[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015033826A1 - ケイ酸塩セラミックス、板状基板および板状基板の製造方法 - Google Patents

ケイ酸塩セラミックス、板状基板および板状基板の製造方法 Download PDF

Info

Publication number
WO2015033826A1
WO2015033826A1 PCT/JP2014/072372 JP2014072372W WO2015033826A1 WO 2015033826 A1 WO2015033826 A1 WO 2015033826A1 JP 2014072372 W JP2014072372 W JP 2014072372W WO 2015033826 A1 WO2015033826 A1 WO 2015033826A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plate
crystal phase
silicate
silicate ceramic
Prior art date
Application number
PCT/JP2014/072372
Other languages
English (en)
French (fr)
Inventor
隆 伏江
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015535435A priority Critical patent/JPWO2015033826A1/ja
Priority to US14/911,344 priority patent/US20160185653A1/en
Priority to DE112014004027.4T priority patent/DE112014004027T5/de
Publication of WO2015033826A1 publication Critical patent/WO2015033826A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a silicate ceramic, a plate-like substrate, and a method for producing the plate-like substrate, and more specifically, a silicate ceramic formed by crystallizing silicate glass, and a plate formed of the silicate ceramic.
  • the present invention relates to a substrate and a manufacturing method thereof.
  • An interposer is known as a relay that is interposed between a semiconductor element and a substrate and electrically connects the semiconductor element and the substrate.
  • a gas electronic amplifier using electronic avalanche amplification is known as a gas electronic amplifier using electronic avalanche amplification.
  • the common point between the interposer and the gas electronic amplifier is that a substrate having an extremely large number of fine through holes is used.
  • a substrate in which a through-hole is filled with a conductive metal is used.
  • a Si wafer has been used as a substrate constituting an interposer (see, for example, Patent Document 1). Although the Si wafer is easy to finely process, it is expensive and has a problem in terms of cost.
  • polyimide base materials have been used as substrates for gas electronic amplifiers (see, for example, Patent Document 2).
  • the gas electronic amplifier has a problem that discharge due to a high voltage applied in order to obtain a high amplification factor is likely to occur, and this discharge deteriorates polyimide having low mechanical characteristics.
  • the photosensitive glass is a glass in which only the exposed portion is crystallized by exposing and heat-treating a silicate glass containing a photosensitive component and a sensitizing component.
  • the crystallized part has a very high dissolution rate with respect to the acid compared to the non-crystallized part. Therefore, by utilizing this property, selective etching can be performed on the photosensitive glass. According to such selective etching, a large number of through holes can be formed simultaneously. As a result, fine processing can be performed on the photosensitive glass at low cost without using machining.
  • photosensitive glass which is less expensive than Si wafers and has better mechanical properties than polyimide, is beginning to be applied to substrates for interposers, substrates for gas electronic amplifiers, substrates for IPD (Integrated Passive Device), etc. .
  • the substrate used for the above applications is also required to have a high through-hole density by reducing the substrate thickness, increasing the substrate size, and reducing the diameter of the through-hole, while reducing costs.
  • the substrate has good mechanical properties.
  • the above photosensitive glass has good mechanical properties as glass, it is not sufficient to realize such a requirement.
  • the present invention has been made in view of the above circumstances, is suitable for fine processing, and has excellent mechanical properties, a plate-like substrate that is composed of the material and has excellent mechanical properties even when the thickness is thin, and the plate It is an object of the present invention to provide a method for manufacturing a substrate.
  • the present inventor can solve the above problems by crystallizing silicate glass into a ceramic (polycrystal) having a very high degree of crystallinity and controlling the ratio of the crystal phase precipitated by crystallization. As a result, the present invention has been completed.
  • an aspect of the present invention is a silicate ceramic formed by crystallizing a silicate glass containing at least silicon oxide and lithium oxide.
  • This silicate ceramic has a crystallinity of 95% or more, and the silicate ceramic has a lithium disilicate crystal phase and an ⁇ -quartz crystal phase. Further, the ratio of the lithium disilicate crystal phase to the ⁇ -quartz crystal phase in the silicate ceramic is larger in the weight ratio of the lithium disilicate crystal phase.
  • the ratio of the lithium disilicate crystal phase to the ⁇ -quartz crystal phase is preferably 60:40 to 80:20 by weight.
  • the silicate glass is preferably a photosensitive glass.
  • the bending strength of the silicate ceramic is preferably 130 MPa or more.
  • the crystallite size of the lithium disilicate crystal phase and the ⁇ -quartz crystal phase is preferably in the range of 20 to 30 nm.
  • Another aspect of the present invention is a plate-like substrate made of the silicate ceramic of the above aspect and having a plurality of through holes, and the thickness thereof is 1.0 mm or less.
  • the diameter of the plate substrate is preferably 50 mm or more.
  • Another embodiment of the present invention includes a microfabrication process in which microfabrication is performed on a plate-like substrate composed of photosensitive glass containing at least silicon oxide and lithium oxide, and the photosensitive glass is crystallized by heat treatment after the microfabrication process. And a crystallization step of obtaining a plate-like substrate composed of the silicate ceramic of the above aspect.
  • a material suitable for microfabrication and having excellent mechanical properties a plate-like substrate composed of the material and having excellent mechanical properties even when the thickness is thin, and a method for producing the plate-like substrate are provided. Can be provided.
  • FIG. 1 is a schematic diagram showing a manufacturing process of a plate substrate in the manufacturing method according to the present embodiment.
  • FIG. 2 is a diagram showing an X-ray diffraction profile of a sample according to an example of the present invention.
  • the silicate ceramic according to this embodiment is obtained by crystallizing silicate glass containing at least silicon oxide and lithium oxide.
  • photosensitive glass is used as the silicate glass in order to easily enable fine processing by selective etching using the difference in solubility with respect to acid. First, photosensitive glass will be described.
  • the photosensitive glass contains Au, Ag, and Cu as photosensitive components in SiO 2 —Li 2 O—Al 2 O 3 glass, and further contains CeO 2 as a sensitizing component. It is glass. More specific compositions are SiO 2 : 55 to 85 mass%, Al 2 O 3 : 2 to 20 mass%, Li 2 O: 5 to 15 mass%, and SiO 2 , Al 2 O 3 and Li 2 The total amount of O is 85% by mass or more based on the entire photosensitive glass, Au: 0.001 to 0.05% by mass, Ag: 0.001 to 0.5% by mass, Cu 2 O: 0.0. Examples include a composition containing 001 to 1% by mass as a photosensitive component and further containing CeO 2 : 0.001 to 0.2% by mass as a sensitizing component.
  • Such a photosensitive glass is crystallized by heat treatment.
  • two types of crystallization proceed depending on the temperature during the heat treatment.
  • these two types of crystallization are referred to as a first crystallization and a second crystallization, respectively.
  • the first crystallization proceeds by heat treatment in the range of 450 to 600 ° C., and in the present embodiment, is performed to enable the fine processing described above.
  • first, ultraviolet light is irradiated to the photosensitive glass, and electrons are released from the sensitizing component (CeO 2 or the like) by the energy of the ultraviolet ray, and ions of the photosensitive component (Au, Ag, Cu, etc.) are emitted. Captures the electrons, thereby generating metal atoms of the photosensitive component in the photosensitive glass.
  • lithium monosilicate (Li 2 O—SiO 2 ) crystals the metal atoms present in the glass aggregate to form a colloid, and this colloid serves as a crystal nucleus to precipitate lithium monosilicate (Li 2 O—SiO 2 ) crystals.
  • this lithium monosilicate crystal has higher solubility in hydrogen fluoride than a non-crystallized glass portion, it can be finely processed using this property.
  • the photosensitive glass is crystallized by the second crystallization after being finely processed using the first crystallization to become a silicate ceramic.
  • the silicate ceramic is a polycrystal obtained through an amorphous glass.
  • the second crystallization proceeds by heat treatment in the range of 800 to 900 ° C., and in this embodiment, is performed to obtain a polycrystal.
  • a heat treatment is performed at a temperature higher than that in the first crystallization, whereby lithium disilicate (Li 2 O-2SiO 2 ) crystals and ⁇ -quartz crystals begin to precipitate.
  • Lithium disilicate crystals are bonded directly to the inside of the glass by the heat treatment in the second crystallization, and the lithium monosilicate crystals precipitated by the first crystallization and silicon oxide (SiO 2 ) in the glass. The case where it precipitates by doing is considered.
  • this silicate ceramic is a polycrystalline body composed of many crystals, and is no longer an amorphous body such as photosensitive glass.
  • the degree of crystallinity indicating the proportion of crystals contained in the entire silicate ceramic is 95% or more. Therefore, the silicate ceramic according to the present embodiment is substantially composed of crystals and contains almost no amorphous phase.
  • crystallized glass glass obtained by crystallizing photosensitive glass.
  • this crystallized glass is a glass in which crystals are precipitated on the entire photosensitive glass, but not all of the entire photosensitive glass is crystallized.
  • the crystallinity of PEG3C manufactured by HOYA Corporation, which is a crystallized photosensitive glass is about 30%.
  • the crystallinity of the silicate ceramic according to this embodiment is much higher than that of ordinary crystallized glass.
  • the crystal phase of the silicate ceramic is composed of the two crystal phases described above, and the mechanical properties of the silicate ceramic can be improved by setting the ratio within the above range.
  • a phase other than the above two phases for example, a crystal phase of lithium monosilicate (Li 2 O—SiO 2 ) does not exist. This is because, when the silicate ceramic according to the present embodiment includes a lithium monosilicate crystal phase, the mechanical properties of the silicate ceramic tend to deteriorate.
  • the crystal phase of lithium disilicate and the crystal phase of ⁇ -quartz are composed of extremely fine crystals, and the size of the crystals matches the crystallite diameter.
  • the crystallite diameters of the lithium disilicate crystal and ⁇ -quartz crystal are preferably in the range of 20 to 30 nm.
  • a grain boundary is formed between the grains. It is considered that a component that has not been incorporated into the lithium disilicate crystal phase and the ⁇ -quartz crystal phase is present at this grain boundary. Therefore, it is considered that components other than silicon oxide and lithium oxide (for example, aluminum oxide, photosensitive component, and sensitizing component) exist at the grain boundary.
  • the crystallinity described above, the weight ratio of the crystal phase, and the crystallite diameter are calculated using an X-ray diffraction method.
  • Crystallinity (%) 100 ⁇ (crystal scattering intensity) / (crystal scattering intensity + amorphous scattering intensity)
  • the crystallite diameter can be calculated from the Scherrer equation using the half width of a specific peak in an X-ray diffraction profile obtained by X-ray diffraction measurement.
  • the lithium disilicate is calculated using the half width of the peak of the (111) plane
  • ⁇ -quartz is calculated using the half width of the peak of the (011) plane.
  • crystallinity and the weight ratio of the crystal phase are described later, it has been clarified by the present inventor that the crystallinity and the weight ratio of the crystal phase can be controlled by the heat treatment temperature and the temperature-decreasing rate after annealing.
  • the silicate ceramic according to this embodiment is a polycrystal, has a high degree of crystallinity, and controls the weight ratio of the crystal phase to a specific range. By doing in this way, the silicate ceramics which are excellent in a mechanical characteristic are obtained.
  • the bending strength is exemplified as one of the mechanical characteristics, but the bending strength of the silicate ceramic according to the present embodiment is 130 MPa or more. The bending strength may be measured according to JIS R 1601.
  • the plate-like substrate is made of the silicate ceramic described above.
  • the plate-like substrate may be a circular plate shape or a rectangular plate shape such as a rectangle or a square depending on the application.
  • the thickness of the plate substrate is 1.0 mm or less. Since the plate-like substrate is made of the silicate ceramic, the mechanical properties are good even if the thickness is small.
  • the diameter of the plate substrate is not particularly limited, but the effect of the present invention becomes more remarkable when the plate substrate diameter is 50 mm or more.
  • the diameter of the plate substrate indicates the diameter when the plate substrate is a circular plate, and indicates the length of the side when the plate substrate is a rectangular plate.
  • a plurality of through holes are regularly arranged on the main surface of the substrate.
  • the shape of the through hole is not particularly limited, but is usually circular in plan view.
  • the diameter of the through holes is about 5 to 100 ⁇ m, and the arrangement pitch of the through holes is about 10 to 300 ⁇ m. That is, the plate-like substrate is a substrate in which a very large number (thousands to millions) of fine through holes are formed. A method of forming the through hole will be described later.
  • the plate-like substrate in which the through holes are formed is applied to, for example, an interposer, a gas electronic amplifier substrate, and the like.
  • an interposer When applied to an interposer, the through hole of the substrate is filled with a conductive metal to ensure conduction between the front and back surfaces.
  • electrodes When applied to a gas electronic amplifier substrate, electrodes are formed on the front and back surfaces so as not to cover the through holes.
  • the plate-like substrate forms a latent image on a base material composed of photosensitive glass, and after the latent image is crystallized, dissolves and removes it to form through holes, and then crystallizes the photosensitive glass. It is manufactured by converting to silicate ceramics. First, the photosensitive glass which comprises a base material is manufactured.
  • raw materials for the components constituting the photosensitive glass are prepared.
  • an oxide of the component or a composite oxide can be used.
  • various compounds that become oxides or complex oxides when melted can be used. Examples of what becomes an oxide upon melting include carbonates, oxalates, nitrates, hydroxides and the like.
  • the prepared starting materials are weighed and mixed so as to have a predetermined composition ratio to obtain a raw material mixture.
  • the obtained raw material mixture is put into a melting container (for example, a platinum crucible) and melted.
  • the temperature at the time of melting may be appropriately set according to the composition of the photosensitive glass, but is about 1400 to 1450 ° C. in this embodiment.
  • the molten glass is stirred, clarified, and the like to obtain a homogeneous molten glass.
  • the photosensitive glass is obtained by pouring this molten glass into a predetermined mold, forming it into a predetermined shape (for example, a rod shape, a block shape, etc.), and slowly cooling it. And it cuts out from the block of the manufactured photosensitive glass, and the base material 11 comprised from the photosensitive glass 1a is obtained (refer Fig.1 (a)).
  • a predetermined shape for example, a rod shape, a block shape, etc.
  • a latent image 16 is formed on a portion of the base material 11 that is to be a through hole (hereinafter also referred to as a through hole formation scheduled portion).
  • the latent image 16 is formed by exposing the substrate 11 through the ultraviolet rays 50 passing through the opening of the photomask 30, that is, the portion where the light shielding film 31 is not formed.
  • the latent image 16 there is a metal of the photosensitive component generated by the oxidation-reduction reaction between the photosensitive component (Au or the like) and the sensitizing component (Ce or the like).
  • the heat treatment is performed in the range of 450 to 600 ° C.
  • the holding time is not particularly limited, and may be set to a time that allows lithium monosilicate crystals to sufficiently precipitate and the size of the crystals not to become too large. This is because if the crystal size becomes too large, the precision of microfabrication by etching, which will be described later, deteriorates.
  • the formed crystallized portion 17 is dissolved and removed by etching using HF (hydrogen fluoride) as shown in FIG. Form.
  • the crystallized portion 17, that is, lithium monosilicate, is more easily dissolved in hydrogen fluoride than the non-crystallized glass portion.
  • the difference in dissolution rate between the crystallized portion 17 and the glass portion other than the crystallized portion is about 50 times. Therefore, by utilizing this difference in dissolution rate, hydrogen fluoride is used as an etching solution, and for example, by spraying hydrogen fluoride on both surfaces of the substrate 11 by spray etching (not shown), the crystallized portion 17 is dissolved.
  • the through-holes 15 are formed by removing them. That is, the through hole 15 can be formed by selectively etching the base material 11.
  • the photosensitive glass substrate 10a in which the through-holes 15 are formed is heat-treated to crystallize the photosensitive glass 1a constituting the base material, so that the photosensitive glass substrate 10a is formed from the silicate ceramics 1. A plate-like substrate 10 is obtained.
  • the heat treatment in the second crystallization step is performed at a higher temperature than the heat treatment in the first crystallization step, for example, maintained in the range of 800 to 900 ° C., and then gradually cooled.
  • the heat treatment holding time is preferably 120 minutes or longer. This is because crystallization of the photosensitive glass can be promoted and the crystallinity can be increased.
  • the entire surface of the plate substrate may be irradiated with ultraviolet rays before the heat treatment in the second crystallization step.
  • This heat treatment causes lithium disilicate crystals and ⁇ -quartz crystals to be precipitated on the entire photosensitive glass, and almost all of the photosensitive glass is crystallized to form silicate ceramics. That is, the plate-like substrate in which the through holes are formed is composed of silicate ceramics.
  • the obtained plate-like substrate is composed of the silicate ceramics described above, it has excellent mechanical properties and is suitably used for the applications described above.
  • a silicate ceramic formed by crystallizing photosensitive glass is obtained.
  • This silicate ceramic is composed of a lithium disilicate crystal and an ⁇ -quartz crystal, and has a crystallinity much higher than that of ordinary crystallized glass, and is almost composed of crystals.
  • the weight ratio of the lithium disilicate crystal phase and the ⁇ -quartz crystal phase is in the above range.
  • the crystallite diameters of lithium disilicate and ⁇ -quartz are both in the range of 20 to 30 nm. Therefore, both the lithium disilicate crystal and the ⁇ -quartz crystal in the silicate ceramic are extremely fine.
  • the silicate ceramics are not easily deformed even when an external force is applied. Moreover, even if a crack is generated in the silicate ceramics by an external force, the crack is difficult to progress. Therefore, the silicate ceramic according to the present embodiment is excellent in mechanical properties. Specifically, a silicate ceramic having a bending strength of 130 MPa or more can be obtained.
  • the plate-like substrate composed of such silicate ceramics has extremely high mechanical characteristics. Therefore, even when the substrate is a very thin substrate having a thickness of 1.0 mm or less, sufficient mechanical characteristics are ensured.
  • This effect is remarkable even when the substrate is thin and the length of the substrate in the planar direction, that is, the substrate diameter is large. Specifically, even when the substrate diameter is 50 mm or more, a substrate exhibiting sufficient mechanical characteristics can be obtained.
  • the heat treatment temperature may be maintained within the above-described range and gradually cooled at a predetermined temperature-decreasing rate.
  • the photosensitive glass is used as the silicate glass.
  • a silicate glass containing no photosensitive component may be used. In such a silicate glass, only the second crystallization in the above-described embodiment occurs.
  • the through hole is formed as the fine processing for the base material made of the photosensitive glass.
  • other fine processing may be performed.
  • the bottomed hole may be formed by forming the latent image halfway through the base material.
  • Example 1 In Example 1, the characteristics of silicate ceramics were evaluated. First, PEG3 manufactured by HOYA Corporation was prepared as a photosensitive glass. PEG3 was composed of SiO 2 —Li 2 O—Al 2 O 3 glass, and had a photosensitive component and a sensitizing component.
  • the PEG3 was heat treated at 500 ° C., 750 ° C., 820 ° C., 870 ° C. and 900 ° C. to obtain a sample.
  • the holding time of the heat treatment was 240 minutes, and the temperature lowering rate in the slow cooling after holding was 25 ° C./hr.
  • X-ray diffraction measurement was performed on the obtained sample (PEG3 after heat treatment).
  • Cu-K ⁇ ray was used as the X-ray source, and the measurement conditions were a tube voltage of 45 kV, a tube current of 200 mA, a scan range of 5 to 80 °, a scan step of 0.04 °, and a scan speed of 10 ° / It was set to min.
  • FIG. 2 shows an X-ray diffraction profile of PEG3 (sample number 4) subjected to heat treatment at 870 ° C.
  • sample numbers 1 to 5 For each sample (sample numbers 1 to 5), based on the obtained X-ray diffraction profile, the crystallinity, the weight ratio of the crystal phase, and the crystallite diameter were calculated as follows. The crystallite diameter was calculated only for the sample (sample number 4) that was heat-treated at 870 ° C.
  • Crystallinity was calculated from the obtained X-ray diffraction profile by separating the total X-ray scattering intensity into a crystal scattering intensity and an amorphous scattering intensity, and the above equation (1). The results are shown in Table 1.
  • Weight ratio of crystal phase The weight ratio of the crystal phase is calculated from the obtained X-ray diffraction profile by the ratio between the peak intensity attributed to the (111) plane of lithium disilicate and the peak intensity attributed to the (011) plane of ⁇ -quartz. did. The results are shown in Table 1.
  • Crystallite diameter From the obtained X-ray diffraction profile, the crystallite diameter is calculated by the half width of the peak due to the (111) plane of lithium disilicate, the half width of the peak due to the (011) plane of ⁇ -quartz, was used to calculate the crystallite size from the Scherrer formula. The results are shown in Table 1.
  • the PEG3 sample after the heat treatment was processed to prepare a test piece having a total length of 40 mm, a width of 4 mm, and a thickness of 3 mm.
  • the three-point bending strength was measured according to JIS R 1601. The measurement conditions were a fulcrum distance of 30 mm and a crosshead speed of 0.5 mm / min.
  • ten test pieces were measured for each sample, and the average value was taken as the bending strength value.
  • the results are shown in Table 1.
  • the bending strength it did not measure about the sample (sample number 4) which heat-processed at 870 degreeC.
  • the bending strength of alumina (Al 2 O 3 ) performed under the same conditions was 350 MPa
  • the bending strength of silicon carbide (SiC) was 400 MPa.
  • sample No. 1 having a heat treatment temperature of 500 ° C. was found to be in a glass state because no scattering was observed due to amorphous (halo) in the X-ray diffraction profile, and a specific peak was not obtained. Therefore, as described in Table 1, the crystallinity could not be calculated. Moreover, although the sample (sample number 2) whose heat processing temperature is 750 degreeC has very high crystallinity, since the weight ratio of the crystal phase did not satisfy said range, it has confirmed that bending strength was low.
  • the sample having the heat treatment temperature of 820 ° C. had a higher crystal bending weight strength than the proportion of ⁇ -quartz in which the proportion of crystal phase was higher than the proportion of lithium disilicate.
  • a sharp diffraction peak attributed to lithium disilicate and ⁇ -quartz was observed in the sample (sample number 4) having a heat treatment temperature of 870 ° C. from FIG.
  • the degree of crystallinity calculated from the X-ray diffraction profile of FIG. 2 was 100%, and it was confirmed that PEG3 was completely crystallized into a polycrystal (silicate ceramic). .
  • the weight ratio of the crystal phase was confirmed to be within the above-mentioned range, with the lithium disilicate ratio being higher than the ⁇ -quartz ratio. It was also confirmed that the crystallite size was very fine.
  • sample No. 5 having a heat treatment temperature of 900 ° C.
  • an X-ray diffraction profile similar to the X-ray diffraction profile shown in FIG. 2 was obtained.
  • the crystallinity of Sample No. 5 was 100% as in Sample No. 4, and it was confirmed that the weight ratio of the crystal phase was within the above-described range. Accordingly, the three-point bending strength of Sample No. 5 was much higher than that in the case where the heat treatment temperature was low (Sample Nos. 1 and 2), and a remarkable effect on Sample Nos. 1 and 2 was confirmed.
  • Example 2 In Examples 2 and 3, a plate-like substrate made of silicate ceramics by crystallizing a substrate having through holes was evaluated.
  • a base material PEG3 manufactured by HOYA Corporation was prepared. This base material was disk-shaped, and the dimensions were a diameter of 200 mm and a thickness of 0.5 mm.
  • a latent image was formed on the material.
  • the base material was put into a convection oven and heat-treated at 600 ° C. to crystallize the latent image.
  • the obtained plate-like substrate was put into a conventional oven and heat-treated at 850 ° C., and the photosensitive glass constituting the plate-like substrate was crystallized to obtain a silicate ceramic.
  • the holding time during the heat treatment was 300 minutes, and after the holding, slow cooling was performed.
  • the temperature lowering rate in the slow cooling was 25 ° C./hr.
  • Cu electrodes were formed on both sides of a plate-like substrate made of silicate ceramics, and the through holes were filled with Cu by electrolytic plating. Thereafter, the plate-like substrate was polished from both sides until the thickness became 0.1 mm to obtain an interposer in which the through holes were filled with Cu.
  • Example 3 PEG3 manufactured by HOYA Corporation was prepared as a base material.
  • This base material was a square plate shape, and the dimensions thereof were a diameter of 150 mm square and a thickness of 0.5 mm.
  • a photomask in which a pattern in which through holes having a diameter of 50 ⁇ m are formed at an arrangement pitch of 200 ⁇ m is formed in a range of 100 mm square is overlaid on a substrate, and the pattern is subjected to proximity exposure with ultraviolet rays.
  • a latent image was formed on the substrate.
  • the base material was put into a convection oven and heat-treated at 600 ° C. to crystallize the latent image.
  • the obtained plate-like substrate was put in a conventional oven and heat-treated at 900 ° C., and the photosensitive glass constituting the plate-like substrate was crystallized to obtain a silicate ceramic.
  • the holding time during the heat treatment was 420 minutes, and after the holding, slow cooling was performed.
  • the temperature lowering rate in the slow cooling was 25 ° C./hr.
  • a Cu electrode is formed on one surface of a plate-like substrate made of silicate ceramics, and the inside of the through hole is dry-etched through the through hole from the other surface to remove Cu formed inside the through hole. . Subsequently, a Cu electrode was formed on the other surface, and similarly, Cu formed inside the through hole was removed. By doing in this way, the board
  • the gas electronic amplifier substrate was stowed upright in a shipping case having a slit, and then transported by a truck at a distance of 500 km. As a result, it was confirmed that there was no breakage in the total number of stored gas electronic amplifier substrates, and it was confirmed that the gas electronic amplifier substrates showed good mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 酸化ケイ素および酸化リチウムを少なくとも含むケイ酸塩ガラスが結晶化されてなるケイ酸塩セラミックスであって、ケイ酸塩セラミックスの結晶化度が95%以上であり、ケイ酸塩セラミックスは、リチウムダイシリケート結晶相とα-石英結晶相とを有し、ケイ酸塩セラミックスにおけるリチウムダイシリケート結晶相と、α-石英結晶相との割合が、重量比で、前記リチウムダイシリケート結晶相の方が多いことを特徴とするケイ酸塩セラミックスである。ケイ酸塩ガラスは感光性ガラスであることが好ましい。

Description

ケイ酸塩セラミックス、板状基板および板状基板の製造方法
 本発明は、ケイ酸塩セラミックス、板状基板および板状基板の製造方法に関し、詳しくは、ケイ酸塩ガラスを結晶化してなるケイ酸塩セラミックスと、該ケイ酸塩セラミックスから構成される板状基板と、その製造方法と、に関する。
 半導体素子と基板との間に介在し、半導体素子と基板とを電気的に接続する中継器として、インターポーザが知られている。また、粒子線または電磁波の検出を行う検出器として、電子雪崩増幅を利用するガス電子増幅器が知られている。
 インターポーザとガス電子増幅器との共通点は、極めて多数の微細な貫通孔が形成された基板を用いる点である。インターポーザの場合には、貫通孔に導電性金属が充填された基板が用いられ、ガス電子増幅器の場合には、電子を加速するための電極が貫通孔を覆わないように両面に形成された基板が用いられる。したがって、このような用途では、基板に対し貫通孔の形成等の微細加工を行う必要がある。
 従来、インターポーザを構成する基板としては、Siウエハーが用いられてきた(たとえば、特許文献1を参照)。Siウエハーは、微細加工は容易であるものの、高価であり、コストの面での問題があった。一方、ガス電子増幅器用の基板としては、ポリイミド製の基材が用いられてきた(たとえば、特許文献2を参照)。しかしながら、ガス電子増幅器では、高い増幅率を得るために印加される高電圧による放電が生じやすく、この放電により機械的特性の低いポリイミドが劣化してしまうという問題があった。
 ところで、感光性ガラスは、感光性成分および増感成分を含むケイ酸塩ガラスを露光、熱処理することにより露光した部分のみが結晶化するガラスである。結晶化した部分は、結晶化していない部分に比べて、酸に対する溶解速度が非常に速い。したがって、この性質を利用することで、選択的エッチングを感光性ガラスに対して行うことができる。このような選択的エッチングによれば、多数の貫通孔を同時に形成することができる。その結果、機械加工を用いることなく、感光性ガラスに微細な加工を安価に行うことができる。
特開2009-277895号公報 特開2006-302844号公報
 そこで、Siウエハーよりも低価格で、ポリイミドよりも機械的特性が優れている感光性ガラスが、インターポーザ用の基板、ガス電子増幅器用基板、IPD(Integrated Passive Device)用基板等に適用され始めている。
 近年、上述した用途において、これらが搭載される機器の高性能化および低価格化が求められている。そのため、上記の用途に用いられる基板についても、コストを削減しつつ、基板厚みの減少、基板サイズの大型化、貫通孔の径の微細化による高い貫通孔密度等が求められている。
 このような要求を実現するには、基板の機械的特性が良好であることが求められる。しかしながら、上記の感光性ガラスは、ガラスとしての良好な機械的特性を有しているものの、このような要求を実現するには十分ではなかった。
 本発明は、上記の状況を鑑みてなされ、微細加工に好適であり、かつ機械的特性に優れた材料、該材料から構成され厚みが薄くても機械的特性に優れる板状基板および該板状基板を製造する方法を提供することを目的とする。
 本発明者は、ケイ酸塩ガラスを結晶化して結晶化度が非常に高いセラミックス(多結晶体)とし、さらに結晶化により析出する結晶相の割合を制御することにより、上記の課題が解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明の態様は、酸化ケイ素および酸化リチウムを少なくとも含むケイ酸塩ガラスが結晶化されてなるケイ酸塩セラミックスである。このケイ酸塩セラミックスの結晶化度が95%以上であり、ケイ酸塩セラミックスは、リチウムダイシリケート結晶相とα-石英結晶相とを有している。さらに、ケイ酸塩セラミックスにおけるリチウムダイシリケート結晶相と、α-石英結晶相との割合が、重量比で、リチウムダイシリケート結晶相の方が多い。
 上記の態様において、リチウムダイシリケート結晶相と、α-石英結晶相との割合が、重量比で、60:40~80:20であることが好ましい。
 上記の態様において、ケイ酸塩ガラスが感光性ガラスであることが好ましい。
 上記の態様において、ケイ酸塩セラミックスの曲げ強度が130MPa以上であることが好ましい。
 上記の態様において、リチウムダイシリケート結晶相およびα-石英結晶相の結晶子径が20~30nmの範囲内であることが好ましい。
 本発明の別の態様は、上記の態様のケイ酸塩セラミックスから構成され、複数の貫通孔が形成された板状基板であって、その厚みが1.0mm以下である。
 上記の態様において、板状基板の径が50mm以上であることが好ましい。
 本発明の別の態様は、酸化ケイ素および酸化リチウムを少なくとも含む感光性ガラスから構成される板状の基材に微細加工を行う微細加工工程と、微細加工工程後に、熱処理により感光性ガラスを結晶化して上記の態様のケイ酸塩セラミックスから構成される板状基板を得る結晶化工程と、を有する板状基板の製造方法である。
 上記の態様において、熱処理では、感光性ガラスを800~900℃の範囲内に保持した後に徐冷を行うことが好ましい。
 本発明によれば、微細加工に好適であり、かつ機械的特性に優れた材料、該材料から構成され厚みが薄くても機械的特性に優れる板状基板および該板状基板を製造する方法を提供することができる。
図1は、本実施形態に係る製造方法における板状基板の製造工程を示す模式図である。 図2は、本発明の実施例に係る試料のX線回折プロファイルを示す図である。
 以下、本発明を、図面に示す実施形態に基づき、以下の順序で詳細に説明する。
1.感光性ガラス
2.ケイ酸塩セラミックス
3.板状基板
4.板状基板の製造方法
5.本実施形態の効果
6.変形例等
 本実施形態に係るケイ酸塩セラミックスは、酸化ケイ素および酸化リチウムを少なくとも含むケイ酸塩ガラスが結晶化されてなるものである。本実施形態では、酸に対する溶解度差を利用した選択的エッチングによる微細加工を容易に可能とするために、ケイ酸塩ガラスとして感光性ガラスを用いる。まず、感光性ガラスについて述べる。
(1.感光性ガラス)
 本実施形態では、感光性ガラスは、SiO-LiO-Al系ガラスに、感光性成分としてのAu,Ag,Cuが含まれ、さらに増感成分としてのCeOが含まれるガラスである。より具体的な組成として、SiO:55~85質量%、Al:2~20質量%、LiO:5~15質量%であって、SiO、AlおよびLiOの合計が感光性ガラス全体に対して85質量%以上含有されており、Au:0.001~0.05質量%、Ag:0.001~0.5質量%、CuO:0.001~1質量%を感光性成分とし、さらにCeO:0.001~0.2質量%を増感成分として含有する組成が例示される。
 このような感光性ガラスは、熱処理を行うことにより、結晶化が進行する。上記の感光性ガラスの場合には、熱処理時の温度により2種類の結晶化が進行する。本実施形態では、この2種類の結晶化を、それぞれ、第1結晶化および第2結晶化と呼ぶ。
 第1結晶化は、450~600℃の範囲内での熱処理により進行し、本実施形態では、上述した微細加工を可能とするために行われる。第1結晶化では、まず、紫外線が感光性ガラスに照射され、紫外線が有するエネルギーにより、増感成分(CeO等)から電子が放出され、感光性成分(Au,Ag,Cu等)のイオンが該電子を捕らえることで、感光性成分の金属原子が感光性ガラスの内部に生じる。続いて、上記の熱処理を行うことで、ガラス内に存在する金属原子が凝集してコロイドを形成し、このコロイドを結晶核にして、リチウムモノシリケート(LiO-SiO)の結晶が析出する。このリチウムモノシリケートの結晶は、フッ化水素に対する溶解度が、結晶化していないガラス部分に比べて高いため、この性質を利用して微細加工が可能となる。
(2.ケイ酸塩セラミックス)
 本実施形態では、上記の感光性ガラスは、第1結晶化を利用する微細加工がなされた後に、第2結晶化により結晶化されてケイ酸塩セラミックスとなる。換言すれば、該ケイ酸塩セラミックスは、非晶質であるガラスを経由して得られる多結晶体である。
 第2結晶化は、800~900℃の範囲内での熱処理により進行し、本実施形態では、多結晶体を得るために行われる。第2結晶化では、第1結晶化よりも高い温度で熱処理することにより、リチウムダイシリケート(LiO-2SiO)の結晶およびα-石英の結晶が析出し始める。リチウムダイシリケートの結晶は、第2結晶化における熱処理によりガラス内部に直接析出する場合と、第1結晶化により析出したリチウムモノシリケートの結晶と、ガラス中の酸化ケイ素(SiO)と、が結合することにより析出する場合と、が考えられる。第2結晶化が進むことにより、感光性ガラスが結晶化され、本実施形態に係るケイ酸塩セラミックスが形成される。したがって、このケイ酸塩セラミックスは多くの結晶から構成される多結晶体であり、もはや感光性ガラスのような非晶質体ではない。
 本実施形態では、ケイ酸塩セラミックス全体に対する結晶が含まれる割合を示す結晶化度が95%以上である。したがって、本実施形態に係るケイ酸塩セラミックスは、ほぼ結晶から構成されており、非晶質(アモルファス)相はほとんど含まれていない。
 なお、感光性ガラスを結晶化したガラスは、一般的に、結晶化ガラスと呼ばれる。しかしながら、この結晶化ガラスは、感光性ガラス全体に結晶が析出するガラスであるが、感光性ガラス全体がほぼ全て結晶化されているわけではない。たとえば、結晶化感光性ガラスであるHOYA株式会社製PEG3Cの結晶化度は30%程度である。
 したがって、本実施形態に係るケイ酸塩セラミックスの結晶化度は、通常の結晶化ガラスよりも非常に高い。
 上記の結晶化度は、ケイ酸塩セラミックスを構成する2つの結晶相の合計として算出される。すなわち、ケイ酸塩セラミックスは、リチウムダイシリケートの結晶相とα-石英の結晶相とから構成されている。結晶相の割合は、重量比で、リチウムダイシリケート結晶相の方が多い。また、結晶相の割合は、重量比で、リチウムダイシリケート:α-石英=60:40~80:20が好ましく、65:35~75:25がさらに好ましい。ケイ酸塩セラミックスの結晶相が上記の2つの結晶相で構成され、さらに、その割合を上記の範囲とすることで、ケイ酸塩セラミックスの機械的特性を向上させることができる。
 なお、本実施形態に係るケイ酸塩セラミックスには、上記の2つの相以外の相、たとえば、リチウムモノシリケート(LiO-SiO)の結晶相は存在しないことが好ましい。本実施形態に係るケイ酸塩セラミックスに、リチウムモノシリケートの結晶相が存在する場合には、ケイ酸塩セラミックスの機械的特性が悪化する傾向があるからである。
 また、リチウムダイシリケートの結晶相およびα-石英の結晶相は、極めて微細な結晶から構成されており、その結晶のサイズは結晶子径に一致する。本実施形態では、リチウムダイシリケート結晶およびα-石英結晶の結晶子径は20~30nmの範囲内であることが好ましい。
 なお、リチウムダイシリケート結晶相を構成する結晶粒の間、α-石英結晶相を構成する結晶粒の間、あるいは、リチウムダイシリケート結晶相を構成する結晶粒とα-石英結晶相を構成する結晶粒との間には、粒界が形成されている。この粒界には、リチウムダイシリケート結晶相およびα-石英結晶相に取り込まれなかった成分が存在していると考えられる。したがって、粒界には、酸化ケイ素および酸化リチウム以外の成分(たとえば、酸化アルミニウム、感光性成分、増感成分)が存在していると考えられる。
 本実施形態では、上述した結晶化度、結晶相の重量割合、結晶子径は、X線回折法を利用して算出する。
 結晶化度は、X線回折測定により得られるX線回折プロファイルから、X線散乱強度を、結晶による散乱強度(結晶散乱強度)と、非晶質による散乱強度(非結晶散乱強度)と、に分離する。そして、下記の式(1)に示すように、全散乱強度(結晶散乱強度および非結晶散乱強度)に対する結晶散乱強度の比として算出することができる。
結晶化度(%)=100×(結晶散乱強度)/(結晶散乱強度+非結晶散乱強度)・・・式(1)
 結晶相の重量割合は、X線回折測定により得られるX線回折プロファイルにおいて、リチウムダイシリケートに起因するピーク強度と、α-石英に起因するピーク強度と、の強度比により算出することができる。具体的には、リチウムダイシリケートの(111)面で回折するX線が示すピークの強度をILとし、α-石英の(011)面で回折するX線が示すピークの強度をIqとすると、IL:Iq=60:40~80:20となる。
 結晶子径は、X線回折測定により得られるX線回折プロファイルにおける特定のピークの半価幅を用いてシェラー(Scherrer)の式から算出できる。本実施形態では、リチウムダイシリケートについては、(111)面のピークの半価幅を用いて算出し、α-石英については、(011)面のピークの半価幅を用いて算出する。
 なお、上記の結晶化度、結晶相の重量割合は、後述するが、熱処理温度および熱処理温度で保持した後の徐冷での降温速度により制御できることが、本発明者により明らかにされている。
 上述したように、本実施形態に係るケイ酸塩セラミックスは多結晶体であり、結晶化度が高く、しかも結晶相の重量割合を特定の範囲に制御している。このようにすることにより、機械的特性に優れるケイ酸塩セラミックスが得られる。たとえば、機械的特性の一つとして、曲げ強度が例示されるが、本実施形態に係るケイ酸塩セラミックスの曲げ強度は130MPa以上である。なお、曲げ強度は、JIS R 1601に準拠して測定すればよい。
(3.板状基板)
 板状基板は、上記のケイ酸塩セラミックスから構成されている。この板状基板は、用途に応じて、円形板状であってもよいし、長方形あるいは正方形等の矩形板状であってもよい。本実施形態では、板状基板の厚みは1.0mm以下である。板状基板は、上記のケイ酸塩セラミックスにより構成されているため、厚みが薄くても、機械的特性が良好である。
 板状基板の径は特に制限されないが、板状基板の径が50mm以上である場合に本発明の効果がより顕著となる。なお、本発明において、板状基板の径とは、板状基板が円形板状である場合には直径を示し、板状基板が矩形板状である場合には辺の長さを示す。
 また、本実施形態では、板状基板に微細加工がなされた結果、板状基板には複数の貫通孔が基板の主面上に規則的に配置されて形成されている。貫通孔の形状は、特に制限されないが、通常、平面視で円形である。また、貫通孔の径は5~100μm程度であり、貫通孔の配列ピッチは10~300μm程度である。すなわち、板状基板は、極めて多数(数千~数百万個)の微細な貫通孔が形成されている基板である。貫通孔を形成する方法は後述する。
 貫通孔が形成された板状基板は、たとえば、インターポーザ、ガス電子増幅器用基板等に適用される。インターポーザに適用する場合には、該基板の貫通孔には、導電性金属が充填され表裏面間の導通が確保される。また、ガス電子増幅器用基板に適用する場合、表裏面に貫通孔を覆わないように電極が形成される。
(4.板状基板の製造方法)
 上記の板状基板は、感光性ガラスから構成される基材に潜像を形成し該潜像が結晶化された後にこれを溶解除去し貫通孔を形成してから、該感光性ガラスを結晶化してケイ酸塩セラミックスとすることにより、製造される。まず、基材を構成する感光性ガラスを製造する。
 出発原料として、上記の感光性ガラスを構成する成分の原料を準備する。このような原料としては、該成分の酸化物、あるいは、複合酸化物などを用いることができる。さらに、溶融時に酸化物や複合酸化物となる各種化合物等を用いることができる。溶融時に酸化物になるものとしては、たとえば、炭酸塩、シュウ酸塩、硝酸塩、水酸化物等が例示される。
 準備した出発原料を、所定の組成比となるように秤量して混合し、原料混合物を得る。得られた原料混合物を、溶解用容器(たとえば、白金ルツボ等)に入れ、溶融する。溶融時の温度は感光性ガラスの組成に応じて適宜設定すればよいが、本実施形態では、1400~1450℃程度である。続いて、溶融ガラスを撹拌、清澄等することにより、均質な溶融ガラスとする。
 この溶融ガラスを所定の成形型に流し込んで、所定の形状(たとえば、棒状、ブロック状等)に成形し、徐冷することにより感光性ガラスが得られる。そして、製造された感光性ガラスのブロックから切り出されて、感光性ガラス1aから構成される基材11が得られる(図1(a)を参照)。
 (露光工程)
 次に、図1(b)に示すように、露光工程では、基材11において、貫通孔となるべき部分(以下、貫通孔形成予定部分ともいう)に潜像16を形成する。この潜像16は、フォトマスク30の開口部、すなわち、遮光膜31が形成されていない部分を紫外線50が透過して基材11を露光することにより形成される。潜像16では、感光性成分(Au等)と増感成分(Ce等)との間の酸化還元反応により生じた感光性成分の金属が存在している。
 (第1結晶化工程)
 続いて、潜像が形成された基材に対して熱処理を行い、潜像を結晶化部分とする。熱処理を行うことにより、図1(c)に示すように、潜像16において該金属が凝集してコロイドを形成し、さらにこのコロイドを結晶核として、LiO-SiO(リチウムモノシリケート)の結晶が析出し、結晶化部分17が形成される。したがって、結晶化部分17は、潜像16と同様に貫通孔形成予定部分に対応する位置に形成されている。この結晶化は、上述した第1結晶化に相当し、感光性ガラスはケイ酸塩セラミックスにはなっていない。
 第1結晶化工程において、熱処理は、450~600℃の範囲で行われる。その保持時間は特に制限されず、リチウムモノシリケートの結晶が十分に析出し、その結晶のサイズが大きくなりすぎない程度の時間とすればよい。結晶のサイズが大きくなりすぎると、後述するエッチングによる微細加工の精度が悪化するからである。
 (貫通孔形成工程)
 微細加工工程の一例としての貫通孔形成工程では、図1(d)に示すように、形成された結晶化部分17を、HF(フッ化水素)を用いてエッチングにより溶解除去し、貫通孔15を形成する。結晶化部分17、すなわち、リチウムモノシリケートは、結晶化していないガラス部分に比べて、フッ化水素に溶解しやすい。具体的には、結晶化部分17と結晶化部分以外のガラス部分との溶解速度の差は約50倍である。したがって、この溶解速度の差を利用して、フッ化水素をエッチング液として用い、たとえば、図示しないスプレーエッチングにより、フッ化水素を基材11の両面に吹き付けることにより、結晶化部分17が溶解して除去され貫通孔15が形成される。すなわち、基材11に対して選択的エッチングを行うことにより貫通孔15を形成できる。
 (第2結晶化工程)
 第2結晶化工程では、貫通孔15を形成した感光性ガラス基板10aに対して、熱処理を行い、基材を構成する感光性ガラス1aを結晶化することにより、ケイ酸塩セラミックス1から構成される板状基板10を得る。
 第2結晶化工程における熱処理は、第1結晶化工程における熱処理よりも高い温度で行い、たとえば、800~900℃の範囲に保持し、その後、徐冷する。熱処理の保持時間は120分以上とすることが好ましい。感光性ガラスの結晶化を促進し、結晶化度を高めることができるからである。また、徐冷時の降温速度は、炉内での自然冷却よりも緩やかにすることが好ましく、たとえば、50℃/hr以下とすることが好ましい。徐冷時の降温速度が遅く徐冷時間が長いほど、結晶化度が同じでもリチウムダイシリケート結晶相を多くすることができる傾向にあるからである。なお、第2結晶化工程における熱処理の前に、板状基板の全面に紫外線を照射してもよい。
 この熱処理により、感光性ガラス全体にリチウムダイシリケートの結晶およびα-石英の結晶がそれぞれ析出し、感光性ガラスのほぼ全てが結晶化しケイ酸塩セラミックスとなる。すなわち、貫通孔が形成された板状基板はケイ酸塩セラミックスから構成されることとなる。
 得られた板状基板は、上述したケイ酸塩セラミックスから構成されているため、優れた機械的特性を有しており、上述した用途に好適に用いられる。
(5.本実施形態の効果)
 本実施形態によれば、感光性ガラスを結晶化してなるケイ酸塩セラミックスが得られる。このケイ酸塩セラミックスは、リチウムダイシリケートの結晶とα-石英の結晶とから構成されており、通常の結晶化ガラスに比べて結晶化度が非常に高く、ほぼ結晶で構成されている。
 しかも、本実施形態では、リチウムダイシリケート結晶相とα-石英結晶相との重量割合を上記の範囲としている。
 さらに、本実施形態に係るケイ酸塩セラミックスでは、リチウムダイシリケートおよびα-石英の結晶子径は、どちらも20~30nmの範囲内にある。したがって、ケイ酸塩セラミックス中のリチウムダイシリケート結晶およびα-石英結晶は、どちらも極めて微細である。
 そのため、上記のケイ酸塩セラミックスは、外部から力が加えられても変形しにくい。また、外部からの力によりケイ酸塩セラミックス内にクラックが生じたとしても、該クラックは進展しにくい。したがって、本実施形態に係るケイ酸塩セラミックスは、機械的特性に優れる。具体的には、曲げ強度が130MPa以上であるケイ酸塩セラミックスを得ることができる。
 そうすると、このようなケイ酸塩セラミックスから構成される板状基板も機械的特性が極めて高い。したがって、厚みが1.0mm以下のような非常に薄い基板とした場合であっても、十分な機械的特性が確保されることになる。
 この効果は、基板の厚みが薄く、基板の平面方向の長さ、すなわち、基板の径が大きい場合にも顕著となる。具体的には、基板の径が50mm以上であっても、十分な機械的特性を示す基板を得ることができる。
 上記のような機械的特性に優れるケイ酸塩セラミックスから構成される板状基板を製造する場合には、熱処理温度を上述した範囲内に保持して、所定の降温速度により徐冷を行えばよい。
(6.変形例等)
 上述した実施形態では、ケイ酸塩ガラスとして、感光性ガラスを用いたが、感光性成分を含まないケイ酸塩ガラスを用いてもよい。このようなケイ酸塩ガラスでは、上述した実施形態における第2結晶化のみが生じる。
 また、上述した実施形態では、感光性ガラスから構成される基材に対する微細加工として、貫通孔の形成を行っているが、その他の微細加工を行ってもよい。たとえば、潜像の形成を基材の途中までとし、有底孔を形成してもよい。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
 (実施例1)
 実施例1では、ケイ酸塩セラミックスの特性について評価を行った。まず、感光性ガラスとして、HOYA株式会社製PEG3を準備した。PEG3は、SiO-LiO-Al系のガラスから構成されており、感光性成分および増感成分を有していた。
 このPEG3を、500℃、750℃、820℃、870℃および900℃の各温度で熱処理を行い、試料を得た。熱処理の保持時間は240分とし、保持後の徐冷における降温速度を25℃/hrとした。得られた試料(熱処理後のPEG3)に対して、X線回折測定を行った。X線源としてCu-Kα線を用い、測定条件は、管球電圧を45kV、管球電流を200mAとし、スキャン範囲を5~80°、スキャンステップを0.04°、スキャンスピードを10°/minとした。
 図2に、熱処理を870℃で行ったPEG3(試料番号4)のX線回折プロファイルを示す。また、各試料(試料番号1~5)について、得られたX線回折プロファイルに基づき、以下のようにして、結晶化度、結晶相の重量割合および結晶子径を算出した。なお、結晶子径については、熱処理を870℃で行った試料(試料番号4)についてのみ算出した。
 (結晶化度)
 結晶化度は、得られたX線回折プロファイルから、X線の全散乱強度を、結晶散乱強度と非結晶散乱強度とに分離し、上記の式(1)により算出した。結果を表1に示す。
 (結晶相の重量割合)
 結晶相の重量割合は、得られたX線回折プロファイルから、リチウムダイシリケートの(111)面に起因するピーク強度と、α-石英の(011)面に起因するピーク強度と、の比により算出した。結果を表1に示す。
 (結晶子径)
 結晶子径は、得られたX線回折プロファイルから、リチウムダイシリケートの(111)面に起因するピークの半価幅と、α-石英の(011)面に起因するピークの半価幅と、を用いて、シェラーの公式から結晶子径をそれぞれ算出した。結果を表1に示す。
 (曲げ強度)
 さらに、熱処理後のPEG3の試料を加工して、全長40mm、幅4mm、厚み3mmの試験片を作製した。得られた試験片に対し、JIS R 1601に準拠して3点曲げ強度を測定した。測定条件は、支点間距離を30mmとし、クロスヘッド速度を0.5mm/minとした。曲げ強度の測定では、各試料について10本の試験片を測定し、その平均値を曲げ強度値とした。結果を表1に示す。なお、曲げ強度については、熱処理を870℃で行った試料(試料番号4)については測定しなかった。また、参考のため、同じ条件で行ったアルミナ(Al)の曲げ強度が350MPaであり、炭化ケイ素(SiC)の曲げ強度が400MPaであった。
Figure JPOXMLDOC01-appb-T000001
 
 熱処理温度が500℃の試料(試料番号1)は、X線回折プロファイルにおいて非晶質による散乱(ハロー)が見られ、特定のピークが得られず、ガラス状態であることが確認できた。そのため、表1にも記載しているように、結晶化度は算出できなかった。また、熱処理温度が750℃の試料(試料番号2)は、結晶化度は非常に高いものの、結晶相の重量割合が上記の範囲を満足しないため、曲げ強度が低いことが確認できた。
 これに対し、熱処理温度が820℃の試料(試料番号3)は、結晶相の重量割合が、リチウムダイシリケートの割合がα-石英の割合よりも多く、曲げ強度が強いことが確認できた。熱処理温度が870℃の試料(試料番号4)は、図2より、リチウムダイシリケートおよびα-石英に帰属する鋭い回折ピークが観察できた。また、表1より、図2のX線回折プロファイルから算出される結晶化度は100%となり、PEG3が完全に結晶化され多結晶体(ケイ酸塩セラミックス)となっていることが確認できた。さらに、結晶相の重量割合は、リチウムダイシリケートの割合が、α-石英の割合よりも多く、上述した範囲内であることが確認できた。また、結晶子径も非常に微細であることが確認できた。
 さらに、熱処理温度が900℃の試料(試料番号5)については、図2に示すX線回折プロファイルと同様のX線回折プロファイルが得られた。その結果、試料番号5の結晶化度は試料番号4と同様に100%となり、結晶相の重量割合も上述した範囲内であることが確認できた。これに伴い、試料番号5の3点曲げ強度は、熱処理温度が低い場合(試料番号1および2)よりも、非常に高くなり、試料番号1および2に対して顕著な効果が確認できた。
 また、試料番号1~5の試料とは別に、PEG3を、熱処理温度が750℃で熱処理の保持時間は240分とし、保持後の徐冷における降温速度を20℃/hrとして、試料を得た。上記同様にX線回折測定を行った結果、結晶化度が95%、結晶相の重量割合が、リチウムダイシリケート:α-石英=55:45であり、また曲げ強度も強いことが確認できた。
 (実施例2)
 実施例2および3では、貫通孔を有する基材を結晶化してケイ酸塩セラミックスとした板状基板を作製して評価を行った。基材として、HOYA株式会社製PEG3を準備した。この基材は円板状であり、その寸法は、径がΦ200mmであり、厚みが0.5mmであった。
 続いて、50μmの径を有する貫通孔が200μmの配列ピッチで形成されるようなパターンがΦ170mmの範囲に形成されたフォトマスクを基材に重ねて、該パターンを紫外線によりプロキシミティー露光し、基材に潜像を形成した。次に、第1結晶化として、基材をコンベクショナルオーブンに投入し、600℃で熱処理を行い、潜像を結晶化した。続いて、表裏面よりフッ化水素系エッチング液によるエッチング処理を行い、結晶化部分を溶解除去し、基材に貫通孔を形成して、貫通孔を有する板状基板を得た。
 第2結晶化として、得られた板状基板をコンベクショナルオーブンに投入し、850℃で熱処理を行い、板状基板を構成する感光性ガラスを結晶化して、ケイ酸塩セラミックスとした。熱処理時の保持時間は300分とし、保持後に徐冷を行った。徐冷における降温速度を25℃/hrとした。なお、第2結晶化後の板状基板について、X線回折測定を行った結果、結晶化度が99%、結晶相の重量割合が、リチウムダイシリケート:α-石英=68:32であった。
 ケイ酸塩セラミックスから構成される板状基板の両面にCu電極を形成し、さらに、電解メッキ法にて貫通孔にCuを充填した。その後、厚みが0.1mmとなるまで、該板状基板を両面から研磨し、貫通孔がCuにより充填されたインターポーザを得た。
 このインターポーザを、スリットを有する出荷ケースに立て置きで8枚収納した後、500kmの距離をトラックによる輸送を行った。その結果、収納したインターポーザの全数に破損がないことが確認され、このインターポーザが良好な機械強度を示すことが確認できた。
 (実施例3)
 まず、基材として、HOYA株式会社製PEG3を準備した。この基材は正方形板状であり、その寸法は、径が150mm角であり、厚みが0.5mmであった。
 続いて、50μmの径を有する貫通孔が200μmの配列ピッチで形成されるようなパターンが100mm角の範囲に形成されたフォトマスクを基材に重ねて、該パターンを紫外線によりプロキシミティー露光し、基材に潜像を形成した。次に、第1結晶化として、基材をコンベクショナルオーブンに投入し、600℃で熱処理を行い、潜像を結晶化した。続いて、表裏面よりフッ化水素系エッチング液によるエッチング処理を行い、結晶化部分を溶解除去し、基材に貫通孔を形成して、貫通孔を有する板状基板を得た。
 第2結晶化として、得られた板状基板をコンベクショナルオーブンに投入し、900℃で熱処理を行い、板状基板を構成する感光性ガラスを結晶化して、ケイ酸塩セラミックスとした。熱処理時の保持時間は420分とし、保持後に徐冷を行った。徐冷における降温速度を25℃/hrとした。なお、第2結晶化後の板状基板について、X線回折測定を行った結果、結晶化度が99%、結晶相の重量割合が、リチウムダイシリケート:α-石英=68:32であった。
 ケイ酸塩セラミックスから構成される板状基板の一方の面にCu電極を形成し、他方の面から貫通孔を通じて、貫通孔の内部をドライエッチングし、貫通孔内部に形成されたCuを除去した。続いて、他方の面にCu電極を形成し、同様にして、貫通孔内部に形成されたCuを除去した。このようにすることにより、貫通孔内部にCuが形成されておらず、両面にCu電極が形成されたガス電子増幅器用基板を得た。
 このガス電子増幅器用基板を、スリットを有する出荷ケースに立て置きで8枚収納した後、500kmの距離をトラックによる輸送を行った。その結果、収納したガス電子増幅器用基板の全数に破損がないことが確認され、このガス電子増幅器用基板が良好な機械強度を示すことが確認できた。
1…ケイ酸塩セラミックス
 1a…感光性ガラス
10…板状基板
 10a…感光性ガラス基板
 11…基材
 15…貫通孔
 16…潜像
 17…結晶化部分

Claims (9)

  1.  酸化ケイ素および酸化リチウムを少なくとも含むケイ酸塩ガラスが結晶化されてなるケイ酸塩セラミックスであって、
     前記ケイ酸塩セラミックスの結晶化度が95%以上であり、
     前記ケイ酸塩セラミックスは、リチウムダイシリケート結晶相とα-石英結晶相とを有し、
     前記ケイ酸塩セラミックスにおける前記リチウムダイシリケート結晶相と、前記α-石英結晶相との割合が、重量比で、前記リチウムダイシリケート結晶相の方が多いことを特徴とするケイ酸塩セラミックス。
  2.  前記リチウムダイシリケート結晶相と、前記α-石英結晶相との割合が、重量比で60:40~80:20であることを特徴とする請求項1に記載のケイ酸塩セラミックス。
  3.  前記ケイ酸塩ガラスが感光性ガラスであることを特徴とする請求項1または2に記載のケイ酸塩セラミックス。
  4.  前記ケイ酸塩セラミックスの曲げ強度が130MPa以上であることを特徴とする請求項1から3のいずれかに記載のケイ酸塩セラミックス。
  5.  前記リチウムダイシリケート結晶相および前記α-石英結晶相の結晶子径が20~30nmの範囲内であることを特徴とする請求項1から4のいずれかに記載のケイ酸塩セラミックス。
  6.  請求項1から5のいずれかに記載のケイ酸塩セラミックスから構成され、複数の貫通孔が形成された板状基板であって、
     前記板状基板の厚みが1.0mm以下であることを特徴とする板状基板。
  7.  前記板状基板の径が50mm以上であることを特徴とする請求項6に記載の板状基板。
  8.  酸化ケイ素および酸化リチウムを少なくとも含む感光性ガラスから構成される板状の基材に微細加工を行う微細加工工程と、
     前記微細加工工程後に、熱処理により前記感光性ガラスを結晶化して請求項1から5のいずれかに記載のケイ酸塩セラミックスから構成される板状基板を得る結晶化工程と、を有する板状基板の製造方法。
  9.  前記熱処理では、前記感光性ガラスを800~900℃の範囲内に保持した後に徐冷を行うことを特徴とする請求項8に記載の板状基板の製造方法。
PCT/JP2014/072372 2013-09-04 2014-08-27 ケイ酸塩セラミックス、板状基板および板状基板の製造方法 WO2015033826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015535435A JPWO2015033826A1 (ja) 2013-09-04 2014-08-27 ケイ酸塩セラミックス、板状基板および板状基板の製造方法
US14/911,344 US20160185653A1 (en) 2013-09-04 2014-08-27 Silicate ceramics, plate-like substrate, and method of producing plate-like substrate
DE112014004027.4T DE112014004027T5 (de) 2013-09-04 2014-08-27 Silikatkeramik; plattenförmiges Substrat, und Verfahren zur Herstellung eines plattenförmigen Substrats

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183239 2013-09-04
JP2013-183239 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033826A1 true WO2015033826A1 (ja) 2015-03-12

Family

ID=52628303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072372 WO2015033826A1 (ja) 2013-09-04 2014-08-27 ケイ酸塩セラミックス、板状基板および板状基板の製造方法

Country Status (5)

Country Link
US (1) US20160185653A1 (ja)
JP (1) JPWO2015033826A1 (ja)
DE (1) DE112014004027T5 (ja)
TW (1) TW201518230A (ja)
WO (1) WO2015033826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167346A (zh) * 2015-05-18 2016-11-30 肖特股份有限公司 连续生产光敏玻璃体的方法
JP2017036200A (ja) * 2015-05-18 2017-02-16 ショット アクチエンゲゼルシャフトSchott AG 増感された感光性ガラスおよびその製造
WO2022215575A1 (ja) * 2021-04-07 2022-10-13 Agc株式会社 結晶化ガラスからなる化学強化ガラス及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171597A1 (en) 2014-05-05 2015-11-12 3D Glass Solutions, Inc. 2d and 3d inductors antenna and transformers fabricating photoactive substrates
CN107001120B (zh) 2014-10-08 2020-03-03 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃-陶瓷
JP6403716B2 (ja) * 2015-05-18 2018-10-10 ショット アクチエンゲゼルシャフトSchott AG リドロー法による光構造化可能なガラス体の製造方法
KR20200010598A (ko) 2016-02-25 2020-01-30 3디 글래스 솔루션즈 인코포레이티드 3d 커패시터 및 커패시터 어레이 제작용 광활성 기재
WO2017177171A1 (en) * 2016-04-08 2017-10-12 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
CA3058793C (en) 2017-04-28 2021-12-28 3D Glass Solutions, Inc. Rf circulator
EP3649733A1 (en) 2017-07-07 2020-05-13 3D Glass Solutions, Inc. 2d and 3d rf lumped element devices for rf system in a package photoactive glass substrates
WO2019118761A1 (en) 2017-12-15 2019-06-20 3D Glass Solutions, Inc. Coupled transmission line resonate rf filter
JP7226832B2 (ja) 2018-01-04 2023-02-21 スリーディー グラス ソリューションズ,インク 高効率rf回路のためのインピーダンス整合伝導構造
CN108777910B (zh) * 2018-06-15 2020-05-12 武汉华星光电半导体显示技术有限公司 柔性电路板、显示面板以及显示模组
WO2020139951A1 (en) 2018-12-28 2020-07-02 3D Glass Solutions, Inc. Heterogenous integration for rf, microwave and mm wave systems in photoactive glass substrates
CA3107812C (en) 2018-12-28 2023-06-27 3D Glass Solutions, Inc. Annular capacitor rf, microwave and mm wave systems
CA3135975C (en) 2019-04-05 2022-11-22 3D Glass Solutions, Inc. Glass based empty substrate integrated waveguide devices
WO2020214788A1 (en) 2019-04-18 2020-10-22 3D Glass Solutions, Inc. High efficiency die dicing and release
US11908617B2 (en) 2020-04-17 2024-02-20 3D Glass Solutions, Inc. Broadband induction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180934A (ja) * 1984-02-01 1985-09-14 コーニング グラス ワークス 高膨張性ガラスセラミック体およびその製造方法
JP2003226548A (ja) * 2002-02-01 2003-08-12 Hoya Corp 感光性ガラス及びその加工方法並びにインクジェットプリンタ用部品の製造方法及び半導体基板の製造方法
JP2013515659A (ja) * 2009-12-23 2013-05-09 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ 二ケイ酸リチウムガラスセラミック、その製造方法およびその使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180934A (ja) * 1984-02-01 1985-09-14 コーニング グラス ワークス 高膨張性ガラスセラミック体およびその製造方法
JP2003226548A (ja) * 2002-02-01 2003-08-12 Hoya Corp 感光性ガラス及びその加工方法並びにインクジェットプリンタ用部品の製造方法及び半導体基板の製造方法
JP2013515659A (ja) * 2009-12-23 2013-05-09 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ 二ケイ酸リチウムガラスセラミック、その製造方法およびその使用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167346A (zh) * 2015-05-18 2016-11-30 肖特股份有限公司 连续生产光敏玻璃体的方法
JP2017036200A (ja) * 2015-05-18 2017-02-16 ショット アクチエンゲゼルシャフトSchott AG 増感された感光性ガラスおよびその製造
US10093575B2 (en) * 2015-05-18 2018-10-09 Schott Ag Continuous production of photo-sensitive glass bodies
WO2022215575A1 (ja) * 2021-04-07 2022-10-13 Agc株式会社 結晶化ガラスからなる化学強化ガラス及びその製造方法

Also Published As

Publication number Publication date
US20160185653A1 (en) 2016-06-30
DE112014004027T5 (de) 2016-07-28
TW201518230A (zh) 2015-05-16
JPWO2015033826A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015033826A1 (ja) ケイ酸塩セラミックス、板状基板および板状基板の製造方法
KR102404466B1 (ko) 구상 결정성 실리카 입자 및 그 제조 방법
TWI669279B (zh) 附貫通電極之玻璃基板的製造方法及玻璃基板
JP6385391B2 (ja) 増感された感光性ガラスおよびその製造
JP2001097740A (ja) 結晶化ガラス、磁気ディスク用基板および磁気ディスク
JP2011505685A5 (ja)
JP2007326723A (ja) 結晶化ガラス及び結晶化ガラスの製造方法
WO2021177461A1 (ja) 純銅板、銅/セラミックス接合体、絶縁回路基板
JP2017024975A (ja) 感光性ガラス体の連続的製造
WO2022059724A1 (ja) 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法
KR101250350B1 (ko) 희토류 금속을 함유한 황화납(PbS) 양자점을 포함하는 실리케이트 글래스의 제조방법
JP3469513B2 (ja) 露光装置およびそれに用いられる支持部材
WO2019187767A1 (ja) 絶縁基板及びその製造方法
Qiao et al. Milling-induced amorphization in a chalcogenide compound
CN110205591B (zh) 铝合金溅射靶材
JPH0450734B2 (ja)
JP3773973B2 (ja) シリコン成形体用前駆体
JP2001126236A (ja) 磁気ディスク用基板および磁気ディスク
JP2014144915A (ja) 結晶化ガラス
CN109467315B (zh) 一种掺杂InN的钠基玻璃及其制备方法
WO2023136224A1 (ja) 結晶化ガラス、高周波デバイス用ガラス基板、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
KR102095828B1 (ko) 산화물 소결체 및 스퍼터링 타깃
JP2003347608A (ja) 熱電素子用結晶体及びその製造方法並びに熱電素子の製造方法
TW202248000A (zh) 感光性玻璃
CN114873918A (zh) 光敏玻璃材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535435

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140040274

Country of ref document: DE

Ref document number: 112014004027

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842671

Country of ref document: EP

Kind code of ref document: A1