[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015141183A1 - 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム - Google Patents

運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム Download PDF

Info

Publication number
WO2015141183A1
WO2015141183A1 PCT/JP2015/001310 JP2015001310W WO2015141183A1 WO 2015141183 A1 WO2015141183 A1 WO 2015141183A1 JP 2015001310 W JP2015001310 W JP 2015001310W WO 2015141183 A1 WO2015141183 A1 WO 2015141183A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
hitting
subject
ball
information
Prior art date
Application number
PCT/JP2015/001310
Other languages
English (en)
French (fr)
Inventor
裕哉 石川
和宏 澁谷
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/116,274 priority Critical patent/US20170024610A1/en
Priority to CN201580014925.4A priority patent/CN106102845A/zh
Priority to KR1020167021438A priority patent/KR20160106671A/ko
Publication of WO2015141183A1 publication Critical patent/WO2015141183A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/0006Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/001Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by measuring acceleration changes by making use of a triple differentiation of a displacement signal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/003Repetitive work cycles; Sequence of movements
    • G09B19/0038Sports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Definitions

  • the present invention relates to a motion analysis device, a motion analysis system, a motion analysis method, a motion analysis information display method, and a program.
  • Patent Document 1 discloses an apparatus for analyzing a golf swing of a subject by mounting an acceleration sensor and a gyro sensor on a golf club.
  • the conventional motion analysis device such as the device of Patent Document 1
  • the actual hitting direction is determined from the sensor output data. Difficult to analyze. Accordingly, the result of the motion analysis cannot be tied to the direction of the hit ball, so that it is necessary for the subject to perform troublesome manual work such as visually checking the direction of the hit ball and writing it on the paper.
  • the present invention has been made in view of the above-described problems, and according to some aspects of the present invention, a motion analysis apparatus capable of associating a result of motion analysis with a hitting ball direction.
  • a motion analysis system, a motion analysis method, a motion analysis information display method, and a program can be provided.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • the motion analysis apparatus uses the measurement data measured by the sensor unit attached to at least one of the exercise instrument and the subject who operates the exercise instrument, and associates it with the hit direction after the subject hits the ball.
  • a motion detection unit that detects a first motion performed;
  • a ball hitting information generation unit that identifies a ball hitting direction according to the first motion and generates ball hitting information including the ball hitting direction;
  • a motion analysis unit that analyzes the motion hit using the ball and generates motion analysis information, and a storage processing unit that stores the motion analysis information and the hit ball information in association with each other in the storage unit.
  • the exercise equipment is equipment used for hitting a golf club, tennis racket, baseball bat, hockey stick or the like.
  • the sensor unit may include a part or all of an acceleration sensor, an angular velocity sensor, a geomagnetic sensor, and a pressure sensor.
  • the sensor unit may be an inertial measurement unit (IMU) that can measure acceleration and angular velocity.
  • IMU inertial measurement unit
  • the sensor unit may be detachable with respect to the exercise equipment or the subject, or may be one that is fixed to the exercise equipment and cannot be removed, for example, built in the exercise equipment.
  • the motion analysis apparatus by using the measurement data of the sensor unit, the first motion performed by the subject is detected to identify the direction of the hit ball, thereby connecting the result of the motion analysis and the hit ball direction. It can be memorized. Therefore, the subject can recognize the relationship between the result of the motion analysis and the direction of the hit ball without being burdened with an excessive burden.
  • the motion analysis apparatus may include a display processing unit that displays the motion analysis information and the hit ball information in association with each other on a display unit.
  • the subject can visually recognize the relationship between the result of the motion analysis and the hitting ball direction by looking at the information displayed on the display unit.
  • the first operation may be an operation indicating a hitting direction.
  • the subject in order to specify the hitting direction, the subject may perform a simple operation of pointing the hitting direction after hitting.
  • the first operation may be an operation of twisting the exercise instrument or the arm of the subject.
  • the subject in order to specify the hitting direction, the subject may perform a simple operation of twisting the exercise device or the arm after hitting.
  • the motion detection unit performs the first operation after the subject has hit the ball using the exercise device and before performing the first motion, using the measurement data. 2 movement is detected,
  • the hitting information generation unit may specify a hitting direction according to the first action and generate hitting information including the hitting direction.
  • the motion analysis apparatus after the subject hits the ball, the second motion performed before the first motion is detected, thereby clearly determining the subject's hitting motion and the first motion. Therefore, it is possible to reduce the probability of erroneously specifying the hitting ball direction.
  • the second operation may be an operation that gives an impact to the exercise equipment.
  • the subject in order to distinguish between the hitting motion and the first motion, the subject only needs to perform a simple motion of giving an impact to the exercise equipment.
  • the second operation may be an operation of stopping the exercise apparatus.
  • the subject in order to distinguish between the hitting motion and the first motion, the subject may perform a simple motion of stopping the exercise equipment.
  • the motion detection unit detects, using the measurement data, a third motion performed in association with a way of bending the hit ball after the subject hits the ball, and the hit ball information
  • the generation unit may specify a method of bending the hit ball according to the third operation, and generate the hit ball information including the hit ball direction and the method of bending the hit ball.
  • the motion analysis apparatus by using the measurement data of the sensor unit, the third motion performed by the subject is detected and the direction of the hit ball and how the hit ball bends are specified.
  • the direction of the hit ball and the bend can be linked and stored. Therefore, the subject can recognize the relationship between the result of the motion analysis, the direction of the hit ball, and the way of bending without being burdened with an excessive burden.
  • the motion analysis unit may generate the motion analysis information using the measurement data.
  • the motion analysis apparatus since the motion of the subject is analyzed using the measurement data, for example, a large device such as a camera is not necessary, and the restriction on the measurement place can be reduced.
  • a motion analysis system includes any of the motion analysis devices described above and the sensor unit.
  • the motion analysis device that can store the result of motion analysis of the subject and the direction of the hit ball in association with each other is stored, the subject is not forced to overload.
  • the relationship between the result of the motion analysis and the direction of the hit ball can be recognized.
  • the motion analysis method uses the measurement data measured by at least one of the exercise equipment and the subject operating the exercise equipment, and associates it with the direction of the shot after the subject has hit the ball.
  • the motion analysis method by using the measurement data of the sensor unit, the first motion performed by the subject is detected and the direction of the hit ball is specified, so that the result of the motion analysis and the hit ball direction are linked. It can be memorized. Therefore, the subject can recognize the relationship between the result of the motion analysis and the direction of the hit ball without being burdened with an excessive burden.
  • the motion analysis method includes a step of calculating a posture of the sensor unit using measurement data measured by the sensor unit.
  • the subject is the first
  • the hitting direction may be specified based on the attitude of the sensor unit when the operation is performed.
  • the motion analysis method includes a step of detecting timing at which the subject hits the ball using data measured by the sensor unit after the subject starts exercise, and the sensor unit measures after the timing. And a step of detecting a second action performed by the subject before performing the first action, and a direction of hitting the ball according to the first action after detecting the second action. It is possible to identify and generate hitting information including the hitting direction.
  • the motion analysis method after the subject hits the ball, the second motion performed before the first motion is detected, thereby clarifying the subject's hitting motion and the first motion. Therefore, it is possible to reduce the probability of erroneously specifying the hitting ball direction.
  • the display method of the exercise analysis information according to this application example uses the measurement data measured by the sensor unit attached to at least one of the exercise equipment and the subject operating the exercise equipment in the direction of the hit ball after the subject hits the ball.
  • a step of detecting a first motion performed in association with the first motion a step of identifying a hitting direction according to the first motion, generating hitting information including the hitting direction, and the subject using the exercise device Analyzing the motion hit by the ball and generating motion analysis information, and displaying the motion analysis information and the hit ball information in association with each other on the display unit.
  • the display method of the motion analysis information by using the measurement data of the sensor unit, the first motion performed by the subject is detected and the hitting direction is specified, so that the result of the motion analysis and the hitting direction Can be displayed in association with each other. Therefore, the test subject can visually recognize the relationship between the result of the motion analysis and the direction of the hit ball without being overloaded.
  • the program according to this application example was performed by using the measurement data measured by at least one of the exercise equipment and the subject operating the exercise equipment in association with the hit direction after the subject hits the ball.
  • a step of detecting a first motion a step of specifying a hitting direction according to the first motion, generating hitting information including the hitting direction, and a motion hit by the subject using the exercise device Analyzing and generating motion analysis information, and causing the computer to execute a step of displaying the motion analysis information and the hit ball information in association with each other on a display unit.
  • the subject by using the measurement data of the sensor unit, the first motion performed by the subject is detected and the hitting direction is specified, thereby linking the result of the motion analysis and the hitting direction. It can be memorized. Therefore, the subject can recognize the relationship between the result of the motion analysis and the direction of the hit ball without being burdened with an excessive burden.
  • FIG. 10A is a graph showing the triaxial angular velocity during swing
  • FIG. 10B is a graph showing the calculated norm of the triaxial angular velocity
  • FIG. 10C is a graph showing the norm of the triaxial angular velocity.
  • the flowchart figure which shows an example of the procedure of the process which calculates the attitude
  • corresponds to the direction of a hit ball, and how to bend the hit ball.
  • motion analysis system motion analysis device
  • FIG. 1 is a diagram for explaining the outline of the motion analysis system of the present embodiment.
  • the motion analysis system 1 of the present embodiment includes a sensor unit 10 and a motion analysis device 20.
  • the sensor unit 10 can measure the acceleration generated in each of the three axes and the angular velocity generated around each of the three axes, and is attached to at least one of the golf club 3 (an example of an exercise device) and the subject 2.
  • the sensor unit 10 may be attached to a part of the shaft of the golf club 3, for example, a position close to the grip portion.
  • the shaft is a portion of the handle excluding the head of the golf club 3 and includes a grip portion.
  • the sensor unit 10 may be attached to a subject's hand, a glove, etc., for example, as shown to FIG. 2 (B).
  • the sensor unit 10 may be attached to an accessory such as a wristwatch as shown in FIG. 2C, for example.
  • FIG. 3 is a diagram illustrating a procedure of operations performed by the subject 2.
  • the subject 2 first holds the golf club 3 and rests for a predetermined time or longer (for example, 1 second or longer) (S1).
  • the subject 2 performs a swing motion and hits the golf ball 4 (S2).
  • the subject 2 performs a predetermined operation (an example of a second operation) indicating that the swing has ended (S3).
  • This predetermined operation may be, for example, an operation that gives a large impact to the golf club 3 by hitting the ground with the golf club 3 or a stationary operation for a predetermined time or longer (for example, 1 second or longer).
  • the subject 2 confirms the hitting direction and performs a predetermined action (an example of the first action) in association with the hitting direction (S4).
  • FIG. 4 (A) and 4 (B) are diagrams for explaining an example of the operation performed by the subject 2 in association with the hitting direction in step S4 of FIG.
  • the subject 2 may perform an operation of pointing the golf ball 3 in the direction of hitting the ball (directing the head of the golf club 3 in the direction of hitting the ball).
  • the subject 2 may perform an operation of twisting the golf club 3 or the arm in association with the hitting direction as shown in FIG. 4B, for example.
  • the test subject 2 performs an operation of twisting the arm holding the golf club 3 to the right if the hitting direction is the right direction, and twisting the arm to the left if the hitting direction is the left direction.
  • Rotate clockwise (R) (rotate clockwise) or counterclockwise (L) (rotate counterclockwise) about the major axis (shaft axis) of.
  • the direction in front is determined in advance, and if the direction of the hit ball substantially matches the target direction, the arm 2 is not twisted and the direction of hit ball is In the case of deviation from the target direction to the right or left, the golf club 3 or the arm may be twisted so that the rotation amount or the rotation speed of the sensor unit 10 increases as the deviation increases.
  • the sensor unit 10 measures the triaxial acceleration and the triaxial angular velocity at a predetermined cycle (for example, 1 ms), and sequentially moves the measured data. It transmits to the analysis device 20.
  • the sensor unit 10 may transmit the measured data immediately, or store the measured data in an internal memory and transmit the measured data at a desired timing such as after the swing motion of the subject 2 is completed. It may be.
  • the sensor unit 10 may store the measured data in a removable recording medium such as a memory card, and the motion analysis apparatus 20 may read the measurement data from the recording medium.
  • the motion analysis device 20 analyzes the motion performed by the subject 2 using the data measured by the sensor unit 10 to generate motion analysis information (swing information) and hit ball information (including the hit ball direction). The information is associated and stored in the storage unit. Then, when a predetermined input operation is performed, the motion analysis apparatus 20 automatically displays the motion analysis information and the hit ball information in association with each other on the display unit.
  • the communication between the sensor unit 10 and the motion analysis device 20 may be wireless communication or wired communication.
  • FIG. 5 is a diagram illustrating a configuration example of the sensor unit 10 and the motion analysis apparatus 20.
  • the sensor unit 10 includes an acceleration sensor 100, an angular velocity sensor 110, a signal processing unit 120, and a communication unit 130.
  • the acceleration sensor 100 measures each acceleration in three axis directions that intersect (ideally orthogonal) with each other, and outputs a digital signal (acceleration data) corresponding to the magnitude and direction of the measured three axis acceleration.
  • the angular velocity sensor 110 measures the angular velocities in the three axial directions that intersect (ideally orthogonal) with each other, and outputs a digital signal (angular velocity data) corresponding to the magnitude and direction of the measured three axial angular velocities.
  • the signal processing unit 120 receives acceleration data and angular velocity data from the acceleration sensor 100 and the angular velocity sensor 110, respectively, attaches time information to the storage unit (not shown), and stores the measured data (acceleration data and angular velocity data). Is attached with time information to generate packet data in accordance with the communication format, and outputs the packet data to the communication unit 130.
  • the acceleration sensor 100 and the angular velocity sensor 110 each have three axes that coincide with the three axes (x axis, y axis, z axis) of the orthogonal coordinate system (sensor coordinate system) defined for the sensor unit 10. Although it is ideal to be attached to the unit 10, an error in the attachment angle actually occurs. Therefore, the signal processing unit 120 performs a process of converting the acceleration data and the angular velocity data into data in the xyz coordinate system (sensor coordinate system) using a correction parameter calculated in advance according to the attachment angle error.
  • the signal processing unit 120 performs temperature correction processing for the acceleration sensor 100 and the angular velocity sensor 110. It should be noted that the acceleration sensor 100 and the angular velocity sensor 110 may incorporate a temperature correction function.
  • the acceleration sensor 100 and the angular velocity sensor 110 may output analog signals.
  • the signal processing unit 120 converts the output signal of the acceleration sensor 100 and the output signal of the angular velocity sensor 110 to A / Measurement data (acceleration data and angular velocity data) is generated by D conversion, and packet data for communication may be generated using these.
  • the communication unit 130 performs processing for transmitting the packet data received from the signal processing unit 120 to the motion analysis device 20, processing for receiving a control command from the motion analysis device 20, and sending the control command to the signal processing unit 120, and the like.
  • the signal processing unit 120 performs various processes according to the control command.
  • the motion analysis apparatus 20 includes a processing unit 200, a communication unit 210, an operation unit 220, a ROM 230, a RAM 240, a recording medium 250, and a display unit 260.
  • a portable device such as a personal computer (PC) or a smartphone. It may be.
  • the communication unit 210 performs processing to receive packet data transmitted from the sensor unit 10 and send the packet data to the processing unit 200, processing to transmit a control command from the processing unit 200 to the sensor unit 10, and the like.
  • the operation unit 220 performs a process of acquiring operation data from the user and sending it to the processing unit 200.
  • the operation unit 220 may be, for example, a touch panel display, a button, a key, a microphone, or the like.
  • the ROM 230 stores programs for the processing unit 200 to perform various calculation processes and control processes, various programs and data for realizing application functions, and the like.
  • the RAM 240 is used as a work area of the processing unit 200, and temporarily stores programs and data read from the ROM 230, data input from the operation unit 220, calculation results executed by the processing unit 200 according to various programs, and the like. It is a storage unit.
  • the recording medium 250 is a non-volatile storage unit that stores data that needs to be stored for a long time among the data generated by the processing of the processing unit 200. Further, the recording medium 250 may store a program for the processing unit 200 to perform various types of calculation processing and control processing, and various programs and data for realizing application functions.
  • the display unit 260 displays the processing results of the processing unit 200 as characters, graphs, tables, animations, and other images.
  • the display unit 260 may be, for example, a CRT, LCD, touch panel display, HMD (head mounted display), or the like. Note that the functions of the operation unit 220 and the display unit 260 may be realized by a single touch panel display.
  • the processing unit 200 transmits a control command to the sensor unit 10 according to a program stored in the ROM 230 or the recording medium 250 or a program received from the server via the network and stored in the RAM 240 or the recording medium 250, Various calculation processes on the data received from the sensor unit 10 via the communication unit 210 and other various control processes are performed.
  • the processing unit 200 executes the program to obtain a data acquisition unit 201, a motion detection unit 202, a motion analysis unit 203, a hit ball information generation unit 204, a storage processing unit 205, and a display processing unit 206. Function as.
  • the data acquisition unit 201 receives packet data received from the sensor unit 10 by the communication unit 210, acquires time information and measurement data (acceleration data and angular velocity data) of the sensor unit 10 from the received packet data, and a storage processing unit 205. Process to send to.
  • the storage processing unit 205 receives the time information and the measurement data from the data acquisition unit 201 and associates them with each other and stores them in the RAM 240.
  • the motion detection unit 202 uses the time information and measurement data stored in the RAM 240 to perform processing for detecting motion in a motion that the subject 2 hits with the golf club 3. Specifically, the motion detection unit 202 performs a stationary motion (the motion of step S1 in FIG. 3) performed by the subject 2 before starting the swing motion, a predetermined motion (step in FIG. 3) indicating that the swing has ended. The operation of S3) and a predetermined operation performed in association with the hitting direction (operation of step S4 in FIG. 3) are detected in association with the time. In addition, the motion detection unit 202 detects the timing (time) of hitting the ball in the period of the swing motion of the subject 2 (the motion of Step S2 in FIG. 3).
  • the motion analysis unit 203 calculates an offset amount using the measurement data at rest detected by the motion detection unit 202, subtracts the offset amount from the measurement data, performs bias correction, and uses the bias-corrected measurement data as a sensor. Processing for calculating the position and orientation of the unit 10 is performed.
  • the motion analysis unit 203 uses an XYZ coordinate system in which the target line indicating the hitting direction is the X axis, the axis on the horizontal plane perpendicular to the X axis is the Y axis, and the vertical direction (the direction opposite to the gravity direction) is the Z axis. (World coordinate system) is defined, and the position and orientation of the sensor unit 10 in this XYZ coordinate system (world coordinate system) are calculated.
  • the target line refers to, for example, a direction in which the ball is blown straight.
  • the position and posture of the sensor unit 10 at the time of the address of the subject 2 may be set as the initial position and the initial posture, respectively.
  • the motion analysis unit 203 uses the initial position of the sensor unit 10 as the origin (0, 0, 0) of the XYZ coordinate system, and determines the sensor unit from the direction of acceleration data and gravitational acceleration when the subject 2 is addressed (during stationary operation). Ten initial postures can be calculated.
  • the attitude of the sensor unit 10 can be expressed by, for example, rotation angles (roll angle, pitch angle, yaw angle) around the X axis, Y axis, and Z axis, Euler angles, and quarter-on (quaternion). .
  • the motion analysis unit 203 is a motion analysis model (2) that takes into account the characteristics of the golf club 3 (such as the length of the shaft and the position of the center of gravity) and the characteristics of the human body (such as the length of the arm and the position of the center of gravity, the direction of bending of the joint). And a trajectory of the motion analysis model is calculated using information on the position and orientation of the sensor unit 10. Then, the motion analysis unit 203 analyzes the motion hit by the subject 2 using the golf club 3 from the trajectory information of the motion analysis model and the detection information of the motion detection unit 202, and uses the motion analysis information (swing information). Generate.
  • the characteristics of the golf club 3 such as the length of the shaft and the position of the center of gravity
  • the characteristics of the human body such as the length of the arm and the position of the center of gravity, the direction of bending of the joint.
  • a trajectory of the motion analysis model is calculated using information on the position and orientation of the sensor unit 10. Then, the motion analysis unit 203 analyzes the motion hit by the subject 2
  • the motion analysis information includes, for example, swing trajectory (goal trajectory of the golf club 3), swing rhythm from back swing to follow-through, head speed, incident angle (club path) and face angle at the time of hitting, shaft rotation ( The amount of change in the face angle during the swing), the V zone, the information on the deceleration rate of the golf club 3, or the information on the variation of each information when the subject 2 makes a plurality of swings.
  • the hitting ball information generating unit 204 identifies the hitting direction according to a predetermined action (the action of step S4 in FIG. 3) performed by the subject 2 in association with the hitting direction detected by the action detecting unit 202, and determines the hitting direction. Generate hitting ball information. For example, as shown in FIG. 6, the hit ball information generating unit 204 sets the axis perpendicular to the face surface of the golf club 3 on the horizontal plane when the subject 2 is at rest (during the operation of Step S ⁇ b> 1 in FIG. 3) on the horizontal plane. On the other hand, if the angle of the hit ball (the angle projected on the horizontal plane) calculated from the motion of the subject 2 (the motion of step S4 in FIG.
  • the hitting direction may be specified as “right” if it is below or “left” if it is smaller than ⁇ 30 ° and ⁇ 60 ° or more.
  • the signal processing unit 120 of the sensor unit 10 may calculate the offset amount of the measurement data and perform bias correction of the measurement data.
  • the bias correction function is incorporated in the acceleration sensor 100 and the angular velocity sensor 110. It may be. In these cases, bias correction of measurement data by the motion analysis unit 203 is not necessary.
  • the storage processing unit 205 associates the motion analysis information generated by the motion analysis unit 203 with the hit ball information generated by the hit ball information generation unit 204 and stores them in the RAM 240, or stores them in the recording medium 250 if they are to be recorded. The processing to be performed is also performed.
  • the display processing unit 206 displays the motion analysis information and the hit ball information stored in the RAM 240 or the recording medium 250 automatically or after a predetermined input operation is performed after the subject 2 swings. A process of displaying the read motion analysis information and the hit ball information on the display unit 260 in association with each other is performed.
  • FIG. 7 is a flowchart illustrating an example of the procedure of the motion analysis process performed by the processing unit 200 according to the first embodiment.
  • the processing unit 200 acquires measurement data of the sensor unit 10 (S10).
  • the processing unit 200 may perform the processing from step S20 onward in real time. After acquiring a part or all of a series of measurement data in the exercise, the processes after step S20 may be performed.
  • the processing unit 200 detects the stationary motion of the subject 2 (the motion of step S1 in FIG. 3) using the acquired measurement data (S20).
  • the processing unit 200 outputs, for example, a predetermined image or sound when a stationary operation is detected, or an LED is provided in the sensor unit 10 to turn on the LED. Then, the subject 2 is notified that the stationary state has been detected, and the subject 2 may start the swing after confirming this notification.
  • the processing unit 200 uses the acquired measurement data to detect the timing at which the subject 2 hits the ball (S30), and the operation performed by the subject 2 indicating the end of the swing (the operation in step S3 in FIG. 3). ) Detecting process (S40) and the process (S50) of detecting the action associated with the hitting direction (the action of step S4 in FIG. 3) performed by the subject 2 are performed in order.
  • the processing unit 200 calculates the position and orientation of the sensor unit 10 in parallel with the processing of steps S30 to S50 (S60) and the trajectory of the motion analysis model from the change in the position and orientation of the sensor unit 10. Is performed (S70).
  • step S60 the processing unit 200 uses the initial position of the sensor unit 10 as the origin of the XYZ coordinate system, and uses the measurement data during the stationary operation detected in step S20, so that the initial posture of the sensor unit 10 in the XYZ coordinate system is determined. And the position and orientation of the sensor unit 10 are calculated in association with the time using the subsequent measurement data.
  • the processing unit 200 generates motion analysis information of the swing motion performed by the subject 2 based on the trajectory of the motion analysis model calculated in step S70 and the motion and timing detected in steps S20 to S50 (S80). .
  • the processing unit 200 identifies the hitting direction from the change in the position and orientation of the sensor unit 10 calculated in step S60 corresponding to the operation detected in step S50, and generates hitting information (S90).
  • the processing unit 200 stores the motion analysis information generated in step S80 and the hit ball information in association with each other (S100).
  • the processing unit 200 displays the motion analysis information stored in step S100 and the hit ball information in association with each other (S120).
  • FIG. 8 is a flowchart illustrating an example of a procedure of a process of detecting the timing at which the subject 2 hits the ball (the process of step S30 in FIG. 7).
  • the processing unit 200 calculates the value of the norm n 0 (t) of the angular velocity at each time t using the acquired angular velocity data (angular velocity data for each time t) (S200). .
  • the norm n 0 (t) of the angular velocity is calculated by the following equation (1).
  • FIG. 10A shows an example of triaxial angular velocity data x (t), y (t), and z (t) when the subject 2 swings and hits the golf ball 4 while being attached near the grip of FIG. .
  • the horizontal axis represents time (msec) and the vertical axis represents angular velocity (dps).
  • the processing unit 200 converts the norm n 0 (t) of the angular velocity at each time t into a norm n (t) normalized (scaled) to a predetermined range (S210). For example, assuming that the maximum value of the norm of the angular velocity during the measurement data acquisition period is max (n 0 ), the norm obtained by normalizing the norm n 0 (t) of the angular velocity to a range of 0 to 100 according to the following equation (2). converted to n (t).
  • FIG. 10B the norm n 0 (t) of the triaxial angular velocity is calculated from the triaxial angular velocity data x (t), y (t), z (t) of FIG.
  • FIG. 6 is a graph showing a norm n (t) that is later normalized to 0 to 100 according to the equation (2).
  • the horizontal axis represents time (msec)
  • the vertical axis represents the norm of angular velocity.
  • FIG. 10C is a graph showing the differential dn (t) calculated from the norm n (t) of the triaxial angular velocity in FIG.
  • the horizontal axis represents time (msec)
  • the vertical axis represents the differential value of the norm of the triaxial angular velocity.
  • the horizontal axis is displayed in 0 to 5 seconds.
  • the horizontal axis is shown so that the change in the differential value before and after the hit ball can be seen. Is displayed in 2 to 2.8 seconds.
  • the processing unit 200 detects the previous time as the timing of the hit ball among the time when the value of the norm differential dn (t) is the maximum and the minimum (S230).
  • the processing unit 200 detects the previous time as the timing of the hit ball among the time when the value of the norm differential dn (t) is the maximum and the minimum (S230).
  • the timing at which the differential value of the norm of angular velocity becomes maximum or minimum in a series of swing operations that is, the differential value of the norm of angular velocity is positive).
  • the timing at which the maximum value or the minimum negative value is reached can be regarded as the timing of the hitting ball (impact).
  • T1 is detected as the hitting timing among T1 and T2.
  • the processing unit 200 detects candidates for the timing at which the subject 2 hits the ball according to the flowchart of FIG. 8, determines whether the measurement data before and after the detected timing matches this rhythm, and matches the rhythm. May determine the detected timing as the timing at which the subject 2 hits the ball, and if it does not match, the next candidate may be detected.
  • the processing unit 200 detects the hitting ball timing using the triaxial angular velocity data, but can similarly detect the hitting ball timing using the triaxial acceleration data.
  • FIG. 11 is a flowchart illustrating an example of a procedure of a process for calculating the attitude of the sensor unit 10 (attitude at time N) (part of the process in step S60 in FIG. 7).
  • the quaternion p (0) in the initial posture is expressed by the following equation (4).
  • the processing unit 200 updates the time t to t + 1 (S320), and calculates the quaternion ⁇ q (t) representing the rotation per unit time at the time t from the triaxial angular velocity data at the time t (S320).
  • the processing unit 200 calculates a quaternion q (t) representing rotation from time 0 to t (S340).
  • the quaternion q (t) is calculated by the following equation (10).
  • the processing unit 200 calculates q (1) according to Expression (10) from q (0) in Expression (7) and ⁇ q (1) calculated in Step S330.
  • the processing unit 200 is the closest to the quaternion p (0) representing the initial posture calculated in step S310.
  • q * (N) is a conjugated quaternion of q (N).
  • This p (N) is expressed as the following equation (12), and when the attitude of the sensor unit 10 at time N is expressed by a vector in the XYZ coordinate system, (X N , Y N , Z N ) is obtained.
  • FIG. 12 is a view for explaining an incident angle and a face angle at the time of hitting a ball, and shows a golf club 3 (only a head is shown) on an XY plane viewed from the positive side of the Z axis in an XYZ coordinate system. Yes.
  • SF is a face surface of the golf club 3
  • R is a hitting point.
  • the dotted line arrow L0 is a target line
  • the broken line L1 is a virtual plane orthogonal to the target line L0.
  • the solid line Q is a curve representing the trajectory of the head of the golf club 3, and the alternate long and short dash line L2 is a tangent to the curve Q at the ball hitting point R.
  • the incident angle ⁇ is an angle formed between the target line L0 and the tangent L2
  • face angle ⁇ is the angle between the virtual plane L1 face S F.
  • the processing unit 200 generates motion analysis information using the trajectory of the motion analysis model, but an error occurs between the trajectory of the motion analysis model and the actual swing trajectory of the subject 2. It is difficult to accurately calculate the exact incident angle and face angle, or where the ball hits the face surface at the time of hitting. Therefore, the prediction result of the hitting direction and the actual hitting direction are not always the same. Therefore, in the present embodiment, the subject 2 performs a predetermined action (the action of Step S4 in FIG. 1) associated with the hitting direction, and the processing unit 200 detects this action and specifies the actual hitting direction. Then, the motion analysis information and the hit ball information including the hit ball direction are displayed on the display unit 260 in association with each other.
  • a predetermined action the action of Step S4 in FIG. 1
  • FIG. 13 is a diagram showing an example of a display screen in which exercise analysis information and hit ball information are associated with each other.
  • the horizontal axis represents the face angle ⁇ at the time of hitting and the vertical axis represents the incident angle ⁇ at the time of hitting, and nine areas A1 to A9 divided into 3 rows and 3 columns are displayed. Yes.
  • the character “Stright” is displayed in the center region A5 as the trajectory prediction.
  • the word “Push” is displayed as the ballistic prediction in the area A4 moved in the positive direction of the incident angle ⁇ with respect to the center area A5.
  • the characters “Pull” are displayed as the trajectory prediction.
  • the characters “Push Slice”, “Slice”, and “Fade” are used as ballistic predictions, respectively. It is displayed.
  • the characters “Draw”, “Hook”, and “Pull Hook” are respectively used as ballistic predictions. It is displayed.
  • the subject 2 hits the ball 6 times, and marks M1 to M6 indicating the direction of the hit ball are displayed at the coordinate positions corresponding to the measured face angle ⁇ and incident angle ⁇ , respectively.
  • the marks M1 to M6 correspond to the first to sixth hits, respectively, and the circle mark indicates “round” when the hit direction is the center direction, “triangle” when the hit direction is the right direction, and left direction Is displayed as “square”. Further, the mark M6 indicating the hitting direction in the latest hitting ball is displayed in white.
  • the subject 2 recognizes the tendency of the relationship between the face angle ⁇ and the incident angle ⁇ and the hitting ball direction and the relationship between the predicted hitting ball direction and the actual hitting ball direction by viewing the display image as shown in FIG. Can do.
  • FIG. 14 is a diagram showing another example of a display screen in which exercise analysis information and hit ball information are associated with each other.
  • a three-dimensional animation arranged in a virtual three-dimensional space in which the objects O2, O3, and O4 imitating the subject 2, the golf club 3, and the golf ball 4 move with time (changes position and posture).
  • An image is displayed.
  • the movements of the objects O2 and O3 are calculated from the trajectory information of the motion analysis model.
  • the movement of the object O4 is calculated from the hitting direction specified based on the predetermined action performed by the subject 2 (the action of Step S4 in FIG. 3).
  • the subject 2 can recognize the relationship between the swing form and the golf club trajectory and the hitting ball direction by viewing the animation image as shown in FIG.
  • the swing motion of the subject 2 is analyzed using the measurement data of the sensor unit 10, and the subject 2
  • the swing analysis result and the hitting direction can be linked and stored and displayed. . Therefore, the test subject can visually recognize the relationship between the result of the motion analysis and the direction of the hit ball without being overloaded.
  • the golf club 3 after the subject 2 hits the ball, the golf club 3 performs the ground operation before performing a predetermined operation for specifying the direction of the hit ball.
  • a simple motion such as hitting or resting for a predetermined time or more, it is possible to clearly distinguish the hitting motion of the subject 2 from the predetermined motion for specifying the hitting direction. Therefore, it is possible to reduce the probability of erroneously specifying the hitting direction.
  • the motion analysis device 20 In the motion analysis system 1 according to the second embodiment, the motion analysis device 20 generates hit ball information including the hit ball direction and how the hit ball is bent, and stores and displays the analysis information and the hit ball information in association with each other. . Since the basic configuration of the motion analysis system 1 of the second embodiment is the same as that of the first embodiment, the same components as those of the motion analysis system 1 of the first embodiment are denoted by the same reference numerals and common description is omitted. In the following description, the contents different from those of the first embodiment will be mainly described.
  • FIG. 15 is a diagram illustrating an operation procedure performed by the subject 2 in the motion analysis system 1 according to the second embodiment.
  • the subject 2 holds the golf club 3 and rests for a predetermined time or longer (S1), performs a swing motion and hits the golf ball 4 (S2), and finishes the swing.
  • S1 a predetermined time or longer
  • S2 a predetermined time or longer
  • S3 A predetermined operation indicating that the above has been performed.
  • the subject 2 confirms the direction of the hit ball and how the hit ball bends, and performs a predetermined action (an example of a third action) in association with the hit ball direction and the way of hitting the hit ball (S4).
  • FIG. 16 is a diagram for explaining an example of the operation performed by the subject in association with the hitting direction and how the hitting bends in step S4 of FIG.
  • the subject 2 twists the arm holding the golf club 3 to the right and hooks the left turn as shown in FIG. In such a case, an operation of twisting to the left may be performed.
  • the sensor unit 10 rotates clockwise (R) (rotates clockwise) or counterclockwise (L) (rotates counterclockwise) around the long axis (shaft axis) of the golf club 3. .
  • the subject 2 performs the operation of FIG.
  • the motion analysis device 20 analyzes the motion performed by the subject 2 using the data measured by the sensor unit 10, and provides motion analysis information (swing information) and hit ball information (including the hit ball direction and how the hit ball bends). The information is generated and stored in the storage unit in association with each other. Then, when a predetermined input operation is performed, the motion analysis apparatus 20 automatically displays the motion analysis information and the hit ball information in association with each other on the display unit.
  • the motion detection unit 202 performs a stationary motion (the motion of Step S1 in FIG. 15) performed before the subject 2 starts the swing motion, a predetermined motion (FIG. 15) indicating that the swing has ended.
  • a predetermined operation (operation in step S4 in FIG. 15) performed in association with the direction of the hit ball and how the hit ball is bent is detected in association with the time.
  • the motion detection unit 202 detects the timing (time) of hitting the ball in the period of the swing motion of the subject 2 (the motion of Step S2 in FIG. 15).
  • the hitting ball information generating unit 204 determines the hitting direction according to a predetermined action (the action of step S4 in FIG. 15) performed by the subject 2 in association with the hitting direction and how the hitting ball is bent, which is detected by the action detecting unit 202. And specifying how the hit ball is bent, and generating hit ball information including the hit direction and the hit ball direction.
  • a predetermined action the action of step S4 in FIG. 15
  • the subject 2 performs a predetermined action corresponding to the direction of the hit ball and the way the ball is bent. If there is no.
  • FIG. 17 is a flowchart illustrating an example of the procedure of the motion analysis process performed by the processing unit 200 according to the second embodiment.
  • the processing unit 200 performs the processes of steps S10 and S20, and then performs the processes of steps S30 to S50 and the processes of steps S60 and S70 in parallel, as in FIG. .
  • the processing unit 200 performs a process of detecting an operation associated with the hitting direction and how the hitting bends in step S50.
  • the processing unit 200 performs the process of step S80 in the same manner as in FIG. 7, and then specifies the direction of the ball and how the golf ball 4 bends from the change in the position and orientation of the sensor unit 10, and generates the ball hitting information. Processing is performed (S90).
  • the processing unit 200 stores the motion analysis information generated in step S80 and the hit ball information in association with each other (S100).
  • the processing unit 200 displays the motion analysis information stored in step S100 and the hit ball information in association with each other (S120).
  • the processing unit 200 may display the face angle ⁇ and the incident angle ⁇ at the time of hitting in association with the hitting direction and the way of bending of the hitting ball on the same screen as in FIG.
  • nine types of marks covering the combinations of three hitting ball directions (center direction, right direction, left direction) and three ways of bending (no bend, right bend, left bend) are measured.
  • the coordinates may be displayed at coordinate positions corresponding to the face angle ⁇ and the incident angle ⁇ .
  • three types of marks for specifying the hitting direction are displayed, or three types for specifying how the golf ball 4 is bent It may be possible to select whether to display the mark by an input operation.
  • three types of marks for specifying one of the hitting direction and the direction of the hitting ball are displayed at the coordinate position corresponding to the measured face angle ⁇ and incident angle ⁇ , and one of the displayed marks is displayed. Is selected, the display may be switched to three types of marks for specifying the other of the hit ball direction and the way the hit ball is bent.
  • the subject 2 looks at such a display image to determine the tendency of the relationship between the face angle ⁇ and the incident angle ⁇ , the hitting direction and the way the ball is bent, the predicted hitting direction, the bending direction and the actual hitting direction, You can recognize the relationship with how to bend.
  • the processing unit 200 may display an animation image similar to that in FIG. 14 and fly the object O2 imitating the golf ball 4 to the right or left while turning right or left. .
  • the subject 2 can recognize the relationship between the swing form and the golf club trajectory, the direction of the hit ball, and the way the ball is bent by looking at such an animation image.
  • the motion analysis system 1 or the motion analysis device 20 of the second embodiment while using the measurement data of the sensor unit 10, the swing motion of the subject 2 is analyzed, and the subject 2 performs the ball hitting direction after the ball is hit.
  • the analysis result of the swing and the direction and the bending direction of the hit ball can be linked and stored and displayed. . Accordingly, the subject can visually recognize the relationship between the result of the motion analysis, the direction of the hit ball, and the way of bending without being burdened with an excessive load.
  • the motion analysis system 1 or the motion analysis device 20 of the second embodiment after the subject 2 hits the ball, a simple motion performed before performing a predetermined motion for specifying the direction of the hit ball and how to bend it. By detecting this, it is possible to clearly distinguish the hitting action of the subject 2 from the predetermined action for specifying the direction of the hitting ball and how to bend. Therefore, it is possible to reduce the probability of erroneously specifying the direction of the hit ball and the way of bending.
  • the subject 2 may perform an operation of hitting the ground with the golf club 3 as many times as the hitting direction in order to specify the hitting direction or how the hitting bends. For example, an action of hitting once indicates that the direction of the hitting ball is in the center direction or no bending, an action of hitting twice indicates that the direction of the hitting ball is rightward or rightward, and an action of hitting three times indicates that the hitting direction is leftward or You may make it show that it is a left turn.
  • the motion analysis apparatus 20 specifies the hitting direction using the measurement data of the acceleration sensor 100 and the angular velocity sensor 110 mounted on the sensor unit 10.
  • the motion analysis apparatus 20 may specify the hitting direction using the measurement data of the sensor. For example, since the geomagnetic sensor measures the azimuth, the motion analysis apparatus 20 can easily specify whether the hitting direction is the central direction, the right direction, or the left direction by using the measurement data of the geomagnetic sensor.
  • the motion analysis apparatus 20 specifies the left and right hitting directions, that is, the hitting directions projected on the horizontal plane, using the measured acceleration data and angular velocity data. That is, the hitting direction projected on a plane perpendicular to the horizontal plane may be specified.
  • the sensor unit 10 may include a sensor of a different type from the acceleration sensor and the angular velocity sensor, and the motion analysis apparatus 20 may specify the upper and lower hitting ball directions using measurement data of the sensor. For example, since the pressure sensor measures the atmospheric pressure (the higher the altitude, the lower the atmospheric pressure), the motion analysis apparatus 20 uses the measurement data of the pressure sensor to easily specify whether the hitting direction is upward or downward. be able to.
  • a motion analysis system that performs golf swing analysis is taken as an example.
  • the present invention is based on motion analysis using various exercise equipment such as a tennis racket and a baseball bat. It can be applied to a system (motion analysis apparatus).
  • the motion analysis apparatus 20 performs motion analysis using measurement data of one sensor unit 10, but each of the plurality of sensor units 10 is attached to the golf club 3 or the subject 2. Then, the motion analysis apparatus 20 may perform motion analysis using the measurement data of the plurality of sensor units 10.
  • the sensor unit 10 and the motion analysis device 20 are separate bodies, but may be a motion analysis device that can be attached to an exercise device or a subject by integrating them.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • 1 motion analysis system 2 subjects, 3 golf clubs, 4 golf balls, 10 sensor units, 20 motion analysis devices, 100 acceleration sensors, 110 angular velocity sensors, 120 signal processing units, 130 communication units, 200 processing units, 201 data acquisition units , 202 motion detection unit, 203 motion analysis unit, 204 hit ball information generation unit, 205 storage processing unit, 206 display processing unit, 210 communication unit, 220 operation unit, 230 ROM, 240 RAM, 250 recording medium, 260 display unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Educational Technology (AREA)
  • Multimedia (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Golf Clubs (AREA)

Abstract

 運動解析の結果と打球方向との紐付けを行うことが可能な運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラムを提供すること。 運動解析装置20は、ゴルフクラブ3および被験者2の少なくとも一方に装着されたセンサーユニット10が計測した計測データを用いて、被験者2が打球した後に打球方向に対応づけて行った第1の動作を検出する動作検出部202と、第1の動作に応じて打球方向を特定し、打球方向を含む打球情報を生成する打球情報生成部204と、被験者2が打球した運動を解析し、運動解析情報を生成する運動解析部203と、運動解析情報と打球情報とを対応づけて記憶させる記憶処理部205と、を含む。

Description

運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム
 本発明は、運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラムに関する。
 ゴルフ、テニス、野球などのスポーツでは、スイング運動のリズムやフォームを改善することで競技力を向上させることができると考えられ、近年、運動器具に取り付けたセンサーの出力データを用いて、被験者の運動を解析して提示する運動解析装置が実用化されてきている。例えば、特許文献1では、ゴルフクラブに加速度センサーとジャイロセンサーを装着し、被験者のゴルフスイングを解析する装置が開示されている。
特開2008-73210号公報
 しかしながら、特許文献1の装置のように、従来の運動解析装置では、センサーの出力データを用いて、例えばスイングスピードやスイング軌跡等の運動解析はできるものの、実際の打球方向はセンサーの出力データから解析するのが難しい。したがって、運動解析の結果と打球方向との紐付けはできないため、紐付けしたい場合には、被験者が打球方向を目視確認して紙に書きとめる等の煩わしい手作業が必要であった。
 本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様によれば、運動解析の結果と打球方向との紐付けを行うことが可能な運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラムを提供することができる。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することが可能である。
 [適用例1]
 本適用例に係る運動解析装置は、運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する動作検出部と、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する打球情報生成部と、前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する運動解析部と、前記運動解析情報と前記打球情報とを対応づけて記憶部に記憶させる記憶処理部と、を含む。
 運動器具は、例えば、ゴルフクラブ、テニスラケット、野球のバット、ホッケーのスティック等の打球に用いられる器具である。
 センサーユニットは、加速度センサー、角速度センサー、地磁気センサー、圧力センサーの一部又は全部を含んでもよく、例えば、加速度や角速度を計測可能な慣性計測ユニット(IMU:Inertial Measurement Unit)でもよい。また、センサーユニットは、運動器具又は被験者に対して脱着可能であってもよいし、例えば、運動器具に内蔵されるなど、運動器具に固定されていて取り外すことができないものでもよい。
 本適用例に係る運動解析装置によれば、センサーユニットの計測データを用いて、被験者が行う第1の動作を検出して打球方向を特定することで、運動解析の結果と打球方向とを紐付けて記憶させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を認識することができる。
 [適用例2]
 上記適用例に係る運動解析装置は、前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる表示処理部を含んでもよい。
 本適用例に係る運動解析装置によれば、被験者は表示部に表示された情報を見ることで、運動解析の結果と打球方向との関係を視覚的に認識することができる。
 [適用例3]
 上記適用例に係る運動解析装置において、前記第1の動作は、打球方向を指し示す動作であってもよい。
 本適用例に係る運動解析装置によれば、打球方向を特定するために、被験者は、打球後に打球方向を指し示すという簡単な動作を行えばよい。
 [適用例4]
 上記適用例に係る運動解析装置において、前記第1の動作は、前記運動器具又は前記被験者の腕を捻る動作であってもよい。
 本適用例に係る運動解析装置によれば、打球方向を特定するために、被験者は、打球後に運動器具又は腕を捻るという簡単な動作を行えばよい。
 [適用例5]
 上記適用例に係る運動解析装置において、前記動作検出部は、前記計測データを用いて、前記被験者が前記運動器具を用いて打球した後であって前記第1の動作を行う前に行った第2の動作を検出し、
 前記打球情報生成部は、前記第2の動作を検出した場合に、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成してもよい。
 本適用例に係る運動解析装置によれば、被験者が打球した後、第1の動作を行う前に行った第2の動作を検出することで、被験者の打球動作と第1の動作とを明確に区別することができるので、打球方向の特定を誤る確率を低減させることができる。
 [適用例6]
 上記適用例に係る運動解析装置において、前記第2の動作は、前記運動器具に衝撃を与える動作であってもよい。
 本適用例に係る運動解析装置によれば、打球動作と第1の動作を区別するために、被験者は、運動器具に衝撃を与えるという簡単な動作を行えばよい。
 [適用例7]
 上記適用例に係る運動解析装置において、前記第2の動作は、前記運動器具を静止させる動作であってもよい。
 本適用例に係る運動解析装置によれば、打球動作と第1の動作を区別するために、被験者は、運動器具を静止させるという簡単な動作を行えばよい。
 [適用例8]
 上記適用例に係る運動解析装置において、前記動作検出部は、前記計測データを用いて、前記被験者が打球した後に打球の曲がり方に対応づけて行った第3の動作を検出し、前記打球情報生成部は、前記第3の動作に応じて前記打球の曲がり方を特定し、前記打球方向と前記打球の曲がり方を含む前記打球情報を生成してもよい。
 本適用例に係る運動解析装置によれば、センサーユニットの計測データを用いて、被験者が行う第3の動作を検出して打球方向と打球の曲がり方を特定することで、運動解析の結果と打球の方向及び曲がりとを紐付けて記憶させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球の方向及び曲がり方との関係を認識することができる。
 [適用例9]
 上記適用例に係る運動解析装置において、前記運動解析部は、前記計測データを用いて、前記運動解析情報を生成してもよい。
 本適用例に係る運動解析装置によれば、計測データを用いて被験者の運動を解析するので、例えば、カメラのような大型の装置が必要なく、計測場所の制約を少なくすることができる。
 [適用例10]
 本適用例に係る運動解析システムは、上記のいずれかの運動解析装置と、前記センサーユニットと、を含む。
 本適用例に係る運動解析システムによれば、被験者の運動解析の結果と打球方向とを紐付けて記憶させることが可能な運動解析装置を含むので、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を認識することができる。
 [適用例11]
 本適用例に係る運動解析方法は、運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、前記運動解析情報と前記打球情報とを対応づけて記憶部に記憶させる工程と、を含む。
 本適用例に係る運動解析方法によれば、センサーユニットの計測データを用いて、被験者が行う第1の動作を検出して打球方向を特定することで、運動解析の結果と打球方向とを紐付けて記憶させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を認識することができる。
 [適用例12]
 上記適用例に係る運動解析方法は、前記センサーユニットが計測した計測データを用いて、前記センサーユニットの姿勢を算出する工程を含み、前記打球情報を生成する工程では、前記被験者が前記第1の動作を行ったときの前記センサーユニットの姿勢に基づき前記打球方向を特定してもよい。
 [適用例13]
 上記適用例に係る運動解析方法は、前記被験者が運動を開始した後に前記センサーユニットが計測したデータを用いて、前記被験者が打球したタイミングを検出する工程と、前記タイミングの後に前記センサーユニットが計測したデータを用いて、前記被験者が前記第1の動作を行う前に行った第2の動作を検出する工程と、前記第2の動作を検出した後に前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成してもよい。
 本適用例に係る運動解析方法によれば、被験者が打球した後、第1の動作を行う前に行った第2の動作を検出することで、被験者の打球動作と第1の動作とを明確に区別することができるので、打球方向の特定を誤る確率を低減させることができる。
 [適用例14]
 本適用例に係る運動解析情報の表示方法は、運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる工程と、を含む。
 本適用例に係る運動解析情報の表示方法によれば、センサーユニットの計測データを用いて、被験者が行う第1の動作を検出して打球方向を特定することで、運動解析の結果と打球方向とを紐付けて表示させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を視覚的に認識することができる。
 [適用例15]
 本適用例に係るプログラムは、運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる工程と、をコンピューターに実行させる。
 本適用例に係るプログラムによれば、センサーユニットの計測データを用いて、被験者が行う第1の動作を検出して打球方向を特定することで、運動解析の結果と打球方向とを紐付けて記憶させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を認識することができる。
本実施形態の運動解析システムの概要の説明図。 センサーユニットの取り付け位置の一例を示す図。 第1実施形態において被験者が行う動作の手順を示す図。 被験者が打球方向に対応づけて行う動作の一例について説明するための図。 本実施形態の運動解析システムの構成例を示す図。 打球方向について説明するための図。 第1実施形態における運動解析処理の手順の一例を示すフローチャート図。 被験者が打球したタイミングを検出する処理の手順の一例を示すフローチャート図。 センサーユニットを取り付ける位置及び向きの一例を示す図。 図10(A)はスイング時の3軸角速度をグラフ表示した図、図10(B)は3軸角速度のノルムの計算値をグラフ表示した図、図10(C)は3軸角速度のノルムの微分の計算値をグラフ表示した図。 センサーユニットの姿勢を計算する処理の手順の一例を示すフローチャート図。 打球時の入射角とフェース角を説明するための図。 運動解析情報と打球情報とを対応づけた表示画面の一例を示す図。 運動解析情報と打球情報とを対応づけた表示画面の他の一例を示す図。 第2実施形態において被験者が行う動作の手順を示す図。 被験者が打球方向と打球の曲がり方に対応づけて行う動作の一例について説明するための図。 第2実施形態における運動解析処理の手順の一例を示すフローチャート図。
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
 以下では、ゴルフスイングの解析を行う運動解析システム(運動解析装置)を例に挙げて説明する。
 1.運動解析システム
 1-1.第1実施形態
    [運動解析システムの概要]
 図1は、本実施形態の運動解析システムの概要について説明するための図である。本実施形態の運動解析システム1は、センサーユニット10及び運動解析装置20を含んで構成されている。
 センサーユニット10は、3軸の各軸方向に生じる加速度と3軸の各軸回りに生じる角速度を計測可能であり、ゴルフクラブ3(運動器具の一例)および被験者2の少なくとも一方に装着される。センサーユニット10は、例えば、図2(A)に示すように、ゴルフクラブ3のシャフトの一部、例えば、グリップ部に近い位置に取り付けられてもよい。シャフトは、ゴルフクラブ3のヘッドを除いた柄の部分であり、グリップ部も含まれる。また、センサーユニット10は、例えば、図2(B)に示すように、被験者の手やグローブなどに取り付けられてもよい。また、センサーユニット10は、例えば、図2(C)に示すように、腕時計などのアクセサリーに取り付けられてもよい。
 被験者2は、あらかじめ決められた手順に従って、ゴルフボール4を打球するスイング動作を行う。図3は、被験者2が行う動作の手順を示す図である。図3に示すように、被験者2は、まず、ゴルフクラブ3を握って、所定時間以上(例えば、1秒以上)静止する(S1)。次に、被験者2は、スイング動作を行い、ゴルフボール4を打球する(S2)。次に、被験者2は、スイングを終了したことを示す所定の動作(第2の動作の一例)を行う(S3)。この所定の動作は、例えば、ゴルフクラブ3で地面を叩く等してゴルフクラブ3に大きな衝撃を与える動作であってもよいし、所定時間以上(例えば1秒以上)の静止動作であってもよい。最後に、被験者2は、打球方向を確認し、打球方向に対応づけて所定の動作(第1の動作の一例)を行う(S4)。
 図4(A)及び図4(B)は、図3のステップS4で被験者2が打球方向に対応づけて行う動作の一例について説明するための図である。被験者2は、例えば図4(A)に示すように、ゴルフクラブ3で打球方向を指し示す(ゴルフクラブ3のヘッドを打球方向に向ける)動作を行ってもよい。また、被験者2は、例えば図4(B)に示すように、打球方向に対応づけて、ゴルフクラブ3又は腕を捻る動作を行ってもよい。被験者2は、例えば、打球方向が右方向であればゴルフクラブ3を握った腕を右に捻り、打球方向が左方向であれば左に捻る動作を行うことで、センサーユニット10はゴルフクラブ3の長軸(シャフト軸)回りに右回転(R)(時計回りに回転)又は左回転(L)(反時計回りに回転)する。被験者2は、図4(B)の動作を行う場合、例えば、あらかじめ真正面の方向(目標方向)を決めておいて、打球方向がほぼ目標方向と一致した場合は腕を捻らず、打球方向が目標方向から右方向又は左方向にずれた場合は、ずれが大きいほどセンサーユニット10の回転量あるいは回転速度を増やすようにゴルフクラブ3又は腕を捻る動作をしてもよい。
 被験者2が図3に示す手順に従ってゴルフボール4を打球する動作を行う間、センサーユニット10は、所定周期(例えば1ms)で3軸加速度と3軸角速度を計測し、計測したデータを順次、運動解析装置20に送信する。センサーユニット10は、計測したデータをすぐに送信してもよいし、計測したデータを内部メモリーに記憶しておき、被験者2のスイング動作の終了後などの所望のタイミングで計測データを送信するようにしてもよい。あるいは、センサーユニット10は、計測したデータをメモリーカード等の着脱可能な記録媒体に記憶しておき、運動解析装置20は、当該記録媒体から計測データを読み出すようにしてもよい。
 運動解析装置20は、センサーユニット10が計測したデータを用いて、被験者2が行った運動を解析して運動解析情報(スイングの情報)と打球情報(打球方向を含む)を生成し、これらの情報を対応づけて記憶部に記憶させる。そして、運動解析装置20は、所定の入力操作が行われると、あるいは、自動的に、当該運動解析情報と当該打球情報とを対応づけて表示部に表示する。
 なお、センサーユニット10と運動解析装置20との間の通信は、無線通信でもよいし、有線通信でもよい。
 [運動解析システムの構成]
 図5は、センサーユニット10及び運動解析装置20の構成例を示す図である。図5に示すように、本実施形態では、センサーユニット10は、加速度センサー100、角速度センサー110、信号処理部120及び通信部130を含んで構成されている。
 加速度センサー100は、互いに交差する(理想的には直交する)3軸方向の各々の加速度を計測し、計測した3軸加速度の大きさ及び向きに応じたデジタル信号(加速度データ)を出力する。
 角速度センサー110は、互いに交差する(理想的には直交する)3軸方向の各々の角速度を計測し、計測した3軸角速度の大きさ及び向きに応じたデジタル信号(角速度データ)を出力する。
 信号処理部120は、加速度センサー100と角速度センサー110から、それぞれ加速度データと角速度データを受け取って時刻情報を付して不図示の記憶部に記憶し、記憶した計測データ(加速度データと角速度データ)に時刻情報を付して通信用のフォーマットに合わせたパケットデータを生成し、通信部130に出力する。
 加速度センサー100及び角速度センサー110は、それぞれ3軸が、センサーユニット10に対して定義される直交座標系(センサー座標系)の3軸(x軸、y軸、z軸)と一致するようにセンサーユニット10に取り付けられるのが理想的だが、実際には取り付け角の誤差が生じる。そこで、信号処理部120は、取り付け角誤差に応じてあらかじめ算出された補正パラメーターを用いて、加速度データ及び角速度データをxyz座標系(センサー座標系)のデータに変換する処理を行う。
 さらに、信号処理部120は、加速度センサー100及び角速度センサー110の温度補正処理を行う。なお、加速度センサー100及び角速度センサー110に温度補正の機能が組み込まれていてもよい。
 なお、加速度センサー100と角速度センサー110は、アナログ信号を出力するものであってもよく、この場合は、信号処理部120が、加速度センサー100の出力信号と角速度センサー110の出力信号をそれぞれA/D変換して計測データ(加速度データと角速度データ)を生成し、これらを用いて通信用のパケットデータを生成すればよい。
 通信部130は、信号処理部120から受け取ったパケットデータを運動解析装置20に送信する処理や、運動解析装置20から制御コマンドを受信して信号処理部120に送る処理等を行う。信号処理部120は、制御コマンドに応じた各種処理を行う。
 運動解析装置20は、処理部200、通信部210、操作部220、ROM230、RAM240、記録媒体250、表示部260を含んで構成されており、例えば、パーソナルコンピューター(PC)やスマートフォンなどの携帯機器であってもよい。
 通信部210は、センサーユニット10から送信されたパケットデータを受信し、処理部200に送る処理や、処理部200からの制御コマンドをセンサーユニット10に送信する処理等を行う。
 操作部220は、ユーザーからの操作データを取得し、処理部200に送る処理を行う。操作部220は、例えば、タッチパネル型ディスプレイ、ボタン、キー、マイクなどであってもよい。
 ROM230は、処理部200が各種の計算処理や制御処理を行うためのプログラムや、アプリケーション機能を実現するための各種プログラムやデータ等を記憶している。
 RAM240は、処理部200の作業領域として用いられ、ROM230から読み出されたプログラムやデータ、操作部220から入力されたデータ、処理部200が各種プログラムに従って実行した演算結果等を一時的に記憶する記憶部である。
 記録媒体250は、処理部200の処理により生成されたデータのうち、長期的な保存が必要なデータを記憶する不揮発性の記憶部である。また、記録媒体250は、処理部200が各種の計算処理や制御処理を行うためのプログラムや、アプリケーション機能を実現するための各種プログラムやデータ等を記憶していてもよい。
 表示部260は、処理部200の処理結果を文字、グラフ、表、アニメーション、その他の画像として表示するものである。表示部260は、例えば、CRT、LCD、タッチパネル型ディスプレイ、HMD(ヘッドマウントディスプレイ)などであってもよい。なお、1つのタッチパネル型ディスプレイで操作部220と表示部260の機能を実現するようにしてもよい。
 処理部200は、ROM230あるいは記録媒体250に記憶されているプログラム、あるいはネットワークを介してサーバーから受信してRAM240や記録媒体250に記憶したプログラムに従って、センサーユニット10に制御コマンドを送信する処理や、センサーユニット10から通信部210を介して受信したデータに対する各種の計算処理や、その他の各種の制御処理を行う。特に、本実施形態では、処理部200は、当該プログラムを実行することにより、データ取得部201、動作検出部202、運動解析部203、打球情報生成部204、記憶処理部205及び表示処理部206として機能する。
 データ取得部201は、通信部210がセンサーユニット10から受信したパケットデータを受け取り、受け取ったパケットデータから時刻情報及びセンサーユニット10の計測データ(加速度データと角速度データ)を取得し、記憶処理部205に送る処理を行う。
 記憶処理部205は、データ取得部201から時刻情報と計測データを受け取り、これらを対応づけてRAM240に記憶させる処理を行う。
 動作検出部202は、RAM240に記憶された時刻情報と計測データを用いて、被験者2がゴルフクラブ3を用いて打球した運動における動作を検出する処理を行う。具体的には、動作検出部202は、被験者2がスイング動作を開始する前に行った静止動作(図3のステップS1の動作)、スイングを終了したことを示す所定の動作(図3のステップS3の動作)、及び打球方向に対応づけて行った所定の動作(図3のステップS4の動作)を時刻と対応づけて検出する。また、動作検出部202は、被験者2のスイング動作(図3のステップS2の動作)の期間において打球したタイミング(時刻)を検出する。
 運動解析部203は、動作検出部202が検出した静止時の計測データを用いてオフセット量を計算し、計測データからオフセット量を減算してバイアス補正し、バイアス補正された計測データを用いてセンサーユニット10の位置と姿勢を計算する処理を行う。例えば、運動解析部203は、打球方向を示すターゲットラインをX軸、X軸に垂直な水平面上の軸をY軸、鉛直上方向(重力方向と逆方向)をZ軸とするXYZ座標系(ワールド座標系)を定義し、このXYZ座標系(ワールド座標系)におけるセンサーユニット10の位置及び姿勢を計算する。ターゲットラインとは、例えば、ボールをまっすぐ飛ばす方向を指す。被験者2のアドレス時(静止動作時)のセンサーユニット10の位置及び姿勢をそれぞれ初期位置及び初期姿勢としてもよい。運動解析部203は、例えば、センサーユニット10の初期位置をXYZ座標系の原点(0,0,0)とし、被験者2のアドレス時(静止動作時)の加速度データと重力加速度の方向からセンサーユニット10の初期姿勢を計算することができる。センサーユニット10の姿勢は、例えば、X軸、Y軸、Z軸回りの回転角(ロール角、ピッチ角、ヨー角)、オイラー角、クオータ二オン(四元数)などで表現することができる。
 また、運動解析部203は、ゴルフクラブ3の特徴(シャフトの長さや重心の位置等)や人体の特徴(腕の長さや重心の位置、関節の曲がる方向等)を考慮した運動解析モデル(二重振子モデル等)を定義し、センサーユニット10の位置と姿勢の情報を用いて、この運動解析モデルの軌跡を計算する。そして、運動解析部203は、この運動解析モデルの軌跡情報と動作検出部202の検出情報から、被験者2がゴルフクラブ3を用いて打球した運動を解析し、運動解析情報(スイングの情報)を生成する。運動解析情報は、例えば、スイングの軌跡(ゴルフクラブ3のヘッドの軌跡)、バックスイングからフォロースルーまでのスイングのリズム、ヘッドスピード、打球時の入射角(クラブパス)やフェース角、シャフトローテーション(スイング中のフェース角の変化量)、Vゾーン、ゴルフクラブ3の減速率の情報、あるいは、被験者2が複数回のスイングを行った場合のこれら各情報のばらつきの情報等である。
 打球情報生成部204は、動作検出部202が検出した、被験者2が打球方向に対応づけて行った所定の動作(図3のステップS4の動作)に応じて打球方向を特定し、打球方向を含む打球情報を生成する。例えば、打球情報生成部204は、図6に示すように、被験者2が静止中(図3のステップS1の動作中)におけるゴルフクラブ3のフェース面と直交する軸を水平面に投影した軸Pに対して、被験者2の動作(図3のステップS4の動作)から計算される打球の角度(水平面に投影した角度)が、±30°以内であれば「中央」、+30°よりも大きく+60°以下であれば「右」、-30°よりも小さく-60°以上であれば「左」というように、打球方向を特定してもよい。被験者2は、空振りした場合やほとんど前に飛ばなかった場合等、打球方向の情報を記憶させたくない場合は、打球方向に対応づけた所定の動作を行わなければよい。
 なお、センサーユニット10の信号処理部120が、計測データのオフセット量を計算し、計測データのバイアス補正を行うようにしてもよいし、加速度センサー100及び角速度センサー110にバイアス補正の機能が組み込まれていてもよい。これらの場合は、運動解析部203による計測データのバイアス補正が不要となる。
 記憶処理部205は、運動解析部203が生成した運動解析情報と打球情報生成部204が生成した打球情報とを対応づけてRAM240に記憶させ、あるいは、記録として残したい場合は記録媒体250に記憶させる処理も行う。
 表示処理部206は、被験者2のスイング運動が終了した後、自動的に、あるいは、所定の入力操作が行われたときに、RAM240あるいは記録媒体250に記憶されている運動解析情報と打球情報を読み出し、読み出した運動解析情報と打球情報とを対応づけて表示部260に表示させる処理を行う。
 [運動解析処理]
 図7は、第1実施形態における処理部200による運動解析処理の手順の一例を示すフローチャート図である。
 図7に示すように、まず、処理部200は、センサーユニット10の計測データを取得する(S10)。処理部200は、工程S10において、被験者2のスイング運動(静止動作も含む)における最初の計測データを取得するとリアルタイムに工程S20以降の処理を行ってもよいし、センサーユニット10から被験者2のスイング運動における一連の計測データの一部又は全部を取得した後に、工程S20以降の処理を行ってもよい。
 次に、処理部200は、取得した計測データを用いて、被験者2の静止動作(図3のステップS1の動作)を検出する(S20)。処理部200は、リアルタイムに処理を行う場合は、静止動作を検出した場合に、例えば、所定の画像や音を出力し、あるいは、センサーユニット10にLEDを設けておいて当該LEDを点灯させる等して、被験者2に静止状態を検出したことを通知し、被験者2は、この通知を確認した後にスイングを開始してもよい。
 次に、処理部200は、取得した計測データを用いて、被験者2が打球したタイミングを検出する処理(S30)、被験者2が行った、スイングの終了を示す動作(図3のステップS3の動作)を検出する処理(S40)、及び、被験者2が行った、打球方向に対応付けた動作(図3のステップS4の動作)検出する処理(S50)を順番に行う。
 また、処理部200は、工程S30~S50の処理と並行して、センサーユニット10の位置と姿勢を計算する処理(S60)、及び、センサーユニット10の位置と姿勢の変化から運動解析モデルの軌跡を計算する処理(S70)を行う。処理部200は、工程S60において、センサーユニット10の初期位置をXYZ座標系の原点とし、工程S20で検出された静止動作時の計測データを用いて、センサーユニット10のXYZ座標系での初期姿勢を計算し、その後の計測データを用いて、時刻と対応づけてセンサーユニット10の位置及び姿勢を計算する。
 次に、処理部200は、工程S70で計算した運動解析モデルの軌跡と、工程S20~S50で検出した動作やタイミングに基づき、被験者2が行ったスイング運動の運動解析情報を生成する(S80)。
 次に、処理部200は、工程S50で検出した動作に対応する、工程S60で計算したセンサーユニット10の位置や姿勢の変化から、打球方向を特定し、打球情報を生成する(S90)。
 次に、処理部200は、工程S80で生成した運動解析情報と打球情報とを対応づけて記憶する(S100)。
 最後に、処理部200は、所定の入力操作があった場合に(S110のY)、工程S100で記憶した運動解析情報と打球情報を対応づけて表示する(S120)。
 なお、図7のフローチャートにおいて、可能な範囲で各工程の順番を適宜変えてもよい。
 [インパクト検出処理]
 図8は、被験者2が打球したタイミングを検出する処理(図7の工程S30の処理)の手順の一例を示すフローチャート図である。
 図8に示すように、まず、処理部200は、取得した角速度データ(時刻t毎の角速度データ)を用いて各時刻tでの角速度のノルムn(t)の値を計算する(S200)。例えば、時刻tでの角速度データをx(t)、y(t)、z(t)とすると、角速度のノルムn(t)は、次の式(1)で計算される。
Figure JPOXMLDOC01-appb-M000001
 図9に示すように、センサーユニット10を、x軸がシャフトの長軸に平行な方向、y軸がスイングの方向、z軸がスイング面と垂直な方向になるように、ゴルフクラブ3のシャフトのグリップ近くに取り付け、被験者2がスイングを行ってゴルフボール4を打ったときの3軸角速度データx(t)、y(t)、z(t)の一例を、図10(A)に示す。図10(A)において、横軸は時間(msec)、縦軸は角速度(dps)である。
 次に、処理部200は、各時刻tでの角速度のノルムn(t)を所定範囲に正規化(スケール変換)したノルムn(t)に変換する(S210)。例えば、計測データの取得期間における角速度のノルムの最大値をmax(n)とすると、次の式(2)により、角速度のノルムn(t)が0~100の範囲に正規化したノルムn(t)に変換される。
Figure JPOXMLDOC01-appb-M000002
 図10(B)は、図10(A)の3軸角速度データx(t),y(t),z(t)から3軸角速度のノルムn(t)を式(1)に従って計算した後に式(2)に従って0~100に正規化したノルムn(t)をグラフ表示した図である。図10(B)において、横軸は時間(msec)、縦軸は角速度のノルムである。
 次に、処理部200は、各時刻tでの正規化後のノルムn(t)の微分dn(t)を計算する(S220)。例えば、3軸角速度データの計測周期をΔtとすると、時刻tでの角速度のノルムの微分(差分)dn(t)は次の式(3)で計算される。
Figure JPOXMLDOC01-appb-M000003
 図10(C)は、図10(B)の3軸角速度のノルムn(t)からその微分dn(t)を式(3)に従って計算し、グラフ表示した図である。図10(C)において、横軸は時間(msec)、縦軸は3軸角速度のノルムの微分値である。なお、図10(A)及び図10(B)では横軸を0~5秒で表示しているが、図10(C)では、打球の前後の微分値の変化がわかるように、横軸を2秒~2.8秒で表示している。
 最後に、処理部200は、ノルムの微分dn(t)の値が最大となる時刻と最小となる時刻のうち、先の時刻を打球のタイミングとして検出する(S230)。通常のゴルフスイングでは、打球の瞬間にスイング速度が最大になると考えられる。そして、スイング速度に応じて角速度のノルムの値も変化すると考えられるので、一連のスイング動作の中で角速度のノルムの微分値が最大又は最小となるタイミング(すなわち、角速度のノルムの微分値が正の最大値又は負の最小値になるタイミング)を打球(インパクト)のタイミングとして捉えることができる。なお、打球によりゴルフクラブ3が振動するため、角速度のノルムの微分値が最大となるタイミングと最小となるタイミングが対になって生じると考えられるが、そのうちの先のタイミングが打球の瞬間と考えられる。従って、例えば、図10(C)のグラフでは、T1とT2のうち、T1が打球のタイミングとして検出される。
 なお、被験者2がスイング動作を行う場合、トップ位置でゴルフクラブを静止し、ダウンスイングを行い、打球し、フォロースルーを行うといった一連のリズムが想定される。従って、処理部200は、図8のフローチャートに従って、被験者2が打球したタイミングの候補を検出し、検出したタイミングの前後の計測データがこのリズムとマッチするか否かを判定し、マッチする場合には、検出したタイミングを被験者2が打球したタイミングとして確定し、マッチしない場合には、次の候補を検出するようにしてもよい。
 また、図8のフローチャートでは、処理部200は、3軸角速度データを用いて打球のタイミングを検出しているが、3軸加速度データを用いて、同様に打球のタイミングを検出することもできる。
 [センサーユニットの姿勢計算処理]
 図11は、センサーユニット10の姿勢(時刻Nでの姿勢)を計算する処理(図7の工程S60の一部の処理)の手順の一例を示すフローチャート図である。
 図11に示すように、まず、処理部200は、時刻t=0として(S300)、静止時の3軸加速度データから重力加速度の向きを特定し、センサーユニット10の初期姿勢(時刻t=0の姿勢)を表すクォータニオンp(0)を計算する(S310)。
 例えば、初期姿勢のクォータニオンp(0)は、次の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 また、回転を表すクォータニオンqは次の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、対象とする回転の回転角をθ、回転軸の単位ベクトルを(r,r,r)とすると、w,x,y,zは、次の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 時刻t=0ではセンサーユニット10は静止しているのでθ=0として、時刻t=0での回転を表すクォータニオンq(0)は、式(6)にθ=0を代入した式(5)より、次の式(7)のようになる。
Figure JPOXMLDOC01-appb-M000007
 次に、処理部200は、時刻tをt+1に更新し(S320)、時刻tの3軸角速度データから、時刻tの単位時間あたりの回転を表すクォータニオンΔq(t)を計算する(S320)。
 例えば、時刻tの3軸角速度データをω(t)=(ω(t),ω(t),ω(t))とすると、時刻tで計測された1サンプルあたりの角速度の大きさ|ω(t)|は、次の式(8)で計算される。
Figure JPOXMLDOC01-appb-M000008
 この角速度の大きさ|ω(t)|は、単位時間当たりの回転角度となっているため、時刻tの単位時間あたりの回転を表すクォータニオンΔq(t+1)は、次の式(9)で計算される。
Figure JPOXMLDOC01-appb-M000009
 ここでは、t=1なので、処理部200は、時刻t=1の3軸角速度データω(1)=(ω(1),ω(1),ω(1))から、式(9)により、Δq(1)を計算する。
 次に、処理部200は、時刻0からtまでの回転を表すクォータニオンq(t)を計算する(S340)。クォータニオンq(t)は、次の式(10)で計算される。
Figure JPOXMLDOC01-appb-M000010
 ここでは、t=1なので、処理部200は、式(7)のq(0)と工程S330で計算したΔq(1)から、式(10)により、q(1)を計算する。
 次に、処理部200は、t=Nになるまで工程S320~S340の処理を繰り返し、t=Nになると(S350のY)、工程S310で計算した初期姿勢を表すクォータニオンp(0)と直近の工程S340で計算した時刻t=0からNまでの回転を表すクォータニオンq(N)とから、次の式(11)により、時刻Nでの姿勢を表すクォータニオンp(N)を計算し(S360)、処理を終了する。
Figure JPOXMLDOC01-appb-M000011
 式(11)において、q(N)はq(N)の共役クォータニオンである。このp(N)は、次の式(12)のように表され、センサーユニット10の時刻Nの姿勢をXYZ座標系のベクトルで表記すると、(X,Y,Z)となる。
Figure JPOXMLDOC01-appb-M000012
 [運動解析情報と打球情報とを対応付けた表示]
 打球の方向は、打球時の入射角及びフェース角から予測することができる。図12は、打球時の入射角とフェース角を説明するための図であり、XYZ座標系でZ軸の正側から見たXY平面上でのゴルフクラブ3(ヘッドのみ図示)が示されている。図12において、Sはゴルフクラブ3のフェース面であり、Rは打球点である。点線矢印L0はターゲットラインであり、破線L1はターゲットラインL0に直交する仮想面である。また、実線Qはゴルフクラブ3のヘッドの軌跡を表す曲線であり、一点鎖線L2は曲線Qに対する打球点Rでの接線である。この時、入射角θはターゲットラインL0と接線L2とのなす角であり、フェース角φは仮想面L1とフェース面Sとのなす角である。
 前述したように、処理部200は、運動解析モデルの軌跡を用いて、運動解析情報を生成するが、運動解析モデルの軌跡と被験者2の実際のスイングの軌跡との間に誤差が生じるため、正確な入射角及びフェース角、あるいは、打球時にフェース面のどこにボールが当たったかを正確に計算することは難しい。従って、打球方向の予測結果と実際の打球方向とが一致するとは限らない。そこで、本実施形態では、被験者2に打球方向と対応づけた所定の動作(図1のステップS4の動作)を行ってもらい、処理部200は、この動作を検出して実際の打球方向を特定し、運動解析情報と打球方向を含む打球情報とを対応づけて表示部260に表示する。
 図13は、運動解析情報と打球情報とを対応づけた表示画面の一例を示す図である。図13の例では、横軸に打球時のフェース角φ、縦軸に打球時の入射角θがそれぞれ割り当てられており、3行3列に分割された9つの領域A1~A9が表示されている。9つの領域A1~A9のうち中央の領域A5には、弾道予測として「Straight」の文字が表示されている。また、右打ちのゴルファー用に、中央の領域A5に対して入射角θの正方向に移動した領域A4には、弾道予測として「Push」の文字が表示され、同様に中央の領域A5から入射角θの負方向に移動した領域A6には、弾道予測として「Pull」の文字が表示されている。また、領域A4,A5,A6に対してそれぞれフェース角φを正方向に移動させた領域A1,A2,A3には、それぞれ弾道予測として「Push Slice」,「Slice」,「Fade」の文字が表示されている。また、領域A4,A5,A6に対してそれぞれフェース角φを負方向に移動させた領域A7,A8,A9には、それぞれ弾道予測として「Draw」,「Hook」,「Pull Hook」の文字が表示されている。
 さらに、図13の例では、被験者2が6回打球し、それぞれ計測されたフェース角φと入射角θに対応する座標位置に、打球方向を示すマークM1~M6が表示されている。マークM1~M6は、それぞれ1回目~6回目の打球に対応しており、丸印は打球方向が中央方向であった場合は「丸」、右方向であった場合は「三角」、左方向であった場合は「四角」で表示されている。また、最新の打球における打球方向を示すマークM6は、白抜きで表示されている。被験者2は、図13のような表示画像を見ることで、フェース角φ及び入射角θと打球方向との関係の傾向や、予測される打球方向と実際の打球方向との関係を認識することができる。
 図14は、運動解析情報と打球情報とを対応づけた表示画面の他の一例を示す図である。図14の例では、仮想3次元空間に配置された、被験者2,ゴルフクラブ3,ゴルフボール4をそれぞれ模したオブジェクトO2,O3,O4が時間とともに動く(位置や姿勢を変化させる)3次元アニメーション画像が表示されている。オブジェクトO2やO3の動きは、運動解析モデルの軌跡情報から計算される。また、オブジェクトO4の動きは、被験者2が行った所定の動作(図3のステップS4の動作)に基づき特定された打球方向から計算される。被験者2は、図14のようなアニメーション画像を見ることで、スイングのフォームやゴルフクラブの軌跡と打球方向との関係を認識することができる。
 以上に説明したように、第1実施形態の運動解析システム1あるいは運動解析装置20によれば、センサーユニット10の計測データを用いて、被験者2のスイング運動を解析するとともに、被験者2が打球後に行う、打球方向を指し示す、あるいはゴルフクラブ3又は腕を捻るといった簡単な動作を検出して打球方向を特定することで、スイングの解析結果と打球方向とを紐付けて記憶及び表示させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球方向との関係を視覚的に認識することができる。
 また、第1実施形態の運動解析システム1あるいは運動解析装置20によれば、被験者2が打球した後、打球方向を特定するための所定の動作を行う前に行った、ゴルフクラブ3で地面を叩く、あるいは所定時間以上静止するといった簡単な動作を検出することで、被験者2の打球動作と打球方向を特定するための所定の動作とを明確に区別することができる。従って、打球方向の特定を誤る確率を低減させることができる。
 1-2.第2実施形態
 第2実施形態の運動解析システム1では、運動解析装置20は、打球方向と打球の曲がり方とを含む打球情報を生成し、解析情報と打球情報を対応づけて記憶及び表示する。第2実施形態の運動解析システム1の基本的な構成は第1実施形態と同様であるため、第1実施形態の運動解析システム1と同じ構成には同じ符号を付加して共通する説明を省略し、以下では、第1実施形態と異なる内容を中心に説明する。
 図15は、第2実施形態の運動解析システム1において、被験者2が行う動作の手順を示す図である。図15に示すように、被験者2は、図3と同様に、ゴルフクラブ3を握って所定時間以上静止し(S1)、スイング動作を行ってゴルフボール4を打球し(S2)、スイングを終了したことを示す所定の動作を行う(S3)。
 最後に、被験者2は、打球方向と打球の曲がり方を確認し、打球方向と打球の曲がり方に対応づけて所定の動作(第3の動作の一例)を行う(S4)。
 図16は、図15のステップS4で被験者が打球方向と打球の曲がり方に対応づけて行う動作の一例について説明するための図である。被験者2は、例えば図16に示すように、ゴルフクラブ3で打球方向を指し示しながら、ゴルフボール4が右曲がりにスライスした場合にはゴルフクラブ3を握った腕を右に捻り、左曲がりにフックした場合には左に捻る動作を行ってもよい。被験者2が腕を捻ることで、センサーユニット10はゴルフクラブ3の長軸(シャフト軸)回りに右回転(R)(時計回りに回転)又は左回転(L)(反時計回りに回転)する。被験者2は、図16の動作を行う場合、例えば、ゴルフボール4が曲がらずに飛んだ場合は腕を捻らず、ゴルフボール4が曲がって飛んだ場合は、曲がりが大きいほどセンサーユニット10の回転量あるいは回転速度を増やすようにゴルフクラブ3又は腕を捻る動作をしてもよい。
 運動解析装置20は、センサーユニット10が計測したデータを用いて、被験者2が行った運動を解析して運動解析情報(スイングの情報)と打球情報(打球方向と打球の曲がり方を含む)を生成し、これらの情報を対応づけて記憶部に記憶させる。そして、運動解析装置20は、所定の入力操作が行われると、あるいは、自動的に、当該運動解析情報と当該打球情報とを対応づけて表示部に表示する。
 特に、本実施形態では、動作検出部202は、被験者2がスイング動作を開始する前に行った静止動作(図15のステップS1の動作)、スイングを終了したことを示す所定の動作(図15のステップS3の動作)、打球方向と打球の曲がり方に対応づけて行った所定の動作(図15のステップS4の動作)を時刻と対応づけて検出する。また、動作検出部202は、被験者2のスイング動作(図15のステップS2の動作)の期間において打球したタイミング(時刻)を検出する。
 また、打球情報生成部204は、動作検出部202が検出した、被験者2が打球方向と打球の曲がり方に対応づけて行った所定の動作(図15のステップS4の動作)に応じて打球方向と打球の曲がり方を特定し、打球方向と打球の曲がり方を含む打球情報を生成する。被験者2は、空振りした場合やほとんど前に飛ばなかった場合等、打球方向や打球の曲がり方の情報を記憶させたくない場合は、打球方向と打球の曲がり方に対応づけた所定の動作を行わなければよい。
 図17は、第2実施形態における処理部200による運動解析処理の手順の一例を示すフローチャート図である。
 図17に示すように、まず、処理部200は、図7と同様に、工程S10及びS20の処理を行った後、工程S30~S50の処理と工程S60及びS70の処理とを平行して行う。特に、本実施形態では、処理部200は、工程S50において、打球方向と打球の曲がり方に対応づけた動作を検出する処理を行う。
 次に、処理部200は、図7と同様に工程S80の処理を行った後、センサーユニット10の位置や姿勢の変化から打球方向とゴルフボール4の曲がり方を特定し、打球情報を生成する処理を行う(S90)。
 次に、処理部200は、工程S80で生成した運動解析情報と打球情報とを対応づけて記憶する(S100)。
 最後に、処理部200は、所定の入力操作があった場合に(S110のY)、工程S100で記憶した運動解析情報と打球情報を対応づけて表示する(S120)。
 処理部200は、工程S120において、例えば、図13と同様の画面により、打球時のフェース角φ及び入射角θと打球方向及び打球の曲がり方とを対応づけて表示してもよい。この場合、例えば、3通りの打球方向(中央方向、右方向、左方向)と3通りの曲がり方(曲がりなし、右曲り、左曲がり)との組み合わせを網羅した9種類のマークを、計測されたフェース角φと入射角θに対応する座標位置に表示させればよい。また、例えば、計測されたフェース角φと入射角θに対応する座標位置に、打球方向を特定するための3種類のマークを表示させるか、ゴルフボール4の曲がり方を特定するための3種類のマークを表示させるかを、入力操作により選択可能にしてもよい。また、例えば、計測されたフェース角φと入射角θに対応する座標位置に打球方向と打球の曲がり方の一方を特定するための3種類のマークを表示させ、表示されているマークの1つを選択すれば、打球方向と打球の曲がり方の他方を特定するための3種類のマークに表示が切り替わるようにしてもよい。被験者2は、このような表示画像を見ることで、フェース角φ及び入射角θと打球方向及び打球の曲がり方との関係の傾向や、予測される打球方向や曲がり方と実際の打球方向や曲がり方との関係を認識することができる。
 あるいは、処理部200は、工程S120において、例えば、図14と同様のアニメーション画像を表示させ、ゴルフボール4を模したオブジェクトO2を右や左に曲がりながら右方向や左方向に飛行させてもよい。被験者2は、このようなアニメーション画像を見ることで、スイングのフォームやゴルフクラブの軌跡と打球方向や打球の曲がり方との関係を認識することができる。
 第2実施形態の運動解析システム1あるいは運動解析装置20によれば、センサーユニット10の計測データを用いて、被験者2のスイング運動を解析するとともに、被験者2が打球後に行う、打球方向を指し示しながらゴルフクラブ3又は腕を捻るといった簡単な動作を検出して打球の方向と曲がり方を特定することで、スイングの解析結果と打球の方向及び曲がり方とを紐付けて記憶及び表示させることができる。従って、被験者は、過度の負担を強いられることなく、運動解析の結果と打球の方向及び曲がり方との関係を視覚的に認識することができる。
 また、第2実施形態の運動解析システム1あるいは運動解析装置20によれば、被験者2が打球した後、打球の方向と曲がり方を特定するための所定の動作を行う前に行った簡単な動作を検出することで、被験者2の打球動作と打球の方向と曲がり方を特定するための所定の動作とを明確に区別することができる。従って、打球の方向や曲がり方の特定を誤る確率を低減させることができる。
 2.変形例
 本発明は本実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
 例えば、被験者2は、打球方向あるいは打球の曲がり方を特定するために、打球方向に応じた回数だけゴルフクラブ3で地面を叩く動作を行ってもよい。例えば、1回叩く動作は打球方向が中央方向あるいは曲がりがないことを示し、2回叩く動作は打球方向が右方向あるいは右曲がりであることを示し、3回叩く動作は打球方向が左方向あるいは左曲がりであることを示すようにしてもよい。
 また、上述した各実施形態では、運動解析装置20は、センサーユニット10に搭載されている加速度センサー100や角速度センサー110の計測データを用いて打球方向を特定しているが、センサーユニット10が他の種類のセンサーを搭載し、運動解析装置20は、当該センサーの計測データを用いて打球方向を特定してもよい。例えば、地磁気センサーは方位を計測するので、運動解析装置20は、地磁気センサーの計測データを用いることで、打球方向が中央方向か右方向か左方向かを容易に特定することができる。
 また、上述した各実施形態では、運動解析装置20は、計測された加速度データや角速度データを用いて、左右の打球方向、すなわち水平面に投影した打球方向を特定しているが、上下の打球方向、すなわち水平面に垂直な平面に投影した打球方向を特定してもよい。センサーユニット10が加速度センサーや角速度センサーとは異なる種類のセンサーを搭載し、運動解析装置20は、当該センサーの計測データを用いて上下の打球方向を特定してもよい。例えば、圧力センサーは気圧を計測する(高度が高いほど気圧が低い)ので、運動解析装置20は、圧力センサーの計測データを用いることで、打球方向が上方向か下方向かを容易に特定することができる。
 また、上述した各実施形態ではゴルフスイングの解析を行う運動解析システム(運動解析装置)を例に挙げたが、本発明は、テニスラケットや野球のバットなどの様々な運動器具を用いた運動解析システム(運動解析装置)に適用することができる。
 また、上述した各実施形態では、運動解析装置20は、1つのセンサーユニット10の計測データを用いて運動解析を行っているが、複数のセンサーユニット10の各々をゴルフクラブ3又は被験者2に装着し、運動解析装置20は、当該複数のセンサーユニット10の計測データを用いて運動解析を行ってもよい。
 また、上述した各実施形態では、センサーユニット10と運動解析装置20が別体であるが、これらを一体化して運動器具又は被験者に装着可能な運動解析装置であってもよい。
 上述した各実施形態および各変形例は一例であって、これらに限定されるわけではない。例えば、各実施形態および各変形例を適宜組み合わせることも可能である。
 本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
 1 運動解析システム、2 被験者、3 ゴルフクラブ、4 ゴルフボール、10 センサーユニット、20 運動解析装置、100 加速度センサー、110 角速度センサー、120 信号処理部、130 通信部、200 処理部、201 データ取得部、202 動作検出部、203 運動解析部、204 打球情報生成部、205 記憶処理部、206 表示処理部、210 通信部、220 操作部、230 ROM、240 RAM、250 記録媒体、260 表示部。

Claims (15)

  1.  運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する動作検出部と、
     前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する打球情報生成部と、
     前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する運動解析部と、
     前記運動解析情報と前記打球情報とを対応づけて記憶部に記憶させる記憶処理部と、を含む、運動解析装置。
  2.  前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる表示処理部を含む、請求項1に記載の運動解析装置。
  3.  前記第1の動作は、打球方向を指し示す動作である、請求項1又は2に記載の運動解析装置。
  4.  前記第1の動作は、前記運動器具又は前記被験者の腕を捻る動作である、請求項1又は2に記載の運動解析装置。
  5.  前記動作検出部は、
     前記計測データを用いて、前記被験者が前記運動器具を用いて打球した後であって前記第1の動作を行う前に行った第2の動作を検出し、
     前記打球情報生成部は、
     前記第2の動作を検出した場合に、前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する、請求項1乃至4のいずれか一項に記載の運動解析装置。
  6.  前記第2の動作は、前記運動器具に衝撃を与える動作である、請求項5に記載の運動解析装置。
  7.  前記第2の動作は、前記運動器具を静止させる動作である、請求項5に記載の運動解析装置。
  8.  前記動作検出部は、
     前記計測データを用いて、前記被験者が打球した後に打球の曲がり方に対応づけて行った第3の動作を検出し、
     前記打球情報生成部は、
     前記第3の動作に応じて前記打球の曲がり方を特定し、前記打球方向と前記打球の曲がり方を含む前記打球情報を生成する、請求項1乃至7のいずれか一項に記載の運動解析装置。
  9.  前記運動解析部は、
     前記計測データを用いて、前記運動解析情報を生成する、請求項1乃至8のいずれか一項に記載の運動解析装置。
  10.  請求項1乃至9のいずれか一項に記載の運動解析装置と、前記センサーユニットと、を含む、運動解析システム。
  11.  運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、
     前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、
     前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、
     前記運動解析情報と前記打球情報とを対応づけて記憶部に記憶させる工程と、を含む、運動解析方法。
  12.  前記センサーユニットが計測した計測データを用いて、前記センサーユニットの姿勢を算出する工程を含み、
     前記打球情報を生成する工程では、
     前記被験者が前記第1の動作を行ったときの前記センサーユニットの姿勢に基づき前記打球方向を特定する、請求項11に記載の運動解析方法。
  13.  前記被験者が運動を開始した後に前記センサーユニットが計測したデータを用いて、前記被験者が打球したタイミングを検出する工程と、
     前記タイミングの後に前記センサーユニットが計測したデータを用いて、前記被験者が前記第1の動作を行う前に行った第2の動作を検出する工程と、
     前記第2の動作を検出した後に前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する、請求項12に記載の運動解析方法。
  14.  運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、
     前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、
     前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、
     前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる工程と、を含む、運動解析情報の表示方法。
  15.  運動器具および前記運動器具を操作する被験者の少なくとも一方に装着されたセンサーユニットが計測した計測データを用いて、前記被験者が打球した後に打球方向に対応づけて行った第1の動作を検出する工程と、
     前記第1の動作に応じて打球方向を特定し、前記打球方向を含む打球情報を生成する工程と、
     前記被験者が前記運動器具を用いて打球した運動を解析し、運動解析情報を生成する工程と、
     前記運動解析情報と前記打球情報とを対応づけて表示部に表示させる工程と、をコンピューターに実行させる、プログラム。
PCT/JP2015/001310 2014-03-20 2015-03-10 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム WO2015141183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/116,274 US20170024610A1 (en) 2014-03-20 2015-03-10 Motion analysis apparatus, motion analysis system, motion analysis method, and display method and program of motion analysis information
CN201580014925.4A CN106102845A (zh) 2014-03-20 2015-03-10 运动分析装置、运动分析系统、运动分析方法、运动分析信息的显示方法及程序
KR1020167021438A KR20160106671A (ko) 2014-03-20 2015-03-10 운동 해석 장치, 운동 해석 시스템, 운동 해석 방법, 운동 해석 정보의 표시 방법 및 프로그램

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058839 2014-03-20
JP2014058839A JP6380733B2 (ja) 2014-03-20 2014-03-20 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2015141183A1 true WO2015141183A1 (ja) 2015-09-24

Family

ID=54144168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001310 WO2015141183A1 (ja) 2014-03-20 2015-03-10 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム

Country Status (5)

Country Link
US (1) US20170024610A1 (ja)
JP (1) JP6380733B2 (ja)
KR (1) KR20160106671A (ja)
CN (1) CN106102845A (ja)
WO (1) WO2015141183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847795A (zh) * 2016-03-17 2018-03-27 深圳市赛亿科技开发有限公司 一种高尔夫球教学辅助训练系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828265B2 (ja) * 2016-04-15 2021-02-10 セイコーエプソン株式会社 表示方法、スイング解析装置、スイング解析システム、スイング解析プログラム、および記録媒体
CN106474711A (zh) * 2016-11-15 2017-03-08 广东小天才科技有限公司 一种高尔夫辅助训练方法及装置
JP6822173B2 (ja) * 2017-01-25 2021-01-27 セイコーエプソン株式会社 運動解析装置、運動解析方法、プログラム、及び運動解析システム
CN108771851A (zh) * 2018-08-18 2018-11-09 中山市迈进高尔夫用品有限公司 一种高尔夫挥杆测量与分析系统
CN114788951B (zh) * 2021-01-26 2024-02-20 王振兴 手持运动分析系统与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043349A (ja) * 1996-08-08 1998-02-17 Tokico Ltd スイング診断装置
JP3082890U (ja) * 2001-06-22 2002-01-11 忠信 林 ゴルフクラブヘッド
JP2008073210A (ja) * 2006-09-21 2008-04-03 Seiko Epson Corp ゴルフクラブ、そのスイング評価支援装置
JP2012095850A (ja) * 2010-11-02 2012-05-24 Sri Sports Ltd ゴルフクラブのフィッティング方法、その装置及び解析方法
JP2012196241A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp スイング解析システム
JP2013009917A (ja) * 2011-06-30 2013-01-17 Seiko Epson Corp 運動解析システム、運動解析プログラム、および、運動解析プログラムを記録した記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215808A (ja) * 1995-12-07 1997-08-19 Hokuriku Electric Ind Co Ltd スイング型運動用具の練習装置及びスイング型運動用具
US8409024B2 (en) * 2001-09-12 2013-04-02 Pillar Vision, Inc. Trajectory detection and feedback system for golf
US20070135225A1 (en) * 2005-12-12 2007-06-14 Nieminen Heikki V Sport movement analyzer and training device
US20070298895A1 (en) * 2006-06-21 2007-12-27 Nusbaum Mark E Golf swing analyzing/training mat system with ball striking-related feedback
US9370704B2 (en) * 2006-08-21 2016-06-21 Pillar Vision, Inc. Trajectory detection and feedback system for tennis
US9623284B2 (en) * 2008-02-20 2017-04-18 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US8545340B2 (en) * 2009-09-10 2013-10-01 Cobra Golf Incorporated Golf club with directional based graphic
JP5761506B2 (ja) * 2011-06-09 2015-08-12 セイコーエプソン株式会社 スイング分析装置、スイング分析システム、スイング分析方法、スイング分析プログラム、および記録媒体
CN103203097B (zh) * 2012-01-11 2015-06-10 幻音科技(深圳)有限公司 高尔夫球挥杆过程分析方法、相关装置及分析系统
TW201415272A (zh) * 2012-10-12 2014-04-16 Ind Tech Res Inst 擊球結果推論與姿勢修正之方法與裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043349A (ja) * 1996-08-08 1998-02-17 Tokico Ltd スイング診断装置
JP3082890U (ja) * 2001-06-22 2002-01-11 忠信 林 ゴルフクラブヘッド
JP2008073210A (ja) * 2006-09-21 2008-04-03 Seiko Epson Corp ゴルフクラブ、そのスイング評価支援装置
JP2012095850A (ja) * 2010-11-02 2012-05-24 Sri Sports Ltd ゴルフクラブのフィッティング方法、その装置及び解析方法
JP2012196241A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp スイング解析システム
JP2013009917A (ja) * 2011-06-30 2013-01-17 Seiko Epson Corp 運動解析システム、運動解析プログラム、および、運動解析プログラムを記録した記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847795A (zh) * 2016-03-17 2018-03-27 深圳市赛亿科技开发有限公司 一种高尔夫球教学辅助训练系统及方法

Also Published As

Publication number Publication date
CN106102845A (zh) 2016-11-09
JP2015181565A (ja) 2015-10-22
JP6380733B2 (ja) 2018-08-29
US20170024610A1 (en) 2017-01-26
KR20160106671A (ko) 2016-09-12

Similar Documents

Publication Publication Date Title
US9962591B2 (en) Motion analysis method, program, and motion analysis device
JP6696109B2 (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
JP6547300B2 (ja) 運動解析装置、運動解析方法、プログラム、及び運動解析システム
TW201501752A (zh) 運動解析方法及運動解析裝置
JP6380733B2 (ja) 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム
JP2015156882A (ja) 運動解析装置及び運動解析システム
US20170007880A1 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and program
JP2016067410A (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
JP2017023639A (ja) スイング診断装置、スイング診断システム、スイング診断方法、スイング診断プログラム及び記録媒体
JP2017023638A (ja) スイング診断装置、スイング診断システム、スイング診断方法、スイング診断プログラム及び記録媒体
JP2016067408A (ja) センサー、演算装置、運動計測方法、運動計測システム及びプログラム
US10384099B2 (en) Motion analysis method and display method
WO2015146062A1 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
KR20160076485A (ko) 운동 해석 장치, 운동 해석 시스템, 운동 해석 방법, 표시 장치 및 기록 매체
JP6315181B2 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2017023636A (ja) スイング診断装置、スイング診断システム、スイング診断方法、スイング診断プログラム及び記録媒体
JP2016116613A (ja) 運動解析装置、運動解析システム、運動解析方法、及びプログラム
JP2017124080A (ja) 表示方法、運動解析装置、運動解析システム、運動解析プログラム、および記録媒体
JP2016055028A (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2015156893A (ja) 傾斜角計測方法、傾斜角計測装置、傾斜角計測システム及びプログラム
US20160030805A1 (en) Motion analysis method, motion analysis device, and program
JP2016116745A (ja) 傾き判定装置、傾き判定システム、傾き判定方法及びプログラム
JP2016116572A (ja) 運動解析装置、運動解析方法、プログラム、及び運動解析システム
JP2016116721A (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
JP2018019816A (ja) ゴルフスイング解析方法、ゴルフスイング解析装置、ゴルフスイング解析システム、ゴルフスイング解析プログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15116274

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167021438

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764996

Country of ref document: EP

Kind code of ref document: A1