[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015141772A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2015141772A1
WO2015141772A1 PCT/JP2015/058222 JP2015058222W WO2015141772A1 WO 2015141772 A1 WO2015141772 A1 WO 2015141772A1 JP 2015058222 W JP2015058222 W JP 2015058222W WO 2015141772 A1 WO2015141772 A1 WO 2015141772A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion
exterior material
layer
heat
film
Prior art date
Application number
PCT/JP2015/058222
Other languages
English (en)
French (fr)
Inventor
勇輝 室井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020167025806A priority Critical patent/KR101851485B1/ko
Priority to CN201580014773.8A priority patent/CN106104845B/zh
Priority to JP2016508787A priority patent/JP6624051B2/ja
Publication of WO2015141772A1 publication Critical patent/WO2015141772A1/ja
Priority to US15/265,202 priority patent/US10109826B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2014-056758 for which it applied to Japan on March 19, 2014, and uses the content here.
  • a laminate exterior material formed from a multilayer film for example, a base material layer / first adhesive layer / metal foil layer / second adhesive layer / heat-sealing resin layer) Composition
  • a base material layer / first adhesive layer / metal foil layer / second adhesive layer / heat-sealing resin layer Composition
  • laminate exterior materials formed from multilayer films are lighter, have better heat dissipation, and are more flexible than metal cans. Are better.
  • tabs In order to supply electric power from a secondary battery using an exterior material formed from such a multilayer film, metal terminal members called tabs connected to the positive electrode and the negative electrode are required.
  • the tab has a metal terminal (lead) and a resin film (tab sealant) covering the metal terminal (lead).
  • metal terminal lead
  • resin film tab sealant
  • the tab sealant is a member interposed between the lead and the exterior material, and the following performance is required.
  • the first point is to have adhesion to both the lead and the exterior material. Adhesion between the exterior material and the tab sealant can be ensured by forming the tab sealant with a heat-fusible resin. The adhesion between the lead and the tab sealant can be improved by acid-modifying the polyolefin resin used for the tab sealant. Furthermore, when fusing the tab sealant to the lead, it is necessary to fill the tab end with the tab sealant without any gap. If the filling is insufficient, a gap is generated between the tab sealant and the lead, causing leakage of contents and occurrence of peeling. The second point is to ensure insulation between the lead and the exterior material.
  • the tab sealant When the tab sealant and the lead are heat-sealed, the tab sealant may become thin depending on pressure and temperature conditions, and insulation may not be ensured. In particular, the end portion of the lead is likely to be thinnest, and it is necessary to cope with a part of the tab sealant by lowering the melt flow rate to make it difficult for the resin to flow or using a high melting point resin.
  • the components contained in the secondary battery include substances that react when water enters the battery and cause deterioration of battery performance, corrosion of members constituting the secondary battery, and the like.
  • lithium salt such as lithium hexafluorophosphate and lithium tetrafluoroborate is included as an electrolyte. These react with water to generate hydrofluoric acid, which may cause corrosion and deterioration of the battery.
  • the laminated exterior material is configured so as to include a metal foil layer to block the entry of water vapor from the surface of the exterior material into the secondary battery.
  • the tab sealant of Patent Document 1 has a configuration in which a polyolefin layer is provided on both sides of a polyethylene naphthalate film. Thereby, the penetration
  • Patent Document 1 water vapor barrier properties are imparted by using polyethylene naphthalate.
  • the water vapor barrier property is not defined for the polyolefin layer. Therefore, water vapor enters the battery through the polyolefin layer, and there is a risk that sufficient water vapor barrier performance cannot be obtained for the entire tub sealant.
  • the present invention has a water vapor barrier property in the entire resin film, and has an insulation property between the metal terminal and the exterior material, a filling property of the end portion of the metal terminal, and an adhesion property with the exterior material. It aims at providing the secondary battery containing a resin film.
  • the secondary battery according to the first aspect of the present invention includes at least a battery element including a positive electrode and a negative electrode, a plurality of metal terminals connected to the positive electrode and the negative electrode, and provided with a resin film on an outer peripheral surface.
  • the two exterior materials were formed on the first exterior material so as to be thinner than the first peripheral region of the first exterior material by being heat-sealed while being pressed so as to sandwich the exterior material from the outside.
  • the resin film is sandwiched between the edge of the second exterior member and the second edge of the second exterior member, and the first exterior member and the second exterior member sandwiching the resin film are sandwiched from the outside.
  • the resin film is formed on the resin film so as to be thinner than the third peripheral region of the resin film by being heat-sealed while being pressurized, and is in close contact with the first exterior material, and the second A film fused portion that is in close contact with the exterior material, and perpendicular to the end surface of the first edge portion
  • the position where the first exterior fusion part, the second exterior fusion part, and the film fusion part are respectively formed in the direction is the resin in the direction perpendicular to the end surface of the first edge part.
  • the heat of fusion of the film fusion part measured according to JIS K 7122 is larger than the heat of fusion of the part other than the film fusion part in the resin film.
  • the resin film is configured by laminating a plurality of layered bodies, and a heat of fusion measured by JIS K 7122 in at least one film fusion part of the plurality of layered bodies is 65 mJ / mg or more.
  • a heat of fusion measured by JIS K 7122 in at least one film fusion part of the plurality of layered bodies is 65 mJ / mg or more.
  • the heat of fusion may be 30 mJ / mg or more and 100 mJ / mg or less.
  • Said 1st aspect WHEREIN: 3 mm or more and 20 mm or less may be sufficient as the length of the said vertical direction of the said film fusion
  • the amount of heat of fusion measured by JIS K 7122 in a portion other than the film fusion part is 55 mJ / mg or more, and in the innermost layer and the outermost layer, The heat of fusion measured according to JIS K 7122 of the part other than the film fusion part may be 25 mJ / mg or more and 90 mJ / mg or less.
  • Said 1st aspect WHEREIN The sum total of the thickness of the said layered body whose heat of fusion measured by JISK7122 is 40 mJ / mg or more among the said film melt
  • fusion part of the said several layered body is the whole said resin film
  • the thickness may be 20% or more and 80% or less.
  • a thickness of the film fusion part may be 50% or more and 90% or less with respect to a thickness of a part other than the film fusion part.
  • a cross section of the metal terminal by a reference plane orthogonal to the vertical direction is formed in a rectangular shape, and the first side of the rectangle includes the first edge of the first exterior member and The second edge portion of the second exterior material is disposed so as to be parallel to the sandwiching direction in which the resin film is sandwiched, and in the cross section by the reference surface, an orthogonal direction orthogonal to the first side
  • the length of the resin film is L
  • the length of the first side is L1
  • the length of the second side orthogonal to the first side is L2
  • the formula (1) is satisfied. Also good.
  • the innermost layer includes an acid-modified polyolefin-based resin
  • the layered body other than the innermost layer in the plurality of layered bodies does not include an acid-modified polyolefin.
  • the first exterior material and the second exterior material are each formed in the same shape that is a polygon when viewed in the holding direction, and overlap each other.
  • a third edge portion other than the first edge portion may be bent.
  • the said aspect of this invention has the water vapor
  • a secondary battery including a film can be provided.
  • FIG. 1 is a perspective view of a secondary battery according to an embodiment of the present invention. It is sectional drawing of the tab of the secondary battery which concerns on one Embodiment of this invention. It is a top view before the edge of the exterior material in the secondary battery which concerns on one Embodiment of this invention is bent. It is sectional drawing of the 1st exterior material of the secondary battery which concerns on one Embodiment of this invention. It is sectional drawing of the principal part of the secondary battery which concerns on one Embodiment of this invention. It is a perspective view explaining the manufacturing method of the secondary battery which concerns on one Embodiment of this invention. It is a perspective view explaining the manufacturing method of the secondary battery which concerns on one Embodiment of this invention.
  • the secondary battery 1 of the present embodiment is connected to an exterior material 10, a battery element 20 accommodated in the exterior material 10, and a positive electrode and a negative electrode (not shown) of the battery element 20. And a pair of tabs 30 sandwiched by the exterior material 10. The edge of the exterior material 10 is bent.
  • the tab 30 will be described first.
  • the tab 30 includes a lead (metal terminal) 31 and a tab sealant (resin film) 40 provided on the outer peripheral surface of the lead 31.
  • the lead 31 is a terminal for taking out electricity from the inside of the secondary battery 1, that is, the battery element 20.
  • the lead 31 is formed in a plate shape (shaft shape) extending in a predetermined direction. As shown in FIG. 2, the cross section of the lead 31 by the reference plane S1 orthogonal to the longitudinal direction of the lead 31 is formed in a rectangular shape. In order to prevent leakage of the contents of the secondary battery 1, the peripheral portion of the lead 31 needs to be in close contact with the tab sealant 40.
  • the material of the lead 31 is preferably matched with a current collector (not shown) in the battery element 20 to be connected.
  • the lead 31 connected to the positive electrode also uses aluminum. Copper is used for the current collector of the negative electrode, and the lead 31 connected to the negative electrode is also preferably made of copper. Moreover, it is preferable that the surface of the lead 31 is nickel-plated from the viewpoint of corrosion resistance. For the lead 31 connected to the positive electrode, aluminum having a purity of 97% or higher such as 1N30 is preferably used from the viewpoint of corrosion resistance to the electrolytic solution. Since the heat-sealed portion between the tab 30 and the exterior material 10 may be bent, it is more preferable to use an O material tempered by annealing for the purpose of providing flexibility.
  • the thickness of the lead 31 depends on the size and capacity of the battery, but is 50 ⁇ m (micrometers) or more for small size, and 100 ⁇ m or more and 500 ⁇ m or less for power storage / vehicle use. For the purpose of reducing the electrical resistance at the lead 31, a thicker lead may be used. It is preferable to appropriately select the thickness of the tab sealant 40 in accordance with the thickness of the lead 31.
  • the corrosion prevention treatment layer 32 has a function of preventing the corrosion of the lead 31 due to the corrosive component used in the secondary battery 1.
  • the corrosion prevention process layer 32 is shown only in FIG.2 and FIG.5 for convenience of explanation.
  • the corrosion prevention treatment layer 32 is preferably a coating formed by a coating type or immersion type acid resistant corrosion prevention treatment agent.
  • the corrosion prevention treatment layer 32 is the film, the effect of preventing corrosion of the lead 31 with respect to acid is improved.
  • the film is, for example, a ceriazol treatment with a corrosion prevention treatment agent containing cerium oxide, phosphate and various thermosetting resins, a corrosion prevention treatment agent containing chromate, phosphate, fluoride, and various thermosetting resins. It can be formed by chromate treatment or the like.
  • the corrosion prevention treatment layer 32 is not limited to the film formed by the above treatment as long as the corrosion resistance of the lead 31 is sufficiently obtained. For example, it may be formed by phosphate treatment, boehmite treatment, or the like.
  • the lead 31 and the tab sealant 40 are bonded to each other via a corrosion prevention treatment layer 32 provided over the entire outer periphery of the lead 31.
  • the tab sealant 40 is preferably composed of a laminated body formed by laminating a plurality of layered bodies 41, 42, and 43.
  • the layer closest to the lead 31 is the innermost layer 41
  • the layer farthest from the lead 31 is laminated between the outermost layer 43
  • the innermost layer 41 and the outermost layer 43 are stacked.
  • This layer is referred to as an intermediate layer 42.
  • the tab sealant 40 may not be provided with the intermediate layer 42. As shown in FIG.
  • the exterior material 10 includes a first exterior material 10 ⁇ / b> A and a second exterior material 10 ⁇ / b> B that sandwich the battery element 20.
  • the tab sealant 40 is sandwiched between the first edge 10a of the first exterior material 10A and the second edge 10b of the second exterior material 10B.
  • a direction perpendicular to the end face 10f of the first edge portion 10a is defined as a vertical direction Z.
  • the vertical direction Z is parallel to the longitudinal direction of the lead 31.
  • the exterior materials 10A and 10B have a third edge 10h of the first exterior material 10A that is an edge other than the edges 10a and 10b, and a fourth edge 10i of the second exterior material 10B. Before the third edge portion 10h and the fourth edge portion 10i are bent, the first edge portion 10a of the first exterior material 10A and the second edge portion of the second exterior material 10B shown in FIG. When viewed in the pinching direction X that sandwiches the tab sealant 40 (in plan view), 10b is formed in the same shape that is a rectangle and overlaps each other.
  • Each of the first exterior material 10A and the second exterior material 10B has four rectangular edges. One of these edges is integrally formed by being connected to each other by a connecting part 17.
  • the exterior members 10 ⁇ / b> A and 10 ⁇ / b> B sandwich the battery element 20 by being folded back at the connecting portion 17. Since the configuration of the first exterior material 10A and the second exterior material 10B is the same, the first exterior material 10A will be described below.
  • the first exterior material 10A includes a base material layer 11, a base material adhesive layer 12, a metal foil layer 13, an exterior material corrosion prevention treatment layer 14, an adhesive resin layer 15, and a heat sealing resin. It is preferable that the layer 16 has a stacked structure in which the layers 16 are stacked in this order. In the first exterior material 10A, it is sufficient that at least the metal foil layer 13 and the heat-sealing resin layer 16 are laminated. In the first exterior material 10A, the base material layer 11, the base material adhesive layer 12, The exterior material corrosion prevention treatment layer 14 and the adhesive resin layer 15 may not be laminated.
  • FIG. 5 is a cross-sectional view of a main part of the secondary battery 1 including a plane including the central axis C1 of the lead 31 and parallel to the holding direction X.
  • the heat-sealing resin layer 16 is shown in the exterior materials 10A and 10B.
  • the first exterior material 10 ⁇ / b> A and the second exterior material 10 ⁇ / b> B are composed of the first edge 10 a and the second exterior of the first exterior material 10 ⁇ / b> A facing the connecting portion 17.
  • the tab sealant 40 of the tab 30 is sandwiched between the second edge 10b of the material 10B.
  • the first exterior material 10A and the second exterior material 10B are sandwiched from outside by a known tool.
  • the first exterior material 10A is bonded to the first exterior material 10C
  • the second exterior material 10B is composed of the second exterior material fusion part 10d
  • the tab sealant 40 is bonded to the film sealant 40a.
  • the state of the fused parts 10c, 10d, 40a specifically the thickness and the like, can be controlled by conditions such as temperature, pressure, time, etc. at the time of pressure heat fusion.
  • the first exterior fusion part 10c of the first exterior material 10A is thinner than the portion 10j (first peripheral region) other than the first exterior fusion part 10c in the first exterior material 10A.
  • the second exterior fusion part 10d of the second exterior material 10B is thinner than the portion 10k (second peripheral region) other than the second exterior fusion part 10d in the second exterior material 10B.
  • fusion part 40a of the tab sealant 40 is a part where thickness became thinner than part 101 (3rd peripheral area
  • the first exterior fusion part 10c, the second exterior fusion part 10d, and the film fusion part 40a have the same shape and overlap each other.
  • the length of the first exterior fusion part 10c, the length of the second exterior fusion part 10d, and the length of the film fusion part 40a in the vertical direction Z are equal to each other.
  • the innermost layer 41 is a layer that bears adhesion between the lead 31 on which the corrosion prevention treatment layer 32 is formed and the tab sealant 40, and needs to have adhesion between the lead 31 and the resin constituting the tab sealant 40.
  • the component constituting the innermost layer 41 include polyolefin resins and acid-modified polyolefin resins obtained by acid-modifying polyolefin resins. Among these, an acid-modified polyolefin resin (acid-modified polyolefin resin) is preferable because adhesion to the lead 31 is improved. That is, the innermost layer 41 preferably contains an acid-modified polyolefin resin.
  • polystyrene resin examples include low density, medium density, and high density polyethylene; ethylene- ⁇ olefin copolymer, homopolypropylene, block polypropylene, random polypropylene, propylene- ⁇ olefin copolymer, or acid-modified products thereof.
  • acid-modified polyolefin examples include a polyolefin obtained by acid-modifying a polyolefin with an unsaturated carboxylic acid, an acid anhydride, or a derivative thereof.
  • unsaturated carboxylic acids and acid anhydrides and derivatives thereof include acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, and acid anhydrides, mono- and diesters, amides, and imides. Is mentioned. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and maleic anhydride is particularly preferable. Unsaturated carboxylic acid, its acid anhydride, and derivative should just copolymerize with respect to polyolefin, and block copolymerization, random copolymerization, graft copolymerization etc. are mentioned as a polymerization form. These unsaturated carboxylic acids, acid anhydrides and derivatives thereof may be used alone or in combination of two or more.
  • the thickness of the innermost layer 41 is preferably 10 ⁇ m or more and 300 ⁇ m or less, and more preferably 20 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the innermost layer 41 is less than 10 ⁇ m, the resin filling at the end of the lead 31 becomes insufficient at the time of heat fusion with the lead 31.
  • the thickness of the innermost layer 41 exceeds 300 ⁇ m, a larger amount of heat is required at the time of heat fusion, and this causes a decrease in water vapor barrier properties.
  • the outermost layer 43 is a layer for bonding the tab sealant 40 and the heat-sealing resin layer 16 of the exterior materials 10A and 10B.
  • the component constituting the outermost layer 43 include polyolefin resins and acid-modified polyolefin resins obtained by acid-modifying polyolefin resins because of their adhesion to the heat-sealing resin layer 16, and polyolefin resins from the viewpoint of water vapor barrier properties. It is preferable that Examples of the polyolefin resin and the acid-modified polyolefin resin include the polyolefin resins and acid-modified polyolefin resins exemplified in the innermost layer 41. Adhesion with each other is improved by selecting the components of the outermost layer 43 according to the resin constituting the adjacent layer (the innermost layer 41 or the intermediate layer 42) and the heat sealing resin layer 16 in the tab sealant 40. Can be made.
  • the thickness of the outermost layer 43 is preferably 10 ⁇ m or more and 300 ⁇ m or less, and more preferably 20 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the outermost layer 43 is less than 10 ⁇ m, resin filling at the end of the lead 31 becomes insufficient when heat-sealing with the lead 31.
  • the thickness of the outermost layer 43 exceeds 300 ⁇ m, a larger amount of heat is required at the time of heat-sealing, and this causes an increase in cost.
  • the melting point of the outermost layer 43 is preferably higher than the melting point of the innermost layer 41, and the difference between the melting point of the outermost layer 43 and the melting point of the innermost layer 41 is more preferably 5 ° C. or more.
  • the melting point of the outermost layer 43 is higher than the melting point of the innermost layer 41, when the innermost layer 41 is thermally fused to the lead 31, the outermost layer 43 is prevented from melting and the resin flowing, and the outermost layer 43 It becomes easy to maintain the shape.
  • the heat of fusion measured by JIS K 7122 of the outermost layer 43 is preferably 25 mJ / mg or more and 90 mJ / mg or less, and more preferably 35 mJ / mg or more and 85 mJ / mg or less.
  • the heat of fusion of the outermost layer 43 is smaller than 25 mJ / mg, the resin of the outermost layer 43 is easily melted at the time of heat-sealing with the lead 31 and the outer packaging material 10, and it flows too much to increase the thickness of the outermost layer 43. It cannot be secured.
  • the degree of crystallization is low, and the amount of water vapor transmitted increases.
  • the resin of the outermost layer 43 does not melt when the outermost layer 43 and the exterior material 10 are heat-sealed, and sufficient adhesion cannot be obtained.
  • the heat of fusion of the outermost layer 43 is preferably larger than the heat of fusion of the innermost layer 41. In this case, the outermost layer 43 does not flow excessively at the time of heat fusion with the lead 31, and the shape is easily maintained.
  • the heat of fusion (heat of fusion) measured in accordance with JIS K 7122 of the part other than the film fusion part 40a is preferably 25 mJ / mg or more and 90 mJ / mg or less, and 35 mJ / mg or more. More preferably, it is 85 mJ / mg or less.
  • the amount of heat of fusion is less than 25 mJ / mg, the resin is easily melted at the time of heat-sealing with the lead 31 and the outer packaging material 10 and flows too much to secure the thickness of the innermost layer 41 and the outermost layer 43.
  • the degree of crystallization is low, and the amount of water vapor transmitted increases.
  • the heat of fusion exceeds 90 mJ / mg, the resin does not melt at the time of heat fusion with the lead 31, and sufficient adhesion cannot be obtained, and sufficient filling at the end of the lead 31 cannot be obtained. .
  • the tab sealant 40 may include an intermediate layer 42 formed of one or more layered bodies between the innermost layer 41 and the outermost layer 43.
  • the components constituting the intermediate layer 42 include polyolefin resins and acid-modified polyolefin resins obtained by acid-modifying polyolefin resins for the purpose of improving the adhesion between the innermost layer 41 and the outermost layer 43.
  • a layer such as a polyester film may be included via an adhesive.
  • the polyolefin resin and the acid-modified polyolefin resin include the polyolefin resins and acid-modified polyolefin resins exemplified in the innermost layer 41.
  • the thickness of the entire intermediate layer 42 is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 120 ⁇ m or less.
  • the thickness of the intermediate layer 42 as a whole is less than 10 ⁇ m, the insulation cannot be secured, and when it exceeds 200 ⁇ m, the cost increases.
  • the heat of fusion measured by JIS K 7122 of at least one layer among the plurality of intermediate layers 42 is preferably 55 mJ / mg or more, and more preferably 60 mJ / mg or more.
  • any of the plurality of intermediate layers 42 has a heat of fusion smaller than 55 mJ / mg, the resin is easily melted at the time of thermal fusion between the lead 31 and the outer packaging material 10 and is too fluid to secure a film thickness.
  • the upper limit of the heat of fusion of the intermediate layer 42 is not particularly limited as long as it does not affect the adhesion at the time of pressure heat fusion.
  • the heat of fusion of at least one of the plurality of intermediate layers 42 be larger (higher) than the heat of fusion of the innermost layer 41 and the outermost layer 43. If the heat of fusion of any one of the plurality of intermediate layers 42 satisfies the above condition, it is easy to ensure the thickness of the tab sealant 40. It is preferable that the layered body other than the innermost layer 41 in the plurality of layered bodies, specifically, the intermediate layer 42 and the outermost layer 43 do not contain acid-modified polyolefin.
  • the tab sealant 40 configured as described above is configured such that when the lead 31 is sandwiched between the exterior fusion parts 10c and 10d of the exterior materials 10A and 10B when the secondary battery 1 is manufactured, the lead 31 and the exterior material 10A And between the lead 31 and the exterior material 10B.
  • the tab sealant 40 is provided over the entire outer periphery of the lead 31.
  • the structure of the tab sealant 40 includes a crystalline portion in a crystalline state and an amorphous state that is not in a crystalline state. .
  • the magnitude of the heat of fusion depends on the ratio of the crystal part (the ratio of the crystalline substance in the tab sealant structure including the crystal part and the amorphous part), and the heat of fusion increases as the crystal part increases.
  • the tab sealant 40 has a melting point equal to or higher than the pressure heat fusion temperature in order to ensure insulation within a range that does not impair the adhesion, insulation, and water vapor barrier properties between the tab sealant 40 and the lead 31.
  • a high-melting-point substance, a moisture absorbent for thinning moisture that has entered through the outer fused portions 10c and 10d, and the like may be included.
  • the heat of fusion measured by JIS K 7122 of the portion other than the film fusion bonding portion 40a is preferably 55 mJ / mg or more, preferably 60 mJ / mg or more. More preferably.
  • the heat of fusion is less than 55 mJ / mg, the water vapor barrier property is low.
  • the film thickness may not be maintained and insulation may not be ensured.
  • the upper limit value of the heat of fusion is not particularly limited as long as it does not affect the adhesion at the time of pressure heat fusion.
  • the fused portions 10 c, 10 d, and 40 a are formed in a range R ⁇ b> 1 in which the tab sealant 40 is disposed in the direction along the central axis C ⁇ b> 1 that is the vertical direction Z of the lead 31.
  • the function of the tab sealant 40 as an insulating layer cannot be obtained, and the lead 31 and the metal foil layer 13 come into contact with each other and short-circuit.
  • the water vapor barrier property to the inside of the secondary battery 1 is lowered.
  • the base material layer 11 provides heat resistance in a sealing process when the secondary battery 1 is manufactured, and plays a role of suppressing generation of pinholes that can occur during processing and distribution. Moreover, it plays the role of insulation etc. which prevent the fracture
  • Examples of the base material layer 11 include stretched or unstretched films such as polyester resin, polyamide resin, and polyolefin resin. Of these, biaxially stretched polyamide and biaxially stretched polyester are preferable from the viewpoint of improving moldability, heat resistance, puncture resistance, and insulation.
  • the base material layer 11 may be a single film that is a single film, or may be a laminated film.
  • the thickness of the base material layer 11 is preferably 6 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less from the viewpoints of puncture resistance, insulation, embossability, and the like. If the thickness of the base material layer 11 is 6 ⁇ m or more, pinhole resistance and insulation are improved, and if the thickness of the base material layer 11 is 50 ⁇ m or less, the moldability is improved.
  • the base adhesive layer 12 is formed between the base layer 11 and the metal foil layer 13 as shown in FIG.
  • the substrate adhesive layer 12 has an adhesive force necessary to firmly bond the substrate layer 11 and the metal foil layer 13.
  • the base-material adhesive layer 12 has followability in order to protect the fracture
  • a two-component curable adhesive having a polyester polyol, a polyether polyol, an acrylic polyol or the like as a main agent and an aromatic or aliphatic isocyanate as a curing agent can be used.
  • the thickness of the base adhesive layer 12 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less from the viewpoint of adhesive strength, followability, workability, and the like.
  • Metal foil layer 13 The metal foil layer 13 is formed between the base adhesive layer 12 and the adhesive resin layer 15.
  • the metal foil layer 13 has a water vapor barrier property that prevents moisture from entering the battery. Moreover, the metal foil layer 13 has spreadability in order to perform deep drawing.
  • Various metal foils such as aluminum and stainless steel, can be used as the metal foil layer 13, and aluminum foil is preferable from the viewpoint of weight (specific gravity), moisture resistance, workability, and cost.
  • an aluminum foil used as the metal foil layer 13 a known soft aluminum foil can be used, and an aluminum foil containing iron is preferable from the viewpoint of pinhole resistance and extensibility during molding.
  • the content of iron in the aluminum foil (100% by mass) is preferably 0.1% by mass or more and 9.0% by mass or less, and 0.5% by mass or more and 2.% by mass or less with respect to 100% by mass of the total mass of the aluminum foil. 0 mass% or less is more preferable.
  • the thickness of the metal foil layer 13 is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 80 ⁇ m or less, from the viewpoint of barrier properties, pinhole resistance, and workability.
  • the exterior material corrosion prevention treatment layer 14 is formed on the surface of the metal foil layer 13 close to the heat-sealing resin layer 16.
  • the exterior material corrosion prevention treatment layer 14 prevents corrosion of the surface of the metal foil layer 13 due to hydrofluoric acid generated by the reaction between the electrolyte and moisture.
  • the exterior material corrosion prevention treatment layer 14 also has a function as an anchor layer with the adhesive resin layer 15 and the base material adhesive layer 12.
  • the exterior material corrosion prevention treatment layer 14 is formed by, for example, chromate treatment which is a corrosion prevention treatment agent containing chromate, phosphate, fluoride, and various thermosetting resins, rare earth element oxides (eg, cerium oxide). Etc.), ceriazol treatment, which is a corrosion prevention treatment agent containing phosphate, and various thermosetting resins.
  • the exterior material corrosion prevention treatment layer 14 is not limited to the coating formed by the above treatment as long as it satisfies the corrosion resistance of the metal foil layer 13. For example, phosphate treatment, boehmite treatment, or the like may be used.
  • the exterior material corrosion prevention treatment layer 14 is not limited to a single layer, and employs a structure having corrosion resistance with two or more layers such as coating a resin as an overcoat agent on a film having a corrosion prevention function. Also good.
  • the thickness of the exterior material corrosion prevention treatment layer 14 is preferably 5 nm (nanometers) or more and 1 ⁇ m or less, and more preferably 10 nm or more and 200 nm or less from the viewpoint of a corrosion prevention function and a function as an anchor.
  • the adhesive resin layer 15 is a layer that bonds the heat-sealing resin layer 16 and the metal foil layer 13 on which the exterior material corrosion prevention treatment layer 14 is formed.
  • the adhesive resin layer 15 is broadly classified into a thermal laminate configuration and a dry laminate configuration depending on the production method.
  • the component is preferably a thermoplastic resin, and examples thereof include polyolefin resins, elastomer resins, and acid-modified elastomer resins obtained by acid-modifying polyolefin resins. It is done. Among these, acid-modified polyolefin resin is preferable because of excellent adhesiveness with the metal foil layer 13.
  • Examples of the acid-modified polyolefin resin include the polyolefin resins exemplified in the innermost layer 41. Polyolefin resins and acid-modified polyolefin resins are excellent in electrolytic solution resistance. Moreover, as an elastomer resin, SEBS (polystyrene / polyethylene / polybutylene / polystyrene), SBS (polystyrene / polybutadiene / polystyrene), SEPS (polystyrene / polyethylene / polypropylene / polystyrene), SEP (polystyrene / polyethylene / polypropylene), SIS (polystyrene).
  • SEBS polystyrene / polyethylene / polybutylene / polystyrene
  • SBS polystyrene / polybutadiene / polystyrene
  • SEPS polystyrene /
  • an adhesive is used when the adhesive resin layer 15 is formed in a dry laminate configuration.
  • the adhesive applied to the adhesive resin layer 15 can include acid-modified polyolefin.
  • the acid-modified polyolefin resin include the polyolefin resins exemplified in the innermost layer 41.
  • the thickness of the adhesive resin layer 15 is preferably 8 ⁇ m or more and 30 ⁇ m or less, and more preferably 10 ⁇ m or more and 20 ⁇ m or less. If the thickness of the adhesive resin layer 15 is 8 ⁇ m or more, sufficient adhesive strength can be easily obtained, and if it is 30 ⁇ m or less, it is easy to reduce the amount of moisture that permeates from the seal end surface into the battery.
  • the thickness of the adhesive resin layer 15 is preferably 1 ⁇ m or more and 5 ⁇ m or less. When the thickness is less than 1 ⁇ m, the adhesive strength is lowered, and thus the laminate strength cannot be obtained.
  • the thickness of the adhesive resin layer 15 when the thickness exceeds 5 ⁇ m, the film of the adhesive resin layer 15 becomes thick, so that film cracking is likely to occur.
  • the thickness of the adhesive resin layer 15 is in the range of 1 ⁇ m or more and 5 ⁇ m or less, the heat-sealing resin layer 16 and the exterior material corrosion prevention treatment layer 14 can be firmly adhered.
  • the heat sealing resin layer 16 is formed on the exterior material corrosion prevention treatment layer 14 via the adhesive resin layer 15.
  • the heat-sealing resin layers 16 of the exterior materials 10 ⁇ / b> A and 10 ⁇ / b> B face each other and pressed at a temperature equal to or higher than the melting temperature of the heat-sealing resin layer 16. It can be sealed by heat sealing.
  • the heat sealing resin layer 16 include polyolefin resins. Examples of the polyolefin resin include low density, medium density, and high density polyethylene, homo, block, and random polypropylene.
  • the heat sealing resin layer 16 may be formed of a film in which the various resins described above are mixed.
  • the heat-sealing resin layer 16 may be a single layer film or a multilayer film.
  • the heat sealing resin layer 16 may contain various additives such as a slip agent, an antiblocking agent, an antistatic agent, a nucleating agent, a pigment, and a dye. These additives may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the heat sealing resin layer 16 is preferably 20 ⁇ m or more and 90 ⁇ m or less. If the thickness of the heat-sealing resin layer 16 is less than 20 ⁇ m, sufficient laminate strength cannot be ensured, and if it exceeds 90 ⁇ m, the amount of water vapor transmitted increases.
  • the packaging materials 10A and 10B sandwich the battery element 20 so that the heat-sealing resin layer 16 is on the inside. As shown in FIG.
  • the lead 31 is arranged so that the holding direction X and the first side 31 a of the rectangle are parallel to each other. As shown in FIG. 5, the first exterior fusion part 10c and the film fusion part 40a are in close contact with each other, and the second exterior fusion part 10d and the film fusion part 40a are sealed.
  • the length of the tab sealant 40 in the orthogonal direction Y orthogonal to the rectangular first side 31a is L
  • the length of the rectangular first side 31a is L1
  • the expression (2) is satisfied.
  • L1 + 2L2 ⁇ L ⁇ 2L1 + 2L2 (2)
  • the length of the tab sealant 40 is not sufficient with respect to the lead 31. For this reason, a gap is generated between the tab sealant 40 and the lead 31 when the tab sealant 40 and the lead 31 are pressurized and heat-sealed, and sufficient adhesion cannot be obtained.
  • the tab sealant 40 is excessively long. Therefore, the film thickness of the end portions of the fused portions 10c, 10d, and 40a is increased, and the water vapor is liable to enter the portion, and the water vapor barrier property is lowered.
  • the heat of fusion of the film fusion part 40a of the tab sealant 40 measured according to JIS K 7122 is preferably larger (higher) than the heat of fusion of the part other than the film fusion part 40a in the tab sealant 40, and is larger by 10 mJ / mg or more. It is more preferable. Since the amount of heat of fusion of the film-side fusion part 40a is large, the ratio of the above-mentioned crystal part becomes high and the water vapor barrier property is improved.
  • the heat of fusion measured by JIS K 7122 in at least one film fusion part 40a of the plurality of layered bodies constituting the tab sealant 40 is preferably 65 mJ / mg or more, and 70 mJ / mg or more. Is more preferable.
  • the heat of fusion of the film fusion bonding part 40a of the innermost layer 41 and the outermost layer 43 is preferably 30 mJ / mg or more and 100 mJ / mg or less, and more preferably 35 mJ / mg or more and 85 mJ / mg or less. In the case where the heat of fusion of the film fusion bonding part 40a is less than 65 mJ / mg, the water vapor barrier property cannot be sufficiently obtained.
  • the upper limit value of the heat of fusion is not particularly limited as long as it does not affect the adhesion at the time of pressure heat fusion. Moreover, when the heat of fusion of the film fusion
  • the sum of the thicknesses of the layered bodies whose heat of fusion measured by JIS K 7122 is 40 mJ / mg or more among the film fusion portions 40 a of the plurality of layered bodies of the tab sealant 40 is the total thickness of the tab sealant 40.
  • it is preferably 20% or more and 80% or less.
  • the tab sealant 40 is composed of two layered bodies, the first layered body has a heat of fusion of 30 mJ / mg and a thickness of 70 ⁇ m, and the second layered body has a heat of fusion of 50 mJ / mg and a thickness. Will be described below.
  • the layered body having a heat of fusion of 40 mJ / mg or more is only the second layered body, and the sum of the thicknesses of the layered bodies having a heat of fusion of 40 mJ / mg or more is the thickness of the second layered body. 30 ⁇ m.
  • the total thickness of the tab sealant 40 is 100 ⁇ m as the sum of the thicknesses of all layered bodies.
  • the ratio (the ratio of the sum of the thicknesses of the layered bodies having a heat of fusion of 40 mJ / mg or more with respect to the total thickness of the tab sealant 40) is 30% from the equation (3).
  • the thickness L6 of the film fusion part 40a is preferably 50% or more and 90% or less with respect to the thickness L7 of the part other than the film fusion part 40a. More preferably, it is 60% or more and 85% or less.
  • the ratio of thickness is lower than 50%, a sufficient film thickness is not ensured and insulation cannot be obtained.
  • the thickness ratio exceeds 90%, the film thickness at the end of the film fusion bonding portion 40a is increased, and the water vapor barrier property is lowered.
  • the length of the lead 31 of the film fusion bonding portion 40a in the vertical direction Z is preferably 3 mm or more and 20 mm or less, and more preferably 5 mm or more and 15 mm or less. If this length is less than 3 mm, the amount of water vapor entering increases. On the other hand, when this length exceeds 20 mm, the volume of the secondary battery 1 increases, and more places are required for installing the secondary battery.
  • the third edge 10h other than the first edge 10a and the second of the plurality of edges of the second exterior material 10B is bent in the direction of the molding portion 18 formed in the first exterior material 10A to form a folded portion 19.
  • the third edge portion 10h and the fourth edge portion 10i that are fused to each other are bent together.
  • the battery element 20 includes a positive electrode, a separator, a negative electrode, a separator, and the like, although not shown.
  • the battery element 20 is accommodated in the molding portion 18 of the first exterior material 10A, and the pair of tabs 30 connected to the positive electrode and the negative electrode of the battery element 20 are sealed while being sandwiched between the exterior materials 10A and 10B.
  • the manufacturing method of the tab 30 is not limited to the following method.
  • Examples of the method for manufacturing the tab 30 include a method having the following steps (1-1) and (1-2).
  • (1-1) A step of forming the tab sealant 40.
  • (1-2) A step of thermally fusing the tab sealant 40 to the lead 31.
  • a tab sealant 40 is made by extrusion.
  • the molding method include extrusion molding using a T-die and inflation molding using a ring die. Of these, inflation molding is preferable.
  • the extrusion temperature is preferably 180 ° C. or higher and 300 ° C. or lower. When the extrusion temperature is lower than 180 ° C., the resin is not sufficiently melted and the extrusion from the screw becomes unstable. When the extrusion temperature is higher than 300 ° C., the deterioration due to oxidation of the resin becomes severe and the quality is poor.
  • the number of rotations of the screw, the blow ratio, and the take-off speed are preferably selected as appropriate according to the set film thickness of the tab sealant 40.
  • the film thickness ratio of the innermost layer 41, the outermost layer 43, and the intermediate layer 42 can be changed by the number of rotations of the screw.
  • Step (1-2) The innermost layer 41 is melted by heating and is pressurized to bring the tab sealant 40 into close contact with both surfaces of the lead 31.
  • pressure heat fusion it is necessary to melt only the innermost layer 41 and maintain the shape without melting the outermost layer 43 in order to ensure the film thickness of the tab sealant 40.
  • a heating temperature higher than the melting point temperature of the innermost layer 41 is required.
  • the heat of fusion of the innermost layer 41 is smaller than the heat of fusion of the outermost layer 43, the innermost layer 41 and the lead 31 can be sufficiently maintained while maintaining the shape of the outermost layer 43 by appropriately setting the heating temperature and heating time. Adhesion can be obtained. It is necessary to determine the heating and pressurizing time in consideration of peel strength and productivity. The greater the difference in melting temperature and the greater the difference in heat of fusion, the higher the productivity, such as increasing the heating temperature and shortening the heating time.
  • the tab 30 is manufactured by the steps (1-1) and (1-2) described above.
  • Examples of the method for manufacturing the packaging material 10 include the following steps (2-1) to (2-3).
  • the base material layer 11 is placed on the surface of the metal foil layer 13 opposite to the surface on which the exterior material corrosion prevention treatment layer 14 is formed, using the base adhesive layer 12 and the dry lamination method. The process of bonding and producing a laminated body (exterior material corrosion prevention treatment layer 14 / metal foil layer 13 / base material adhesive layer 12 / base material layer 11).
  • the heat-sealing resin layer 16 is bonded to the surface of the metal foil layer 13 opposite to the surface on which the base material layer 11 is formed via the adhesive resin layer 15, and the exterior material 10 (heat-sealing)
  • Step (2-1) After coating the corrosion prevention treatment agent on one surface of the metal foil layer 13, baking is performed to form the exterior material corrosion prevention treatment layer 14. At this time, the corrosion prevention treatment can be performed not only on one side of the metal foil layer 13 but also on both sides.
  • the coating method of the corrosion inhibitor is not particularly limited, and examples thereof include gravure coating, gravure reverse coating, roll coating, reverse roll coating, die coating, bar coating, kiss coating, and comma coating.
  • Step (2-2) The base material layer 11 is bonded to the surface of the metal foil layer 13 opposite to the surface on which the exterior material corrosion prevention treatment layer 14 is formed by the dry laminating method via the base material adhesive layer 12, and the laminate (exterior material corrosion) Preventive treatment layer 14 / metal foil layer 13 / base material adhesive layer 12 / base material layer 11).
  • the coating method of the base adhesive layer 12 is not particularly limited, and examples thereof include gravure coating, gravure reverse coating, roll coating, reverse roll coating, die coating, bar coating, kiss coating, and comma coating.
  • Step (2-3) In the process (2-3) of manufacturing the exterior material 10 using the laminated body, it is roughly classified into a thermal laminate structure and a dry laminate structure depending on the method of forming the adhesive resin layer 15.
  • the thermal laminate configuration further includes a dry process and a wet process.
  • a dry process an adhesive resin is extruded and laminated on the exterior material corrosion prevention treatment layer 14 of the laminate, and a film for forming a heat-sealing resin layer 16 obtained by an inflation method or a T-die extrusion method is laminated. .
  • heat treatment aging treatment, thermal lamination, etc.
  • a multilayer film in which the adhesive resin layer 15 and the heat-sealing resin layer 16 are laminated by an inflation method or a cast method, and the multilayer film is laminated on the laminate by thermal lamination, thereby bonding.
  • the heat sealing resin layer 16 may be laminated via the resin layer 15.
  • a dispersion type adhesive resin liquid of an adhesive resin such as an acid-modified polyolefin resin is applied onto the exterior material corrosion prevention treatment layer 14 of the laminate. Thereafter, the solvent is volatilized at a temperature equal to or higher than the melting point of the adhesive resin, the adhesive resin is melted and softened and baked, and then the heat-sealing resin layer 16 is laminated by heat treatment such as thermal lamination.
  • the adhesive resin layer 15 is applied to the surface of the metal foil layer 13 of the laminate on which the exterior material corrosion prevention treatment layer 14 is formed, and the solvent is dried in an oven. Then, the exterior material 10 is produced by carrying out the thermocompression bonding of the heat-fusion resin layer 16 by dry lamination.
  • the coating method of the adhesive resin layer 15 is not particularly limited, and examples thereof include gravure coating, gravure reverse coating, roll coating, reverse roll coating, die coating, bar coating, kiss coating, and comma coating.
  • the packaging material 10 is manufactured by the steps (2-1) to (2-3) described above. Note that the manufacturing method of the exterior material 10 is not limited to the method of sequentially performing the steps (2-1) to (2-3). For example, the step (2-1) may be performed after performing the step (2-2).
  • Examples of the manufacturing method of the secondary battery 1 include a method having the following steps (3-1) to (3-4).
  • (3-1) A step of forming the molding portion 18 for arranging the battery element 20 on the exterior member 10 (see FIGS. 6 and 7).
  • (33-2) A step of placing the battery element 20 on the molding portion 18 of the exterior material 10 and pressurizing and heat-sealing the edge portion that overlaps the exterior material 10 and sandwiches the tab 30 (see FIGS. 7 and 3).
  • Step (3-1) As shown in FIGS. 6 and 7, the molding part 18 is formed with a mold so that the surface of the first exterior material 10A of the exterior material 10 on which the heat-sealing resin layer 16 is formed has a desired molding depth. Mold.
  • As a molding method deep drawing is performed from the heat-fusion resin layer 16 side to the base material layer 11 side using a mold having a female mold and a male mold having a gap equal to or greater than the thickness of the entire exterior material 10.
  • the exterior material 10 having a desired deep drawing amount is obtained.
  • Step (3-2) As shown in FIGS. 3 and 7, a battery element 20 composed of a positive electrode, a separator, a negative electrode, a separator, and the like is placed in the molding portion 18 of the exterior material 10, and a lead 31 and a tab joined to the positive electrode and the negative electrode The tab 30 formed from the sealant 40 is pulled out from the molding portion 18. Thereafter, the heat sealing resin layers 16 of the first exterior material 10A and the second exterior material 10B of the exterior material 10 are overlapped with each other, and the edges 10a and 10b sandwiching the tab 30 of the exterior material 10 are subjected to pressure thermal fusion. To do.
  • Pressurized heat fusion can be controlled under three conditions of temperature, pressure, and time, and is performed under conditions of moderate pressure by reliably dissolving at a temperature equal to or higher than the melting temperature of the heat fusion resin layer 16.
  • the first exterior fusion part 10c is formed on the first exterior material 10A by reducing the thickness of the first exterior material 10A.
  • a second exterior fusion part 10d is formed on the second exterior material 10B, and a film fusion part 40a is formed on the tab sealant 40, respectively.
  • Step (3-3) Next, as shown in FIG. 3, among the two sets of edge portions 10h and 10i that overlap in plan view other than the edge portions 10a and 10b that sandwich the tab 30, the same applies to one set of edge portions 10h and 10i. Pressurized heat fusion is performed. Thereafter, an electrolyte solution in which the electrolyte is dissolved is injected from the remaining set of edge portions 10h and 10i that remain without being thermally fused. After passing through the degassing step in aging, final pressure heat fusion is performed on the remaining set of edge portions 10h and 10i in a vacuum state so that air does not enter the inside.
  • the secondary battery 1 is manufactured through the steps (3-1) to (3-4) described above.
  • the manufacturing method of the secondary battery 1 is not limited to the above method.
  • step (3-4) can be omitted.
  • the fused portions 10C, 10d, and 40a are formed in the range R1 in which the tab sealant 40 is disposed.
  • a clearance gap does not arise between exterior material 10A, 10B and the tab sealant 40, but it can suppress that water vapor
  • the filling property of the end portion of the lead 31 can be improved.
  • the tab sealant 40 it is possible to secure an area where the exterior materials 10A, 10B and the tab sealant 40 are in contact with each other, and to improve the adhesion between the exterior materials 10A, 10B and the tab sealant 40.
  • the heat of fusion of the film fusion part 40a is larger than the heat of fusion of the part other than the film fusion part 40a. For this reason, the ratio of the crystal part becomes high and the structure becomes dense, and the water vapor barrier property can be improved by suppressing the water vapor from entering the secondary battery 1.
  • first exterior material 10A and the second exterior material 10B are connected to each other by the connecting portion and folded at the connecting portion.
  • the first exterior material 10A and the second exterior material 10B are not connected, and the first exterior material 10A and the second exterior material 10A are formed along the four edges of the exterior materials 10A and 10B formed in a rectangular shape.
  • a secondary battery may be formed by heat-sealing the outer packaging material 10B.
  • each of the exterior materials 10A and 10B is formed into a polygonal shape such as a hexagonal shape or an octagonal shape or a circular shape and overlaps each other. It may be formed.
  • Tab sealant A-1 Single layer film. (Acid-modified polypropylene resin, thickness 100 ⁇ m, heat of fusion 58 mJ / mg)
  • Tab sealant A-2 laminated film in which the innermost layer (acid-modified polypropylene resin, thickness 50 ⁇ m, heat of fusion 31 mJ / mg) and the outermost layer (polypropylene resin, thickness 50 ⁇ m, heat of fusion 58 mJ / mg) are laminated .
  • Tab sealant A-3 innermost layer (acid-modified polypropylene resin, thickness 40 ⁇ m, heat of fusion 31 mJ / mg), intermediate layer (polypropylene resin, thickness 20 ⁇ m, heat of fusion 58 mJ / mg), and outermost layer (polypropylene type) A laminated film in which a resin, a thickness of 40 ⁇ m, and a heat of fusion of 40 mJ / mg are laminated.
  • Tab sealant A-4 single layer film.
  • Tab sealant A-5 innermost layer (acid-modified polypropylene resin, thickness 40 ⁇ m, heat of fusion 25 mJ / mg), intermediate layer (polypropylene resin, thickness 20 ⁇ m, heat of fusion 40 mJ / mg), and outermost layer (acid-modified) A laminated film in which a polypropylene resin, a thickness of 40 ⁇ m, and a heat of fusion of 25 mJ / mg are laminated.
  • Tab sealant A-6 innermost layer (acid-modified polypropylene resin, thickness 40 ⁇ m, heat of fusion 95 mJ / mg), intermediate layer (polypropylene resin, thickness 20 ⁇ m, heat of fusion 97 mJ / mg), and outermost layer (acid-modified) A laminated film in which a polypropylene resin, a thickness of 40 ⁇ m, and a heat of fusion of 95 mJ / mg are laminated.
  • Lead B-1 Aluminum metal terminal. (Thickness 100 ⁇ m, width 12 mm, length 50 mm)
  • Treatment layer C-1 Treatment agent for coating type ceriazole treatment mainly composed of cerium oxide, phosphoric acid, and acrylic resin.
  • Exterior material D-1 base material layer 11 (polyamide film 25 ⁇ m), base material adhesive layer 12 (urethane resin adhesive), metal foil layer 13 (aluminum foil 40 ⁇ m), exterior material corrosion prevention treatment layer 14 (coating type)
  • a laminate comprising a treatment agent for ceriazole treatment), an adhesive resin layer 15 (maleic anhydride-modified polypropylene resin 20 ⁇ m), and a heat-sealing resin layer 16 (polypropylene film 40 ⁇ m).
  • Example 1 The treatment layer C-1 was applied to both sides of the lead B-1 and dried to form a corrosion prevention treatment layer.
  • the tab sealant A-1 cut in a size of 40 mm x 30 mm
  • the lead is folded from both sides so that the long side coincides with the width direction of the lead, the fusing temperature is 150 ° C, and the fusing time is A tab was prepared by heat-sealing in 10 seconds.
  • the exterior material D-1 was cut to a size of 80 mm ⁇ 70 mm, and the middle part of the short side was folded back to a size of 80 mm ⁇ 35 mm.
  • a tab prepared on one side of the short side is sandwiched, a fusion temperature of 180 ° C., a fusion surface pressure of 0.5 MPa, a fusion time of 3 seconds, a fusion width of 10 mm, and a thickness of the film fusion part of the tab sealant is 80 ⁇ m. It was made to heat-press so that it might become.
  • the long side was subjected to pressure heat fusion at a fusion temperature of 180 ° C., a fusion surface pressure of 0.5 MPa, a fusion time of 3 seconds, and a fusion width of 15 mm.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • the remaining one side was subjected to pressure heat fusion at a fusion temperature of 180 ° C., a fusion surface pressure of 0.5 MPa, a fusion time of 3 seconds, and a fusion width of 15 mm to prepare a sample for evaluation.
  • the amount of heat of fusion at the film fusion part of the tab sealant was 67 mJ / mg.
  • the heat of fusion at the film fusion part of the tab sealant was 67 mJ / mg, and the heat of fusion at the part other than the film fusion part in the tab sealant was changed with the value described in the item of the tab sealant A-1. Without being 58 mJ / mg.
  • Example 2 An evaluation sample was prepared in the same manner as in Example 1 except that Tab Sealant A-2 was used as the tab sealant.
  • the heat of fusion at the film fusion part of the tab sealant was 34 mJ / mg for the innermost layer and 65 mJ / mg for the outermost layer.
  • Example 3 An evaluation sample was prepared in the same manner as in Example 1 except that the tab sealant A-3 was used as the tab sealant.
  • the heat of fusion at the film-sealed portion of the tab sealant was 33 mJ / mg for the innermost layer, 64 mJ / mg for the intermediate layer, and 46 mJ / mg for the outermost layer.
  • Example 4 When the tab sealant A-3 is used as the tab sealant and the tab and the outer packaging material D-1 are heat-bonded under pressure, a fusion temperature of 170 ° C., a fusion surface pressure of 0.5 MPa, a fusion time of 3 seconds, A sample for evaluation was prepared in the same manner as in Example 1 except that it was heat-bonded with pressure of 10 mm.
  • the heat of fusion at the film fusion part of the tab sealant was 41 mJ / mg for the innermost layer, 67 mJ / mg for the intermediate layer, and 48 mJ / mg for the outermost layer.
  • Example 5 When the tab sealant A-3 is used as the tab sealant and the tab and the outer packaging material D-1 are heat-bonded under pressure, a fusion temperature of 180 ° C., a fusion surface pressure of 0.5 MPa, a fusion time of 3 seconds, A sample for evaluation was prepared in the same manner as in Example 1 except that it was subjected to pressure heat fusion so that the adhesion width was 10 mm and the thickness of the film fusion part of the tab sealant was 60 ⁇ m. The heat of fusion at the film fusion part of the tab sealant was 34 mJ / mg for the innermost layer, 65 mJ / mg for the intermediate layer, and 47 mJ / mg for the outermost layer.
  • Table 1 shows the evaluation results of the evaluation of water vapor barrier properties, insulation between the lead and the exterior material, lead end filling property, and adhesion between the tab sealant and the exterior material.
  • Examples 2 to 5 had a water content of less than 120% compared to Example 1, whereas Comparative Examples 1 to 4 had a water content of 120% or more.
  • Comparative Example 1 and Comparative Example 2 since the heat of fusion at the heat-sealed portion of the tab sealant is small and non-crystalline, it is considered that the water content is increased because water vapor is easily transmitted.
  • Comparative Example 3 it is thought that the filling property to an end part of a lead
  • the length of the tub sealant with respect to the direction of water vapor penetration is short and water vapor easily permeates, so the water content is considered to have increased.
  • the lead end portion fillability was obtained in Examples 1 to 5, Comparative Example 1 and Comparative Example 2, whereas in Comparative Example 3 and Comparative Example 4, the lead end portion was obtained. Insufficient filling.
  • Comparative Example 3 it is considered that the heat of fusion of the tab sealant was high, and the lead end portion was not filled because it was not sufficiently melted at the time of pressure thermal fusion.
  • Comparative Example 4 it is considered that the fillability deteriorated because the length of the tab sealant was shorter than the width of the fused portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明の二次電池は、正極及び負極を含む電池要素と、前記正極及び前記負極に接続され、外周面に樹脂フィルムが設けられた複数の金属端子と、少なくとも積層された金属箔層とポリオレフィン系樹脂から形成される熱融着樹脂層とを有し、第一の外装融着部、第二の外装融着部、フィルム融着部は、加圧しつつ熱融着することで、周辺領域より厚さが薄くなるように形成されており、JIS K 7122 により測定した前記フィルム融着部の融解熱量は、前記樹脂フィルムにおける前記フィルム融着部以外の部分の融解熱量よりも大きい。

Description

二次電池
 本発明は、二次電池に関する。
 本願は、2014年3月19日に日本に出願された特願2014-056758号に基づき優先権を主張し、その内容をここに援用する。
 近年、パソコン、携帯電話等の携帯端末装置、ビデオカメラ、衛星、車両等に用いられる蓄電デバイスとして、超薄型化、小型化の可能な二次電池が盛んに開発されている。このような電池に使用される外装材として、多層フィルムから形成されるラミネート外装材(例えば、基材層/第1接着層/金属箔層/第2接着層/熱融着樹脂層のような構成)が注目を集めている。多層フィルムから形成されるラミネート外装材は、従来の容器として用いられている金属製の缶とは異なり、軽量で、放熱性が高く、形状を自由に選択できる点で、金属製の缶よりも優れている。
 このような多層フィルムから形成される外装材を用いた二次電池から電力を供給するためには、正極及び負極に各々接続されたタブと呼ばれる金属端子部材が必要となる。タブは金属端子(リード)と、それを被覆する樹脂フィルム(タブシーラント)を有する。例えば、リチウムイオン二次電池では、正極のリードにはアルミニウム、負極のリードには銅が一般的に用いられる。タブシーラントはリードと外装材との間に介在される部材であり、以下のような性能が必要となる。
 まず、一点目にはリード及び外装材の両方との密着性を有することが挙げられる。外装材とタブシーラントとの密着は、タブシーラントを熱融着性樹脂で形成することによって確保することができる。またリードとタブシーラントとの密着は、タブシーラントに用いられるポリオレフィン樹脂を酸変性させることによって向上させることができる。更に、タブシーラントをリードに融着させる際には、リード端部に隙間なくタブシーラントを充填する必要がある。充填が不十分な場合、タブシーラントとリードとの間に隙間が生じ、内容物の漏れや剥離の発生の原因となる。
 また、二点目にはリードと外装材との絶縁性の確保が挙げられる。タブシーラントとリードとを熱融着させる際に、圧力や温度の条件によりタブシーラントが薄くなり絶縁性が確保できなくなる可能性がある。
 特に、リードの端部が最も薄くなりやすく、タブシーラントの一部を、メルトフローレートを低くして樹脂が流れにくくする、高融点の樹脂を用いて融解しにくくするなど対応する必要がある。
 二次電池に含まれる成分には、水が電池内に浸入すると反応して電池性能の劣化や、二次電池を構成する部材の腐食等の原因となる物質が含まれる。例えばリチウムイオン二次電池の場合、電解質として六弗化燐酸リチウムや四弗化硼酸リチウム等のリチウム塩が含まれており、これらは水と反応すると弗酸が生じ電池の腐食や劣化の原因となる。そこで、ラミネート外装材では金属箔層を含むように構成して、外装材表面から二次電池内への水蒸気の浸入を遮断している。
 また、タブに関してもタブシーラントから浸入する水蒸気を防ぐ方法が報告されている。例えば、特許文献1のタブシーラントは、ポリエチレンナフタレートフィルムの両面にポリオレフィン層を設けた構成を有している。これにより、絶縁性を確保しつつ、ポリエチレンテレフタレートよりも水蒸気バリア性が高い、ポリエチレンナフタレートフィルムを使用することで水蒸気の浸入を防いでいる。
日本国特許第4900418号公報
 特許文献1ではポリエチレンナフタレートを用いることで水蒸気バリア性を付与している。しかしながら、ポリオレフィン層に関しては水蒸気バリア性が規定されていない。そのため、ポリオレフィン層を通過して水蒸気が電池内部に浸入し、タブシーラント全体としては十分な水蒸気バリア性能が得られない恐れがある。
 そこで、本発明は上記問題を鑑み、樹脂フィルム全体での水蒸気バリア性を有し、かつ金属端子と外装材との絶縁性、金属端子端部の充填性、及び外装材との密着性を有する樹脂フィルムを含む二次電池を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の第一態様に係る二次電池は、正極及び負極を含む電池要素と、前記正極及び前記負極に接続され、外周面に樹脂フィルムが設けられた複数の金属端子と、少なくとも積層された金属箔層とポリオレフィン系樹脂から形成される熱融着樹脂層とを有し、前記熱融着樹脂層が内側となるように前記電池要素を挟む第一の外装材及び第二の外装材と、前記第一の外装材の第一の縁部と前記第二の外装材の第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記第一の外装材の第一の周辺領域よりも厚さが薄くなるように前記第一の外装材に形成された第一の外装融着部と、前記第一の外装材の前記第一の縁部と前記第二の外装材の前記第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記第二の外装材の第二の周辺領域よりも厚さが薄くなるように前記第二の外装材に形成された第二の外装融着部と、前記第一の外装材の前記第一の縁部と前記第二の外装材の前記第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記樹脂フィルムの第三の周辺領域よりも厚さが薄くなるように前記樹脂フィルムに形成され、前記第一の外装材と密着し、かつ前記第二の外装材と密着するフィルム融着部と、を有し、前記第一の縁部の端面に対する垂直方向において前記第一の外装融着部、前記第二の外装融着部、及び前記フィルム融着部がそれぞれ形成される位置は、前記第一の縁部の前記端面に対する前記垂直方向において前記樹脂フィルムが配置された範囲内であり、JIS K 7122により測定した前記フィルム融着部の融解熱量は、前記樹脂フィルムにおける前記フィルム融着部以外の部分の融解熱量よりも大きい。
 上記第一態様において、前記樹脂フィルムは、複数の層状体を積層して構成され、複数の前記層状体の少なくとも1つの前記フィルム融着部におけるJIS K 7122により測定した融解熱量が65mJ/mg以上であり、複数の前記層状体のうち、前記金属端子に最も近い層が最内層、前記金属端子から最も離間した層が最外層である場合、前記最内層及び最外層の前記フィルム融着部の融解熱量が、30mJ/mg以上100mJ/mg以下であってもよい。
 上記第一態様において、前記フィルム融着部の前記垂直方向の長さが3mm以上20mm以下であってもよい。
 上記第一態様において、複数の前記層状体の少なくとも1つにおいて、前記フィルム融着部以外の部分のJIS K 7122により測定した融解熱量が55mJ/mg以上であり、前記最内層及び前記最外層において、前記フィルム融着部以外の部分のJIS K 7122により測定した融解熱量が、25mJ/mg以上90mJ/mg以下であってもよい。
 上記第一態様において、複数の前記層状体の前記フィルム融着部のうち、JIS K 7122により測定した融解熱量が40mJ/mg以上である前記層状体の厚さの和は、前記樹脂フィルムの全体の厚さに対して20%以上80%以下であってもよい。
 上記第一態様において、前記樹脂フィルムにおいて、前記フィルム融着部の厚さが、前記フィルム融着部以外の部分の厚さに対し50%以上90%以下であってもよい。
 上記第一態様において、前記垂直方向に直交する基準面による前記金属端子の断面は矩形状に形成され、前記矩形の第一の辺は、前記第一の外装材の前記第一の縁部及び前記第二の外装材の前記第二の縁部が前記樹脂フィルムを挟持する狭持方向と平行となるように配置され、前記基準面による前記断面において、前記第一の辺に直交する直交方向の前記樹脂フィルムの長さがL、前記第一の辺の長さがL1、前記第一の辺に直交する第二の辺の長さがL2である場合、(1)式を満たしていてもよい。
 L1+2L2≦L≦2L1+2L2 ・・(1) 
 上記第一態様において、前記最内層には、酸変性されたポリオレフィン系樹脂が含まれ、複数の前記層状体における前記最内層以外の前記層状体には、酸変性されたポリオレフィンは含まれていなくてもよい。
 上記第一態様において、前記第一の外装材及び前記第二の外装材は、前記狭持方向に見たときに、それぞれが多角形である同一形状に形成されるとともに互いに重なり、前記第一の外装材の複数の縁部のうち前記第一の縁部以外の第三の縁部が折り曲げられていてもよい。
 本発明の上記態様によれば、樹脂フィルム全体での水蒸気バリア性を有し、かつ金属端子と外装材との絶縁性、金属端子端部の充填性、及び外装材との密着性を有する樹脂フィルムを含む二次電池を提供することができる。
本発明の一実施形態に係る二次電池の斜視図である。 本発明の一実施形態に係る二次電池のタブの断面図である。 本発明の一実施形態に係る二次電池における外装材の縁部が折り曲げられる前の平面図である。 本発明の一実施形態に係る二次電池の第一の外装材の断面図である。 本発明の一実施形態に係る二次電池の要部の断面図である。 本発明の一実施形態に係る二次電池の製造方法を説明する斜視図である。 本発明の一実施形態に係る二次電池の製造方法を説明する斜視図である。
 以下、本発明の一実施形態に係る二次電池を説明する。
 図1に示すように、本実施形態の二次電池1は、外装材10と、この外装材10内に収容された電池要素20と、この電池要素20の不図示の正極及び負極に接続されるとともに外装材10で挟持された一対のタブ30を備えている。外装材10の縁部は折り曲げられている。
 以下では、まずタブ30について説明する。
 図1及び図2に示すように、タブ30は、リード(金属端子)31と、リード31の外周面に設けられたタブシーラント(樹脂フィルム)40とを有している。
(リード31)
 リード31は、二次電池1の内部、すなわち電池要素20から電気を取り出す端子である。リード31は、所定の方向に延びる板状(軸状)に形成されている。図2に示すように、リード31の長手方向に直交する基準面S1によるリード31の断面は、矩形状に形成されている。
 二次電池1の内容物の漏れを防ぐ等のために、リード31の周縁部はタブシーラント40と密着している必要がある。
 リード31の材質は、接続される電池要素20内の図示しない集電体に合わせることが好ましい。例えば、二次電池1がリチウムイオン電池の場合では、正極の集電体にはアルミニウムが用いられているため、正極に接続されたリード31もアルミニウムを用いることが好ましい。負極の集電体には銅が用いられており、負極に接続されたリード31も銅を用いることが好ましい。
 また、耐食性の観点からリード31の表面にニッケルめっきを施していることが好ましい。正極に接続されたリード31は、電解液への耐食性から1N30等のアルミニウムの純度が97%以上であるアルミニウムを用いることが好ましい。タブ30と外装材10との熱融着部は屈曲させる場合もあるため、柔軟性を持たせる目的から焼鈍により調質したO材を用いることがより好ましい。
 リード31の厚さ(後述する狭持方向Xの長さ)は、電池のサイズ・容量によるが、小型では50μm(マイクロメートル)以上、蓄電・車載用途等では、100μm以上500μm以下である。リード31での電気抵抗を低減させる目的で、より厚いリードを用いてもよい。リード31の厚さに合わせ、タブシーラント40の厚さを適宜選択することが好ましい。
(腐食防止処理層32)
 腐食防止処理層32は、二次電池1に用いられる腐食成分によるリード31の腐食を防ぐ機能を有する。なお、腐食防止処理層32は、説明の便宜上図2及び図5のみに示している。
 例えば、二次電池がリチウムイオン電池の場合では、六弗化燐酸リチウムや四弗化硼酸リチウム等のリチウム塩、及びこれらリチウム塩と水との反応により生じる弗酸によるリード31の腐食を防ぐ必要がある。
 腐食防止処理層32は、塗布型、又は浸漬型の耐酸性の腐食防止処理剤により形成された皮膜であることが好ましい。腐食防止処理層32が前記皮膜であれば、リード31の酸に対する腐食の防止効果が向上する。前記皮膜は、例えば、酸化セリウムと燐酸塩と各種熱硬化性樹脂とを含む腐食防止処理剤によるセリアゾール処理、クロム酸塩、燐酸塩、弗化物、各種熱硬化性樹脂とを含む腐食防止処理剤によるクロメート処理等により形成できる。また、腐食防止処理層32は、リード31の耐食性が充分に得られる皮膜であれば、前記処理で形成した皮膜には限定されない。例えば、燐酸塩処理、ベーマイト処理等により形成してもよい。
 リード31とタブシーラント40とは、リード31の外周面の全周にわたり設けられた腐食防止処理層32を介して接着されている。
 ここで、タブシーラント40及び外装材10の構成の概要について説明し、続いて各構成の詳細を説明する。
 タブシーラント40は、図2に示すように、複数の層状体41、42、43を積層して構成された積層体からなることが好ましい。以下では、複数の層状体41、42、43のうち、リード31に最も近い層を最内層41、リード31から最も離間した層を最外層43、最内層41と最外層43との間に積層された層を中間層42と称する。なお、タブシーラント40に中間層42は備えられなくてもよい。
 外装材10は、図1に示すように、電池要素20を挟む第一の外装材10A及び第二の外装材10Bを有している。第一の外装材10Aの第一の縁部10aと第二の外装材10Bの第二の縁部10bとで、タブシーラント40を挟持している。
 ここで、第一の縁部10aの端面10fに垂直な方向を、垂直方向Zと規定する。この例では、垂直方向Zはリード31の長手方向に平行となる。
 外装材10A、10Bは、縁部10a、10b以外の縁部である第一の外装材10Aの第三の縁部10h、および第二の外装材10Bの第四の縁部10iを有する。第三の縁部10hおよび第四の縁部10iが折り曲げられる前には、図3に示す第一の外装材10Aの第一の縁部10a及び第二の外装材10Bの第二の縁部10bがタブシーラント40を挟持する狭持方向Xに見たときに(平面視において)、それぞれが矩形である同一形状に形成されるとともに互いに重なるように形成されている。
 第一の外装材10A及び第二の外装材10Bは、それぞれ矩形の4つの縁部を有する。これらの縁部のうちの1つが互いに連結部17により連結されることで一体に構成されている。そして、連結部17で折り返されることで、外装材10A、10Bが電池要素20を挟んでいる。第一の外装材10A及び第二の外装材10Bの構成は同一なので、以下では第一の外装材10Aについて説明する。
 第一の外装材10Aは、図4に示すように、基材層11、基材接着剤層12、金属箔層13、外装材腐食防止処理層14、接着樹脂層15、及び熱融着樹脂層16がこの順に積層される積層構造を有することが好ましい。なお、第一の外装材10Aにおいて、少なくとも金属箔層13及び熱融着樹脂層16が積層されていればよく、第一の外装材10Aにおいて、基材層11、基材接着剤層12、外装材腐食防止処理層14、及び接着樹脂層15を積層していなくてもよい。
 図5は、二次電池1の要部における、リード31の中心軸線C1を含むとともに狭持方向Xに平行な平面による断面図である。なお、図5では説明の便宜のため外装材10A、10Bのうち熱融着樹脂層16のみを示している。
 図3及び図5に示すように、第一の外装材10Aと第二の外装材10Bとは、連結部17に対向する第一の外装材10Aの第一の縁部10aと第二の外装材10Bの第二の縁部10bとの間にタブ30のタブシーラント40を挟持している。そして、外装材10A、10Bの連結部17以外の縁部、すなわち3つの縁部に沿って、公知の工具により外側から第一の外装材10Aと第二の外装材10Bとを挟むように加圧しつつ熱融着することで、第一の外装材10Aに第一の外装融着部10c、第二の外装材10Bに第二の外装融着部10d、タブシーラント40にフィルム融着部40aがそれぞれ形成されている。
 融着部10c、10d、40aの状態、具体的には厚さ等は、加圧熱融着時の温度、圧力、時間等の条件により制御することができる。
 第一の外装材10Aの第一の外装融着部10cは、第一の外装材10Aにおける第一の外装融着部10c以外の部分10j(第一の周辺領域)よりも厚さが薄くなった部分である。第二の外装材10Bの第二の外装融着部10dは、第二の外装材10Bにおける第二の外装融着部10d以外の部分10k(第二の周辺領域)よりも厚さが薄くなった部分である。そして、タブシーラント40のフィルム融着部40aは、タブシーラント40におけるフィルム融着部40a以外の部分10l(第三の周辺領域)よりも厚さが薄くなった部分である。
 図3に示す狭持方向Xに見たときに、第一の外装融着部10c、第二の外装融着部10d、及びフィルム融着部40aは同一の形状を有し、互いに重なる。
 図5に示す断面において、垂直方向Zにおける第一の外装融着部10cの長さ、第二の外装融着部10dの長さ、及びフィルム融着部40aの長さは、互いに等しい。
(最内層41)
 最内層41は、腐食防止処理層32が形成されたリード31とタブシーラント40との接着性を担う層であり、リード31とタブシーラント40を構成する樹脂との接着性を有することが必要となる。
 最内層41を構成する成分としては、ポリオレフィン系樹脂、ポリオレフィン系樹脂を酸変性した酸変性ポリオレフィン系樹脂が挙げられる。なかでも、リード31との接着性が向上することから、酸変性ポリオレフィン系樹脂(酸変性されたポリオレフィン系樹脂)が好ましい。すなわち、最内層41には、酸変性ポリオレフィン系樹脂が含まれていることが好ましい。
 ポリオレフィン系樹脂としては、例えば、低密度、中密度、高密度のポリエチレン;エチレン-αオレフィン共重合体、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、プロピレン-αオレフィン共重合体、又はこれらの酸変性物等が挙げられる。酸変性ポリオレフィンとしては、例えばポリオレフィンが不飽和カルボン酸や、その酸無水物、及び誘導体により酸変性されたポリオレフィン等が挙げられる。
 不飽和カルボン酸やその酸無水物、及び誘導体としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、及びこれらの酸無水物、モノ及びジエステル、アミド、イミド等が挙げられる。中でもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、無水マレイン酸が特に好ましい。
 不飽和カルボン酸や、その酸無水物、及び誘導体はポリオレフィンに対し、共重合していればよく、重合形式としては、ブロック共重合、ランダム共重合、グラフト共重合等が挙げられる。これら不飽和カルボン酸や、その酸無水物、及び誘導体は1種単独で用いてもよく、2種以上を併用してもよい。
 最内層41の厚さは10μm以上300μm以下が好ましく、20μm以上250μm以下がより好ましい。最内層41の厚さが10μm未満である場合には、リード31との熱融着時にリード31端部への樹脂の充填が不十分となる。また、最内層41の厚さが300μmを超える場合では熱融着時により多くの熱量が必要となり、また水蒸気バリア性の低下の原因となる。
 また、リード31端部への樹脂の充填性から、リード31の厚さに合わせて最内層41の厚さを設定することが好ましい。
(最外層43)
 最外層43は、タブシーラント40と外装材10A、10Bの熱融着樹脂層16とを接着する層である。最外層43を構成する成分としては、熱融着樹脂層16との接着性からポリオレフィン系樹脂、ポリオレフィン系樹脂を酸変性した酸変性ポリオレフィン系樹脂が挙げられ、水蒸気バリア性の観点からポリオレフィン系樹脂であることが好ましい。
 ポリオレフィン系樹脂、酸変性ポリオレフィン系樹脂としては、最内層41において例示したポリオレフィン系樹脂、酸変性ポリオレフィン系樹脂が挙げられる。タブシーラント40中の隣接する層(最内層41又は中間層42)、及び熱融着樹脂層16を構成する樹脂に合わせて最外層43の成分を選択することにより、それぞれとの密着性を向上させることができる。
 最外層43の厚さは10μm以上300μm以下が好ましく、20μm以上250μm以下がより好ましい。最外層43の厚さが10μm未満である場合には、リード31との熱融着時にリード31端部への樹脂の充填が不十分となる。最外層43の厚さが300μmを超える場合では、熱融着時により多くの熱量が必要となり、またコスト増の原因となる。
 最外層43の融点は最内層41の融点よりも高いことが好ましく、最外層43の融点と最内層41との融点との差が5℃以上であることがより好ましい。
 最外層43の融点が最内層41の融点よりも高い場合、リード31に最内層41を熱融着させる際に、最外層43が融解して樹脂が流動するのが抑制され、最外層43の形状を維持しやすくなる。
 最外層43のJIS K 7122により測定した融解熱量は、25mJ/mg以上90mJ/mg以下であることが好ましく、35mJ/mg以上85mJ/mg以下であることがより好ましい。
 最外層43の融解熱量が25mJ/mgより小さい場合では、リード31や外装材10との熱融着の際に最外層43の樹脂が融解しやすく、流動しすぎて最外層43の厚さを確保できない。また、結晶化具合が低く、水蒸気の透過量が増加してしまう。90mJ/mgを超える場合では、最外層43と外装材10との熱融着の際に、最外層43の樹脂が融解せず、十分な密着性が得られない。
 また、最外層43の融解熱量は、最内層41の融解熱量よりも大きいことが好ましい。
 この場合、リード31との熱融着時に最外層43が過度に流動せず形状が維持しやすい。
 最内層41及び最外層43において、フィルム融着部40a以外の部分のJIS K 7122により測定した融解熱量(融解熱)は、25mJ/mg以上90mJ/mg以下であることが好ましく、35mJ/mg以上85mJ/mg以下であることがより好ましい。
 融解熱量が25mJ/mgより小さい場合では、リード31や外装材10との熱融着の際に樹脂が融解しやすく、流動しすぎて最内層41や最外層43の厚さを確保できない。また、結晶化具合が低く、水蒸気の透過量が増加してしまう。融解熱量が90mJ/mgを超える場合では、リード31との熱融着の際に樹脂が融解せず、十分な密着性が得られなく、またリード31端部の十分な充填性が得られない。
(中間層42)
 タブシーラント40は最内層41と最外層43の間に、1層又は2層以上の層状体から形成される中間層42を含んでいてもよい。中間層42を構成する成分としては、最内層41と最外層43との密着性向上の目的から、ポリオレフィン系樹脂、ポリオレフィン系樹脂を酸変性した酸変性ポリオレフィン系樹脂が挙げられる。
 また、熱融着した際のタブシーラント40の膜厚確保を目的に、ポリエステルフィルム等の層を、接着剤を介して含んでいてもよい。ポリオレフィン系樹脂、酸変性ポリオレフィン系樹脂としては、最内層41において例示したポリオレフィン系樹脂、酸変性ポリオレフィン系樹脂が挙げられる。
 中間層42全体としての厚さは10μm以上200μm以下が好ましく、20μm以上120μm以下がより好ましい。中間層42全体としての厚さが10μm未満である場合には、絶縁性が確保できず、200μmを超える場合はコスト増の原因となる。
 複数の中間層42のうち少なくとも1層のJIS K 7122により測定した融解熱量は、55mJ/mg以上であることが好ましく、60mJ/mg以上であることがより好ましい。複数の中間層42のいずれの層も融解熱量が55mJ/mgより小さい場合では、リード31と外装材10との熱融着の際に樹脂が融解しやすく、流動しすぎて膜厚を確保できない。一方で、中間層42の融解熱量の上限値は特に限定されず、加圧熱融着時の密着性に影響を与えない範囲であればよい。
 また、複数の中間層42のうち少なくとも1層の融解熱量は、最内層41や最外層43の融解熱量と比較して大きい(高い)ことが好ましい。複数の中間層42のいずれか一層の融解熱量が上記条件を満たせば、タブシーラント40の厚さを確保しやすい。
 複数の層状体における最内層41以外の層状体、具体的には、中間層42及び最外層43には、酸変性されたポリオレフィンは含まれていないことが好ましい。
 このように構成されたタブシーラント40は、二次電池1を製造する際に、外装材10A、10Bの外装融着部10c、10dでリード31を挟持する際に、リード31と外装材10Aとの間、及びリード31と外装材10Bとの間に配置される。タブシーラント40は、リード31の外周面の全周にわたり設けられている。
 タブシーラント40が、ポリオレフィン系樹脂等の結晶性高分子から形成されることで、タブシーラント40の構造中には、結晶状態の結晶部と、結晶状態ではない非晶質とが含まれている。融解熱量の大きさは、結晶部の割合(結晶部と非晶質とを含むタブシーラント構造における結晶質の割合)の大きさに依存し、結晶部が多いほど融解熱量が大きくなる。
 タブシーラント40には、タブシーラント40とリード31との密着性、絶縁性、及び水蒸気バリア性が損なわれない範囲で、絶縁性を確保するための、融点が加圧熱融着温度以上である高融点物質や、外装融着部10c、10dから浸入した水分を細くするための水分吸収剤等が含まれていてもよい。
 タブシーラント40を構成する複数の層状体の少なくとも1層において、フィルム融着部40a以外の部分のJIS K 7122により測定した融解熱量は、55mJ/mg以上であることが好ましく、60mJ/mg以上であることがより好ましい。
 融解熱量が55mJ/mg未満では、水蒸気バリア性が低くなる。また、膜厚が保てず絶縁性が確保できない恐れがある。一方で、融解熱量の上限値は特に限定されず、加圧熱融着時の密着性に影響を与えない範囲であればよい。
 図5に示すように、融着部10c、10d、40aは、リード31の垂直方向Zとなる中心軸線C1に沿う方向において、タブシーラント40が配置された範囲R1内に形成されている。
 上記条件を満たさない場合、タブシーラント40の絶縁層としての機能が得られずリード31と金属箔層13とが接触し短絡してしまう。また二次電池1の内部への水蒸気バリア性が低下する。
(基材層11)
 基材層11は、二次電池1を製造する際のシール工程における耐熱性を付与し、加工や流通の際に起こりうるピンホールの発生を抑制する役割を果たす。また、エンボス成型時の金属箔層13の破断防止や、金属箔層13と他の金属との接触を防止する絶縁性等の役割を果たす。
 基材層11としては、例えば、ポリエステル樹脂や、ポリアミド樹脂、ポリオレフィン樹脂等の延伸又は未延伸フィルム等が上げられる。なかでも成型性、耐熱性、耐突き指し性、及び絶縁性を向上させる点から、2軸延伸ポリアミドや2軸延伸ポリエステル等が好ましい。
 基材層11は、1枚のフィルムである単一フィルムであってもよく、積層されたフィルムであってもよい。
 基材層11の厚さは、耐突き刺し性や、絶縁性、エンボス加工性等の点から、6μm以上50μm以下が好ましく、10μm以上40μm以下であることがより好ましい。基材層11の厚さが6μm以上であれば、耐ピンホール性、絶縁性が向上し、基材層11の厚さが50μm以下であれば、成型性が向上する。
(基材接着剤層12)
 基材接着剤層12は、図4に示すように、基材層11と金属箔層13との間に形成される。基材接着剤層12は、基材層11と金属箔層13を強固に接着するのに必要な密着力を有する。
 また、基材接着剤層12は、エンボス成型時の基材層11による金属箔層13の破断を保護するために追随性を有する。基材接着剤層12としては、ポリエステルポリオールや、ポリエーテルポリオール、アクリルポリオール等を主剤とし、芳香族系や脂肪族系のイソシアネートを硬化剤とした2液硬化型接着剤を使用することができる。
 基材接着剤層12の厚さは、接着強度や、追随性、加工性等の点から、0.5μm以上10μm以下が好ましく、1μm以上5μm以下がより好ましい。
(金属箔層13)
 金属箔層13は、基材接着剤層12と接着樹脂層15との間に形成される。金属箔層13は、水分が電池内に浸入するのを防止する水蒸気バリア性を有する。また、金属箔層13は、深絞り成型をするために延展性を有する。金属箔層13としては、アルミニウム、ステンレス鋼等の各種金属箔を使用することができ、重量(比重)、防湿性、加工性、及びコストの面から、アルミニウム箔が好ましい。
 金属箔層13となるアルミニウム箔としては、公知の軟質アルミニウム箔が使用でき、耐ピンホール性、及び成型時の延展性の点から、鉄を含むアルミニウム箔が好ましい。アルミニウム箔(100質量%)中の鉄の含有量は、アルミニウム箔の全質量100質量%に対して、0.1質量%以上9.0質量%以下が好ましく、0.5質量%以上2.0質量%以下がより好ましい。鉄の含有量が下限値(0.1質量%)以上であれば耐ピンホール性、延展性が向上する。鉄の含有量が上限値(9.0質量%)以下であれば、柔軟性が向上する。
 金属箔層13の厚さは、バリア性、耐ピンホール性、及び加工性の点から、10μm以上100μm以下が好ましく、15μm以上80μm以下がより好ましい。
(外装材腐食防止処理層14)
 外装材腐食防止処理層14は、金属箔層13の熱融着樹脂層16に近い面に形成される。外装材腐食防止処理層14は、例えば、リチウムイオン電池の場合では、電解質と水分の反応により発生する弗酸による金属箔層13表面の腐食を防止する。
 また、外装材腐食防止処理層14は、腐食防止機能に加えて、接着樹脂層15や基材接着剤層12とのアンカー層として機能も有する。外装材腐食防止処理層14の形成には、例えば、クロム酸塩、燐酸塩、弗化物、及び各種熱硬化性の樹脂を含む腐食防止処理剤であるクロメート処理、希土類元素酸化物(例えば酸化セリウム等)、燐酸塩、及び各種熱硬化性の樹脂を含む腐食防止処理剤であるセリアゾール処理等を使用することができる。
 外装材腐食防止処理層14は、金属箔層13の耐食性を満たす皮膜であれば、上記処理で形成した皮膜には限定されず、例えば、燐酸塩処理、ベーマイト処理等を使用してもよい。また、外装材腐食防止処理層14は、単層であることに限定されず、腐食防止機能をもつ皮膜上にオーバーコート剤として樹脂をコーティングする等2層以上で耐食性を有する構成を採用してもよい。
 外装材腐食防止処理層14の厚さは、腐食防止機能及びアンカーとしての機能の点から、5nm(ナノメートル)以上1μm以下が好ましく、10nm以上200nm以下がより好ましい。
(接着樹脂層15)
 接着樹脂層15は、熱融着樹脂層16と、外装材腐食防止処理層14が形成された金属箔層13とを接着する層である。接着樹脂層15は作成方法により熱ラミネート構成とドライラミネート構成とに大きく分類される。
 接着樹脂層15を押出ラミネートで作成する熱ラミネート構成の場合には、その成分は熱可塑性樹脂が好ましく、例えば、ポリオレフィン系樹脂、エラストマー樹脂、ポリオレフィン系樹脂を酸変性させた酸変性エラストマー樹脂が挙げられる。なかでも金属箔層13との優れた接着性から、酸変性ポリオレフィン系樹脂が好ましい。
 酸変性ポリオレフィン系樹脂としては、最内層41において例示したポリオレフィン系樹脂が挙げられる。ポリオレフィン系樹脂及び酸変性ポリオレフィン系樹脂は、電解液耐性に優れている。また、エラストマー樹脂としては、SEBS(ポリスチレン/ポリエチレン/ポリブチレン/ポリスチレン)、SBS(ポリスチレン/ポリブタジエン/ポリスチレン)、SEPS(ポリスチレン/ポリエチレン/ポリプロピレン/ポリスチレン)、SEP(ポリスチレン/ポリエチレン/ポリプロピレン)、SIS(ポリスチレン/ポリイソプレン/ポリスチレン)共重合体等が挙げられる。
 これらエラストマー樹脂を酸変性ポリオレフィン系樹脂に添加することにより、冷間成型時のクラックによる延伸白化耐性や、濡れ性改善による密着力や異方性低減による製膜性、ヒートシール強度等の特性も改善することができる。
 また、接着樹脂層15をドライラミネート構成で作成する際は、接着剤が用いられる。
 具体的には、接着樹脂層15に適用される接着剤としては、酸変性ポリオレフィンを挙げることができる。酸変性ポリオレフィン系樹脂としては、最内層41において例示したポリオレフィン系樹脂が挙げられる。
 接着樹脂層15の厚さは熱ラミネート構成の場合では8μm以上30μm以下が好ましく、10μm以上20μm以下がより好ましい。接着樹脂層15の厚さが8μm以上であれば、十分な接着強度が得られやすく、30μm以下であれば、シール端面から電池内部に透過する水分量を低減しやすい。
 また、接着樹脂層15をドライラミネート構成で作成する場合では、接着樹脂層15の厚さは1μm以上5μm以下であることが好ましい。厚さが1μm未満では、密着力が低下するため、ラミネート強度が得られない。一方で、厚さが5μmを超える場合では、接着樹脂層15の膜が厚くなることで、膜割れが発生しやすくなる。接着樹脂層15の厚さが1μm以上5μm以下の範囲内にあることで、熱融着樹脂層16と外装材腐食防止処理層14とを強固に密着させることができる。
(熱融着樹脂層16)
 熱融着樹脂層16は、外装材腐食防止処理層14上に接着樹脂層15を介して形成される。接着樹脂層15上に熱融着樹脂層16が積層されることで、外装材10A、10Bの熱融着樹脂層16同士を向かい合わせにし、熱融着樹脂層16の融解温度以上で加圧熱融着することにより、密閉することができる。
 熱融着樹脂層16としては、ポリオレフィン樹脂が挙げられる。ポリオレフィン樹脂としては、低密度、中密度、高密度のポリエチレン、ホモ、ブロック又はランダムポリプロピレン等が挙げられる。また、前記のポリオレフィンにアクリル酸やメタクリル酸等の極性分子を共重合した共重合体、架橋ポリオレフィン等のポリマー等が挙げられ、分散、共重合等を実施した樹脂を採用することができる。
 これらポリオレフィン樹脂は、1種類を単独で使用してもよく、2種類以上を併用してもよい。熱融着樹脂層16は、前記した各種樹脂が混合されたフィルムにより形成してもよい。また熱融着樹脂層16は、単層フィルムであってもよく、多層フィルムであってもよい。
 熱融着樹脂層16は、スリップ剤や、アンチブロッキング剤、帯電防止剤、造核剤、顔料、染料等の各種添加剤が含有されていてもよい。これらの添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 熱融着樹脂層16の厚さは、20μm以上90μm以下が好ましい。熱融着樹脂層16の厚さが20μm未満の場合、十分なラミネート強度を確保できず、90μmを超える場合は、水蒸気の透過量が多くなってしまう。
 外装材10A、10Bは、熱融着樹脂層16が内側となるように電池要素20を挟んでいる。図2に示すように、リード31は、狭持方向Xと矩形の第一の辺31aとが平行となるように配置されている。
 図5に示すように、第一の外装融着部10cとフィルム融着部40aとが密着され、第二の外装融着部10dとフィルム融着部40aとが密封されている。
 図2に示す基準面S1による断面において、矩形の第一の辺31aに直交する直交方向Yのタブシーラント40の長さをL、矩形の第一の辺31aの長さをL1、矩形の第一の辺31aに直交する第二の辺31bの長さをL2としたときに、(2)式を満たすことが好ましい。
 L1+2L2≦L≦2L1+2L2 ・・(2)
 長さLが(L1+2L2)の値よりも小さい場合には、タブシーラント40の長さがリード31に対し十分な長さがない。そのため、タブシーラント40とリード31との加圧熱融着時にタブシーラント40とリード31との間に隙間が生じ、十分な密着が得られなくなる。
 また、長さLが(2L1+2L2)の値よりも大きい場合には、タブシーラント40が余分に長い。そのため、融着部10c、10d、40aの端部膜厚が厚くなり、その分水蒸気が内部へ浸入しやすくなり水蒸気バリア性が低下する。
 JIS K 7122により測定したタブシーラント40のフィルム融着部40aの融解熱量は、タブシーラント40におけるフィルム融着部40a以外の部分の融解熱量よりも大きい(高い)ことが好ましく、10mJ/mg以上大きいことがより好ましい。
 フィルム側融着部40aの融解熱量が大きいことにより、前述の結晶部の割合が高くなり水蒸気バリア性が向上する。
 また、タブシーラント40を構成する複数の層状体の少なくとも1層のフィルム融着部40aにおけるJIS K 7122により測定した融解熱量は、65mJ/mg以上であることが好ましく、70mJ/mg以上であることがより好ましい。最内層41及び最外層43のフィルム融着部40aの融解熱量は、30mJ/mg以上100mJ/mg以下であることが好ましく、35mJ/mg以上85mJ/mg以下であることがより好ましい。
 フィルム融着部40aの融解熱量が65mJ/mg未満である場合では、水蒸気バリア性が十分に得られない。一方で、融解熱量の上限値は特に限定されず、加圧熱融着時の密着性に影響を与えない範囲であればよい。また、最内層41及び最外層43のフィルム融着部40aの融解熱量が30mJ/mg未満の場合は、樹脂が融解しやすく、流動しすぎて膜厚を確保できない。また、結晶化具合が低く、水蒸気の透過量が増加してしまう。一方で、融解熱量が100mJ/mgを越える場合では、衝撃や屈曲によりクラックが生じやすくなる。
 タブシーラント40の複数の層状体のフィルム融着部40aのうち、JIS K 7122により測定した融解熱量が40mJ/mg以上である層状体の厚さの和は、タブシーラント40の全体の厚さに対して20%以上80%以下であることが好ましい。
 例えば、タブシーラント40が2層の層状体から構成され、第一の層状体の融解熱量が30mJ/mg、厚さが70μmであり、第二の層状体の融解熱量が50mJ/mg、厚さが30μmの場合を説明する。この場合、融解熱量が40mJ/mg以上である層状体は第二の層状体だけであり、融解熱量が40mJ/mg以上である層状体の厚さの和は第二の層状体の厚さの30μmとなる。一方で、タブシーラント40の全体の厚さは、全層状体の厚さの和で100μmとなる。上記割合(タブシーラント40の全体の厚さに対する融解熱量が40mJ/mg以上である層状体の厚さの和の割合)は、(3)式から30%となる。
 30/100×100=30(%) ・・(3)
 上記割合が20%未満の場合では、タブシーラント40の結晶部の割合が低く水蒸気バリア性が低下する。一方で、80%を超える場合では、結晶部の割合が高くなり、衝撃や屈曲によりクラックが生じやすくなる。
 図5に示すように、タブシーラント40において、フィルム融着部40aの厚さL6が、フィルム融着部40a以外の部分の厚さL7に対して50%以上90%以下であることが好ましく、60%以上85%以下であることがより好ましい。
 厚さの比が50%よりも低い場合には、十分な膜厚が確保されず、絶縁性が得られない。一方で、厚さの比が90%を超える場合では、フィルム融着部40aの端部膜厚が厚くなり、水蒸気バリア性が低下する。
 フィルム融着部40aのリード31の垂直方向Zの長さは3mm以上20mm以下であることが好ましく、5mm以上15mm以下であることがより好ましい。
 この長さが3mm未満では、水蒸気の浸入量が増加する。一方で、この長さが20mmを超える場合では、二次電池1の体積が増し、二次電池設置のためにより多くの場所が必要になる。
 図1に示すように、第一の外装材10Aの複数の縁部のうち第一の縁部10a以外の第三の縁部10h、および第二の外装材10Bの複数の縁部のうち第二の縁部10b以外の第四の縁部10iは、第一の外装材10Aに形成された成形部18の方向へ折り曲げられて折返し部19を形成している。互いに融着している第三の縁部10hおよび第四の縁部10iが一体となって折り曲げられている。
 外装材10A、10Bの縁部を折り曲げることによって、外装融着部10c、10dの幅を確保しつつ体積を小さく抑えることができ、水蒸気バリア性を得ることができる。
 電池要素20は、図示はしないが、正極や、セパレーター、負極、セパレーター等から構成される。第一の外装材10Aの成形部18に電池要素20が収容され、電池要素20の正極及び負極に接続された一対のタブ30を、外装材10A、10Bで挟持しつつ、密封している。
[タブ30の製造方法]
 次に、以上のように構成された二次電池1におけるタブ30の製造方法について説明する。ただし、タブ30の製造方法は以下の方法に限定されない。
 タブ30の製造方法としては、例えば、下記工程(1-1)及び(1-2)を有する方法が挙げられる。
(1-1)タブシーラント40を成形する工程。
(1-2)タブシーラント40をリード31に熱融着させる工程。
工程(1-1)
 タブシーラント40を押出成形によって作成する。成形方法としては、Tダイによる押出成形や、リングダイによるインフレーション成形等が挙げられ、中でもインフレーション成形が好ましい。
 押出温度は180℃以上300℃以下であることが好ましい。押出温度が180℃よりも低い場合では、樹脂の融解が不十分でありスクリューからの押出が不安定となる。押出温度が300℃よりも高い場合には、樹脂の酸化等による劣化が激しくなり品質が劣る。スクリューの回転数、ブロー比、及び引取り速度は、タブシーラント40の設定膜厚により適宜選択することが好ましい。また、最内層41、最外層43、及び中間層42の膜厚比は、スクリューの回転数により変化させることができる。
工程(1-2)
 加熱により最内層41を融解させると共に加圧を行い、タブシーラント40をリード31の両面に密着させる。加圧熱融着を行う際には、タブシーラント40の膜厚を確保するために最内層41のみを融解させ、最外層43は融解させず形状を維持させる必要がある。
 また、十分な剥離強度を得るために、最内層41の融点温度以上の加熱温度が必要となる。最内層41の融解熱量が最外層43の融解熱量よりも小さい場合、適宜加熱温度、加熱時間を設定することによって、最外層43の形状を保持しつつ、最内層41とリード31との十分な密着性を得ることができる。加熱、加圧時間も、剥離強度と生産性とを考慮して決定する必要がある。融解温度差が大きいほど、また融解熱量差が大きいほど、加熱温度を大きくし加熱時間を短くできる等、生産性が向上する。
 以上説明した工程(1-1)及び(1-2)により、タブ30が製造される。
[外装材10の作成方法]
 以下、上述の外装材10の製造方法について説明する。
 外装材10の製造方法としては、例えば、下記工程(2-1)~(2-3)の方法が挙げられる。
(2-1)金属箔層13上の片面に、外装材腐食防止処理層14をグラビアコートで形成する工程。
(2-2)金属箔層13の外装材腐食防止処理層14が形成された面と反対の面に、基材接着剤層12を介して基材層11を、ドライラミネート法を使用して貼り合わせ、積層体(外装材腐食防止処理層14/金属箔層13/基材接着剤層12/基材層11)を作製する工程。
(2-3)金属箔層13の基材層11が形成された面とは反対の面に、接着樹脂層15を介して熱融着樹脂層16を貼りあわせ、外装材10(熱融着樹脂層16/接着樹脂層15/外装材腐食防止処理層14/金属箔層13/基材接着剤層12/基材層11)を作製する工程。
工程(2-1)
 金属箔層13の片面に、腐食防止処理剤を塗布後、焼付けを行って外装材腐食防止処理層14を形成する。このときに、金属箔層13の片面だけでなく、両面に腐食防止処理を行うことができる。腐食防止処理剤の塗工方法は特に限定されず、例えば、グラビアコートや、グラビアリバースコート、ロールコート、リバースロールコート、ダイコート、バーコート、キスコート、コンマコート等が挙げられる。
工程(2-2)
 金属箔層13の外装材腐食防止処理層14が形成された面と反対の面に、基材接着剤層12を介して基材層11をドライラミネート法で貼り合わせ、積層体(外装材腐食防止処理層14/金属箔層13/基材接着剤層12/基材層11)を作製する。
 基材接着剤層12の塗工方法は特に限定されず、例えば、グラビアコートや、グラビアリバースコート、ロールコート、リバースロールコート、ダイコート、バーコート、キスコート、コンマコート等が挙げられる。
 工程(2-2)では、硬化反応促進や結晶化の安定化のために、20℃以上100℃以下の範囲でエージング(養生)処理を行うことが好ましい。20℃未満では硬化反応が促進されず、100℃より高い場合では、基材層11が劣化してしまい、成型性が低下してしまう。
工程(2-3)
 積層体を用いて外装材10を製造する工程(2-3)においては、接着樹脂層15の作成方法により熱ラミネート構成とドライラミネート構成とに大きく分類される。
 熱ラミネート構成では、更にドライプロセスとウェットプロセスとが挙げられる。
 ドライプロセスの場合は、前記積層体の外装材腐食防止処理層14上に接着樹脂を押出ラミネートし、さらにインフレーション法又はTダイ押出法により得られる熱融着樹脂層16を形成するフィルムを積層する。その後、外装材腐食防止処理層14と接着樹脂層15との密着性を向上させる目的で、熱処理(エージング処理や、熱ラミネーション等)を施してもよい。また、インフレーション法又はキャスト法にて、接着樹脂層15と熱融着樹脂層16とが積層された多層フィルムを作成し、該多層フィルムを前記積層体上に熱ラミネーションにより積層することで、接着樹脂層15を介して熱融着樹脂層16を積層してもよい。
 ウェットプロセスの場合は、酸変性ポリオレフィン系樹脂等の接着樹脂のディスパージョンタイプの接着樹脂液を前記積層体の外装材腐食防止処理層14上に塗工する。その後、接着樹脂の融点以上の温度で溶媒を揮発させ、接着樹脂を溶融軟化させて焼き付けを行った後、熱融着樹脂層16を熱ラミネーション等の熱処理により積層する。
 ドライラミネート構成では、前記積層体の金属箔層13の外装材腐食防止処理層14を形成した面に、接着樹脂層15を塗工し、オーブンで溶剤を乾燥させる。その後、熱融着樹脂層16をドライラミネーションで熱圧着させることで外装材10を作製する。
 接着樹脂層15の塗工方法は特に限定されず、例えば、グラビアコートや、グラビアリバースコート、ロールコート、リバースロールコート、ダイコート、バーコート、キスコート、コンマコート等が挙げられる。
 工程(2-3)では、硬化反応促進や結晶の安定化のために、20℃以上100℃以下の範囲でエージング(養生)処理を行うことが好ましい。20℃未満では硬化反応が促進されず、100℃より高い場合では、基材層11が劣化してしまい、成型性が低下してしまう。
 以上説明した工程(2-1)~(2-3)により、外装材10が製造される。
 なお、外装材10の製造方法は、前記工程(2-1)~(2-3)を順次実施する方法に限定されない。例えば、工程(2-2)を行ってから工程(2-1)を行ってもよい。
[二次電池1の作成方法]
 以下、二次電池1の製造方法について、実施形態の一例を示して説明する。二次電池1の製造方法としては、例えば、下記工程(3-1)~(3-4)を有する方法が挙げられる。
(3-1)外装材10に電池要素20を配置するための成形部18を形成する工程(図6及び図7参照)。
(3-2)外装材10の成形部18に電池要素20を配置し、外装材10を重ねてタブ30を挟持する縁部を加圧熱融着する工程(図7及び図3参照)。
(3-3)タブ30を挟持する縁部10a、10bを残し、1組の縁部10h、10iを加圧熱融着する、その後、残った1組の縁部10h、10iから電解液を注入し、真空状態で加圧熱融着する工程(図3参照)。
(3-4)縁部10a、10b以外の加圧熱融着辺端部をカットし、成形部18側に折り曲げる工程(図1参照)。
工程(3-1)
 図6及び図7に示すように、外装材10の第一の外装材10Aの熱融着樹脂層16が形成された面が、所望の成型深さになるように金型で成形部18を成型する。成型方法としては、外装材10全体の厚さ以上のギャップを有する雌型と雄型とを有する金型を用い、熱融着樹脂層16側から基材層11側に向かって深絞り成型をすることで、所望の深絞り量を持つ外装材10が得られる。
工程(3-2)
 図3及び図7に示すように、外装材10の成形部18に、正極や、セパレーター、負極、セパレーター等から構成される電池要素20を入れ、正極と負極とに接合されたリード31及びタブシーラント40から形成されるタブ30を成形部18から外に引き出す。
 その後、外装材10の第一の外装材10A及び第二の外装材10Bの熱融着樹脂層16同士を重ね、外装材10のタブ30を挟持する縁部10a、10bを加圧熱融着する。加圧熱融着は、温度、圧力、及び時間の3条件で制御でき、熱融着樹脂層16の融解温度以上で確実に溶解させ、適度な圧力の条件で行われる。
 このとき、第一の外装材10Aの厚さが薄くなることで第一の外装材10Aに第一の外装融着部10cが形成される。同様に、第二の外装材10Bに第二の外装融着部10dが、タブシーラント40にフィルム融着部40aが、それぞれ形成される。
工程(3-3)
 次に、図3に示すように、タブ30を挟持する縁部10a、10b以外の平面視で重なる2組の縁部10h、10iのうち、1組の縁部10h、10iに対して同様に加圧熱融着を行う。その後、熱融着せずに残った残りの1組の縁部10h、10iから電解質を溶解させた電解液を注入する。
 エージングでのデガス工程を経たのち、空気が内部に入らないように、真空状態で、残りの1組の縁部10h、10iに対して最終加圧熱融着を行う。
工程(3-4)
 タブ30を挟持する縁部10a、10b以外の縁部10h、10iの融着部10c、10d、40aの端部をカットし、端部からははみだした熱融着樹脂層16を除去する。その後、図1に示すように、外装材10A、10Bの縁部10h、10iを成形部18側に折返し(折り曲げ)、折返し部19を形成することで、二次電池1が製造される。
 以上説明した工程(3-1)~(3-4)により、二次電池1が製造される。
 ただし、二次電池1の製造方法は上記の方法には限定されない。例えば、工程(3-4)を省略することもできる。
 以上説明したように、本実施形態の二次電池1によれば、垂直方向Zにおいて、タブシーラント40が配置された範囲R1内に、融着部10C、10d、40aが形成されている。
 これにより、外装材10A、10Bとタブシーラント40との間に隙間が生じず、二次電池1の内部に水蒸気が浸入するのを抑えて水蒸気バリア性を高めることができる。また、外装材10A、10Bの金属箔層13とリード31とが電気的に接触するのを抑制し、リード31と外装材10A、10Bとの絶縁性を維持することができる。
 リード31の外周面をタブシーラント40で覆うことで、リード31端部の充填性を高めることができる。外装材10A、10Bとタブシーラント40とが接触する面積を確保して、外装材10A、10Bとタブシーラント40との密着性を高めることができる。
 また、タブシーラント40においてフィルム融着部40aの融解熱量はフィルム融着部40a以外の部分の融解熱量よりも大きい。このため、結晶部の割合が高くなって構造が密になり、二次電池1の内部に水蒸気が浸入するのを抑えて水蒸気バリア性を高めることができる。
 以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、前記実施形態では、外装材10は第一の外装材10Aと第二の外装材10Bとが連結部により連結されていて、この連結部で折り返される場合を説明した。しかし、第一の外装材10Aと第二の外装材10Bとが連結されていなく、矩形状に形成された外装材10A、10Bの4つの縁部に沿って第一の外装材10Aと第二の外装材10Bとを熱融着することで二次電池を構成してもよい。
 また、狭持方向Xに見たときに外装材10A、10Bはそれぞれが矩形状に形成される場合を説明した。しかし、外装材10A、10Bの形状はこれに限られず、狭持方向Xに見たときにそれぞれが6角形状や8角形状等の多角形状や、円形状に形成されるとともに互いに重なるように形成されていてもよい。
 以下、実施例によって本発明の詳細を説明するが、本発明は以下の記載によっては限定されない。
[使用材料]
 本実施例に使用した材料を以下に示す。
(タブシーラント40)
 タブシーラントA-1:単層フィルム。(酸変性ポリプロピレン系樹脂、厚さ100μm、融解熱量58mJ/mg)
 タブシーラントA-2:最内層(酸変性ポリプロピレン系樹脂、厚さ50μm、融解熱量31mJ/mg)、及び最外層(ポリプロピレン系樹脂、厚さ50μm、融解熱量58mJ/mg)が積層された積層フィルム。
 タブシーラントA-3:最内層(酸変性ポリプロピレン系樹脂、厚さ40μm、融解熱量31mJ/mg)、中間層(ポリプロピレン系樹脂、厚さ20μm、融解熱量58mJ/mg)、及び最外層(ポリプロピレン系樹脂、厚さ40μm、融解熱量40mJ/mg)が積層された積層フィルム。
 タブシーラントA-4:単層フィルム。(酸変性ポリプロピレン系樹脂、厚さ100μm、融解熱量25mJ/mg)
 タブシーラントA-5:最内層(酸変性ポリプロピレン系樹脂、厚さ40μm、融解熱量25mJ/mg)、中間層(ポリプロピレン系樹脂、厚さ20μm、融解熱量40mJ/mg)、及び最外層(酸変性ポリプロピレン系樹脂、厚さ40μm、融解熱量25mJ/mg)が積層された積層フィルム。
 タブシーラントA-6:最内層(酸変性ポリプロピレン系樹脂、厚さ40μm、融解熱量95mJ/mg)、中間層(ポリプロピレン系樹脂、厚さ20μm、融解熱量97mJ/mg)、及び最外層(酸変性ポリプロピレン系樹脂、厚さ40μm、融解熱量95mJ/mg)が積層された積層フィルム。
(リード31)
 リードB-1:アルミニウム製金属端子。(厚さ100μm、幅12mm、長さ50mm)
(腐食防止処理層32)
 処理層C-1:酸化セリウム、燐酸、及びアクリル系樹脂を主体とした塗布型セリアゾール処理用の処理剤。
(外装材10)
 外装材D-1:基材層11(ポリアミドフィルム25μm)、基材接着剤層12(ウレタン樹脂系接着剤)、金属箔層13(アルミニウム箔40μm)、外装材腐食防止処理層14(塗布型セリアゾール処理用の処理剤)、接着樹脂層15(無水マレイン酸変性ポリプロピレン系樹脂20μm)、及び熱融着樹脂層16(ポリプロピレンフィルム40μm)が順に積層された積層体。
 次に、実施例及び比較例の製造方法について説明する。
(実施例1)
 リードB-1の両面に処理層C-1を塗布、乾燥して、腐食防止処理層を形成した。
 次に、40mm×30mmサイズでカットしたタブシーラントA-1でリードを両面から、長辺がリードの幅方向と一致するように、長辺を折って挟み、融着温度150℃、融着時間10秒で加熱融着することによりタブを作成した。
 外装材D-1を80mm×70mmサイズでカットし、短辺の中間部を折り返して80mm×35mmサイズとした。短辺のうち一辺に作成したタブを挟持させ、融着温度180℃、融着面圧0.5MPa、融着時間3秒、融着幅10mm、タブシーラントのフィルム融着部の厚さが80μmとなるように加圧熱融着させた。
 その後、長辺を融着温度180℃、融着面圧0.5MPa、融着時間3秒、融着幅15mmで加圧熱融着した。次いで、残った短辺から含有水分量を20ppm以下に押さえたエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)を重量比で1対1対1に混合した電解液を3mg注入した後、残った1辺を融着温度180℃、融着面圧0.5MPa、融着時間3秒、融着幅15mmで加圧熱融着して評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は67mJ/mgであった。
 この実施例では、タブシーラントのフィルム融着部の融解熱量は67mJ/mg、タブシーラントにおけるフィルム融着部以外の部分の融解熱量は、タブシーラントA-1の項目に記載した値のままで変わらずに58mJ/mgである。
(実施例2)
 タブシーラントとしてタブシーラントA-2を用いたこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は34mJ/mg、最外層は65mJ/mgであった。
(実施例3)
 タブシーラントとしてタブシーラントA-3を用いたこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は33mJ/mg、中間層は64mJ/mg、最外層は46mJ/mgであった。
(実施例4)
 タブシーラントとしてタブシーラントA-3を用い、タブと外装材D-1とを加圧熱融着させる際に、融着温度170℃、融着面圧0.5MPa、融着時間3秒、融着幅10mmで加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は41mJ/mg、中間層は67mJ/mg、最外層は48mJ/mgであった。
(実施例5)
 タブシーラントとしてタブシーラントA-3を用い、タブと外装材D-1とを加圧熱融着させる際に、融着温度180℃、融着面圧0.5MPa、融着時間3秒、融着幅10mm、タブシーラントのフィルム融着部の厚さが60μmとなるように加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は34mJ/mg、中間層は65mJ/mg、最外層は47mJ/mgであった。
(比較例1)
 タブシーラントとしてタブシーラントA-4を用い、タブと外装材D-1とを加圧熱融着させる際に、融着温度200℃、融着面圧0.5MPa、融着時間3秒、融着幅10mmで加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は24mJ/mgであった。
(比較例2)
 タブシーラントとしてタブシーラントA-5を用い、タブと外装材D-1とを加圧熱融着させる際に、融着温度200℃、融着面圧0.5MPa、融着時間3秒、融着幅10mmで加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は24mJ/mg、中間層は40mJ/mg、最外層は24mJ/mgであった。
(比較例3)
 タブシーラントとしてタブシーラントA-6を用い、タブと外装材D-1とを加圧熱融着させる際に、融着温度200℃、融着面圧0.5MPa、融着時間3秒、融着幅10mmで加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、最内層は93mJ/mg、中間層は93mJ/mg、最外層は90mJ/mgであった。
(比較例4)
 タブシーラントA-1を40mm×8mmサイズでカットしリードを両面から、長辺がリードの幅方向と一致するように、長辺を折って挟み、加熱融着することによりタブを作成した。また、タブと外装材D-1とを加圧熱融着させる際に、融着温度200℃、融着面圧0.5MPa、融着時間3秒、融着幅10mmで加圧熱融着したこと以外は実施例1と同様に評価用サンプルを作成した。タブシーラントのフィルム融着部の融解熱量は、68mJ/mgであった。
[水蒸気バリア性の評価方法]
 作製した評価用サンプルを60℃、湿度90%の環境下に4週間保管させた後の電解液中の水分量をカールフィッシャー試験機で測定し、水分含有量を、実施例1を基準(100%)としたときの値を相対評価した。
 評価は、以下の基準に従って行った。
 「G(Good)」:実施例1の水分量に比較して120%未満。
 「P(Poor)」:実施例1の水分量に比較して120%以上。
[リードと外装材との絶縁性の評価方法]
 各例で作成した評価用電池サンプルのリード31と、外装材10の金属箔層13との間の短絡の有無を、テスターにより確認した。
 評価は、以下の基準に従って行った。
 「G(Good)」:検体100個中、短絡した検体が0個。
 「P(Poor)」:検体100個中、短絡した検体が1個以上。
[リード端部充填性の評価方法]
 各例で作成したタブに高浸透性染色液(株式会社タイホーコーザイ製、ミクロチェック)にて染色を行い、充填性を評価した。
 評価は、以下の基準に従って行った。
 「G(Good)」:検体50個中、リード端部に高浸透性染色液が浸透し染色された検体が0個。
 「P(Poor)」:検体50個中、リード端部に高浸透性染色液が浸透し染色された検体が1個以上。
[タブシーラントと外装材との密着性の評価]
 各例で得られた評価用サンプルのタブと外装材との密着性を、タブシーラントとリードとの剥離強度を引っ張り試験機により引張速度100mm/分、T型剥離で測定し、実施例1を基準(100%)として評価した。
 評価は、以下の基準に従って行った。
 「G(Good)」:基準剥離強度と比較して剥離強度の低下が20%未満、又は剥離強度が向上。
 「P(Poor)」:基準剥離強度と比較して剥離強度が20%以上低下。
 水蒸気バリア性、リードと外装材との絶縁性、リード端部充填性、及びタブシーラントと外装材との密着性の評価の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 水蒸気バリア性を比較すると、実施例2~5は、実施例1に対し水分含有量が120%未満であったのに対し、比較例1~4は水分含有量が120%以上となった。比較例1及び比較例2は、タブシーラントの熱融着部の融解熱量が小さく非結晶性を有するため、水蒸気が透過しやすいため水分含有量が増加したと考えられる。
 また、比較例3ではリード端部への充填性が十分でなく、水蒸気含有量が増加したと考えられる。比較例4ではタブシーラントの水蒸気の浸入方向に対する長さが短く、水蒸気が透過しやすいため、水分含有量が増加したと考えられる。
 リードと外装材との絶縁性を比較すると、実施例1~5、及び比較例3では、リードと外装材との絶縁性が得られているのに対し、比較例1、2及び比較例4ではリードと外装材の金属箔層との間で短絡が確認された。比較例1及び比較例2では、タブシーラントの融解熱量が低く、加圧熱融着時に流れ出し膜厚を確保できず、短絡したものと考えられる。また比較例4では、タブシーラントが小さく、金属箔層の端部とリードとが接触していると考えられる。
 リード端部充填性を比較すると、実施例1~5、比較例1、及び比較例2ではリード端部の充填性が得られているのに対し、比較例3及び比較例4ではリード端部の充填が不十分であった。比較例3では、タブシーラントの融解熱量が高く加圧熱融着時に十分に融解せずリード端部が充填されなかったと考えられる。比較例4では、タブシーラントの長さが融着部の幅よりも短いため充填性が悪化したと考えられる。
 タブシーラントと外装材との密着性を比較すると、実施例1~5、比較例1、及び比較例2では、密着性が得られているのに対し、比較例3及び比較例4では密着性が不十分であった。比較例3では、タブシーラントの融解熱量が高く加圧熱融着時に十分に融解せず、密着性が得られなかったと考えられる。比較例4では、タブシーラントの長さが融着部の幅よりも短いため、外装材の熱融着樹脂層とタブシーラントとの融着面積が小さくなり、密着性が得られなかったと考えられる。
 1  二次電池
 10a 第一の縁部
 10b 第二の縁部
 10A 第一の外装材
 10B 第二の外装材
 10c 第一の外装融着部
 10d 第二の外装融着部
 10f 端面
 10h 第三の縁部
 20 電池要素
 31 リード(金属端子)
 31a 第一の辺
 31b 第二の辺
 40 タブシーラント(樹脂フィルム)
 40a フィルム融着部
 41 最内層(層状体)
 42 中間層(層状体)
 43 最外層(層状体)
 R1 範囲
 S1 基準面
 X  狭持方向
 Z  垂直方向

Claims (9)

  1.  正極及び負極を含む電池要素と、
     前記正極及び前記負極に接続され、外周面に樹脂フィルムが設けられた複数の金属端子と、
     少なくとも積層された金属箔層とポリオレフィン系樹脂から形成される熱融着樹脂層とを有し、前記熱融着樹脂層が内側となるように前記電池要素を挟む第一の外装材及び第二の外装材と、 
     前記第一の外装材の第一の縁部と前記第二の外装材の第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記第一の外装材の第一の周辺領域よりも厚さが薄くなるように前記第一の外装材に形成された第一の外装融着部と、
     前記第一の外装材の前記第一の縁部と前記第二の外装材の前記第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記第二の外装材の第二の周辺領域よりも厚さが薄くなるように前記第二の外装材に形成された第二の外装融着部と、
     前記第一の外装材の前記第一の縁部と前記第二の外装材の前記第二の縁部とで前記樹脂フィルムを挟持し、前記樹脂フィルムを挟持する前記第一の外装材及び前記第二外装材を外側から挟むように加圧しつつ熱融着することで、前記樹脂フィルムの第三の周辺領域よりも厚さが薄くなるように前記樹脂フィルムに形成され、前記第一の外装材と密着し、かつ前記第二の外装材と密着するフィルム融着部と、
     を有し、
     前記第一の縁部の端面に対する垂直方向において前記第一の外装融着部、前記第二の外装融着部、及び前記フィルム融着部がそれぞれ形成される位置は、前記第一の縁部の前記端面に対する前記垂直方向において前記樹脂フィルムが配置された範囲内であり、
     JIS K 7122により測定した前記フィルム融着部の融解熱量は、前記樹脂フィルムにおける前記フィルム融着部以外の部分の融解熱量よりも大きい二次電池。
  2.  前記樹脂フィルムは、複数の層状体を積層して構成され、
     複数の前記層状体の少なくとも1つの前記フィルム融着部におけるJIS K 7122により測定した融解熱量が65mJ/mg以上であり、
     複数の前記層状体のうち、前記金属端子に最も近い層が最内層、前記金属端子から最も離間した層が最外層である場合、前記最内層及び最外層の前記フィルム融着部の融解熱量が、30mJ/mg以上100mJ/mg以下である請求項1に記載の二次電池。
  3.  前記フィルム融着部の前記垂直方向の長さが3mm以上20mm以下である請求項2に記載の二次電池。
  4.  複数の前記層状体の少なくとも1つにおいて、前記フィルム融着部以外の部分のJIS K 7122により測定した融解熱量が55mJ/mg以上であり、
     前記最内層及び前記最外層において、前記フィルム融着部以外の部分のJIS K 7122により測定した融解熱量が、25mJ/mg以上90mJ/mg以下である請求項2又は3に記載の二次電池。
  5.  複数の前記層状体の前記フィルム融着部のうち、JIS K 7122により測定した融解熱量が40mJ/mg以上である前記層状体の厚さの和は、前記樹脂フィルムの全体の厚さに対して20%以上80%以下である請求項2から4のいずれか一項に記載の二次電池。
  6.  前記樹脂フィルムにおいて、前記フィルム融着部の厚さが、前記フィルム融着部以外の部分の厚さに対し50%以上90%以下である請求項2から5のいずれか一項に記載の二次電池。
  7.  前記垂直方向に直交する基準面による前記金属端子の断面は矩形状に形成され、
     前記矩形の第一の辺は、前記第一の外装材の前記第一の縁部及び前記第二の外装材の前記第二の縁部が前記樹脂フィルムを挟持する狭持方向と平行となるように配置され、
     前記基準面による前記断面において、
     前記第一の辺に直交する直交方向の前記樹脂フィルムの長さがL、前記第一の辺の長さがL1、前記第一の辺に直交する第二の辺の長さがL2である場合、(1)式を満たす請求項2から6のいずれか一項に記載の二次電池。
     L1+2L2≦L≦2L1+2L2 ・・(1)
  8.  前記最内層には、酸変性されたポリオレフィン系樹脂が含まれ、
     複数の前記層状体における前記最内層以外の前記層状体には、酸変性されたポリオレフィンは含まれていない請求項2から7のいずれか一項に記載の二次電池。
  9.  前記第一の外装材及び前記第二の外装材は、前記狭持方向に見たときに、それぞれが多角形である同一形状に形成されるとともに互いに重なり、
     前記第一の外装材の複数の縁部のうち前記第一の縁部以外の第三の縁部が折り曲げられている請求項1から8のいずれか一項に記載の二次電池。
PCT/JP2015/058222 2014-03-19 2015-03-19 二次電池 WO2015141772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167025806A KR101851485B1 (ko) 2014-03-19 2015-03-19 이차 전지
CN201580014773.8A CN106104845B (zh) 2014-03-19 2015-03-19 二次电池
JP2016508787A JP6624051B2 (ja) 2014-03-19 2015-03-19 二次電池
US15/265,202 US10109826B2 (en) 2014-03-19 2016-09-14 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056758 2014-03-19
JP2014-056758 2014-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/265,202 Continuation US10109826B2 (en) 2014-03-19 2016-09-14 Secondary battery

Publications (1)

Publication Number Publication Date
WO2015141772A1 true WO2015141772A1 (ja) 2015-09-24

Family

ID=54144734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058222 WO2015141772A1 (ja) 2014-03-19 2015-03-19 二次電池

Country Status (5)

Country Link
US (1) US10109826B2 (ja)
JP (1) JP6624051B2 (ja)
KR (1) KR101851485B1 (ja)
CN (1) CN106104845B (ja)
WO (1) WO2015141772A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152092A (ja) * 2016-02-22 2017-08-31 凸版印刷株式会社 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
WO2018016654A1 (ja) * 2016-07-22 2018-01-25 Necエナジーデバイス株式会社 電気化学デバイス
JP6284248B1 (ja) * 2016-11-22 2018-02-28 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
JP2019135698A (ja) * 2018-02-05 2019-08-15 藤森工業株式会社 電極リード線部材、及び電池
WO2021049572A1 (ja) * 2019-09-12 2021-03-18 積水化学工業株式会社 蓄電素子、蓄電素子の製造方法および蓄電素子の設計方法
WO2021177424A1 (ja) * 2020-03-04 2021-09-10 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP2023512223A (ja) * 2020-10-16 2023-03-24 エルジー エナジー ソリューション リミテッド パウチ型二次電池およびそれを含む電池モジュール
JP7529184B1 (ja) 2022-11-25 2024-08-06 大日本印刷株式会社 金属端子用接着性フィルム及びその製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス用外装材、蓄電デバイス用外装材と金属端子用接着性フィルムを備えるキット、並びに、蓄電デバイス及びその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102070369B1 (ko) * 2015-09-03 2020-01-28 주식회사 엘지화학 케이블형 이차전지 및 이의 제조방법
CN105336883A (zh) * 2015-10-19 2016-02-17 宁德新能源科技有限公司 锂离子电池软包装材料及使用该材料的锂离子电池
CN105762321A (zh) * 2016-04-29 2016-07-13 廖雪光 锂电池极耳的胶膜
KR102258822B1 (ko) 2017-04-25 2021-06-07 주식회사 엘지에너지솔루션 재활용 가능한 파우치형 이차전지, 이를 포함하는 배터리 모듈 및 배터리 모듈 재활용 방법
JP7036554B2 (ja) * 2017-08-29 2022-03-15 積水化学工業株式会社 シート材、二次電池および二次電池の製造方法
KR102555751B1 (ko) * 2017-10-17 2023-07-14 주식회사 엘지에너지솔루션 가스 배출이 가능한 이차전지용 파우치형 케이스
US12113197B2 (en) * 2018-10-30 2024-10-08 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
JP6636121B1 (ja) * 2018-11-23 2020-01-29 株式会社大北製作所 端子付きケース部材及びその製造方法
WO2021006351A1 (ja) * 2019-07-10 2021-01-14 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
US12021237B2 (en) 2019-10-31 2024-06-25 Pacific Industrial Development Corporation Inorganic materials for use in a lithium-ion secondary battery
US20220393179A1 (en) * 2019-10-31 2022-12-08 Pacific Industrial Development Corporation Inorganic materials for use in a lithium-ion secondary battery
CN110739486B (zh) * 2019-10-31 2022-10-14 惠州亿纬锂能股份有限公司 一种软包电芯的封装工艺
EP4084030A4 (en) * 2019-12-27 2023-09-13 Toppan Inc. RESIN FILM FOR TERMINAL AND SELECTION METHOD THEREOF, ELECTRICITY STORAGE DEVICE AND TERMINAL FILM FOR ELECTRICITY STORAGE DEVICE
JP7398050B2 (ja) * 2020-02-04 2023-12-14 トヨタ自動車株式会社 ラミネート電池およびその製造方法
CN111916833A (zh) * 2020-06-24 2020-11-10 惠州锂威新能源科技有限公司 一种软包锂离子电芯的制备方法、电芯及电池模组
CN112510242B (zh) * 2020-11-30 2022-04-12 东莞新能德科技有限公司 二次电池及终端设备
KR102626933B1 (ko) * 2021-06-10 2024-01-22 율촌화학 주식회사 계면 박리 조절을 통해 가스배출이 용이한 셀 파우치용 실란트 필름, 이를 포함하는 셀 파우치 및 그 제조 방법
JP2024512880A (ja) * 2022-02-24 2024-03-21 エルジー エナジー ソリューション リミテッド 金属化フィルムの電極タブおよびこれらを接続する金属接続体を含む電極アセンブリ並びにこれを含む二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2004095543A (ja) * 2002-08-06 2004-03-25 Dainippon Printing Co Ltd リチウム電池金属端子部密封用接着性フィルム
JP2008103294A (ja) * 2006-10-20 2008-05-01 Toshiba Battery Co Ltd 扁平型電池
JP2012234670A (ja) * 2011-04-28 2012-11-29 Nec Energy Devices Ltd フィルム外装電池およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378589B1 (en) * 2001-06-20 2013-08-21 Dai Nippon Printing Co., Ltd. Packaging material for battery
JP4900418B2 (ja) 2002-08-06 2012-03-21 大日本印刷株式会社 リチウム電池金属端子部密封用接着性フィルム
JP4720172B2 (ja) 2004-12-10 2011-07-13 ソニー株式会社 電池
JP2006339042A (ja) 2005-06-02 2006-12-14 Toyota Motor Corp 電池
JP5308696B2 (ja) * 2008-03-17 2013-10-09 藤森工業株式会社 封止フィルムおよび封止フィルム付電極
JP2010080326A (ja) * 2008-09-26 2010-04-08 Asahi Kasei Corp 蓄電素子およびその製造方法
JP5457040B2 (ja) 2009-01-13 2014-04-02 昭和電工パッケージング株式会社 電気化学デバイスおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2004095543A (ja) * 2002-08-06 2004-03-25 Dainippon Printing Co Ltd リチウム電池金属端子部密封用接着性フィルム
JP2008103294A (ja) * 2006-10-20 2008-05-01 Toshiba Battery Co Ltd 扁平型電池
JP2012234670A (ja) * 2011-04-28 2012-11-29 Nec Energy Devices Ltd フィルム外装電池およびその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152092A (ja) * 2016-02-22 2017-08-31 凸版印刷株式会社 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
US11038228B2 (en) 2016-07-22 2021-06-15 Envision Aesc Energy Devices Ltd. Electrochemical device having a thermally fusible resin layer
WO2018016654A1 (ja) * 2016-07-22 2018-01-25 Necエナジーデバイス株式会社 電気化学デバイス
JPWO2018016654A1 (ja) * 2016-07-22 2019-05-09 Necエナジーデバイス株式会社 電気化学デバイス
JP2018085214A (ja) * 2016-11-22 2018-05-31 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
JP6284248B1 (ja) * 2016-11-22 2018-02-28 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
US10622592B2 (en) 2016-11-22 2020-04-14 Seiko Instruments Inc. Electrochemical cell and manufacturing method of the electrochemical cell
JP2019135698A (ja) * 2018-02-05 2019-08-15 藤森工業株式会社 電極リード線部材、及び電池
US11710881B2 (en) 2018-02-05 2023-07-25 Fujimori Kogyo Co., Ltd. Electrode lead wire member and battery
JP7316755B2 (ja) 2018-02-05 2023-07-28 藤森工業株式会社 電極リード線部材、及び電池
JPWO2021049572A1 (ja) * 2019-09-12 2021-09-27 積水化学工業株式会社 蓄電素子、蓄電素子の製造方法および蓄電素子の設計方法
WO2021049572A1 (ja) * 2019-09-12 2021-03-18 積水化学工業株式会社 蓄電素子、蓄電素子の製造方法および蓄電素子の設計方法
JP7000599B2 (ja) 2019-09-12 2022-01-19 積水化学工業株式会社 蓄電素子、蓄電素子の製造方法および蓄電素子の設計方法
JP2021141049A (ja) * 2020-03-04 2021-09-16 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2021177424A1 (ja) * 2020-03-04 2021-09-10 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP2023512223A (ja) * 2020-10-16 2023-03-24 エルジー エナジー ソリューション リミテッド パウチ型二次電池およびそれを含む電池モジュール
JP7442923B2 (ja) 2020-10-16 2024-03-05 エルジー エナジー ソリューション リミテッド パウチ型二次電池およびそれを含む電池モジュール
JP7529184B1 (ja) 2022-11-25 2024-08-06 大日本印刷株式会社 金属端子用接着性フィルム及びその製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス用外装材、蓄電デバイス用外装材と金属端子用接着性フィルムを備えるキット、並びに、蓄電デバイス及びその製造方法

Also Published As

Publication number Publication date
CN106104845B (zh) 2019-09-10
US10109826B2 (en) 2018-10-23
CN106104845A (zh) 2016-11-09
JP6624051B2 (ja) 2019-12-25
KR20160122845A (ko) 2016-10-24
KR101851485B1 (ko) 2018-04-23
JPWO2015141772A1 (ja) 2017-04-13
US20170005302A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2015141772A1 (ja) 二次電池
JP6458338B2 (ja) 二次電池用外装材、二次電池、及び二次電池用外装材の製造方法
JP6102083B2 (ja) リチウムイオン電池用外装材の基材層、リチウムイオン電池用外装材の基材層を用いたリチウムイオン電池の製造方法、及びリチウムイオン電池用外装材
JP6990972B2 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
KR102507154B1 (ko) 이차 전지용 단자 피복 수지 필름, 이차 전지용 탭 부재, 및 이차 전지
JP6003170B2 (ja) 二次電池
JP6299165B2 (ja) リチウムイオン電池用外装材
WO2016181867A1 (ja) 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
TW201444149A (zh) 二次電池用金屬端子被覆樹脂薄膜及其製造方法以及電池組
WO2016136640A1 (ja) 二次電池用外装材及び二次電池
CN111933834B (zh) 树脂薄膜、金属端子部件、以及二次电池
JP5899880B2 (ja) 電気化学セル用包装材料及びそれを用いた電気化学セル
JP2017152092A (ja) 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
JP2015201387A (ja) 二次電池用外装材、二次電池、及び二次電池の製造方法
JP6287236B2 (ja) 蓄電デバイス用外装材
JP6070197B2 (ja) リチウムイオン電池用外装材及びこれを用いたリチウムイオン電池
JP6492526B2 (ja) 蓄電装置用外装材及び蓄電装置
JP2017208172A (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP6331315B2 (ja) 電池用外装体の製造方法及び電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167025806

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15765435

Country of ref document: EP

Kind code of ref document: A1