WO2015035392A1 - Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime - Google Patents
Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime Download PDFInfo
- Publication number
- WO2015035392A1 WO2015035392A1 PCT/US2014/054799 US2014054799W WO2015035392A1 WO 2015035392 A1 WO2015035392 A1 WO 2015035392A1 US 2014054799 W US2014054799 W US 2014054799W WO 2015035392 A1 WO2015035392 A1 WO 2015035392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cement composition
- delayed cement
- retarder
- delayed
- pumice
- Prior art date
Links
- 239000004568 cement Substances 0.000 title claims abstract description 259
- 239000000203 mixture Substances 0.000 title claims abstract description 237
- 239000008262 pumice Substances 0.000 title claims abstract description 47
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 title claims abstract description 32
- 239000000920 calcium hydroxide Substances 0.000 title claims abstract description 32
- 235000011116 calcium hydroxide Nutrition 0.000 title claims abstract description 32
- 229910001861 calcium hydroxide Inorganic materials 0.000 title claims abstract description 32
- 238000011109 contamination Methods 0.000 title claims description 9
- 230000000116 mitigating effect Effects 0.000 title claims description 4
- 230000000694 effects Effects 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 47
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000003213 activating effect Effects 0.000 claims abstract description 7
- 239000002270 dispersing agent Substances 0.000 claims description 34
- 239000000356 contaminant Substances 0.000 claims description 24
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 22
- 239000012530 fluid Substances 0.000 claims description 21
- 230000003111 delayed effect Effects 0.000 claims description 18
- 239000012190 activator Substances 0.000 claims description 17
- 150000003839 salts Chemical class 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 229920001732 Lignosulfonate Polymers 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 150000003007 phosphonic acid derivatives Chemical class 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 4
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 4
- -1 borate compound Chemical class 0.000 claims description 4
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004571 lime Substances 0.000 claims description 4
- 150000007524 organic acids Chemical class 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000002893 slag Substances 0.000 claims description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 3
- 239000010440 gypsum Substances 0.000 claims description 3
- 229910052602 gypsum Inorganic materials 0.000 claims description 3
- 239000011396 hydraulic cement Substances 0.000 claims description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000005755 formation reaction Methods 0.000 description 24
- 239000000654 additive Substances 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 239000011398 Portland cement Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000000523 sample Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000001066 destructive effect Effects 0.000 description 5
- 239000006101 laboratory sample Substances 0.000 description 5
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 description 4
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 4
- PYUBPZNJWXUSID-UHFFFAOYSA-N pentadecapotassium;pentaborate Chemical compound [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] PYUBPZNJWXUSID-UHFFFAOYSA-N 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229940042400 direct acting antivirals phosphonic acid derivative Drugs 0.000 description 3
- 230000000246 remedial effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- RNIHAPSVIGPAFF-UHFFFAOYSA-N Acrylamide-acrylic acid resin Chemical compound NC(=O)C=C.OC(=O)C=C RNIHAPSVIGPAFF-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 2
- 229920005551 calcium lignosulfonate Polymers 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 2
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 229940046892 lead acetate Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000005341 metaphosphate group Chemical group 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 235000019691 monocalcium phosphate Nutrition 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- 229920005552 sodium lignosulfonate Polymers 0.000 description 2
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 208000032767 Device breakage Diseases 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011509 cement plaster Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- YIBPLYRWHCQZEB-UHFFFAOYSA-N formaldehyde;propan-2-one Chemical class O=C.CC(C)=O YIBPLYRWHCQZEB-UHFFFAOYSA-N 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- ZWXOQTHCXRZUJP-UHFFFAOYSA-N manganese(2+);manganese(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+3].[Mn+3] ZWXOQTHCXRZUJP-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- UDEJEOLNSNYQSX-UHFFFAOYSA-J tetrasodium;2,4,6,8-tetraoxido-1,3,5,7,2$l^{5},4$l^{5},6$l^{5},8$l^{5}-tetraoxatetraphosphocane 2,4,6,8-tetraoxide Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])(=O)O1 UDEJEOLNSNYQSX-UHFFFAOYSA-J 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- SRWMQSFFRFWREA-UHFFFAOYSA-M zinc formate Chemical compound [Zn+2].[O-]C=O SRWMQSFFRFWREA-UHFFFAOYSA-M 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/14—Minerals of vulcanic origin
- C04B14/16—Minerals of vulcanic origin porous, e.g. pumice
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/10—Lime cements or magnesium oxide cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/18—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/34—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/06—Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
- C04B40/0658—Retarder inhibited mortars activated by the addition of accelerators or retarder-neutralising agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
- C04B2103/12—Set accelerators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/20—Retarders
- C04B2103/22—Set retarders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/32—Superplasticisers
Definitions
- cement compositions may be used in a variety of subterranean operations.
- a pipe string e.g., casing, liners, expandable tubulars, etc.
- the process of cementing the pipe string in place is commonly referred to as "primary cementing.”
- primary cementing In a typical primary cementing method, a cement composition may be pumped into an annulus between the walls of the wellbore and the exterior surface of the pipe string disposed therein.
- the cement composition may set in the annular space, thereby forming an annular sheath of hardened, substantially impermeable cement (i.e., a cement sheath) that may support and position the pipe string in the wellbore and bond the exterior surface of the pipe string to the subterranean formation.
- a cement sheath the cement sheath surrounding the pipe string functions to prevent the migration of fluids in the annulus and to protect the pipe string from corrosion.
- Cement compositions also may be used in remedial cementing methods to, for example, seal cracks or holes in pipe strings or cement sheaths, seal highly permeable formation zones or fractures, place cement plugs, and the like.
- a broad variety of cement compositions have been used in subterranean cementing operations.
- set-delayed cement compositions have been used.
- Set-delayed cement compositions are characterized by their ability to remain in a pumpable fluid state for at least about one day (e.g., about 7 days, about 2 weeks, about 2 years or more) at room temperature (i.e., about 80°F) in quiescent storage.
- the set-delayed cement compositions may be capable of activation whereby reasonable compressive strengths may be developed.
- a cement set activator may be added to a set-delayed cement composition whereby the composition sets into a hardened mass.
- the set-delayed cement composition may be suitable for use in wellbore applications, for example, where it is desired to prepare the cement composition in advance. This may allow for the cement composition to be stored prior to its use. In addition, this may allow for the cement composition to be prepared at a convenient location before being transported to the job site. Accordingly, capital and operational expenditures may be reduced due to a reduction in the need for on-site bulk storage and mixing equipment.
- this may be particularly useful for offshore cementing operations where space onboard the vessels may be limited.
- set-delayed cement compositions have been developed before, challenges exist with their successful use in subterranean cementing operations.
- set-delayed cement compositions prepared with Portland cement may have undesired gelation issues which may limit their use and effectiveness in cementing operations.
- Other set-delayed compositions that have been developed, for example, those comprising hydrated lime and quartz, may have limited use at lower temperatures as they may not develop sufficient compressive strength when used in subterranean formations having lower bottom hole static temperatures.
- the large-scale manufacture of set-delayed cement compositions may present additional challenges.
- Large batch mixers or transport trucks used during the manufacturing process of the set-delayed cement compositions may contaminate the set-delayed cement compositions with residual cementitious matter from previous manufacturing operations.
- the cementitious contaminants may reduce the effectiveness of the retarders or activators used with the set-delayed cement compositions.
- the cementitious contaminants may even render the set-delayed cement compositions unusable.
- Thorough cleaning of the mixers before transitioning to a new cement composition may be expensive and decrease manufacturing efficiency.
- cleaning agents e.g., silica sand
- FIG. 1 illustrates a system for preparation and delivery of a set-delayed cement composition to a wellbore in accordance with certain embodiments.
- FIG. 2A illustrates surface equipment that may be used in placement of a set- delayed cement composition in a wellbore in accordance with certain embodiments.
- FIG. 2B illustrates placement of a set-delayed cement composition into a wellbore annulus in accordance with certain embodiments.
- the present embodiments relate to subterranean cementing operations and, more particularly, in certain embodiments, to set-delayed cement compositions and methods of using set-delayed cement compositions in subterranean formations.
- Embodiments of the set-delayed cement compositions may generally comprise water, pumice, hydrated lime, and a primary set retarder.
- the set- delayed cement compositions may further comprise a dispersant.
- embodiments of the set-delayed cement compositions may remain in a pumpable fluid state for an extended period of time.
- the set-delayed cement compositions may remain in a pumpable fluid state for at least about 1 day or longer (e.g., about 2 years or longer).
- the set-delayed cement compositions may develop reasonable compressive strengths after activation at relatively low temperatures.
- the set-delayed cement compositions may be suitable for a number of subterranean cementing operations, they may be particularly suitable for use in subterranean formations having relatively low bottom hole static temperatures, e.g., temperatures less than about 200°F or ranging from about 100°F to about 200°F. In alternative embodiments, the set-delayed cement compositions may be used in subterranean formations having bottom hole static temperatures up to 450°F or higher.
- the water used in embodiments of the set-delayed cement compositions may be from any source provided that it does not contain an excess of compounds that may undesirably affect other components in the set-delayed cement compositions.
- a set-delayed cement composition may comprise fresh water or salt water.
- Salt water generally may include one or more dissolved salts therein and may be saturated or unsaturated as desired for a particular application. Seawater or brines may be suitable for use in embodiments.
- the water may be present in an amount sufficient to form a pumpable slurry. In certain embodiments, the water may be present in the set-delayed cement compositions in an amount in the range of from about 33% to about 200% by weight of the pumice.
- the water may be present in the set-delayed cement compositions in an amount in the range of from about 35% to about 70% by weight of the pumice.
- the water may be present in the set-delayed cement compositions in an amount in the range of from about 35% to about 70% by weight of the pumice.
- Embodiments of the set-delayed cement compositions may comprise pumice.
- pumice is a volcanic rock that can exhibit cementitious properties in that it may set and harden in the presence of hydrated lime and water.
- the pumice may be ground or unground.
- the pumice may have any particle size distribution as desired for a particular application.
- the pumice may have a mean particle size in a range of from about 1 micron to about 200 microns. The mean particle size corresponds to dSO values as measured by particle size analyzers such as those manufactured by Malvern Instruments, Worcestershire, United Kingdom.
- the pumice may have a mean particle size in a range of from about 1 micron to about 200 microns, from about 5 microns to about 100 microns, or from about 10 microns to about 50 microns. In one particular embodiment, the pumice may have a mean particle size of less than about 15 microns.
- An example of a suitable pumice is DS-325 lightweight aggregate, available from Hess Pumice Products, Inc., Malad, Idaho. DS-32S aggregate has a particle size of less than about IS microns. It should be appreciated that particle sizes too small may have mixability problems while particle sizes too large may not be effectively suspended in the compositions.
- One of ordinary skill in the art, with the benefit of this disclosure, should be able to select a pumice with a particle size suitable for a chosen application.
- Embodiments of the set-delayed cement compositions may comprise hydrated lime.
- the term "hydrated lime” will be understood to mean calcium hydroxide.
- the hydrated lime may be provided as quicklime (calcium oxide) which hydrates when mixed with water to form the hydrated lime.
- the hydrated lime may be included in embodiments of the set-delayed cement compositions, for example, to form a hydraulic composition with the pumice.
- the hydrated lime may be included in a pumice-to-hydrated-Iime weight ratio of about 10: 1 to about 1 : 1 or 3: 1 to about 5:1.
- the hydrated lime may be included in the set-delayed cement compositions in an amount in the range of from about 10% to about 100% by weight of the pumice, for example. In some embodiments, the hydrated lime may be present in an amount ranging between any of and/or including any of about 10%, about 20%, about 40%, about 60%, about 80%, or about 100% by weight of the pumice.
- the cementitious components present in the set-delayed cement composition may consist essentially of the pumice and the hydrated lime. For example, the cementitious components may primarily comprise the pumice and the hydrated lime without any additional components (e.g., Portland cement, fly ash, slag cement) that hydraulically set in the presence of water.
- additional components e.g., Portland cement, fly ash, slag cement
- Embodiments of the set-delayed cement compositions may comprise a primary set retarder.
- a broad variety of primary set retarders may be suitable for use in the set-delayed cement compositions.
- the primary set retarders may comprise phosphonic acids, such as ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid), etc.; phosphonic acid derivatives; lignosulfonates, such as sodium lignosulfonate, calcium lignosulfonate, etc.; salts such as stannous sulfate, lead acetate, monobasic calcium phosphate; organic acids such as citric acid, tartaric acid, etc.; cellulose derivatives such as hydroxyl ethyl cellulose (HEC) and carboxymethyl hydroxyethyl cellulose (CMHEC); synthetic co- or ter-polymers comprising sulfonate and carboxylic acid groups such as sulfonate-functionalized
- the primary set retarder may be present in the set-delayed cement compositions in an amount sufficient to delay setting for a desired time.
- the primary set retarder may be present in the set- delayed cement compositions in an amount in the range of from about 0.01% to about 10% by weight of the pumice.
- the primary set retarder may be present in an amount ranging between any of and/or including any of about 0.01%, about 0.1%, about 1%, about 2%, about 4%, about 6%, about 8%, or about 10% by weight of the pumice.
- One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of primary set retarder to include for a chosen application.
- cementitious contamination refers to the contamination of a set-delayed cement composition with any material that is not an intended component of the set-delayed cement composition; said material being unintentionally added, directly or indirectly, to the set-delayed cement composition; wherein said material is cementitious in and of itself, becomes cementitious upon the unintended contact with the set-delayed cement composition, and/or promotes or induces early setting, gelling, or any other type of cementitious reaction in the set-delayed cement composition.
- Embodiments of the set-delayed cement compositions may additionally comprise one or more secondary set retarders in addition to the primary set retarder.
- the secondary set retarders may be used to mitigate the effect of cementitious contaminants (e.g. residual manufacturing contaminants) on the set-delayed cement compositions.
- cementitious contaminants refers to any material that is not an intended component of the set-delayed cement composition; said material being unintentionally added, directly or indirectly, to the set-delayed cement composition; wherein said material is cementitious in and of itself, becomes cementitious upon the unintended contact with the set-delayed cement composition, and/or promotes or induces early setting, gelling, or any other type of cementitious reaction in the set-delayed cement composition.
- cementitious contaminants include the unintended addition of hydraulic cements such as Portland cement, calcium aluminate cement, etc.; pozzolanic material such as fly ash, etc.; slag; cement kiln dust; plasters such as gypsum plasters, lime plasters, cement plaster, etc.; materials that promote or induce cementitious reactions; and any combination thereof.
- Cementitious contaminants may have an adverse effect on the properties of the set-delayed cement compositions.
- Embodiments of the set-delayed cement compositions comprising secondary set retarders may also comprise cementitious contaminants that were unintentionally added to the set-delayed cement composition.
- a broad variety of secondary set retarders may be suitable for use in the set- delayed cement compositions.
- the secondary set retarder may be chemically different from the primary set retarder; alternatively the secondary set retarder may be chemically similar to the primary set retarder.
- the secondary set retarders may comprise phosphonic acids, such as ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid), etc.; phosphonic acid derivatives; lignosulfonates, such as sodium lignosulfonate, calcium lignosulfonate, etc.; salts such as stannous sulfate, lead acetate, monobasic calcium phosphate; organic acids such as citric acid, tartaric acid, etc.; cellulose derivatives such as hydroxyl ethyl cellulose (HEC) and carboxymethyl hydroxyethyl cellulose (CMHEC); synthetic co- or ter-polymers comprising sulfonate and carboxylic acid groups
- the secondary set retarder may be present in the set-delayed cement compositions in an amount sufficient to delay setting for a desired time. In some embodiments, the secondary set retarder may be present in the set-delayed cement compositions in an amount in the range of from about 0.01% to about 10% by weight of the pumice. In specific embodiments, the secondary set retarder may be present in an amount ranging between any of and/or including any of about 0.01%, about 0.1%, about 1%, about 2%, about 4%, about 6%, about 8%, or about 10% by weight of the pumice.
- One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of secondary set retarder to include for a chosen application.
- embodiments of the set-delayed cement compositions may optionally comprise a dispersant.
- suitable dispersants include, without limitation, sulfonated-formaldehyde-based dispersants (e.g., sulfonated acetone formaldehyde condensate), examples of which may include Daxad ® 19 available from Geo Specialty Chemicals, Ambler, Pennsylvania.
- Other suitable dispersants may be polycarboxylated ether dispersants such as Liquiment ® 558 IF and Liquiment ® 514L available from BASF Corporation Houston, Texas; or Ethacryl G available from Coatex, Genay, France.
- Liquiment ® 514L dispersant comprises 36% by weight of the polycarboxylated ether in water. While a variety of dispersants may be used in accordance with embodiments, polycarboxylated ether dispersants may be particularly suitable for use in some embodiments. Without being limited by theory, it is believed that polycarboxylated ether dispersants may synergistically interact with other components of the set-delayed cement composition.
- the polycarboxylated ether dispersants may react with certain set retarders (e.g., phosphonic acid derivatives) resulting in formation of a gel that suspends the pumice and hydrated lime in the composition for an extended period of time.
- certain set retarders e.g., phosphonic acid derivatives
- the dispersant may be included in the set-delayed cement compositions in an amount in the range of from about 0.01% to about 5% by weight of the pumice.
- the dispersant may be present in an amount ranging between any of and/or including any of about 0.01%, about 0.1%, about 0.5%, about 1%, about 2%, about 3%, about 4%, or about 5% by weight of the pumice.
- additives suitable for use in subterranean cementing operations also may be included in embodiments of the set-delayed cement compositions.
- additives include, but are not limited to: weighting agents, lightweight additives, gas- generating additives, mechanical-property-enhancing additives, lost-circulation materials, filtration-control additives, fluid-loss-control additives, defoaming agents, foaming agents, thixotropic additives, and combinations thereof.
- one or more of these additives may be added to the set-delayed cement composition after storing but prior to placement of the set-delayed cement composition into a subterranean formation.
- the set-delayed cement compositions generally should have a density suitable for a particular application.
- the set-delayed cement compositions may have a density in the range of from about 4 pounds per gallon ("lb/gal") to about 20 lb/gal.
- the set-delayed cement compositions may have a density in the range of from about 8 lb/gal to about 17 lb/gal.
- Embodiments of the set-delayed cement compositions may be foamed or unfoamed or may comprise other means to reduce their densities, such as hollow microspheres, low-density elastic beads, or other density-reducing additives known in the art.
- the density may be reduced after storing the composition, but prior to placement in a subterranean formation.
- the set-delayed cement compositions may have a delayed set in that they remain in a pumpable fluid state for at least one day (e.g., at least about 1 day, about 2 weeks, about 2 years or more) at room temperature in quiescent storage.
- the set-delayed cement compositions may remain in a pumpable fluid state for a period of time from about 1 day to about 7 days or more.
- the set- delayed cement compositions may remain in a pumpable fluid state for at least about 1 day, about 7 days, about 10 days, about 20 days, about 30 days, about 40 days, about 50 days, about 60 days, or longer.
- a fluid is considered to be in a pumpable fluid state where the fluid has a consistency of less than 70 Bearden units of consistency ("Be"), as measured using a pressurized consistometer in accordance with the procedure for determining cement thickening times set forth in API RP Practice 10B-2, Recommended Practice for Testing Well Cements, First Edition, July 2005.
- Be Bearden units of consistency
- embodiments of the set-delayed cement compositions may be activated (e.g., by combination with an activator) to set into a hardened mass.
- embodiments of the set-delayed cement compositions may be activated to form a hardened mass in a time period in the range of from about 1 hour to about 12 hours.
- embodiments of the set-delayed cement compositions may set to form a hardened mass in a time period tanging between any of and/or including any of about 1 day, about 2 days, about 4 days, about 6 days, about 8 days, about 10 days, or about 12 days.
- the set-delayed cement compositions may set to have a desirable compressive strength after activation.
- Compressive strength is generally the capacity of a material or structure to withstand axially directed pushing forces.
- the compressive strength may be measured at a specified time after the set-delayed cement composition has been activated and the resultant composition is maintained under specified temperature and pressure conditions.
- Compressive strength can be measured by either destructive or non-destructive methods. The destructive method physically tests the strength of treatment fluid samples at various points in time by crushing the samples in a compression-testing machine. The compressive strength is calculated from the failure load divided by the cross-sectional area resisting the load and is reported in units of pound-force per square inch (psi).
- Non-destructive methods may employ a UCATM ultrasonic cement analyzer, available from Fann Instrument Company, Houston, TX. Compressive strength values may be determined in accordance with API RP 10B-2, Recommended Practice for Testing Well Cements, First Edition, July 2005.
- the set-delayed cement compositions may develop a 24- hour compressive strength in the range of from about 50 psi to about 5000 psi, alternatively, from about 100 psi to about 4500 psi, or alternatively from about 500 psi to about 4000 psi.
- the set-delayed cement compositions may develop a compressive strength in 24 hours of at least about 50 psi, at least about 100 psi, at least about 500 psi, or more.
- the compressive strength values may be determined using destructive or non-destructive methods at a temperature ranging from 100°F to 200°F.
- Embodiments may include the addition of a cement set activator to the set- delayed cement compositions.
- suitable cement set activators include, but are not limited to: amines such as triethanolamine, diethanolamine; silicates such as sodium silicate; zinc formate; calcium acetate; Groups IA and ⁇ hydroxides such as sodium hydroxide, magnesium hydroxide, and calcium hydroxide; monovalent salts such as sodium chloride; divalent salts such as calcium chloride; nanosilica (i.e., silica having a particle size of less than or equal to about 100 nanometers); polyphosphates; and combinations thereof.
- a combination of die polyphosphate and a monovalent salt may be used for activation.
- the monovalent salt may be any salt that dissociates to form a monovalent cation, such as sodium and potassium salts.
- suitable monovalent salts include potassium sulfate, and sodium sulfate.
- a variety of different polyphosphates may be used in combination with the monovalent salt for activation of the set-delayed cement compositions, including polymeric metaphosphate salts, phosphate salts, and combinations thereof.
- polymeric metaphosphate salts that may be used include sodium hexametaphosphate, sodium trimetaphosphate, sodium tetrametaphosphate, sodium pentametaphosphate, sodium heptametaphosphate, sodium octametaphosphate, and combinations thereof.
- a specific example of a suitable cement set activator comprises a combination of sodium sulfate and sodium hexametaphosphate.
- the activator may be provided and added to the set-delayed cement composition as a liquid additive, for example, a liquid additive comprising a monovalent salt, a polyphosphate, and optionally a dispersant
- the cement set activator should be added to embodiments of the set-delayed cement compositions in amounts sufficient to induce the set-delayed cement compositions to set into a hardened mass.
- the cement set activator may be added to a set-delayed cement composition in an amount in the range of about 1% to about 20% by weight of the pumice.
- the cement set activator may be present in an amount ranging between any of and/or including any of about 1%, about 5%, about 10%, about 15%, or about 20% by weight of the pumice.
- One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of cement set activator to include for a chosen application.
- a set-delayed cement composition may be used in a variety of subterranean operations, including primary and remedial cementing.
- a set-delayed cement composition may be provided that comprises water, pumice, hydrated lime, a set retarder, and optionally a dispersanL
- the set-delayed cement composition may be introduced into a subterranean formation and allowed to set therein.
- introducing the set- delayed cement composition into a subterranean formation includes introduction into any portion of the subterranean formation, including, without limitation, into a wellbore drilled into the subterranean formation, into a near wellbore region surrounding the wellbore, or into both.
- Embodiments may further include activation of the set-delayed cement composition.
- the activation of the set-delayed cement composition may comprise, for example, the addition of a cement set activator to the set-delayed cement composition.
- a set-delayed cement composition may be provided that comprises water, pumice, hydrated lime, a set retarder, and optionally a dispersant.
- the set-delayed cement composition may be stored, for example, in a vessel or other suitable container.
- the set-delayed cement composition may be permitted to remain in storage for a desired time period.
- the set-delayed cement composition may remain in storage for a time period of about 1 day or longer.
- the set-delayed cement composition may remain in storage for a time period of about 1 day, about 2 days, about 5 days, about 7 days, about 10 days, about 20 days, about 30 days, about 40 days, about 50 days, about 60 days, or longer.
- the set-delayed cement composition may remain in storage for a time period in a range of from about 1 day to about 7 days or longer. Thereafter, the set-delayed cement composition may be activated, for example, by addition of a cement set activator, introduced into a subterranean formation, and allowed to set therein.
- embodiments of the set- delayed cement composition may be introduced into an annular space between a conduit located in a wellbore and the walls of a wellbore (and/or a larger conduit in the wellbore), wherein the wellbore penetrates the subterranean formation.
- the set-delayed cement composition may be allowed to set in the annular space to form an annular sheath of hardened cement.
- the set-delayed cement composition may form a barrier that prevents the migration of fluids in the wellbore.
- the set-delayed cement composition may also, for example, support the conduit in the wellbore.
- a set-delayed cement composition may be used, for example, in squeeze-cementing operations or in the placement of cement plugs.
- the set-delayed composition may be placed in a wellbore to plug an opening (e.g., a void or crack) in the formation, in a gravel pack, in the conduit, in the cement sheath, and/or between the cement sheath and the conduit (e.g., a microannulus).
- An example embodiment comprises a method of cementing comprising: providing a set-delayed cement composition comprising water, pumice, hydrated lime, a primary set retarder, and a secondary set retarder; activating the set-delayed cement composition to produce an activated cement composition; introducing the activated cement composition into a subterranean formation; and allowing the activated cement composition to set in the subterranean formation.
- An example embodiment comprises a method of mitigating contamination in the manufacture of a set-delayed cement composition, the method comprising: providing a dry-blend cement composition comprising pumice and hydrated lime; and preparing a set- delayed cement composition comprising water, the dry-blend cement composition, a primary set retarder, and a secondary set retarder.
- An example embodiment comprises a set-delayed cement composition comprising: water; pumice; hydrated lime; a primary set retarder; and a secondary set retarder; wherein the set-delayed cement composition further comprises a cementitious contaminant; and wherein the set-delayed cement composition will remain in a pumpable fluid state for a time period of at least about 1 day at room temperature in quiescent storage.
- An example embodiment comprises a set-delayed cement system comprising: a set-delayed cement composition comprising water, pumice, hydrated lime, a primary set retarder, and a secondary set retarder, wherein the set-delayed cement composition additionally comprises a cementitious contaminant; an activator for activating the set- delayed cement composition; mixing equipment for mixing the set-delayed cement composition and the activator to form an activated cement composition; and pumping equipment for delivering the activated cement composition into a wellbore.
- FIG. 1 illustrates a system 2 for preparation of a set-delayed cement composition and delivery to a wellbore in accordance with certain embodiments.
- the set-delayed cement composition may be mixed in mixing equipment 4, such as a jet mixer, re-circulating mixer, or a batch mixer, for example, and then pumped via pumping equipment 6 to the wellbore.
- the mixing equipment 4 and the pumping equipment 6 may be disposed on one or more cement trucks as will be apparent to those of ordinary skill in the art.
- a jet mixer may be used, for example, to continuously mix the lime/settable material with the water as it is being pumped to the wellbore.
- FIG. 2A illustrates surface equipment 10 that may be used in placement of a set-delayed cement composition in accordance with certain embodiments.
- FIG. 2A generally depicts a land-based operation, those skilled in the art will readily recognize mat the principles described herein are equally applicable to subsea operations that employ floating or sea-based platforms and rigs, without departing from the scope of the disclosure.
- the surface equipment 10 may include a cementing unit 12, which may include one or more cement trucks.
- the cementing unit 12 may include mixing equipment 4 and pumping equipment 6 (e.g., FIG. 1) as will be apparent to those of ordinary skill in the art.
- the cementing unit 12 may pump a set-delayed cement composition 14 through a feed pipe 16 and to a cementing head 18 which conveys the set-delayed cement composition 14 downhole.
- the set-delayed cement composition 14 may be placed into a subterranean formation 20 in accordance with example embodiments.
- a wellbore 22 may be drilled into the subterranean formation 20. While wellbore 22 is shown extending generally vertically into the subterranean formation 20, the principles described herein are also applicable to wellbores that extend at an angle through the subterranean formation 20, such as horizontal and slanted wellbores.
- the wellbore 22 comprises walls 24.
- a surface casing 26 has been inserted into the wellbore 22. The surface casing 26 may be cemented to the walls 24 of the wellbore 22 by cement sheath 28.
- one or more additional conduits e.g., intermediate casing, production casing, liners, etc.
- casing 30 may also be disposed in the wellbore 22.
- One or more centralizers 34 may be attached to the casing 30, for example, to centralize the casing 30 in the wellbore 22 prior to and during the cementing operation.
- the set-delayed cement compositions 14 may be pumped down the interior of the casing 30.
- the set-delayed cement composition 14 may be allowed to flow down the interior of the casing 30 through the casing shoe 42 at the bottom of the casing 30 and up around the casing 30 into the wellbore annulus 32.
- the set-delayed cement composition 14 may be allowed to set in the wellbore annulus 32, for example, to form a cement sheath that supports and positions the casing 30 in the wellbore 22.
- other techniques may also be utilized for introduction of the set- delayed cement composition 14.
- reverse circulation techniques may be used that include introducing the set-delayed cement composition 14 into the subterranean formation 20 by way of the wellbore annulus 32 instead of through the casing 30.
- the set-delayed cement composition 14 may displace other fluids 36, such as drilling fluids and/or spacer fluids that may be present in the interior of the casing 30 and/or the wellbore annulus 32. At least a portion of the displaced fluids 36 may exit the wellbore annulus 32 via a flow line 38 and be deposited, for example, in one or more retention pits 40 (e.g., a mud pit), as shown on FIG. 2A.
- a bottom plug 44 may be introduced into the wellbore 22 ahead of the set-delayed cement composition 14, for example, to separate the set-delayed cement composition 14 from the fluids 36 that may be inside the casing 30 prior to cementing.
- a diaphragm or other suitable device rupture to allow the set- delayed cement composition 14 through the bottom plug 44.
- FIG. 2B the bottom plug 44 is shown on the landing collar 46.
- a top plug 48 may be introduced into the wellbore 22 behind the set-delayed cement composition 14. The top plug 48 may separate the set-delayed cement composition 14 from a displacement fluid 50 and also push the set-delayed cement composition 14 through the bottom plug 44.
- the exemplary set-delayed cement compositions disclosed herein may directly or indirectly affect one or more components or pieces of equipment associated with the preparation, delivery, recapture, recycling, reuse, and/or disposal of the disclosed set- delayed cement compositions.
- the disclosed set-delayed cement compositions may directly or indirectly affect one or more mixers, related mixing equipment, mud pits, storage facilities or units, composition separators, heat exchangers, sensors, gauges, pumps, compressors, and the like used generate, store, monitor, regulate, and/or recondition the exemplary set-delayed cement compositions.
- the disclosed set-delayed cement compositions may also directly or indirectly affect any transport or delivery equipment used to convey the set-delayed cement compositions to a well site or downhole such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to compositionally move the set-delayed cement compositions from one location to another, any pumps, compressors, or motors (e.g., topside or downhole) used to drive the set-delayed cement compositions into motion, any valves or related joints used to regulate the pressure or flow rate of the set-delayed cement compositions, and any sensors (i.e., pressure and temperature), gauges, and/or combinations thereof, and the like.
- any transport or delivery equipment used to convey the set-delayed cement compositions to a well site or downhole
- any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to compositionally move the set-delayed cement compositions from one location to another
- any pumps, compressors, or motors
- the disclosed set-delayed cement compositions may also directly or indirectly affect the various downhole equipment and tools that may come into contact with the set-delayed cement compositions such as, but not limited to, wellbore casing, wellbore liner, completion string, insert strings, drill string, coiled tubing, slickline, wireline, drill pipe, drill collars, mud motors, downhole motors and/or pumps, cement pumps, surface-mounted motors and/or pumps, centralizers, turbolizers, scratchers, floats (e.g., shoes, collars, valves, etc.), logging tools and related telemetry equipment, actuators (e.g., electromechanical devices, hydromechanical devices, etc.), sliding sleeves, production sleeves, plugs, screens, filters, flow control devices (e.g., inflow control devices, autonomous inflow control devices, outflow control devices, etc.), couplings (e.g., electro-hydraulic wet connect, dry connect, inductive coupler, etc.), control lines (e.g., electrical
- the experimental and laboratory samples additionally comprised water, weight additive (ground hausmannite ore), a primary retarder (phosphonic acid derivative), and a polycarboxylated ether dispersant.
- the compositional makeup of the eight samples is displayed in Table 1 below. While not indicated in Table 1, it is believed that the six experimental samples were contaminated with Portland cement or other cementitious contaminants at the bulk plant facility.
- the six experimental samples each comprised a unique secondary set retarder.
- the secondary set retarder was present in an amount of 0.5% by weight of the pumice. All eight of the samples were placed in sealed containers and allowed to age for 24 hours before observation.
- the six retarders used for the experimental samples comprised zinc oxide, a copolymer of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid, a lignosulfonate retarder, tartaric acid, potassium pentaborate, and citric acid. The results of each combination are listed in Table 2 below.
- volumetric average viscosity was plotted at 100 rpm for each sample over a 21 day span.
- a Model 35A Fann Viscometer and a No. 2 spring with a Fann Yield Stress Adapter were used to measure the volumetric average viscosity in accordance with the procedure set forth in API RP Practice 10B-2, Recommended Practice for Testing Well
- Liquiment ® 5581F dispersant was added to Sample 2 on day 19 in an amount of 0.1% by weight of the pumice.
- Example 2 indicates that the inclusion of a secondary retarder such as a lignosulfonate retarder may be used to counteract the effects of Portland cement in set-delayed cement compositions.
- Example 3 thus indicates that the inclusion of a secondary retarder such as a lignosulfonate retarder may be used to counteract the effects of Portland cement in set- delayed cement compositions on a larger scale.
- a secondary retarder such as a lignosulfonate retarder
- compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of or “consist of the various components and steps.
- indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces.
- ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited.
- any numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed.
- every range of values (of the form, "from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b") disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values even if not explicitly recited.
- every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016105972A RU2634129C2 (en) | 2013-09-09 | 2014-09-09 | Decreasing impurity of cement compositions with slow shinding containing pemous and sulfur lime |
MX2016002740A MX2016002740A (en) | 2013-09-09 | 2014-09-09 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime. |
CA2921428A CA2921428C (en) | 2013-09-09 | 2014-09-09 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime |
GB1602528.0A GB2535881B (en) | 2013-09-09 | 2014-09-09 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime |
AU2014317858A AU2014317858B2 (en) | 2013-09-09 | 2014-09-09 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime |
NO20160247A NO20160247A1 (en) | 2013-09-09 | 2016-02-12 | Mitigation of Contamination Effects in Set-Delayed Cement Compositions Comprising Pumice and Hydrated Lime |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361875404P | 2013-09-09 | 2013-09-09 | |
US61/875,404 | 2013-09-09 | ||
US14/048,486 US9856167B2 (en) | 2012-03-09 | 2013-10-08 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime |
US14/048,486 | 2013-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015035392A1 true WO2015035392A1 (en) | 2015-03-12 |
Family
ID=52629031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/054799 WO2015035392A1 (en) | 2013-09-09 | 2014-09-09 | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime |
Country Status (8)
Country | Link |
---|---|
AU (1) | AU2014317858B2 (en) |
CA (1) | CA2921428C (en) |
GB (1) | GB2535881B (en) |
MX (1) | MX2016002740A (en) |
MY (1) | MY177096A (en) |
NO (1) | NO20160247A1 (en) |
RU (1) | RU2634129C2 (en) |
WO (1) | WO2015035392A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447197A (en) * | 1994-01-25 | 1995-09-05 | Bj Services Company | Storable liquid cementitious slurries for cementing oil and gas wells |
US5503671A (en) * | 1993-03-10 | 1996-04-02 | Dowell, A Division Of Schlumberger Technology Corporation | High temperature retarders for oil field cements, cement slurries and corresponding cementing processes |
US20070235192A1 (en) * | 2006-03-31 | 2007-10-11 | Michel Michaux | Cement Retarder Systems, and Retarded Cement Compositions |
US20100258312A1 (en) * | 2005-09-09 | 2010-10-14 | Halliburton Energy Services, Inc. | Methods of Plugging and Abandoning a Well Using Compositions Comprising Cement Kiln Dust and Pumicite |
US20120325478A1 (en) * | 2011-05-13 | 2012-12-27 | Halliburton Energy Services, Inc. | Cement Compositions and Methods of Using the Same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5175277A (en) * | 1991-03-20 | 1992-12-29 | Merck & Co., Inc. | Rapidly hydrating welan gum |
US7789150B2 (en) * | 2005-09-09 | 2010-09-07 | Halliburton Energy Services Inc. | Latex compositions comprising pozzolan and/or cement kiln dust and methods of use |
FR2901268B1 (en) * | 2006-05-17 | 2008-07-18 | Lafarge Sa | CONCRETE WITH LOW CEMENT CONTENT |
US7863224B2 (en) * | 2009-03-17 | 2011-01-04 | Halliburton Energy Services Inc. | Wellbore servicing compositions comprising a set retarding agent and methods of making and using same |
-
2014
- 2014-09-09 GB GB1602528.0A patent/GB2535881B/en active Active
- 2014-09-09 WO PCT/US2014/054799 patent/WO2015035392A1/en active Application Filing
- 2014-09-09 MY MYPI2016700479A patent/MY177096A/en unknown
- 2014-09-09 CA CA2921428A patent/CA2921428C/en active Active
- 2014-09-09 MX MX2016002740A patent/MX2016002740A/en unknown
- 2014-09-09 AU AU2014317858A patent/AU2014317858B2/en active Active
- 2014-09-09 RU RU2016105972A patent/RU2634129C2/en active
-
2016
- 2016-02-12 NO NO20160247A patent/NO20160247A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5503671A (en) * | 1993-03-10 | 1996-04-02 | Dowell, A Division Of Schlumberger Technology Corporation | High temperature retarders for oil field cements, cement slurries and corresponding cementing processes |
US5447197A (en) * | 1994-01-25 | 1995-09-05 | Bj Services Company | Storable liquid cementitious slurries for cementing oil and gas wells |
US20100258312A1 (en) * | 2005-09-09 | 2010-10-14 | Halliburton Energy Services, Inc. | Methods of Plugging and Abandoning a Well Using Compositions Comprising Cement Kiln Dust and Pumicite |
US20070235192A1 (en) * | 2006-03-31 | 2007-10-11 | Michel Michaux | Cement Retarder Systems, and Retarded Cement Compositions |
US20120325478A1 (en) * | 2011-05-13 | 2012-12-27 | Halliburton Energy Services, Inc. | Cement Compositions and Methods of Using the Same |
Also Published As
Publication number | Publication date |
---|---|
NO20160247A1 (en) | 2016-02-12 |
GB201602528D0 (en) | 2016-03-30 |
AU2014317858A1 (en) | 2016-03-03 |
CA2921428A1 (en) | 2015-03-12 |
MX2016002740A (en) | 2016-08-11 |
RU2634129C2 (en) | 2017-10-24 |
CA2921428C (en) | 2019-01-29 |
GB2535881A (en) | 2016-08-31 |
RU2016105972A (en) | 2017-10-16 |
MY177096A (en) | 2020-09-05 |
GB2535881B (en) | 2020-07-08 |
AU2014317858B2 (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9856167B2 (en) | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime | |
US10544649B2 (en) | Cement set activators for cement compositions and associated methods | |
US10781355B2 (en) | Tunable control of pozzolan-lime cement compositions | |
AU2017254971B2 (en) | Combined set-delayed cement compositions | |
AU2014410209B2 (en) | Extended-life cement compositions comprising red mud solids | |
AU2015230993B2 (en) | Set-delayed cement compositions comprising pumice and associated methods | |
CA2921425C (en) | Cement set activators for cement compositions and associated methods | |
AU2014317858B2 (en) | Mitigation of contamination effects in set-delayed cement compositions comprising pumice and hydrated lime | |
AU2014354935B2 (en) | Plugging and abandoning a well using a set-delayed cement composition comprising pumice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14842542 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2921428 Country of ref document: CA Ref document number: 201602528 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20140909 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1602528 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/002740 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2014317858 Country of ref document: AU Date of ref document: 20140909 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016004612 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016105972 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14842542 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112016004612 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160301 |