WO2015037512A1 - Electroconductive pattern and electronic circuit - Google Patents
Electroconductive pattern and electronic circuit Download PDFInfo
- Publication number
- WO2015037512A1 WO2015037512A1 PCT/JP2014/073383 JP2014073383W WO2015037512A1 WO 2015037512 A1 WO2015037512 A1 WO 2015037512A1 JP 2014073383 W JP2014073383 W JP 2014073383W WO 2015037512 A1 WO2015037512 A1 WO 2015037512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- conductive layer
- support
- layer
- conductive pattern
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0145—Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0263—Details about a collection of particles
- H05K2201/0269—Non-uniform distribution or concentration of particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/072—Electroless plating, e.g. finish plating or initial plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0723—Electroplating, e.g. finish plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/09—Treatments involving charged particles
- H05K2203/095—Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
- H05K2203/097—Corona discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1241—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
- H05K3/125—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1275—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1283—After-treatment of the printed patterns, e.g. sintering or curing methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/14—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
- H05K3/16—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation by cathodic sputtering
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/245—Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
- H05K3/246—Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/386—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
Definitions
- the present invention relates to a conductive pattern used for an electronic circuit such as a printed circuit board, an electromagnetic wave shield, an integrated circuit, or an organic transistor.
- Examples of conductive patterns that can be used in the above-described electronic circuits include, for example, applying (printing) conductive ink containing a conductive substance to the surface of the support by various printing methods, and firing it if necessary. Manufactured by is known.
- a film or sheet made of a resin such as polyimide or polyethylene terephthalate is flexible, and has attracted attention as being usable for the production of a foldable flexible device.
- a conductive pattern is produced by drawing a pattern by a predetermined method using a conductive ink on an ink receiving substrate provided with a latex layer on the surface of a support.
- an acrylic resin can be used as the latex layer (see, for example, Patent Document 1).
- the conductive pattern obtained by the above method may not yet be sufficient in terms of the adhesion between the latex layer and the conductive ink, the conductivity due to the peeling of the conductive material contained in the conductive ink is not sufficient. There was a problem that caused a drop or disconnection.
- the problem to be solved by the present invention is to provide a conductive pattern having adhesiveness that can prevent a conductive layer containing a conductive substance from peeling from the surface of a support.
- the present inventors have formed a conductive pattern having a conductive layer on a support using a fluid containing a conductive substance and a polymer dispersant.
- the concentration of the polymer dispersant in the cross section of the conductive layer the polymer dispersant is unevenly distributed on the support (A) side (substrate interface), and the concentration thereof is The inventors have found that the adhesiveness with the conductive layer is improved and completed the present invention.
- the present invention is a conductive pattern in which a conductive layer (B) is formed by applying a fluid (b) containing a conductive substance and a polymer dispersant on a support (A), In the cross section of the conductive layer (B), the polymer dispersant is unevenly distributed on the support (A) side (base material interface).
- the present invention also relates to an electronic circuit using this conductive pattern.
- the conductive pattern of the present invention has extremely excellent adhesion between the support and the conductive layer, so that the conductivity of the conductive layer does not deteriorate with time, and the conductive layer is patterned finely. There is no disconnection. Therefore, for example, conductive patterns, electronic circuits, organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other peripheral wiring forming RFID, plasma display electromagnetic shielding In general, it can be suitably used as various members in the field of printed electronics, such as production of wiring, integrated circuits, and organic transistors.
- FIG. 1 is a chart showing the elemental analysis of the conductive layer (silver layer) of the conductive pattern obtained in Example 2 in the depth direction by glow discharge emission spectroscopy (GD-OES).
- the conductive pattern of the present invention is a conductive pattern in which a conductive layer (B) is formed by applying a fluid (b) containing a conductive substance and a polymer dispersant on a support (A). In the cross section of the conductive layer (B), the polymer dispersant is unevenly distributed on the support (A) side (base material interface).
- the support (A) serves as a base material for the conductive pattern of the present invention.
- the material of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS resin), acrylic resin, polyvinylidene fluoride, polyvinyl chloride, Examples thereof include polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass, glass / epoxy resin, glass polyimide, and paper phenol.
- the support (A) preferably has insulating properties, phenol resin, fluorine resin, polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, glass / epoxy resin, glass polyimide, paper phenol, Cellulose nanofibers, alumina, mullite, steatite, forsterite, zirconia and the like are preferable.
- the support (A) for example, a substrate made of synthetic fibers such as polyester fibers, polyamide fibers, and aramid fibers; natural fibers such as cotton and hemp can be used.
- the fibers may be processed in advance.
- a flexible and flexible support is preferably used when the conductive pattern of the present invention is used for an application where bending flexibility is required. Specifically, it is preferable to use a film or sheet-like support.
- the film or sheet-like support examples include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
- the support (A) is subjected to a surface blasting by a sandblasting method, a solvent treatment method or the like, if necessary. It is possible to use those processed by roughening treatment, electrical treatment (corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet / electron beam irradiation treatment, oxidation treatment, etc. it can.
- the thickness of the film or sheet support is usually preferably about 1 to 5,000 ⁇ m, and preferably about 1 to 300 ⁇ m. More preferably.
- a film having a thickness of about 1 to 200 ⁇ m may be used as the support (A). preferable.
- the conductive layer (B) is a layer containing a conductive substance and a polymer dispersant, and is formed using a fluid (b) containing these.
- the fluid (b) contains a conductive substance and a polymer dispersant, and specific examples include conductive ink. Moreover, instead of the conductive substance, a plating nucleating agent used for forming a plating layer (D) described later may be contained.
- the content ratio of the polymer dispersant in the fluid (b) is preferably in the range of 0.01 to 10% by mass. Further, the content ratio of the conductive substance in the fluid (b) is preferably in the range of 5 to 90% by mass, more preferably in the range of 10 to 60% by mass, and still more preferably in the range of 10 to 40% by mass. .
- Examples of the polymer dispersant contained in the fluid (b) include a copolymer of a (meth) acrylic acid ester having a polyoxyalkylene glycol chain and a chain transfer agent having a sulfur atom, and a phosphate ester residue.
- examples thereof include a copolymer with a chain transfer agent having a sulfur atom, a polyalkyleneimine such as polyethyleneimine and polypropyleneimine, and a compound obtained by adding polyoxyalkylene to the polyalkyleneimine.
- the dispersion stability of the conductive substance in the fluid (b) is improved, and in the conductive layer (B), it tends to be unevenly distributed on the support (A) side (substrate interface).
- Copolymer of (meth) acrylic acid ester having polyoxyalkylene glycol chain, (meth) acrylic acid ester having phosphate residue and chain transfer agent having sulfur atom, adding polyoxyalkylene to polyalkyleneimine are preferred.
- the “(meth) acrylic acid ester” means one or both of “methacrylic acid ester” and “acrylic acid ester”.
- polyoxyalkylene examples include random structures such as polyoxyethylene and poly (oxyethylene-oxypropylene) or block structures.
- polyoxyalkylene those having an oxyethylene unit are preferable because the dispersion stability of the conductive substance in the fluid (b) is further improved, and 10% of the oxyethylene unit is contained in the whole polyoxyalkylene. Those having a content in the range of ⁇ 100 mass% are more preferred.
- Examples of the (meth) acrylic acid ester having a polyoxyalkylene glycol chain include polyethylene glycol having a polymerization degree of 2 to 50, and a block copolymer of ethylene oxide and propylene oxide having 2 to 50 repeating units as ethylene oxide ( (Meth) acrylate, or polyethylene glycol having a degree of polymerization of 2 to 50 capped with an alkyl group having 1 to 6 carbon atoms at the end, or a block copolymer of ethylene oxide and propylene oxide having 2 to 50 repeating units as ethylene oxide (Meth) acrylates and the like.
- S atom-containing chain transfer agent examples include -SR (R is an alkyl group having 1 to 18 carbon atoms, a phenyl group optionally having a substituent on the benzene ring, a hydroxy group, a carbon
- R is an alkyl group having 1 to 18 carbon atoms, a phenyl group optionally having a substituent on the benzene ring, a hydroxy group, a carbon
- An alkyl group having
- (meth) acrylic acid ester having a phosphate ester residue examples include commercially available monomers such as “Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd., “Phosmer M”, “Phosmer PE” manufactured by Unichemical Co., Ltd. Is mentioned.
- (meth) acrylic acid ester can be easily obtained by reacting (meth) acrylic acid hydroxy ester with a phosphoric acid esterifying reagent such as phosphorus oxychloride or phenyl dichlorophosphate. These can also be used. These may be used alone or in combination of two or more.
- Examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include those having a structure composed of polyethyleneimine and the polyoxyalkylene structure such as a polyethylene oxide structure.
- the polyethyleneimine and the polyoxyalkylene may be linearly bonded, and the polyoxyalkylene is grafted and bonded to the side chain of the main chain composed of the polyethyleneimine. There may be.
- the compound in which polyoxyalkylene is added to the polyalkyleneimine include a copolymer of polyethyleneimine and polyoxyethylene, a part of imino group present in the main chain, and an ethylene oxide addition reaction. And the like. They are preferably block copolymers.
- the compound obtained by adding polyoxyalkylene to the polyalkyleneimine was obtained by reacting an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin. Things can also be used.
- polyalkyleneimine examples include “PAO2006W”, “PAO306”, “PAO318”, “PAO718” and the like of “Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
- the polyalkyleneimine preferably has a number average molecular weight in the range of 3,000 to 30,000.
- examples of the conductive material include transition metals or compounds thereof, and ionic transition metals are preferable among the transition metals.
- examples of the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt.
- the ionic transition metals copper, silver, and gold are preferable, and silver is more preferable because a conductive pattern with low electrical resistance and resistance to corrosion can be formed.
- the oxide of the transition metal, a metal whose surface is coated with an organic substance, or the like can be used.
- These conductive substances or plating nucleating agents can be used alone or in combination of two or more.
- the transition metal oxide is usually in an inactive (insulating) state.
- the metal is exposed by treatment with a reducing agent such as dimethylaminoborane to impart activity (conductivity). be able to.
- examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. These are usually in an inactive (insulating) state. However, for example, by removing the organic substance using a laser or the like, the metal can be exposed to impart activity (conductivity).
- the conductive material particles having an average particle diameter of about 1 to 100 nm are preferably used, and those having an average particle diameter of 1 to 50 nm are preferably used. Compared to the case of using a conductive material having a diameter, it is more preferable because a fine conductive pattern can be formed and the resistance value after firing described later can be further reduced.
- the “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
- Examples of the solvent that can be used for the fluid (b) include organic media such as alcohols, ethers, esters, and ketones, as well as aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water. Can be mentioned.
- Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, heptanol, hexanol, octanol, and nonanol.
- the fluid (b) can be used in combination with a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, etc., for adjusting the physical properties.
- a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, etc.
- Other examples include ester solvents such as ethyl acetate, butyl acetate, 3-methoxybutyl acetate and 3-methoxy-3-methyl-butyl acetate, hydrocarbon solvents such as toluene, especially hydrocarbon solvents having 8 or more carbon atoms. .
- hydrocarbon solvent having 8 or more carbon atoms examples include nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane. They can also be used in combination as needed. Furthermore, a solvent such as mineral spirit or solvent naphtha, which is a mixed solvent, can be used in combination.
- solvent examples include 2-ethyl 1,3-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, and 1,3-butane.
- the fluid (b) can be produced, for example, by mixing the polymer dispersant, the conductive substance, and, if necessary, the solvent. Specifically, it has a polyoxyalkylene glycol chain, a phosphate ester residue and an acrylic acid ester copolymer having a sulfur atom at the terminal, or a branched polyalkyleneimine chain, a hydrophilic segment, and a hydrophobic segment. It can be produced by adding a previously prepared ion solution of the conductive substance to a medium in which the compound is dispersed, and reducing the metal ions.
- composition containing the conductive substance and the solvent examples include a dispersion in which the conductive substance is dispersed in a solvent such as the aqueous medium or the organic solvent.
- the dispersion can be produced by mixing and stirring the conductive substance and the solvent.
- Specific examples of the dispersion include “SW1000” (manufactured by Bando Chemical Co., Ltd.), “Silk Auto A-1” (manufactured by Mitsubishi Materials Corporation), “MDot-SLP” (manufactured by Mitsuboshi Belting Co., Ltd.), etc. Is mentioned.
- the fluid (b) can also be produced by adding the polymer dispersant to a dispersion in which a conductive substance is dispersed in the solvent. In this production, they can be mixed at room temperature, and when mixing, a stirrer such as a three-one motor can be used as necessary.
- the fluid (b) may include a surfactant, if necessary, in order to improve the dispersion stability of the conductive substance in a solvent such as an aqueous medium or an organic solvent and the wettability to the coated surface.
- a surfactant such as an aqueous medium or an organic solvent and the wettability to the coated surface.
- An antifoaming agent, a rheology adjusting agent, etc. may be added.
- the fluid (b) in order to remove impurities mixed in in the manufacturing process, a fluid filtered using a micropore filter or the like, or a material processed using a centrifuge, or the like, should be used. You can also.
- the viscosity of the fluid (b) (value measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa ⁇ s, and in the range of 0.5 to 10,000 mPa ⁇ s. Is more preferable.
- the viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
- Examples of the method for applying the fluid (b) on the support (A) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, and a bar coating. Method, die coating method, slit coating method, roll coating method, dip coating method and the like.
- the conductive layer (B) patterned in a thin line shape having a width of about 0.01 to 100 ⁇ m which is required when realizing a high density of an electronic circuit or the like. It is preferable to use an inkjet printing method or a reverse printing method.
- an ink jet printer As the ink jet printing method, what is generally called an ink jet printer can be used. Specifically, “Konica Minolta EB100, XY100” (manufactured by Konica Minolta Co., Ltd.), “Dimatics Material Printer DMP-3000, DMP-2831” (manufactured by FUJIFILM Corporation), and the like can be mentioned.
- the reversal printing method a letterpress reversal printing method and an intaglio reversal printing method are known.
- the fluid (b) is applied to the surface of various blankets, and a non-image portion is in contact with the projected plate
- the pattern is formed on the surface of the blanket or the like by selectively transferring the fluid (b) corresponding to the non-image area to the surface of the plate, and then the pattern is transferred to the support.
- the method of making it transfer on the layer (A) (surface) is mentioned.
- the conductive layer (B) is formed on the support (A).
- the support After the primer is applied to the surface of (A) and dried to form the primer layer (C), the conductive layer (B) may be formed on the primer layer (C).
- primer examples include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, polyvinyl pyrrolidone, and various resins and solvents. Is mentioned.
- urethane resin urethane resin
- vinyl resin urethane-vinyl composite resin
- urethane resin vinyl resin, and urethane-vinyl composite resin are preferably used.
- one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferable, and urethane-acrylic composite resins are more preferable because a conductive pattern having excellent adhesion, electrical conductivity, and fine wire properties can be obtained. .
- the content ratio of the resin in the primer is preferably in the range of 10 to 70% by mass and more preferably in the range of 10 to 50% by mass in consideration of ease of application.
- examples of the solvent used for the primer include organic solvents and aqueous media.
- organic solvent examples include toluene, ethyl acetate, and methyl ethyl ketone
- aqueous medium examples include water, organic solvents that are miscible with water, and mixtures thereof.
- organic solvent miscible with water examples include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
- alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve
- ketones such as acetone and methyl ethyl ketone
- polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
- alkylene glycols alkyl ethers of polyalkylene glycols
- lactams such as N-methyl-2-pyrrolidone.
- the content ratio of the solvent in the primer is preferably in the range of 25 to 85% by mass and more preferably in the range of 45 to 85% by mass in consideration of ease of application.
- additives such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent may be added to the primer.
- the primer layer (C) may be formed by applying a primer to part or all of the surface of the support (A), and removing a solvent such as an aqueous medium or an organic solvent contained in the primer. it can.
- Examples of the method for applying the primer to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method.
- the surface of the primer layer (C) is improved in adhesion to the conductive layer (B).
- plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, water, acidic
- the surface treatment may be performed by a wet treatment method using an alkaline chemical solution, an organic solvent, or the like.
- a method for removing the solvent contained in the coating layer after coating the primer on the surface of the support (A) for example, a method of drying using a dryer and volatilizing the solvent is common.
- the drying temperature is preferably set to a temperature that allows the solvent to be volatilized and does not adversely affect the support (A).
- the thickness of the primer layer (C) formed using the primer varies depending on the use of the conductive pattern of the present invention, the adhesion between the support (A) and the conductive layer (B) is further improved. Therefore, the range of 10 to 300 ⁇ m is preferable, and the range of 10 to 500 nm is more preferable.
- the said support body (A) Surface treatment for forming fine irregularities, cleaning dirt adhering to the surface, and introducing a functional group such as a hydroxyl group, a carbonyl group, or a carboxyl group may be performed on the surface.
- a plasma discharge treatment such as a corona discharge treatment, a dry treatment such as an ultraviolet treatment, a wet treatment using water, an aqueous solution of an acid / alkali, or an organic solvent may be applied.
- the baking step performed after applying the fluid (b) containing a conductive substance brings the conductive substances contained in the fluid (b) into close contact with each other. This is performed in order to form a conductive layer (B) having conductivity by bonding.
- the firing can be performed at a temperature range of 80 to 300 ° C. for about 2 to 200 minutes.
- the firing may be performed in the air, part or all of the firing step may be performed in a reducing atmosphere in order to prevent all of the metal powder from being oxidized.
- the baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, flash irradiation apparatus, or the like.
- the conductive layer (B) formed using the fluid (b) by the above method contains a conductive substance in the range of 80 to 99.9% by mass in the conductive layer (B).
- the polymer dispersant is preferably contained in the range of 0.1 to 20% by mass.
- GD-OES glow discharge emission spectroscopy
- the conductive layer (B) may be provided on the entire surface of the support (A), or may be provided on a part of the surface of the support (A). Specific examples of the conductive layer (B) provided on a part of the surface of the support (A) include fine wires formed on the surface of the support (A). . By making the said conductive layer (B) into a thin wire
- the width of the fine line is preferably about 0.01 to 200 ⁇ m, and more preferably about 0.01 to 150 ⁇ m because the conductive pattern can be densified.
- the thickness of the conductive layer (B) is preferably in the range of 0.01 to 100 ⁇ m because a conductive pattern having low resistance and excellent conductivity can be formed.
- the thickness is preferably in the range of 0.1 to 50 ⁇ m.
- the conductive pattern of the present invention is formed on the conductive layer (B) for the purpose of forming a highly reliable wiring pattern capable of maintaining good electrical conductivity without causing disconnection or the like over a long period of time.
- a plating layer (D) may be formed.
- the formation method of the plating layer (D) is preferably a method of forming by plating.
- the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the plating layer (D) may be formed by combining two or more of these plating methods.
- the adhesion between the conductive layer (B) and the plating layer (D) is further improved, and a conductive pattern having excellent conductivity can be obtained.
- a wet plating method such as an electrolytic plating method is preferable, and an electrolytic plating method is more preferable.
- the metal constituting the conductive layer (B) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film.
- This is a method of forming an electroless plating layer (film).
- Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
- reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
- monocarboxylic acids such as acetic acid and formic acid
- dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid
- malic acid lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid
- amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid
- Use organic acids such as carboxylic acid compounds, or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), and those containing complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine. You It is possible.
- the electroless plating solution is preferably used in the range of 20 to 98 ° C.
- the electrolytic plating method for example, electricity is supplied in a state where an electrolytic plating solution is in contact with the surface of the metal constituting the conductive layer (B) or the electroless plating layer (coating) formed by the electroless treatment.
- a metal such as copper contained in the electrolytic plating solution is used to form a conductive material constituting the conductive layer (B) placed on the negative electrode or an electroless plating layer (coating) formed by the electroless treatment.
- This is a method of depositing on the surface and forming an electrolytic plating layer (metal coating).
- Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
- the electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
- a sputtering method As the dry plating process, a sputtering method, a vacuum deposition method, or the like can be used.
- an inert gas mainly argon
- a voltage is applied to the material for forming the plating layer (D) to generate a glow discharge
- the inert gas atoms are removed. Ionized, vigorously struck gas ions against the surface of the material for forming the plating layer (D) at high speed, and ejects atoms and molecules constituting the material for forming the plating layer (D) to the surface of the conductive layer (B).
- the plating layer (D) is formed by adhering.
- Examples of the material for forming the plating layer (D) by sputtering include chrome, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, indium tin oxide (ITO), and silicon dioxide. , Titanium dioxide, niobium oxide, zinc oxide and the like.
- a magnetron sputtering apparatus or the like When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
- the thickness of the plating layer (D) is preferably in the range of 1 to 50 ⁇ m.
- the thickness of the plating layer (D) can be adjusted by controlling the processing time, the current density, the usage amount of the plating additive, and the like in the plating process when forming the plating layer (D). .
- the conductive pattern of the present invention obtained by the above method is a fluid containing the conductive substance (B) in order to form the conductive layer (B) at a position corresponding to a desired pattern shape to be formed.
- a conductive pattern having a desired pattern can be produced.
- the conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on the printed pattern of the conductive layer (B).
- the subtractive method is an etching process having a shape corresponding to a desired pattern shape on the conductive layer (B) manufactured in advance or on the plating layer (D) provided on the conductive layer (B).
- a method of forming a resist layer and then dissolving and removing the plating layer (D) and the conductive layer (B) in the removed portion of the resist with a chemical solution by a subsequent development process, thereby forming a desired pattern. is there.
- a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
- the conductive layer (B) is formed on the support (A), and the surface of the conductive layer (B) is treated by plasma discharge treatment or the like as necessary.
- a plating resist layer having a shape corresponding to a desired pattern is formed on the surface of (B), and then a plating layer (D) is formed by an electrolytic plating method and an electroless plating method. This is a method of forming a desired pattern by dissolving and removing the contacted conductive layer (B) in a chemical solution or the like.
- the method of plating on the printed pattern of the conductive layer (B) is to print the pattern of the conductive layer (B) on the support (A) by an ink jet method, a reverse printing method or the like, and if necessary, plasma
- the plating layer (D) is formed on the surface of the conductive layer (B) by an electrolytic plating method or an electroless plating method. This is a method of forming a pattern.
- the conductive pattern obtained by the above method is in contact with the unevenly distributed portion of the conductive dispersant (B) due to the uneven distribution of the polymer dispersant on the support (A) side. Adhesion with the surface of (A) or the surface of the primer layer (C) is greatly improved. Thereby, since the adhesiveness between the support (A) and the conductive layer (B) is extremely high, delamination can be suppressed and excellent durability capable of maintaining good electrical conductivity is obtained. Therefore, formation of circuit forming substrates used for electronic circuits, integrated circuits, etc., formation of organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, peripheral wiring constituting RFID, etc., plasma display It can be used for electromagnetic shield wiring. In particular, it can be suitably used for applications requiring high durability. For example, for printed wiring boards (PWB), flexible printed boards (FPC), automatic tape bonding (TAB), chip-on-film (COF), etc. It is possible to use.
- PWB printed wiring boards
- polymer dispersing agent (1) an acrylic acid ester copolymer (hereinafter abbreviated as “polymer dispersing agent (1)”) was obtained.
- the weight average molecular weight measured by gel permeation chromatography of the obtained polymer dispersant (1) was 4,300 in terms of polystyrene, and the acid value was 97.5.
- a reducing agent solution comprising 463 g (4.41 mol) of 85% by mass of N, N-diethylhydroxylamine, the polymer dispersant (1) obtained above (equivalent to 23.0 g of non-volatiles), and 1,250 g of water. Prepared. Separately, the polymer dispersant (1) obtained above corresponding to 11.5 g of non-volatiles was dissolved in 333 g of water, and a solution of 500 g (2.94 mol) of silver nitrate in 833 g of water was added thereto and stirred well. did. The reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours.
- the obtained reaction mixture was filtered with a membrane filter (pore size 0.45 ⁇ m), and the filtrate was in a hollow fiber type ultrafiltration module (“MOLSEP module FB-02 type” manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000).
- MOLSEP module FB-02 type manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000.
- the amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification.
- water injection was stopped and the filtrate was concentrated.
- the concentrate was recovered to obtain 742.9 g (dispersion medium: water) of a silver dispersion (1) of 36.7 parts by mass of nonvolatiles.
- a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the silver dispersion liquid (1) obtained above and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure.
- a fluid (1) that can be used for conductive ink for inkjet printing. Obtained.
- the content of silver in the obtained fluid (1) was 20% by mass, and the content of the polymer dispersant (1) was 1% by mass.
- the viscosity of the fluid (1) was 10 mPa ⁇ s.
- the product obtained above was washed with 100 ml of 5% by mass aqueous hydrochloric acid solution, then with 100 ml saturated aqueous sodium hydrogen carbonate solution, and further with 100 ml saturated aqueous sodium chloride solution, and then dried over anhydrous magnesium sulfate and filtered. And concentrated under reduced pressure.
- the product concentrated under reduced pressure was washed several times with hexane, filtered, and dried under reduced pressure at 80 ° C. to obtain methoxypolyethylene glycol having p-toluenesulfonyloxy group.
- a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes.
- a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes.
- 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure.
- Fluid (2) usable for conductive ink for inkjet printing by adding 45 g of ethylene glycol and 55 g of ion exchange water to 25.9 g of the silver-containing powder (2) obtained above and stirring for 3 hours.
- the content of silver in the obtained fluid (2) was 20% by mass, and the content of the polymer dispersant (2) was 1% by mass.
- the viscosity of the fluid (2) was 10 mPa ⁇ s.
- urethane resin (B) -2 having a concentration of 30% by mass was obtained.
- the urethane resin obtained here had an acid value of 30 and a weight average molecular weight of 55,000.
- Example 1 A non-alkali glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the fluid (1) obtained above was applied to the surface of the inkjet printing machine (an inkjet testing machine manufactured by Konica Minolta Co., Ltd. “ EB100 ”, evaluation printer head KM512L, discharge amount 42 pl), a straight line having a line width of 100 ⁇ m and a film thickness of 0.5 ⁇ m is printed by about 1 cm, and then baked at 200 ° C. for 30 minutes. A conductive pattern having a conductive layer laminated thereon was obtained.
- the inkjet printing machine an inkjet testing machine manufactured by Konica Minolta Co., Ltd. “ EB100 ”, evaluation printer head KM512L, discharge amount 42 pl
- a straight line having a line width of 100 ⁇ m and a film thickness of 0.5 ⁇ m is printed by about 1 cm, and then baked at 200 ° C. for 30 minutes.
- Example 2 Instead of the fluid (1) used in Example 1, a conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
- Example 3 instead of the alkali-free glass used as the support in Example 1, a polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m) was used instead of the fluid (1) used in Example 1. A conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
- Kapton 150ENC manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m
- Example 4 An alkali-free glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface to a dry film thickness of 1 ⁇ m.
- a support made of an alkali-free glass having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained.
- an inkjet printer inkjet printer (ink tester “EB100” manufactured by Konica Minolta, Inc., evaluation printer head KM512L, discharge amount 42 pl).
- a straight line having a line width of 100 ⁇ m and a film thickness of 0.5 ⁇ m was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
- Example 5 A conductive pattern was obtained in the same manner as in Example 4 except that instead of the fluid (1) used in Example 4, the fluid (2) obtained above was used.
- Example 6 A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m) was used as a support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface with a dry film thickness of 1 ⁇ m.
- a support comprising a polyimide film having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained.
- an inkjet printer inkjet printer
- a straight line having a line width of 100 ⁇ m and a film thickness of 0.5 ⁇ m was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
- Conductivity is obtained in the same manner as in Example 1 except that alkali-free glass is used as the support and the fluid (3) obtained above is used instead of the fluid (1) used in Example 1. Got a pattern.
- Example 2 A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m) is used as a support, and instead of the fluid (1) used in Example 1, the fluid (3) obtained above is used. A conductive pattern was obtained in the same manner as in Example 1 except that.
- a cellophane adhesive tape (“CT405AP-24” manufactured by Nichiban Co., Ltd., width 24 mm) is pressure-bonded to the surface of the conductive layer of the conductive pattern with a finger, and the pressure-sensitive cellophane adhesive tape is then applied to the surface of the conductive pattern. It peeled in the direction. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesion between the conductive layer and the support was evaluated according to the following criteria.
- a conductive layer containing silver was not attached to the adhesive surface of the cellophane adhesive tape.
- B A conductive layer in a range of less than 3% with respect to the area where the conductive layer and the adhesive tape contacted each other was from the primer layer. Exfoliated and adhered to the adhesive surface of the adhesive tape
- C The conductive layer in the range of 3% or more and less than 30% with respect to the area where the conductive layer and the adhesive tape were in contact with each other was separated from the primer layer
- D The conductive layer of 30% or more of the area where the conductive layer and the adhesive tape contacted peeled off from the primer layer and adhered to the adhesive tape
- the conductive patterns of Examples 1 to 3 have a high carbon atom content of 80 to 89 atm% at the substrate interface of the conductive layer. It was confirmed that the polymer dispersant was segregated. On the other hand, in the conductive patterns of Examples 1 to 3, the amount of carbon atoms at the base material interface of the conductive layer is as low as 15 to 71 atm%, and the polymer dispersant is not segregated at the base material interface of the conductive layer. I was able to confirm.
- FIG. 1 shows a chart of elemental analysis of carbon atoms and silver atoms in the depth direction by 200 Pa, discharge power: 20 W, pulse discharge: On, pulse frequency: 50 Hz, uptake: every 5 ms, measurement diameter: 4 mm).
- the conductive pattern of the present invention of Examples 1 to 6 in which the polymer dispersant is unevenly distributed on the support (A) side (substrate interface) is the adhesion between the support and the conductive layer. It was confirmed that the property is very high.
- the conductive patterns of Comparative Examples 1 and 2 have a small amount of oleic acid, which is a surfactant corresponding to a dispersant, on the support side (base material interface) of the conductive layer. It was confirmed that the adhesion with the conductive layer was insufficient.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
The present invention provides: an electroconductive pattern in which a fluid body (b) containing an electroconductive substance and a polymer dispersant is applied on a support body (A) and an electroconductive layer (B) is formed, wherein in the cross-section of the electroconductive layer (B), the polymer dispersant is disproportionately distributed towards the support body (A)-side (substrate interface); and an electronic circuit in which the electroconductive pattern is used.
In this electroconductive pattern, the separation of the electroconductive layer containing the electroconductive substance from the support body surface over time is inhibited.
Description
本発明は、プリント基板、電磁波シールド、集積回路、有機トランジスタ等の電子回路に供される導電性パターンに関するものである。
The present invention relates to a conductive pattern used for an electronic circuit such as a printed circuit board, an electromagnetic wave shield, an integrated circuit, or an organic transistor.
近年、電子機器の高性能化、小型化および薄型化にともなって、それに使用される電子回路、集積回路等の高密度化、小型化および薄型化が、強く求められている。
In recent years, as electronic devices become more sophisticated, smaller and thinner, there is a strong demand for higher density, smaller and thinner electronic circuits and integrated circuits used therein.
上記の電子回路等に使用可能な導電性パターンとしては、例えば、導電性物質を含有する導電性インクを、各種印刷方式によって支持体表面に塗布(印刷)し、必要に応じて焼成等することによって製造したものが知られている。
Examples of conductive patterns that can be used in the above-described electronic circuits include, for example, applying (printing) conductive ink containing a conductive substance to the surface of the support by various printing methods, and firing it if necessary. Manufactured by is known.
しかし、前記導電性インクから形成された導電層は、各種支持体の表面との密着性が不十分であると、支持体表面から導電層が剥離し、最終的に得られる電子回路等の導電性の低下や断線を生じる問題があった。
However, when the conductive layer formed from the conductive ink has insufficient adhesion to the surfaces of various supports, the conductive layer peels off from the surface of the support, and finally the conductive circuit such as an electronic circuit is obtained. There was a problem of causing deterioration of the characteristics and disconnection.
前記支持体としては、ポリイミド、ポリエチレンテレフタレート等の樹脂からなるフィルムやシートは柔軟性があるため、折り曲げ可能なフレキシブルデバイスの生産に使用できるものとして注目されている。
As the support, a film or sheet made of a resin such as polyimide or polyethylene terephthalate is flexible, and has attracted attention as being usable for the production of a foldable flexible device.
しかし、前記ポリイミド等の樹脂からなる支持体は、前記導電性インクが特に密着しにくいため、前記支持体を折り曲げた際に導電性インクが剥離しやすく、その結果、最終的に得られる電子回路等の断線を生じる可能性がより高いという問題もあった。
However, since the support made of resin such as polyimide is particularly difficult to adhere to the conductive ink, the conductive ink is easily peeled off when the support is bent, and as a result, an electronic circuit finally obtained There is also a problem that there is a higher possibility of causing disconnection such as.
上記の問題を解決する方法としては、例えば、支持体の表面にラテックス層を設けたインク受容基材に、導電性インクを用いて、所定の方法によりパターンを描画することによって導電性パターンを作製する方法が知られ、前記ラテックス層としてアクリル樹脂を使用できることが知られている(例えば、特許文献1参照。)。
As a method for solving the above problem, for example, a conductive pattern is produced by drawing a pattern by a predetermined method using a conductive ink on an ink receiving substrate provided with a latex layer on the surface of a support. It is known that an acrylic resin can be used as the latex layer (see, for example, Patent Document 1).
しかし、前記方法で得られた導電性パターンは、前記ラテックス層と導電性インクとの密着性の点で未だ十分でない場合があるため、導電性インク中に含まれる導電性物質の剥離による導電性の低下や断線を生じる問題があった。
However, since the conductive pattern obtained by the above method may not yet be sufficient in terms of the adhesion between the latex layer and the conductive ink, the conductivity due to the peeling of the conductive material contained in the conductive ink is not sufficient. There was a problem that caused a drop or disconnection.
本発明が解決しようとする課題は、導電性物質を含有する導電層が、支持体表面から剥離することを抑制できる密着性を有する導電性パターンを提供することである。
The problem to be solved by the present invention is to provide a conductive pattern having adhesiveness that can prevent a conductive layer containing a conductive substance from peeling from the surface of a support.
本発明者らは、上記の課題を解決すべく鋭意研究した結果、支持体の上に導電層を有する導電性パターンにおいて、導電性物質および高分子分散剤を含有する流動体を用いて形成した導電層の断面のおける高分子分散剤の濃度に着目した結果、前記支持体(A)側(基材界面)に、前記高分子分散剤が偏在し、その濃度が高いものは、支持体と導電層との密着性が高くなることを見出し、本発明を完成させた。
As a result of diligent research to solve the above problems, the present inventors have formed a conductive pattern having a conductive layer on a support using a fluid containing a conductive substance and a polymer dispersant. As a result of paying attention to the concentration of the polymer dispersant in the cross section of the conductive layer, the polymer dispersant is unevenly distributed on the support (A) side (substrate interface), and the concentration thereof is The inventors have found that the adhesiveness with the conductive layer is improved and completed the present invention.
すなわち、本発明は、支持体(A)の上に、導電性物質および高分子分散剤を含有する流動体(b)を塗布して導電層(B)を形成した導電性パターンであって、前記導電層(B)の断面において、前記支持体(A)側(基材界面)に、前記高分子分散剤が偏在していることを特徴とする導電性パターンに関するものである。また、この導電性パターンを用いた電子回路に関するものである。
That is, the present invention is a conductive pattern in which a conductive layer (B) is formed by applying a fluid (b) containing a conductive substance and a polymer dispersant on a support (A), In the cross section of the conductive layer (B), the polymer dispersant is unevenly distributed on the support (A) side (base material interface). The present invention also relates to an electronic circuit using this conductive pattern.
本発明の導電性パターンは、支持体と導電層との密着性が極めて優れたものであるため、経時的に導電層の導電性が低下することなく、また、導電層を細くパターン化した場合においても断線することがない。したがって、例えば、導電性パターン、電子回路、有機太陽電池、電子端末、有機EL、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFIDなどを構成する周辺配線の形成、プラズマディスプレイの電磁波シールドの配線、集積回路、有機トランジスタの製造等の、一般にプリンテッド・エレクトロニクス分野の各種部材として好適に使用することができる。
The conductive pattern of the present invention has extremely excellent adhesion between the support and the conductive layer, so that the conductivity of the conductive layer does not deteriorate with time, and the conductive layer is patterned finely. There is no disconnection. Therefore, for example, conductive patterns, electronic circuits, organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other peripheral wiring forming RFID, plasma display electromagnetic shielding In general, it can be suitably used as various members in the field of printed electronics, such as production of wiring, integrated circuits, and organic transistors.
本発明の導電性パターンは、支持体(A)の上に、導電性物質および高分子分散剤を含有する流動体(b)を塗布して導電層(B)を形成した導電性パターンであって、前記導電層(B)の断面において、前記支持体(A)側(基材界面)に、前記高分子分散剤が偏在していることを特徴とするものである。
The conductive pattern of the present invention is a conductive pattern in which a conductive layer (B) is formed by applying a fluid (b) containing a conductive substance and a polymer dispersant on a support (A). In the cross section of the conductive layer (B), the polymer dispersant is unevenly distributed on the support (A) side (base material interface).
前記支持体(A)は、本発明の導電性パターンの基材となるものである。前記支持体(A)の材質としては、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS樹脂)、アクリル樹脂、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリウレタン、セルロースナノファイバー、シリコン、セラミックス、ガラス、ガラス・エポキシ樹脂、ガラスポリイミド、紙フェノール等が挙げられる。
The support (A) serves as a base material for the conductive pattern of the present invention. Examples of the material of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS resin), acrylic resin, polyvinylidene fluoride, polyvinyl chloride, Examples thereof include polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass, glass / epoxy resin, glass polyimide, and paper phenol.
また、前記支持体(A)としては、絶縁性を有するものが好ましいことから、フェノール樹脂、フッ素樹脂、ポリイミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、ガラス・エポキシ樹脂、ガラスポリイミド、紙フェノール、セルロースナノファイバー、アルミナ、ムライト、ステアタイト、フォルステライト、ジルコニア等が好ましい。
In addition, since the support (A) preferably has insulating properties, phenol resin, fluorine resin, polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, glass / epoxy resin, glass polyimide, paper phenol, Cellulose nanofibers, alumina, mullite, steatite, forsterite, zirconia and the like are preferable.
また、前記支持体(A)としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維等の合成繊維;綿、麻等の天然繊維などからなる基材を用いることもできる。前記繊維には、予め加工が施されていてもよい。
Further, as the support (A), for example, a substrate made of synthetic fibers such as polyester fibers, polyamide fibers, and aramid fibers; natural fibers such as cotton and hemp can be used. The fibers may be processed in advance.
前記支持体(A)としては、本発明の導電性パターンが、折り曲げ可能な柔軟性を求められる用途に用いられる場合、柔軟でフレキシブルな支持体を用いることが好ましい。具体的には、フィルムまたはシート状の支持体を用いることが好ましい。
As the support (A), a flexible and flexible support is preferably used when the conductive pattern of the present invention is used for an application where bending flexibility is required. Specifically, it is preferable to use a film or sheet-like support.
前記フィルムまたはシート状の支持体としては、例えば、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエチレンナフタレートフィルム等が挙げられる。
Examples of the film or sheet-like support include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
また、前記支持体(A)は、後述する導電層(B)またはプライマー層(C)との密着性を向上するため、必要に応じて、その表面をサンドブラスト法、溶剤処理法等による表面の凹凸化処理、電気的処理(コロナ放電処理、大気圧プラズマ処理)、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線・電子線照射処理、酸化処理等により処理をしたものを使用することができる。
Moreover, in order to improve the adhesiveness with the conductive layer (B) or the primer layer (C) described later, the support (A) is subjected to a surface blasting by a sandblasting method, a solvent treatment method or the like, if necessary. It is possible to use those processed by roughening treatment, electrical treatment (corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet / electron beam irradiation treatment, oxidation treatment, etc. it can.
前記支持体(A)の形状がフィルム状またはシート状の場合、フィルム状またはシート状の支持体の厚さは、通常、1~5,000μm程度であることが好ましく、1~300μm程度の厚さであることがより好ましい。また、本発明の導電性パターンをフレキシブルプリント基板等の屈曲性を求められるものに用いる場合には、前記支持体(A)として、1~200μm程度の厚さのフィルム状のものを用いることが好ましい。
When the shape of the support (A) is a film or sheet, the thickness of the film or sheet support is usually preferably about 1 to 5,000 μm, and preferably about 1 to 300 μm. More preferably. When the conductive pattern of the present invention is used for a flexible printed circuit board or the like that requires flexibility, a film having a thickness of about 1 to 200 μm may be used as the support (A). preferable.
前記導電層(B)は、導電性物質および高分子分散剤を含有する層であり、これらを含有する流動体(b)を用いて形成する。
The conductive layer (B) is a layer containing a conductive substance and a polymer dispersant, and is formed using a fluid (b) containing these.
前記流動体(b)は、導電性物質および高分子分散剤を含有するものであるが、具体的には導電性インク等が挙げられる。また、導電性物質の代わりに、後述するめっき層(D)の形成に用いるめっき核剤を含有するものであってもよい。
The fluid (b) contains a conductive substance and a polymer dispersant, and specific examples include conductive ink. Moreover, instead of the conductive substance, a plating nucleating agent used for forming a plating layer (D) described later may be contained.
前記高分子分散剤の前記流動体(b)中の含有比率は、0.01~10質量%の範囲が好ましい。また、前記導電性物質の前記流動体(b)中の含有比率は、5~90質量%の範囲が好ましく、10~60質量%の範囲がより好ましく、10~40質量%の範囲がさらに好ましい。
The content ratio of the polymer dispersant in the fluid (b) is preferably in the range of 0.01 to 10% by mass. Further, the content ratio of the conductive substance in the fluid (b) is preferably in the range of 5 to 90% by mass, more preferably in the range of 10 to 60% by mass, and still more preferably in the range of 10 to 40% by mass. .
前記流動体(b)に含まれる高分子分散剤としては、例えば、ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、リン酸エステル残基を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルとリン酸エステル残基を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンを付加した化合物等が挙げられる。これらの中でも、流動体(b)中の導電性物質の分散安定性が向上し、前記導電層(B)中で、前記支持体(A)側(基材界面)に偏在しやすいことから、ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルとリン酸エステル残基を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、ポリアルキレンイミンにポリオキシアルキレンを付加した化合物が好ましい。なお、前記「(メタ)アクリル酸エステル」とは、「メタクリル酸エステル」及び「アクリル酸エステル」の一方または両方をいう。
Examples of the polymer dispersant contained in the fluid (b) include a copolymer of a (meth) acrylic acid ester having a polyoxyalkylene glycol chain and a chain transfer agent having a sulfur atom, and a phosphate ester residue. A copolymer of a (meth) acrylate ester having a sulfur atom and a chain transfer agent having a sulfur atom, a (meth) acrylate ester having a polyoxyalkylene glycol chain, and a (meth) acrylate ester having a phosphate residue Examples thereof include a copolymer with a chain transfer agent having a sulfur atom, a polyalkyleneimine such as polyethyleneimine and polypropyleneimine, and a compound obtained by adding polyoxyalkylene to the polyalkyleneimine. Among these, the dispersion stability of the conductive substance in the fluid (b) is improved, and in the conductive layer (B), it tends to be unevenly distributed on the support (A) side (substrate interface). Copolymer of (meth) acrylic acid ester having polyoxyalkylene glycol chain, (meth) acrylic acid ester having phosphate residue and chain transfer agent having sulfur atom, adding polyoxyalkylene to polyalkyleneimine The compounds obtained are preferred. The “(meth) acrylic acid ester” means one or both of “methacrylic acid ester” and “acrylic acid ester”.
前記ポリオキシアルキレンとしては、例えば、ポリオキシエチレン、ポリ(オキシエチレン-オキシプロピレン)等のランダム構造またはブロック構造が挙げられる。
Examples of the polyoxyalkylene include random structures such as polyoxyethylene and poly (oxyethylene-oxypropylene) or block structures.
前記ポリオキシアルキレンとしては、流動体(b)中の導電性物質の分散安定性がより向上することから、オキシエチレン単位を有するものが好ましく、前記ポリオキシアルキレン全体中に、オキシエチレン単位を10~100質量%の範囲で有するものがより好ましい。
As the polyoxyalkylene, those having an oxyethylene unit are preferable because the dispersion stability of the conductive substance in the fluid (b) is further improved, and 10% of the oxyethylene unit is contained in the whole polyoxyalkylene. Those having a content in the range of ˜100 mass% are more preferred.
前記ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルとしては、重合度2~50のポリエチレングリコール、エチレンオキシドとしての繰り返し単位数が2~50のエチレンオキシドとプロピレンオキシドとのブロック共重合体等の(メタ)アクリレート、若しくは末端が炭素原子数1~6のアルキル基によってキャップされた重合度2~50のポリエチレングリコール、エチレンオキシドとしての繰り返し単位数が2~50のエチレンオキシドとプロピレンオキシドとのブロック共重合体等の(メタ)アクリレート等が挙げられる。
Examples of the (meth) acrylic acid ester having a polyoxyalkylene glycol chain include polyethylene glycol having a polymerization degree of 2 to 50, and a block copolymer of ethylene oxide and propylene oxide having 2 to 50 repeating units as ethylene oxide ( (Meth) acrylate, or polyethylene glycol having a degree of polymerization of 2 to 50 capped with an alkyl group having 1 to 6 carbon atoms at the end, or a block copolymer of ethylene oxide and propylene oxide having 2 to 50 repeating units as ethylene oxide (Meth) acrylates and the like.
前記S原子含有連鎖移動剤としては、例えば、-SR(Rは、炭素原子数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、または、ヒドロキシ基、炭素原子数1~18のアルコキシ基、炭素原子数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の1価若しくは多価のアルキルカルボニルオキシ基および炭素原子数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素原子数1~8のアルキル基である。)で表される官能基を有するものが挙げられる。
Examples of the S atom-containing chain transfer agent include -SR (R is an alkyl group having 1 to 18 carbon atoms, a phenyl group optionally having a substituent on the benzene ring, a hydroxy group, a carbon An alkoxy group having 1 to 18 atoms, an aralkyloxy group having 1 to 18 carbon atoms, a phenyloxy group optionally having a substituent on the benzene ring, a carboxyl group, a salt of a carboxy group, 1 to 1 carbon atom 1 to 8 carbon atoms having one or more functional groups selected from the group consisting of 18 monovalent or polyvalent alkylcarbonyloxy groups and monovalent or polyvalent alkoxycarbonyl groups having 1 to 18 carbon atoms An alkyl group) having a functional group represented by:
前記リン酸エステル残基を有する(メタ)アクリル酸エステルとしては、例えば、共栄社化学株式会社製「ライトエステルP-1M」、ユニケミカル株式会社製「ホスマーM」、「ホスマーPE」等の市販モノマーが挙げられる。また、(メタ)アクリル酸ヒドロキシエステルと、オキシ塩化リンやジクロロリン酸フェニルのようなリン酸エステル化試薬を反応させることにより、任意の構造の(メタ)アクリル酸エステルホスファートを容易に得ることができるので、これらを用いることも可能である。これらは単独でも2種以上を併用して用いても良い。
Examples of the (meth) acrylic acid ester having a phosphate ester residue include commercially available monomers such as “Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd., “Phosmer M”, “Phosmer PE” manufactured by Unichemical Co., Ltd. Is mentioned. Moreover, (meth) acrylic acid ester can be easily obtained by reacting (meth) acrylic acid hydroxy ester with a phosphoric acid esterifying reagent such as phosphorus oxychloride or phenyl dichlorophosphate. These can also be used. These may be used alone or in combination of two or more.
前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、例えば、ポリエチレンイミンからなる構造と、ポリエチレンオキサイド構造等の前記ポリオキシアルキレン構造とを有するものが挙げられる。
Examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include those having a structure composed of polyethyleneimine and the polyoxyalkylene structure such as a polyethylene oxide structure.
前記ポリエチレンイミンと前記ポリオキシアルキレンとは、直鎖状の結合したものであってもよく、前記ポリエチレンイミンからなる主鎖に対して、その側鎖に前記ポリオキシアルキレンがグラフトし結合したものであってもよい。
The polyethyleneimine and the polyoxyalkylene may be linearly bonded, and the polyoxyalkylene is grafted and bonded to the side chain of the main chain composed of the polyethyleneimine. There may be.
前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物の具体的としては、ポリエチレンイミンとポリオキシエチレンとの共重合体、その主鎖中に存在するイミノ基の一部と、エチレンオキサイドとが付加反応して得られた化合物等が挙げられる。それらはブロック共重合体であることが好ましい。
Specific examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include a copolymer of polyethyleneimine and polyoxyethylene, a part of imino group present in the main chain, and an ethylene oxide addition reaction. And the like. They are preferably block copolymers.
また、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させることによって得られたものを使用することもできる。
Further, the compound obtained by adding polyoxyalkylene to the polyalkyleneimine was obtained by reacting an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin. Things can also be used.
前記ポリアルキレンイミンとしては、具体的には、株式会社日本触媒製の「エポミン(登録商標)PAOシリーズ」の「PAO2006W」、「PAO306」、「PAO318」、「PAO718」等が挙げられる。
Specific examples of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318”, “PAO718” and the like of “Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
前記ポリアルキレンイミンとしては、3,000~30,000の範囲の数平均分子量であるものが好ましい。
The polyalkyleneimine preferably has a number average molecular weight in the range of 3,000 to 30,000.
また、前記導電性物質としては、遷移金属またはその化合物が挙げられ、前記遷移金属の中でもイオン性の遷移金属が好ましい。前記イオン性の遷移金属としては、例えば、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。前記イオン性の遷移金属の中でも、電気抵抗が低く、腐食に強い導電性パターンを形成できることから、銅、銀、金が好ましく、銀がより好ましい。
In addition, examples of the conductive material include transition metals or compounds thereof, and ionic transition metals are preferable among the transition metals. Examples of the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt. Among the ionic transition metals, copper, silver, and gold are preferable, and silver is more preferable because a conductive pattern with low electrical resistance and resistance to corrosion can be formed.
また、前記流動体(b)に含まれる導電性物質に代えて、めっき核剤を用いる場合には、前記遷移金属の酸化物、有機物によって表面被覆された金属等を使用することができる。これらの導電性物質またはめっき核剤は、単独で用いることも2種以上併用することもできる。
In addition, when a plating nucleating agent is used instead of the conductive substance contained in the fluid (b), the oxide of the transition metal, a metal whose surface is coated with an organic substance, or the like can be used. These conductive substances or plating nucleating agents can be used alone or in combination of two or more.
前記遷移金属の酸化物は、通常、不活性(絶縁)な状態であるが、例えば、ジメチルアミノボラン等の還元剤を用いて処理することによって金属を露出させ、活性(導電性)を付与することができる。
The transition metal oxide is usually in an inactive (insulating) state. For example, the metal is exposed by treatment with a reducing agent such as dimethylaminoborane to impart activity (conductivity). be able to.
また、前記有機物によって表面被覆された金属としては、乳化重合法等によって形成した樹脂粒子(有機物)中に金属を内在させたものが挙げられる。これらは、通常、不活性(絶縁)な状態であるが、例えば、レーザー等を用いて前記有機物を除去することによって、金属を露出させ、活性(導電性)を付与することできる。
Further, examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. These are usually in an inactive (insulating) state. However, for example, by removing the organic substance using a laser or the like, the metal can be exposed to impart activity (conductivity).
前記導電性物質としては、1~100nm程度の平均粒子径を有する粒子状のものを使用することが好ましく、1~50nmの平均粒子径を有するものを使用することが、マイクロメーターオーダーの平均粒子径を有する導電性物質を用いる場合と比較して、微細な導電性パターンを形成でき、後述する焼成後の抵抗値をより低下できることからより好ましい。なお、前記「平均粒子径」は、前記導電性物質を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。
As the conductive material, particles having an average particle diameter of about 1 to 100 nm are preferably used, and those having an average particle diameter of 1 to 50 nm are preferably used. Compared to the case of using a conductive material having a diameter, it is more preferable because a fine conductive pattern can be formed and the resistance value after firing described later can be further reduced. The “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
また、前記流動体(b)に使用可能な溶媒としては、例えば、蒸留水、イオン交換水、純水、超純水等の水性媒体をはじめ、アルコール、エーテル、エステル、ケトン等の有機溶剤が挙げられる。
Examples of the solvent that can be used for the fluid (b) include organic media such as alcohols, ethers, esters, and ketones, as well as aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water. Can be mentioned.
前記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。
Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, heptanol, hexanol, octanol, and nonanol. , Decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri And propylene glycol monobutyl ether.
また、前記流動体(b)には、物性調整のため、アセトン、シクロヘキサノン、メチルエチルケトン等のケトン溶剤を組み合わせて使用することができる。その他、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等のエステル溶剤、トルエン等の炭化水素溶剤、特に炭素原子数が8以上の炭化水素溶剤が挙げられる。
In addition, the fluid (b) can be used in combination with a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, etc., for adjusting the physical properties. Other examples include ester solvents such as ethyl acetate, butyl acetate, 3-methoxybutyl acetate and 3-methoxy-3-methyl-butyl acetate, hydrocarbon solvents such as toluene, especially hydrocarbon solvents having 8 or more carbon atoms. .
前記炭素原子数が8以上の炭化水素溶剤は、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤を、必要に応じて組み合わせ使用することもできる。さらに、混合溶剤であるミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。
Examples of the hydrocarbon solvent having 8 or more carbon atoms include nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane. They can also be used in combination as needed. Furthermore, a solvent such as mineral spirit or solvent naphtha, which is a mixed solvent, can be used in combination.
また、前記溶媒としては、例えば、2-エチル1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、グリセリン等が挙げられる。
Examples of the solvent include 2-ethyl 1,3-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, and 1,3-butane. Diol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, Ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol Glycol monomethyl ether acetate, glycerol, and the like.
前記流動体(b)は、例えば、前記高分子分散剤と、前記導電性物質と、必要に応じて前記溶媒とを混合することによって製造することができる。具体的には、ポリオキシアルキレングリコール鎖、リン酸エステル残基および末端に硫黄原子を有するアクリル酸エステル共重合体、または分岐状ポリアルキレンイミン鎖と、親水性セグメントと、疎水性セグメントとを有する化合物を分散した媒体中に、予め調製した前記導電性物質のイオン溶液を加え、該金属イオンを還元することによって製造することができる。
The fluid (b) can be produced, for example, by mixing the polymer dispersant, the conductive substance, and, if necessary, the solvent. Specifically, it has a polyoxyalkylene glycol chain, a phosphate ester residue and an acrylic acid ester copolymer having a sulfur atom at the terminal, or a branched polyalkyleneimine chain, a hydrophilic segment, and a hydrophobic segment. It can be produced by adding a previously prepared ion solution of the conductive substance to a medium in which the compound is dispersed, and reducing the metal ions.
前記導電性物質と前記溶媒とを含む組成物としては、前記水性媒体、有機溶剤等の溶媒中に、前記導電性物質が分散した分散体が挙げられる。
Examples of the composition containing the conductive substance and the solvent include a dispersion in which the conductive substance is dispersed in a solvent such as the aqueous medium or the organic solvent.
前記分散体は、前記導電性物質と前記溶媒とを混合し、撹拌することによって製造することができる。前記分散体としては、具体的には、「SW1000」(バンドー化学株式会社製)、「シルクオートA-1」(三菱マテリアル株式会社製)、「MDot-SLP」(三ツ星ベルト株式会社製)等が挙げられる。
The dispersion can be produced by mixing and stirring the conductive substance and the solvent. Specific examples of the dispersion include “SW1000” (manufactured by Bando Chemical Co., Ltd.), “Silk Auto A-1” (manufactured by Mitsubishi Materials Corporation), “MDot-SLP” (manufactured by Mitsuboshi Belting Co., Ltd.), etc. Is mentioned.
前記の溶媒中に導電性物質が分散した分散体に前記高分子分散剤を加えて、前記流動体(b)を製造することもできる。この製造は、常温下でそれらを混合することができ、混合の際には、必要に応じスリーワンモーター等の攪拌機を用いることもできる。
The fluid (b) can also be produced by adding the polymer dispersant to a dispersion in which a conductive substance is dispersed in the solvent. In this production, they can be mixed at room temperature, and when mixing, a stirrer such as a three-one motor can be used as necessary.
また、前記流動体(b)には、水性媒体、有機溶剤等の溶媒中における導電性物質の分散安定性、被塗布面への濡れ性を向上するために、必要に応じて、界面活性剤、消泡剤、レオロジー調整剤等を加えてもよい。
In addition, the fluid (b) may include a surfactant, if necessary, in order to improve the dispersion stability of the conductive substance in a solvent such as an aqueous medium or an organic solvent and the wettability to the coated surface. An antifoaming agent, a rheology adjusting agent, etc. may be added.
さらに、前記流動体(b)としては、製造工程で混入する不純物を除去するため、必要に応じてミクロポアフィルター等を用いて濾過したもの、遠心分離器等を用いて処理したものを使用することもできる。
Furthermore, as the fluid (b), in order to remove impurities mixed in in the manufacturing process, a fluid filtered using a micropore filter or the like, or a material processed using a centrifuge, or the like, should be used. You can also.
前記流動体(b)の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.5~10,000mPa・sの範囲がより好ましい。また、前記流動体(b)を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗布(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。
The viscosity of the fluid (b) (value measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa · s, and in the range of 0.5 to 10,000 mPa · s. Is more preferable. In addition, when the fluid (b) is applied (printed) by a method such as an ink jet printing method or letterpress reverse printing described later, the viscosity is preferably in the range of 5 to 20 mPa · s.
前記支持体(A)の上に前記流動体(b)を塗布する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等が挙げられる。
Examples of the method for applying the fluid (b) on the support (A) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, and a bar coating. Method, die coating method, slit coating method, roll coating method, dip coating method and the like.
これらの塗布方法の中でも、電子回路等の高密度化を実現する際に求められる0.01~100μm程度の幅の細線状でパターン化された前記導電層(B)を形成する場合には、インクジェット印刷法、反転印刷法を用いることが好ましい。
Among these coating methods, in the case of forming the conductive layer (B) patterned in a thin line shape having a width of about 0.01 to 100 μm, which is required when realizing a high density of an electronic circuit or the like, It is preferable to use an inkjet printing method or a reverse printing method.
前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを使用することができる。具体的には、「コニカミノルタEB100、XY100」(コニカミノルタ株式会社製)、「ダイマティックス・マテリアルプリンターDMP-3000、DMP-2831」(富士フイルム株式会社製)等が挙げられる。
As the ink jet printing method, what is generally called an ink jet printer can be used. Specifically, “Konica Minolta EB100, XY100” (manufactured by Konica Minolta Co., Ltd.), “Dimatics Material Printer DMP-3000, DMP-2831” (manufactured by FUJIFILM Corporation), and the like can be mentioned.
また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記流動体(b)を塗布し、非画線部が突出した版と接触させ、前記非画線部に対応する流動体(b)を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記支持体層(A)の上(表面)に転写させる方法が挙げられる。
Further, as the reversal printing method, a letterpress reversal printing method and an intaglio reversal printing method are known. For example, the fluid (b) is applied to the surface of various blankets, and a non-image portion is in contact with the projected plate The pattern is formed on the surface of the blanket or the like by selectively transferring the fluid (b) corresponding to the non-image area to the surface of the plate, and then the pattern is transferred to the support. The method of making it transfer on the layer (A) (surface) is mentioned.
前記導電層(B)は、前記支持体(A)の上に形成されるが、前記支持体(A)の表面と前記導電層(B)との密着性をより向上するため、前記支持体(A)の表面にプライマーを塗布、乾燥してプライマー層(C)を形成した後に、このプライマー層(C)の上に前記導電層(B)を形成しても構わない。
The conductive layer (B) is formed on the support (A). In order to further improve the adhesion between the surface of the support (A) and the conductive layer (B), the support After the primer is applied to the surface of (A) and dried to form the primer layer (C), the conductive layer (B) may be formed on the primer layer (C).
前記プライマーとしては、例えば、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、ポリビニルアルコール、ポリビニルピロリドン等の各種樹脂と溶媒とを含有するものが挙げられる。
Examples of the primer include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, polyvinyl pyrrolidone, and various resins and solvents. Is mentioned.
前記プライマーとして用いる樹脂の中でも、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂を使用することが好ましく、ポリエーテル構造を有するウレタン樹脂、ポリカーボネート構造を有するウレタン樹脂、ポリエステル構造を有するウレタン樹脂、アクリル樹脂、および、ウレタン-アクリル複合樹脂からなる群より選ばれる1種以上の樹脂がより好ましく、ウレタン-アクリル複合樹脂は、密着性、導電性、細線性に優れた導電性パターンが得られるのでさらに好ましい。
Among the resins used as the primer, urethane resin, vinyl resin, and urethane-vinyl composite resin are preferably used. Urethane resin having a polyether structure, urethane resin having a polycarbonate structure, urethane resin having a polyester structure, acrylic resin And one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferable, and urethane-acrylic composite resins are more preferable because a conductive pattern having excellent adhesion, electrical conductivity, and fine wire properties can be obtained. .
前記プライマー中の前記樹脂の含有比率は、塗布のしやすさを考慮すると、10~70質量%の範囲が好ましく、10~50質量%の範囲がより好ましい。
The content ratio of the resin in the primer is preferably in the range of 10 to 70% by mass and more preferably in the range of 10 to 50% by mass in consideration of ease of application.
また、前記プライマーに用いる溶媒としては、有機溶剤や水性媒体が挙げられる。
Also, examples of the solvent used for the primer include organic solvents and aqueous media.
前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、および、これらの混合物が挙げられる。
Examples of the organic solvent include toluene, ethyl acetate, and methyl ethyl ketone, and examples of the aqueous medium include water, organic solvents that are miscible with water, and mixtures thereof.
水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタムなどが挙げられる。
Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol. Examples include alkylene glycols; alkyl ethers of polyalkylene glycols; and lactams such as N-methyl-2-pyrrolidone.
前記プライマー中の前記溶媒の含有比率は、塗布のしやすさを考慮すると、25~85質量の範囲が好ましく、45~85質量%の範囲がより好ましい。
The content ratio of the solvent in the primer is preferably in the range of 25 to 85% by mass and more preferably in the range of 45 to 85% by mass in consideration of ease of application.
前記プライマーには、必要に応じて、架橋剤、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の添加剤を加えてもよい。
If necessary, additives such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent may be added to the primer.
前記プライマー層(C)は、前記支持体(A)の表面の一部または全部にプライマーを塗布し、前記プライマー中に含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成することができる。
The primer layer (C) may be formed by applying a primer to part or all of the surface of the support (A), and removing a solvent such as an aqueous medium or an organic solvent contained in the primer. it can.
前記プライマーを前記支持体(A)の表面に塗布する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式等が挙げられる。
Examples of the method for applying the primer to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method.
前記プライマー層(C)の表面は、前記導電層(B)との密着性をより向上するため、例えばコロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水、酸性またはアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていてもよい。
The surface of the primer layer (C) is improved in adhesion to the conductive layer (B). For example, plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, water, acidic Alternatively, the surface treatment may be performed by a wet treatment method using an alkaline chemical solution, an organic solvent, or the like.
前記プライマーを前記支持体(A)の表面に塗布した後、その塗布層に含まれる溶媒を除去する方法としては、例えば乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ支持体(A)に悪影響を与えない範囲の温度に設定することが好ましい。
As a method for removing the solvent contained in the coating layer after coating the primer on the surface of the support (A), for example, a method of drying using a dryer and volatilizing the solvent is common. . The drying temperature is preferably set to a temperature that allows the solvent to be volatilized and does not adversely affect the support (A).
前記プライマーを用いて形成するプライマー層(C)の厚さは、本発明の導電性パターンを用いる用途によって異なるが、前記支持体(A)と前記導電層(B)との密着性をより向上できることから、10~300μmの範囲が好ましく、10~500nmの範囲がより好ましい。
Although the thickness of the primer layer (C) formed using the primer varies depending on the use of the conductive pattern of the present invention, the adhesion between the support (A) and the conductive layer (B) is further improved. Therefore, the range of 10 to 300 μm is preferable, and the range of 10 to 500 nm is more preferable.
また、前記支持体(A)の上にプライマー層(C)を設ける場合には、前記支持体(A)と前記プライマー層(C)との密着性を向上できることから、前記支持体(A)の表面に、微細な凹凸の形成、その表面に付着した汚れの洗浄、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のための表面処理等が施されていてもよい。具体的にはコロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液または有機溶剤等を用いる湿式処理等が施されていてもよい。
Moreover, when providing a primer layer (C) on the said support body (A), since the adhesiveness of the said support body (A) and the said primer layer (C) can be improved, the said support body (A) Surface treatment for forming fine irregularities, cleaning dirt adhering to the surface, and introducing a functional group such as a hydroxyl group, a carbonyl group, or a carboxyl group may be performed on the surface. Specifically, a plasma discharge treatment such as a corona discharge treatment, a dry treatment such as an ultraviolet treatment, a wet treatment using water, an aqueous solution of an acid / alkali, or an organic solvent may be applied.
前記導電層(B)を形成するために、導電性物質を含有する前記流動体(b)を塗布した後に行う焼成工程は、前記流動体(b)中に含まれる導電性物質同士を密着し接合することで導電性を有する導電層(B)を形成するために行う。前記焼成は、80~300℃の温度範囲で、2~200分程度行うことができる。ここで、前記支持体(A)側(基材界面)に、前記高分子分散剤を効率よく偏在させるためには、前記焼成の温度を150~300℃の範囲にすることが好ましい。
In order to form the conductive layer (B), the baking step performed after applying the fluid (b) containing a conductive substance brings the conductive substances contained in the fluid (b) into close contact with each other. This is performed in order to form a conductive layer (B) having conductivity by bonding. The firing can be performed at a temperature range of 80 to 300 ° C. for about 2 to 200 minutes. Here, in order to disperse the polymer dispersant efficiently on the support (A) side (base material interface), it is preferable to set the firing temperature in the range of 150 to 300 ° C.
前記焼成は大気中で行っても良いが、金属粉のすべてが酸化することを防止するため、焼成工程の一部または全部を還元雰囲気下で行ってもよい。
Although the firing may be performed in the air, part or all of the firing step may be performed in a reducing atmosphere in order to prevent all of the metal powder from being oxidized.
また、前記焼成工程は、例えば、オーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ、フラッシュ照射装置等を用いて行うことができる。
The baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, flash irradiation apparatus, or the like.
上記のような方法により、前記流動体(b)を用いて形成された前記導電層(B)は、前記導電層(B)中に80~99.9質量%の範囲で導電性物質を含有し、0.1~20質量%の範囲で高分子分散剤を含有するものであることが好ましい。
The conductive layer (B) formed using the fluid (b) by the above method contains a conductive substance in the range of 80 to 99.9% by mass in the conductive layer (B). In addition, the polymer dispersant is preferably contained in the range of 0.1 to 20% by mass.
前記高分子分散剤が、前記導電層(B)の断面において、前記支持体(A)側(基材界面)に偏在化していることは、グロー放電発光分光法(GD-OES)による深さ方向の元素分析、X線光電子分光分析法(XPS)による導電層の基材界面の元素分析から確認できる。
That the polymer dispersant is unevenly distributed on the support (A) side (substrate interface) in the cross section of the conductive layer (B) is the depth by glow discharge emission spectroscopy (GD-OES). It can be confirmed from elemental analysis of the base material interface of the conductive layer by elemental analysis of the direction and X-ray photoelectron spectroscopy (XPS).
前記導電層(B)は、前記支持体(A)の表面全体に設けてもよく、また、前記支持体(A)の表面の一部に設けてもよい。前記支持体(A)の表面の一部に設けた前記導電層(B)としては、具体的には、前記支持体(A)の表面に画線され形成された細線状のものが挙げられる。前記導電層(B)を細線とすることで、本発明の導電性パターンを電気回路等に使用する場合に好適である。
The conductive layer (B) may be provided on the entire surface of the support (A), or may be provided on a part of the surface of the support (A). Specific examples of the conductive layer (B) provided on a part of the surface of the support (A) include fine wires formed on the surface of the support (A). . By making the said conductive layer (B) into a thin wire | line, it is suitable when using the conductive pattern of this invention for an electrical circuit etc.
前記細線の幅(線幅)は、導電性パターンの高密度化を図ることができることから、0.01~200μm程度が好ましく、0.01~150μm程度がより好ましい。
The width of the fine line (line width) is preferably about 0.01 to 200 μm, and more preferably about 0.01 to 150 μm because the conductive pattern can be densified.
前記導電層(B)の厚さは、低抵抗で導電性に優れた導電性パターンを形成できることから、0.01~100μmの範囲が好ましい。また、前記導電層(B)が細線状のものである場合、その厚さは0.1~50μmの範囲が好ましい。
The thickness of the conductive layer (B) is preferably in the range of 0.01 to 100 μm because a conductive pattern having low resistance and excellent conductivity can be formed. In addition, when the conductive layer (B) has a thin line shape, the thickness is preferably in the range of 0.1 to 50 μm.
本発明の導電性パターンには、長期間にわたり断線等を引き起こすことなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として、前記導電層(B)の上に、めっき層(D)を形成してもよい。
The conductive pattern of the present invention is formed on the conductive layer (B) for the purpose of forming a highly reliable wiring pattern capable of maintaining good electrical conductivity without causing disconnection or the like over a long period of time. A plating layer (D) may be formed.
前記めっき層(D)の形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、例えば、電解めっき法、無電解めっき法等の湿式めっき法、スパッタリング法、真空蒸着法等の乾式めっき法などが挙げられる。また、これらのめっき法を2つ以上組み合わせて、前記めっき層(D)を形成しても構わない。
The formation method of the plating layer (D) is preferably a method of forming by plating. Examples of the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the plating layer (D) may be formed by combining two or more of these plating methods.
上記のめっき処理の中でも、前記導電層(B)と前記めっき層(D)との密着性がより向上し、また、導電性に優れた導電性パターンが得られることから、電解めっき法、無電解めっき法等の湿式めっき法が好ましく、電解めっき法がより好ましい。
Among the above plating treatments, the adhesion between the conductive layer (B) and the plating layer (D) is further improved, and a conductive pattern having excellent conductivity can be obtained. A wet plating method such as an electrolytic plating method is preferable, and an electrolytic plating method is more preferable.
上記の無電解めっき法は、例えば、前記導電層(B)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(被膜)を形成する方法である。
In the electroless plating method, for example, the metal constituting the conductive layer (B) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film. This is a method of forming an electroless plating layer (film).
前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。
Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。
Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、またはこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを使用することができる。
In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid; malic acid, lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid; Use organic acids such as carboxylic acid compounds, or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), and those containing complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine. You It is possible.
前記無電解めっき液は、20~98℃の範囲で使用することが好ましい。
The electroless plating solution is preferably used in the range of 20 to 98 ° C.
前記電解めっき法は、例えば、前記導電層(B)を構成する金属、または、前記無電解処理によって形成された無電解めっき層(被膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、負極に設置した前記導電層(B)を構成する導電性物質または前記無電解処理によって形成された無電解めっき層(被膜)の表面に析出させ、電解めっき層(金属被膜)を形成する方法である。
In the electrolytic plating method, for example, electricity is supplied in a state where an electrolytic plating solution is in contact with the surface of the metal constituting the conductive layer (B) or the electroless plating layer (coating) formed by the electroless treatment. Thus, a metal such as copper contained in the electrolytic plating solution is used to form a conductive material constituting the conductive layer (B) placed on the negative electrode or an electroless plating layer (coating) formed by the electroless treatment. This is a method of depositing on the surface and forming an electrolytic plating layer (metal coating).
前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。
Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
前記電解めっき液は、20~98℃の範囲で使用することが好ましい。
The electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
上記電解めっき処理法では、毒性の高い物質を用いることなく、作業性がよいため、電解めっき法を用いて銅からなるめっき層(D)を形成することが好ましい。
In the above electrolytic plating treatment method, since workability is good without using a highly toxic substance, it is preferable to form a plating layer (D) made of copper using the electrolytic plating method.
また、前記乾式めっき処理工程としては、スパッタリング法、真空蒸着法等を用いることができる。前記スパッタリング法は、真空中で不活性ガス(主にアルゴン)を導入し、めっき層(D)を形成材料に対して電圧を印加してグロー放電を発生させ、次いで、前記不活性ガス原子をイオン化し、高速で前記めっき層(D)の形成材料の表面にガスイオンを激しく叩きつけ、めっき層(D)の形成材料を構成する原子および分子を弾き出し勢いよく前記導電層(B)の表面に付着させることによりめっき層(D)を形成する方法である。
Further, as the dry plating process, a sputtering method, a vacuum deposition method, or the like can be used. In the sputtering method, an inert gas (mainly argon) is introduced in a vacuum, a voltage is applied to the material for forming the plating layer (D) to generate a glow discharge, and then the inert gas atoms are removed. Ionized, vigorously struck gas ions against the surface of the material for forming the plating layer (D) at high speed, and ejects atoms and molecules constituting the material for forming the plating layer (D) to the surface of the conductive layer (B). In this method, the plating layer (D) is formed by adhering.
スパッタリング法による前記めっき層(D)の形成材料としては、例えば、クロム、銅、チタン、銀、白金、金、ニッケル-クロム合金、ステンレス、銅-亜鉛合金、インジウムチンオキサイド(ITO)、二酸化ケイ素、二酸化チタン、酸化ニオブ、酸化亜鉛等が挙げられる。
Examples of the material for forming the plating layer (D) by sputtering include chrome, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, indium tin oxide (ITO), and silicon dioxide. , Titanium dioxide, niobium oxide, zinc oxide and the like.
前記スパッタリング法によりめっき処理する際には、例えば、マグネトロンスパッタ装置等を使用することができる。
When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
前記めっき層(D)の厚さは、1~50μmの範囲が好ましい。前記めっき層(D)の厚さは、前記めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。
The thickness of the plating layer (D) is preferably in the range of 1 to 50 μm. The thickness of the plating layer (D) can be adjusted by controlling the processing time, the current density, the usage amount of the plating additive, and the like in the plating process when forming the plating layer (D). .
上記の方法により得られた本発明の導電性パターンは、形成しようとする所望のパターン形状に対応した位置に、前記導電層(B)を形成するため、前記導電性物質を含有する流動体(b)を塗布して焼成することによって、所望のパターンを有する導電性パターンを製造することができる。
The conductive pattern of the present invention obtained by the above method is a fluid containing the conductive substance (B) in order to form the conductive layer (B) at a position corresponding to a desired pattern shape to be formed. By applying and baking b), a conductive pattern having a desired pattern can be produced.
また、前記導電性パターンは、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法や、導電層(B)の印刷パターン上にめっきする方法によって製造することができる。
Further, the conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on the printed pattern of the conductive layer (B).
前記サブトラクティブ法は、予め製造した前記導電層(B)の上に、または導電層(B)の上に設けた前記めっき層(D)の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記めっき層(D)および導電層(B)を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を使用することができる。
The subtractive method is an etching process having a shape corresponding to a desired pattern shape on the conductive layer (B) manufactured in advance or on the plating layer (D) provided on the conductive layer (B). In a method of forming a resist layer and then dissolving and removing the plating layer (D) and the conductive layer (B) in the removed portion of the resist with a chemical solution by a subsequent development process, thereby forming a desired pattern. is there. As the chemical solution, a chemical solution containing copper chloride, iron chloride or the like can be used.
前記セミアディティブ法は、前記支持体(A)の上に前記導電層(B)を形成し、必要に応じてプラズマ放電処理等により前記導電層(B)の表面を処理した後、前記導電層(B)の表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法、無電解めっき法によってめっき層(D)を形成し、その後、前記めっきレジスト層とそれに接触した前記導電層(B)とを薬液等に溶解し除去することによって、所望のパターンを形成する方法である。
In the semi-additive method, the conductive layer (B) is formed on the support (A), and the surface of the conductive layer (B) is treated by plasma discharge treatment or the like as necessary. A plating resist layer having a shape corresponding to a desired pattern is formed on the surface of (B), and then a plating layer (D) is formed by an electrolytic plating method and an electroless plating method. This is a method of forming a desired pattern by dissolving and removing the contacted conductive layer (B) in a chemical solution or the like.
また、導電層(B)の印刷パターン上にめっきする方法は、前記支持体(A)に、インクジェット法、反転印刷法等で前記導電層(B)のパターンを印刷し、必要に応じてプラズマ放電処理等により前記導電層(B)の表面を処理した後、前記導電層(B)の表面に、電解めっき法、無電解めっき法によって前記めっき層(D)を形成することによって、所望のパターンを形成する方法である。
Also, the method of plating on the printed pattern of the conductive layer (B) is to print the pattern of the conductive layer (B) on the support (A) by an ink jet method, a reverse printing method or the like, and if necessary, plasma After the surface of the conductive layer (B) is treated by discharge treatment or the like, the plating layer (D) is formed on the surface of the conductive layer (B) by an electrolytic plating method or an electroless plating method. This is a method of forming a pattern.
上記の方法で得られた導電性パターンは、前記導電層(B)中で、前記支持体(A)側に高分子分散剤が偏在することによって、その偏在部分と接触している前記支持体(A)の表面または前記プライマー層(C)の表面との密着性が大幅に向上する。これによって、前記支持体(A)と前記導電層(B)との間の密着性が極めて高いため、層間剥離を抑制でき、良好な通電性を維持可能な優れた耐久性を有していることから、電子回路、集積回路等に使用される回路形成用基板の形成、有機太陽電池、電子端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等に使用することができる。特に、高い耐久性の求められる用途には好適に使用することができ、例えば、プリント配線板(PWB)、フレキシブルプリント基板(FPC)、テープ自動ボンディング(TAB)、チップオンフィルム(COF)等に使用することが可能である。
In the conductive layer (B), the conductive pattern obtained by the above method is in contact with the unevenly distributed portion of the conductive dispersant (B) due to the uneven distribution of the polymer dispersant on the support (A) side. Adhesion with the surface of (A) or the surface of the primer layer (C) is greatly improved. Thereby, since the adhesiveness between the support (A) and the conductive layer (B) is extremely high, delamination can be suppressed and excellent durability capable of maintaining good electrical conductivity is obtained. Therefore, formation of circuit forming substrates used for electronic circuits, integrated circuits, etc., formation of organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, peripheral wiring constituting RFID, etc., plasma display It can be used for electromagnetic shield wiring. In particular, it can be suitably used for applications requiring high durability. For example, for printed wiring boards (PWB), flexible printed boards (FPC), automatic tape bonding (TAB), chip-on-film (COF), etc. It is possible to use.
以下、実施例により本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail by way of examples.
[流動体(1)の調製]
〔ポリオキシアルキレングリコール鎖、リン酸エステル残基および末端に硫黄原子を有するアクリル酸エステル共重合体の合成〕
温度計、攪拌機および還流冷却器を備えた四つ口フラスコに、メチルエチルケトン(以下、「MEK」と略記する。)32質量部およびエタノール32質量部を仕込んで、窒素気流中、攪拌しながら80℃に昇温した。次に、ホスホオキシエチルメタクリレート(共栄社化学株式会社製「ライトエステルP-1M」)20質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社「ブレンマー〔登録商標〕PME-1000」、分子量1,000)80質量部、メルカプトプロピオン酸メチル4.1質量部、MEK80質量部からなる混合物と、重合開始剤「2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬株式会社製「V-65」)0.5質量部およびMEK5質量部からなる混合物とをそれぞれ2時間かけて滴下した。滴下終了後、4時間ごとに重合開始剤(日油株式会社製「パーブチル(登録商標)O」)0.3質量部を2回添加し、80℃で12時間攪拌した。得られた樹脂溶液に水を加え転相乳化し、減圧脱溶剤した後、水を加えて、不揮発物76.8質量%のポリオキシアルキレングリコール鎖、リン酸エステル残基および末端に硫黄原子を有するアクリル酸エステル共重合体(以下、「高分子分散剤(1)」と略記する。)の水溶液を得た。得られた高分子分散剤(1)のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量はポリスチレン換算で4,300であり、酸価は97.5であった。 [Preparation of fluid (1)]
[Synthesis of an acrylic ester copolymer having a polyoxyalkylene glycol chain, a phosphate ester residue, and a terminal sulfur atom]
A four-necked flask equipped with a thermometer, a stirrer and a reflux condenser was charged with 32 parts by mass of methyl ethyl ketone (hereinafter abbreviated as “MEK”) and 32 parts by mass of ethanol, and stirred at 80 ° C. in a nitrogen stream. The temperature was raised to. Next, 20 parts by mass of phosphooxyethyl methacrylate (“Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.), methoxypolyethyleneglycol methacrylate (Nippon Co., Ltd. “Blemmer (registered trademark) PME-1000”, molecular weight 1,000) A mixture of 80 parts by mass, methyl mercaptopropionate 4.1 parts by mass and MEK 80 parts by mass, and a polymerization initiator “2,2′-azobis (2,4-dimethylvaleronitrile) (“ Wako Pure Chemical Industries, Ltd. ”“ V −65 ”) and 0.5 parts by mass and a mixture of 5 parts by mass of MEK were added dropwise over 2 hours. After completion of the dropwise addition, 0.3 parts by mass of a polymerization initiator (“Perbutyl (registered trademark) O” manufactured by NOF Corporation) was added twice every 4 hours and stirred at 80 ° C. for 12 hours. Water was added to the obtained resin solution for phase inversion emulsification, and after desolvation under reduced pressure, water was added to add a non-volatile 76.8% by mass polyoxyalkylene glycol chain, a phosphate residue, and a sulfur atom at the terminal. An aqueous solution of an acrylic acid ester copolymer (hereinafter abbreviated as “polymer dispersing agent (1)”) was obtained. The weight average molecular weight measured by gel permeation chromatography of the obtained polymer dispersant (1) was 4,300 in terms of polystyrene, and the acid value was 97.5.
〔ポリオキシアルキレングリコール鎖、リン酸エステル残基および末端に硫黄原子を有するアクリル酸エステル共重合体の合成〕
温度計、攪拌機および還流冷却器を備えた四つ口フラスコに、メチルエチルケトン(以下、「MEK」と略記する。)32質量部およびエタノール32質量部を仕込んで、窒素気流中、攪拌しながら80℃に昇温した。次に、ホスホオキシエチルメタクリレート(共栄社化学株式会社製「ライトエステルP-1M」)20質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社「ブレンマー〔登録商標〕PME-1000」、分子量1,000)80質量部、メルカプトプロピオン酸メチル4.1質量部、MEK80質量部からなる混合物と、重合開始剤「2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬株式会社製「V-65」)0.5質量部およびMEK5質量部からなる混合物とをそれぞれ2時間かけて滴下した。滴下終了後、4時間ごとに重合開始剤(日油株式会社製「パーブチル(登録商標)O」)0.3質量部を2回添加し、80℃で12時間攪拌した。得られた樹脂溶液に水を加え転相乳化し、減圧脱溶剤した後、水を加えて、不揮発物76.8質量%のポリオキシアルキレングリコール鎖、リン酸エステル残基および末端に硫黄原子を有するアクリル酸エステル共重合体(以下、「高分子分散剤(1)」と略記する。)の水溶液を得た。得られた高分子分散剤(1)のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量はポリスチレン換算で4,300であり、酸価は97.5であった。 [Preparation of fluid (1)]
[Synthesis of an acrylic ester copolymer having a polyoxyalkylene glycol chain, a phosphate ester residue, and a terminal sulfur atom]
A four-necked flask equipped with a thermometer, a stirrer and a reflux condenser was charged with 32 parts by mass of methyl ethyl ketone (hereinafter abbreviated as “MEK”) and 32 parts by mass of ethanol, and stirred at 80 ° C. in a nitrogen stream. The temperature was raised to. Next, 20 parts by mass of phosphooxyethyl methacrylate (“Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.), methoxypolyethyleneglycol methacrylate (Nippon Co., Ltd. “Blemmer (registered trademark) PME-1000”, molecular weight 1,000) A mixture of 80 parts by mass, methyl mercaptopropionate 4.1 parts by mass and MEK 80 parts by mass, and a polymerization initiator “2,2′-azobis (2,4-dimethylvaleronitrile) (“ Wako Pure Chemical Industries, Ltd. ”“ V −65 ”) and 0.5 parts by mass and a mixture of 5 parts by mass of MEK were added dropwise over 2 hours. After completion of the dropwise addition, 0.3 parts by mass of a polymerization initiator (“Perbutyl (registered trademark) O” manufactured by NOF Corporation) was added twice every 4 hours and stirred at 80 ° C. for 12 hours. Water was added to the obtained resin solution for phase inversion emulsification, and after desolvation under reduced pressure, water was added to add a non-volatile 76.8% by mass polyoxyalkylene glycol chain, a phosphate residue, and a sulfur atom at the terminal. An aqueous solution of an acrylic acid ester copolymer (hereinafter abbreviated as “polymer dispersing agent (1)”) was obtained. The weight average molecular weight measured by gel permeation chromatography of the obtained polymer dispersant (1) was 4,300 in terms of polystyrene, and the acid value was 97.5.
〔銀分散液(1)の製造〕
85質量%のN,N-ジエチルヒドロキシルアミン463g(4.41mol)、上記で得られた高分子分散剤(1)(不揮発物23.0g相当)、および水1,250gからなる還元剤溶液を調製した。別に、不揮発物11.5g相当の上記で得られた高分子分散剤(1)を水333gに溶解し、これに硝酸銀500g(2.94mol)を水833gに溶かした溶液を加えて、よく攪拌した。この混合物に前記の還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45μm)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製「MOLSEPモジュールFB-02型」、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収して、不揮発物36.7質量部%の銀分散液(1)742.9g(分散媒体:水)を得た。 [Production of silver dispersion (1)]
A reducing agent solution comprising 463 g (4.41 mol) of 85% by mass of N, N-diethylhydroxylamine, the polymer dispersant (1) obtained above (equivalent to 23.0 g of non-volatiles), and 1,250 g of water. Prepared. Separately, the polymer dispersant (1) obtained above corresponding to 11.5 g of non-volatiles was dissolved in 333 g of water, and a solution of 500 g (2.94 mol) of silver nitrate in 833 g of water was added thereto and stirred well. did. The reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours. The obtained reaction mixture was filtered with a membrane filter (pore size 0.45 μm), and the filtrate was in a hollow fiber type ultrafiltration module (“MOLSEP module FB-02 type” manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000). The amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification. After confirming that the electric conductivity of the filtrate was 100 μS / cm or less, water injection was stopped and the filtrate was concentrated. The concentrate was recovered to obtain 742.9 g (dispersion medium: water) of a silver dispersion (1) of 36.7 parts by mass of nonvolatiles.
85質量%のN,N-ジエチルヒドロキシルアミン463g(4.41mol)、上記で得られた高分子分散剤(1)(不揮発物23.0g相当)、および水1,250gからなる還元剤溶液を調製した。別に、不揮発物11.5g相当の上記で得られた高分子分散剤(1)を水333gに溶解し、これに硝酸銀500g(2.94mol)を水833gに溶かした溶液を加えて、よく攪拌した。この混合物に前記の還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45μm)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製「MOLSEPモジュールFB-02型」、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収して、不揮発物36.7質量部%の銀分散液(1)742.9g(分散媒体:水)を得た。 [Production of silver dispersion (1)]
A reducing agent solution comprising 463 g (4.41 mol) of 85% by mass of N, N-diethylhydroxylamine, the polymer dispersant (1) obtained above (equivalent to 23.0 g of non-volatiles), and 1,250 g of water. Prepared. Separately, the polymer dispersant (1) obtained above corresponding to 11.5 g of non-volatiles was dissolved in 333 g of water, and a solution of 500 g (2.94 mol) of silver nitrate in 833 g of water was added thereto and stirred well. did. The reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours. The obtained reaction mixture was filtered with a membrane filter (pore size 0.45 μm), and the filtrate was in a hollow fiber type ultrafiltration module (“MOLSEP module FB-02 type” manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000). The amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification. After confirming that the electric conductivity of the filtrate was 100 μS / cm or less, water injection was stopped and the filtrate was concentrated. The concentrate was recovered to obtain 742.9 g (dispersion medium: water) of a silver dispersion (1) of 36.7 parts by mass of nonvolatiles.
上記で得られた銀分散液(1)にイソプロピルアルコール200mlとヘキサン200mlとの混合溶剤を加え2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にイソプロピルアルコール50mlとヘキサン50mlとの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にさらに水20gを加えて2分間攪拌して、減圧下有機溶剤を除去した。さらに水10gを加えて攪拌分散した後、-40℃の冷凍機に24時間放置して凍結し、これを凍結乾燥機(東京理化器械株式会社製「FDU-2200」)で24時間処理することによって、灰緑色の金属光沢があるフレーク状の塊からなる銀含有粉体(1)を得た。
A mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the silver dispersion liquid (1) obtained above and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure. Further, add 10 g of water and disperse with stirring, then leave it in a freezer at −40 ° C. for 24 hours to freeze it, and treat it with a freeze dryer (“FDU-2200” manufactured by Tokyo Rika Kikai Co., Ltd.) for 24 hours. As a result, a silver-containing powder (1) composed of a flake-like lump having a grayish green metallic luster was obtained.
上記で得た銀含有粉体(1)25.9gに、エチレングリコール45gおよびイオン交換水55gを加えて3時間攪拌して、インクジェット印刷用の導電性インクに使用可能な流動体(1)を得た。得られた流動体(1)中の銀の含有量は20質量%であり、高分子分散剤(1)の含有量は1質量%であった。また、流動体(1)の粘度は10mPa・sであった。
To 25.9 g of the silver-containing powder (1) obtained above, 45 g of ethylene glycol and 55 g of ion-exchanged water are added and stirred for 3 hours to obtain a fluid (1) that can be used for conductive ink for inkjet printing. Obtained. The content of silver in the obtained fluid (1) was 20% by mass, and the content of the polymer dispersant (1) was 1% by mass. Moreover, the viscosity of the fluid (1) was 10 mPa · s.
[流動体(2)の調製]
窒素雰囲気下、メトキシポリエチレングリコール(数平均分子量2,000)20g、ピリジン8.0gおよびクロロホルム20mlからなる混合物に、p-トルエンスルホン酸クロライド9.6gを含むクロロホルム溶液30mlを、氷冷撹拌しながら30分間滴下した後、浴槽温度40℃で4時間攪拌し、クロロホルム50mlを混合した。 [Preparation of fluid (2)]
Under a nitrogen atmosphere, 30 ml of a chloroform solution containing 9.6 g of p-toluenesulfonic acid chloride was added to a mixture of 20 g of methoxypolyethylene glycol (number average molecular weight 2,000), 8.0 g of pyridine and 20 ml of chloroform while stirring with ice cooling. After dropwise addition for 30 minutes, the mixture was stirred at a bath temperature of 40 ° C. for 4 hours, and 50 ml of chloroform was mixed.
窒素雰囲気下、メトキシポリエチレングリコール(数平均分子量2,000)20g、ピリジン8.0gおよびクロロホルム20mlからなる混合物に、p-トルエンスルホン酸クロライド9.6gを含むクロロホルム溶液30mlを、氷冷撹拌しながら30分間滴下した後、浴槽温度40℃で4時間攪拌し、クロロホルム50mlを混合した。 [Preparation of fluid (2)]
Under a nitrogen atmosphere, 30 ml of a chloroform solution containing 9.6 g of p-toluenesulfonic acid chloride was added to a mixture of 20 g of methoxypolyethylene glycol (number average molecular weight 2,000), 8.0 g of pyridine and 20 ml of chloroform while stirring with ice cooling. After dropwise addition for 30 minutes, the mixture was stirred at a bath temperature of 40 ° C. for 4 hours, and 50 ml of chloroform was mixed.
上記で得られた生成物を、5質量%塩酸水溶液100mlで洗浄し、次いで飽和炭酸水素ナトリウム水溶液100mlで洗浄し、さらに飽和食塩水溶液100mlで洗浄した後、無水硫酸マグネシウムを用いて乾燥し、濾過、減圧濃縮した。減圧濃縮した物をヘキサンで数回洗浄した後、濾過し、80℃で減圧乾燥することによって、p-トルエンスルホニルオキシ基を有するメトキシポリエチレングリコールを得た。
The product obtained above was washed with 100 ml of 5% by mass aqueous hydrochloric acid solution, then with 100 ml saturated aqueous sodium hydrogen carbonate solution, and further with 100 ml saturated aqueous sodium chloride solution, and then dried over anhydrous magnesium sulfate and filtered. And concentrated under reduced pressure. The product concentrated under reduced pressure was washed several times with hexane, filtered, and dried under reduced pressure at 80 ° C. to obtain methoxypolyethylene glycol having p-toluenesulfonyloxy group.
上記で得られたp-トルエンスルホニルオキシ基を有するメトキシポリエチレングリコール5.39g、ポリエチレンイミン(アルドリッチ社製、分子量25,000)20g、炭酸カリウム0.07gおよびN,N-ジメチルアセトアミド100mlを混合し、窒素雰囲気下、100℃で6時間攪拌した。
5.39 g of methoxypolyethylene glycol having p-toluenesulfonyloxy group obtained above, 20 g of polyethyleneimine (manufactured by Aldrich, molecular weight 25,000), 0.07 g of potassium carbonate and 100 ml of N, N-dimethylacetamide were mixed. The mixture was stirred at 100 ° C. for 6 hours in a nitrogen atmosphere.
次いで、酢酸エチルとヘキサンとの混合溶液(酢酸エチル/ヘキサンの体積比=1/2)300mlを加え、室温で強力攪拌した後、生成物の固形物を濾過した。その固形物を、酢酸エチルとヘキサンの混合溶液(酢酸エチル/ヘキサンの体積比=1/2)100mlを用いて洗浄した後、減圧乾燥することによって、ポリエチレンイミンにポリエチレングリコールが結合した化合物(以下、「高分子分散剤(2)」と略記する。)を得た。
Next, 300 ml of a mixed solution of ethyl acetate and hexane (volume ratio of ethyl acetate / hexane = 1/2) was added, and after vigorous stirring at room temperature, the solid product was filtered. The solid was washed with 100 ml of a mixed solution of ethyl acetate and hexane (ethyl acetate / hexane volume ratio = 1/2) and then dried under reduced pressure, whereby a compound in which polyethylene glycol was bound to polyethyleneimine (hereinafter referred to as “polyethyleneimine”). , Abbreviated as “polymer dispersing agent (2)”).
上記で得られた高分子分散剤(2)を0.592g含む水溶液138.8gと、酸化銀10gとを混合し、25℃で30分間攪拌した。次いで、ジメチルエタノールアミン46gを攪拌しながら徐々に加え、25℃で30分間攪拌した。その後、10質量%アスコルビン酸水溶液15.2gを攪拌しながら徐々に加え20時間攪拌を続けることによって銀分散液(2)を得た。
138.8 g of an aqueous solution containing 0.592 g of the polymer dispersant (2) obtained above and 10 g of silver oxide were mixed and stirred at 25 ° C. for 30 minutes. Next, 46 g of dimethylethanolamine was gradually added with stirring, and the mixture was stirred at 25 ° C. for 30 minutes. Thereafter, 15.2 g of a 10% by mass ascorbic acid aqueous solution was gradually added with stirring, and stirring was continued for 20 hours to obtain a silver dispersion (2).
上記で得られた銀分散液(2)に、イソプロピルアルコール200mlおよびヘキサン200mlの混合溶剤を加え2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にイソプロピルアルコール50mlおよびヘキサン50mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にさらに水20gを加えて2分間攪拌して、減圧下有機溶剤を除去した。さらに水10gを加えて攪拌分散した後、該分散体を-40℃の冷凍機に24時間放置して凍結し、これを凍結乾燥機(東京理化器械株式会社製「FDU-2200」)で24時間処理することによって、灰緑色の金属光沢があるフレーク状の塊からなる銀含有粉体(2)を得た。
To the silver dispersion (2) obtained above, a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure. Further, 10 g of water was added and stirred and dispersed, and then the dispersion was left to stand in a freezer at −40 ° C. for 24 hours to freeze, and this was frozen with a freeze dryer (“FDU-2200” manufactured by Tokyo Rika Kikai Co., Ltd.). By performing the time treatment, a silver-containing powder (2) composed of flaky lumps having a grayish green metallic luster was obtained.
上記で得られた銀含有粉体(2)25.9gに、エチレングリコール45gおよびイオン交換水55gを加えて3時間攪拌して、インクジェット印刷用の導電性インクに使用可能な流動体(2)を得た。得られた流動体(2)中の銀の含有量は20質量%であり、高分子分散剤(2)の含有量は1質量%であった。また、流動体(2)の粘度は10mPa・sであった。
Fluid (2) usable for conductive ink for inkjet printing by adding 45 g of ethylene glycol and 55 g of ion exchange water to 25.9 g of the silver-containing powder (2) obtained above and stirring for 3 hours. Got. The content of silver in the obtained fluid (2) was 20% by mass, and the content of the polymer dispersant (2) was 1% by mass. Moreover, the viscosity of the fluid (2) was 10 mPa · s.
[合成例1:ウレタン-アクリル複合樹脂の製造]
温度計、窒素ガス導入管および攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール100質量部(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール、水酸基当量1000g/当量)と2,2―ジメチロールプロピオン酸17.4質量部と1,4-シクロヘキサンジメタノール21.7質量部とジシクロヘキシルメタンジイソシアネート106.2質量部とを、メチルエチルケトン178質量部中で混合し反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。 [Synthesis Example 1: Production of urethane-acrylic composite resin]
100 parts by mass of polyester polyol (polyester obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube and a stirrer Polyol, hydroxyl group equivalent 1000 g / equivalent), 17.4 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol and 106.2 parts by mass of dicyclohexylmethane diisocyanate, and 178 parts by mass of methyl ethyl ketone. By mixing and reacting in the part, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
温度計、窒素ガス導入管および攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール100質量部(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール、水酸基当量1000g/当量)と2,2―ジメチロールプロピオン酸17.4質量部と1,4-シクロヘキサンジメタノール21.7質量部とジシクロヘキシルメタンジイソシアネート106.2質量部とを、メチルエチルケトン178質量部中で混合し反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。 [Synthesis Example 1: Production of urethane-acrylic composite resin]
100 parts by mass of polyester polyol (polyester obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube and a stirrer Polyol, hydroxyl group equivalent 1000 g / equivalent), 17.4 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol and 106.2 parts by mass of dicyclohexylmethane diisocyanate, and 178 parts by mass of methyl ethyl ketone. By mixing and reacting in the part, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
次いで、上記で得られたウレタンプレポリマーの有機溶剤溶液に、トリエチルアミンを13.3質量部加えることで前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水277質量部を加え十分に攪拌することにより、カルボキシル基を有するウレタン樹脂の水分散液を得た。
Next, 13.3 parts by mass of triethylamine was added to the organic solvent solution of the urethane prepolymer obtained above to neutralize part or all of the carboxyl groups of the urethane resin, and 277 parts by mass of water was further added. By sufficiently stirring, an aqueous dispersion of urethane resin having a carboxyl group was obtained.
次いで、上記で得られたウレタン樹脂の水分散液に、25質量%のエチレンジアミン水溶液を8質量部加え、攪拌することによって、ウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂(B)-2の水分散液を得た。ここで得られたウレタン樹脂は、酸価が30であり、重量平均分子量が55,000であった。
Next, 8 parts by mass of a 25% by mass ethylenediamine aqueous solution was added to the aqueous dispersion of the urethane resin obtained above, and the urethane resin was chain-extended by stirring, followed by aging and desolvation to obtain a solid content. An aqueous dispersion of urethane resin (B) -2 having a concentration of 30% by mass was obtained. The urethane resin obtained here had an acid value of 30 and a weight average molecular weight of 55,000.
攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗および重合触媒滴下用滴下漏斗を備えた反応容器に、脱イオン水280質量部、前記で得たウレタン樹脂の水分散液333質量部を入れ、窒素を吹き込みながら80℃まで昇温した。
In a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture and dropping funnel for dropping the polymerization catalyst, 280 parts by mass of deionized water, water of the urethane resin obtained above 333 parts by mass of the dispersion was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
80℃まで昇温した反応容器内に、攪拌下、コア層を構成するビニル重合体を得るため、メタクリル酸メチル46質量部、アクリル酸n-ブチル46質量部、メタクリル酸2-ヒドロキシエチル4質量部およびN-n-ブトキシメチルアクリルアミド4質量部を含有するビニル単量体混合物と、過硫酸アンモニウム水溶液(濃度:0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。
In order to obtain a vinyl polymer constituting the core layer under stirring in a reaction vessel heated to 80 ° C., 46 parts by mass of methyl methacrylate, 46 parts by mass of n-butyl acrylate, 4 parts by mass of 2-hydroxyethyl methacrylate And a vinyl monomer mixture containing 4 parts by mass of Nn-butoxymethylacrylamide and 20 parts by mass of an aqueous ammonium persulfate solution (concentration: 0.5% by mass) from separate dropping funnels, and the temperature in the reaction vessel was set to 80. While maintaining at ± 2 ° C., polymerization was carried out by dropping over 120 minutes.
滴下終了後、同温度にて60分間攪拌した後、前記反応容器内の温度を40℃に冷却し、次いで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、前記ウレタン樹脂からなるシェル層と、N-n-ブトキシメチルアクリルアミド基を有するビニル重合体からなるコア層とによって構成される複合樹脂粒子の水分散体を得た。
After completion of the dropwise addition, the mixture was stirred at the same temperature for 60 minutes, then the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20% by mass. By filtering with a cloth, an aqueous dispersion of composite resin particles composed of a shell layer made of the urethane resin and a core layer made of a vinyl polymer having an Nn-butoxymethylacrylamide group was obtained.
(実施例1)
支持体として無アルカリガラス(日本電気硝子株式会社製「OA-10」)を用い、その表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 Example 1
A non-alkali glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the fluid (1) obtained above was applied to the surface of the inkjet printing machine (an inkjet testing machine manufactured by Konica Minolta Co., Ltd. “ EB100 ”, evaluation printer head KM512L, discharge amount 42 pl), a straight line having a line width of 100 μm and a film thickness of 0.5 μm is printed by about 1 cm, and then baked at 200 ° C. for 30 minutes. A conductive pattern having a conductive layer laminated thereon was obtained.
支持体として無アルカリガラス(日本電気硝子株式会社製「OA-10」)を用い、その表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 Example 1
A non-alkali glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the fluid (1) obtained above was applied to the surface of the inkjet printing machine (an inkjet testing machine manufactured by Konica Minolta Co., Ltd. “ EB100 ”, evaluation printer head KM512L, discharge amount 42 pl), a straight line having a line width of 100 μm and a film thickness of 0.5 μm is printed by about 1 cm, and then baked at 200 ° C. for 30 minutes. A conductive pattern having a conductive layer laminated thereon was obtained.
(実施例2)
実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 (Example 2)
Instead of the fluid (1) used in Example 1, a conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 (Example 2)
Instead of the fluid (1) used in Example 1, a conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
(実施例3)
実施例1で支持体として用いた無アルカリガラスの代わりに、ポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 Example 3
Instead of the alkali-free glass used as the support in Example 1, a polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) was used instead of the fluid (1) used in Example 1. A conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
実施例1で支持体として用いた無アルカリガラスの代わりに、ポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 Example 3
Instead of the alkali-free glass used as the support in Example 1, a polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) was used instead of the fluid (1) used in Example 1. A conductive pattern was obtained in the same manner as in Example 1 except that the fluid (2) obtained above was used.
(実施例4)
支持体として無アルカリガラス(日本電気硝子株式会社製「OA-10」)を用い、その表面に、合成例1で得られたウレタン-アクリル複合樹脂の水分散液を、乾燥膜厚が1μmになるようにスピンコーターを用いて塗工し、熱風乾燥機を用いて120℃で3分間乾燥することによって得られたプライマー層を有する無アルカリガラスからなる支持体を得た。得られた支持体のプライマー層の表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 Example 4
An alkali-free glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface to a dry film thickness of 1 μm. Thus, a support made of an alkali-free glass having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained. On the surface of the primer layer of the obtained support, apply the fluid (1) obtained above to an inkjet printer (ink tester “EB100” manufactured by Konica Minolta, Inc., evaluation printer head KM512L, discharge amount 42 pl). Using this, a straight line having a line width of 100 μm and a film thickness of 0.5 μm was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
支持体として無アルカリガラス(日本電気硝子株式会社製「OA-10」)を用い、その表面に、合成例1で得られたウレタン-アクリル複合樹脂の水分散液を、乾燥膜厚が1μmになるようにスピンコーターを用いて塗工し、熱風乾燥機を用いて120℃で3分間乾燥することによって得られたプライマー層を有する無アルカリガラスからなる支持体を得た。得られた支持体のプライマー層の表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 Example 4
An alkali-free glass (“OA-10” manufactured by Nippon Electric Glass Co., Ltd.) was used as the support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface to a dry film thickness of 1 μm. Thus, a support made of an alkali-free glass having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained. On the surface of the primer layer of the obtained support, apply the fluid (1) obtained above to an inkjet printer (ink tester “EB100” manufactured by Konica Minolta, Inc., evaluation printer head KM512L, discharge amount 42 pl). Using this, a straight line having a line width of 100 μm and a film thickness of 0.5 μm was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
(実施例5)
実施例4で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例4と同様の方法によって、導電性パターンを得た。 (Example 5)
A conductive pattern was obtained in the same manner as in Example 4 except that instead of the fluid (1) used in Example 4, the fluid (2) obtained above was used.
実施例4で用いた流動体(1)の代わりに、上記で得られた流動体(2)を用いた以外は実施例4と同様の方法によって、導電性パターンを得た。 (Example 5)
A conductive pattern was obtained in the same manner as in Example 4 except that instead of the fluid (1) used in Example 4, the fluid (2) obtained above was used.
(実施例6)
支持体としてポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、その表面に、合成例1で得られたウレタン-アクリル複合樹脂の水分散液を、乾燥膜厚が1μmになるようにスピンコーターを用いて塗工し、熱風乾燥機を用いて120℃で3分間乾燥することによって得られたプライマー層を有するポリイミドフィルムからなる支持体を得た。得られた支持体のプライマー層の表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 (Example 6)
A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) was used as a support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface with a dry film thickness of 1 μm. Thus, a support comprising a polyimide film having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained. On the surface of the primer layer of the obtained support, apply the fluid (1) obtained above to an inkjet printer (ink tester “EB100” manufactured by Konica Minolta, Inc., evaluation printer head KM512L, discharge amount 42 pl). Using this, a straight line having a line width of 100 μm and a film thickness of 0.5 μm was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
支持体としてポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、その表面に、合成例1で得られたウレタン-アクリル複合樹脂の水分散液を、乾燥膜厚が1μmになるようにスピンコーターを用いて塗工し、熱風乾燥機を用いて120℃で3分間乾燥することによって得られたプライマー層を有するポリイミドフィルムからなる支持体を得た。得られた支持体のプライマー層の表面に、上記で得られた流動体(1)をインクジェット印刷機(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量42pl)を用いて、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで200℃の条件下で30分間焼成することによって、支持体に導電層が積層した導電性パターンを得た。 (Example 6)
A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) was used as a support, and the urethane-acrylic composite resin aqueous dispersion obtained in Synthesis Example 1 was dried on the surface with a dry film thickness of 1 μm. Thus, a support comprising a polyimide film having a primer layer obtained by coating with a spin coater and drying at 120 ° C. for 3 minutes using a hot air dryer was obtained. On the surface of the primer layer of the obtained support, apply the fluid (1) obtained above to an inkjet printer (ink tester “EB100” manufactured by Konica Minolta, Inc., evaluation printer head KM512L, discharge amount 42 pl). Using this, a straight line having a line width of 100 μm and a film thickness of 0.5 μm was printed by about 1 cm, and then fired at 200 ° C. for 30 minutes to obtain a conductive pattern in which a conductive layer was laminated on a support.
(比較例1)
[流動体(3)の調製]
テトラデカン70質量部中に、オレイン酸を用いて平均粒径30nmの銀粒子を分散させ、その粘度を10mPa・sに調整することによって、インクジェット印刷用の導電性インクに使用可能な流動体(3)を調製した。 (Comparative Example 1)
[Preparation of fluid (3)]
In 70 parts by mass of tetradecane, silver particles having an average particle size of 30 nm are dispersed using oleic acid, and the viscosity is adjusted to 10 mPa · s, whereby a fluid that can be used for conductive ink for inkjet printing (3 ) Was prepared.
[流動体(3)の調製]
テトラデカン70質量部中に、オレイン酸を用いて平均粒径30nmの銀粒子を分散させ、その粘度を10mPa・sに調整することによって、インクジェット印刷用の導電性インクに使用可能な流動体(3)を調製した。 (Comparative Example 1)
[Preparation of fluid (3)]
In 70 parts by mass of tetradecane, silver particles having an average particle size of 30 nm are dispersed using oleic acid, and the viscosity is adjusted to 10 mPa · s, whereby a fluid that can be used for conductive ink for inkjet printing (3 ) Was prepared.
支持体として無アルカリガラスを用い、実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(3)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。
Conductivity is obtained in the same manner as in Example 1 except that alkali-free glass is used as the support and the fluid (3) obtained above is used instead of the fluid (1) used in Example 1. Got a pattern.
(比較例2)
支持体としてポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(3)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 (Comparative Example 2)
A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) is used as a support, and instead of the fluid (1) used in Example 1, the fluid (3) obtained above is used. A conductive pattern was obtained in the same manner as in Example 1 except that.
支持体としてポリイミドフィルム(東レ・デュポン株式会社製「Kapton150ENC」、厚さ50μm)を用い、実施例1で用いた流動体(1)の代わりに、上記で得られた流動体(3)を用いた以外は実施例1と同様の方法によって、導電性パターンを得た。 (Comparative Example 2)
A polyimide film (“Kapton 150ENC” manufactured by Toray DuPont Co., Ltd., thickness 50 μm) is used as a support, and instead of the fluid (1) used in Example 1, the fluid (3) obtained above is used. A conductive pattern was obtained in the same manner as in Example 1 except that.
上記の実施例1~6および比較例1~2で得られた導電性パターンについて、導電層と支持体との密着性を評価した。なお、支持体にプライマー層を有するものについては、導電層とプライマー層との密着性を評価した。
For the conductive patterns obtained in Examples 1 to 6 and Comparative Examples 1 and 2, the adhesion between the conductive layer and the support was evaluated. In addition, about what has a primer layer in a support body, the adhesiveness of a conductive layer and a primer layer was evaluated.
[導電層と支持体との密着性評価]
導電性パターンの導電層の表面にセロハン粘着テープ(ニチバン株式会社製「CT405AP-24」、幅24mm)を指で圧着した後、圧着したセロハン粘着テープを、前記導電性パターンの表面に対して90度方向に剥離した。剥離したセロハン粘着テープの粘着面を目視で観察し、下記の基準にしたがって導電層と支持体との密着性を評価した。 [Evaluation of adhesion between conductive layer and support]
A cellophane adhesive tape (“CT405AP-24” manufactured by Nichiban Co., Ltd., width 24 mm) is pressure-bonded to the surface of the conductive layer of the conductive pattern with a finger, and the pressure-sensitive cellophane adhesive tape is then applied to the surface of the conductive pattern. It peeled in the direction. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesion between the conductive layer and the support was evaluated according to the following criteria.
導電性パターンの導電層の表面にセロハン粘着テープ(ニチバン株式会社製「CT405AP-24」、幅24mm)を指で圧着した後、圧着したセロハン粘着テープを、前記導電性パターンの表面に対して90度方向に剥離した。剥離したセロハン粘着テープの粘着面を目視で観察し、下記の基準にしたがって導電層と支持体との密着性を評価した。 [Evaluation of adhesion between conductive layer and support]
A cellophane adhesive tape (“CT405AP-24” manufactured by Nichiban Co., Ltd., width 24 mm) is pressure-bonded to the surface of the conductive layer of the conductive pattern with a finger, and the pressure-sensitive cellophane adhesive tape is then applied to the surface of the conductive pattern. It peeled in the direction. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesion between the conductive layer and the support was evaluated according to the following criteria.
A:セロハン粘着テープの粘着面に、銀を含む導電層が全く付着していなかったもの
B:導電層と粘着テープとが接触した面積に対して3%未満の範囲の導電層がプライマー層から剥離し、粘着テープの粘着面に付着したもの
C:導電層と粘着テープとが接触した面積に対して3%以上30%未満の範囲の導電層がプライマー層から剥離し、粘着テープの粘着面に付着したもの
D:導電層と粘着テープとが接触した面積に対して30%以上の範囲の導電層がプライマー層から剥離し、粘着テープに付着したもの A: A conductive layer containing silver was not attached to the adhesive surface of the cellophane adhesive tape. B: A conductive layer in a range of less than 3% with respect to the area where the conductive layer and the adhesive tape contacted each other was from the primer layer. Exfoliated and adhered to the adhesive surface of the adhesive tape C: The conductive layer in the range of 3% or more and less than 30% with respect to the area where the conductive layer and the adhesive tape were in contact with each other was separated from the primer layer, and the adhesive surface of the adhesive tape D: The conductive layer of 30% or more of the area where the conductive layer and the adhesive tape contacted peeled off from the primer layer and adhered to the adhesive tape
B:導電層と粘着テープとが接触した面積に対して3%未満の範囲の導電層がプライマー層から剥離し、粘着テープの粘着面に付着したもの
C:導電層と粘着テープとが接触した面積に対して3%以上30%未満の範囲の導電層がプライマー層から剥離し、粘着テープの粘着面に付着したもの
D:導電層と粘着テープとが接触した面積に対して30%以上の範囲の導電層がプライマー層から剥離し、粘着テープに付着したもの A: A conductive layer containing silver was not attached to the adhesive surface of the cellophane adhesive tape. B: A conductive layer in a range of less than 3% with respect to the area where the conductive layer and the adhesive tape contacted each other was from the primer layer. Exfoliated and adhered to the adhesive surface of the adhesive tape C: The conductive layer in the range of 3% or more and less than 30% with respect to the area where the conductive layer and the adhesive tape were in contact with each other was separated from the primer layer, and the adhesive surface of the adhesive tape D: The conductive layer of 30% or more of the area where the conductive layer and the adhesive tape contacted peeled off from the primer layer and adhered to the adhesive tape
[X線光電子分光分析(XPS)による導電層の基材界面の元素分析]
導電性パターンの導電層と支持体との界面で導電層を剥離し、支持体と接していた面(基材界面)を、X線光電子分光分析装置(株式会社島津製作所製「クレイトスAXIS-HS」、X線:モノクロAl-Kα、電圧:12KV、電流:10mA、測定径:400μm×600μm)を用いて、炭素原子の元素分析を行った。炭素原子量は、atom%で数値化した。 [Elemental analysis of substrate interface of conductive layer by X-ray photoelectron spectroscopy (XPS)]
The conductive layer was peeled off at the interface between the conductive layer of the conductive pattern and the support, and the surface that was in contact with the support (substrate interface) was placed on an X-ray photoelectron spectrometer (“Kraitos AXIS-HS, manufactured by Shimadzu Corporation” ”, X-ray: monochrome Al—Kα, voltage: 12 KV, current: 10 mA, measurement diameter: 400 μm × 600 μm) was used for elemental analysis of carbon atoms. The carbon atom weight was quantified in atom%.
導電性パターンの導電層と支持体との界面で導電層を剥離し、支持体と接していた面(基材界面)を、X線光電子分光分析装置(株式会社島津製作所製「クレイトスAXIS-HS」、X線:モノクロAl-Kα、電圧:12KV、電流:10mA、測定径:400μm×600μm)を用いて、炭素原子の元素分析を行った。炭素原子量は、atom%で数値化した。 [Elemental analysis of substrate interface of conductive layer by X-ray photoelectron spectroscopy (XPS)]
The conductive layer was peeled off at the interface between the conductive layer of the conductive pattern and the support, and the surface that was in contact with the support (substrate interface) was placed on an X-ray photoelectron spectrometer (“Kraitos AXIS-HS, manufactured by Shimadzu Corporation” ”, X-ray: monochrome Al—Kα, voltage: 12 KV, current: 10 mA, measurement diameter: 400 μm × 600 μm) was used for elemental analysis of carbon atoms. The carbon atom weight was quantified in atom%.
X線光電子分光分析装置での元素分析により、実施例1~3の導電性パターンでは、導電層の基材界面での炭素原子量は80~89atm%と高い値であり、導電層の基材界面に高分子分散剤が偏析していることが確認できた。一方、実施例1~3の導電性パターンでは、導電層の基材界面での炭素原子量は15~71atm%と低い値であり、導電層の基材界面に高分子分散剤が偏析していないことが確認できた。なお、支持体にプライマー層を形成した実施例4~6については、導電層と支持体との界面で導電層を剥離できなかったため、X線光電子分光分析装置での元素分析を行うことはできなかったが、プライマー層の有無しか条件が異ならない実施例1~3の元素分析結果から、導電層の基材界面に高分子分散剤が偏析しているものと推定できる。
According to the elemental analysis with an X-ray photoelectron spectrometer, the conductive patterns of Examples 1 to 3 have a high carbon atom content of 80 to 89 atm% at the substrate interface of the conductive layer. It was confirmed that the polymer dispersant was segregated. On the other hand, in the conductive patterns of Examples 1 to 3, the amount of carbon atoms at the base material interface of the conductive layer is as low as 15 to 71 atm%, and the polymer dispersant is not segregated at the base material interface of the conductive layer. I was able to confirm. In Examples 4 to 6, in which the primer layer was formed on the support, the conductive layer could not be peeled off at the interface between the conductive layer and the support, and therefore elemental analysis with an X-ray photoelectron spectrometer was not possible. However, from the results of elemental analysis in Examples 1 to 3 in which the conditions differ only in the presence or absence of the primer layer, it can be estimated that the polymer dispersant is segregated at the base material interface of the conductive layer.
[グロー放電発光分光法(GD-OES)による導電層の基材界面の元素分析]
上記の実施例2で得られた導電性パターンの導電層(銀層)について、マーカス型高周波グロー放電発光表面分析装置(株式会社堀場製作所製「GD-Profiler2」、ガス種:Ar、放電圧力:200Pa、放電電力:20W、パルス放電:On、パルス周波数:50Hz、取り込み:5ms毎、測定径:4mm)によって深さ方向で、炭素原子および銀原子の元素分析したチャート図を図1に示す。このチャート図から、導電層の断面において、支持体側(基材界面)およびその反対側(空気界面側)に炭素原子の信号強度が高く、銀原子の信号強度が低いことから、支持体側(基材界面)に高分子分散剤が偏析していることが確認できた。 [Elemental analysis of substrate interface of conductive layer by glow discharge emission spectroscopy (GD-OES)]
For the conductive layer (silver layer) having the conductive pattern obtained in Example 2, the Marcus type high-frequency glow discharge luminescent surface analyzer (“GD-Profiler2” manufactured by Horiba, Ltd., gas type: Ar, discharge pressure: FIG. 1 shows a chart of elemental analysis of carbon atoms and silver atoms in the depth direction by 200 Pa, discharge power: 20 W, pulse discharge: On, pulse frequency: 50 Hz, uptake: every 5 ms, measurement diameter: 4 mm). From this chart, it can be seen that, in the cross section of the conductive layer, the signal side of the carbon atom is high and the signal intensity of the silver atom is low on the support side (base material interface) and the opposite side (air interface side). It was confirmed that the polymer dispersant was segregated at the material interface.
上記の実施例2で得られた導電性パターンの導電層(銀層)について、マーカス型高周波グロー放電発光表面分析装置(株式会社堀場製作所製「GD-Profiler2」、ガス種:Ar、放電圧力:200Pa、放電電力:20W、パルス放電:On、パルス周波数:50Hz、取り込み:5ms毎、測定径:4mm)によって深さ方向で、炭素原子および銀原子の元素分析したチャート図を図1に示す。このチャート図から、導電層の断面において、支持体側(基材界面)およびその反対側(空気界面側)に炭素原子の信号強度が高く、銀原子の信号強度が低いことから、支持体側(基材界面)に高分子分散剤が偏析していることが確認できた。 [Elemental analysis of substrate interface of conductive layer by glow discharge emission spectroscopy (GD-OES)]
For the conductive layer (silver layer) having the conductive pattern obtained in Example 2, the Marcus type high-frequency glow discharge luminescent surface analyzer (“GD-Profiler2” manufactured by Horiba, Ltd., gas type: Ar, discharge pressure: FIG. 1 shows a chart of elemental analysis of carbon atoms and silver atoms in the depth direction by 200 Pa, discharge power: 20 W, pulse discharge: On, pulse frequency: 50 Hz, uptake: every 5 ms, measurement diameter: 4 mm). From this chart, it can be seen that, in the cross section of the conductive layer, the signal side of the carbon atom is high and the signal intensity of the silver atom is low on the support side (base material interface) and the opposite side (air interface side). It was confirmed that the polymer dispersant was segregated at the material interface.
上記で評価した結果をまとめたものを表1に示す。
Table 1 summarizes the results evaluated above.
*上記の表1中の実施例4~6の「高分子分散剤の偏在の有無」は、実施例1~3の導電層の基材界面の炭素原子量からの推定で「あり」とした。
* “Presence / absence of uneven distribution of polymer dispersant” in Examples 4 to 6 in Table 1 above was determined to be “Yes” based on the estimation of the carbon atom weight at the substrate interface of the conductive layers in Examples 1 to 3.
導電層の断面において、支持体(A)側(基材界面)に、高分子分散剤が偏在している実施例1~6の本発明の導電性パターンは、支持体と導電層との密着性が非常に高いことが確認できた。
In the cross section of the conductive layer, the conductive pattern of the present invention of Examples 1 to 6 in which the polymer dispersant is unevenly distributed on the support (A) side (substrate interface) is the adhesion between the support and the conductive layer. It was confirmed that the property is very high.
一方、比較例1および2の導電性パターンは、導電層の支持体側(基材界面)に、分散剤に相当する界面活性剤であるオレイン酸が少量しか存在しないものであるが、支持体と導電層との密着性が不十分であることが確認できた。
On the other hand, the conductive patterns of Comparative Examples 1 and 2 have a small amount of oleic acid, which is a surfactant corresponding to a dispersant, on the support side (base material interface) of the conductive layer. It was confirmed that the adhesion with the conductive layer was insufficient.
Claims (5)
- 支持体(A)の上に、導電性物質および高分子分散剤を含有する流動体(b)を塗布して導電層(B)を形成した導電性パターンであって、前記導電層(B)の断面において、前記支持体(A)側(基材界面)に、前記高分子分散剤が偏在していることを特徴とする導電性パターン。 A conductive pattern in which a fluid (b) containing a conductive substance and a polymer dispersant is applied on a support (A) to form a conductive layer (B), wherein the conductive layer (B) In the cross section of the conductive pattern, the polymer dispersant is unevenly distributed on the support (A) side (substrate interface).
- 前記高分子分散剤が、ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、リン酸エステル残基を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、ポリオキシアルキレングリコール鎖を有する(メタ)アクリル酸エステルとリン酸エステル残基を有する(メタ)アクリル酸エステルと硫黄原子を有する連鎖移動剤との共重合体、ポリアルキレンイミン、または、オキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる少なくとも1種以上のものである請求項1記載の導電性パターン。 The polymer dispersant is a copolymer of a (meth) acrylic acid ester having a polyoxyalkylene glycol chain and a chain transfer agent having a sulfur atom, a (meth) acrylic acid ester having a phosphoric acid ester residue and a sulfur atom. Copolymer of a chain transfer agent having a chain, a (meth) acrylate having a polyoxyalkylene glycol chain, a (meth) acrylate having a phosphate residue, and a chain transfer agent having a sulfur atom The conductive pattern according to claim 1, wherein the conductive pattern is at least one selected from the group consisting of a coalescence, a polyalkyleneimine, or a polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit.
- 支持体(A)と導電層(B)との間にプライマー層(C)を設けた請求項1記載の導電性パターン。 The conductive pattern according to claim 1, wherein a primer layer (C) is provided between the support (A) and the conductive layer (B).
- 前記導電層(B)の表面に、さらにめっき層(D)を積層したものである請求項1記載の導電性パターン。 The conductive pattern according to claim 1, wherein a plating layer (D) is further laminated on the surface of the conductive layer (B).
- 請求項1~4のいずれか1項記載の導電性パターンを有することを特徴とする電子回路。 An electronic circuit having the conductive pattern according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013187334 | 2013-09-10 | ||
JP2013-187334 | 2013-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037512A1 true WO2015037512A1 (en) | 2015-03-19 |
Family
ID=52665618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073383 WO2015037512A1 (en) | 2013-09-10 | 2014-09-04 | Electroconductive pattern and electronic circuit |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201515016A (en) |
WO (1) | WO2015037512A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238592A1 (en) * | 2022-06-07 | 2023-12-14 | Dic株式会社 | Transfer laminate and manufacturing method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115925449B (en) * | 2022-12-30 | 2023-11-07 | 浙江朗德电子科技有限公司 | Preparation method of functional electrode for tail gas sensor chip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006321948A (en) * | 2005-05-20 | 2006-11-30 | Sumitomo Electric Ind Ltd | Metal particulate dispersion and method for forming metal film by using the same |
JP2010031318A (en) * | 2008-07-28 | 2010-02-12 | Achilles Corp | Plated article |
JP2010080438A (en) * | 2008-08-28 | 2010-04-08 | Mitsuboshi Belting Ltd | Conductive substrate, and precursor thereof and manufacturing method therefor |
WO2011040189A1 (en) * | 2009-09-30 | 2011-04-07 | 大日本印刷株式会社 | Metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate |
-
2014
- 2014-09-02 TW TW103130290A patent/TW201515016A/en unknown
- 2014-09-04 WO PCT/JP2014/073383 patent/WO2015037512A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006321948A (en) * | 2005-05-20 | 2006-11-30 | Sumitomo Electric Ind Ltd | Metal particulate dispersion and method for forming metal film by using the same |
JP2010031318A (en) * | 2008-07-28 | 2010-02-12 | Achilles Corp | Plated article |
JP2010080438A (en) * | 2008-08-28 | 2010-04-08 | Mitsuboshi Belting Ltd | Conductive substrate, and precursor thereof and manufacturing method therefor |
WO2011040189A1 (en) * | 2009-09-30 | 2011-04-07 | 大日本印刷株式会社 | Metal microparticle dispersion, process for production of electrically conductive substrate, and electrically conductive substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238592A1 (en) * | 2022-06-07 | 2023-12-14 | Dic株式会社 | Transfer laminate and manufacturing method therefor |
JP7453632B1 (en) | 2022-06-07 | 2024-03-21 | Dic株式会社 | Transfer laminate and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW201515016A (en) | 2015-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5418738B1 (en) | LAMINATE, CONDUCTIVE PATTERN, ELECTRIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD | |
JP5843123B2 (en) | Conductive pattern, electronic circuit, and laminate manufacturing method | |
KR102206686B1 (en) | Laminate, metal mesh and touch panel | |
WO2013146195A1 (en) | Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern | |
JP6418435B2 (en) | Laminate, conductive pattern and electronic circuit | |
WO2015137132A1 (en) | Shield film, shield printed wiring board, and methods for producing same | |
JP5569662B1 (en) | Laminate, conductive pattern and electrical circuit | |
WO2014115710A1 (en) | Laminate, conductive pattern, electrical circuit, and method for producing laminate | |
JP6103161B2 (en) | Conductive pattern, electronic circuit and electromagnetic wave shield | |
JPWO2020003880A1 (en) | Laminate for printed wiring board and printed wiring board using the same | |
JP6296290B2 (en) | Metal-based printed wiring board and manufacturing method thereof | |
WO2015037512A1 (en) | Electroconductive pattern and electronic circuit | |
JP2019014188A (en) | Laminate, and printed wiring board, flexible printed wiring board and molded article using the same | |
JP5622067B1 (en) | RECEPTION LAYER FORMING COMPOSITION, RECEPTIVE SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED | |
JP6439973B2 (en) | Laminate, conductive pattern and electronic circuit | |
JP6432761B2 (en) | LAMINATE, CONDUCTIVE PATTERN, ELECTRONIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD | |
WO2013179965A1 (en) | Conductive pattern, conductive circuit, and method for producing conductive pattern | |
JP2017117931A (en) | Laminate, conducting pattern, electronic circuit, transparent electrode and method for manufacturing electromagnetic wave shield material | |
WO2019013039A1 (en) | Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14844733 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14844733 Country of ref document: EP Kind code of ref document: A1 |