[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015037536A1 - Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas - Google Patents

Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas Download PDF

Info

Publication number
WO2015037536A1
WO2015037536A1 PCT/JP2014/073516 JP2014073516W WO2015037536A1 WO 2015037536 A1 WO2015037536 A1 WO 2015037536A1 JP 2014073516 W JP2014073516 W JP 2014073516W WO 2015037536 A1 WO2015037536 A1 WO 2015037536A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxidation catalyst
catalyst
pores
surface area
Prior art date
Application number
PCT/JP2014/073516
Other languages
French (fr)
Japanese (ja)
Inventor
健治 平
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015536562A priority Critical patent/JP6103067B2/en
Priority to KR1020157034663A priority patent/KR101814893B1/en
Priority to CN201480050004.9A priority patent/CN105531026B/en
Publication of WO2015037536A1 publication Critical patent/WO2015037536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • B01D2257/556Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an oxidation catalyst that oxidizes a combustible component in a gas, an exhaust gas treatment device that uses heat generated when the combustible component in the gas is oxidized, a heat storage combustion burner, a method for oxidizing the combustible component in the gas, and nitrogen oxidation.
  • the present invention relates to a method for removing nitrogen oxides.
  • wastewater treatment catalysts are often not treated at a high temperature of 500 ° C. or higher during production, and when used for combustion of unburned components in exhaust gas, the properties of the catalyst change during the reaction, There is a risk that strength and catalytic activity may decrease. For this reason, it is difficult to apply the wastewater treatment catalyst as it is to a process for treating unburned components in the exhaust gas.
  • the catalysts that can be used in other processes also differ depending on the target reaction and process conditions, and it is difficult to apply these catalysts to oxidative combustion of unburned components in exhaust gas as they are. is there.
  • the oxidation catalyst used in the gas to be treated containing sulfur oxide supports a noble metal of 1% by mass or more using a carrier having a surface area of a certain level or more, and the space velocity (unit volume is 1). It is common to cope with this by reducing the volume of the raw material in terms of the standard state passing per hour) to 50000 or less. If the amount of noble metal supported is increased too much, the oxidation of sulfur dioxide to sulfur trioxide increases, but many attempts have been made to suppress the oxidation of sulfur dioxide by adding different elements (for example, the following) (See Patent Documents 5 to 7.)
  • JP 2001-336733 A Japanese Patent Laid-Open No. 5-115750 JP 2002-79092 A JP 61-161143 A Japanese Patent No. 4508693 JP 2000-300961 A Japanese Patent Publication No.55-35178
  • the present invention suppresses a decrease in the activity of an oxidation catalyst in a gas to be treated containing a catalyst poisonous substance such as sulfur oxide or water vapor while suppressing the amount of metal active species supported, and has a higher space velocity than the prior art.
  • An object of the present invention is to provide an oxidation catalyst capable of efficiently oxidizing a combustible substance such as carbon monoxide at a low temperature.
  • the present invention uses such an oxidation catalyst to efficiently oxidize a combustible substance such as carbon monoxide at a low temperature in a gas to be treated containing a catalyst poisonous substance.
  • the object is to provide a method of oxidation.
  • the present invention is an exhaust gas that is filled with such an oxidation catalyst and that can efficiently oxidize a combustible substance such as carbon monoxide even at a low temperature by using heat generated during oxidation of the combustible component in the gas. It is an object of the present invention to provide a treatment apparatus, a heat storage combustion burner, and an efficient nitrogen oxide removal method using such an oxidation catalyst.
  • the present inventor has conducted intensive research on a support supporting an active metal and a catalyst supporting an active metal, focusing on specific surface area, pore distribution, constituent elements, and crystal structure. It was.
  • the present inventor then pays attention to the pore distribution of the support and the catalyst, and creates a catalyst having a high ratio of pores having a large pore radius, thereby containing a catalyst poisoning substance typified by sulfur oxide.
  • a method for suppressing the decrease in the activity of the oxidation catalyst was found, and the present invention was completed.
  • the present invention provides the following.
  • An oxidation catalyst in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier, and the pores having a pore radius in the range of 2 nm to 100 nm in the oxidation catalyst
  • the ratio of the surface area formed by pores having a pore radius of 10 nm or more to the total surface area of pores in the range is more than 49%.
  • An oxidation catalyst for oxidizing a combustible component in a gas in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier, the pore radius in the oxidation catalyst
  • the ratio of the surface area formed by pores having a pore radius of 20 nm or more to the total surface area of the pores in the above range is 20% or more, according to any one of (1) to (3) The oxidation catalyst as described.
  • the ratio of the surface area formed by pores having a pore radius of 20 nm or more to the total surface area of the pores in the above range is 30% or more, according to any one of (1) to (4) The oxidation catalyst as described.
  • the ratio of the surface area formed by pores having a pore radius of 80 nm or more to the total surface area of the pores in the above range is 2% or more, according to any one of (1) to (5) The oxidation catalyst as described.
  • the ratio of the transition element supported on the oxidation catalyst is 0.01% or more and 2.0% or less with respect to the total mass of the oxidation catalyst as the sum of the mass ratio of the transition element in terms of metal.
  • a combustion catalyst unit for burning unburned components contained in the gas to be treated using a catalyst is provided, and the oxidation catalyst according to any one of (1) to (13) is provided in the combustion catalyst unit
  • An exhaust gas treatment device filled with (15) A gas heating unit that is provided upstream of the combustion catalyst unit and increases the temperature of the gas to be processed; and a denitration that is provided downstream of the combustion catalyst unit and removes nitrogen oxides in the gas to be processed.
  • An air-fuel mixture injection unit that injects a mixture of fuel and combustion air and a heat storage body are arranged, distribute the gas to be treated to store sensible heat in the heat storage body, and distribute the combustion air after the heat storage
  • a heat storage section that heats the combustion air with the amount of heat stored, and the combustion catalyst section provided between the heat storage section and the air-fuel mixture injection section or the heat storage section includes (1) A heat storage combustion burner filled with the oxidation catalyst according to any one of (13) to (13).
  • a gas treatment process having a gas heating part for raising the temperature of the gas to be treated and a denitration part for removing nitrogen oxides in the gas to be treated, and containing nitrogen oxides, steam and sulfur oxidation
  • a combustion catalyst part filled with the oxidation catalyst described above is disposed, the gas to be treated heated by the gas heating part is passed through the combustion catalyst part, and the combustible component in the gas to be treated is burned.
  • a method for removing nitrogen oxides in a gas wherein the temperature of the gas to be treated is further increased by combustion heat.
  • a heat exchanger and a gas heating burner or an electric heater are used as the gas heating unit, and the gas discharged from the denitration unit is used as a high-temperature gas of the heat exchanger.
  • a heat exchanger and a gas heating burner or an electric heater are used as the gas heating unit, and the position of the combustion catalyst unit is set between the gas heating unit and the denitration unit, and the gas heating unit and the denitration unit.
  • the present invention it is possible to oxidize carbon monoxide, nitrogen monoxide, and methane contained in the gas to be treated containing sulfur oxide at a lower temperature than in the prior art, and the metal activity It is possible to provide a catalyst that can be oxidized even when the amount of seed supported is small.
  • exhaust gas treatment equipment that uses heat generated during the oxidation of combustible components in the gas, and efficiently oxidize carbon monoxide, nitrogen monoxide, and methane in the gas to be treated And a method for manufacturing such an oxidation catalyst.
  • Test Example 1 Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. It is a figure which shows the result of Test Example 1, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. It is a figure which shows the result of Test Example 2, Comprising: It is a graph which shows the relationship between reaction temperature and a carbon monoxide conversion rate. It is a figure which shows the result of Test Example 4, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. It is a figure which shows the result of Test Example 5, Comprising: It is a graph which shows the relationship between reaction time and carbon monoxide conversion.
  • Factory exhaust gas typified by exhaust gas from a sintering furnace and exhaust gas from a burner contains a large amount of water vapor in addition to sulfur oxides typified by sulfur dioxide and sulfur trioxide.
  • sulfur oxides typified by sulfur dioxide and sulfur trioxide.
  • sulfur dioxide is oxidized, the amount of sulfur trioxide increases, and concentrated sulfuric acid is generated. It is known that sulfur trioxide and concentrated sulfuric acid easily react with many oxides to form a sulfate, and this reaction is known to greatly impair the activity of the catalyst.
  • titanium dioxide and zirconium oxide are known as carriers that are not easily sulfated. It is known that when titanium dioxide is dissolved in concentrated sulfuric acid, a titanium oxide sulfate film is formed on the surface of the titanium dioxide particles, preventing internal sulfation. Moreover, when the ilmenite ore used as the raw material of titanium dioxide is dissolved, it is necessary to raise the temperature of the ilmenite ore to about 1000 ° C. in hot concentrated sulfuric acid.
  • titanium dioxide and zirconium oxide show high resistance to sulfur oxides.
  • the use of titanium dioxide or zirconium oxide as a carrier can suppress a decrease in activity in the gas to be treated containing sulfur oxides. Absent. This knowledge is as shown in the following experimental example.
  • the temperature dependence of the reaction activity was investigated for the catalyst that showed a rapid decrease in activity, it showed a sharp change in activity near 300 ° C, and this activity change was repeatedly observed reversibly by raising and lowering the temperature. It was done.
  • Concentrated sulfuric acid is a liquid having a very low vapor pressure and has a boiling point of 300 ° C. or higher.
  • the concentrated sulfuric acid produced as a by-product can stably exist as a liquid even in a temperature range below the boiling point.
  • it is known that the ease of condensation of concentrated sulfuric acid is greatly influenced by the shape of the carrier.
  • the liquid vapor pressure changes depending on the pore radius of the carrier.
  • the equilibrium of state change is determined by the change in Gibbs energy and depends on the energy difference before and after the state change.
  • the influence of the interfacial energy at the gas-liquid interface increases as the curvature inside the pores increases, and as a result, the partial pressure of the atmospheric pressure in equilibrium with the liquid decreases.
  • Such a decrease in partial pressure means that the liquid tends to condense.
  • the equation showing this relationship is known as the Kelvin equation and is shown by the following equation.
  • the equation of such Kelvin as the pore radius r is reduced, it can be seen that the vapor pressure P is reduced relative to the vapor pressure P o on a plane.
  • the meanings of the formulas and symbols used in the formulas are shown below.
  • Kelvin's formula: ln (P / P 0 ) ⁇ 2 ⁇ V m COS ⁇ / (rRT) P: Vapor pressure P 0 : Saturated vapor pressure ⁇ : Surface tension [N / m] V m : molar volume [m 3 / mol] r: droplet radius [m] R: Gas constant [J / mol ⁇ K] T: Absolute temperature [K] ⁇ : Contact angle [rad]
  • the influence of the shape of the carrier on the condensation of concentrated sulfuric acid is that the gas diffusion rate changes depending on the pore radius.
  • the surface of both titanium dioxide and zirconium oxide is sulfated.
  • titanium oxide sulfate (IV) produced by sulfating the surface of titanium dioxide, it is in a hydrated state in the range of 400 ° C. or lower.
  • sulfur trioxide and water vapor are easily adsorbed. For this reason, these molecules diffuse in the pores while repeating adsorption and desorption, and cause the diffusion to be delayed.
  • the gaseous gas species is nitrogen
  • the pressure is 1 atm
  • the temperature is 523 K
  • the mean free path of gas molecules is 100 nm or more. Therefore, in the case of pores of 10 nm or less, collisions between gas molecules are almost ignored, and gas molecules travel in the pores while repeating collisions with the pore wall surfaces (free molecular flow region).
  • the present inventor conducted an experiment using a carrier having a high pore ratio with a large pore radius, and the influence of clogging was suppressed, and in a temperature region below the boiling point of concentrated sulfuric acid. Catalytic activity increased, and no steep activity fluctuations near the boiling point of concentrated sulfuric acid were observed. At that time, these phenomena were found to have a strong correlation with the pore distribution.
  • a relatively large pore radius of 20 nm or more in order to promote diffusion of sulfur trioxide. It was confirmed that a higher effect can be obtained when the ratio of the pores is high.
  • the ratio of the surface area formed by pores having a pore radius of 10 nm or more out of the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less is more preferably 50% or more, % Or more is more preferable, and 80% or more is even more preferable.
  • the surface areas formed by pores having a pore radius in the range of 2 nm to 100 nm not only the ratio of the surface area formed by pores having a pore radius of 10 nm or more, but also pores having a pore radius of 20 nm or more.
  • the ratio of the surface area to be formed is 20% or more, the effect of the present invention can be further exerted, and not only the ratio of the surface area formed by pores having a pore radius of 10 nm or more but also fine pores having a radius of 20 nm or more.
  • the ratio of the surface area formed by the holes By setting the ratio of the surface area formed by the holes to 30% or more, the effect of the present invention is more preferably exhibited.
  • the ratio of the surface area formed by pores having a pore radius of 80 nm or more is 2% or more among the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less.
  • the peak of pore distribution is less than a pore radius of 10 nm and is formed by pores having a pore radius of 10 nm or more.
  • the ratio of the surface area is small.
  • the DH method is one of the methods for calculating the pore distribution.
  • the DH method is provided as standard in the analysis software attached to the specific surface area measuring device, and the details are shown in the manual attached to the device. Further, details are shown in many reference books (see, for example, Non-Patent Document 2 above).
  • the Barrett-Joyner-Halenda (BJH) method, the Cranston-Inkley (CI) method, etc. are known as methods for obtaining the pore distribution, and the models used for calculation are basically the same in any method. is there.
  • the range of the pore radius of 2 nm or more and 100 nm or less the difference between the models is small, and the influence of the measurement error of the apparatus is also small. Therefore, in the present invention, the range of the pore radius to be taken into consideration is limited to the range of 2 nm to 100 nm.
  • any method can be used.
  • the pore distribution obtained by the analysis using the measurement data in the adsorption process has a stronger correlation with the activity of the catalyst. .
  • All the pore distribution analysis methods including the DH method perform calculations based on the difference in nitrogen adsorption amount between two measurement points in the adsorption isotherm measurement process. For this reason, if the measurement interval becomes too wide, the obtained distribution is also greatly increased, and evaluation using the pore distribution cannot be performed. Therefore, it is preferable to perform measurement under the condition that the pore distribution is obtained at intervals of less than 2 nm, particularly for measurement points corresponding to the range of pore radius of 5 nm or more and less than 15 nm. In the range where the pore radius is 15 nm or more and less than 30 nm, the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 5 nm.
  • the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 10 nm.
  • the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 15 nm. In the following experimental examples, all measurements are performed under these conditions. However, there is no problem if it is determined that a sufficient number of measurements are obtained to determine the state of the pore distribution even when the interval of the pore distribution obtained from this is wide.
  • a catalyst having higher activity can be produced by using a carrier having a small pore radius and a large specific surface area.
  • the catalytic reaction proceeds on an active point showing catalytic activity.
  • the poisoning substance is adsorbed on some or all of these active sites, thereby reducing the proportion of the portion contributing to the catalytic reaction or reducing the activity of adjacent active sites.
  • an attempt is made to increase the absolute number of active sites that maintain the activity even in the presence of poisonous substances by increasing the number of active sites.
  • the amount of active metal species supported on the carrier is increased.
  • a large specific surface area is required.
  • a structure with more irregularities is required, and a structure with a small pore radius is required.
  • a specific surface area is preferably 50 m 2 / g or less, more preferably by using a carrier having a small specific surface area.
  • an oxidation catalyst having a specific surface area of 20 m 2 / g or less is realized.
  • titanium dioxide when titanium dioxide was used as a carrier, there was a difference in the activity of the catalyst obtained depending on the type of carrier.
  • the rutile type Compared with carriers prepared by the sulfuric acid method, the rutile type has a high tendency for platinum to be oxidized, and a reduction treatment is necessary to obtain high activity.
  • the crystal structure of the titanium dioxide support is more preferably an anatase type structure. Titanium dioxide support is often obtained as a mixture of rutile and anatase types, but a mass ratio calculated from the relative ratio of the strongest diffraction lines of powder X-ray diffraction measurement, that 50% or more has an anatase type structure. preferable.
  • anatase type structure carrier prepared by the chlorine method and an anatase type structure carrier prepared by the sulfuric acid method are compared.
  • a carrier prepared by the chlorine method is used.
  • platinum the prepared platinum was oxidized, and the activity could not be obtained without reduction treatment.
  • any reaction proceeds on the metal surface (see, for example, Non-Patent Document 4 above).
  • the reactants do not come into contact with the noble metal in the first place, and the activity is reduced in any reaction under the condition of pore clogging.
  • an oxidation reaction examples include oxidation reactions of carbon monoxide, nitrogen monoxide, and methane. In any of these oxidation reactions, it is known that the reaction proceeds on the surface of the noble metal and the reaction does not easily proceed in the absence of the noble metal.
  • the active metal species is not particularly limited, but if it reacts easily with sulfur dioxide, the active species itself loses its activity even if pore clogging does not occur, and the activity cannot be obtained.
  • metal species having high activity as an oxidation catalyst for example, cobalt, nickel, copper, ruthenium, rhodium, palladium, platinum, gold and the like are known.
  • the standard generation enthalpy of oxide can be used as an index as a substance that hardly reacts with sulfur dioxide to form sulfur oxide, and it can be determined that the smaller the absolute value of the standard generation enthalpy is, the less the substance is oxidized.
  • the standard generation enthalpy value is published not only in books but also in databases on the Internet (for example, see Non-Patent Document 5 above).
  • gold, platinum, palladium and rhodium are preferable as the active metal species, and platinum and gold are particularly preferable.
  • a catalyst supporting gold alone has a high oxidation activity at the interface between the gold fine particles and the oxide carrier, and the surface of the oxide carrier is sulfated, so that it is highly active. Decreases. Therefore, when using gold, it is more preferable to use in combination with other transition metals or to use platinum.
  • the surface of palladium or rhodium particles is covered with platinum and used as a core-shell structure, so that the formation of sulfate can be suppressed.
  • the amount of platinum used can be reduced, and the cost can be reduced.
  • the amount of the active metal species supported is not particularly limited, but is limited from an economical viewpoint.
  • the loading amount increases, the active point increases and the catalytic activity increases, while the particle size of the supported metal fine particles increases, and the proportion of the portion that does not contribute to the reaction tends to increase.
  • the noble metal particles themselves cause clogging / stenosis of the pores and the influence of the clogging of the pores due to the concentrated sulfuric acid is likely to occur, the proportion of the portion that does not contribute to the reaction further increases.
  • the loading amount is 0.01 mass. % Or more is preferable.
  • all of the catalysts exhibiting high sulfur resistance according to the present invention have a specific surface area of 50 m 2 / g or less, so that the platinum loading is 2.0 mass% or less. It is considered that finer platinum particles can be achieved, which is preferable.
  • the oxidation catalyst of the present invention exhibits high activity in many gases to be treated, but the effect is exhibited particularly in a gas containing sulfur oxide and water vapor.
  • a gas containing sulfur oxide and water vapor When the oxidation reaction proceeds in a state where these gases are contained in the gas to be treated, concentrated sulfuric acid is generated as a side reaction regardless of the concentration, and pores are blocked. By suppressing the effect of this pore blockage, it is expected that the decrease in activity is suppressed.
  • the volume ratio of the sulfur oxide in the gas to be treated is preferably smaller than at least the sum of the volume ratios of carbon monoxide, nitrogen monoxide, and methane.
  • the temperature of the gas to be treated it is expected that the activity equal to or higher than that of the conventional catalyst can be obtained at any temperature.
  • the reaction temperature is raised to be higher than the boiling point of concentrated sulfuric acid, there is a difference due to the difference in pore radius. Hard to come out.
  • the boiling point of concentrated sulfuric acid varies greatly depending on its concentration and is also influenced by the concentration of water vapor in the gas to be treated, so it is difficult to determine uniquely.
  • the sum of the partial pressures of water vapor and hydrosulfuric acid is 1 atm or higher in concentrated sulfuric acid of all concentrations (see, for example, Non-Patent Document 8 above).
  • the reaction temperature is preferably at least 400 ° C. or lower.
  • reaction temperature is too low, the reaction will not proceed in the first place, and it will be necessary to increase the amount of catalyst, leading to an increase in cost.
  • the reaction temperature is increased to about 200 ° C. It is known (see, for example, Non-Patent Document 9 above). Therefore, also in the method according to the present invention, it is preferable to increase the reaction temperature to 200 ° C. or higher.
  • the reaction temperature is more preferably 250 ° C. or higher from the viewpoint of increasing the reaction rate and suppressing the necessary amount of catalyst. Further, as shown in the following experimental examples, the effect of the present invention becomes difficult to obtain at a temperature of 300 ° C. or higher, and therefore the reaction temperature is more preferably 300 ° C. or lower.
  • the method for supporting the active metal species is not particularly limited, but it is considered that the precipitation reduction method avoids excessive heat treatment on the support and easily obtains the expected pore distribution.
  • the precipitation reduction method avoids excessive heat treatment on the support and easily obtains the expected pore distribution.
  • a platinum-supported catalyst is often obtained by performing calcination treatment at about 500 ° C. using chloroplatinic acid as a precursor. Therefore, it is preferable to use a carrier having a small structural change when the temperature is raised to 500 ° C.
  • a carrier having a Tamman temperature of 500 ° C. or more which is an empirical indicator that atoms on the solid surface start to diffuse. Since the Tamman temperature is an empirical expression that is about 1 ⁇ 2 of the melting point in absolute temperature notation, it is preferable to use a carrier having a melting point of 1300 ° C. or higher. Examples of such carriers include titanium dioxide, zirconium oxide, aluminum oxide, silicon dioxide and the like.
  • titanium dioxide When titanium dioxide is used as a carrier, titanium dioxide tends to cause a phase transition, so that the pore distribution changes when the firing temperature is not appropriate.
  • the ratio of the pores having a small pore radius increases.
  • the specific surface area decreases, the number of pores having a pore radius of 10 nm or less decreases, and the pore radius of pores having a pore radius of 10 nm or more is reduced. Changes in the direction of decreasing. This changes the relationship between the pore radius and the specific surface area.
  • a carrier having pores having a sufficiently large pore radius so that the specific surface area of pores having a pore radius of 10 nm or more is kept large even if the pore distribution changes.
  • the heat treatment is performed in advance and the noble metal precursor is devised to avoid heating to 650 ° C. or higher.
  • a noble metal precursor for example, when gold is used, gold chloride (III) acid hydrate is suitable, and when platinum is used, platinum chloride (IV) acid hydrate is suitable, When palladium is used, diammine dinitropalladium (II) or the like is preferable, and when rhodium is used, rhodium (III) chloride hydrate or the like is preferable.
  • an exhaust gas treatment apparatus having a combustion catalyst unit for burning unburned components in exhaust gas containing water vapor using a catalyst having the above properties. That is, the oxidation catalyst according to the present invention is filled in the combustion catalyst portion provided in the exhaust gas treatment apparatus.
  • This exhaust gas treatment device is used as a removal device for unburned components such as carbon monoxide and nitrogen oxides, exhaust heat recovery equipment that recovers and uses the amount of heat generated by combustion of unburned components, or as an energy saving process. Can be applied.
  • the oxidative combustion reaction of the unburned components performed using the oxidation catalyst according to the present embodiment is performed under a pressure of about normal pressure to about 0.2 MPa. Since the reaction is carried out at normal pressure to about 0.2 MPa, it is preferable that the direction of travel of the exhaust gas in the combustion catalyst section is the horizontal direction or the direction from the upper side to the lower side in the vertical direction. Further, in the combustion catalyst part of such an exhaust gas treatment device, the reaction proceeds using the sensible heat of the exhaust gas, and unlike the waste water treatment process, it is not necessary to heat the combustion catalyst part itself.
  • the filling method of the oxidation catalyst according to the present invention in the combustion catalyst section is not particularly limited, and various known methods such as filling the oxidation catalyst according to the present invention into a honeycomb shape may be used. Can be used. At this time, the transition element as described above may be supported on the support formed in the honeycomb shape, and after adding various binders to the above oxidation catalyst, the oxidation catalyst itself is added to the honeycomb. You may form in a shape.
  • an exhaust gas denitration method including a combustible gas.
  • This heating is usually performed using combustion heat such as natural gas.
  • the cost can be reduced by substituting the heating with the combustion heat of the combustible gas component obtained by the oxidation catalyst according to the present invention.
  • the process shown in FIG. 1 includes a heat exchange unit 1, a gas heating burner 2 that is an example of a gas heating unit provided at the subsequent stage of the heat exchange unit 1, and a combustion catalyst provided at the subsequent stage of the gas heating burner 2.
  • Part 3 and a denitration device part 4 which is an example of a denitration part provided at the rear stage of combustion catalyst part 3.
  • the exhaust gas introduced into the heat exchange unit 1 is heat-exchanged using heat generated in the subsequent denitration device unit 4 and then flows into the gas heating burner 2.
  • the exhaust gas heated by the gas heating burner 2 flows into the combustion catalyst section 3 filled with the oxidation catalyst according to the present invention, and the unburned components contained in the exhaust gas are oxidized and burned by the oxidation catalyst according to the present invention.
  • the exhaust gas is further heated by the generated combustion heat.
  • the exhaust gas combusted with the unburned components flows into the denitration unit 4 together with ammonia, and the reaction between ammonia and nitrogen oxide proceeds by the denitration catalyst. Further, the exhaust gas after the denitration process is supplied to the heat exchanging unit 1 for heat exchange.
  • the process shown in FIG. 2 includes a heat exchange unit 11, a gas heating burner 12 that is an example of a gas heating unit provided at the subsequent stage of the heat exchange unit 11, and a denitration process that is provided at the subsequent stage of the gas heating burner 12.
  • the denitration device unit 13, which is an example of the unit, and the combustion catalyst unit 14 provided at the subsequent stage of the denitration device unit 13 are provided.
  • the exhaust gas introduced into the heat exchange unit 11 is heat-exchanged using the combustion heat generated in the combustion catalyst unit 14 at the subsequent stage, and then flows into the gas heating burner 12.
  • the exhaust gas heated by the gas heating burner 12 flows into the denitration unit 13 together with ammonia, and the reaction between ammonia and nitrogen oxide proceeds by the denitration catalyst.
  • the exhaust gas that has undergone the denitration treatment flows into the combustion catalyst section 14 filled with the oxidation catalyst according to the present invention, and the unburned components contained in the exhaust gas that has undergone the denitration treatment are oxidized and combusted by the oxidation catalyst according to the present invention. Is done.
  • the generated combustion heat is supplied to the heat exchange unit 1.
  • the installation location of the combustion catalyst unit may be either upstream or downstream of the denitration device. Since the temperature required to advance the reaction in the denitration catalyst unit is constant, in the process of FIG. 1, the reaction temperature at the inlet of the combustion catalyst unit is 200 to 250 ° C. In the process of FIG. The reaction temperature at the entrance of the combustion catalyst section is about 250 to 300 ° C.
  • exhaust gas treatment equipment examples include regenerative burners and radiant tube heat storage combustion burners.
  • the process in these heat storage combustion burners is a process in which one set of a burner and a heat storage body is used as a pair, and the exhaust heat of exhaust gas when burner injection is performed in one set is stored in the other heat storage body. .
  • FIG. 3 shows an outline of the process in such a heat storage combustion burner.
  • Such a process injects, as main components, an exhaust air flow path switch 21, a heat storage section 22a, 22b containing a heat storage body and a combustion catalyst, a fuel gas supply section 23a, 23b, and a mixture of combustion air and fuel gas.
  • the air-fuel mixture injection sections 24a and 24b, a space 25 heated by burner injection, an air introduction path 26, and an exhaust gas path 27 are provided.
  • the oxidation catalyst which concerns on this invention is utilized for the combustion catalyst contained in the thermal storage part 22a, 22b. That is, in the heat storage combustion burner shown in FIG. 3, it can be said that the heat storage portions 22a and 22b are composed of a heat storage body and a combustion catalyst portion.
  • FIG. 3 shows a process in the case of performing burner injection at the mixture injection section 24a and taking out the exhaust gas from the mixture injection section 24b.
  • Such a burner controls the exhaust air flow path switch 21 to introduce air into the heat storage section 22a from the air introduction path 26, and the air heated by the heat storage section and the fuel gas supplied from the fuel gas supply section 23a. Are injected from the mixture injection section 24a. Then, the exhaust gas discharged through the air-fuel mixture injection unit 24b is introduced into the heat storage unit 22b, the air introduced from the secondary air introduction unit 28b and the unburned components in the exhaust gas are burned by the combustion catalyst, After the obtained heat is stored in the heat storage unit 22b, the exhaust gas is exhausted from the exhaust gas passage 27.
  • the exhaust air switch 21 is switched to reverse the flow of the heat storage units 22a and 22b and the burner injection units 24a and 24b.
  • combustion heating is performed on the oxidation catalyst using unburned components in the exhaust gas injected from the air-fuel mixture injection units 24a and 24b, and the amount of sensible heat stored in the heat storage body is increased. Can be improved.
  • the temperature of the heat accumulators 22a and 22b in a general burner is higher at a portion closer to the space 25 and reaches about 1200 ° C. at the highest, while the temperature is lower at a portion closer to the exhaust air flow path switching device 21 and at the highest. It reaches only about 250 ° C.
  • the combustion catalyst filled in the heat storage units 22a and 22b is preferably filled in a portion where the maximum temperature reaches less than 600 ° C, and more preferably a portion where the temperature reaches less than 500 ° C. .
  • the time when the temperature is lower than 300 ° C. becomes longer in a portion having a relatively low temperature range. Therefore, by using the oxidation catalyst according to the present invention as a combustion catalyst, it is possible to obtain the effect of preventing the decrease in activity due to concentrated sulfuric acid.
  • the structure of the heat storage combustion burner according to the present invention is not limited to the above structure.
  • the heat storage body and the fuel catalyst part filled with the oxidation catalyst according to the present invention are installed in the same place, but the heat storage body and the combustion catalyst part are divided as separate components, The heat storage unit and the fuel catalyst unit may be independent from each other.
  • FIG. 3 illustrates a case where the heat storage unit includes two systems. However, the flow path is branched from the exhaust air switching device 21 into three or more systems so as to have three or more heat storage units. A configuration may be adopted in which a plurality of flow paths are switched simultaneously.
  • the application destination of the exhaust heat recovery equipment using the exhaust gas treatment apparatus of the present invention is not limited to the exhaust gas denitration method and the heat storage combustion burner described above, but also applies to the exhaust heat recovery apparatus in other processes. Can do.
  • Titanium oxide support TIO-2 reference catalyst
  • titanium oxide support TIO-6 reference catalyst
  • zirconium oxide support ZRO-4 reference catalyst
  • titanium oxide support TIO-4 reference catalyst
  • Titanium oxide support TIO-8 catalyst society reference catalyst
  • titanium oxide support TIO-7 catalysis society reference catalyst
  • titanium oxide support ST-01 Ishihara Sangyo
  • titanium oxide support FTL-110 Ishihara Sangyo
  • Titanium oxide support FTL-200 Ishihara Sangyo
  • zirconium oxide support ZRO-3 catalyst society reference catalyst
  • aluminum oxide support ALO-1 catalysis society reference catalyst
  • the shape of the carrier is powdery.
  • the physical properties of the carriers 1 to 8 are summarized in Table 1 below.
  • the crystal structure of the carrier was determined by powder X-ray diffraction measurement, and when possible, the abundance ratio was calculated using the relative intensity of the strongest diffraction line of each phase.
  • Specific surface area was determined by BET method using nitrogen adsorption isotherm at liquid nitrogen temperature, and pore distribution was determined by DH method using data of adsorption process. The pore volume was calculated using the value of the relative partial pressure 0.99 of the adsorption isotherm. Thereafter, in all Examples and Comparative Examples, physical property values were obtained in the same manner.
  • Example 1 platinum-supported catalyst
  • 0.00265 g of hexachloroplatinic acid was dissolved in 0.20 ml, 0.45 ml, 0.20 ml, and 0.35 ml of pure water.
  • the obtained platinum precursor solution was added dropwise to 1.00 g of each of the oxide carriers 1 to 5 while being sufficiently mixed, and impregnated.
  • the obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalysts were used as Samples 1 and 4-7.
  • the amount of platinum supported was 0.1% by mass in terms of platinum in the metal state.
  • FIG. 4A to FIG. 4C show cumulative values of the ratio (A r / A 2-100 nm ) of the surface area formed by the pores having the respective pore radii below the surface area formed by the pores in the range.
  • Table 2 shows values obtained by calculating the ratio of the surface area formed by pores having a pore radius of 10 nm or more out of the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less. This value was calculated by subtracting from 100 the value of A r / A 2-100 nm at a pore radius of 10 nm.
  • Example 2 Palladium-supported catalyst
  • Dinitrodiammine palladium (Kojima Chemical) 0.00220 g was dissolved in 15 ml of nitric acid, and 1.00 g of oxide carrier 1 of carrier 1 was added. After stirring for 1 hour, the mixture was stirred on a hot stirrer at 80 ° C. and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours in the air, then heated to 400 ° C. and calcined for 30 minutes. The catalyst obtained after cooling was designated as Sample 2.
  • Table 2 shows the physical property values of Sample 2 measured in the same manner as in Example 1.
  • Example 3 Rhodium supported catalyst
  • Rhodium (III) chloride trihydrate 0.00256 was dissolved in 0.20 ml of pure water.
  • the obtained aqueous rhodium precursor solution was added dropwise to 1.00 g of the oxide carrier of carrier 1 while being sufficiently mixed, and impregnated.
  • the obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as Sample 3.
  • the supported amount of rhodium was 0.1% by mass in terms of rhodium in the metal state.
  • Table 2 shows the physical property values of Sample 3 measured in the same manner as in Example 1.
  • Example 4 Low supported platinum supported catalyst 0.00265 g of hexachloroplatinic acid was dissolved in 1.0 ml of pure water. 0.30 ml of the obtained platinum precursor solution was added dropwise to 1.00 g of each oxide carrier of carrier 1 while being sufficiently mixed, and impregnated. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as Sample 8. The amount of platinum supported was 0.03% by mass in terms of platinum in the metal state. Table 2 shows the physical property values of Sample 8 measured in the same manner as in Example 1.
  • Example 5 High supported platinum supported catalyst
  • Hexachloroplatinic acid 0.02589 g and 0.05178 were dissolved in 0.45 ml of pure water, respectively.
  • Each of the obtained platinum precursor solutions was dropped and impregnated while being sufficiently mixed with 1.00 g of the oxide carrier of the carrier 2.
  • the obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalysts were used as Samples 9 and 10, respectively.
  • the supported amounts of platinum were 1% by mass and 2% by mass, respectively, in terms of platinum in the metal state.
  • Table 2 shows physical property values of Samples 9 and 10 measured in the same manner as in Example 1.
  • FIG. 5A to FIG. 5C show the ratio (A r / A 2-100 nm ) of the surface area formed by the pores having the pore diameters or less among the surface areas formed by the pores.
  • Table 3 shows the physical property values of Samples A to F measured in the same manner as in Example 1.
  • Rhodium (III) chloride trihydrate 0.00256 was dissolved in 0.20 ml of pure water.
  • the obtained rhodium precursor aqueous solution was added dropwise to 1.00 g of the oxide carrier of the carrier 6 while being sufficiently mixed, and impregnated.
  • the obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as sample H.
  • the supported amount of rhodium is 0.1% by mass in terms of rhodium in the metal state.
  • Table 3 shows the physical property values of Sample H measured in the same manner as in Example 1.
  • the space velocity indicating the relative ratio of gas and catalyst amount is approximately 600000 cm 3 ⁇ hour ⁇ 1 ⁇ catalyst mass (g) ⁇ 1 .
  • the value of the space velocity used for the reaction is about 1/10 of the space velocity. It was decided to demonstrate the high stability of the catalyst of the present invention by conducting the activity test at a space velocity higher than a general value.
  • the gas flow rate and composition are adjusted using a mass flow controller, and the gas cylinder as a gas source is carbon monoxide 5% + nitrogen 95%, sulfur dioxide 200 ppm + nitrogen monoxide 200 ppm + nitrogen balance, oxygen (purity 99.9999 or more) And four types of nitrogen (purity 99.9999% or more) were prepared.
  • the water vapor was adjusted by introducing a required amount of pure water with a water pump. Thereafter, the gas composition was adjusted in the same manner in all tests.
  • FIG. 6A to FIG. 6D The results of the reaction test are shown in FIG. 6A to FIG. 6D.
  • Samples 9 and 10 are not shown in FIGS. 6A to 6D, the carbon monoxide conversion rate remained at 100% from the start to the end of the reaction in both cases.
  • Samples 1 and 4 to 10 of the invention example and Samples A to F of the comparative example have a great difference in time dependency of the conversion rate of carbon monoxide.
  • Samples 1 and 4 to 10 have a reaction time of 15 hours. However, it can be seen that in Samples A to F, the activity decreased greatly after 15 hours.
  • Sample 6 has a lower activity at the time point of 15 hours than Samples 1, 4, and 5 of the invention, and sample 7 has an unstable activity.
  • the ratio of the surface area formed by pores having a pore radius of 10 nm or more is lower in Sample 6 than in the other invention examples, and the pore radius is 10 nm or more. It is considered that a higher carbon monoxide conversion is obtained as the ratio of the specific surface area formed by the pores is larger.
  • the ratio of the surface area formed by pores having a pore radius of 20 nm or more is high although the ratio of the surface area formed by pores having a pore radius of 10 nm or more is high.
  • the ratio is significantly lower than that of Samples 1 and 4-6. It can also be seen that the ratio of the surface area formed by pores having a pore radius of 80 nm or more is lower than that of Samples 1 and 4-6.
  • the surface area formed by pores having a pore radius of 10 nm or more in addition to a large proportion of the surface area formed by pores having a pore radius of 10 nm or more, the surface area formed by pores having a pore radius of 20 nm or more. It can be seen that a higher ratio is more preferable. It can also be seen that a higher proportion of the surface area formed by pores having a pore radius of 80 nm or more is more preferable.
  • Sample B a phenomenon in which the activity increases intermittently even after the carbon monoxide conversion rate once decreases is observed.
  • the pore distribution of sample B slightly changes, and in the pores in the range of pore radius of 2 nm to 100 nm, the surface area of the pores having a pore radius of 10 nm or more occupying the total surface area of the pores in this range. If the ratio exceeds 40%, a significant decrease in activity may be avoided.
  • samples C and D Is expected to be higher in stability than sample B, but samples C and D have a significantly smaller pore volume than sample B, so it is considered that the time required to close the pores is shorter.
  • the alumina carrier itself reacts with concentrated sulfuric acid to become a sulfate.
  • the alumina carrier reacts with concentrated sulfuric acid to form sulfate, and the amount of sulfate remaining as concentrated sulfuric acid is relatively reduced. It is considered that the time required for the carbon monoxide conversion rate to decrease is increased due to these factors.
  • Each 1 mg of each of the three types of catalysts was diluted by mixing 30 mg of carriers 1, 2, and 7 and filled in quartz glass tubes.
  • the difference between the example and the comparative example is large, and it can be seen that the catalytic activity of the sample B is very low.
  • the influence of pore clogging has become obvious. Also from these points, it is considered that in the Examples, the influence of pore clogging by concentrated sulfuric acid is small, and high activity is obtained.
  • the supported amount of platinum is 0.03% by mass or less
  • the platinum fine particles are present as fine particles having a critical particle size
  • the supported amount of noble metal is 0.03% by mass or less
  • the effect of the present invention is exhibited even with a catalyst having a loading amount of 0.01%, and the activity in the range of 300 ° C. or lower can be achieved by using a catalyst having a high surface area ratio occupied by pores having a pore radius of 10 nm or more.
  • the ratio of the surface area occupied by pores having a pore radius of 10 nm or more is higher than that of a catalyst having a low surface area.
  • Test Example 3 Influence of sulfur dioxide concentration and water vapor concentration
  • Sample B the same measurement as in Test Example 1 was performed. Thereafter, from the gas composition shown in Table 4, the measurement was performed in each case where the sulfur dioxide was 20 ppm or the water vapor amount was 10%. As a result, the conversion rates of carbon monoxide were 9.4% and 7.4%, respectively, which were values that were not significantly different from 8.4% before the gas composition was changed. From this, it is considered that the clogging of the pores due to the concentrated sulfuric acid observed in the sample B occurs even if the concentrations of sulfur dioxide and water vapor are different.
  • Samples 1 to 3 and Samples G and H were subjected to a carbon monoxide oxidation reaction test.
  • 20 mg of carrier 1 was mixed and diluted with 10 mg of each catalyst of Samples 1 to 3, respectively, and filled in a quartz glass tube.
  • 20 mg of the carrier 5 was mixed and diluted with 10 mg of each of the catalysts of Samples G and H, and each was filled in a quartz glass tube.
  • the temperature was raised to 250 ° C. in a nitrogen stream at 100 cm 3 / min. After confirming that the temperature was stable, the reaction was performed by flowing a gas having the composition shown in Table 4 at a flow rate of 100 cm 3 / min.
  • the space velocity indicating the relative ratio of gas and catalyst amount is approximately 600000 cm 3 ⁇ hour ⁇ 1 ⁇ catalyst mass (g) ⁇ 1 .
  • Samples 1, 4, and 6 were subjected to a carbon monoxide oxidation reaction test.
  • 10 mg of each of the three types of catalysts 20 mg of carriers 1, 2, and 4 were mixed and diluted, respectively, and filled into quartz glass tubes.
  • the composition shown in Table 4 at a reaction temperature of 250 ° C. and a flow rate of 100 cm 3 / min was used for both the case where the reduction treatment was performed under a hydrogen stream at 500 ° C. and 60 cm 3 / min.
  • the reaction was performed by flowing gas.
  • the results are shown in FIGS. 9A to 9C.
  • Sample 1 the same carbon monoxide conversion rate was obtained regardless of the presence or absence of the reduction treatment, but in Samples 4 and 6, the activity changed greatly depending on the presence or absence of the reduction treatment, and the reduction treatment was not performed. There is no activity.
  • the titanium dioxide carrier used in Sample 1 is an anatase type structure carrier prepared by the sulfuric acid method, has a smaller amount of oxygen deficiency than the rutile type structure of Sample 5, and is difficult to oxidize the supported platinum. It is known that high activity is likely to occur even when there is no reduction treatment. Further, it is known that the anatase type structure prepared by the sulfuric acid method is less likely to cause a phase transition at a temperature of 500 ° C. or higher than the anatase type structure prepared by the chlorine method of Sample 6. For this reason, it is considered that the conversion rate of carbon monoxide in Sample 1 was the same as that obtained in the case of the reduction treatment even in the case of no reduction treatment.
  • the denitration process shown in FIG. 1 was examined using each of the honeycomb-shaped catalysts 1, 2, and 3.
  • a throw-in type electric heater was used instead of the gas heating burner 2, and a shell and tube type heat exchanger was used as the heat exchanging unit 1.
  • a denitration reaction test was conducted with the entire apparatus kept warm.
  • the combustion catalyst filled in the combustion catalyst portion 3 the honeycomb-shaped catalysts 1, 2, and 3 were used, and the filling amount was 1.2L.
  • the denitration catalyst unit 4 was filled with 5 L of the lattice catalyst.
  • As the composition of the exhaust gas a gas having the composition shown in Table 5 that simulates the sintering furnace exhaust gas of the steel manufacturing process was used.
  • the honeycomb-shaped oxidation catalysts 1, 2, and 3 of the present invention are filled with 1.2 L and denitration catalyst with 1.6 L, and an exhaust gas at 60 ° C. having the composition shown in Table 5 is supplied from the inlet of the heat exchange section to 30 Nm 3 / hour (hour). It was made to flow in.
  • the electric heater is turned on, and when the temperature at the inlet of the combustion catalyst reaches 200 ° C., ammonia is injected from the upstream of the denitration unit 4 so that the flow rate ratio to nitrogen monoxide is 0.9.
  • the heater was turned off.
  • a good denitration rate was maintained in all cases of the honeycomb catalysts 1, 2, and 3. The results are shown in Table 6.
  • the denitration process shown in FIG. 2 was examined using each of the above honeycomb-like catalysts 1, 2, and 3.
  • a throwing type electric heater was used instead of the gas heating burner 12, and a shell and tube type heat exchanger was used for the heat exchanging portion 11.
  • the denitration catalyst section 13 was filled with a 3.3 mm pitch titanium dioxide-based lattice catalyst, and a denitration reaction test was performed in a state where the entire apparatus was sufficiently kept warm.
  • the combustion catalyst filled in the combustion catalyst section 14 the honeycomb-shaped catalysts 1, 2, and 3 were used, and the composition of the exhaust gas was a gas having the composition shown in Table 5 as in Test Example 6.
  • the honeycomb-shaped catalysts 1, 2, and 3 were filled with 1.2 L and the denitration catalyst was filled with 1.6 L, and an exhaust gas at 60 ° C. having the composition shown in Table 5 was introduced at 30 Nm 3 / hour from the inlet of the heat exchange section. .
  • the electric heater is turned on, and when the temperature at the inlet of the combustion catalyst section reaches 280 ° C., ammonia is injected from the upstream side of the denitration apparatus section 13 so that the flow rate ratio to nitrogen monoxide becomes 0.9.
  • the heater was turned off.
  • a good denitration rate was maintained in all cases of the honeycomb catalysts 1, 2, and 3. The results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Abstract

The purpose of the present invention is to provide an oxidation catalyst which can efficiently oxidize, with a reduction in the amount of an active species metal supported, environmental pollutants at a space velocity higher than a conventional space velocity at a low temperature in a gas that is to be treated and that contains a catalyst-poisoning substance such as sulfur oxide or water vapor. This oxidation catalyst comprises at least one transition element which is selected from the group consisting of platinum, palladium and rhodium and which is supported on a carrier, wherein the surface area of micropores of 10nm or more in radius accounts for more than 49% of the total surface area of micropores of 2 to 100nm in radius.

Description

酸化触媒、排ガス処理装置、蓄熱燃焼バーナー、ガス中の可燃成分を酸化する方法及びガス中の窒素酸化物の除去方法Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components in gas, and method for removing nitrogen oxides in gas
 本発明は、ガス中の可燃成分を酸化させる酸化触媒、ガス中の可燃成分の酸化時に発生する熱を利用する排ガス処理装置、蓄熱燃焼バーナー、ガス中の可燃成分を酸化する方法、及び窒素酸化物の除去方法に関し、特に、触媒の被毒物質となりうる水蒸気と硫黄酸化物とを含むガスに対する、酸化触媒、排ガス処理装置、蓄熱燃焼バーナー、ガス中の可燃成分を酸化する方法及びガス中の窒素酸化物の除去方法に関する。 The present invention relates to an oxidation catalyst that oxidizes a combustible component in a gas, an exhaust gas treatment device that uses heat generated when the combustible component in the gas is oxidized, a heat storage combustion burner, a method for oxidizing the combustible component in the gas, and nitrogen oxidation. In particular, an oxidation catalyst, an exhaust gas treatment device, a heat storage combustion burner, a method for oxidizing a combustible component in a gas, and a gas in a gas containing a gas containing water vapor and sulfur oxide that can be poisonous substances of the catalyst. The present invention relates to a method for removing nitrogen oxides.
 環境意識の高まりをうけ、排ガス中に含まれる一酸化炭素や、メタンを除去することにより、環境負荷を低減するプロセスの開発が進められている。排ガス中には、一酸化炭素及びメタンは燃焼下限未満の濃度しか含まれておらず、酸素を含む条件においても一酸化炭素及びメタンを燃焼除去することは困難である。すなわち、一酸化炭素及びメタンは、排ガスに含まれる未燃成分であると言える。そこで、酸化触媒を用いてこれらの未燃成分を触媒燃焼することにより、一酸化炭素及びメタンは、効率的に二酸化炭素及び水蒸気に変換されて、排ガス中から除去される。近年では、触媒燃焼にて発生した熱を回収することによって、プロセスの熱効率を高める手法が検討されており、バーナーや排ガス処理プロセスの効率化を図る手法も報告されている(例えば、下記の特許文献1及び特許文献2を参照。)。排ガス中の未燃成分に対して触媒燃焼技術を適用することで、環境負荷低減のみならず低コスト化が達成できる可能性がある。 Developed processes to reduce environmental burden by removing carbon monoxide and methane contained in exhaust gas in response to increasing environmental awareness. The exhaust gas contains carbon monoxide and methane at concentrations lower than the lower combustion limit, and it is difficult to burn and remove carbon monoxide and methane even under conditions containing oxygen. That is, it can be said that carbon monoxide and methane are unburned components contained in the exhaust gas. Therefore, by catalytically burning these unburned components using an oxidation catalyst, carbon monoxide and methane are efficiently converted into carbon dioxide and water vapor and removed from the exhaust gas. In recent years, methods for improving the thermal efficiency of processes by recovering heat generated by catalytic combustion have been studied, and methods for improving the efficiency of burners and exhaust gas treatment processes have also been reported (for example, the following patents) (See Reference 1 and Patent Reference 2.) By applying the catalytic combustion technology to unburned components in the exhaust gas, there is a possibility that not only environmental load reduction but also cost reduction can be achieved.
 排水中に含まれる有機物を分解除去する場合には、微生物を用いた生物学的処理法が利用される場合が多いが、酸化触媒を用いて処理を行う手法も報告されている(例えば、下記の特許文献3を参照。)。しかしながら、酸化触媒を利用した排水処理プロセスでは、液体状の水を処理対象とする都合から、プロセスで到達する最高温度が高々230℃未満であり、反応中に生じる触媒担体の熱的変化は小さい。更に、液体状の水は比熱及び密度が大きく、処理空間速度が小さいことから、触媒反応部の温度が設定温度よりも高くなることも考えにくい。こうした事情から、排水処理プロセスと排ガス処理プロセスとでは、異なる触媒が利用される。例えば、排水処理用の触媒は、製造時に500℃以上の高い温度での処理を経ていない場合が多く、排ガス中未燃成分の燃焼に利用した場合には反応中に触媒の性状が変化し、強度の低下や触媒活性の低下が生じる恐れがある。この為、排水処理用の触媒をそのまま排ガス中の未燃成分を処理するプロセスに適用することは、困難である。その他のプロセスで利用される触媒についても、対象とする反応やプロセス条件に応じて利用可能な触媒は異なっており、これらの触媒をそのまま排ガス中未燃成分の酸化燃焼に適用することは困難である。 In the case of decomposing and removing organic substances contained in wastewater, biological treatment methods using microorganisms are often used, but methods for treatment using an oxidation catalyst have also been reported (for example, (See Patent Document 3). However, in the wastewater treatment process using an oxidation catalyst, the maximum temperature reached in the process is at most less than 230 ° C. for the convenience of treating liquid water, and the thermal change of the catalyst support that occurs during the reaction is small. . Furthermore, since liquid water has a large specific heat and density and a small processing space velocity, it is unlikely that the temperature of the catalytic reaction part will be higher than the set temperature. Under such circumstances, different catalysts are used in the wastewater treatment process and the exhaust gas treatment process. For example, wastewater treatment catalysts are often not treated at a high temperature of 500 ° C. or higher during production, and when used for combustion of unburned components in exhaust gas, the properties of the catalyst change during the reaction, There is a risk that strength and catalytic activity may decrease. For this reason, it is difficult to apply the wastewater treatment catalyst as it is to a process for treating unburned components in the exhaust gas. The catalysts that can be used in other processes also differ depending on the target reaction and process conditions, and it is difficult to apply these catalysts to oxidative combustion of unburned components in exhaust gas as they are. is there.
 ガス中に含まれる微量の可燃性成分を燃焼させる際には、貴金属を活性種に含む酸化触媒を利用することが一般的であり、各種担体の上に担持された貴金属微粒子の表面で反応が進行することが知られている。ここで、焼結炉排ガスに代表される工場排ガスや、脱硫不十分な燃料を用いた自動車・船舶の排ガス中には、硫黄酸化物に代表される多量の触媒被毒物質が含まれている。貴金属粒子がかかる触媒被毒物質によって被覆されること等が原因となって、酸化触媒が急速に劣化したり、活性が低減したりする。かかる問題に対応するために、反応温度を上昇させる、担持させる貴金属の量を増大させる、等といった対応を行うことが一般的である。焼結炉排ガスに関する、一酸化炭素の燃焼熱を利用した脱硝プロセス開発においても、同様の対策が取られている(例えば、下記の特許文献4を参照。)。 When burning a small amount of a combustible component contained in a gas, it is common to use an oxidation catalyst containing a noble metal as an active species, and the reaction occurs on the surface of the noble metal fine particles supported on various carriers. It is known to progress. Here, a large amount of catalyst poisonous substances typified by sulfur oxides are contained in factory exhaust gas typified by sintering furnace exhaust gas and exhaust gas of automobiles and ships using fuel that is insufficiently desulfurized. . The oxidation catalyst is rapidly deteriorated or its activity is reduced due to the fact that the noble metal particles are covered with the catalyst poisoning substance. In order to cope with such a problem, it is common to take measures such as increasing the reaction temperature or increasing the amount of noble metal to be supported. Similar measures are also taken in the denitration process development using the combustion heat of carbon monoxide with respect to the sintering furnace exhaust gas (see, for example, Patent Document 4 below).
 こうした事情から、硫黄酸化物を含む被処理ガス中で利用する酸化触媒については、一定以上の表面積を持つ担体を利用して1質量%以上の貴金属を担持させたり、空間速度(単位容積を1時間当たりに通過する標準状態換算の原料容積である。)を50000以下に低減したりすることで対応することが、一般的である。貴金属担持量を増大し過ぎると二酸化硫黄の三酸化硫黄への酸化が増大するが、異種元素を添加することによって、かかる二酸化硫黄の酸化を抑制する試みも多数行われている(例えば、下記の特許文献5~特許文献7を参照。)。 For these reasons, the oxidation catalyst used in the gas to be treated containing sulfur oxide supports a noble metal of 1% by mass or more using a carrier having a surface area of a certain level or more, and the space velocity (unit volume is 1). It is common to cope with this by reducing the volume of the raw material in terms of the standard state passing per hour) to 50000 or less. If the amount of noble metal supported is increased too much, the oxidation of sulfur dioxide to sulfur trioxide increases, but many attempts have been made to suppress the oxidation of sulfur dioxide by adding different elements (for example, the following) (See Patent Documents 5 to 7.)
特開2001-336733号公報JP 2001-336733 A 特開平5-115750号公報Japanese Patent Laid-Open No. 5-115750 特開2002-79092号公報JP 2002-79092 A 特開昭61-161143号公報JP 61-161143 A 特許第4508693号Japanese Patent No. 4508693 特開2000-300961号公報JP 2000-300961 A 特公昭55-35178号公報Japanese Patent Publication No.55-35178
 多量の硫黄酸化物や水蒸気等を含む排ガス中では、酸化触媒の活性が大きく低下することが知られており、高い活性を示す酸化触媒を得るためには、反応温度を上昇させる、活性金属種の担持量を増大させる、等といった対策が行われることが一般的である。しかしながら、これらの対策は、いずれもコストを大きく増大させる原因となる。 In exhaust gas containing a large amount of sulfur oxide, water vapor, etc., it is known that the activity of the oxidation catalyst is greatly reduced, and in order to obtain an oxidation catalyst exhibiting high activity, an active metal species that increases the reaction temperature. In general, a countermeasure such as increasing the amount of the carrier is taken. However, all of these measures cause a significant increase in cost.
 本発明は、金属活性種の担持量を抑制しつつ、硫黄酸化物や水蒸気等の触媒被毒物質を含む被処理ガス中において、酸化触媒の活性低下を抑制し、従来技術よりも高い空間速度かつ低温で一酸化炭素等の可燃性物質を効率的に酸化することが可能な、酸化触媒を提供することを目的とする。 The present invention suppresses a decrease in the activity of an oxidation catalyst in a gas to be treated containing a catalyst poisonous substance such as sulfur oxide or water vapor while suppressing the amount of metal active species supported, and has a higher space velocity than the prior art. An object of the present invention is to provide an oxidation catalyst capable of efficiently oxidizing a combustible substance such as carbon monoxide at a low temperature.
 また、本発明は、かかる酸化触媒を利用することによって、触媒被毒物質を含む被処理ガス中において、一酸化炭素等の可燃性物質を効率的に低温で酸化する、ガス中の可燃成分を酸化する方法を提供することを目的とする。 Further, the present invention uses such an oxidation catalyst to efficiently oxidize a combustible substance such as carbon monoxide at a low temperature in a gas to be treated containing a catalyst poisonous substance. The object is to provide a method of oxidation.
 更にまた、本発明は、かかる酸化触媒が充填され、ガス中の可燃成分の酸化時に発生する熱を利用して一酸化炭素等の可燃性物質を効率的に低温でも酸化することが可能な排ガス処理装置及び蓄熱燃焼バーナーと、かかる酸化触媒を用いた、効率的な窒素酸化物の除去方法と、を提供することを目的とする。 Furthermore, the present invention is an exhaust gas that is filled with such an oxidation catalyst and that can efficiently oxidize a combustible substance such as carbon monoxide even at a low temperature by using heat generated during oxidation of the combustible component in the gas. It is an object of the present invention to provide a treatment apparatus, a heat storage combustion burner, and an efficient nitrogen oxide removal method using such an oxidation catalyst.
 本発明者は、上記課題を解決するために、活性金属を担持させる担体と、活性金属を担持させた触媒について、比表面積・細孔分布・構成元素・結晶構造に着目し、鋭意研究を行った。 In order to solve the above-mentioned problems, the present inventor has conducted intensive research on a support supporting an active metal and a catalyst supporting an active metal, focusing on specific surface area, pore distribution, constituent elements, and crystal structure. It was.
 そして、本発明者は、担体及び触媒の細孔分布に着目し、細孔半径の大きい細孔の比率が高い触媒を作製することで、硫黄酸化物に代表される触媒被毒物質を含む被処理ガス中において、酸化触媒の活性低下を抑制させる手法を見出し、本発明を完成した。 The present inventor then pays attention to the pore distribution of the support and the catalyst, and creates a catalyst having a high ratio of pores having a large pore radius, thereby containing a catalyst poisoning substance typified by sulfur oxide. In the process gas, a method for suppressing the decrease in the activity of the oxidation catalyst was found, and the present invention was completed.
 具体的には、本発明は、以下のようなものを提供する。
(1)担体に、白金、パラジウム、ロジウムからなる群から選ばれる遷移元素のうち少なくとも1種が担持された酸化触媒であり、前記酸化触媒における細孔半径2nm以上100nm以下の範囲の細孔において、当該範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、49%超である、酸化触媒。
(2)担体に、白金、パラジウム、ロジウムからなる群から選ばれる遷移元素のうち少なくとも1種が担持された、ガス中の可燃成分を酸化する酸化触媒であって、前記酸化触媒における細孔半径2nm以上100nm以下の範囲の細孔において、当該範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、49%超である、酸化触媒。
(3)前記範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、60%以上である、(1)又は(2)に記載の酸化触媒。
(4)前記範囲の細孔の全表面積に占める、細孔半径20nm以上の細孔で形成される表面積の割合が、20%以上である、(1)~(3)の何れか1項に記載の酸化触媒。
(5)前記範囲の細孔の全表面積に占める、細孔半径20nm以上の細孔で形成される表面積の割合が、30%以上である、(1)~(4)の何れか1項に記載の酸化触媒。
(6)前記範囲の細孔の全表面積に占める、細孔半径80nm以上の細孔で形成される表面積の割合が、2%以上である、(1)~(5)の何れか1項に記載の酸化触媒。
(7)比表面積が20m/g以下である、(1)~(6)の何れか1項に記載の酸化触媒。
(8)前記酸化触媒に担持される前記遷移金属が、白金である、(1)~(7)の何れか1項に記載の酸化触媒。
(9)前記酸化触媒に担持される前記遷移元素の比率が、当該遷移元素の金属換算の質量比の和として、前記酸化触媒の全質量に対して、0.01%以上2.0%以下である、(1)~(8)の何れか1項に記載の酸化触媒。
(10)前記酸化触媒の担体が、融点1300℃以上の酸化物担体である、(1)~(9)の何れか1項に記載の酸化触媒。
(11)前記酸化触媒の担体が、二酸化チタン、又は、酸化ジルコニウムの何れかである、(1)~(10)の何れか1項に記載の酸化触媒。
(12)前記酸化触媒の担体が、アナターゼ型構造の二酸化チタンである、(11)に記載の酸化触媒。
(13)前記二酸化チタンは、硫酸法にて製造された二酸化チタンである、(11)又は(12)に記載の酸化触媒。
(14)触媒を利用して被処理ガス中に含まれる未燃成分を燃焼させる燃焼触媒部を備え、前記燃焼触媒部に、(1)~(13)の何れか1項に記載の酸化触媒が充填されている、排ガス処理装置。
(15)前記燃焼触媒部の前段に設けられ、前記被処理ガスの温度を上昇させるガス加熱部と、前記燃焼触媒部の後段に設けられ、前記被処理ガス中の窒素酸化物を除去する脱硝部と、を更に備える、(14)に記載の排ガス処理装置。
(16)前記燃焼触媒部の前段に設けられ、前記被処理ガス中の窒素酸化物を除去する脱硝部と、前記脱硝部の前段に設けられ、前記被処理ガスの温度を上昇させるガス加熱部と、
を更に備え、前記燃焼触媒部で発生した燃焼熱が、前記ガス加熱部に供給される前記被処理ガスの加熱に用いられる、(14)に記載の排ガス処理装置。
(17)燃料及び燃焼空気の混合気を噴射する混合気噴射部と、蓄熱体が配置されており、被処理ガスを流通させて顕熱を蓄熱体に蓄熱し、蓄熱後に燃焼空気を流通させて、蓄熱した熱量で当該燃焼空気を加熱する蓄熱部と、を備え、前記蓄熱部と前記混合気噴射部との間に設けられた燃焼触媒部、又は、前記蓄熱部には、(1)~(13)の何れか1項に記載の酸化触媒が充填されている、蓄熱燃焼バーナー。
(18)(1)~(13)のいずれか1項に記載の酸化触媒を用いて、水蒸気及び硫黄酸化物を含む被処理ガス中の一酸化炭素、一酸化窒素、メタンからなる群から選ばれる可燃成分を酸化する、ガス中の可燃成分を酸化する方法。
(19)前記被処理ガスと前記酸化触媒の接触する温度が、250℃以上300℃未満である、(18)に記載のガス中の可燃成分を酸化する方法。
(20)被処理ガスの温度を上昇させるガス加熱部と、被処理ガス中の窒素酸化物を除去する脱硝部と、を有するガス処理プロセスを用い、窒素酸化物を含むと共に、水蒸気と硫黄酸化物と可燃性ガスとを含む被処理ガス中の窒素酸化物を除去する方法であって、前記ガス加熱部と前記脱硝部との間に、(1)~(13)の何れか1項に記載の酸化触媒が充填された燃焼触媒部を配置し、当該燃焼触媒部に前記ガス加熱部で加熱された前記被処理ガスを通過させて、前記被処理ガス中の可燃成分を燃焼し、その燃焼熱により前記被処理ガスの温度を更に上昇させる、ガス中の窒素酸化物の除去方法。
(21)前記ガス加熱部として、熱交換器と、ガス加熱バーナー又は電熱ヒーターとを用い、前記脱硝部から排出されたガスを、前記熱交換器の高温ガスとして使用する、(20)に記載のガス中の窒素酸化物の除去方法。
(22)前記ガス加熱部として、熱交換器と、ガス加熱バーナー又は電熱ヒーターとを用い、前記燃焼触媒部の位置を、前記ガス加熱部と前記脱硝部の間から、前記ガス加熱部及び前記脱硝部の後段に配置換えし、前記燃焼触媒部から排出されたガスを、前記熱交換器の高温ガスとして使用する、(20)に記載のガス中の窒素酸化物の除去方法。
(23)前記被処理ガスが、鉄鋼製造プロセスにおける焼結炉の排ガスである、(20)~(22)の何れか1項に記載のガス中の窒素酸化物の除去方法。
Specifically, the present invention provides the following.
(1) An oxidation catalyst in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier, and the pores having a pore radius in the range of 2 nm to 100 nm in the oxidation catalyst The ratio of the surface area formed by pores having a pore radius of 10 nm or more to the total surface area of pores in the range is more than 49%.
(2) An oxidation catalyst for oxidizing a combustible component in a gas, in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier, the pore radius in the oxidation catalyst An oxidation catalyst in which the proportion of the surface area formed by pores having a pore radius of 10 nm or more in the pores in the range of 2 nm to 100 nm is more than 49% in the total surface area of the pores in the range.
(3) The oxidation catalyst according to (1) or (2), wherein a ratio of a surface area formed by pores having a pore radius of 10 nm or more to a total surface area of pores in the above range is 60% or more.
(4) The ratio of the surface area formed by pores having a pore radius of 20 nm or more to the total surface area of the pores in the above range is 20% or more, according to any one of (1) to (3) The oxidation catalyst as described.
(5) The ratio of the surface area formed by pores having a pore radius of 20 nm or more to the total surface area of the pores in the above range is 30% or more, according to any one of (1) to (4) The oxidation catalyst as described.
(6) The ratio of the surface area formed by pores having a pore radius of 80 nm or more to the total surface area of the pores in the above range is 2% or more, according to any one of (1) to (5) The oxidation catalyst as described.
(7) The oxidation catalyst according to any one of (1) to (6), wherein the specific surface area is 20 m 2 / g or less.
(8) The oxidation catalyst according to any one of (1) to (7), wherein the transition metal supported on the oxidation catalyst is platinum.
(9) The ratio of the transition element supported on the oxidation catalyst is 0.01% or more and 2.0% or less with respect to the total mass of the oxidation catalyst as the sum of the mass ratio of the transition element in terms of metal. The oxidation catalyst according to any one of (1) to (8), wherein
(10) The oxidation catalyst according to any one of (1) to (9), wherein the support of the oxidation catalyst is an oxide support having a melting point of 1300 ° C. or higher.
(11) The oxidation catalyst according to any one of (1) to (10), wherein the support of the oxidation catalyst is either titanium dioxide or zirconium oxide.
(12) The oxidation catalyst according to (11), wherein the support of the oxidation catalyst is titanium dioxide having an anatase structure.
(13) The oxidation catalyst according to (11) or (12), wherein the titanium dioxide is titanium dioxide produced by a sulfuric acid method.
(14) A combustion catalyst unit for burning unburned components contained in the gas to be treated using a catalyst is provided, and the oxidation catalyst according to any one of (1) to (13) is provided in the combustion catalyst unit An exhaust gas treatment device filled with
(15) A gas heating unit that is provided upstream of the combustion catalyst unit and increases the temperature of the gas to be processed; and a denitration that is provided downstream of the combustion catalyst unit and removes nitrogen oxides in the gas to be processed. The exhaust gas treatment apparatus according to (14), further comprising: a unit.
(16) A denitration unit for removing nitrogen oxides in the gas to be treated and a gas heating unit for raising the temperature of the gas to be treated, which is provided in a previous stage of the denitration unit. When,
The exhaust gas treatment apparatus according to (14), wherein the combustion heat generated in the combustion catalyst unit is used for heating the gas to be treated supplied to the gas heating unit.
(17) An air-fuel mixture injection unit that injects a mixture of fuel and combustion air and a heat storage body are arranged, distribute the gas to be treated to store sensible heat in the heat storage body, and distribute the combustion air after the heat storage And a heat storage section that heats the combustion air with the amount of heat stored, and the combustion catalyst section provided between the heat storage section and the air-fuel mixture injection section or the heat storage section includes (1) A heat storage combustion burner filled with the oxidation catalyst according to any one of (13) to (13).
(18) Using the oxidation catalyst according to any one of (1) to (13), selected from the group consisting of carbon monoxide, nitrogen monoxide, and methane in a gas to be treated containing water vapor and sulfur oxide A method to oxidize combustible components in gas.
(19) The method for oxidizing a combustible component in the gas according to (18), wherein a temperature at which the gas to be treated and the oxidation catalyst are in contact is 250 ° C. or higher and lower than 300 ° C.
(20) Using a gas treatment process having a gas heating part for raising the temperature of the gas to be treated and a denitration part for removing nitrogen oxides in the gas to be treated, and containing nitrogen oxides, steam and sulfur oxidation A method for removing nitrogen oxides in a gas to be treated containing an object and a combustible gas, wherein any one of (1) to (13) is provided between the gas heating unit and the denitration unit. A combustion catalyst part filled with the oxidation catalyst described above is disposed, the gas to be treated heated by the gas heating part is passed through the combustion catalyst part, and the combustible component in the gas to be treated is burned. A method for removing nitrogen oxides in a gas, wherein the temperature of the gas to be treated is further increased by combustion heat.
(21) A heat exchanger and a gas heating burner or an electric heater are used as the gas heating unit, and the gas discharged from the denitration unit is used as a high-temperature gas of the heat exchanger. To remove nitrogen oxides in the gas.
(22) As the gas heating unit, a heat exchanger and a gas heating burner or an electric heater are used, and the position of the combustion catalyst unit is set between the gas heating unit and the denitration unit, and the gas heating unit and the denitration unit. The method for removing nitrogen oxides in a gas according to (20), wherein the gas discharged from the combustion catalyst part is used as a high-temperature gas of the heat exchanger after being rearranged at a stage after the denitration part.
(23) The method for removing nitrogen oxides in a gas according to any one of (20) to (22), wherein the gas to be treated is exhaust gas of a sintering furnace in a steel manufacturing process.
 以上説明したように本発明によれば、硫黄酸化物を含む被処理ガス中に含有される一酸化炭素、一酸化窒素、メタンを、従来技術に比べ低温において酸化させることが可能で、金属活性種担持量の少ない場合でも酸化させることが可能な触媒を提供できる。また、このような酸化触媒を用いて、ガス中の可燃成分の酸化時に発生する熱を利用した排ガス処理装置と、効率よく被処理ガス中の一酸化炭素、一酸化窒素、メタンを酸化させることができる手法と、を提供できると共に、このような酸化触媒を製造する手法を提供できる。 As described above, according to the present invention, it is possible to oxidize carbon monoxide, nitrogen monoxide, and methane contained in the gas to be treated containing sulfur oxide at a lower temperature than in the prior art, and the metal activity It is possible to provide a catalyst that can be oxidized even when the amount of seed supported is small. In addition, using such an oxidation catalyst, exhaust gas treatment equipment that uses heat generated during the oxidation of combustible components in the gas, and efficiently oxidize carbon monoxide, nitrogen monoxide, and methane in the gas to be treated And a method for manufacturing such an oxidation catalyst.
排ガス脱硝法における処理プロセスの流路を示す説明図である。It is explanatory drawing which shows the flow path of the process in exhaust gas denitration method. 排ガス脱硝法における処理プロセスの流路を示す説明図である。It is explanatory drawing which shows the flow path of the process in exhaust gas denitration method. 排ガス処理プロセスを含む蓄熱燃焼バーナーのプロセスの流路を示す説明図である。It is explanatory drawing which shows the flow path of the process of the thermal storage combustion burner containing an exhaust gas treatment process. Dollimore-Heal法(DH法)にて計算した、発明例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the example of an invention calculated by the Dollimore-Heal method (DH method), and its accumulation value. DH法にて計算した、発明例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the example of an invention calculated by DH method, and its accumulation value. DH法にて計算した、発明例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the example of an invention calculated by DH method, and its accumulation value. DH法にて計算した、比較例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the comparative example calculated by DH method, and its cumulative value. DH法にて計算した、比較例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the comparative example calculated by DH method, and its cumulative value. DH法にて計算した、比較例の面積分布表示での細孔分布とその累積値を示すグラフである。It is a graph which shows the pore distribution by the area distribution display of the comparative example calculated by DH method, and its cumulative value. 試験例1の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 1, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. 試験例1の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 1, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. 試験例1の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 1, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. 試験例1の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 1, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. 試験例2の結果を示す図であって、反応温度と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 2, Comprising: It is a graph which shows the relationship between reaction temperature and a carbon monoxide conversion rate. 試験例4の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 4, Comprising: It is a graph which shows the relationship between reaction time and a carbon monoxide conversion rate. 試験例5の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 5, Comprising: It is a graph which shows the relationship between reaction time and carbon monoxide conversion. 試験例5の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 5, Comprising: It is a graph which shows the relationship between reaction time and carbon monoxide conversion. 試験例5の結果を示す図であって、反応時間と一酸化炭素転化率の関係を示すグラフである。It is a figure which shows the result of Test Example 5, Comprising: It is a graph which shows the relationship between reaction time and carbon monoxide conversion.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
(本発明者による検討について)
 焼結炉からの排ガスやバーナーからの排ガスに代表される工場排ガス中には、二酸化硫黄、三酸化硫黄に代表される硫黄酸化物に加え、多量の水蒸気が含まれている。酸化触媒を用いて、これらの排ガスに含まれる可燃物質を燃焼させる際には、二酸化硫黄が酸化されて三酸化硫黄の量が増大し、濃硫酸が生成する。三酸化硫黄及び濃硫酸は、多くの酸化物と容易に反応し、硫酸化物となることが知られており、この反応により触媒の活性が大きく損なわれることが知られている。
(About examination by the present inventor)
Factory exhaust gas typified by exhaust gas from a sintering furnace and exhaust gas from a burner contains a large amount of water vapor in addition to sulfur oxides typified by sulfur dioxide and sulfur trioxide. When combustible substances contained in these exhaust gases are burned using an oxidation catalyst, sulfur dioxide is oxidized, the amount of sulfur trioxide increases, and concentrated sulfuric acid is generated. It is known that sulfur trioxide and concentrated sulfuric acid easily react with many oxides to form a sulfate, and this reaction is known to greatly impair the activity of the catalyst.
 多くの酸化物担体のうち、二酸化チタンと酸化ジルコニウムは、硫酸化しにくい担体として知られている。二酸化チタンを濃硫酸中に溶解させる際には、二酸化チタン粒子表面に酸化硫酸チタンの膜を形成し、内部の硫酸化が妨げられることが知られている。また、二酸化チタンの原料となるイルメナイト鉱を溶解させる際には、イルメナイト鉱を熱濃硫酸中で1000℃程度にまで昇温させる必要がある。 Of many oxide carriers, titanium dioxide and zirconium oxide are known as carriers that are not easily sulfated. It is known that when titanium dioxide is dissolved in concentrated sulfuric acid, a titanium oxide sulfate film is formed on the surface of the titanium dioxide particles, preventing internal sulfation. Moreover, when the ilmenite ore used as the raw material of titanium dioxide is dissolved, it is necessary to raise the temperature of the ilmenite ore to about 1000 ° C. in hot concentrated sulfuric acid.
 上記のように、二酸化チタンや酸化ジルコニウムは、硫黄酸化物に対し高い耐性を示すが、二酸化チタンや酸化ジルコニウムを担体として用いただけでは、硫黄酸化物を含む被処理ガス中における活性低下を抑制出来ない。かかる知見については、下記の実験例に示す通りである。また、急速な活性低下を示した触媒について、反応活性の温度依存性を調査したところ、300℃付近で急峻な活性変化を示し、かかる活性変化は、温度を上下させることで可逆的に繰返し観測された。貴金属微粒子の凝集や担体の異性化等が主たる活性低下の要因であると仮定した場合、こうした可逆的な活性の変動が生じるとは考えにくく、担体と被処理ガスとの反応以外に、何らかの活性低下要因が存在すると考えられた。 As described above, titanium dioxide and zirconium oxide show high resistance to sulfur oxides. However, the use of titanium dioxide or zirconium oxide as a carrier can suppress a decrease in activity in the gas to be treated containing sulfur oxides. Absent. This knowledge is as shown in the following experimental example. Moreover, when the temperature dependence of the reaction activity was investigated for the catalyst that showed a rapid decrease in activity, it showed a sharp change in activity near 300 ° C, and this activity change was repeatedly observed reversibly by raising and lowering the temperature. It was done. Assuming that aggregation of precious metal particles and isomerization of the carrier are the main causes of decreased activity, it is unlikely that such a reversible change in activity will occur, and some activity other than the reaction between the carrier and the gas to be treated It was thought that there was a decrease factor.
 そこで、他の触媒劣化要因として、副生濃硫酸による細孔の閉塞に着目した。硫黄酸化物、酸素及び水蒸気を含む被処理ガス中にて酸化触媒を用いた酸化反応を行うと、副反応として二酸化硫黄の酸化が進行し、生成した三酸化硫黄と水蒸気との反応により濃硫酸が生成する。濃硫酸は、非常に蒸気圧の低い液体であり、沸点は300℃以上である。また、副生した濃硫酸は、沸点以下の温度範囲であっても液体として安定に存在することが可能である。また、濃硫酸の凝縮のしやすさは、担体の形状によって大きく影響を受けることが知られている。 Therefore, attention was paid to pore clogging by by-product concentrated sulfuric acid as another catalyst deterioration factor. When an oxidation reaction using an oxidation catalyst is performed in a gas to be treated containing sulfur oxides, oxygen, and water vapor, oxidation of sulfur dioxide proceeds as a side reaction, and concentrated sulfuric acid is produced by the reaction between the generated sulfur trioxide and water vapor. Produces. Concentrated sulfuric acid is a liquid having a very low vapor pressure and has a boiling point of 300 ° C. or higher. The concentrated sulfuric acid produced as a by-product can stably exist as a liquid even in a temperature range below the boiling point. In addition, it is known that the ease of condensation of concentrated sulfuric acid is greatly influenced by the shape of the carrier.
 担体の形状が濃硫酸の凝縮に与える影響として、第一に、担体の細孔半径に依存して液体蒸気圧が変化することが挙げられる。状態変化の平衡は、ギブスのエネルギーの変化によって決定されるものであり、状態変化前後でのエネルギー差に依存する。微細な細孔内部で生じる状態変化では、細孔内部の曲率が大きくなることで気液界面の界面エネルギーによる影響が増大し、その結果、液体と平衡にある気圧の分圧が低下する。かかる分圧の低下は、液体の凝縮が生じ易くなることを意味する。この関係を示した式は、ケルビン(Kelvin)の式として知られており、以下の式で示される。かかるケルビンの式より、細孔半径rが小さくなる程、蒸気圧Pが平面上での蒸気圧Pに対して小さくなることが分かる。式と式中で利用される記号の意味を、以下に示す。 As an influence of the shape of the carrier on the condensation of concentrated sulfuric acid, firstly, the liquid vapor pressure changes depending on the pore radius of the carrier. The equilibrium of state change is determined by the change in Gibbs energy and depends on the energy difference before and after the state change. In the state change that occurs inside the fine pores, the influence of the interfacial energy at the gas-liquid interface increases as the curvature inside the pores increases, and as a result, the partial pressure of the atmospheric pressure in equilibrium with the liquid decreases. Such a decrease in partial pressure means that the liquid tends to condense. The equation showing this relationship is known as the Kelvin equation and is shown by the following equation. The equation of such Kelvin, as the pore radius r is reduced, it can be seen that the vapor pressure P is reduced relative to the vapor pressure P o on a plane. The meanings of the formulas and symbols used in the formulas are shown below.
 Kelvinの式: ln(P/P)=-2γVCOSθ/(rRT)
 
 P:蒸気圧 P:飽和蒸気圧 γ:表面張力[N/m]
 V:モル体積[m/mol] r:液滴半径[m]
 R:気体定数[J/mol・K] T:絶対温度[K] θ:接触角[rad]
Kelvin's formula: ln (P / P 0 ) = − 2γV m COSθ / (rRT)

P: Vapor pressure P 0 : Saturated vapor pressure γ: Surface tension [N / m]
V m : molar volume [m 3 / mol] r: droplet radius [m]
R: Gas constant [J / mol · K] T: Absolute temperature [K] θ: Contact angle [rad]
 担体の形状が濃硫酸の凝縮に与える影響として、第二に、細孔半径に依存して気体の拡散速度が変化することが挙げられる。二酸化チタン及び酸化ジルコニウムのいずれも、表面が硫酸化することが知られている。例えば、二酸化チタンの表面が硫酸化することで生成する酸化硫酸チタン(IV)の場合、400℃以下の範囲で水和した状態にある。こうした表面上には、三酸化硫黄や水蒸気が吸着し易い。この為、これらの分子は、吸着と脱離を繰返しながら細孔内を拡散することとなり、拡散が遅延される原因となる。気体ガス種を窒素とし、圧力を1気圧、温度523Kとした場合には、気体分子の平均自由工程は100nm以上となる。従って、10nm以下の細孔の場合には、気体分子同士の衝突はほぼ無視され、気体分子は、細孔壁面への衝突を繰り返しながら細孔内を進行する(自由分子流領域)。 Secondly, the influence of the shape of the carrier on the condensation of concentrated sulfuric acid is that the gas diffusion rate changes depending on the pore radius. It is known that the surface of both titanium dioxide and zirconium oxide is sulfated. For example, in the case of titanium oxide sulfate (IV) produced by sulfating the surface of titanium dioxide, it is in a hydrated state in the range of 400 ° C. or lower. On such a surface, sulfur trioxide and water vapor are easily adsorbed. For this reason, these molecules diffuse in the pores while repeating adsorption and desorption, and cause the diffusion to be delayed. When the gaseous gas species is nitrogen, the pressure is 1 atm, and the temperature is 523 K, the mean free path of gas molecules is 100 nm or more. Therefore, in the case of pores of 10 nm or less, collisions between gas molecules are almost ignored, and gas molecules travel in the pores while repeating collisions with the pore wall surfaces (free molecular flow region).
 自由分子流領域が成立する条件では、細孔壁面と気体分子との相互作用による影響が現れやすくなる。事実、水蒸気を吸着し易い部分を細孔内に含むゼオライト触媒では、水蒸気を含有する気体中において反応活性が大きく低減されることが知られている(例えば、上記非特許文献1を参照。)。二酸化硫黄は、細孔内に存在する貴金属上の反応において三酸化硫黄に酸化されるが、上記の理由により、三酸化硫黄は細孔内を拡散して、細孔外に脱出し難くなる。その結果、三酸化硫黄は、貴金属を含む細孔内で相対的に高い分圧となる。拡散速度は、細孔半径が小さいほど大きく減少する。 ● Under the condition that the free molecular flow region is established, the influence of the interaction between the pore wall surface and the gas molecule is likely to appear. In fact, it is known that the reaction activity of a zeolite catalyst containing a portion that easily adsorbs water vapor in the pores is greatly reduced in a gas containing water vapor (see, for example, Non-Patent Document 1 above). . Sulfur dioxide is oxidized to sulfur trioxide in the reaction on the noble metal present in the pores. For the above reason, sulfur trioxide diffuses in the pores and is difficult to escape out of the pores. As a result, sulfur trioxide has a relatively high partial pressure within the pores containing the noble metal. The diffusion rate decreases greatly as the pore radius decreases.
 以上、Kelvinの式に従う第一の要因と、細孔壁面との相互作用に支配される第二の要因と、によって、細孔内部での濃硫酸の凝縮が生じ易くなり、細孔の閉塞が生じるものと考えられる。 As described above, due to the first factor according to the Kelvin equation and the second factor governed by the interaction with the pore wall surface, condensation of concentrated sulfuric acid easily occurs in the pores, and the pores are blocked. It is thought to occur.
(本発明について)
 以上の検討を踏まえ、細孔半径の大きい細孔の比率が高い担体を用いることで、細孔内部での濃硫酸の閉塞を抑制出来ると考えられた。つまり、上記第一の要因については、細孔半径が大きくなることで液体の凝縮に要する蒸気圧が大きくなり、細孔の閉塞が生じ難くなると考えられた。上記第二の要因については、平均自由工程に対して細孔半径が大きくなるにつれて、気相中を運動する分子同士の衝突の影響が現れ、壁面との衝突による影響が小さくなる。その結果、細孔内での三酸化硫黄の拡散が生じ易くなり、第二の要因に関しても細孔の閉塞が生じ難くなると考えられた。
(About the present invention)
Based on the above examination, it was considered that blockage of concentrated sulfuric acid inside the pores could be suppressed by using a carrier having a high pore ratio with a large pore radius. That is, for the first factor, it was considered that the vapor pressure required for condensing the liquid increases due to the increase in the pore radius, which makes it difficult to block the pores. As for the second factor, as the pore radius increases with respect to the mean free process, the influence of collision between molecules moving in the gas phase appears, and the influence due to collision with the wall surface becomes smaller. As a result, diffusion of sulfur trioxide within the pores was likely to occur, and it was considered that the pores were less likely to be clogged with respect to the second factor.
 そこで、本発明者は上記検討に鑑みて、細孔半径の大きい細孔の比率が高い担体を用いた実験を行ったところ、閉塞による影響が抑制され、濃硫酸の沸点未満の温度領域での触媒活性が高まり、濃硫酸沸点近傍での急峻な活性の変動も観測されなくなった。その際、これらの現象は、細孔分布と強い相関があることが分かった。特に、細孔半径10nm未満のような細孔径の小さい細孔が細孔全体に占める割合が小さいことに加え、三酸化硫黄の拡散を促進するために細孔半径20nm以上のような比較的大きい細孔の比率が高い場合において、より高い効果が得られることが確認された。 Therefore, in view of the above examination, the present inventor conducted an experiment using a carrier having a high pore ratio with a large pore radius, and the influence of clogging was suppressed, and in a temperature region below the boiling point of concentrated sulfuric acid. Catalytic activity increased, and no steep activity fluctuations near the boiling point of concentrated sulfuric acid were observed. At that time, these phenomena were found to have a strong correlation with the pore distribution. In particular, in addition to a small proportion of pores having a small pore diameter such as a pore radius of less than 10 nm in the whole pore, a relatively large pore radius of 20 nm or more in order to promote diffusion of sulfur trioxide. It was confirmed that a higher effect can be obtained when the ratio of the pores is high.
 本発明者による鋭意研究の結果、細孔半径2nm以上100nm以下の範囲の細孔で形成される表面積のうち、49%超が細孔半径10nm以上の細孔で形成される酸化触媒を用いることで、硫黄酸化物を含むガス中においても触媒活性が得られることが確認された。考慮する細孔半径の範囲を2nm以上100nm以下に限定する根拠は、後述する。また、細孔半径2nm以上100nm以下の範囲の細孔で形成される表面積のうち、細孔半径10nm以上の細孔で形成される表面積の割合は、50%以上であることが更に好ましく、60%以上であると一層好ましく、80%以上であるとより一層好ましい。細孔半径10nm以上の細孔で形成される表面積の割合に上限は無く、100%でも本発明の効果が発揮されると考えられる。しかしながら、10nm以下の大きさの間隙を全く持たない触媒を作成することは、困難であると予想される。 As a result of intensive studies by the present inventors, among the surface areas formed by pores having a pore radius in the range of 2 nm to 100 nm, an oxidation catalyst in which more than 49% is formed by pores having a pore radius of 10 nm or more is used. Thus, it was confirmed that catalytic activity can be obtained even in a gas containing sulfur oxide. The reason for limiting the range of the pore radius to be considered to 2 nm or more and 100 nm or less will be described later. The ratio of the surface area formed by pores having a pore radius of 10 nm or more out of the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less is more preferably 50% or more, % Or more is more preferable, and 80% or more is even more preferable. There is no upper limit to the ratio of the surface area formed by pores having a pore radius of 10 nm or more, and the effect of the present invention is considered to be exhibited even at 100%. However, it is expected to be difficult to make a catalyst that has no gap of a size of 10 nm or less.
 更に、細孔半径2nm以上100nm以下の範囲の細孔で形成される表面積のうち、細孔半径10nm以上の細孔で形成される表面積の割合だけでなく、細孔半径20nm以上の細孔で形成される表面積の割合を20%以上とすることで、本発明の効果がより発揮され、細孔半径10nm以上の細孔で形成される表面積の割合だけでなく、細孔半径20nm以上の細孔で形成される表面積の割合を30%以上とすることで、本発明の効果が更に好ましく発揮される。また、細孔半径2nm以上100nm以下の範囲の細孔で形成される表面積のうち、細孔半径80nm以上の細孔で形成される表面積の割合が2%以上であることが好ましい。 Furthermore, of the surface areas formed by pores having a pore radius in the range of 2 nm to 100 nm, not only the ratio of the surface area formed by pores having a pore radius of 10 nm or more, but also pores having a pore radius of 20 nm or more. By setting the ratio of the surface area to be formed to 20% or more, the effect of the present invention can be further exerted, and not only the ratio of the surface area formed by pores having a pore radius of 10 nm or more but also fine pores having a radius of 20 nm or more. By setting the ratio of the surface area formed by the holes to 30% or more, the effect of the present invention is more preferably exhibited. Moreover, it is preferable that the ratio of the surface area formed by pores having a pore radius of 80 nm or more is 2% or more among the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less.
 なお、酸化触媒用の一般的な担体として用いられるBET比表面積60m/g以上の担体では、細孔分布のピークは細孔半径10nm未満であり、細孔半径10nm以上の細孔で形成される表面積の割合も小さい。かかる知見は、下記の実験例に示す通りである。 In addition, in a carrier having a BET specific surface area of 60 m 2 / g or more, which is used as a general carrier for an oxidation catalyst, the peak of pore distribution is less than a pore radius of 10 nm and is formed by pores having a pore radius of 10 nm or more. The ratio of the surface area is small. Such findings are as shown in the following experimental examples.
 本発明中における細孔分布の測定には、Dollimore-Heal法(DH法)を利用した。DH法は、細孔分布を計算する手法の一つであり、比表面積測定装置付属の解析ソフトに標準で装備されている他、装置付属の手引書にその詳細が示されている。また、多くの参考図書に詳細が示されている(例えば、上記非特許文献2を参照。)。 For the measurement of the pore distribution in the present invention, the Dollimore-Heal method (DH method) was used. The DH method is one of the methods for calculating the pore distribution. The DH method is provided as standard in the analysis software attached to the specific surface area measuring device, and the details are shown in the manual attached to the device. Further, details are shown in many reference books (see, for example, Non-Patent Document 2 above).
 他に、細孔分布を求める手法として、Barrett-Joyner-Halenda(BJH)法やCranston-Inkley(CI)法等が知られており、いずれの方法においても計算に用いるモデルは基本的に同一である。いずれにおいても、細孔半径2nm以上100nm以下の範囲においては、モデル間の差が小さく、装置の測定誤差による影響も小さくなる。よって、本発明では、考慮に含める細孔半径の範囲を、2nm以上100nm以下の範囲に限定している。 In addition, the Barrett-Joyner-Halenda (BJH) method, the Cranston-Inkley (CI) method, etc. are known as methods for obtaining the pore distribution, and the models used for calculation are basically the same in any method. is there. In any case, in the range of the pore radius of 2 nm or more and 100 nm or less, the difference between the models is small, and the influence of the measurement error of the apparatus is also small. Therefore, in the present invention, the range of the pore radius to be taken into consideration is limited to the range of 2 nm to 100 nm.
 この範囲内において、DH法、BJH法、CI法の差は小さくなるため、任意の方法を利用することが出来る。ただし、いずれの場合においても、吸着過程での測定データを用いた解析によって得られた細孔分布が触媒の活性とより強い相関のあることが、本発明者の行った実験から判明している。 Within this range, since the difference between the DH method, the BJH method, and the CI method is small, any method can be used. However, in any case, it has been found from experiments conducted by the present inventors that the pore distribution obtained by the analysis using the measurement data in the adsorption process has a stronger correlation with the activity of the catalyst. .
 また、測定精度に対しても、注意を払うべきである。DH法を含む全ての細孔分布解析手法は、吸着等温線測定過程での二つの測定点間における窒素吸着量の差に基づいて計算を行う。この為、測定間隔があまりに広くなってしまうと、得られる分布についても大きく間隔が開いてしまい、細孔分布を用いた評価を行うことが出来ない。そこで、特に細孔半径5nm以上15nm未満の範囲に該当する測定点については、細孔分布が2nm未満の間隔で得られる条件にて測定を行うことが好ましい。細孔半径が15nm以上30nm未満の範囲においては、細孔分布が5nm未満の間隔で得られる条件にて測定を行うことが好ましい。細孔半径が30nm以上60nm未満の範囲においては、細孔分布が10nm未満の間隔で得られる条件にて測定を行うことが好ましい。細孔半径が60nm以上100nm未満の範囲においては、細孔分布が15nm未満の間隔で得られる条件にて測定を行うことが好ましい。以下に示す実験例では、全てこの条件のもとで測定を行っている。ただし、これより得られる細孔分布の間隔が広い場合でも、細孔分布の様子を判別するのに十分な測定数が得られていると判別される場合には、問題はない。 Also, attention should be paid to measurement accuracy. All the pore distribution analysis methods including the DH method perform calculations based on the difference in nitrogen adsorption amount between two measurement points in the adsorption isotherm measurement process. For this reason, if the measurement interval becomes too wide, the obtained distribution is also greatly increased, and evaluation using the pore distribution cannot be performed. Therefore, it is preferable to perform measurement under the condition that the pore distribution is obtained at intervals of less than 2 nm, particularly for measurement points corresponding to the range of pore radius of 5 nm or more and less than 15 nm. In the range where the pore radius is 15 nm or more and less than 30 nm, the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 5 nm. In the range where the pore radius is 30 nm or more and less than 60 nm, the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 10 nm. In the range where the pore radius is 60 nm or more and less than 100 nm, the measurement is preferably performed under the condition that the pore distribution is obtained at intervals of less than 15 nm. In the following experimental examples, all measurements are performed under these conditions. However, there is no problem if it is determined that a sufficient number of measurements are obtained to determine the state of the pore distribution even when the interval of the pore distribution obtained from this is wide.
 一般には、細孔半径が小さく比表面積の大きい担体を用いる程に、活性の高い触媒が作成出来ると言われている。これは、触媒開発の基本に則った考え方であり、多くの参考図書でも取り上げられている(例えば、上記非特許文献3を参照。)。その主たる考え方は、以下の通りである。 In general, it is said that a catalyst having higher activity can be produced by using a carrier having a small pore radius and a large specific surface area. This is an idea based on the basics of catalyst development, and has been taken up in many reference books (see, for example, Non-Patent Document 3 above). The main idea is as follows.
 固体の不均一触媒を利用した場合、触媒反応は、触媒活性を示す活性点上において進行する。触媒被毒は、これらの活性点の一部もしくは全てに被毒物質が吸着することで、触媒反応に寄与する部分の割合を減らしたり、隣接する活性点の活性を低減したりする。この触媒被毒に対する対抗策として、活性点の数を増加させることで、被毒物質存在下でも活性を維持する活性点の絶対数を増やすという試みが行われる。活性点を増やす為に、担体に担持させる活性金属種の担持量を増大させることとなり、多量の活性金属種を高分散に担持させる為には、大きい比表面積が必要となる。比表面積を大きくするには、より凹凸の多い構造が求められ、細孔半径の小さい構造が求められる。 When a solid heterogeneous catalyst is used, the catalytic reaction proceeds on an active point showing catalytic activity. In the catalyst poisoning, the poisoning substance is adsorbed on some or all of these active sites, thereby reducing the proportion of the portion contributing to the catalytic reaction or reducing the activity of adjacent active sites. As a countermeasure against this catalyst poisoning, an attempt is made to increase the absolute number of active sites that maintain the activity even in the presence of poisonous substances by increasing the number of active sites. In order to increase the active points, the amount of active metal species supported on the carrier is increased. In order to support a large amount of active metal species in a highly dispersed state, a large specific surface area is required. In order to increase the specific surface area, a structure with more irregularities is required, and a structure with a small pore radius is required.
 上記の理由から、触媒開発においては、触媒担体の比表面積に重きを置いた研究が行われることが一般的である。担体の構成元素に依らず、60m/g以上の担体を用いることが一般的であり、比表面積が20m/g以下という、比表面積が小さい担体が利用されることは稀である。しかしながら、本発明の酸化触媒では、硫黄酸化物を含むガス中での触媒安定性を実現するために、比表面積が小さい担体を利用することで、好ましくは比表面積が50m/g以下、より好ましくは比表面積が20m/g以下の酸化触媒を実現する。 For the above reasons, in the catalyst development, research with a particular emphasis on the specific surface area of the catalyst support is generally performed. Regardless of the constituent elements of the support, it is common to use a support of 60 m 2 / g or more, and it is rare to use a support having a specific surface area of 20 m 2 / g or less and a small specific surface area. However, in the oxidation catalyst of the present invention, in order to realize catalyst stability in a gas containing sulfur oxide, a specific surface area is preferably 50 m 2 / g or less, more preferably by using a carrier having a small specific surface area. Preferably, an oxidation catalyst having a specific surface area of 20 m 2 / g or less is realized.
 また、二酸化チタン担体の場合には、大きい比表面積が得やすいアナターゼ型構造が利用されることが多く、高い比表面積が得にくいルチル型担体が用いられることは少ない。他の構造パラメータとして、細孔容積に着目した研究も存在するが、機械的強度に関する議論が行われている場合が多い。粉状の触媒を成型した際に生じる1マイクロメートルを超えるマクロな細孔や、触媒を塗布するハニカムの形状については、ダストやミストの影響に対する観点から検討が行われているが、100nm未満の細孔半径を持つミクロな細孔分布と、硫黄酸化物を含むガス中での触媒安定性と、を関係づけた研究は、知られていない。 In the case of a titanium dioxide carrier, an anatase type structure in which a large specific surface area is easily obtained is often used, and a rutile type carrier in which a high specific surface area is difficult to obtain is rarely used. There are studies focusing on pore volume as another structural parameter, but there are many discussions on mechanical strength. Macroscopic pores exceeding 1 micrometer generated when a powdered catalyst is molded and the shape of the honeycomb to which the catalyst is applied have been studied from the viewpoint of the influence of dust and mist. There are no known studies relating micro-pore distribution with pore radius to catalyst stability in gases containing sulfur oxides.
 下記の実験例に示す通り、酸化アルミニウム、酸化チタン、酸化ジルコニウムのいずれにおいても、細孔半径と活性変化の挙動に同様の傾向が見られ、担体の組成に依らないと考えられる。ただし、酸化アルミニウムは、反応中に硫酸塩化し、徐々に比表面積が低下することが確認されている。長期的な安定性を期待するのであれば、酸化チタン、酸化ジルコニウムを含む担体とすることが好ましい。また、シリカ担体も耐酸性の高い担体として知られており、利用が可能であると考えられる。 As shown in the following experimental examples, in aluminum oxide, titanium oxide, and zirconium oxide, the same tendency is observed in the behavior of pore radius and activity change, and it is considered that it does not depend on the composition of the support. However, it has been confirmed that aluminum oxide is sulfated during the reaction and the specific surface area gradually decreases. If long-term stability is expected, a support containing titanium oxide and zirconium oxide is preferable. A silica carrier is also known as a highly acid-resistant carrier and is considered to be usable.
 下記の実験例に示す通り、二酸化チタンを担体として用いた場合には、担体の種類によって得られる触媒の活性に違いがあった。硫酸法で作成された担体同士で比較すると、ルチル型では白金が酸化されている傾向が高く、高い活性を得る為には還元処理が必要であった。このことから、二酸化チタン担体の結晶構造としては、アナターゼ型構造がより好ましい。二酸化チタン担体は、ルチル型とアナターゼ型の混合体として得られることが多いが、粉末エックス線回折測定の最強回折線の相対比から計算した質量比で、50%以上がアナターゼ型構造であることが好ましい。続いて、アナターゼ型構造同士の比較では、塩素法で作製したアナターゼ型構造の担体と、硫酸法で作製したアナターゼ型構造の担体とを比べると、塩素法で調製された担体を用いた場合には調製後の白金が酸化されており、還元処理を行わなくては活性が得られなかった。このことから、二酸化チタン担体としては、硫酸法で作成された担体を用いて、触媒の作成を行うことが好ましい。 As shown in the following experimental examples, when titanium dioxide was used as a carrier, there was a difference in the activity of the catalyst obtained depending on the type of carrier. Compared with carriers prepared by the sulfuric acid method, the rutile type has a high tendency for platinum to be oxidized, and a reduction treatment is necessary to obtain high activity. For this reason, the crystal structure of the titanium dioxide support is more preferably an anatase type structure. Titanium dioxide support is often obtained as a mixture of rutile and anatase types, but a mass ratio calculated from the relative ratio of the strongest diffraction lines of powder X-ray diffraction measurement, that 50% or more has an anatase type structure. preferable. Subsequently, in comparison between anatase type structures, when an anatase type structure carrier prepared by the chlorine method and an anatase type structure carrier prepared by the sulfuric acid method are compared, a carrier prepared by the chlorine method is used. In the case of platinum, the prepared platinum was oxidized, and the activity could not be obtained without reduction treatment. For this reason, it is preferable to prepare a catalyst using a carrier prepared by a sulfuric acid method as the titanium dioxide carrier.
 濃硫酸による細孔の閉塞では、被処理ガスと触媒活性点である金属活性種との接触が妨げられることとなる。金属活性種を活性点とする触媒反応では、どのような反応でも、金属表面上で反応が進行する(例えば、上記非特許文献4を参照。)。閉塞が生じると、そもそも貴金属に反応物質が接触しなくなるのであり、細孔閉塞の影響がある条件では、どのような反応でも活性は低下することとなる。二酸化硫黄が酸化される条件での反応において、工学的な利用が可能なものは酸化反応であり、かかる酸化反応として、一酸化炭素、一酸化窒素、メタンの酸化反応が挙げられる。これらいずれの酸化反応も、貴金属表面上にて反応が進行し、貴金属のない状態では反応が進行し難いことが知られている。 When the pores are blocked by concentrated sulfuric acid, the contact between the gas to be treated and the metal active species as the catalytic active point is hindered. In any catalytic reaction using a metal active species as an active site, any reaction proceeds on the metal surface (see, for example, Non-Patent Document 4 above). When clogging occurs, the reactants do not come into contact with the noble metal in the first place, and the activity is reduced in any reaction under the condition of pore clogging. In the reaction under conditions where sulfur dioxide is oxidized, what can be used in engineering is an oxidation reaction. Examples of such an oxidation reaction include oxidation reactions of carbon monoxide, nitrogen monoxide, and methane. In any of these oxidation reactions, it is known that the reaction proceeds on the surface of the noble metal and the reaction does not easily proceed in the absence of the noble metal.
 活性金属種は特に限定されないが、二酸化硫黄と容易に反応してしまうものでは、細孔閉塞が起こらなくても活性種自体が活性を失ってしまい、活性が得られない。酸化触媒として活性の高い金属種として、例えば、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、白金、金等が知られる。二酸化硫黄と反応し硫黄酸化物となりにくいものとして、酸化物の標準生成エンタルピーを指標として用いることが可能であり、標準生成エンタルピーの絶対値が小さい程酸化され難い物質と判断できる。標準生成エンタルピーの値は、書籍の他、インターネット上のデータベースにも公開されている(例えば、上記非特許文献5を参照。)。 The active metal species is not particularly limited, but if it reacts easily with sulfur dioxide, the active species itself loses its activity even if pore clogging does not occur, and the activity cannot be obtained. As metal species having high activity as an oxidation catalyst, for example, cobalt, nickel, copper, ruthenium, rhodium, palladium, platinum, gold and the like are known. The standard generation enthalpy of oxide can be used as an index as a substance that hardly reacts with sulfur dioxide to form sulfur oxide, and it can be determined that the smaller the absolute value of the standard generation enthalpy is, the less the substance is oxidized. The standard generation enthalpy value is published not only in books but also in databases on the Internet (for example, see Non-Patent Document 5 above).
 この観点から、活性金属種として、金、白金、パラジウム、ロジウムが好ましく、特に、白金、金が好ましい。ただし、金を単独で担持した触媒においては、金微粒子と酸化物担体との界面部分において高い酸化活性が得られることが知られており、酸化物担体の表面が硫酸塩化することで、大きく活性が低下する。よって、金を用いる場合は、他の遷移金属と組み合わせて利用したり、白金を利用したりすることがより好ましい。また、白金、金と比較して硫酸塩となり易いパラジウムやロジウムを利用する場合には、パラジウム、ロジウム粒子の表面を白金で覆い、コアシェル型構造として利用すると、硫酸塩の生成を抑制できるのに加え白金使用量を低減でき、低コスト化が可能である。 From this point of view, gold, platinum, palladium and rhodium are preferable as the active metal species, and platinum and gold are particularly preferable. However, it is known that a catalyst supporting gold alone has a high oxidation activity at the interface between the gold fine particles and the oxide carrier, and the surface of the oxide carrier is sulfated, so that it is highly active. Decreases. Therefore, when using gold, it is more preferable to use in combination with other transition metals or to use platinum. In addition, when using palladium or rhodium, which is likely to be a sulfate compared to platinum or gold, the surface of palladium or rhodium particles is covered with platinum and used as a core-shell structure, so that the formation of sulfate can be suppressed. In addition, the amount of platinum used can be reduced, and the cost can be reduced.
 活性金属種を担持させる量は、特に限定されないが、経済的な観点から限定される。一般的に、担持量を増大させるほど、活性点が増大し触媒活性が増大する一方で、担持金属微粒子の粒子径が増大し、反応に寄与しない部分の割合が増大してしまう傾向がある。更に、貴金属粒子自身が細孔の閉塞・狭窄を引き起こし、前述の濃硫酸による細孔閉塞の影響が生じ易くなることから、反応に寄与しない部分の割合が更に増大する。 The amount of the active metal species supported is not particularly limited, but is limited from an economical viewpoint. In general, as the loading amount increases, the active point increases and the catalytic activity increases, while the particle size of the supported metal fine particles increases, and the proportion of the portion that does not contribute to the reaction tends to increase. Furthermore, since the noble metal particles themselves cause clogging / stenosis of the pores and the influence of the clogging of the pores due to the concentrated sulfuric acid is likely to occur, the proportion of the portion that does not contribute to the reaction further increases.
 また、白金を担持した場合には、白金の担持量を増大させるにつれて、二酸化硫黄が三酸化硫黄に酸化される比率が増大することも知られている。白金粒子径が大きくなるほど、活性金属粒子上にて、この副反応の速度が増大することも知られており(例えば、上記非特許文献6を参照。)、貴金属担持量を抑制することで、三酸化硫黄の生成を抑制できる。事実、実験室での反応試験にて、白金担持量が少ない条件では、反応試験後に反応管内壁に付着する硫酸ミストの量が少なくなっていた。一方、担持量を一定以上少なくしても、金属微粒子の更なる微細化は期待できず、単位量の活性金属種当りの触媒活性点は増大しない。白金の担持量と白金粒子の微細化との関係を調べた研究においては、10m/gあたり、0.4質量%程度までの担持量であれば、白金粒子の微細化が達成されると報告されている(例えば、上記非特許文献7を参照。)。従って、例えば、0.04質量%の白金担持量であれば、1m/g程度の比表面積であっても触媒活性発現に足るだけの分散度が得られると考えられる。結果として、担持量が少なすぎると必要となる担体の量が増え、全体として触媒量が増大することとなり、かえってコストが増大する。触媒担体として1m/g未満の比表面積の担体を利用することは考え難く、反応時の白金微粒子凝集を抑制する効果を狙って担持量を抑制する場合においても、担持量は0.01質量%以上とすることが好ましい。また、下記の実験例に示す通り、本発明によって高い耐硫黄性を発現した触媒は、全て比表面積が50m/g以下であることから、白金の担持量を2.0質量%以下とすると白金粒子の微細化が達成されると考えられ、好ましい。 It is also known that when platinum is supported, the ratio of sulfur dioxide oxidized to sulfur trioxide increases as the amount of platinum supported increases. It is also known that the rate of this side reaction increases on the active metal particles as the platinum particle diameter increases (for example, see Non-Patent Document 6 above), and by suppressing the amount of noble metal supported, Generation of sulfur trioxide can be suppressed. In fact, in the reaction test in the laboratory, the amount of sulfuric acid mist adhering to the inner wall of the reaction tube after the reaction test was small under the condition where the amount of platinum supported was small. On the other hand, even if the supported amount is reduced beyond a certain level, further refinement of the metal fine particles cannot be expected, and the catalyst active point per unit amount of active metal species does not increase. In a study examining the relationship between the supported amount of platinum and the refinement of platinum particles, if the supported amount is up to about 0.4% by mass per 10 m 2 / g, the refinement of platinum particles is achieved. Has been reported (for example, see Non-Patent Document 7 above). Therefore, for example, if the platinum loading is 0.04% by mass, it is considered that a degree of dispersion sufficient to exhibit catalytic activity can be obtained even with a specific surface area of about 1 m 2 / g. As a result, if the supported amount is too small, the amount of the necessary carrier increases, and the amount of the catalyst increases as a whole, and the cost increases. It is unlikely to use a carrier having a specific surface area of less than 1 m 2 / g as the catalyst carrier, and even when the loading amount is suppressed with the aim of suppressing the platinum fine particle aggregation during the reaction, the loading amount is 0.01 mass. % Or more is preferable. Further, as shown in the following experimental examples, all of the catalysts exhibiting high sulfur resistance according to the present invention have a specific surface area of 50 m 2 / g or less, so that the platinum loading is 2.0 mass% or less. It is considered that finer platinum particles can be achieved, which is preferable.
 本発明の酸化触媒は、多くの被処理ガス中にて高い活性を示すが、特に硫黄酸化物と水蒸気とを含むガス中において、その効果が発揮される。被処理ガス中にこれらのガスが含まれる状態で酸化反応を進行させると、その濃度に依らず、副反応として濃硫酸が生成し、細孔の閉塞が生じる。この細孔閉塞の影響を抑制することによって、活性の低下が抑制されると期待される。 The oxidation catalyst of the present invention exhibits high activity in many gases to be treated, but the effect is exhibited particularly in a gas containing sulfur oxide and water vapor. When the oxidation reaction proceeds in a state where these gases are contained in the gas to be treated, concentrated sulfuric acid is generated as a side reaction regardless of the concentration, and pores are blocked. By suppressing the effect of this pore blockage, it is expected that the decrease in activity is suppressed.
 しかしながら、硫黄酸化物は、金属活性種に強く吸着することが知られており、その分圧が高すぎる場合には、金属活性種への一酸化炭素、一酸化窒素、メタンの吸着が殆ど生じなくなり、細孔閉塞の影響が抑制されても反応が進行しない可能性がある。よって、被処理ガス中の硫黄酸化物の体積比は、少なくとも一酸化炭素、一酸化窒素、メタンの体積比の和よりも小さいことが好ましい。 However, it is known that sulfur oxides strongly adsorb to active metal species. When the partial pressure is too high, adsorption of carbon monoxide, nitrogen monoxide and methane to the active metal species occurs almost. There is a possibility that the reaction does not proceed even if the influence of pore blockage is suppressed. Therefore, the volume ratio of the sulfur oxide in the gas to be treated is preferably smaller than at least the sum of the volume ratios of carbon monoxide, nitrogen monoxide, and methane.
 一方、硫黄酸化物の分圧が小さすぎる場合には、細孔分布に依らず細孔閉塞が生じないことが予想される。よって、特に硫黄酸化物の体積比が1ppm以上であると、本発明の効果が発揮されることとなり、被処理ガスとして好適である。 On the other hand, when the partial pressure of sulfur oxide is too small, it is expected that pore clogging does not occur regardless of the pore distribution. Therefore, when the volume ratio of the sulfur oxide is 1 ppm or more, the effect of the present invention is exhibited, which is suitable as a gas to be treated.
 被処理ガスの温度については、いずれの温度においても従来触媒と同等以上の活性が得られると期待されるが、反応温度を上昇させ濃硫酸の沸点以上とすると、細孔半径の違いによる差が出にくい。濃硫酸の沸点はその濃度によって大きく変化し、被処理ガス中の水蒸気の濃度によっても影響を受けることから、一意的に決定することは難しい。しかしながら、400℃以上では、全ての濃度の濃硫酸において、水蒸気と硫化水素酸の分圧の和が1気圧以上となることから(例えば、上記非特許文献8を参照。)、被処理ガスとの反応温度は、少なくとも400℃以下となることが好ましい。 As for the temperature of the gas to be treated, it is expected that the activity equal to or higher than that of the conventional catalyst can be obtained at any temperature. However, if the reaction temperature is raised to be higher than the boiling point of concentrated sulfuric acid, there is a difference due to the difference in pore radius. Hard to come out. The boiling point of concentrated sulfuric acid varies greatly depending on its concentration and is also influenced by the concentration of water vapor in the gas to be treated, so it is difficult to determine uniquely. However, at 400 ° C. or higher, the sum of the partial pressures of water vapor and hydrosulfuric acid is 1 atm or higher in concentrated sulfuric acid of all concentrations (see, for example, Non-Patent Document 8 above). The reaction temperature is preferably at least 400 ° C. or lower.
 一方、反応温度があまりに低いと、そもそも反応が進行せず、触媒量を増大させる必要が生じ、コストが増大する原因となる。ここで、二酸化硫黄の存在下においては、白金・金を金属活性種として利用し、質量比で1%担持した場合でも200℃程度まで反応温度を上昇させなければ高い活性が得られないことが知られている(例えば、上記非特許文献9を参照。)。従って、本発明に係る手法においても、反応温度を200℃以上に上昇させることが好ましい。 On the other hand, if the reaction temperature is too low, the reaction will not proceed in the first place, and it will be necessary to increase the amount of catalyst, leading to an increase in cost. Here, in the presence of sulfur dioxide, even when platinum / gold is used as a metal active species and 1% by mass is supported, high activity cannot be obtained unless the reaction temperature is increased to about 200 ° C. It is known (see, for example, Non-Patent Document 9 above). Therefore, also in the method according to the present invention, it is preferable to increase the reaction temperature to 200 ° C. or higher.
 また、反応速度を高め、必要な触媒量を抑制するという観点から、反応温度は250℃以上がより好ましい。また、下記の実験例に示す通り、300℃以上の温度では本発明の効果が出難くなることから、反応温度は、300℃以下であるとより好ましい。 Also, the reaction temperature is more preferably 250 ° C. or higher from the viewpoint of increasing the reaction rate and suppressing the necessary amount of catalyst. Further, as shown in the following experimental examples, the effect of the present invention becomes difficult to obtain at a temperature of 300 ° C. or higher, and therefore the reaction temperature is more preferably 300 ° C. or lower.
 後に実施例に示す通り、触媒担体の細孔分布と、かかる担体を用いて作成した触媒の細孔分布との間には強い相関があり、細孔半径が大きい細孔の比率が高い担体を用いて触媒を作成した場合には、得られる触媒も細孔半径の大きい細孔の比率が高くなる。ただし、触媒担体は、触媒調製に伴う熱処理にて変形をきたさないように、触媒調製の際に到達する最高温度以上で加熱焼成しておくことが重要であり、かかる熱処理後の時点での細孔分布が、その後得られる触媒の性能と強い相関を持つ。 As shown later in the examples, there is a strong correlation between the pore distribution of the catalyst carrier and the pore distribution of the catalyst prepared using such a carrier, and a carrier with a high ratio of pores having a large pore radius is used. When a catalyst is prepared by using the catalyst, the ratio of pores having a large pore radius is also high in the obtained catalyst. However, it is important that the catalyst carrier be heated and calcined at a temperature higher than the maximum temperature reached during catalyst preparation so as not to be deformed by heat treatment accompanying catalyst preparation. The pore distribution has a strong correlation with the performance of the catalyst obtained thereafter.
 活性金属種を担持する方法は特に限定されないが、析出還元法では担体への余分な熱処理が避けられ、期待通りの細孔分布が得られ易いと考えられる。しかしながら、析出還元法では担持する活性金属種の量を調製するのが難しいことから、担体に変性が生じない範囲での加熱処理しか伴わない場合には、含浸法を用いるのが最も簡便である。活性金属種として白金を含浸法にて担持する場合には、塩化白金酸を前駆体として用い、500℃程度にて焼成処理を行うことで白金担持触媒を得る場合が多い。従って、500℃まで昇温した際の構造変化が小さい担体を用いることが好ましい。 The method for supporting the active metal species is not particularly limited, but it is considered that the precipitation reduction method avoids excessive heat treatment on the support and easily obtains the expected pore distribution. However, since it is difficult to prepare the amount of the active metal species to be supported by the precipitation reduction method, it is most convenient to use the impregnation method when the support is only subjected to heat treatment within a range in which no modification occurs. . When platinum is supported as an active metal species by an impregnation method, a platinum-supported catalyst is often obtained by performing calcination treatment at about 500 ° C. using chloroplatinic acid as a precursor. Therefore, it is preferable to use a carrier having a small structural change when the temperature is raised to 500 ° C.
 具体的には、固体表面の原子が拡散を開始するとされる経験的指標であるタンマン温度が500℃以上である担体を用いるとよい。タンマン温度は、経験的な式として絶対温度表記にて融点の1/2程度の温度となることから、融点が1300℃以上となる担体を用いることが好ましい。こうした担体の例としては、二酸化チタン、酸化ジルコニウム、酸化アルミニウム、二酸化ケイ素等が挙げられる。 Specifically, it is preferable to use a carrier having a Tamman temperature of 500 ° C. or more, which is an empirical indicator that atoms on the solid surface start to diffuse. Since the Tamman temperature is an empirical expression that is about ½ of the melting point in absolute temperature notation, it is preferable to use a carrier having a melting point of 1300 ° C. or higher. Examples of such carriers include titanium dioxide, zirconium oxide, aluminum oxide, silicon dioxide and the like.
 二酸化チタンを担体として用いた場合には、二酸化チタンは相転移を生じやすいことから、焼成温度が適切でない場合には細孔の分布が変化してしまう。下記の実験例には示していないが、大気下にて650℃で5時間の焼成を行った場合には、細孔半径が小さいものの割合が増大してしまう。一方、大気下にて500℃で1時間の焼成を行った場合には比表面積が低下し、細孔半径10nm以下の細孔が減少するとともに、細孔半径10nm以上の細孔では細孔半径が小さくなる方向に変化する。これによって、細孔半径と比表面積の関係が変化してしまう。細孔分布が変化しても、細孔半径10nm以上の細孔の比表面積が大きく保たれるよう、十分に細孔半径の大きい細孔を持つ担体を用いるようにすることが重要である。具体的には、前もって熱処理しておくとともに、貴金属前駆体も工夫し、650℃以上に加熱することを避けることが好ましい。このような貴金属前駆体として、例えば、金を用いる際は塩化金(III)酸水和物等が好適であり、白金を用いる場合は塩化白金(IV)酸水和物等が好適であり、パラジウムを用いる場合はジアンミンジニトロパラジウム(II)等が好適であり、ロジウムを用いる場合は塩化ロジウム(III)水和物等が好適である。 When titanium dioxide is used as a carrier, titanium dioxide tends to cause a phase transition, so that the pore distribution changes when the firing temperature is not appropriate. Although not shown in the following experimental examples, when baking is performed at 650 ° C. for 5 hours in the air, the ratio of the pores having a small pore radius increases. On the other hand, when firing for 1 hour at 500 ° C. in the atmosphere, the specific surface area decreases, the number of pores having a pore radius of 10 nm or less decreases, and the pore radius of pores having a pore radius of 10 nm or more is reduced. Changes in the direction of decreasing. This changes the relationship between the pore radius and the specific surface area. It is important to use a carrier having pores having a sufficiently large pore radius so that the specific surface area of pores having a pore radius of 10 nm or more is kept large even if the pore distribution changes. Specifically, it is preferable that the heat treatment is performed in advance and the noble metal precursor is devised to avoid heating to 650 ° C. or higher. As such a noble metal precursor, for example, when gold is used, gold chloride (III) acid hydrate is suitable, and when platinum is used, platinum chloride (IV) acid hydrate is suitable, When palladium is used, diammine dinitropalladium (II) or the like is preferable, and when rhodium is used, rhodium (III) chloride hydrate or the like is preferable.
 上記のような性質を持つ触媒を用いて、水蒸気を含む排ガス中の未燃成分を燃焼させる燃焼触媒部を有する排ガス処理装置を実現することもできる。すなわち、排ガス処理装置に設けられた燃焼触媒部に、本発明に係る酸化触媒が充填される。この排ガス処理装置は、排ガス中の未燃成分である一酸化炭素や窒素酸化物等の除去装置や、未燃成分の燃焼による発生熱量を回収・利用する排熱回収設備、又は、省エネルギープロセスとして適用することができる。 It is also possible to realize an exhaust gas treatment apparatus having a combustion catalyst unit for burning unburned components in exhaust gas containing water vapor using a catalyst having the above properties. That is, the oxidation catalyst according to the present invention is filled in the combustion catalyst portion provided in the exhaust gas treatment apparatus. This exhaust gas treatment device is used as a removal device for unburned components such as carbon monoxide and nitrogen oxides, exhaust heat recovery equipment that recovers and uses the amount of heat generated by combustion of unburned components, or as an energy saving process. Can be applied.
 これらの排ガス処理装置において、本実施形態に係る酸化触媒を用いて実施される未燃成分の酸化燃焼反応は、常圧~0.2MPa程度の圧力下で実施される。常圧~0.2MPa程度で反応が実施されるため、燃焼触媒部における排ガスの進行方向は、水平方向、又は、鉛直方向上方から下方に向かう方向とすることが好ましい。また、かかる排ガス処理装置の燃焼触媒部では、排ガスの顕熱を利用して反応が進行するため、排水処理プロセスとは異なり、燃焼触媒部自体を加熱する必要はない。 In these exhaust gas treatment apparatuses, the oxidative combustion reaction of the unburned components performed using the oxidation catalyst according to the present embodiment is performed under a pressure of about normal pressure to about 0.2 MPa. Since the reaction is carried out at normal pressure to about 0.2 MPa, it is preferable that the direction of travel of the exhaust gas in the combustion catalyst section is the horizontal direction or the direction from the upper side to the lower side in the vertical direction. Further, in the combustion catalyst part of such an exhaust gas treatment device, the reaction proceeds using the sensible heat of the exhaust gas, and unlike the waste water treatment process, it is not necessary to heat the combustion catalyst part itself.
 なお、燃焼触媒部における、本発明に係る酸化触媒の充填方法については、特に限定されるものではなく、本発明に係る酸化触媒をハニカム形状に形成して充填する等、公知の様々な方法を利用することができる。この際に、ハニカム形状に形成した担体に対して、上記のような遷移元素を担持させても良いし、上記のような酸化触媒に各種のバインダー等を添加した上で、酸化触媒そのものをハニカム形状に形成してもよい。 In addition, the filling method of the oxidation catalyst according to the present invention in the combustion catalyst section is not particularly limited, and various known methods such as filling the oxidation catalyst according to the present invention into a honeycomb shape may be used. Can be used. At this time, the transition element as described above may be supported on the support formed in the honeycomb shape, and after adding various binders to the above oxidation catalyst, the oxidation catalyst itself is added to the honeycomb. You may form in a shape.
 かかる排ガス処理装置の適用先の一例として、可燃性ガスを含む排ガス脱硝法を実施するプロセス設備がある。このプロセスでは、脱硝触媒によりアンモニアと窒素酸化物との反応を進行させる為に、脱硝触媒へ流入する排ガスを加熱昇温する必要がある。この加熱は、通常、天然ガス等の燃焼熱を用いて行う。ここで、かかる加熱を、本発明に係る酸化触媒によって得られる可燃性ガス成分の燃焼熱で代替することで、コストの低減が可能となる。図1及び図2に、かかる排ガス脱硝法を実施するプロセスの概略を示す。 As an example of an application destination of such an exhaust gas treatment apparatus, there is a process facility for performing an exhaust gas denitration method including a combustible gas. In this process, it is necessary to heat and raise the temperature of the exhaust gas flowing into the denitration catalyst in order to advance the reaction between ammonia and nitrogen oxides by the denitration catalyst. This heating is usually performed using combustion heat such as natural gas. Here, the cost can be reduced by substituting the heating with the combustion heat of the combustible gas component obtained by the oxidation catalyst according to the present invention. 1 and 2 show an outline of a process for carrying out such an exhaust gas denitration method.
 図1に示したプロセスは、熱交換部1と、熱交換部1の後段に設けられた、ガス加熱部の一例であるガス加熱バーナー2と、ガス加熱バーナー2の後段に設けられた燃焼触媒部3と、燃焼触媒部3の後段に設けられた、脱硝部の一例である脱硝装置部4と、を備えている。熱交換部1へと導入された排ガスは、後段の脱硝装置部4で発生した熱を利用して熱交換された後、ガス加熱バーナー2へと流入する。ガス加熱バーナー2で加熱された排ガスは、本発明に係る酸化触媒が充填された燃焼触媒部3へ流入し、排ガス中に含まれる未燃成分が本発明に係る酸化触媒によって酸化燃焼される。その結果、発生した燃焼熱によって、排ガスが更に加熱される。未燃成分の燃焼した排ガスは、アンモニアとともに脱硝装置部4へと流入し、脱硝触媒によりアンモニアと窒素酸化物との反応が進行する。また、脱硝処理の終了した排ガスは、熱交換部1へと供給されて、熱交換される。 The process shown in FIG. 1 includes a heat exchange unit 1, a gas heating burner 2 that is an example of a gas heating unit provided at the subsequent stage of the heat exchange unit 1, and a combustion catalyst provided at the subsequent stage of the gas heating burner 2. Part 3 and a denitration device part 4 which is an example of a denitration part provided at the rear stage of combustion catalyst part 3. The exhaust gas introduced into the heat exchange unit 1 is heat-exchanged using heat generated in the subsequent denitration device unit 4 and then flows into the gas heating burner 2. The exhaust gas heated by the gas heating burner 2 flows into the combustion catalyst section 3 filled with the oxidation catalyst according to the present invention, and the unburned components contained in the exhaust gas are oxidized and burned by the oxidation catalyst according to the present invention. As a result, the exhaust gas is further heated by the generated combustion heat. The exhaust gas combusted with the unburned components flows into the denitration unit 4 together with ammonia, and the reaction between ammonia and nitrogen oxide proceeds by the denitration catalyst. Further, the exhaust gas after the denitration process is supplied to the heat exchanging unit 1 for heat exchange.
 図2に示したプロセスは、熱交換部11と、熱交換部11の後段に設けられた、ガス加熱部の一例であるガス加熱バーナー12と、ガス加熱バーナー12の後段に設けられた、脱硝部の一例である脱硝装置部13と、脱硝装置部13の後段に設けられた燃焼触媒部14と、を備えている。熱交換部11へと導入された排ガスは、後段の燃焼触媒部14で発生した燃焼熱を利用して熱交換された後、ガス加熱バーナー12へと流入する。ガス加熱バーナー12で加熱された排ガスは、アンモニアとともに脱硝装置部13へと流入し、脱硝触媒によりアンモニアと窒素酸化物との反応が進行する。脱硝処理の終了した排ガスは、本発明に係る酸化触媒が充填された燃焼触媒部14へ流入し、脱硝処理の終了した排ガス中に含まれる未燃成分が、本発明に係る酸化触媒によって酸化燃焼される。発生した燃焼熱は、熱交換部1へと供給される。 The process shown in FIG. 2 includes a heat exchange unit 11, a gas heating burner 12 that is an example of a gas heating unit provided at the subsequent stage of the heat exchange unit 11, and a denitration process that is provided at the subsequent stage of the gas heating burner 12. The denitration device unit 13, which is an example of the unit, and the combustion catalyst unit 14 provided at the subsequent stage of the denitration device unit 13 are provided. The exhaust gas introduced into the heat exchange unit 11 is heat-exchanged using the combustion heat generated in the combustion catalyst unit 14 at the subsequent stage, and then flows into the gas heating burner 12. The exhaust gas heated by the gas heating burner 12 flows into the denitration unit 13 together with ammonia, and the reaction between ammonia and nitrogen oxide proceeds by the denitration catalyst. The exhaust gas that has undergone the denitration treatment flows into the combustion catalyst section 14 filled with the oxidation catalyst according to the present invention, and the unburned components contained in the exhaust gas that has undergone the denitration treatment are oxidized and combusted by the oxidation catalyst according to the present invention. Is done. The generated combustion heat is supplied to the heat exchange unit 1.
 図1及び図2に示したように、燃焼触媒部の設置箇所は、脱硝装置の上流、下流のいずれであってもよい。脱硝触媒部での反応を進行させる為に必要となる温度は一定であることから、図1のプロセスでは、燃焼触媒部の入口での反応温度は200~250℃となり、図2のプロセスでは、燃焼触媒部の入り口での反応温度は250~300℃程度となる。 As shown in FIGS. 1 and 2, the installation location of the combustion catalyst unit may be either upstream or downstream of the denitration device. Since the temperature required to advance the reaction in the denitration catalyst unit is constant, in the process of FIG. 1, the reaction temperature at the inlet of the combustion catalyst unit is 200 to 250 ° C. In the process of FIG. The reaction temperature at the entrance of the combustion catalyst section is about 250 to 300 ° C.
 その他の排ガス処理装置の適用先の例として、リジェネバーナーやラジアントチューブ等の蓄熱燃焼バーナーがある。これらの蓄熱燃焼バーナーにおけるプロセスは、バーナー及び蓄熱体の1セットを一対として使用し、一方のセットでバーナー噴射しているときの排ガスの排気熱を、他方のセットの蓄熱体に蓄えるプロセスである。 Other examples of the application of exhaust gas treatment equipment include regenerative burners and radiant tube heat storage combustion burners. The process in these heat storage combustion burners is a process in which one set of a burner and a heat storage body is used as a pair, and the exhaust heat of exhaust gas when burner injection is performed in one set is stored in the other heat storage body. .
 図3に、かかる蓄熱燃焼バーナーにおけるプロセスの概略を示す。かかるプロセスは、主たる構成要素として、排気空気流路切替器21、蓄熱体及び燃焼触媒を含有する蓄熱部22a,22b、燃料ガス供給部23a,23b、燃焼空気と燃料ガスの混合気を噴射する混合気噴射部24a,24b、バーナー噴射にて加熱される空間25、空気導入経路26、並びに、排ガス経路27を備えている。ここで、蓄熱部22a,22bに含有される燃焼触媒に、本発明に係る酸化触媒が利用される。すなわち、図3に示した蓄熱燃焼バーナーにおいて、蓄熱部22a、22bは、蓄熱体と燃焼触媒部とから構成されているといえる。なお、図3では、混合気噴射部24aにてバーナー噴射し、混合気噴射部24bから排ガスを取出す場合のプロセスを示している。 FIG. 3 shows an outline of the process in such a heat storage combustion burner. Such a process injects, as main components, an exhaust air flow path switch 21, a heat storage section 22a, 22b containing a heat storage body and a combustion catalyst, a fuel gas supply section 23a, 23b, and a mixture of combustion air and fuel gas. The air-fuel mixture injection sections 24a and 24b, a space 25 heated by burner injection, an air introduction path 26, and an exhaust gas path 27 are provided. Here, the oxidation catalyst which concerns on this invention is utilized for the combustion catalyst contained in the thermal storage part 22a, 22b. That is, in the heat storage combustion burner shown in FIG. 3, it can be said that the heat storage portions 22a and 22b are composed of a heat storage body and a combustion catalyst portion. FIG. 3 shows a process in the case of performing burner injection at the mixture injection section 24a and taking out the exhaust gas from the mixture injection section 24b.
 かかるバーナーは、排気空気流路切替器21を制御して、蓄熱部22aに空気導入経路26から空気を導入し、蓄熱部で加熱された空気と燃料ガス供給部23aから供給される燃料ガスとの混合気を混合気噴射部24aから噴射する。その上で、混合気噴射部24bを介して排出された排ガスを、蓄熱部22bに導入し、二次空気導入部28bから導入させた空気と排ガス中未燃成分とを燃焼触媒によって燃焼させ、得られた熱を蓄熱部22bに蓄熱した後に、排ガス経路27から排ガスを排気する。 Such a burner controls the exhaust air flow path switch 21 to introduce air into the heat storage section 22a from the air introduction path 26, and the air heated by the heat storage section and the fuel gas supplied from the fuel gas supply section 23a. Are injected from the mixture injection section 24a. Then, the exhaust gas discharged through the air-fuel mixture injection unit 24b is introduced into the heat storage unit 22b, the air introduced from the secondary air introduction unit 28b and the unburned components in the exhaust gas are burned by the combustion catalyst, After the obtained heat is stored in the heat storage unit 22b, the exhaust gas is exhausted from the exhaust gas passage 27.
 蓄熱部22aの温度が低下し、かつ、蓄熱部22bの温度が上昇すると、排気空気切替器21を切り替え、蓄熱部22a,22b及びバーナー噴射部24a,24bの流れを逆転させる。このような制御をセット毎に繰り返すことで、混合気噴射部24a,24bから噴射された排ガス中の未燃成分を用いて酸化触媒上で燃焼加熱を行い、蓄熱体に蓄える顕熱の熱量を向上させることができる。 When the temperature of the heat storage unit 22a decreases and the temperature of the heat storage unit 22b increases, the exhaust air switch 21 is switched to reverse the flow of the heat storage units 22a and 22b and the burner injection units 24a and 24b. By repeating such control for each set, combustion heating is performed on the oxidation catalyst using unburned components in the exhaust gas injected from the air-fuel mixture injection units 24a and 24b, and the amount of sensible heat stored in the heat storage body is increased. Can be improved.
 一般的なバーナーにおける蓄熱部22a,22bの温度は、空間25に近い部分ほど高く、最高で1200℃程度に達する一方で、排気空気流路切替器21に近い部分ほど温度は低くなり、最高でも250℃程度までしか到達しない。蓄熱部22a,22bに充填される燃焼触媒は、触媒の劣化を抑制する観点から、最高到達温度が600℃未満の部分に充填されることが好ましく、500℃未満となる部分であるとより好ましい。こうした蓄熱部22a,22bにおいて、比較的低い温度域を持つ部分では、300℃を下回る温度となる時間が長くなると考えられる。そのため、本発明に係る酸化触媒を燃焼触媒として利用することで、濃硫酸による活性低下防止の効果を得ることができる。 The temperature of the heat accumulators 22a and 22b in a general burner is higher at a portion closer to the space 25 and reaches about 1200 ° C. at the highest, while the temperature is lower at a portion closer to the exhaust air flow path switching device 21 and at the highest. It reaches only about 250 ° C. From the viewpoint of suppressing catalyst deterioration, the combustion catalyst filled in the heat storage units 22a and 22b is preferably filled in a portion where the maximum temperature reaches less than 600 ° C, and more preferably a portion where the temperature reaches less than 500 ° C. . In the heat storage units 22a and 22b, it is considered that the time when the temperature is lower than 300 ° C. becomes longer in a portion having a relatively low temperature range. Therefore, by using the oxidation catalyst according to the present invention as a combustion catalyst, it is possible to obtain the effect of preventing the decrease in activity due to concentrated sulfuric acid.
 なお、本発明に係る蓄熱燃焼バーナーの構造は、上記のような構造に限定されない。例えば、上記構造においては、蓄熱体と、本発明に係る酸化触媒が充填された燃料触媒部とが同じ場所に設置されているが、蓄熱体と燃焼触媒部とを別々の構成として分割し、蓄熱部と燃料触媒部とが互いに独立した構成としても良い。また、図3では、蓄熱部が2系統からなる場合を図示しているが、流路を排気空気切替器21から3系統以上に分岐させて、3個以上の蓄熱部を有するように構成し、複数の流路を同時に切り替える構成としても良い。 In addition, the structure of the heat storage combustion burner according to the present invention is not limited to the above structure. For example, in the above structure, the heat storage body and the fuel catalyst part filled with the oxidation catalyst according to the present invention are installed in the same place, but the heat storage body and the combustion catalyst part are divided as separate components, The heat storage unit and the fuel catalyst unit may be independent from each other. In addition, FIG. 3 illustrates a case where the heat storage unit includes two systems. However, the flow path is branched from the exhaust air switching device 21 into three or more systems so as to have three or more heat storage units. A configuration may be adopted in which a plurality of flow paths are switched simultaneously.
 また、本発明の排ガス処理装置を用いた排熱回収設備の適用先は、上記の排ガス脱硝法及び蓄熱燃焼バーナーに限定されるものではなく、その他のプロセスにおける排熱回収装置にも適用することができる。特に、燃料中に硫黄分を含むプロセスの燃焼排ガス中には多量の硫黄酸化物が含有されることから、本発明の触媒の適用先として好適である。 Further, the application destination of the exhaust heat recovery equipment using the exhaust gas treatment apparatus of the present invention is not limited to the exhaust gas denitration method and the heat storage combustion burner described above, but also applies to the exhaust heat recovery apparatus in other processes. Can do. In particular, since a large amount of sulfur oxide is contained in the combustion exhaust gas of the process containing sulfur in the fuel, it is suitable as an application destination of the catalyst of the present invention.
 次に、実施例及び比較例並びに試験例に基づいて本発明を具体的に説明するが、本発明は、当該実施例及び比較例並びに試験例により何ら限定されるものではない。 Next, the present invention will be specifically described based on Examples, Comparative Examples, and Test Examples, but the present invention is not limited to the Examples, Comparative Examples, and Test Examples.
[触媒担体の作製]
(担体1~11)
 酸化チタン担体TIO-2(触媒学会参照触媒)、酸化チタン担体TIO-6(触媒学会参照触媒)、酸化ジルコニウム担体ZRO-4(触媒学会参照触媒)、酸化チタン担体TIO-4(触媒学会参照触媒)、酸化チタン担体TIO-8(触媒学会参照触媒)、酸化チタン担体TIO-7(触媒学会参照触媒)、酸化チタン担体ST-01(石原産業)、酸化チタン担体FTL-110(石原産業)、酸化チタン担体FTL-200(石原産業)、酸化ジルコニウム担体ZRO-3(触媒学会参照触媒)、酸化アルミニウム担体ALO-1(触媒学会参照触媒)を用意し、それぞれを大気雰囲気下500℃にて1時間焼成した。得られた担体を、それぞれ担体1~11とした。
[Production of catalyst carrier]
(Carriers 1 to 11)
Titanium oxide support TIO-2 (reference catalyst), titanium oxide support TIO-6 (reference catalyst), zirconium oxide support ZRO-4 (reference catalyst), titanium oxide support TIO-4 (reference catalyst) ), Titanium oxide support TIO-8 (catalyst society reference catalyst), titanium oxide support TIO-7 (catalysis society reference catalyst), titanium oxide support ST-01 (Ishihara Sangyo), titanium oxide support FTL-110 (Ishihara Sangyo), Titanium oxide support FTL-200 (Ishihara Sangyo), zirconium oxide support ZRO-3 (catalyst society reference catalyst), and aluminum oxide support ALO-1 (catalysis society reference catalyst) were prepared. Baked for hours. The obtained carriers were designated as carriers 1 to 11, respectively.
 なお、焼成後の担体は、いずれもステンレス篩を用いて粒径75μm以上150μm未満とし、以降の実験に利用した。担体の形状は、いずれも粉状である。担体1~8の各担体の物性を、以下の表1にまとめて示す。担体の結晶構造は、粉末エックス線回折測定によって決定し、可能な場合には、各相の最強回折線の相対強度を用いて存在比率を計算した。液体窒素温度での窒素吸着等温線を用いて、BET法によって比表面積決定を行い、吸着過程のデータを用いてDH法よる細孔分布決定を行った。吸着等温線の相対分圧0.99の値を用いて細孔容積を計算した。以降、全ての実施例及び比較例で、同様の手法で物性値を得た。 In addition, all the carriers after firing were made to have a particle size of 75 μm or more and less than 150 μm using a stainless steel sieve, and were used in the subsequent experiments. The shape of the carrier is powdery. The physical properties of the carriers 1 to 8 are summarized in Table 1 below. The crystal structure of the carrier was determined by powder X-ray diffraction measurement, and when possible, the abundance ratio was calculated using the relative intensity of the strongest diffraction line of each phase. Specific surface area was determined by BET method using nitrogen adsorption isotherm at liquid nitrogen temperature, and pore distribution was determined by DH method using data of adsorption process. The pore volume was calculated using the value of the relative partial pressure 0.99 of the adsorption isotherm. Thereafter, in all Examples and Comparative Examples, physical property values were obtained in the same manner.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[触媒の作製]
(実施例1:白金担持触媒)
 ヘキサクロロ白金酸0.00265gを、0.20ml、0.45ml、0.20ml、0.35mlの純水それぞれに溶解させた。得られた白金前駆体溶液を、担体1~5の酸化物担体各1.00gに対して十分な混合を行いながらそれぞれ滴下し、含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒を試料1、4~7とした。白金の担持量はいずれも、金属状態の白金換算で0.1質量%であった。
[Catalyst preparation]
(Example 1: platinum-supported catalyst)
0.00265 g of hexachloroplatinic acid was dissolved in 0.20 ml, 0.45 ml, 0.20 ml, and 0.35 ml of pure water. The obtained platinum precursor solution was added dropwise to 1.00 g of each of the oxide carriers 1 to 5 while being sufficiently mixed, and impregnated. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalysts were used as Samples 1 and 4-7. The amount of platinum supported was 0.1% by mass in terms of platinum in the metal state.
 試料1、4~7について、BET比表面積測定を行い、得られたデータからDH法にて計算した面積分布(dV/dr)表示での細孔分布と、細孔半径2nm以上、100nm以下の範囲の細孔で形成される表面積のうち、各細孔半径以下の細孔で形成される表面積の割合(A/A2-100nm)の累積値を、図4A~図4Cに示す。各々について、細孔半径2nm以上、100nm以下の範囲の細孔で形成される表面積のうち、細孔半径10nm以上の細孔で形成される表面積の割合を計算した値を、表2に示す。この値は、細孔半径10nmにおけるA/A2-100nmの値を100から差し引くことで計算した。 BET specific surface area was measured for Samples 1 and 4-7, and the pore distribution in area distribution (dV / dr) display calculated by the DH method from the obtained data and the pore radius of 2 nm or more and 100 nm or less FIG. 4A to FIG. 4C show cumulative values of the ratio (A r / A 2-100 nm ) of the surface area formed by the pores having the respective pore radii below the surface area formed by the pores in the range. Table 2 shows values obtained by calculating the ratio of the surface area formed by pores having a pore radius of 10 nm or more out of the surface areas formed by pores having a pore radius of 2 nm or more and 100 nm or less. This value was calculated by subtracting from 100 the value of A r / A 2-100 nm at a pore radius of 10 nm.
(実施例2:パラジウム担持触媒)
 ジニトロジアンミンパラジウム(小島化学薬品)0.00220gを硝酸15mlに溶解し、担体1の酸化物担体1.00gを加えた。1時間攪拌を行った後に、ホットスターラー上80℃にて攪拌を行い、蒸発乾固した。得られた固体を、大気下120℃にて10時間乾燥させた後に400℃まで昇温し30分焼成した。冷却後得られた触媒を、試料2とした。試料2について、実施例1の場合と同様に測定した物性値を、表2に示す。
(Example 2: Palladium-supported catalyst)
Dinitrodiammine palladium (Kojima Chemical) 0.00220 g was dissolved in 15 ml of nitric acid, and 1.00 g of oxide carrier 1 of carrier 1 was added. After stirring for 1 hour, the mixture was stirred on a hot stirrer at 80 ° C. and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours in the air, then heated to 400 ° C. and calcined for 30 minutes. The catalyst obtained after cooling was designated as Sample 2. Table 2 shows the physical property values of Sample 2 measured in the same manner as in Example 1.
(実施例3:ロジウム担持触媒)
 塩化ロジウム(III)三水和物0.00256を、0.20mlの純水に溶解させた。得られたロジウム前駆体水溶液を、担体1の酸化物担体1.00gに対して、十分な混合を行いながらそれぞれ滴下し、含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒を試料3とした。ロジウムの担持量は、金属状態のロジウム換算で0.1質量%であった。試料3について、実施例1の場合と同様に測定した物性値を、表2に示す。
(Example 3: Rhodium supported catalyst)
Rhodium (III) chloride trihydrate 0.00256 was dissolved in 0.20 ml of pure water. The obtained aqueous rhodium precursor solution was added dropwise to 1.00 g of the oxide carrier of carrier 1 while being sufficiently mixed, and impregnated. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as Sample 3. The supported amount of rhodium was 0.1% by mass in terms of rhodium in the metal state. Table 2 shows the physical property values of Sample 3 measured in the same manner as in Example 1.
(実施例4:低担持量白金担持触媒)
 ヘキサクロロ白金酸0.00265gを、1.0mlの純水に溶解させた。得られた白金前駆体溶液のうち0.30mlを、担体1の酸化物担体各1.00gに対して十分な混合を行いながら滴下し、含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒を試料8とした。白金の担持量は、金属状態の白金換算で0.03質量%であった。試料8について、実施例1の場合と同様に測定した物性値を表2に示す。
Example 4: Low supported platinum supported catalyst
0.00265 g of hexachloroplatinic acid was dissolved in 1.0 ml of pure water. 0.30 ml of the obtained platinum precursor solution was added dropwise to 1.00 g of each oxide carrier of carrier 1 while being sufficiently mixed, and impregnated. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as Sample 8. The amount of platinum supported was 0.03% by mass in terms of platinum in the metal state. Table 2 shows the physical property values of Sample 8 measured in the same manner as in Example 1.
(実施例5:高担持量白金担持触媒)
 ヘキサクロロ白金酸0.02589g、0.05178を、それぞれ0.45mlの純水に溶解させた。得られた白金前駆体溶液をそれぞれ、担体2の酸化物担体1.00gに対して十分な混合を行いながらそれぞれ滴下し、含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒をそれぞれ試料9、10とした。白金の担持量はそれぞれ、金属状態の白金換算で1質量%、2質量%であった。試料9、10について、実施例1の場合と同様に測定した物性値を表2に示す。
(Example 5: High supported platinum supported catalyst)
Hexachloroplatinic acid 0.02589 g and 0.05178 were dissolved in 0.45 ml of pure water, respectively. Each of the obtained platinum precursor solutions was dropped and impregnated while being sufficiently mixed with 1.00 g of the oxide carrier of the carrier 2. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalysts were used as Samples 9 and 10, respectively. The supported amounts of platinum were 1% by mass and 2% by mass, respectively, in terms of platinum in the metal state. Table 2 shows physical property values of Samples 9 and 10 measured in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例1:白金担持触媒)
 ヘキサクロロ白金酸0.00265gを、表1に示す担体6~11の細孔容積と同量の純水に溶解させた。得られた白金前駆体溶液を、それぞれ担体6~11の酸化物担体各1.00gに対して十分な混合を行いながらそれぞれ滴下し、各担体に含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒を試料A~Fとした。白金の担持量はいずれも、金属状態の白金換算で0.1質量%であった。
(Comparative Example 1: Platinum-supported catalyst)
0.00265 g of hexachloroplatinic acid was dissolved in the same amount of pure water as the pore volume of the carriers 6 to 11 shown in Table 1. The obtained platinum precursor solution was added dropwise to 1.00 g of each of the oxide carriers of the carriers 6 to 11 while being sufficiently mixed, and impregnated in each carrier. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalysts were used as Samples A to F. The amount of platinum supported was 0.1% by mass in terms of platinum in the metal state.
 試料A~Dについて、BET比表面積測定を行い、得られたデータからDH法にて計算した面積分布(dV/dr)表示での細孔分布と、細孔半径2nm以上、100nm以下の範囲の細孔で形成される表面積のうち各細孔半径以下の細孔で形成される表面積の割合(A/A2-100nm)を、図5A~図5Cに示す。試料A~Fについて、実施例1の場合と同様に測定した物性値を表3に示す。 BET specific surface area was measured for samples A to D, and the pore distribution in the area distribution (dV / dr) display calculated by the DH method from the obtained data and the pore radius in the range of 2 nm to 100 nm. FIG. 5A to FIG. 5C show the ratio (A r / A 2-100 nm ) of the surface area formed by the pores having the pore diameters or less among the surface areas formed by the pores. Table 3 shows the physical property values of Samples A to F measured in the same manner as in Example 1.
(比較例2:パラジウム担持触媒)
 ジニトロジアンミンパラジウム(小島化学薬品)0.00220gを硝酸15mlに溶解し、担体6の酸化物担体1.00gを加えた。1時間攪拌を行った後に、ホットスターラー上80℃にて攪拌を行い、蒸発乾固した。得られた固体を、大気下120℃にて10時間乾燥させた後に、400℃まで昇温し30分焼成した。冷却後得られた触媒を試料Gとした。試料Gについて、実施例1の場合と同様に測定した物性値を表3に示す。
(Comparative Example 2: Palladium-supported catalyst)
Dinitrodiammine palladium (Kojima Chemical) 0.00220 g was dissolved in nitric acid 15 ml, and oxide carrier 1.00 g of carrier 6 was added. After stirring for 1 hour, the mixture was stirred on a hot stirrer at 80 ° C. and evaporated to dryness. The obtained solid was dried at 120 ° C. in the atmosphere for 10 hours, then heated to 400 ° C. and calcined for 30 minutes. The catalyst obtained after cooling was designated as Sample G. Table 3 shows the physical property values of sample G measured in the same manner as in Example 1.
(比較例3:ロジウム担持触媒)
 塩化ロジウム(III)三水和物0.00256を0.20mlの純水に溶解させた。得られたロジウム前駆体水溶液を、担体6の酸化物担体1.00gに対して、十分な混合を行いながらそれぞれ滴下し、含浸させた。得られた粉末を、100℃にて10時間、500℃にて1時間焼成し、得られた触媒を試料Hとした。ロジウムの担持量は、金属状態のロジウム換算で0.1質量%である。試料Hについて、実施例1の場合と同様に測定した物性値を表3に示す。
(Comparative Example 3: Rhodium supported catalyst)
Rhodium (III) chloride trihydrate 0.00256 was dissolved in 0.20 ml of pure water. The obtained rhodium precursor aqueous solution was added dropwise to 1.00 g of the oxide carrier of the carrier 6 while being sufficiently mixed, and impregnated. The obtained powder was calcined at 100 ° C. for 10 hours and at 500 ° C. for 1 hour, and the obtained catalyst was used as sample H. The supported amount of rhodium is 0.1% by mass in terms of rhodium in the metal state. Table 3 shows the physical property values of Sample H measured in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[触媒性能評価]
(試験例1:還元前処理後加速試験)
 試料1、4~10及び、試料A~Fについて一酸化炭素酸化反応試験を行った。
 先ず、試料1、4~7、9、10、A~Fの各触媒10mgそれぞれに対して、20mgの担体1、2、3、4、5、2、2、6、7、8、9、10、11をそれぞれ混合して希釈し、それぞれ石英ガラス管に充填した。貴金属担持量の少ない試料8については、33mg秤量し、希釈せずに石英ガラス管に充填した。
 次に、60cm/分の水素気流中、500℃にて1時間還元処理を行った後に250℃まで降温した。100cm/分の窒素気流中にて10分間パージを行った後に、反応温度250℃、大気圧で流量100cm/分にて表4に示す組成のガスを流して反応を行った。
[Catalyst performance evaluation]
(Test Example 1: Acceleration test after reduction pretreatment)
Samples 1, 4 to 10 and Samples A to F were subjected to a carbon monoxide oxidation reaction test.
First, 20 mg of carrier 1, 2, 3, 4, 5, 2, 2, 6, 7, 8, 9, for 10 mg of each catalyst of samples 1, 4 to 7, 9, 10, and A to F, 10 and 11 were mixed and diluted, respectively, and filled into quartz glass tubes. For sample 8 with a small amount of noble metal supported, 33 mg was weighed and filled into a quartz glass tube without dilution.
Next, after reducing for 1 hour at 500 ° C. in a hydrogen stream of 60 cm 3 / min, the temperature was lowered to 250 ° C. 100 cm 3 / min at a nitrogen gas stream after the purge for 10 minutes, the reaction temperature 250 ° C., the reaction by flowing a gas having the composition shown in Table 4 at a flow rate of 100 cm 3 / min at atmospheric pressure was carried out.
 ガスと触媒量の相対比を示す空間速度は、大凡600000cm・時間(hour)-1・触媒質量(g)-1である。一般的に反応に利用される空間速度の値は、上記空間速度の約1/10程度の値である。一般的な値よりも高い空間速度にて活性試験を行うことで、本発明の触媒の高い安定性を明示することとした。ガス流量及び組成の調整は、マスフローコントローラーを用いて行い、ガス源となるガスボンベは、一酸化炭素5%+窒素95%、二酸化硫黄200ppm+一酸化窒素200ppm+窒素残部、酸素(純度99.9999以上)、窒素(純度99.9999%以上)の四種類を用意した。また水蒸気は、送水ポンプにて所要量の純水を導入することで調整した。以下、全ての試験にて同様にして、ガス組成を調整した。 The space velocity indicating the relative ratio of gas and catalyst amount is approximately 600000 cm 3 · hour −1 · catalyst mass (g) −1 . In general, the value of the space velocity used for the reaction is about 1/10 of the space velocity. It was decided to demonstrate the high stability of the catalyst of the present invention by conducting the activity test at a space velocity higher than a general value. The gas flow rate and composition are adjusted using a mass flow controller, and the gas cylinder as a gas source is carbon monoxide 5% + nitrogen 95%, sulfur dioxide 200 ppm + nitrogen monoxide 200 ppm + nitrogen balance, oxygen (purity 99.9999 or more) And four types of nitrogen (purity 99.9999% or more) were prepared. The water vapor was adjusted by introducing a required amount of pure water with a water pump. Thereafter, the gas composition was adjusted in the same manner in all tests.
 反応試験の結果を、図6Aに~図6D示す。
 試料9、10については図6A~図6Dに記載していないが、両者共に反応開始から終了時まで、一酸化炭素転化率は、100%で推移した。発明例の試料1、4~10と比較例の試料A~Fでは、その一酸化炭素の転化率の時間依存性に大きな違いがあり、試料1、4~10では反応時間15時間経過時点においても高い活性が得られているものの、試料A~Fでは15時間経過時点において活性が大きく低下していることが分る。
The results of the reaction test are shown in FIG. 6A to FIG. 6D.
Although Samples 9 and 10 are not shown in FIGS. 6A to 6D, the carbon monoxide conversion rate remained at 100% from the start to the end of the reaction in both cases. Samples 1 and 4 to 10 of the invention example and Samples A to F of the comparative example have a great difference in time dependency of the conversion rate of carbon monoxide. Samples 1 and 4 to 10 have a reaction time of 15 hours. However, it can be seen that in Samples A to F, the activity decreased greatly after 15 hours.
 試料6では他の発明例試料1、4、5と比べて、15時間経過時点での活性が低く、試料7については活性が不安定となっている。表2に記載の細孔分布を見ると、試料6では他の発明例に比べて、細孔半径10nm以上の細孔で形成される表面積の割合が低くなっており、細孔半径10nm以上の細孔で形成される比表面積の割合が大きいほど、高い一酸化炭素転化率が得られるものと考えられる。 Sample 6 has a lower activity at the time point of 15 hours than Samples 1, 4, and 5 of the invention, and sample 7 has an unstable activity. When the pore distribution shown in Table 2 is observed, the ratio of the surface area formed by pores having a pore radius of 10 nm or more is lower in Sample 6 than in the other invention examples, and the pore radius is 10 nm or more. It is considered that a higher carbon monoxide conversion is obtained as the ratio of the specific surface area formed by the pores is larger.
 また、試料7について表2に記載の細孔分布を見ると、細孔半径10nm以上の細孔で形成される表面積の割合は高いものの、細孔半径20nm以上の細孔で形成される表面積の割合が、試料1、4~6と比べて著しく低くなっている。また、細孔半径80nm以上の細孔で形成される表面積の割合も、試料1、4~6と比べて低くなっていることが分かる。細孔半径10nm以上の細孔で形成される比表面積の割合が高い場合でも、細孔半径20nm以上の比較的大きい細孔及び細孔半径80nm以上のより大きい細孔で形成される比表面積の割合が低い場合には、副生濃硫酸の脱離速度が不十分となり易いことが、原因と推察される。 Further, when the pore distribution shown in Table 2 is observed for sample 7, the ratio of the surface area formed by pores having a pore radius of 20 nm or more is high although the ratio of the surface area formed by pores having a pore radius of 10 nm or more is high. The ratio is significantly lower than that of Samples 1 and 4-6. It can also be seen that the ratio of the surface area formed by pores having a pore radius of 80 nm or more is lower than that of Samples 1 and 4-6. Even when the ratio of the specific surface area formed by pores having a pore radius of 10 nm or more is high, the specific surface area formed by relatively large pores having a pore radius of 20 nm or more and larger pores having a pore radius of 80 nm or more When the ratio is low, it is assumed that the cause is that the desorption rate of by-product concentrated sulfuric acid tends to be insufficient.
 これより、触媒が安定した活性を維持するためには、細孔半径10nm以上の細孔で形成される表面積の割合が大きいことに加えて、細孔半径20nm以上の細孔で形成される表面積の割合が高い方がより好ましいことが分かる。また、細孔半径80nm以上の細孔で形成される表面積の割合が高い方がより好ましいことが分かる。 Thus, in order to maintain a stable activity of the catalyst, in addition to a large proportion of the surface area formed by pores having a pore radius of 10 nm or more, the surface area formed by pores having a pore radius of 20 nm or more. It can be seen that a higher ratio is more preferable. It can also be seen that a higher proportion of the surface area formed by pores having a pore radius of 80 nm or more is more preferable.
 試料Bでは、一度一酸化炭素転化率が低下して以降も、間欠的に活性が高まる現象が観測されている。これより、試料Bの細孔分布が僅かに変化し、細孔半径2nm以上100nm以下の範囲の細孔において、かかる範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔の表面積の割合が40%超となれば、活性の大幅な低下を避けることが出来る可能性がある。 In Sample B, a phenomenon in which the activity increases intermittently even after the carbon monoxide conversion rate once decreases is observed. As a result, the pore distribution of sample B slightly changes, and in the pores in the range of pore radius of 2 nm to 100 nm, the surface area of the pores having a pore radius of 10 nm or more occupying the total surface area of the pores in this range. If the ratio exceeds 40%, a significant decrease in activity may be avoided.
 貴金属担持量が少ない試料8については、使用する触媒の量を増大させ、他の試料と同量の貴金属を含む量の触媒を利用した結果、試料1と同程度の活性が得られていることが分かる。これより、貴金属担持量を減少させた場合にも、単位貴金属量あたりで見れば同程度の活性が得られるものと推察される。 For sample 8 with a small amount of noble metal supported, the amount of catalyst used is increased, and as a result of using an amount of catalyst containing the same amount of noble metal as the other samples, activity comparable to that of sample 1 is obtained. I understand. From this, it is presumed that even when the amount of noble metal supported is decreased, the same level of activity can be obtained per unit noble metal amount.
 また、試料Fでは、一酸化炭素転化率が大幅に低下するまでに要する時間が、試料A~Eよりも長くなっていることが分かる。これは大きく二つの要因によって生じていると考えられる。 It can also be seen that in Sample F, the time required for the carbon monoxide conversion rate to drop significantly is longer than in Samples A to E. This is probably due to two factors.
 第一に、大きい細孔容積である。平均細孔径が小さく、細孔容積が大きいことから、試料全体として細孔の総延長距離が長くなっていると理解出来る。比表面積が大きいことも考慮すると、細孔が非常に複雑な網目構造をなしていると予想でき、細孔が完全に閉塞するまでに必要となる時間が長くなったものと考えられる。上記と同様の議論で、試料Bと試料C、Dでの挙動の違いも説明出来ると考えられる。すなわち、細孔半径2nm以上100nm以下の範囲の細孔において、かかる範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔の表面積の割合に着目した場合には、試料C、Dは試料Bよりも高い安定性が期待されるものの、試料C、Dは試料Bに比べて、細孔容積が著しく小さい為、細孔が閉塞するのに必要な時間が短かったと考えられる。 First, it has a large pore volume. Since the average pore diameter is small and the pore volume is large, it can be understood that the total extended distance of the pores as a whole is long. Considering that the specific surface area is large, it can be predicted that the pores have a very complicated network structure, and it is considered that the time required until the pores are completely blocked is increased. It is considered that the difference in behavior between the sample B and the samples C and D can be explained by the same discussion as above. That is, in the case of pores having a pore radius in the range of 2 nm or more and 100 nm or less, when focusing on the ratio of the surface area of the pores having a pore radius of 10 nm or more to the total surface area of the pores in such a range, samples C and D Is expected to be higher in stability than sample B, but samples C and D have a significantly smaller pore volume than sample B, so it is considered that the time required to close the pores is shorter.
 第二に、アルミナ担体自体が、濃硫酸と反応し硫酸塩となることが挙げられる。他のチタニアや、ジルコニア担体では、担体の最表面しか濃硫酸と反応しない為、副生成物として生成した濃硫酸がそのまま濃硫酸として留まり、細孔を閉塞させる働きをしたものと考えられる。一方、アルミナ担体は、濃硫酸と反応して硫酸塩を形成し、濃硫酸として留まる硫酸塩の量が相対的に減少する。これらの要因によって、一酸化炭素転化率が低下するまでに要する時間が多くなったものと考えられる。しかしながら、アルミナ担体の場合においては、担体と、複製した濃硫酸が反応することが原因となり、反応時間が長くなるにつれて緩やかに活性低下が生じてしまっている。更に、反応後には大幅な非表面積の低下が生じていることが発明者の実施した実験にて確認されており、長期的な利用には適していないと理解出来る。 Second, the alumina carrier itself reacts with concentrated sulfuric acid to become a sulfate. In other titania and zirconia carriers, only the outermost surface of the carrier reacts with concentrated sulfuric acid, so that concentrated sulfuric acid produced as a by-product remains as concentrated sulfuric acid as it is, and it is considered that the pores are blocked. On the other hand, the alumina carrier reacts with concentrated sulfuric acid to form sulfate, and the amount of sulfate remaining as concentrated sulfuric acid is relatively reduced. It is considered that the time required for the carbon monoxide conversion rate to decrease is increased due to these factors. However, in the case of an alumina carrier, the reaction of the carrier and the concentrated concentrated sulfuric acid reacts, and the activity gradually decreases as the reaction time increases. Furthermore, it has been confirmed by experiments conducted by the inventors that a significant reduction in non-surface area has occurred after the reaction, and it can be understood that it is not suitable for long-term use.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(試験例2:酸化反応の温度依存性)
 発明例である試料1、4及び比較例である試料Bについて、一酸化炭素酸化活性の温度依存性を調べた。
(Test Example 2: Temperature dependence of oxidation reaction)
The temperature dependence of carbon monoxide oxidation activity was examined for Samples 1 and 4 which are invention examples and Sample B which is a comparative example.
 3種類の各触媒1mgそれぞれに対して、30mgの担体1、2、7をそれぞれ混合して希釈し、それぞれ石英ガラス管に充填した。 Each 1 mg of each of the three types of catalysts was diluted by mixing 30 mg of carriers 1, 2, and 7 and filled in quartz glass tubes.
 60cm/分の水素気流中、500℃にて1時間還元処理を行った後に250℃まで降温した。100cm/分の窒素気流中にて10分間パージを行った後に、流量100cm/分で表4に示す組成のガスを流して反応を行った。本試験では、他の試験例に比べ、触媒量が相対的に少ない条件にて反応試験を行った。ガスと触媒量の相対比を示す空間速度は、大凡6000000cm・時間(hour)-1・触媒質量(g)-1である。反応温度250℃、大気圧にて20時間反応を行った後に、反応温度を上昇させ、一酸化炭素転化率を測定した。 After reducing for 1 hour at 500 ° C. in a hydrogen stream of 60 cm 3 / min, the temperature was lowered to 250 ° C. At 100 cm 3 / min nitrogen gas stream after the purge 10 minutes, the reaction was carried out by passing a flow 100 cm 3 / gas having the composition shown in Table 4 min. In this test, a reaction test was performed under conditions where the amount of catalyst was relatively small compared to other test examples. The space velocity indicating the relative ratio of gas and catalyst amount is approximately 6000000 cm 3 · hour −1 · catalyst mass (g) −1 . After performing the reaction at a reaction temperature of 250 ° C. and atmospheric pressure for 20 hours, the reaction temperature was raised and the carbon monoxide conversion was measured.
 結果を図7に示す。試料Bでは300℃前後において、一酸化炭素転化率が急峻に変化している。本実験条件での水蒸気分圧と300℃にて平衡に達する濃度の濃硫酸は沸点がおよそ300℃程度であり(例えば、上記非特許文献8を参照。)、温度の上昇によって濃硫酸による細孔の閉塞による影響が無くなったものと考えられる。 Results are shown in FIG. In Sample B, the carbon monoxide conversion rate changes sharply around 300 ° C. Concentrated sulfuric acid at a concentration that reaches equilibrium at 300 ° C. with the partial pressure of water vapor under the present experimental conditions has a boiling point of about 300 ° C. (see, for example, Non-Patent Document 8 above). It is thought that the influence of the blockage of the holes has disappeared.
 また、300℃未満の温度域においては、実施例と比較例との差が大きくなっており、試料Bの触媒活性が非常に低くなっていることが分かる。濃硫酸の飽和蒸気圧が低い領域において、細孔閉塞による影響が顕在化したものと考えられる。これらの点からも、実施例では濃硫酸による細孔閉塞の影響が小さく、高い活性が得られていると考えられる。 Further, in the temperature range below 300 ° C., the difference between the example and the comparative example is large, and it can be seen that the catalytic activity of the sample B is very low. In the region where the saturated vapor pressure of concentrated sulfuric acid is low, it is considered that the influence of pore clogging has become obvious. Also from these points, it is considered that in the Examples, the influence of pore clogging by concentrated sulfuric acid is small, and high activity is obtained.
 なお、白金の担持量が0.03質量%以下の場合については、白金微粒子が臨界粒径程度の微細粒子として存在すると考えられ、0.03質量%以下の貴金属担持量の場合においても、単位貴金属あたりに換算すれば同程度の触媒活性が得られると予想される。例えば、担持量0.01%の触媒においても、当発明の効果が発揮され、細孔半径10nm以上の細孔が占める表面積の比率が高い触媒を用いることで、300℃以下の範囲での活性が、細孔半径10nm以上の細孔が占める表面積の比率が低い触媒に比べて高くなると考えられる。 In addition, when the supported amount of platinum is 0.03% by mass or less, it is considered that the platinum fine particles are present as fine particles having a critical particle size, and even when the supported amount of noble metal is 0.03% by mass or less, the unit It is expected that the same level of catalytic activity can be obtained in terms of per noble metal. For example, the effect of the present invention is exhibited even with a catalyst having a loading amount of 0.01%, and the activity in the range of 300 ° C. or lower can be achieved by using a catalyst having a high surface area ratio occupied by pores having a pore radius of 10 nm or more. However, it is considered that the ratio of the surface area occupied by pores having a pore radius of 10 nm or more is higher than that of a catalyst having a low surface area.
(試験例3:二酸化硫黄濃度、水蒸気濃度の影響)
 試料Bについて、試験例1と同様の測定を行った。その後に、表4に示すガス組成から、二酸化硫黄を20ppmに、又は、水蒸気量を10%にしたそれぞれの場合にて、測定を行った。その結果、それぞれ一酸化炭素転化率は9.4%、7.4%であり、ガス組成を変える前の8.4%と大きく差の無い値となった。このことより、試料Bで見られた濃硫酸による細孔の閉塞は、二酸化硫黄と水蒸気の濃度が異なっていても生じるものと考えられる。
(Test Example 3: Influence of sulfur dioxide concentration and water vapor concentration)
For Sample B, the same measurement as in Test Example 1 was performed. Thereafter, from the gas composition shown in Table 4, the measurement was performed in each case where the sulfur dioxide was 20 ppm or the water vapor amount was 10%. As a result, the conversion rates of carbon monoxide were 9.4% and 7.4%, respectively, which were values that were not significantly different from 8.4% before the gas composition was changed. From this, it is considered that the clogging of the pores due to the concentrated sulfuric acid observed in the sample B occurs even if the concentrations of sulfur dioxide and water vapor are different.
(試験例4:Pt,Rh、Pd担持触媒)
 試料1~3、試料G、Hについて、一酸化炭素酸化反応試験を行った。試料1~3の各触媒10mgそれぞれに対して、20mgの担体1をそれぞれ混合して希釈し、それぞれ石英ガラス管に充填した。また、試料G、Hの各触媒10mgそれぞれに対して、20mgの担体5をそれぞれ混合して希釈し、それぞれ石英ガラス管に充填した。100cm/分の窒素気流中にて250℃まで昇温した。温度が安定したことを確認した上で、流量100cm/分で表4に示す組成のガスを流して反応を行った。ガスと触媒量の相対比を示す空間速度は、大凡600000cm・時間(hour)-1・触媒質量(g)-1である。
(Test Example 4: Pt, Rh, Pd supported catalyst)
Samples 1 to 3 and Samples G and H were subjected to a carbon monoxide oxidation reaction test. 20 mg of carrier 1 was mixed and diluted with 10 mg of each catalyst of Samples 1 to 3, respectively, and filled in a quartz glass tube. Further, 20 mg of the carrier 5 was mixed and diluted with 10 mg of each of the catalysts of Samples G and H, and each was filled in a quartz glass tube. The temperature was raised to 250 ° C. in a nitrogen stream at 100 cm 3 / min. After confirming that the temperature was stable, the reaction was performed by flowing a gas having the composition shown in Table 4 at a flow rate of 100 cm 3 / min. The space velocity indicating the relative ratio of gas and catalyst amount is approximately 600000 cm 3 · hour −1 · catalyst mass (g) −1 .
 結果を図8に示す。試料1~3を見ると、担持した金属種によって大きく活性が異なり、特に白金で高い一酸化炭素転化率が得られていることが分かる。また、試料2、3と試料G、Hとを比較すると、担持した貴金属種がPd、Rhである場合においても、細孔半径10nm以上の細孔で形成される表面積の割合が高い担体において、より高いCO転化率が得られていることが分かる。 The results are shown in FIG. Looking at Samples 1 to 3, it can be seen that the activity varies greatly depending on the supported metal species, and in particular, a high carbon monoxide conversion rate is obtained with platinum. Further, when comparing the samples 2 and 3 with the samples G and H, even when the supported noble metal species is Pd or Rh, in the carrier having a high surface area ratio formed by pores having a pore radius of 10 nm or more, It can be seen that higher CO conversion is obtained.
(試験例5:二酸化チタン担体種の影響)
 試料1、4、6について一酸化炭素酸化反応試験を行った。3種類の各触媒10mgそれぞれに対して、20mgの担体1、2、4をそれぞれ混合して希釈し、それぞれ石英ガラス管に充填した。反応開始前に、500℃、60cm/分の水素気流下での還元処理を行ったものと、行わなかったものの双方について、反応温度250℃、流量100cm/分で表4に示す組成のガスを流して反応を行った。
(Test Example 5: Influence of titanium dioxide carrier species)
Samples 1, 4, and 6 were subjected to a carbon monoxide oxidation reaction test. For 10 mg of each of the three types of catalysts, 20 mg of carriers 1, 2, and 4 were mixed and diluted, respectively, and filled into quartz glass tubes. Before starting the reaction, the composition shown in Table 4 at a reaction temperature of 250 ° C. and a flow rate of 100 cm 3 / min was used for both the case where the reduction treatment was performed under a hydrogen stream at 500 ° C. and 60 cm 3 / min. The reaction was performed by flowing gas.
 結果を図9A~図9Cに示す。試料1では、還元処理の有無に依らず同程度の一酸化炭素転化率が得られているものの、試料4、6では還元処理の有無によって大きく活性が変化し、還元処理を行わなかった場合では活性が出ていない。試料1で利用された二酸化チタン担体は、硫酸法で作成されたアナターゼ型構造の担体であり、試料5のルチル型構造に比べて酸素欠損量が少なく、担持された白金を酸化し難いことが知られており、還元処理が無い場合でも高い活性が出やすいものと考えられる。また、硫酸法で作成されたアナターゼ型構造は、試料6の塩素法で作成されたアナターゼ型構造に比べて、500℃以上の温度での相転移が生じにくいことが知られている。この為、試料1では還元処理のない場合でも、還元処理のある場合と同程度の一酸化炭素転化率が得られたものと考えられる。 The results are shown in FIGS. 9A to 9C. In Sample 1, the same carbon monoxide conversion rate was obtained regardless of the presence or absence of the reduction treatment, but in Samples 4 and 6, the activity changed greatly depending on the presence or absence of the reduction treatment, and the reduction treatment was not performed. There is no activity. The titanium dioxide carrier used in Sample 1 is an anatase type structure carrier prepared by the sulfuric acid method, has a smaller amount of oxygen deficiency than the rutile type structure of Sample 5, and is difficult to oxidize the supported platinum. It is known that high activity is likely to occur even when there is no reduction treatment. Further, it is known that the anatase type structure prepared by the sulfuric acid method is less likely to cause a phase transition at a temperature of 500 ° C. or higher than the anatase type structure prepared by the chlorine method of Sample 6. For this reason, it is considered that the conversion rate of carbon monoxide in Sample 1 was the same as that obtained in the case of the reduction treatment even in the case of no reduction treatment.
(試験例6:脱硝プロセスへの適用)
 試料1、2、5の粉末それぞれを、4.2mmピッチ(壁厚0.5mm)のコージェライト製ハニカム素材に対し、基材表面積当り200g/mでコートし、ハニカム状触媒1、2、3を得た。脱硝触媒には、3.3mmピッチのコージェライト製ハニカムに対し、二酸化チタン系脱硝触媒を基材表面積当り200g/mでコートした格子状触媒を用いた。
(Test Example 6: Application to denitration process)
Each of the powders of Samples 1, 2, and 5 was coated on a cordierite honeycomb material with a pitch of 4.2 mm (wall thickness of 0.5 mm) at 200 g / m 2 per surface area of the substrate. 3 was obtained. As the denitration catalyst, a lattice-shaped catalyst in which a 3.3 mm pitch cordierite honeycomb was coated with a titanium dioxide-based denitration catalyst at a base surface area of 200 g / m 2 was used.
 前記ハニカム状触媒1、2、3それぞれを用いて、図1に示す脱硝プロセスの検討を行った。図1の装置構成において、ガス加熱バーナー2の代わりに投げ込み型の電熱ヒーターを使用し、熱交換部1にはシェルアンドチューブ型の熱交換器を用いた。装置全体を十分に保温した状態で脱硝反応試験を行った。燃焼触媒部3に充填する燃焼触媒としては、上記ハニカム状触媒1、2、3を用い、充填量は1.2Lとした。また、脱硝触媒部4には、上記格子状触媒を5L充填した。排ガスの組成は、鉄鋼製造プロセスの焼結炉排ガスを模擬した表5記載の組成のガスを用いた。 The denitration process shown in FIG. 1 was examined using each of the honeycomb-shaped catalysts 1, 2, and 3. In the apparatus configuration of FIG. 1, a throw-in type electric heater was used instead of the gas heating burner 2, and a shell and tube type heat exchanger was used as the heat exchanging unit 1. A denitration reaction test was conducted with the entire apparatus kept warm. As the combustion catalyst filled in the combustion catalyst portion 3, the honeycomb-shaped catalysts 1, 2, and 3 were used, and the filling amount was 1.2L. The denitration catalyst unit 4 was filled with 5 L of the lattice catalyst. As the composition of the exhaust gas, a gas having the composition shown in Table 5 that simulates the sintering furnace exhaust gas of the steel manufacturing process was used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のハニカム状酸化触媒1、2、3を1.2L、脱硝触媒を1.6L充填し、熱交換部の入口から表5の組成を持つ60℃の排ガスを30Nm/時間(hour)で流入させた。電熱ヒーターの電源を入れ、燃焼触媒部入口の温度が200℃に到達した時点で脱硝装置部4の上流からアンモニアを一酸化窒素に対する流量比が0.9となるように注入を開始し、電熱ヒーターの電源を切った。ハニカム状触媒1、2、3の全ての場合において良好な脱硝率が維持された。その結果を表6に示す。 The honeycomb-shaped oxidation catalysts 1, 2, and 3 of the present invention are filled with 1.2 L and denitration catalyst with 1.6 L, and an exhaust gas at 60 ° C. having the composition shown in Table 5 is supplied from the inlet of the heat exchange section to 30 Nm 3 / hour (hour). It was made to flow in. The electric heater is turned on, and when the temperature at the inlet of the combustion catalyst reaches 200 ° C., ammonia is injected from the upstream of the denitration unit 4 so that the flow rate ratio to nitrogen monoxide is 0.9. The heater was turned off. A good denitration rate was maintained in all cases of the honeycomb catalysts 1, 2, and 3. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(試験例7:脱硝プロセスへの適用)
 試料1、2、5の粉末それぞれを、4.2mmピッチ(壁厚0.5mm)のコージェライト製ハニカム素材に対し、基材表面積当り200g/mでコートし、ハニカム状触媒1、2、3を得た。
(Test Example 7: Application to denitration process)
Each of the powders of Samples 1, 2, and 5 was coated on a cordierite honeycomb material with a pitch of 4.2 mm (wall thickness of 0.5 mm) at 200 g / m 2 per surface area of the substrate. 3 was obtained.
 上記ハニカム状触媒1、2、3それぞれを用いて、図2に示す脱硝プロセスの検討を行った。図2の装置構成において、ガス加熱バーナー12の代わりに投げ込み型の電熱ヒーターを使用し、熱交換部11にはシェルアンドチューブ型の熱交換器を用いた。脱硝触媒部13には3.3mmピッチの二酸化チタン系格子状触媒を充填し、装置全体を十分に保温した状態で脱硝反応試験を行った。燃焼触媒部14に充填する燃焼触媒としては前記ハニカム状触媒1、2、3を用い、排ガスの組成は試験例6と同様に表5記載の組成のガスを用いた。 The denitration process shown in FIG. 2 was examined using each of the above honeycomb- like catalysts 1, 2, and 3. In the apparatus configuration of FIG. 2, a throwing type electric heater was used instead of the gas heating burner 12, and a shell and tube type heat exchanger was used for the heat exchanging portion 11. The denitration catalyst section 13 was filled with a 3.3 mm pitch titanium dioxide-based lattice catalyst, and a denitration reaction test was performed in a state where the entire apparatus was sufficiently kept warm. As the combustion catalyst filled in the combustion catalyst section 14, the honeycomb-shaped catalysts 1, 2, and 3 were used, and the composition of the exhaust gas was a gas having the composition shown in Table 5 as in Test Example 6.
 ハニカム状触媒1、2、3を1.2L、脱硝触媒を1.6L充填し、熱交換部の入口から表5の組成を持つ60℃の排ガスを30Nm/時間(hour)で流入させた。電熱ヒーターの電源を入れ、燃焼触媒部入口の温度が280℃に到達した時点で脱硝装置部13の上流からアンモニアを一酸化窒素に対する流量比が0.9となるように注入を開始し、電熱ヒーターの電源を切った。ハニカム状触媒1、2、3の全ての場合において良好な脱硝率が維持された。その結果を表7に示す。 The honeycomb-shaped catalysts 1, 2, and 3 were filled with 1.2 L and the denitration catalyst was filled with 1.6 L, and an exhaust gas at 60 ° C. having the composition shown in Table 5 was introduced at 30 Nm 3 / hour from the inlet of the heat exchange section. . The electric heater is turned on, and when the temperature at the inlet of the combustion catalyst section reaches 280 ° C., ammonia is injected from the upstream side of the denitration apparatus section 13 so that the flow rate ratio to nitrogen monoxide becomes 0.9. The heater was turned off. A good denitration rate was maintained in all cases of the honeycomb catalysts 1, 2, and 3. The results are shown in Table 7.
 なお、脱硝装置部では、NOがNHと反応することで、脱硝されるが、NOの濃度が低く、発熱量も高くないことから、脱硝装置部の入口と出口での温度差はわずかである。 In the denitration unit, NO is reacted with NH 3 to denitrate, but since the concentration of NO is low and the calorific value is not high, the temperature difference between the inlet and outlet of the denitration unit is slight. is there.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
  1  熱交換部
  2  ガス加熱バーナー
  3  燃焼触媒部
  4  脱硝装置部
 11  熱交換部
 12  ガス加熱バーナー
 13  脱硝装置部
 14  燃焼触媒部
 21  排気空気流路切替器
 22a,22b  蓄熱部
 23a,23b  燃料ガス供給部
 24a,24b  混合気噴射部
 25  空間
 26  空気導入経路
 27  排ガス経路
 28a,28b  二次空気導入経路
 
DESCRIPTION OF SYMBOLS 1 Heat exchange part 2 Gas heating burner 3 Combustion catalyst part 4 Denitration apparatus part 11 Heat exchange part 12 Gas heating burner 13 Denitration part 14 Combustion catalyst part 21 Exhaust air flow path switcher 22a, 22b Thermal storage part 23a, 23b Fuel gas supply Portion 24a, 24b Mixture injection unit 25 Space 26 Air introduction path 27 Exhaust gas path 28a, 28b Secondary air introduction path

Claims (23)

  1.  担体に、白金、パラジウム、ロジウムからなる群から選ばれる遷移元素のうち少なくとも1種が担持された酸化触媒であり、
     前記酸化触媒における細孔半径2nm以上100nm以下の範囲の細孔において、当該範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、49%超である、酸化触媒。
    An oxidation catalyst in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier;
    In the pores having a pore radius in the range of 2 nm to 100 nm in the oxidation catalyst, the ratio of the surface area formed by pores having a pore radius of 10 nm or more to the total surface area of the pores in the range is more than 49%. There is an oxidation catalyst.
  2.  担体に、白金、パラジウム、ロジウムからなる群から選ばれる遷移元素のうち少なくとも1種が担持された、ガス中の可燃成分を酸化する酸化触媒であって、
     前記酸化触媒における細孔半径2nm以上100nm以下の範囲の細孔において、当該範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、49%超である、酸化触媒。
    An oxidation catalyst for oxidizing a combustible component in a gas, in which at least one transition element selected from the group consisting of platinum, palladium, and rhodium is supported on a carrier,
    In the pores having a pore radius in the range of 2 nm to 100 nm in the oxidation catalyst, the ratio of the surface area formed by pores having a pore radius of 10 nm or more to the total surface area of the pores in the range is more than 49%. There is an oxidation catalyst.
  3.  前記範囲の細孔の全表面積に占める、細孔半径10nm以上の細孔で形成される表面積の割合が、60%以上である、請求項1又は2に記載の酸化触媒。 The oxidation catalyst according to claim 1 or 2, wherein a ratio of a surface area formed by pores having a pore radius of 10 nm or more to a total surface area of pores in the range is 60% or more.
  4.  前記範囲の細孔の全表面積に占める、細孔半径20nm以上の細孔で形成される表面積の割合が、20%以上である、請求項1~3の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 3, wherein a ratio of a surface area formed by pores having a pore radius of 20 nm or more to a total surface area of pores in the range is 20% or more.
  5.  前記範囲の細孔の全表面積に占める、細孔半径20nm以上の細孔で形成される表面積の割合が、30%以上である、請求項1~4の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 4, wherein a ratio of a surface area formed by pores having a pore radius of 20 nm or more to a total surface area of pores in the range is 30% or more.
  6.  前記範囲の細孔の全表面積に占める、細孔半径80nm以上の細孔で形成される表面積の割合が、2%以上である、請求項1~5の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 5, wherein a ratio of a surface area formed by pores having a pore radius of 80 nm or more to a total surface area of pores in the range is 2% or more.
  7.  比表面積が20m/g以下である、請求項1~6の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 6, wherein the specific surface area is 20 m 2 / g or less.
  8.  前記酸化触媒に担持される前記遷移金属が、白金である、請求項1~7の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 7, wherein the transition metal supported on the oxidation catalyst is platinum.
  9.  前記酸化触媒に担持される前記遷移元素の比率が、当該遷移元素の金属換算の質量比の和として、前記酸化触媒の全質量に対して、0.01%以上2.0%以下である、請求項1~8の何れか1項に記載の酸化触媒。 The ratio of the transition element supported on the oxidation catalyst is 0.01% or more and 2.0% or less with respect to the total mass of the oxidation catalyst as the sum of the mass ratio of the transition element in terms of metal, The oxidation catalyst according to any one of claims 1 to 8.
  10.  前記酸化触媒の担体が、融点1300℃以上の酸化物担体である、請求項1~9の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 9, wherein the oxidation catalyst support is an oxide support having a melting point of 1300 ° C or higher.
  11.  前記酸化触媒の担体が、二酸化チタン、又は、酸化ジルコニウムの何れかである、請求項1~10の何れか1項に記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 10, wherein a carrier of the oxidation catalyst is either titanium dioxide or zirconium oxide.
  12.  前記酸化触媒の担体が、アナターゼ型構造の二酸化チタンである、請求項11に記載の酸化触媒。 The oxidation catalyst according to claim 11, wherein the support of the oxidation catalyst is titanium dioxide having an anatase structure.
  13.  前記二酸化チタンは、硫酸法にて製造された二酸化チタンである、請求項11又は12に記載の酸化触媒。 The oxidation catalyst according to claim 11 or 12, wherein the titanium dioxide is titanium dioxide produced by a sulfuric acid method.
  14.  触媒を利用して被処理ガス中に含まれる未燃成分を燃焼させる燃焼触媒部を備え、
     前記燃焼触媒部に、請求項1~13の何れか1項に記載の酸化触媒が充填されている、排ガス処理装置。
    It has a combustion catalyst part that burns unburned components contained in the gas to be treated using a catalyst,
    An exhaust gas treatment apparatus, wherein the combustion catalyst section is filled with the oxidation catalyst according to any one of claims 1 to 13.
  15.  前記燃焼触媒部の前段に設けられ、前記被処理ガスの温度を上昇させるガス加熱部と、
     前記燃焼触媒部の後段に設けられ、前記被処理ガス中の窒素酸化物を除去する脱硝部と、
    を更に備える、請求項14に記載の排ガス処理装置。
    A gas heating unit that is provided upstream of the combustion catalyst unit and increases the temperature of the gas to be treated;
    A denitration unit that is provided downstream of the combustion catalyst unit and removes nitrogen oxides in the gas to be treated;
    The exhaust gas treatment apparatus according to claim 14, further comprising:
  16.  前記燃焼触媒部の前段に設けられ、前記被処理ガス中の窒素酸化物を除去する脱硝部と、
     前記脱硝部の前段に設けられ、前記被処理ガスの温度を上昇させるガス加熱部と、
    を更に備え、
     前記燃焼触媒部で発生した燃焼熱が、前記ガス加熱部に供給される前記被処理ガスの加熱に用いられる、請求項14に記載の排ガス処理装置。
    A denitration unit that is provided upstream of the combustion catalyst unit and removes nitrogen oxides in the gas to be treated;
    A gas heating unit provided upstream of the denitration unit to raise the temperature of the gas to be treated;
    Further comprising
    The exhaust gas treatment apparatus according to claim 14, wherein combustion heat generated in the combustion catalyst unit is used for heating the gas to be treated supplied to the gas heating unit.
  17.  燃料及び燃焼空気の混合気を噴射する混合気噴射部と、
     蓄熱体が配置されており、被処理ガスを流通させて顕熱を蓄熱体に蓄熱し、蓄熱後に燃焼空気を流通させて、蓄熱した熱量で当該燃焼空気を加熱する蓄熱部と、
    を備え、
     前記蓄熱部と前記混合気噴射部との間に設けられた燃焼触媒部、又は、前記蓄熱部には、請求項1~13の何れか1項に記載の酸化触媒が充填されている、蓄熱燃焼バーナー。
    An air-fuel mixture injection unit for injecting an air-fuel mixture of fuel and combustion air;
    A heat accumulator is arranged, circulates the gas to be treated, accumulates sensible heat in the heat accumulator, circulates the combustion air after heat accumulation, and heats the combustion air with the amount of heat stored; and
    With
    A heat storage unit in which the combustion catalyst unit provided between the heat storage unit and the air-fuel mixture injection unit or the heat storage unit is filled with the oxidation catalyst according to any one of claims 1 to 13. Burning burner.
  18.  請求項1~13のいずれか1項に記載の酸化触媒を用いて、水蒸気及び硫黄酸化物を含む被処理ガス中の一酸化炭素、一酸化窒素、メタンからなる群から選ばれる可燃成分を酸化する、ガス中の可燃成分を酸化する方法。 An oxidation catalyst according to any one of claims 1 to 13 is used to oxidize a combustible component selected from the group consisting of carbon monoxide, nitrogen monoxide, and methane in a gas to be treated containing water vapor and sulfur oxide. A method of oxidizing flammable components in a gas.
  19.  前記被処理ガスと前記酸化触媒の接触する温度が、250℃以上300℃未満である、請求項18に記載のガス中の可燃成分を酸化する方法。 The method of oxidizing a combustible component in a gas according to claim 18, wherein a temperature at which the gas to be treated and the oxidation catalyst are in contact is 250 ° C or higher and lower than 300 ° C.
  20.  被処理ガスの温度を上昇させるガス加熱部と、被処理ガス中の窒素酸化物を除去する脱硝部と、を有するガス処理プロセスを用い、窒素酸化物を含むと共に、水蒸気と硫黄酸化物と可燃性ガスとを含む被処理ガス中の窒素酸化物を除去する方法であって、
     前記ガス加熱部と前記脱硝部との間に、請求項1~13の何れか1項に記載の酸化触媒が充填された燃焼触媒部を配置し、
     当該燃焼触媒部に前記ガス加熱部で加熱された前記被処理ガスを通過させて、前記被処理ガス中の可燃成分を燃焼し、その燃焼熱により前記被処理ガスの温度を更に上昇させる、ガス中の窒素酸化物の除去方法。
    Using a gas treatment process having a gas heating part for raising the temperature of the gas to be treated and a denitration part for removing nitrogen oxides in the gas to be treated, and containing nitrogen oxides, water vapor, sulfur oxides and combustible A method for removing nitrogen oxides in a gas to be treated containing a reactive gas,
    A combustion catalyst part filled with the oxidation catalyst according to any one of claims 1 to 13 is disposed between the gas heating part and the denitration part,
    A gas that causes the gas to be treated heated by the gas heating part to pass through the combustion catalyst part, burns combustible components in the gas to be treated, and further raises the temperature of the gas to be treated by the combustion heat. Of removing nitrogen oxides therein.
  21.  前記ガス加熱部として、熱交換器と、ガス加熱バーナー又は電熱ヒーターとを用い、
     前記脱硝部から排出されたガスを、前記熱交換器の高温ガスとして使用する、請求項20に記載のガス中の窒素酸化物の除去方法。
    As the gas heating unit, using a heat exchanger, a gas heating burner or an electric heater,
    21. The method for removing nitrogen oxides in a gas according to claim 20, wherein the gas discharged from the denitration unit is used as a high-temperature gas of the heat exchanger.
  22.  前記ガス加熱部として、熱交換器と、ガス加熱バーナー又は電熱ヒーターとを用い、
     前記燃焼触媒部の位置を、前記ガス加熱部と前記脱硝部の間から、前記ガス加熱部及び前記脱硝部の後段に配置換えし、
     前記燃焼触媒部から排出されたガスを、前記熱交換器の高温ガスとして使用する、請求項20に記載のガス中の窒素酸化物の除去方法。
    As the gas heating unit, using a heat exchanger, a gas heating burner or an electric heater,
    The position of the combustion catalyst unit is rearranged between the gas heating unit and the denitration unit to the subsequent stage of the gas heating unit and the denitration unit,
    The method for removing nitrogen oxides in a gas according to claim 20, wherein the gas discharged from the combustion catalyst section is used as a high-temperature gas of the heat exchanger.
  23.  前記被処理ガスが、鉄鋼製造プロセスにおける焼結炉の排ガスである、請求項20~22の何れか1項に記載のガス中の窒素酸化物の除去方法。
     
    The method for removing nitrogen oxides in a gas according to any one of claims 20 to 22, wherein the gas to be treated is exhaust gas from a sintering furnace in a steel production process.
PCT/JP2014/073516 2013-09-10 2014-09-05 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas WO2015037536A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015536562A JP6103067B2 (en) 2013-09-10 2014-09-05 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components in gas, and method for removing nitrogen oxides in gas
KR1020157034663A KR101814893B1 (en) 2013-09-10 2014-09-05 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas
CN201480050004.9A CN105531026B (en) 2013-09-10 2014-09-05 The minimizing technology of nitrogen oxides in the method for oxidation and gas of combustible component in oxidation catalyst, emission-control equipment, heat-accumulation combustor, gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187107 2013-09-10
JP2013-187107 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037536A1 true WO2015037536A1 (en) 2015-03-19

Family

ID=52665642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073516 WO2015037536A1 (en) 2013-09-10 2014-09-05 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas

Country Status (5)

Country Link
JP (1) JP6103067B2 (en)
KR (1) KR101814893B1 (en)
CN (1) CN105531026B (en)
TW (1) TWI600467B (en)
WO (1) WO2015037536A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211960A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Oxidation catalyst of combustible component in gas to be treated, method for producing oxidation catalyst of combustible component in gas to be treated, oxidation method of combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
JP2017018922A (en) * 2015-07-14 2017-01-26 新日鐵住金株式会社 Oxidation catalyst
JP2017064627A (en) * 2015-09-30 2017-04-06 日揮触媒化成株式会社 Catalyst for exhaust gas treatment and method of producing the same
JP2017080678A (en) * 2015-10-28 2017-05-18 新日鐵住金株式会社 Removal method of unburned component in exhaust gas, and removal method of nitrogen oxide in exhaust gas
JP2018094520A (en) * 2016-12-15 2018-06-21 三菱日立パワーシステムズ株式会社 CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
WO2018164193A1 (en) * 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
WO2019054071A1 (en) * 2017-09-12 2019-03-21 三菱日立パワーシステムズ株式会社 Co oxidation catalyst and method for producing same
WO2020039903A1 (en) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
CN113790445A (en) * 2021-08-16 2021-12-14 昆明理工大学 Method for heating object by natural gas catalytic combustion heat accumulation type infrared radiation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211709B2 (en) * 2018-02-27 2023-01-24 エヌ・イーケムキャット株式会社 Exhaust gas purifying three-way catalyst, manufacturing method thereof, and integral structure type exhaust gas purifying catalyst
CN110038558B (en) * 2019-04-09 2022-09-27 中国船舶重工集团公司第七一八研究所 Preparation method and application of low-precious-metal-content high-activity catalyst
US20230264178A1 (en) * 2022-02-23 2023-08-24 Robert Bosch Gmbh Propane gas removal material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115750A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
JPH06171915A (en) * 1992-08-12 1994-06-21 Corning Inc Phosphate-alumina material with adjusted pore diameter
JPH09117674A (en) * 1995-09-12 1997-05-06 Basf Ag Single mode or multimode catalyst carrier or catalyst, its preparation and preparation of chlorine
JPH11104493A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its use
JPH11169728A (en) * 1997-12-15 1999-06-29 Toho Gas Co Ltd Methane oxidation catalyst
JP2000300961A (en) * 1999-04-20 2000-10-31 Mitsubishi Heavy Ind Ltd Method and facility for denitration of exhaust gas
JP2001336733A (en) * 2000-05-26 2001-12-07 Mitsubishi Kakoki Kaisha Ltd Heat storage combustion burner
JP2005270821A (en) * 2004-03-25 2005-10-06 Mitsubishi Heavy Ind Ltd Carbon monoxide combustion catalyst and production method therefor
JP2010227931A (en) * 2009-03-06 2010-10-14 Ict:Kk Exhaust gas purification catalyst, production method of the same, and exhaust gas purification method
JP2012011308A (en) * 2010-06-30 2012-01-19 Jgc Catalysts & Chemicals Ltd Exhaust gas purifying catalyst and method for producing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104488A (en) * 1975-03-13 1976-09-16 Toyota Motor Co Ltd Shokubaitantai oyobi shokubai
JPS5535178A (en) 1978-09-05 1980-03-12 Toyota Motor Corp Exhaust gas recirculating apparatus for internal combustion engine
JPS61161143A (en) 1984-12-29 1986-07-21 Kawasaki Steel Corp Carbon monoxide-oxidizing catalyst in waste gas
JP4411740B2 (en) * 2000-04-21 2010-02-10 三菱瓦斯化学株式会社 Supported catalyst and method for producing the same
JP3742290B2 (en) 2000-09-08 2006-02-01 株式会社日本触媒 Wastewater treatment catalyst and wastewater treatment method using the catalyst
JP2007000697A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Exhaust gas purification catalyst
JP5165204B2 (en) * 2006-03-09 2013-03-21 国立大学法人大阪大学 Method for producing palladium fine particles
JP2008036602A (en) * 2006-08-10 2008-02-21 Osaka Univ Catalyst for oxidation reaction, method for producing the same, and method for producing p-xylylene diacetate using the same
JP5447766B2 (en) * 2008-07-06 2014-03-19 独立行政法人産業技術総合研究所 Environmentally friendly oxygen oxidation method using inorganic oxide catalyst supported on metal nanoparticles
US8211392B2 (en) * 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
CN103052446B (en) * 2010-08-20 2014-12-17 三井金属矿业株式会社 Oxidation catalyst suitable for combustion of light oil component
JP5788298B2 (en) 2011-11-22 2015-09-30 株式会社豊田中央研究所 Exhaust gas purification catalyst carrier, exhaust gas purification catalyst using the same, and production method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115750A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
JPH06171915A (en) * 1992-08-12 1994-06-21 Corning Inc Phosphate-alumina material with adjusted pore diameter
JPH09117674A (en) * 1995-09-12 1997-05-06 Basf Ag Single mode or multimode catalyst carrier or catalyst, its preparation and preparation of chlorine
JPH11104493A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its use
JPH11169728A (en) * 1997-12-15 1999-06-29 Toho Gas Co Ltd Methane oxidation catalyst
JP2000300961A (en) * 1999-04-20 2000-10-31 Mitsubishi Heavy Ind Ltd Method and facility for denitration of exhaust gas
JP2001336733A (en) * 2000-05-26 2001-12-07 Mitsubishi Kakoki Kaisha Ltd Heat storage combustion burner
JP2005270821A (en) * 2004-03-25 2005-10-06 Mitsubishi Heavy Ind Ltd Carbon monoxide combustion catalyst and production method therefor
JP2010227931A (en) * 2009-03-06 2010-10-14 Ict:Kk Exhaust gas purification catalyst, production method of the same, and exhaust gas purification method
JP2012011308A (en) * 2010-06-30 2012-01-19 Jgc Catalysts & Chemicals Ltd Exhaust gas purifying catalyst and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211960A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Oxidation catalyst of combustible component in gas to be treated, method for producing oxidation catalyst of combustible component in gas to be treated, oxidation method of combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
JP2017018922A (en) * 2015-07-14 2017-01-26 新日鐵住金株式会社 Oxidation catalyst
JP2017064627A (en) * 2015-09-30 2017-04-06 日揮触媒化成株式会社 Catalyst for exhaust gas treatment and method of producing the same
JP2017080678A (en) * 2015-10-28 2017-05-18 新日鐵住金株式会社 Removal method of unburned component in exhaust gas, and removal method of nitrogen oxide in exhaust gas
JP2018094520A (en) * 2016-12-15 2018-06-21 三菱日立パワーシステムズ株式会社 CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
US11014862B2 (en) 2017-03-08 2021-05-25 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
WO2018164193A1 (en) * 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
JPWO2018164193A1 (en) * 2017-03-08 2020-01-09 三菱ケミカル株式会社 Catalyst for hydrogenating carbonyl compound and method for producing alcohol
JP7111093B2 (en) 2017-03-08 2022-08-02 三菱ケミカル株式会社 Carbonyl compound hydrogenation catalyst and alcohol production method
US11352309B2 (en) 2017-03-08 2022-06-07 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
WO2019054071A1 (en) * 2017-09-12 2019-03-21 三菱日立パワーシステムズ株式会社 Co oxidation catalyst and method for producing same
US11141721B2 (en) 2018-08-22 2021-10-12 Mitsui Mining & Smelting Co., Ltd. Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
JPWO2020039903A1 (en) * 2018-08-22 2020-10-22 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using it, and exhaust gas purification method
WO2020039903A1 (en) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
CN113790445A (en) * 2021-08-16 2021-12-14 昆明理工大学 Method for heating object by natural gas catalytic combustion heat accumulation type infrared radiation

Also Published As

Publication number Publication date
TWI600467B (en) 2017-10-01
CN105531026A (en) 2016-04-27
KR20160009603A (en) 2016-01-26
CN105531026B (en) 2018-03-20
JPWO2015037536A1 (en) 2017-03-02
JP6103067B2 (en) 2017-03-29
TW201515701A (en) 2015-05-01
KR101814893B1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6103067B2 (en) Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components in gas, and method for removing nitrogen oxides in gas
TWI776842B (en) Low cost oxidation catalysts for voc and halogenated voc emission control
Xu et al. Unraveling the mechanism of ammonia selective catalytic oxidation on Ag/Al2O3 catalysts by operando spectroscopy
Yang et al. Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion
Wójcik et al. Robust Co3O4| α-Al2O3| cordierite structured catalyst for N2O abatement–Validation of the SCS method for active phase synthesis and deposition
JP5030818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
BR112017028424B1 (en) NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES
Wu et al. Effect of preparation methods on the structure and redox behavior of platinum–ceria–zirconia catalysts
JP5096712B2 (en) Carbon monoxide methanation method
US7147947B2 (en) Selective carbon monoxide oxidation catalyst, method of making the same and systems using the same
JP3870783B2 (en) Exhaust gas purification system for fuel cell vehicle and purification method for exhaust gas of fuel cell vehicle
JP2008073654A (en) Gas purification process, gas purification apparatus, and gas purification catalyst
Li et al. Pd–Co coating onto cordierite monoliths as structured catalysts for methane catalytic combustion
US20100092360A1 (en) Catalyst Containing Platinum and Palladium for the Selective Reduction of NOx with Hydrogen (H2-SCR)
Yang et al. Flexible monolithic Pt/CuO-Fe2O3/TiO2 catalysts integrated on Ti mesh for efficient NO removal via CO-SCR reaction
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
Koutsopoulos et al. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts
Promhuad et al. Effect of Metal Oxides (CeO2, ZnO, TiO2, and Al2O3) as the Support for Silver-Supported Catalysts on the Catalytic Oxidation of Diesel Particulate Matter
Li et al. Influence of M-Doped (M= Ba, Zr, La, and Ce) for Enhanced CO and C3H6 Catalytic Oxidation over Pd/Al2O3 Catalysts
Hattori et al. The chemical state and Cu+ stability for three-way catalytic performance of Cu-added Al2O3 catalysts
Akil et al. Investigation of catalysts M/CeO 2 (M= Pt, Rh, or Pd) for purification of CO 2 derived from oxycombustion in the absence or presence of water
Zhang et al. Development and performance of a K–Pt/γ-Al2O3 catalyst for the preferential oxidation of CO in hydrogen-rich synthesis gas
Aghababaei-Talkhonche et al. Catalytic removal of NO2 by nickel–platinum catalyst supported on multi-wall carbon nanotubes
JP6496932B2 (en) Combustion component oxidation catalyst in gas to be treated, method for producing oxidation catalyst for combustible component in gas to be treated, method for oxidizing combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
JP4568640B2 (en) Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050004.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536562

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157034663

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844964

Country of ref document: EP

Kind code of ref document: A1