熱伝導性放熱基板、及びグラファイトシートの製造方法
TWI638772B (zh) Polyimide film for calcination graphitization and method for producing graphite film
CN106349964A (zh) 用于导热双面胶带的制备工艺
CN103906416A (zh) 一种利用催化石墨化工艺制备人工石墨散热膜的方法
JP5905766B2 (ja) 黒鉛薄膜およびその製造方法
CN104828808B (zh) 一种石墨烯薄膜的制备方法
JP6793296B2 (ja) グラファイトプレート及びその製造方法
CN109152277A (zh) 一种新型导热石墨片
CN105979751A (zh) 胶带用石墨导热散热片
CN107043255A (zh) 散热片的制造工艺
US20170015560A1 (en) Graphite plate and production method thereof
CN106987213A (zh) 高致密散热用双面贴膜
US20180163298A1 (en) Device for producing continuous-growth type large-area transparent and conductive graphene film
CN106231865A (zh) 一种新型导热石墨片及其制造方法
WO2014134791A1 (zh) 导热垫片及其应用
JP2010062338A (ja) 放熱シートの製造方法
TWM444939U (zh) 人造石墨散熱基板
CN106118521A (zh) 无针孔型高导热石墨胶带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 08-02-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 14886739

Country of ref document: EP

Kind code of ref document: A1