[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015141370A1 - Active ester resin, epoxy resin composition, cured product of same, prepreg, circuit board and buildup film - Google Patents

Active ester resin, epoxy resin composition, cured product of same, prepreg, circuit board and buildup film Download PDF

Info

Publication number
WO2015141370A1
WO2015141370A1 PCT/JP2015/054592 JP2015054592W WO2015141370A1 WO 2015141370 A1 WO2015141370 A1 WO 2015141370A1 JP 2015054592 W JP2015054592 W JP 2015054592W WO 2015141370 A1 WO2015141370 A1 WO 2015141370A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
active ester
halide
epoxy resin
acid
Prior art date
Application number
PCT/JP2015/054592
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 下野
和郎 有田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015550505A priority Critical patent/JP5907319B2/en
Publication of WO2015141370A1 publication Critical patent/WO2015141370A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic

Definitions

  • the present invention is an active ester resin having both a low dielectric constant and dielectric loss tangent in a cured product and excellent heat resistance and moisture absorption resistance, an epoxy resin composition using the same as a curing agent, a cured product thereof, a prepreg, a circuit board, and Related to build-up film.
  • Epoxy resin compositions containing an epoxy resin and a curing agent as an essential component exhibit excellent heat resistance and insulation in the cured product, and are widely used in electronic component applications such as semiconductors and multilayer printed boards. .
  • electronic component applications in the technical field of insulating materials for multilayer printed circuit boards, resin materials having excellent dielectric properties that can cope with the increase in signal speed and frequency in various electronic devices, that is, dielectric constant and dielectric There is a demand for the development of a resin material having a sufficiently low tangent.
  • Patent Document 1 As a material capable of realizing a low dielectric constant and a low dielectric loss tangent, a technique using an active ester compound obtained by esterifying dicyclopentadiene phenol resin and ⁇ -naphthol with isophthalic acid chloride as a curing agent for epoxy resin is known. (See Patent Document 1 below).
  • the epoxy resin composition using the active ester compound described in Patent Document 1 obtains a cured product having a lower dielectric constant and dielectric loss tangent than when a conventional curing agent such as a phenol novolac resin is used. I can do it. However, the dielectric properties did not satisfy the current required performance.
  • the problem to be solved by the present invention is that an active ester resin having a low dielectric constant and dielectric loss tangent in a cured product and excellent in heat resistance and solvent solubility, an epoxy resin composition using this as an curing agent, and its curing It is to provide an object, a prepreg, a circuit board, and a build-up film.
  • the present inventors have found that a dendrimer type active ester resin obtained using an aromatic tricarboxylic acid or a halide thereof and an aromatic diol compound as a reaction raw material is very The present inventors have found that a low dielectric constant and a dielectric loss tangent are excellent in heat resistance and moisture absorption resistance, and have completed the present invention.
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4)
  • L is 0 or 1
  • m is 1 or 2.
  • R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group
  • Z is an oxygen atom
  • k is an integer of 1 to 4.
  • Y is a structural moiety represented by any of the following structural formulas (2)
  • the present invention relates to an active ester resin characterized by having a molecular structure represented by:
  • the present invention further provides an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C). ) And the aromatic monocarboxylic acid or its halide (B) in a total of 1 mol of the carboxyl group or acid halide group, the phenolic hydroxyl group of the aromatic diol compound (C) is 0.5 to 1.5.
  • the present invention relates to an active ester resin obtained by reacting at a molar ratio.
  • the present invention further provides an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C). ) And the aromatic monocarboxylic acid or its halide (B) in a total of 1 mol of the carboxyl group or acid halide group, the phenolic hydroxyl group of the aromatic diol compound (C) is 0.5 to 1.5.
  • the present invention relates to a method for producing an active ester resin that is reacted in a molar ratio.
  • the present invention further relates to an epoxy resin composition
  • an epoxy resin composition comprising an epoxy resin and the active ester resin as essential components.
  • the present invention further relates to a cured product obtained by curing the epoxy resin composition.
  • the present invention further relates to a prepreg obtained by impregnating a reinforcing base material with the epoxy resin composition diluted in an organic solvent and semi-curing the resulting impregnated base material.
  • the present invention further relates to a circuit board obtained by obtaining a varnish obtained by diluting the epoxy resin composition in an organic solvent, and heating and press-molding a varnish shaped into a plate shape and a copper foil.
  • the present invention further relates to a build-up film obtained by applying a solution obtained by diluting the epoxy resin composition in an organic solvent on a base film and drying it.
  • an active ester resin having both a low dielectric constant and a dielectric loss tangent in a cured product and excellent heat resistance and moisture absorption resistance, an epoxy resin composition using the same as a curing agent, the cured product, a prepreg, and a circuit board , And build-up films can be provided.
  • FIG. 1 is a GPC chart of the active ester resin (1) obtained in Example 1.
  • the active ester resin of the present invention has the following structural formula (1)
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4)
  • L is 0 or 1
  • m is 1 or 2.
  • R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group
  • Z is an oxygen atom
  • k is an integer of 1 to 4.
  • Y is a structural moiety represented by any of the following structural formulas (2)
  • Ar 1 represents a benzene ring or a naphthalene ring
  • X represents a structural moiety represented by any one of the structural formulas (X-1) to (X-8)
  • Ar 2 represents an aryl group.
  • It is a structural part or aryl group represented by.
  • a plurality of X and Y in the formula may be the same structural site or different structural sites.
  • It has the molecular structure represented by these.
  • the ester bond site in the structural formula (1) or the structural formula (2) is a so-called active ester group, and the secondary hydroxyl group generated during the curing reaction with the epoxy resin
  • the dielectric constant and dielectric loss tangent in the cured product can be reduced.
  • a multi-branched structure represented by the structural formula (1) that is, a so-called dendrimer type molecular structure
  • a cured product having high heat resistance can be obtained.
  • a molecular skeleton having such a regular arrangement it becomes a resin material that is specifically excellent in solvent solubility as compared with conventional high molecular weight polyfunctional active ester resins.
  • Ar 1 in the structural formula (1) is a benzene ring or a naphthalene ring.
  • Ar 1 is preferably a benzene ring because it becomes an active ester resin that is excellent in solvent solubility and exhibits excellent heat resistance in a cured product.
  • X in the structural formula (1) is a structural moiety represented by any of the structural formulas (X-1) to (X-8).
  • R 1 in the structural formulas (X-1) to (X-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.
  • alkyl groups such as methyl group, ethyl group, propylene group, allyl group, propargyl group, isopropyl group, n-butyl group, t-butyl group; methoxy group, ethoxy group, Alkoxy groups such as propyloxy group, allyloxy group, propargyloxy group, isopropyloxy group, n-butoxy group, t-butoxy group; phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3, 5 -Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1-naphthyl Aryl groups such as a 2-naphthyl group; a benzyl group, tolyl
  • R 2 in the structural formulas (X-1) to (X-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and more specifically Is an alkyl group such as a methyl group, an ethyl group, a propylene group, an isopropyl group, an n-butyl group, a t-butyl group; a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, 3,5- Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1-naphthyl group, 2-naphthyl group, etc.
  • Aryl groups such as benzyl group
  • an active ester resin having excellent dielectric properties in a cured product is obtained. It is preferable that it is a structural part represented.
  • Y in the structural formula (1) is a structural site represented by the structural formula (2) or an aryl group.
  • Ar 1 and X in the structural formula (2) have the same meanings as Ar 1 and X in the structural formula (1), specific examples of the aryl group, phenyl group, o- tolyl group, m- tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1 -Naphtyl group, 2-naphthyl group and the like.
  • such an active ester resin of the present invention preferably has a molecular structure represented by the following structural formula (1-1) or (1-2).
  • Each of R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, and n 1 Is an integer from 1 to 4, l is 0 or 1, and m is 1 or 2. ]
  • the active ester resin of the present invention is produced, for example, by a method in which an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C) are reacted. be able to.
  • aromatic tricarboxylic acid or its halide (A) examples include benzene tricarboxylic acid, naphthalene tricarboxylic acid, and acid halides thereof. These may be used alone or in combination of two or more. Among these, benzenetricarboxylic acid and acid halides thereof are preferable because the molecular structure is more excellent in symmetry and becomes an active ester resin excellent in heat resistance and moisture absorption resistance in a cured product.
  • aromatic monocarboxylic acid or its halide (B) examples include benzoic acid, phenylbenzoic acid, methylbenzoic acid, ethylbenzoic acid, n-propylbenzoic acid, i-propylbenzoic acid, and t-butylbenzoic acid.
  • Alkyl benzoic acids 1-naphthoic acid, 2-naphthoic acid, phenyl naphthoic acid, methyl naphthoic acid, ethyl naphthoic acid, n-propyl naphthoic acid, i-propyl naphthoic acid and t-butyl naphthoic acid, and the like, and Examples thereof include acid halides such as acid fluorides, acid chlorides, acid bromides, and acid iodides. These may be used alone or in combination of two or more. Among these, benzoic acid or acid halides thereof are preferable because they are active ester resins having excellent dielectric properties.
  • the aromatic diol compound (C) includes, for example, the following structural formulas (C-1) to (C-8):
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4)
  • L is 0 or 1
  • m is 1 or 2.
  • R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group
  • Z is an oxygen atom
  • k is an integer of 1 to 4.
  • R 1 in the structural formulas (C-1) to (C-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.
  • alkyl groups such as methyl group, ethyl group, propylene group, allyl group, propargyl group, isopropyl group, n-butyl group, t-butyl group; methoxy group, ethoxy group, Alkoxy groups such as propyloxy group, allyloxy group, propargyloxy group, isopropyloxy group, n-butoxy group, t-butoxy group; phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3, 5 -Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1-naphthyl Aryl groups such as a 2-naphthyl group; a benzyl group, tolyl
  • R 2 in the structural formulas (C-1) to (C-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and more specifically, Is an alkyl group such as a methyl group, an ethyl group, a propylene group, an isopropyl group, an n-butyl group, a t-butyl group; a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, 3,5- Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1-naphthyl group, 2-naphthyl group, etc.
  • Aryl groups such as benzyl
  • aromatic diol compounds (C) represented by any one of the structural formulas (C-1) to (C-8) an active ester resin having excellent dielectric properties in a cured product is obtained.
  • the compound represented by C-3) is preferred.
  • the compound represented by the structural formula (C-3) can be produced, for example, by a polyaddition reaction of dicyclopentadiene and a phenolic compound.
  • phenolic compound used here include phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, phenylphenol, benzylphenol, and the like. These may be used alone or in combination of two or more. Among these, phenol is preferable because it becomes an active ester resin having high curability and excellent dielectric properties in a cured product.
  • the reaction ratio of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) is: Since the molecular weight control of the obtained active ester resin becomes easy, the total of carboxyl groups or acid halide groups of the aromatic tricarboxylic acid or its halide (A) and the aromatic monocarboxylic acid or its halide (B) is 1
  • the ratio is preferably such that the phenolic hydroxyl group of the aromatic diol compound (C) is in the range of 0.5 to 1.5 mol with respect to mol.
  • the ratio of the aromatic tricarboxylic acid or its halide (A) to the aromatic monocarboxylic acid or its halide (B) is easy to control the molecular weight of the resulting active ester resin. Or the number of moles (p) of the carboxyl group or acid halide group possessed by the halide (A) and the number of moles (q) of the carboxyl group or acid halide group possessed by the aromatic monocarboxylic acid or its halide (B).
  • the molar ratio [(p) / (q)] is preferably in the range of 1 / 1.05 to 1 / 0.5.
  • the reaction of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) can be carried out, for example, in the presence of an alkali catalyst in the presence of 40 to 40 It can be performed under a temperature condition of 65 ° C.
  • alkali catalyst examples include sodium hydroxide, potassium hydroxide, triethylamine, and pyridine. These may be used alone or in combination of two or more. Among these, sodium hydroxide or potassium hydroxide is preferable because of high reaction efficiency.
  • These catalysts may be used as a 3.0 to 30% aqueous solution.
  • the reaction of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) is organic because the reaction can be easily controlled. It is preferable to carry out in a solvent.
  • the organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
  • Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These may be used singly or as a mixed solvent of two or more kinds.
  • the reaction solution After completion of the reaction, if an aqueous solution is used as the alkali catalyst, the reaction solution is allowed to stand and remove to remove the aqueous layer, and the remaining organic layer is washed with water, and washed with water until the aqueous layer is almost neutral.
  • the desired active ester resin can be obtained.
  • the active ester resin thus obtained has high solubility in various organic solvents and excellent heat resistance and moisture absorption resistance, so that the solution viscosity in a 65% by mass toluene solution is 5,000 to The range is preferably 15,000 mPa ⁇ s.
  • the functional group equivalent of the active ester resin of the present invention is excellent in curability and has a low dielectric constant and dielectric loss tangent when the total number of arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is the number of functional groups of the resin. Since a cured product is obtained, 210 to 360 g / eq. In the range of 230 to 340 g / eq. More preferably, it is the range.
  • the epoxy resin composition of the present invention contains the above-mentioned active ester resin and epoxy resin as essential components.
  • epoxy resin used in the present invention examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type.
  • Epoxy resin triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol Condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol Fat type epoxy resins, biphenyl-modified novolak type epoxy resins.
  • epoxy resins tetramethylbiphenol type epoxy resin, biphenyl aralkyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, and novolac type epoxy resin are used in that a cured product having excellent flame retardancy can be obtained.
  • a dicyclopentadiene-phenol addition reaction type epoxy resin is preferable in that a cured product having excellent dielectric properties is obtained.
  • the compounding amount of the active ester resin and the epoxy resin is excellent in curability and a cured product having a low dielectric constant and dielectric loss tangent is obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin is 0.8 to 1.2 equivalents with respect to 1 equivalent in total.
  • the active group in the active ester resin refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • curing agents used here are, for example, amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, guanidine derivatives: dicyandiamide, linolenic acid 2
  • Amide compounds such as polyamide resin synthesized from a monomer and ethylenediamine: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, Acid anhydrides such as hexahydrophthalic anhydride and methylhexahydrophthalic anhydride: phenol novolak resin, cresol novol
  • phenol novolac resins cresol novolak resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins Phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, and aminotriazine-modified phenol resin are preferable.
  • the amount used is preferably in the range of 10 to 50 parts by mass in a total of 100 parts by mass of the active ester resin and the other curing agent.
  • the epoxy resin composition of the present invention may contain a curing accelerator as necessary.
  • the curing accelerator used here include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like.
  • dimethylaminopyridine and imidazole are preferable because of excellent heat resistance, dielectric characteristics, solder resistance, and the like.
  • the active ester resin of the present invention is characterized by expressing excellent solvent solubility, and when the epoxy resin composition of the present invention is used for build-up material applications or circuit board applications, Instead of the solvent such as toluene that has been used, it can be varnished using an alcohol solvent or an ester solvent.
  • Organic solvents that can be used as the solvent of the epoxy resin composition of the present invention include conventionally used aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, ethyl acetate, butyl acetate, Acetic acid ester solvents such as cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, alcohol solvents such as ethanol, propanol, butanol, carbitol solvents such as cellosolve, butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. Is mentioned.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone
  • ethyl acetate buty
  • the epoxy resin composition of the present invention is used for printed wiring board applications, it is preferably a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc., and has a nonvolatile content of 40 to 80 It is preferable to use at a ratio of mass%.
  • a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc.
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethanol, propanol
  • an alcohol solvent such as butanol, a carbitol solvent such as cellosolve or butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone or the like, and a non-volatile content of 30 to 60% by mass is preferably used.
  • a non-volatile content of 30 to 60% by mass is preferably used. preferable.
  • the epoxy resin composition of the present invention may be used in combination with other thermosetting resins as needed.
  • other thermosetting resins that can be used here include cyanate ester compounds, vinylbenzyl compounds, acrylic compounds, maleimide compounds, and copolymers of styrene and maleic anhydride.
  • the amount used is not particularly limited as long as the effects of the present invention are not impaired, but is in the range of 1 to 50 parts by weight per 100 parts by weight of the epoxy resin composition. It is preferable.
  • a non-halogen flame retardant containing substantially no halogen atoms may be blended.
  • non-halogen flame retardant examples include a phosphorus flame retardant, a nitrogen flame retardant, a silicone flame retardant, an inorganic flame retardant, an organic metal salt flame retardant, and the like. It is not intended to be used alone, and a plurality of the same type of flame retardants may be used, or different types of flame retardants may be used in combination.
  • the phosphorous flame retardant can be either inorganic or organic.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • organic phosphorus compounds examples include 9,10-dihydro, as well as general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds.
  • the compounding amount of these phosphorus flame retardants is preferably in the range of 0.1 to 2.0 parts by mass in the case of using red phosphorus in 100 parts by mass of the epoxy resin composition. When used, it is preferably blended in the range of 0.1 to 10.0 parts by mass, and more preferably in the range of 0.5 to 6.0 parts by mass.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, sulfuric acid such as guanylmelamine sulfate, melem sulfate, and melam sulfate.
  • sulfuric acid such as guanylmelamine sulfate, melem sulfate, and melam sulfate.
  • aminotriazine compounds aminotriazine-modified phenol resins
  • aminotriazine-modified phenol resins examples include aminotriazine-modified phenol resins that are further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is preferably in the range of 0.05 to 10 parts by mass, for example, in the range of 0.1 to 5 parts by mass in 100 parts by mass of the epoxy resin composition. Is more preferable.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the compounding amount of the silicone flame retardant is preferably in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition, for example. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and zirconium hydroxide.
  • metal oxide examples include zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low-melting-point glass examples include Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, and P 2 O 5. Glassy compounds such as —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, and lead borosilicate Can be mentioned.
  • the amount of the inorganic flame retardant blended is, for example, preferably in the range of 0.05 to 20 parts by weight and in the range of 0.5 to 15 parts by weight in 100 parts by weight of the epoxy resin composition. Is more preferable.
  • organic metal salt flame retardant examples include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound. And the like.
  • the amount of the organometallic salt flame retardant is preferably in the range of 0.005 to 10 parts by mass, for example, in 100 parts by mass of the epoxy resin composition.
  • the epoxy resin composition of the present invention can be blended with an inorganic filler as necessary.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica.
  • the fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape.
  • the filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the thermosetting resin composition.
  • electroconductive fillers such as silver powder and copper powder, can be used.
  • the epoxy resin composition of the present invention may contain various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
  • the epoxy resin composition of the present invention is obtained by uniformly mixing the above-described components, and can be easily made into a cured product by a method similar to the curing of a conventionally known epoxy resin composition.
  • the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • the epoxy resin composition of the present invention has a low dielectric constant and dielectric loss tangent of the cured product, circuit boards such as hard printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulation materials for build-up boards, etc. It can be suitably used for various electronic materials such as insulating materials for semiconductors, semiconductor sealing materials, conductive pastes, build-up adhesive films, resin casting materials, adhesives and the like. Especially, taking advantage of the high solubility of the active ester resin of the present invention in various organic solvents, especially for circuit board materials such as hard printed wiring board materials, resin compositions for flexible wiring boards, and interlayer insulation materials for build-up boards. It can be preferably used.
  • a varnish obtained by diluting the epoxy resin composition of the present invention in an organic solvent is obtained, and this is formed into a plate shape, laminated with copper foil, and heated and pressed. Can be manufactured.
  • a prepreg is obtained by impregnating a reinforcing base material with a varnish-like epoxy resin composition containing an organic solvent and semi-curing it, and copper foil is laminated on it and heated. It can be manufactured by a method of pressure bonding.
  • the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like epoxy resin composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C. to obtain a prepreg that is a cured product.
  • the mass ratio of the thermosetting resin composition to be used and the reinforcing substrate is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60 mass%.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A target circuit board can be obtained.
  • an epoxy resin composition containing an organic solvent is applied to an electrically insulating film using a coating machine such as a reverse roll coater or a comma coater.
  • a coating machine such as a reverse roll coater or a comma coater.
  • heating is performed at 60 to 170 ° C. for 1 to 15 minutes using a heater to volatilize the solvent, and the epoxy resin composition is B-staged.
  • the metal foil is thermocompression bonded to the resin composition layer using a heating roll or the like.
  • the pressure for pressure bonding is preferably 2 to 200 N / cm, and the temperature for pressure bonding is preferably 40 to 200 ° C. If sufficient adhesion performance can be obtained, the process may be completed here. However, if complete curing is required, post-curing is preferably performed at 100 to 200 ° C. for 1 to 24 hours.
  • the thickness of the resin composition layer after final curing is preferably in the range of 5 to 100 ⁇ m.
  • an epoxy resin composition appropriately blended with rubber, filler or the like is applied to a wiring board on which a circuit is formed by a spray coating method or curtain coating. After applying using a method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness
  • the plating method electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent.
  • a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern.
  • the through-hole portion is formed after the outermost resin insulating layer is formed.
  • a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is heat-pressed at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and a plating process. It is also possible to produce a build-up board without the above.
  • the method for producing an adhesive film for buildup from the epoxy resin composition of the present invention is, for example, an adhesive for multilayer printed wiring boards by applying the epoxy resin composition of the present invention on a support film to form a resin composition layer.
  • the method of using a film is mentioned.
  • the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and simultaneously with the circuit board lamination, It is important to show fluidity (resin flow) capable of filling the via hole or through hole in the substrate, and it is preferable to blend the above-described components so as to exhibit such characteristics.
  • lamination temperature condition usually 70 ° C. to 140 ° C.
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. Usually, it is preferable that the resin can be filled in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.
  • the method for producing the adhesive film described above is, after preparing the varnish-like epoxy resin composition of the present invention, coating the varnish-like composition on the surface of the support film and further heating, or It can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of an epoxy resin composition.
  • the thickness of the layer ( ⁇ ) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • the said layer ((alpha)) may be protected with the protective film mentioned later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
  • the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
  • the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer ( ⁇ ) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that ⁇ ) is in direct contact with the circuit board.
  • the laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.
  • the lamination conditions are such that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the epoxy resin composition of the present invention is used as a conductive paste, for example, a method in which fine conductive particles are dispersed in an epoxy resin composition to form a composition for an anisotropic conductive film, a circuit that is liquid at room temperature
  • a paste resin composition for connection and an anisotropic conductive adhesive examples thereof include a paste resin composition for connection and an anisotropic conductive adhesive.
  • the epoxy resin composition of the present invention can also be used as a resist ink.
  • a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent are blended in the epoxy resin composition, and further a pigment, talc, and filler are added to obtain a resist ink composition. Then, after apply
  • the active ester resin of the present invention has higher solvent solubility compared to conventional active ester resins, it can be easily varnished when applied to the various electronic material applications.
  • organic solvents having a lower environmental load such as ester solvents and alcohol solvents can be used.
  • the cured product of the epoxy resin composition of the present invention has a characteristic that both the dielectric constant and the dielectric loss tangent are low, it can contribute to the realization of the high-speed operation speed of the high-frequency device.
  • Toluene solution viscosity compliant with JIS Z8803.
  • GPC Measured under the following conditions. Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • Example 1 Production of Active Ester Resin (1) A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 132.8 g of 1,3,5-benzenetricarbonyltrichloride (acid chloride group). And 1.59 moles of benzoyl chloride (1.5 moles of acid chloride group) and 1094 g of toluene were charged, and the system was purged with nitrogen under reduced pressure to dissolve. Next, 495.0 g of dicyclopentadiene phenol resin (3.0 mol of phenolic hydroxyl group) was charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved.
  • Example 2 Production of Active Ester Resin (2)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 132.8 g of 1,3,5-benzenetricarbonyltrichloride (acid chloride group).
  • 140.6 g of benzoyl chloride (1.0 mol of acid chloride group) and 832.6 g of toluene were charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved.
  • 412.5 g of dicyclopentadiene phenol resin 2.5 mol of phenolic hydroxyl group
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • MP propylene glycol monomethyl ether acetate
  • NMP N-methylpyrrolidone
  • BuOH normal butanol
  • a laminate was prepared under the following conditions.
  • Base material Glass cloth “# 2116” (210 ⁇ 280 mm) manufactured by Nitto Boseki Co., Ltd.
  • Number of plies 6 Condition of prepreg: 160 ° C Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours, post-molding plate thickness: 0.8 mm
  • ⁇ Measurement of glass transition temperature> The laminate prepared above was cut into a size of 5 mm in width and 54 mm in length. About this test piece, a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., rectangular tension method: frequency 1 Hz, The temperature at which the change in elastic modulus was the maximum (the tan ⁇ change rate was the largest) was evaluated as the glass transition temperature using a temperature increase rate of 3 ° C./min.
  • DMA solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., rectangular tension method: frequency 1 Hz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

To provide: an active ester resin which has excellent heat resistance and moisture absorption resistance, and provides a cured product having low dielectric constant and low dielectric loss tangent; an epoxy resin composition which contains this active ester resin as a curing agent; a cured product of this epoxy resin composition; a prepreg; a circuit board; and a buildup film. An active ester resin which is characterized by having a molecular structure represented by structural formula (1).

Description

活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムActive ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
 本発明は、硬化物における誘電率及び誘電正接が共に低く、耐熱性や耐吸湿性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムに関する。 The present invention is an active ester resin having both a low dielectric constant and dielectric loss tangent in a cured product and excellent heat resistance and moisture absorption resistance, an epoxy resin composition using the same as a curing agent, a cured product thereof, a prepreg, a circuit board, and Related to build-up film.
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。電子部品用途のうち多層プリント基板用絶縁材料の技術分野では、各種電子機器における信号の高速化及び高周波数化に伴い、これに対応できる優れた誘電特性を有する樹脂材料、即ち、誘電率及び誘電正接が共に十分に低い樹脂材料の開発が求められている。 Epoxy resin compositions containing an epoxy resin and a curing agent as an essential component exhibit excellent heat resistance and insulation in the cured product, and are widely used in electronic component applications such as semiconductors and multilayer printed boards. . Among the electronic component applications, in the technical field of insulating materials for multilayer printed circuit boards, resin materials having excellent dielectric properties that can cope with the increase in signal speed and frequency in various electronic devices, that is, dielectric constant and dielectric There is a demand for the development of a resin material having a sufficiently low tangent.
 低誘電率かつ低誘電正接を実現可能な材料として、ジシクロペンタジエンフェノール樹脂とα-ナフトールとをイソフタル酸クロライドでエステル化して得られる活性エステル化合物をエポキシ樹脂の硬化剤として用いる技術が知られている(下記特許文献1参照)。特許文献1記載の活性エステル化合物を用いたエポキシ樹脂組成物は、フェノールノボラック樹脂のような従来型の硬化剤を用いた場合と比較して、誘電率及び誘電正接のより低い硬化物を得ることが出来る。しかしながら、その誘電特性は昨今の要求性能を満たすものではなかった。また、耐熱性が不十分であり、耐熱性を改善するために多官能基化した場合には溶剤溶解性の低下を招き、ワニス及びプリプレグ、硬化物の調製が困難であった。従って、硬化物における誘電率と誘電正接とがより一層低く、高耐熱性を発現し、かつ溶剤溶解性にも優れるエポキシ樹脂硬化剤の開発が求められていた。 As a material capable of realizing a low dielectric constant and a low dielectric loss tangent, a technique using an active ester compound obtained by esterifying dicyclopentadiene phenol resin and α-naphthol with isophthalic acid chloride as a curing agent for epoxy resin is known. (See Patent Document 1 below). The epoxy resin composition using the active ester compound described in Patent Document 1 obtains a cured product having a lower dielectric constant and dielectric loss tangent than when a conventional curing agent such as a phenol novolac resin is used. I can do it. However, the dielectric properties did not satisfy the current required performance. In addition, the heat resistance is insufficient, and when polyfunctionalized to improve the heat resistance, the solvent solubility is lowered and it is difficult to prepare varnish, prepreg and cured product. Accordingly, there has been a demand for the development of an epoxy resin curing agent that has an even lower dielectric constant and dielectric loss tangent in a cured product, exhibits high heat resistance, and is excellent in solvent solubility.
特開2009-235165号公報JP 2009-235165 A
 従って、本発明が解決しようとする課題は、硬化物における誘電率及び誘電正接が共に低く、耐熱性や溶剤溶解性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムを提供することにある。 Therefore, the problem to be solved by the present invention is that an active ester resin having a low dielectric constant and dielectric loss tangent in a cured product and excellent in heat resistance and solvent solubility, an epoxy resin composition using this as an curing agent, and its curing It is to provide an object, a prepreg, a circuit board, and a build-up film.
 本発明者らは、前記課題を解決すべく鋭意検討した結果、芳香族トリカルボン酸又はそのハライドと、芳香族ジオール化合物とを反応原料として得られるデンドリマー型の活性エステル樹脂は、その硬化物において非常に低い誘電率と誘電正接とを示し、かつ、耐熱性や耐吸湿性にも優れることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a dendrimer type active ester resin obtained using an aromatic tricarboxylic acid or a halide thereof and an aromatic diol compound as a reaction raw material is very The present inventors have found that a low dielectric constant and a dielectric loss tangent are excellent in heat resistance and moisture absorption resistance, and have completed the present invention.
 即ち、本発明は、下記構造式(1) That is, the present invention has the following structural formula (1)
Figure JPOXMLDOC01-appb-C000005
[式中Arはベンゼン環又はナフタレン環を表し、Xは下記構造式(X-1)~(X-8)
Figure JPOXMLDOC01-appb-C000005
[Wherein Ar 1 represents a benzene ring or a naphthalene ring, and X represents the following structural formulas (X-1) to (X-8)
Figure JPOXMLDOC01-appb-C000006
(式中Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、Zは酸素原子、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基の何れかであり、kは1~4の整数である。)
の何れかで表される構造部位であり、Yは下記構造式(2)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4) , L is 0 or 1, m is 1 or 2. R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, Z is an oxygen atom, A carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, and k is an integer of 1 to 4.)
Wherein Y is a structural moiety represented by any of the following structural formulas (2)
Figure JPOXMLDOC01-appb-C000007
〔式中Arはベンゼン環又はナフタレン環を表し、Xは前記構造式(X-1)~(X-8)の何れかで表される構造部位であり、Arはアリール基である。〕
で表される構造部位又はアリール基である。式中に複数あるX、Yはそれぞれ同一の構造部位であっても良いし、異なる構造部位であっても良い。]
で表される分子構造を有することを特徴とする活性エステル樹脂に関する。
Figure JPOXMLDOC01-appb-C000007
[Wherein Ar 1 represents a benzene ring or a naphthalene ring, X represents a structural moiety represented by any one of the structural formulas (X-1) to (X-8), and Ar 2 represents an aryl group. ]
It is a structural part or aryl group represented by. A plurality of X and Y in the formula may be the same structural site or different structural sites. ]
The present invention relates to an active ester resin characterized by having a molecular structure represented by:
 本発明は更に、芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)とを、前記芳香族トリカルボン酸又はそのハライド(A)と芳香族モノカルボン酸又はそのハライド(B)とが有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記芳香族ジオール化合物(C)が有するフェノール性水酸基が0.5~1.5モルの範囲となる割合で反応させてなる活性エステル樹脂に関する。 The present invention further provides an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C). ) And the aromatic monocarboxylic acid or its halide (B) in a total of 1 mol of the carboxyl group or acid halide group, the phenolic hydroxyl group of the aromatic diol compound (C) is 0.5 to 1.5. The present invention relates to an active ester resin obtained by reacting at a molar ratio.
 本発明は更に、芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)とを、前記芳香族トリカルボン酸又はそのハライド(A)と芳香族モノカルボン酸又はそのハライド(B)とが有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記芳香族ジオール化合物(C)が有するフェノール性水酸基が0.5~1.5モルの範囲となる割合で反応させる活性エステル樹脂の製造方法に関する。 The present invention further provides an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C). ) And the aromatic monocarboxylic acid or its halide (B) in a total of 1 mol of the carboxyl group or acid halide group, the phenolic hydroxyl group of the aromatic diol compound (C) is 0.5 to 1.5. The present invention relates to a method for producing an active ester resin that is reacted in a molar ratio.
 本発明は更に、エポキシ樹脂及び前記活性エステル樹脂を必須成分とするエポキシ樹脂組成物に関する。 The present invention further relates to an epoxy resin composition comprising an epoxy resin and the active ester resin as essential components.
 本発明は更に、前記エポキシ樹脂組成物硬化させて得られる硬化物に関する。 The present invention further relates to a cured product obtained by curing the epoxy resin composition.
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることにより得られるプリプレグに関する。 The present invention further relates to a prepreg obtained by impregnating a reinforcing base material with the epoxy resin composition diluted in an organic solvent and semi-curing the resulting impregnated base material.
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板に関する。 The present invention further relates to a circuit board obtained by obtaining a varnish obtained by diluting the epoxy resin composition in an organic solvent, and heating and press-molding a varnish shaped into a plate shape and a copper foil.
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることにより得られるビルドアップフィルムに関する。 The present invention further relates to a build-up film obtained by applying a solution obtained by diluting the epoxy resin composition in an organic solvent on a base film and drying it.
 本発明によれば、硬化物における誘電率及び誘電正接が共に低く、耐熱性や耐吸湿性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムを提供することができる。 According to the present invention, an active ester resin having both a low dielectric constant and a dielectric loss tangent in a cured product and excellent heat resistance and moisture absorption resistance, an epoxy resin composition using the same as a curing agent, the cured product, a prepreg, and a circuit board , And build-up films can be provided.
図1は、実施例1で得られた活性エステル樹脂(1)のGPCチャート図である。1 is a GPC chart of the active ester resin (1) obtained in Example 1. FIG.
 以下、本発明を詳細に説明する。
 本発明の活性エステル樹脂は、下記構造式(1)
Hereinafter, the present invention will be described in detail.
The active ester resin of the present invention has the following structural formula (1)
Figure JPOXMLDOC01-appb-C000008
[式中Arはベンゼン環又はナフタレン環を表し、Xは下記構造式(X-1)~(X-8)
Figure JPOXMLDOC01-appb-C000008
[Wherein Ar 1 represents a benzene ring or a naphthalene ring, and X represents the following structural formulas (X-1) to (X-8)
Figure JPOXMLDOC01-appb-C000009
(式中Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、Zは酸素原子、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基の何れかであり、kは1~4の整数である。)
の何れかで表される構造部位であり、Yは下記構造式(2)
Figure JPOXMLDOC01-appb-C000009
(Wherein R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4) , L is 0 or 1, m is 1 or 2. R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, Z is an oxygen atom, A carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, and k is an integer of 1 to 4.)
Wherein Y is a structural moiety represented by any of the following structural formulas (2)
Figure JPOXMLDOC01-appb-C000010
〔式中Arはベンゼン環又はナフタレン環を表し、Xは前記構造式(X-1)~(X-8)の何れかで表される構造部位であり、Arはアリール基である。〕
で表される構造部位又はアリール基である。式中に複数あるX、Yはそれぞれ同一の構造部位であっても良いし、異なる構造部位であっても良い。]
で表される分子構造を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000010
[Wherein Ar 1 represents a benzene ring or a naphthalene ring, X represents a structural moiety represented by any one of the structural formulas (X-1) to (X-8), and Ar 2 represents an aryl group. ]
It is a structural part or aryl group represented by. A plurality of X and Y in the formula may be the same structural site or different structural sites. ]
It has the molecular structure represented by these.
 本発明の活性エステル樹脂において、前記構造式(1)や前記構造式(2)中のエステル結合部位は所謂活性エステル基であり、エポキシ樹脂との硬化反応の際に生じる二級の水酸基を該エステル結合部位由来のエステル残基が封鎖することにより、硬化物における誘電率と誘電正接とを低減させることが出来る。また、前記構造式(1)で表されるような多分岐構造、所謂デンドリマー型の分子構造を有することにより、耐熱性の高い硬化物を得ることができる。更に、このような規則的な配列を有する分子骨格を有することにより、従来の高分子量多官能型活性エステル樹脂に比べ、特異的に溶剤溶解性に優れる樹脂材料となる。 In the active ester resin of the present invention, the ester bond site in the structural formula (1) or the structural formula (2) is a so-called active ester group, and the secondary hydroxyl group generated during the curing reaction with the epoxy resin By blocking the ester residue derived from the ester bond site, the dielectric constant and dielectric loss tangent in the cured product can be reduced. Further, by having a multi-branched structure represented by the structural formula (1), that is, a so-called dendrimer type molecular structure, a cured product having high heat resistance can be obtained. Furthermore, by having a molecular skeleton having such a regular arrangement, it becomes a resin material that is specifically excellent in solvent solubility as compared with conventional high molecular weight polyfunctional active ester resins.
 前記構造式(1)中のArはベンゼン環又はナフタレン環である。中でも、溶剤溶解性に優れ、かつ硬化物において優れた耐熱性を発現する活性エステル樹脂となることから、Arはベンゼン環であることが好ましい。 Ar 1 in the structural formula (1) is a benzene ring or a naphthalene ring. Among them, Ar 1 is preferably a benzene ring because it becomes an active ester resin that is excellent in solvent solubility and exhibits excellent heat resistance in a cured product.
 前記構造式(1)中のXは前記構造式(X-1)~(X-8)の何れかで表される構造部位である。前記構造式(X-1)~(X-8)中のRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、より具体的には、メチル基、エチル基、プロプル基、アリル基、プロパルギル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基、アリルオキシ基、プロパルギルオキシ基、イソプロピルオキシ基、n-ブトキシ基、t-ブトキシ基等のアルコキシ基;フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;ベンジル基、トリルメチル基、キシリルメチル基、ナフチルメチル基等のアラルキル基等が挙げられる。 X in the structural formula (1) is a structural moiety represented by any of the structural formulas (X-1) to (X-8). R 1 in the structural formulas (X-1) to (X-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group. More specifically, alkyl groups such as methyl group, ethyl group, propylene group, allyl group, propargyl group, isopropyl group, n-butyl group, t-butyl group; methoxy group, ethoxy group, Alkoxy groups such as propyloxy group, allyloxy group, propargyloxy group, isopropyloxy group, n-butoxy group, t-butoxy group; phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3, 5 -Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- (α-cumyl) phenyl group, 1-naphthyl Aryl groups such as a 2-naphthyl group; a benzyl group, tolylmethyl group, Kishirirumechiru group, and aralkyl groups such as naphthylmethyl group.
 前記構造式(X-1)~(X-8)中のRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、より具体的には、メチル基、エチル基、プロプル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基;フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;ベンジル基、トリルメチル基、キシリルメチル基、ナフチルメチル基等のアラルキル基等が挙げられる。 R 2 in the structural formulas (X-1) to (X-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and more specifically Is an alkyl group such as a methyl group, an ethyl group, a propylene group, an isopropyl group, an n-butyl group, a t-butyl group; a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, 3,5- Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- (α-cumyl) phenyl group, 1-naphthyl group, 2-naphthyl group, etc. Aryl groups such as benzyl group, tolylmethyl group, xylylmethyl group, naphthylmethyl group and the like.
 前記構造式(X-1)~(X-8)の何れかで表される構造部位の中でも、硬化物における誘電特性に優れる活性エステル樹脂となることから、前記構造式(X-3)で表される構造部位であることが好ましい。 Among the structural sites represented by any of the structural formulas (X-1) to (X-8), an active ester resin having excellent dielectric properties in a cured product is obtained. It is preferable that it is a structural part represented.
 前記構造式(1)中のYは、前記構造式(2)で表される構造部位又はアリール基である。構造式(2)中のAr及びXは前記構造式(1)中のAr及びXと同義であり、アリール基の具体例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 Y in the structural formula (1) is a structural site represented by the structural formula (2) or an aryl group. Ar 1 and X in the structural formula (2) have the same meanings as Ar 1 and X in the structural formula (1), specific examples of the aryl group, phenyl group, o- tolyl group, m- tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- (α-cumyl) phenyl group, 1 -Naphtyl group, 2-naphthyl group and the like.
 このような本願発明の活性エステル樹脂は、具体的には、下記構造式(1-1)又は(1-2)で表される分子構造を有することが好ましい。 Specifically, such an active ester resin of the present invention preferably has a molecular structure represented by the following structural formula (1-1) or (1-2).
Figure JPOXMLDOC01-appb-C000011
[式中(X-3)は下記構造式(X-3)
Figure JPOXMLDOC01-appb-C000011
[Wherein (X-3) represents the following structural formula (X-3)
Figure JPOXMLDOC01-appb-C000012
で表される構造部位であり、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。]
Figure JPOXMLDOC01-appb-C000012
Each of R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, and n 1 Is an integer from 1 to 4, l is 0 or 1, and m is 1 or 2. ]
 本発明の活性エステル樹脂は、例えば、芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)とを反応させる方法により製造することができる。 The active ester resin of the present invention is produced, for example, by a method in which an aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C) are reacted. be able to.
 前記芳香族トリカルボン酸又はそのハライド(A)は、例えば、ベンゼントリカルボン酸やナフタレントリカルボン酸、及びこれらの酸ハロゲン化物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、より対称性に優れる分子構造となり、硬化物における耐熱性や耐吸湿性に優れる活性エステル樹脂となることから、ベンゼントリカルボン酸及びその酸ハロゲン化物が好ましい。 Examples of the aromatic tricarboxylic acid or its halide (A) include benzene tricarboxylic acid, naphthalene tricarboxylic acid, and acid halides thereof. These may be used alone or in combination of two or more. Among these, benzenetricarboxylic acid and acid halides thereof are preferable because the molecular structure is more excellent in symmetry and becomes an active ester resin excellent in heat resistance and moisture absorption resistance in a cured product.
 前記芳香族モノカルボン酸又はそのハライド(B)は、例えば、安息香酸、フェニル安息香酸、メチル安息香酸、エチル安息香酸、n-プロピル安息香酸、i-プロピル安息香酸及びt-ブチル安息香酸等のアルキル安息香酸、1-ナフトエ酸、2-ナフトエ酸、フェニルナフトエ酸、メチルナフトエ酸、エチルナフトエ酸、n-プロピルナフトエ酸、i-プロピルナフトエ酸及びt-ブチルナフトエ酸等のアルキルナフトエ酸、並びにこれらの酸フッ化物、酸塩化物、酸臭化物、酸ヨウ化物等の酸ハロゲン化物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、誘電特性に優れる活性エステル樹脂となることから、安息香酸又はその酸ハロゲン化物が好ましい。 Examples of the aromatic monocarboxylic acid or its halide (B) include benzoic acid, phenylbenzoic acid, methylbenzoic acid, ethylbenzoic acid, n-propylbenzoic acid, i-propylbenzoic acid, and t-butylbenzoic acid. Alkyl benzoic acids, 1-naphthoic acid, 2-naphthoic acid, phenyl naphthoic acid, methyl naphthoic acid, ethyl naphthoic acid, n-propyl naphthoic acid, i-propyl naphthoic acid and t-butyl naphthoic acid, and the like, and Examples thereof include acid halides such as acid fluorides, acid chlorides, acid bromides, and acid iodides. These may be used alone or in combination of two or more. Among these, benzoic acid or acid halides thereof are preferable because they are active ester resins having excellent dielectric properties.
 前記芳香族ジオール化合物(C)は、例えば、下記構造式(C-1)~(C-8) The aromatic diol compound (C) includes, for example, the following structural formulas (C-1) to (C-8):
Figure JPOXMLDOC01-appb-C000013
(式中Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、Zは酸素原子、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基の何れかであり、kは1~4の整数である。)
の何れかで表される化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
Figure JPOXMLDOC01-appb-C000013
(Wherein R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4) , L is 0 or 1, m is 1 or 2. R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, Z is an oxygen atom, A carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, and k is an integer of 1 to 4.)
The compound represented by either of these is mentioned. These may be used alone or in combination of two or more.
 前記構造式(C-1)~(C-8)中のRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、より具体的には、メチル基、エチル基、プロプル基、アリル基、プロパルギル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基、アリルオキシ基、プロパルギルオキシ基、イソプロピルオキシ基、n-ブトキシ基、t-ブトキシ基等のアルコキシ基;フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;ベンジル基、トリルメチル基、キシリルメチル基、ナフチルメチル基等のアラルキル基等が挙げられる。 R 1 in the structural formulas (C-1) to (C-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group. More specifically, alkyl groups such as methyl group, ethyl group, propylene group, allyl group, propargyl group, isopropyl group, n-butyl group, t-butyl group; methoxy group, ethoxy group, Alkoxy groups such as propyloxy group, allyloxy group, propargyloxy group, isopropyloxy group, n-butoxy group, t-butoxy group; phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3, 5 -Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- (α-cumyl) phenyl group, 1-naphthyl Aryl groups such as a 2-naphthyl group; a benzyl group, tolylmethyl group, Kishirirumechiru group, and aralkyl groups such as naphthylmethyl group.
 前記構造式(C-1)~(C-8)中のRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、より具体的には、メチル基、エチル基、プロプル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基;フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;ベンジル基、トリルメチル基、キシリルメチル基、ナフチルメチル基等のアラルキル基等が挙げられる。 R 2 in the structural formulas (C-1) to (C-8) is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and more specifically, Is an alkyl group such as a methyl group, an ethyl group, a propylene group, an isopropyl group, an n-butyl group, a t-butyl group; a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, 3,5- Xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- (α-cumyl) phenyl group, 1-naphthyl group, 2-naphthyl group, etc. Aryl groups such as benzyl group, tolylmethyl group, xylylmethyl group, naphthylmethyl group and the like.
 前記構造式(C-1)~(C-8)の何れかで表される芳香族ジオール化合物(C)の中でも、硬化物における誘電特性に優れる活性エステル樹脂となることから、前記構造式(C-3)で表される化合物が好ましい。 Among the aromatic diol compounds (C) represented by any one of the structural formulas (C-1) to (C-8), an active ester resin having excellent dielectric properties in a cured product is obtained. The compound represented by C-3) is preferred.
 前記構造式(C-3)で表される化合物は、例えば、ジシクロペンタジエンと、フェノール性化合物とを重付加反応させる方法により製造することができる。ここで用いるフェノール性化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、フェニルフェノール、ベンジルフェノール、等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、硬化性が高く硬化物における誘電特性に優れる活性エステル樹脂となることからフェノールが好ましい。 The compound represented by the structural formula (C-3) can be produced, for example, by a polyaddition reaction of dicyclopentadiene and a phenolic compound. Examples of the phenolic compound used here include phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, phenylphenol, benzylphenol, and the like. These may be used alone or in combination of two or more. Among these, phenol is preferable because it becomes an active ester resin having high curability and excellent dielectric properties in a cured product.
 本発明の活性エステル樹脂を製造する際の、芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)との反応割合は、得られる活性エステル樹脂の分子量制御が容易となることから、前記芳香族トリカルボン酸又はそのハライド(A)と芳香族モノカルボン酸又はそのハライド(B)とが有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記芳香族ジオール化合物(C)が有するフェノール性水酸基が0.5~1.5モルの範囲となる割合であることが好ましい。 When the active ester resin of the present invention is produced, the reaction ratio of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) is: Since the molecular weight control of the obtained active ester resin becomes easy, the total of carboxyl groups or acid halide groups of the aromatic tricarboxylic acid or its halide (A) and the aromatic monocarboxylic acid or its halide (B) is 1 The ratio is preferably such that the phenolic hydroxyl group of the aromatic diol compound (C) is in the range of 0.5 to 1.5 mol with respect to mol.
 また、芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)との割合は、得られる活性エステル樹脂の分子量制御が容易となることから、前記芳香族トリカルボン酸又はそのハライド(A)が有するカルボキシル基又は酸ハライド基のモル数(p)と、前記芳香族モノカルボン酸又はそのハライド(B)が有するカルボキシル基又は酸ハライド基のモル数(q)とのモル比[(p)/(q)]が1/1.05~1/0.5の範囲であることが好ましい。 The ratio of the aromatic tricarboxylic acid or its halide (A) to the aromatic monocarboxylic acid or its halide (B) is easy to control the molecular weight of the resulting active ester resin. Or the number of moles (p) of the carboxyl group or acid halide group possessed by the halide (A) and the number of moles (q) of the carboxyl group or acid halide group possessed by the aromatic monocarboxylic acid or its halide (B). The molar ratio [(p) / (q)] is preferably in the range of 1 / 1.05 to 1 / 0.5.
 前記芳香族トリカルボン酸又はそのハライド(A)と、前記芳香族モノカルボン酸又はそのハライド(B)と、前記芳香族ジオール化合物(C)との反応は、例えば、アルカリ触媒の存在下、40~65℃の温度条件下で行うことが出来る。ここで使用し得るアルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらのなかでも、反応効率が高いことから水酸化ナトリウム又は水酸化カリウムが好ましい。また、これらの触媒は3.0~30%の水溶液として用いても良い。 The reaction of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) can be carried out, for example, in the presence of an alkali catalyst in the presence of 40 to 40 It can be performed under a temperature condition of 65 ° C. Examples of the alkali catalyst that can be used here include sodium hydroxide, potassium hydroxide, triethylamine, and pyridine. These may be used alone or in combination of two or more. Among these, sodium hydroxide or potassium hydroxide is preferable because of high reaction efficiency. These catalysts may be used as a 3.0 to 30% aqueous solution.
 前記芳香族トリカルボン酸又はそのハライド(A)と、前記芳香族モノカルボン酸又はそのハライド(B)と、前記芳香族ジオール化合物(C)との反応は、反応の制御が容易となることから有機溶媒中で行うことが好ましい。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。 The reaction of the aromatic tricarboxylic acid or its halide (A), the aromatic monocarboxylic acid or its halide (B), and the aromatic diol compound (C) is organic because the reaction can be easily controlled. It is preferable to carry out in a solvent. Examples of the organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like. Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These may be used singly or as a mixed solvent of two or more kinds.
 反応終了後は、アルカリ触媒として水溶液を用いている場合には反応液を静置分液して水層を取り除き、残った有機層を水で洗浄し、水層がほぼ中性になるまで水洗を繰り返すことにより、目的の活性エステル樹脂を得ることができる。 After completion of the reaction, if an aqueous solution is used as the alkali catalyst, the reaction solution is allowed to stand and remove to remove the aqueous layer, and the remaining organic layer is washed with water, and washed with water until the aqueous layer is almost neutral. By repeating the above, the desired active ester resin can be obtained.
 このようにして得られる活性エステル樹脂は、各種有機溶剤への溶解性が高く、耐熱性や耐吸湿性にも優れるものとなることから、65質量%のトルエン溶液における溶液粘度が5,000~15,000mPa・sの範囲であることが好ましい。 The active ester resin thus obtained has high solubility in various organic solvents and excellent heat resistance and moisture absorption resistance, so that the solution viscosity in a 65% by mass toluene solution is 5,000 to The range is preferably 15,000 mPa · s.
 また、本発明の活性エステル樹脂の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、210~360g/eq.の範囲であることが好ましく、230~340g/eq.の範囲であることがより好ましい。 In addition, the functional group equivalent of the active ester resin of the present invention is excellent in curability and has a low dielectric constant and dielectric loss tangent when the total number of arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is the number of functional groups of the resin. Since a cured product is obtained, 210 to 360 g / eq. In the range of 230 to 340 g / eq. More preferably, it is the range.
 本発明のエポキシ樹脂組成物は、前述の活性エステル樹脂と、エポキシ樹脂とを必須の成分として含有するものである。 The epoxy resin composition of the present invention contains the above-mentioned active ester resin and epoxy resin as essential components.
 本発明で用いるエポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点においては、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂が好ましい。 Examples of the epoxy resin used in the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type. Epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol Condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol Fat type epoxy resins, biphenyl-modified novolak type epoxy resins. Among these epoxy resins, tetramethylbiphenol type epoxy resin, biphenyl aralkyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, and novolac type epoxy resin are used in that a cured product having excellent flame retardancy can be obtained. A dicyclopentadiene-phenol addition reaction type epoxy resin is preferable in that a cured product having excellent dielectric properties is obtained.
 本発明のエポキシ樹脂組成物において、前記活性エステル樹脂とエポキシ樹脂との配合量は、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、活性エステル樹脂中の活性基の合計1当量に対して、前記エポキシ樹脂中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル樹脂中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。 In the epoxy resin composition of the present invention, the compounding amount of the active ester resin and the epoxy resin is excellent in curability and a cured product having a low dielectric constant and dielectric loss tangent is obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin is 0.8 to 1.2 equivalents with respect to 1 equivalent in total. Here, the active group in the active ester resin refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
 本発明のエポキシ樹脂組成物においては、前記した活性エステル樹脂と、その他の硬化剤とを併用してもよい。ここで用いるその他の硬化剤は、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物:ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物:無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物:フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。 In the epoxy resin composition of this invention, you may use together an above described active ester resin and another hardening | curing agent. Other curing agents used here are, for example, amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, guanidine derivatives: dicyandiamide, linolenic acid 2 Amide compounds such as polyamide resin synthesized from a monomer and ethylenediamine: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, Acid anhydrides such as hexahydrophthalic anhydride and methylhexahydrophthalic anhydride: phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclope Tadiene phenol addition resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (Polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl modified naphthol resin (polyvalent naphthol compound with phenol nucleus linked by bismethylene group), aminotriazine modified phenolic resin (melamine or benzoguanamine etc. And polyhydric phenol compounds such as linked polyhydric phenol compounds).
 これらの中でも、芳香族骨格を分子構造内に多く含むものが誘電特性及び耐吸湿性に優れることから好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が好ましい。 Among these, those containing a large amount of an aromatic skeleton in the molecular structure are preferable because they have excellent dielectric properties and moisture absorption resistance. Specifically, phenol novolac resins, cresol novolak resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins Phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, and aminotriazine-modified phenol resin are preferable.
 上記したその他の硬化剤を併用する場合その使用量は、活性エステル樹脂とその他の硬化剤との合計100質量部中、10~50質量部の範囲であることが好ましい。 When the other curing agent described above is used in combination, the amount used is preferably in the range of 10 to 50 parts by mass in a total of 100 parts by mass of the active ester resin and the other curing agent.
 本発明のエポキシ樹脂組成物は、必要に応じて硬化促進剤を含有していても良い。ここで用いる硬化促進剤は、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に、本発明のエポキシ樹脂組成物をビルドアップ材料用途や回路基板用途として使用する場合には、耐熱性、誘電特性、耐はんだ性等に優れることから、ジメチルアミノピリジンやイミダゾールが好ましい。 The epoxy resin composition of the present invention may contain a curing accelerator as necessary. Examples of the curing accelerator used here include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. In particular, when the epoxy resin composition of the present invention is used as a build-up material application or a circuit board application, dimethylaminopyridine and imidazole are preferable because of excellent heat resistance, dielectric characteristics, solder resistance, and the like.
 また、前述の通り本発明の活性エステル樹脂は、優れた溶剤溶解性を発現することを特徴としており、本発明のエポキシ樹脂組成物をビルドアップ材料用途や回路基板用途として使用する場合に、従来用いられてきたトルエン等の溶剤に替えて、アルコール溶剤やエステル溶剤を使用してワニス化することが出来る。本発明のエポキシ樹脂組成物の溶剤として使用できる有機溶剤は、従来用いられてきたトルエン、キシレン等の芳香族炭化水素溶剤の他、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、エタノール、プロパノール、ブタノール等のアルコール溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。 In addition, as described above, the active ester resin of the present invention is characterized by expressing excellent solvent solubility, and when the epoxy resin composition of the present invention is used for build-up material applications or circuit board applications, Instead of the solvent such as toluene that has been used, it can be varnished using an alcohol solvent or an ester solvent. Organic solvents that can be used as the solvent of the epoxy resin composition of the present invention include conventionally used aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, ethyl acetate, butyl acetate, Acetic acid ester solvents such as cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, alcohol solvents such as ethanol, propanol, butanol, carbitol solvents such as cellosolve, butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. Is mentioned.
 本発明のエポキシ樹脂組成物をプリント配線基板用途に用いる場合には、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途に用いる場合には、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤エタノール、プロパノール、ブタノール等のアルコール溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、不揮発分30~60質量%となる割合で使用することが好ましい。 When the epoxy resin composition of the present invention is used for printed wiring board applications, it is preferably a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc., and has a nonvolatile content of 40 to 80 It is preferable to use at a ratio of mass%. On the other hand, for use in build-up adhesive film applications, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc., acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethanol, propanol It is preferable to use an alcohol solvent such as butanol, a carbitol solvent such as cellosolve or butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone or the like, and a non-volatile content of 30 to 60% by mass is preferably used. preferable.
 また、本発明のエポキシ樹脂組成物は、必要に応じて他の熱硬化性樹脂を適宜併用しても良い。ここで使用し得る他の熱硬化性樹脂は、例えばシアネートエステル化合物、ビニルベンジル化合物、アクリル化合物、マレイミド化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。上記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、エポキシ樹脂組成物100質量部中1~50重量部の範囲であることが好ましい。 Moreover, the epoxy resin composition of the present invention may be used in combination with other thermosetting resins as needed. Examples of other thermosetting resins that can be used here include cyanate ester compounds, vinylbenzyl compounds, acrylic compounds, maleimide compounds, and copolymers of styrene and maleic anhydride. When the other thermosetting resins described above are used in combination, the amount used is not particularly limited as long as the effects of the present invention are not impaired, but is in the range of 1 to 50 parts by weight per 100 parts by weight of the epoxy resin composition. It is preferable.
 本発明の活性エステル樹脂をプリント配線基板用途などより高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。 When the active ester resin of the present invention is used for applications requiring higher flame retardancy than for printed wiring boards, a non-halogen flame retardant containing substantially no halogen atoms may be blended.
 前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。 Examples of the non-halogen flame retardant include a phosphorus flame retardant, a nitrogen flame retardant, a silicone flame retardant, an inorganic flame retardant, an organic metal salt flame retardant, and the like. It is not intended to be used alone, and a plurality of the same type of flame retardants may be used, or different types of flame retardants may be used in combination.
 前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。 The phosphorous flame retardant can be either inorganic or organic. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。 The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.
 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。 Examples of the organic phosphorus compounds include 9,10-dihydro, as well as general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds. -9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7- And cyclic organic phosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.
 これらリン系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、赤リンを用いる場合には0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には0.1~10.0質量部の範囲で配合することが好ましく、0.5~6.0質量部の範囲で配合することがより好ましい。 The compounding amount of these phosphorus flame retardants is preferably in the range of 0.1 to 2.0 parts by mass in the case of using red phosphorus in 100 parts by mass of the epoxy resin composition. When used, it is preferably blended in the range of 0.1 to 10.0 parts by mass, and more preferably in the range of 0.5 to 6.0 parts by mass.
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
 前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。 Examples of the nitrogen flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
 前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。 Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, sulfuric acid such as guanylmelamine sulfate, melem sulfate, and melam sulfate. Examples thereof include aminotriazine compounds, aminotriazine-modified phenol resins, and aminotriazine-modified phenol resins that are further modified with tung oil, isomerized linseed oil, and the like.
 前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。 Examples of the cyanuric acid compound include cyanuric acid and melamine cyanurate.
 前記窒素系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、0.1~5質量部の範囲で配合することがより好ましい。 The compounding amount of the nitrogen-based flame retardant is preferably in the range of 0.05 to 10 parts by mass, for example, in the range of 0.1 to 5 parts by mass in 100 parts by mass of the epoxy resin composition. Is more preferable.
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。 Further, when using the nitrogen-based flame retardant, a metal hydroxide, a molybdenum compound or the like may be used in combination.
 前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。 The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
 前記シリコーン系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 The compounding amount of the silicone flame retardant is preferably in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition, for example. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
 前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。 Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
 前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。 Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and zirconium hydroxide.
 前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。 Examples of the metal oxide include zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.
 前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。 Examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
 前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。 Examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
 前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。 Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
 前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Examples of the low-melting-point glass include Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, and P 2 O 5. Glassy compounds such as —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, and lead borosilicate Can be mentioned.
 前記無機系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましく、0.5~15質量部の範囲で配合することがより好ましい。 The amount of the inorganic flame retardant blended is, for example, preferably in the range of 0.05 to 20 parts by weight and in the range of 0.5 to 15 parts by weight in 100 parts by weight of the epoxy resin composition. Is more preferable.
 前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。 Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound. And the like.
 前記有機金属塩系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。 The amount of the organometallic salt flame retardant is preferably in the range of 0.005 to 10 parts by mass, for example, in 100 parts by mass of the epoxy resin composition.
 本発明のエポキシ樹脂組成物は、必要に応じて無機質充填材を配合することができる。前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、熱硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。 The epoxy resin composition of the present invention can be blended with an inorganic filler as necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the thermosetting resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.
 本発明のエポキシ樹脂組成物は、この他、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。 In addition to the above, the epoxy resin composition of the present invention may contain various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
 本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られ、従来知られているエポキシ樹脂組成物の硬化と同様の方法により容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。 The epoxy resin composition of the present invention is obtained by uniformly mixing the above-described components, and can be easily made into a cured product by a method similar to the curing of a conventionally known epoxy resin composition. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
 本発明のエポキシ樹脂組成物は、その硬化物の誘電率及び誘電正接が共に低いことから、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等の各種電子材料用途に好適に用いることが出来る。中でも、本発明の活性エステル樹脂が有する各種有機溶剤への高い溶解性を活かし、硬質プリント配線板材料、フレキシブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用材料に特に好ましく用いることが出来る。 Since the epoxy resin composition of the present invention has a low dielectric constant and dielectric loss tangent of the cured product, circuit boards such as hard printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulation materials for build-up boards, etc. It can be suitably used for various electronic materials such as insulating materials for semiconductors, semiconductor sealing materials, conductive pastes, build-up adhesive films, resin casting materials, adhesives and the like. Especially, taking advantage of the high solubility of the active ester resin of the present invention in various organic solvents, especially for circuit board materials such as hard printed wiring board materials, resin compositions for flexible wiring boards, and interlayer insulation materials for build-up boards. It can be preferably used.
 このうち回路基板用途へ応用する場合には、本発明のエポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものを銅箔と積層し、加熱加圧成型して製造することが出来る。また、硬質プリント配線基板用途へ応用する場合には、有機溶剤を含むワニス状のエポキシ樹脂組成物を補強基材に含浸し、半硬化させることによってプリプレグを得、これに銅箔を重ねて加熱圧着させる方法により製造することが出来る。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状のエポキシ樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって硬化物であるプリプレグを得る。この際、用いる熱硬化性樹脂組成物と補強基材の質量割合は特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とする回路基板を得ることができる。 Of these, when applied to circuit board applications, a varnish obtained by diluting the epoxy resin composition of the present invention in an organic solvent is obtained, and this is formed into a plate shape, laminated with copper foil, and heated and pressed. Can be manufactured. In addition, when applying to hard printed circuit board applications, a prepreg is obtained by impregnating a reinforcing base material with a varnish-like epoxy resin composition containing an organic solvent and semi-curing it, and copper foil is laminated on it and heated. It can be manufactured by a method of pressure bonding. Examples of the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. More specifically, the varnish-like epoxy resin composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C. to obtain a prepreg that is a cured product. . At this time, the mass ratio of the thermosetting resin composition to be used and the reinforcing substrate is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60 mass%. Next, the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A target circuit board can be obtained.
 本発明のエポキシ樹脂組成物からフレキシルブル配線基板を製造するには、有機溶剤を配合したエポキシ樹脂組成物をリバースロールコータ、コンマコータ等の塗布機を用いて電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60~170℃で1~15分間加熱し、溶媒を揮発させてエポキシ樹脂組成物をB-ステージ化する。次いで、加熱ロール等を用いて、樹脂組成物層に金属箔を熱圧着する。その際の圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の樹脂組成物層の厚みは、5~100μmの範囲が好ましい。 In order to produce a flexible wiring board from the epoxy resin composition of the present invention, an epoxy resin composition containing an organic solvent is applied to an electrically insulating film using a coating machine such as a reverse roll coater or a comma coater. Next, heating is performed at 60 to 170 ° C. for 1 to 15 minutes using a heater to volatilize the solvent, and the epoxy resin composition is B-staged. Next, the metal foil is thermocompression bonded to the resin composition layer using a heating roll or the like. In this case, the pressure for pressure bonding is preferably 2 to 200 N / cm, and the temperature for pressure bonding is preferably 40 to 200 ° C. If sufficient adhesion performance can be obtained, the process may be completed here. However, if complete curing is required, post-curing is preferably performed at 100 to 200 ° C. for 1 to 24 hours. The thickness of the resin composition layer after final curing is preferably in the range of 5 to 100 μm.
 本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を製造するには、例えば、ゴム、フィラーなどを適宜配合したエポキシ樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。 In order to produce an interlayer insulating material for a build-up board from the epoxy resin composition of the present invention, for example, an epoxy resin composition appropriately blended with rubber, filler or the like is applied to a wiring board on which a circuit is formed by a spray coating method or curtain coating. After applying using a method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. Also, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is heat-pressed at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and a plating process. It is also possible to produce a build-up board without the above.
 本発明のエポキシ樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明のエポキシ樹脂組成物を支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。 The method for producing an adhesive film for buildup from the epoxy resin composition of the present invention is, for example, an adhesive for multilayer printed wiring boards by applying the epoxy resin composition of the present invention on a support film to form a resin composition layer. The method of using a film is mentioned.
 本発明のエポキシ樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。 When the epoxy resin composition of the present invention is used for a build-up adhesive film, the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and simultaneously with the circuit board lamination, It is important to show fluidity (resin flow) capable of filling the via hole or through hole in the substrate, and it is preferable to blend the above-described components so as to exhibit such characteristics.
 ここで、多層プリント配線板のスルーホールの直径は通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. Usually, it is preferable that the resin can be filled in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明のエポキシ樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させてエポキシ樹脂組成物の層(α)を形成させることにより製造することができる。 Specifically, the method for producing the adhesive film described above is, after preparing the varnish-like epoxy resin composition of the present invention, coating the varnish-like composition on the surface of the support film and further heating, or It can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of an epoxy resin composition.
 形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。 The thickness of the layer (α) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.
 なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 In addition, the said layer ((alpha)) may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。 The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。 The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, preferably 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.
 上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The support film described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
 次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。 Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (α) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that α) is in direct contact with the circuit board. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.
 ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 The lamination conditions are such that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
 本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子をエポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。 When the epoxy resin composition of the present invention is used as a conductive paste, for example, a method in which fine conductive particles are dispersed in an epoxy resin composition to form a composition for an anisotropic conductive film, a circuit that is liquid at room temperature Examples thereof include a paste resin composition for connection and an anisotropic conductive adhesive.
 また、本発明のエポキシ樹脂組成物は、レジストインキとして使用することも可能である。この場合、エポキシ樹脂組成物にエチレン性不飽和二重結合を有するビニル系モノマーと、硬化剤としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。 The epoxy resin composition of the present invention can also be used as a resist ink. In this case, a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent are blended in the epoxy resin composition, and further a pigment, talc, and filler are added to obtain a resist ink composition. Then, after apply | coating on a printed circuit board by a screen printing system, the method of setting it as a resist ink hardened | cured material is mentioned.
 前述の通り、本発明の活性エステル樹脂は従来型の活性エステル樹脂と比較して高い溶剤溶解性を有することから、前記各種電子材料用途に応用する際に容易にワニス化することが出来、また、従来主流であったトルエン等の環境負荷の高い溶剤に替えて、エステル溶剤やアルコール溶剤等のより環境負荷の低い有機溶剤を使用することが出来る。また、本発明のエポキシ樹脂組成物の硬化物は誘電率及び誘電正接の両方が低い特徴を有することから、高周波デバイスの演算速度の高速化の実現に貢献することが出来る。 As described above, since the active ester resin of the present invention has higher solvent solubility compared to conventional active ester resins, it can be easily varnished when applied to the various electronic material applications. In place of the conventionally mainstream solvents such as toluene, which have a high environmental load, organic solvents having a lower environmental load such as ester solvents and alcohol solvents can be used. Moreover, since the cured product of the epoxy resin composition of the present invention has a characteristic that both the dielectric constant and the dielectric loss tangent are low, it can contribute to the realization of the high-speed operation speed of the high-frequency device.
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、トルエン溶液粘度、GPC測定は以下の条件にて測定した。 Next, the present invention will be specifically described with reference to examples and comparative examples. In the following, “part” and “%” are based on mass unless otherwise specified. The toluene solution viscosity and GPC measurement were performed under the following conditions.
トルエン溶液粘度:JIS Z8803に準拠した。 Toluene solution viscosity: compliant with JIS Z8803.
GPC:以下の条件により測定した。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
GPC: Measured under the following conditions.
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ “TSK-GEL G4000HXL” manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
“A-1000” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).
実施例1 活性エステル樹脂(1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3,5-ベンゼントリカルボニルトリクロリド132.8g(酸クロリド基のモル数1.5モル)と塩化ベンゾイル210.9g(酸クロリド基のモル数1.5モル)とトルエン1094gを仕込み、系内を減圧窒素置換し溶解させた。次いで、ジシクロペンタジエンフェノール樹脂495.0g(フェノール性水酸基のモル数3.0モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液600gを3時間かけて滴下し、同温度条件下で1.0時間撹拌を続けた。反応終了後、静置分液して水層を取り除き、反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返し、デカンタ脱水で水分を除去して不揮発分65質量%の活性エステル樹脂(1)トルエン溶液を得た。得られた活性エステル樹脂(1)トルエン溶液の溶液粘度は8970mPa・S(25℃)であった。
Example 1 Production of Active Ester Resin (1) A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 132.8 g of 1,3,5-benzenetricarbonyltrichloride (acid chloride group). And 1.59 moles of benzoyl chloride (1.5 moles of acid chloride group) and 1094 g of toluene were charged, and the system was purged with nitrogen under reduced pressure to dissolve. Next, 495.0 g of dicyclopentadiene phenol resin (3.0 mol of phenolic hydroxyl group) was charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C. or lower, 600 g of 20% aqueous sodium hydroxide solution was added dropwise over 3 hours, and stirring was continued for 1.0 hour under the same temperature conditions. After completion of the reaction, liquid separation was performed to remove the aqueous layer, water was added to the toluene phase in which the reaction product was dissolved, and the mixture was stirred and mixed for about 15 minutes. This operation was repeated until the pH of the aqueous layer became 7, and water was removed by decanter dehydration to obtain an active ester resin (1) toluene solution having a nonvolatile content of 65% by mass. The solution viscosity of the obtained active ester resin (1) toluene solution was 8970 mPa · S (25 ° C.).
実施例2 活性エステル樹脂(2)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3,5-ベンゼントリカルボニルトリクロリド132.8g(酸クロリド基のモル数1.5モル)と塩化ベンゾイル140.6g(酸クロリド基のモル数1.0モル)とトルエン832.6gを仕込み、系内を減圧窒素置換し溶解させた。次いで、ジシクロペンタジエンフェノール樹脂412.5g(フェノール性水酸基のモル数2.5モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液500gを3時間かけて滴下し、同温度条件下で1.0時間撹拌を続けた。反応終了後、静置分液して水層を取り除き、反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返し、デカンタ脱水で水分を除去して不揮発分65質量%の活性エステル樹脂(2)トルエン溶液を得た。得られた活性エステル樹脂(2)トルエン溶液の溶液粘度は12540mPa・S(25℃)であった。
Example 2 Production of Active Ester Resin (2) A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 132.8 g of 1,3,5-benzenetricarbonyltrichloride (acid chloride group). Of 1.5 mol), 140.6 g of benzoyl chloride (1.0 mol of acid chloride group) and 832.6 g of toluene were charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Next, 412.5 g of dicyclopentadiene phenol resin (2.5 mol of phenolic hydroxyl group) was charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C. or lower, 500 g of 20% aqueous sodium hydroxide solution was added dropwise over 3 hours, and stirring was continued for 1.0 hour under the same temperature conditions. After completion of the reaction, liquid separation was performed to remove the aqueous layer, water was added to the toluene phase in which the reaction product was dissolved, and the mixture was stirred and mixed for about 15 minutes. This operation was repeated until the pH of the aqueous layer became 7, and water was removed by decanter dehydration to obtain an active ester resin (2) toluene solution having a nonvolatile content of 65% by mass. The solution viscosity of the obtained active ester resin (2) toluene solution was 12540 mPa · S (25 ° C.).
比較製造例1 活性エステル樹脂(1’)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにイソフタル酸クロリド203.0g(酸クロリド基のモル数2.0モル)とジメチルホルムアミド1254gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール288.0g(2.0モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているジメチルホルムアミド相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水槽のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去して不揮発分65質量%のジメチルホルムアミド溶液の活性エステル樹脂(1’)ジメチルホルムアミド溶液を得た。得られた活性エステル樹脂(1’)ジメチルホルムアミド溶液の溶液粘度は860mPa・S(25℃)であった。
Comparative Production Example 1 Production of active ester resin (1 ′) Thermometer, dropping funnel, condenser, fractionation tube, flask equipped with stirrer 203.0 g of isophthalic acid chloride (2.0 mol of acid chloride group) ) And 1254 g of dimethylformamide, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Next, 288.0 g (2.0 mol) of α-naphthol was charged, and the inside of the system was purged with nitrogen under reduced pressure to be dissolved. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C. or lower, and 400 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. Stirring was then continued for 1.0 hour under these conditions. After completion of the reaction, the solution was allowed to stand for separation, and the aqueous layer was removed. Furthermore, water was added to the dimethylformamide phase in which the reaction product was dissolved, and the mixture was stirred and mixed for about 15 minutes, followed by stationary separation to remove the aqueous layer. This operation was repeated until the pH of the water tank reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin (1 ′) dimethylformamide solution in a dimethylformamide solution having a nonvolatile content of 65% by mass. The solution viscosity of the obtained active ester resin (1 ′) dimethylformamide solution was 860 mPa · S (25 ° C.).
比較製造例2 活性エステル樹脂(2’)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにイソフタル酸クロリド203.0g(酸クロリド基のモル数2.0モル)とトルエン1800gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール57.6g(0.4モル)、ジシクロペンタジエンフェノール樹脂412.5g(フェノール性水酸基のモル数2.5モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水槽のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去して不揮発分65質量%の活性エステル樹脂(2’)トルエン溶液を得た。
Comparative Production Example 2 Production of Active Ester Resin (2 ') 203.0 g of isophthalic acid chloride (2.0 mol of acid chloride group) in a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer ) And 1800 g of toluene, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Next, 57.6 g (0.4 mol) of α-naphthol and 412.5 g of dicyclopentadiene phenol resin (2.5 mol of phenolic hydroxyl group) were charged, and the inside of the system was purged with nitrogen under reduced pressure to dissolve. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C. or lower, and 400 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. Stirring was then continued for 1.0 hour under these conditions. After completion of the reaction, the solution was allowed to stand for separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reaction product was dissolved, and the mixture was stirred and mixed for about 15 minutes. This operation was repeated until the pH of the water tank reached 7. Thereafter, moisture was removed by decanter dehydration to obtain an active ester resin (2 ′) toluene solution having a nonvolatile content of 65% by mass.
<溶剤溶解性の評価>
 実施例1、2又は比較製造例1、2で得た前記活性エステル樹脂(1)、(2)、(1’)及び(2’)について、それぞれの溶剤溶液を150℃、真空減圧にて12時間乾燥させ、乾燥した固形樹脂を得た。この固形樹脂を25℃の条件下でトルエン、メチルエチルケトン(以下「MEK」と略記する。)、メチルイソブチルケトン(以下「MIBK」と略記する。)、シクロヘキサノン、1-メトキシ-2-プロパノール(以下「MP」と略記する。)、プロピレングリコールモノメチルエーテルアセテート(以下「PGMAC」と略記する。)、N-メチルピロリドン(以下「NMP」と略記する。)、ノルマルブタノール(以下「BuOH」と略記する。)、酢酸エチルの各溶剤に溶解させ、各溶剤100gに対する固形分の溶解量(g)を評価した。結果を表1に示す。
<Evaluation of solvent solubility>
For the active ester resins (1), (2), (1 ′) and (2 ′) obtained in Examples 1 and 2 or Comparative Production Examples 1 and 2, the respective solvent solutions were at 150 ° C. under vacuum and reduced pressure. It was dried for 12 hours to obtain a dried solid resin. This solid resin was treated at 25 ° C. under conditions of toluene, methyl ethyl ketone (hereinafter abbreviated as “MEK”), methyl isobutyl ketone (hereinafter abbreviated as “MIBK”), cyclohexanone, 1-methoxy-2-propanol (hereinafter “ MP ”), propylene glycol monomethyl ether acetate (hereinafter abbreviated as“ PGMAC ”), N-methylpyrrolidone (hereinafter abbreviated as“ NMP ”), normal butanol (hereinafter abbreviated as“ BuOH ”). ), And dissolved in each solvent of ethyl acetate, and the amount (g) of solid content dissolved in 100 g of each solvent was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
実施例3、4、比較例1、2
 表1記載の配合に従ってエポキシ樹脂組成物を調整し、下記要領で各種評価を行った。評価結果を表1に示す。
Examples 3 and 4, Comparative Examples 1 and 2
The epoxy resin composition was adjusted according to the formulation shown in Table 1, and various evaluations were performed as follows. The evaluation results are shown in Table 1.
<エポキシ樹脂組成物の調整>
 表1に示す割合でエポキシ樹脂、活性エステル樹脂、及び硬化触媒であるジメチルアミノピリジンを配合し、不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合してエポキシ樹脂組成物を調整した。
エポキシ樹脂:DIC株式会社製「HP-7200H」、ジシクロペンタジエンフェノール型エポキシ樹脂、150℃における溶融粘度0.30ポイズ、エポキシ基当量277g/当量
<Adjustment of epoxy resin composition>
An epoxy resin composition containing an epoxy resin, an active ester resin, and dimethylaminopyridine as a curing catalyst in a proportion shown in Table 1 and methyl ethyl ketone so that the nonvolatile content (NV) is 58% by mass. Adjusted.
Epoxy resin: “HP-7200H” manufactured by DIC Corporation, dicyclopentadienephenol type epoxy resin, melt viscosity at 150 ° C. 0.30 poise, epoxy group equivalent 277 g / equivalent
<積層板の作成>
 下記条件で積層板を作成した。
 基材:日東紡績株式会社製  ガラスクロス「#2116」(210×280mm)
 プライ数:6 プリプレグ化条件:160℃
 硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<Creation of laminated board>
A laminate was prepared under the following conditions.
Base material: Glass cloth “# 2116” (210 × 280 mm) manufactured by Nitto Boseki Co., Ltd.
Number of plies: 6 Condition of prepreg: 160 ° C
Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours, post-molding plate thickness: 0.8 mm
<ガラス転移温度の測定>
 先で作成した積層板を幅5mm、長さ54mmのサイズに切り出し、この試験片について、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<Measurement of glass transition temperature>
The laminate prepared above was cut into a size of 5 mm in width and 54 mm in length. About this test piece, a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., rectangular tension method: frequency 1 Hz, The temperature at which the change in elastic modulus was the maximum (the tan δ change rate was the largest) was evaluated as the glass transition temperature using a temperature increase rate of 3 ° C./min.
<誘電率及び誘電正接の測定>
 絶乾後23℃、湿度50%の室内に24時間保管した後の積層板について、JIS-C-6481に準拠し、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」を用いて、1GHzでの誘電率および誘電正接を測定した。
<Measurement of dielectric constant and dissipation factor>
1GHz using impedance material analyzer “HP4291B” manufactured by Agilent Technologies, in accordance with JIS-C-6481, for the laminate after storing in an indoor room at 23 ° C. and 50% humidity for 24 hours. The dielectric constant and dielectric loss tangent at were measured.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Claims (11)

  1. 下記構造式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中Arはベンゼン環又はナフタレン環を表し、Xは下記構造式(X-1)~(X-8)
    Figure JPOXMLDOC01-appb-C000002

    (式中Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、Zは酸素原子、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基の何れかであり、kは1~4の整数である。)
    の何れかで表される構造部位であり、Yは下記構造式(2)
    Figure JPOXMLDOC01-appb-C000003
    〔式中Arはベンゼン環又はナフタレン環を表し、Xは前記構造式(X-1)~(X-8)の何れかで表される構造部位であり、Arはアリール基である。〕
    で表される構造部位又はアリール基である。式中に複数あるX、Yはそれぞれ同一の構造部位であっても良いし、異なる構造部位であっても良い。]
    で表される分子構造を有することを特徴とする活性エステル樹脂。
    The following structural formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein Ar 1 represents a benzene ring or a naphthalene ring, and X represents the following structural formulas (X-1) to (X-8)
    Figure JPOXMLDOC01-appb-C000002

    (Wherein R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4) , L is 0 or 1, m is 1 or 2. R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, Z is an oxygen atom, A carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, and k is an integer of 1 to 4.)
    Wherein Y is a structural moiety represented by any of the following structural formulas (2)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein Ar 1 represents a benzene ring or a naphthalene ring, X represents a structural moiety represented by any one of the structural formulas (X-1) to (X-8), and Ar 2 represents an aryl group. ]
    It is a structural part or aryl group represented by. A plurality of X and Y in the formula may be the same structural site or different structural sites. ]
    An active ester resin having a molecular structure represented by:
  2. 前記構造式(1)及び(2)中のXが、前記構造式(X-3)で表される構造部位である請求項1記載の活性エステル樹脂。 The active ester resin according to claim 1, wherein X in the structural formulas (1) and (2) is a structural moiety represented by the structural formula (X-3).
  3. 芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)とを、前記芳香族トリカルボン酸又はそのハライド(A)と芳香族モノカルボン酸又はそのハライド(B)とが有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記芳香族ジオール化合物(C)が有するフェノール性水酸基が0.5~1.5モルの範囲となる割合で反応させてなる活性エステル樹脂。 An aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C), and the aromatic tricarboxylic acid or its halide (A) and aromatic mono The phenolic hydroxyl group possessed by the aromatic diol compound (C) is in the range of 0.5 to 1.5 moles with respect to a total of 1 mole of carboxyl groups or acid halide groups possessed by the carboxylic acid or its halide (B). An active ester resin obtained by reacting at a ratio.
  4. 前記芳香族トリカルボン酸又はそのハライド(A)が有するカルボキシル基又は酸ハライド基のモル数(p)と、前記芳香族モノカルボン酸又はそのハライド(B)が有するカルボキシル基又は酸ハライド基のモル数(q)とのモル比[(p)/(q)]が1/1.05~1/0.5の範囲である請求項3記載の活性エステル樹脂。 The number of moles (p) of the carboxyl group or acid halide group possessed by the aromatic tricarboxylic acid or its halide (A) and the number of moles of the carboxyl group or acid halide group possessed by the aromatic monocarboxylic acid or its halide (B). The active ester resin according to claim 3, wherein the molar ratio [(p) / (q)] to (q) is in the range of 1 / 1.05 to 1 / 0.5.
  5. 前記芳香族ジオール化合物(C)が、下記構造式(C-1)~(C-8)
    Figure JPOXMLDOC01-appb-C000004
    (式中Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基、アラルキル基の何れかであり、nは1~4の整数、lは0又は1、mは1又は2である。Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、アリール基、アラルキル基の何れかであり、Zは酸素原子、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基の何れかであり、kは1~4の整数である。)
    の何れかで表される化合物である請求項3記載の活性エステル樹脂。
    The aromatic diol compound (C) has the following structural formulas (C-1) to (C-8):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and n is an integer of 1 to 4) , L is 0 or 1, m is 1 or 2. R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, Z is an oxygen atom, A carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, and k is an integer of 1 to 4.)
    The active ester resin according to claim 3, which is a compound represented by any one of:
  6. 芳香族トリカルボン酸又はそのハライド(A)と、芳香族モノカルボン酸又はそのハライド(B)と、芳香族ジオール化合物(C)とを、前記芳香族トリカルボン酸又はそのハライド(A)と芳香族モノカルボン酸又はそのハライド(B)とが有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記芳香族ジオール化合物(C)が有するフェノール性水酸基が0.5~1.5モルの範囲となる割合で反応させる活性エステル樹脂の製造方法。 An aromatic tricarboxylic acid or its halide (A), an aromatic monocarboxylic acid or its halide (B), and an aromatic diol compound (C), and the aromatic tricarboxylic acid or its halide (A) and aromatic mono The phenolic hydroxyl group possessed by the aromatic diol compound (C) is in the range of 0.5 to 1.5 moles with respect to a total of 1 mole of carboxyl groups or acid halide groups possessed by the carboxylic acid or its halide (B). The manufacturing method of the active ester resin made to react by a ratio.
  7. エポキシ樹脂及び活性エステル樹脂を必須成分とするエポキシ樹脂組成物であって、前記活性エステル樹脂として請求項1~5の何れか一つに記載の活性エステル樹脂を用いるエポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin and an active ester resin as essential components, wherein the active ester resin according to any one of claims 1 to 5 is used as the active ester resin.
  8. 請求項7記載のエポキシ樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 7.
  9. 請求項7記載のエポキシ樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることにより得られるプリプレグ。 A prepreg obtained by impregnating a reinforcing substrate with the epoxy resin composition according to claim 7 diluted with an organic solvent, and semi-curing the resulting impregnated substrate.
  10. 請求項7記載のエポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板。 A circuit board obtained by heating and press-molding a varnish obtained by diluting the epoxy resin composition according to claim 7 in an organic solvent and molding the varnish into a plate shape.
  11. 請求項7記載のエポキシ樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることにより得られるビルドアップフィルム。 The buildup film obtained by apply | coating what diluted the epoxy resin composition of Claim 7 in the organic solvent on a base film, and making it dry.
PCT/JP2015/054592 2014-03-18 2015-02-19 Active ester resin, epoxy resin composition, cured product of same, prepreg, circuit board and buildup film WO2015141370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550505A JP5907319B2 (en) 2014-03-18 2015-02-19 Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054870 2014-03-18
JP2014054870 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141370A1 true WO2015141370A1 (en) 2015-09-24

Family

ID=54144349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054592 WO2015141370A1 (en) 2014-03-18 2015-02-19 Active ester resin, epoxy resin composition, cured product of same, prepreg, circuit board and buildup film

Country Status (3)

Country Link
JP (1) JP5907319B2 (en)
TW (1) TW201602159A (en)
WO (1) WO2015141370A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494470A (en) * 2017-03-24 2019-11-22 Dic株式会社 Polyester resin and its solidfied material
JPWO2019003822A1 (en) * 2017-06-28 2020-04-23 Dic株式会社 Active ester compound and curable composition
CN111971267A (en) * 2018-05-24 2020-11-20 积水化学工业株式会社 Active ester compound, curable resin composition, adhesive film, circuit board, interlayer insulating material, and multilayer printed wiring board
CN111961312A (en) * 2019-05-20 2020-11-20 苏州生益科技有限公司 Resin composition, prepreg, insulating film, metal-clad laminate, and printed wiring board provided with same
WO2024071129A1 (en) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 Active ester resin, epoxy resin composition and cured product thereof, prepreg, laminated board, and build-up film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895384B1 (en) 2017-08-04 2018-09-06 주식회사 삼양사 Polysiloxane-polycarbonate copolymer with improved flame retardancy and method for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068049A (en) * 2003-08-21 2005-03-17 Sumitomo Bakelite Co Ltd Aromatic carboxylic acid containing active ester group, its acid chloride derivative and method for synthesizing them
JP2009235165A (en) * 2008-03-26 2009-10-15 Dic Corp Epoxy resin composition and its cured product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707782A (en) * 1996-03-01 1998-01-13 The Board Of Trustees Of The University Of Illinois Photoimageable, dielectric, crosslinkable copolyesters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068049A (en) * 2003-08-21 2005-03-17 Sumitomo Bakelite Co Ltd Aromatic carboxylic acid containing active ester group, its acid chloride derivative and method for synthesizing them
JP2009235165A (en) * 2008-03-26 2009-10-15 Dic Corp Epoxy resin composition and its cured product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494470A (en) * 2017-03-24 2019-11-22 Dic株式会社 Polyester resin and its solidfied material
JPWO2019003822A1 (en) * 2017-06-28 2020-04-23 Dic株式会社 Active ester compound and curable composition
JP7228085B2 (en) 2017-06-28 2023-02-24 Dic株式会社 Active ester compound and curable composition
CN111971267A (en) * 2018-05-24 2020-11-20 积水化学工业株式会社 Active ester compound, curable resin composition, adhesive film, circuit board, interlayer insulating material, and multilayer printed wiring board
CN111971267B (en) * 2018-05-24 2023-09-19 积水化学工业株式会社 Active ester compound, curable resin composition, adhesive film, circuit board, interlayer insulating material, and multilayer printed wiring board
CN111961312A (en) * 2019-05-20 2020-11-20 苏州生益科技有限公司 Resin composition, prepreg, insulating film, metal-clad laminate, and printed wiring board provided with same
CN111961312B (en) * 2019-05-20 2023-09-12 苏州生益科技有限公司 Resin composition, prepreg, insulating film, metal foil-clad laminate, and printed wiring board each comprising the same
WO2024071129A1 (en) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 Active ester resin, epoxy resin composition and cured product thereof, prepreg, laminated board, and build-up film

Also Published As

Publication number Publication date
JPWO2015141370A1 (en) 2017-04-06
JP5907319B2 (en) 2016-04-26
TW201602159A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5152445B2 (en) Active ester resin, production method thereof, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5120520B2 (en) Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP6042054B2 (en) Thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5262915B2 (en) Curable resin composition, cured product thereof, printed wiring board, ester compound, ester resin, and production method thereof
JP5500408B2 (en) Active ester resin, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
WO2014061450A1 (en) Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP5637418B1 (en) Phosphorus atom-containing active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP5557033B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5907319B2 (en) Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP5729605B2 (en) Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP6278239B2 (en) Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP5146793B2 (en) Phosphorus atom-containing oligomer composition, curable resin composition, cured product thereof, and printed wiring board
JP6171760B2 (en) Phosphorus atom-containing active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP6070134B2 (en) Active ester resin, curable resin composition, cured product thereof, and printed wiring board
JP5924523B2 (en) Active ester resin, curable resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP6255624B2 (en) Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2014065753A (en) Active ester resin, curable resin composition, cured product thereof, and printed wiring board
JP5637367B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenol resin, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP6048734B2 (en) Active ester resin, curable resin composition, cured product thereof, and printed wiring board
JP6048738B2 (en) Active ester resin, curable resin composition, cured product thereof, and printed wiring board
JP6032476B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6048035B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6002993B2 (en) Active ester resin, curable resin composition, cured product thereof, and printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015550505

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764255

Country of ref document: EP

Kind code of ref document: A1