[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015030019A1 - Procédé de production d'un acide l-aminé par utilisation d'une bactérie de la famille des enterobacteriaceae ayant une expression atténuée de la batterie de gènes znuacb - Google Patents

Procédé de production d'un acide l-aminé par utilisation d'une bactérie de la famille des enterobacteriaceae ayant une expression atténuée de la batterie de gènes znuacb Download PDF

Info

Publication number
WO2015030019A1
WO2015030019A1 PCT/JP2014/072346 JP2014072346W WO2015030019A1 WO 2015030019 A1 WO2015030019 A1 WO 2015030019A1 JP 2014072346 W JP2014072346 W JP 2014072346W WO 2015030019 A1 WO2015030019 A1 WO 2015030019A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
coli
bacterium
genes
amino acid
Prior art date
Application number
PCT/JP2014/072346
Other languages
English (en)
Inventor
Mikhail Markovich Gusyatiner
Yulia Georgievna Rostova
Elvira Borisovna Voroshilova
Mikhail Yurievich Kiryukhin
Anastasia Yurienva ROMKINA
Original Assignee
Ajinomoto Co.,Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co.,Inc. filed Critical Ajinomoto Co.,Inc.
Publication of WO2015030019A1 publication Critical patent/WO2015030019A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine

Definitions

  • the present invention relates to the microbiological industry, and specifically to a method for producing L-amino acids by fermentation of a bacterium of the family Enterobacteriaceae that has been modified to attenuate expression of at least one of the genes from the znuACB gene cluster.
  • L-amino acids are industrially produced by fermentation methods utilizing strains of microorganisms obtained from natural sources, or mutants thereof. Typically, the microorganisms are modified to enhance production yields of L-amino acids.
  • Another method for enhancing L-amino acids production yields is to attenuate expression of a gene or several genes which are involved in degradation of the target L- amino acid, genes which divert the precursors of the target L-amino acid from the L- amino acid biosynthetic pathway, genes involved in the redistribution of the carbon, nitrogen, and phosphate fluxes, and genes encoding toxins, etc..
  • the znuACB (zinc uptake) gene cluster encodes a ZnuABC protein complex, which is a high-affinity zinc uptake system belonging to the ATP-binding cassette (ABC) transporter superfamily, one of the largest protein families known (Wu L.F. and Mandrand-Berthelot M.A. A family of homologous substrate-binding proteins with a broad range of substrate specificity and dissimilar biological functions, Biochimie, 1995, 77(9):744-750).
  • ABC transporters have a common distinctive architecture, which consists of two transmembrane domains (TMDs) embedded in the membrane bilayer and two nucleotide-binding domains (NBDs) located in the cytoplasm (Rees D.C.
  • ABC transporters the power to change, Nat. Rev. Mol. Cell Biol, 2009, 10(3): 218-227).
  • the prokaryotic ABC transporters can recruit a binding protein to translocate substrates. ATP binding to the nucleotide-binding domains and hydrolysis drive the conformational changes that result in the translocation of a substrate.
  • Functioning as importers or exporters, ABC transporters can transport a wide variety of substrates, which include ions, toxins, antibiotics, lipids, polysaccharides, nutrients such as amino acids, peptides, sugars, and so forth.
  • ZnuA encodes the periplasmic zinc-binding component of the transporter
  • znuB encodes the membrane component
  • znuC encodes the ATPase subunit.
  • High nucleotide sequence similarity was observed for the three components of ZnuABC from Escherichia coli (E. coli, Enterobacteriaceae) and the corresponding components of the AdcABC zinc transporter of Streptococcus pneumoniae (Streptococcaceae) as well as subunits of other ABC metal ion transporters (Patzer S.I. and Hantke K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli, Mol. Microbiol., 1998, 28(6): 1199-1210).
  • An aspect of the present invention is to provide a bacterium belonging to the family Enterobacteriaceae, which can belong to the genus Escherichia and, more specifically, to the species E. coli, which has been modified to attenuate expression of at least one of the genes from the znuACB gene cluster.
  • Another aspect of the present invention is to provide a method for producing L- amino acids such as L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-citrulline, L- cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L- lysine, L-methionine, L-ornithine, L-phenylalanine, L-proline, L-serine, L-threonine, L- tryptophan, L-tyrosine, and L-valine using a bacterium of the family Enterobacteriaceae as described hereinafter.
  • L- amino acids such as L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-citrulline, L- cysteine, L-glutamic acid, L-glutamine, glycine,
  • An aspect of the present invention is to provide a method for producing an L- amino acid comprising:
  • L-amino acid is selected from the group consisting of L-alanine, L- arginine, L-asparagine, L-aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L- glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L- ornithine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L- valine, and combinations thereof.
  • L-amino acid is selected from the group consisting of L-arginine, L- citrulline, L-glutamic acid, L-glutamine, L-ornithine, L-proline, and combinations thereof.
  • an L-amino acid-producing bacterium can mean a bacterium of the family Enterobacteriaceae which has an ability to produce, excrete or secrete, and/or cause accumulation of an L-amino acid in a culture medium or the bacterial cells when the bacterium is cultured in the medium.
  • an L-amino acid-producing bacterium can also mean a bacterium which is able to produce, excrete or secrete, and/or cause accumulation of an L-amino acid in a culture medium in an amount larger than a wild-type or parental strain, such as E. coli K-12, and can mean that the microorganism is able to cause accumulation in a medium of an amount not less than 0.5 g/L or not less than 1.0 g/L of the target L-amino acid.
  • the bacterium can produce either one kind of amino acid solely, or a mixture of two or more kinds of amino acids.
  • L-amino acid-producing ability can mean the ability of the bacterium to produce, excrete or secrete, and/or cause accumulation of the L-amino acid in a medium or the bacterial cells to such a level that the L-amino acid can be collected from the medium or the bacterial cells, when the bacterium is cultured in the medium.
  • L-amino acid can mean L-alanine, L-arginine, L-asparagine, L- aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-ornithine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine.
  • aromatic L-amino acid includes, for example, L-phenylalanine, L- tryptophan, and L-tyrosine.
  • L-histidine has an aromatic moiety, specifically, an imidazole ring
  • the phrase "aromatic L-amino acid” can also include, besides the aforementioned aromatic L-amino acids, L-histidine.
  • non-aromatic L-amino acid includes, for example, L-alanine, L- arginine, L-asparagine, L-aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L- glutamine, glycine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-ornithine, L- proline, L-serine, L-threonine, and L-valine.
  • non-aromatic L-amino acid can also include, besides the aforementioned non-aromatic L-amino acids, L-histidine.
  • L-amino acid can belong to more than one L-amino acid family.
  • L-amino acids belonging to the glutamate family include L-arginine, L-glutamic acid, L-glutamine, and L-proline
  • L-amino acids belonging to the serine family include L- cysteine, glycine, and L-serine
  • L-amino acids belonging to the aspartate family include L-asparagine, L-aspartic acid, L-isoleucine, L-lysine, L-methionine, and L-threonine
  • L- amino acids belonging to the pyruvate family include L-alanine, L-isoleucine, L-valine, and L-leucine
  • L-amino acids belonging to the aromatic family include L- phenylalanine, L-tryptophan, and L-tyrosine.
  • L-amino acids can be an intermediate in the biosynthetic pathway of another L-amino acid
  • the aforementioned families of amino acids may also include other L-amino acids, for example, non- proteinogenic L-amino acids.
  • L-citrulline and L-ornithine are amino acids from the arginine biosynthetic pathway. Therefore, the glutamate family may include L- arginine, L-citrulline, L-glutamic acid, L-glutamine, L-ornithine, and L-proline.
  • L-Arginine, L-cysteine, L-glutamic acid, L-histidine, L-isoleucine, L-lysine, L- ornithine, L-phenylalanine, L-proline, L-threonine, L-tryptophan, and L-valine are particular examples.
  • the glutamate family amino acids such as L-arginine, L-citrulline, L-glutamic acid, L-glutamine, L-ornithine, and L-proline are specific examples.
  • L- Arginine is more specific example.
  • L-amino acid includes not only an L-amino acid in a free form, but may also include a salt or a hydrate of the L-amino acid, or an adduct formed by the L- amino acid and another organic or inorganic compound as described hereinafter.
  • Salts of amino acids include sulfates, hydrochlorides, carbonates, ammonium salts, sodium salts, and potassium salts.
  • E. coli is a particular example.
  • Specific examples of E. coli include E. coli W3110 (ATCC 27325), E. coli MG1655 (ATCC 47076), and so forth, which are derived from the prototype wild- type strain, E. coli K-12 strain. These strains are available from, for example, the
  • Enterobacter bacteria examples include Enterobacter agglomerans,
  • Pantoea bacteria examples include Pantoea ananatis, and so forth.
  • Some strains of Enterobacter agglomerans were recently reclassified into Pantoea agglomerans, Pantoea ananatis or Pantoea stewartii on the basis of nucleotide sequence analysis of 16S rRNA, etc.
  • a bacterium belonging to any of the genus Enterobacter or Pantoea may be used so long as it is a bacterium classified into the family Enterobacteriaceae.
  • Pantoea ananatis strain When a Pantoea ananatis strain is bred by genetic engineering techniques, Pantoea ananatis AJ13355 strain (FERM BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207) and derivatives thereof can be used. These strains were identified as Enterobacter agglomerans when they were isolated, and deposited as Enterobacter agglomerans. However, they were recently re-classified as Pantoea ananatis on the basis of nucleotide sequencing of 16S rRNA and so forth as described above.
  • the bacterium of the present invention belonging to the family
  • Enterobacteriaceae and modified to attenuate expression of at least one of the genes from the znuACB gene cluster, which is able to produce an L-amino acid can be used.
  • the bacterium may inherently have the L-amino acid-producing ability or may be modified to have an L-amino acid-producing ability by using a mutation method or DNA recombination techniques.
  • the bacterium can be modified to attenuate expression of at least one of the genes from the znuACB gene cluster in a bacterium, which inherently has the ability to produce an L-amino acid.
  • the bacterium can be obtained by imparting the ability to produce an L-amino acid to a bacterium already modified to attenuate expression of at least one of the genes from the znuACB gene cluster.
  • Examples of parental strains which can be used to derive L-arginine-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli strain 237 (VKPM B-7925) (U.S. Patent Application 2002/058315 Al) and its derivative strains harboring mutant N-acetylglutamate synthase (RU2215783), E. coli strain 382 (VKPM B-7926, EPl 170358 Al), an arginine-producing strain into which argA gene encoding N-acetylglutamate synthetase is introduced therein (EPl 170361 Al), and the like.
  • Examples of parental strains which can be used to derive L-arginine-producing bacteria also include strains in which expression of one or more genes encoding an L- arginine biosynthetic enzyme are enhanced.
  • Examples of such genes include genes encoding N-acetyl-y-glutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), N-acetylornithine aminotransferase argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG),
  • argH argininosuccinate lyase
  • carAB carbamoyl phosphate synthetase
  • parental strains which can be used to derive L-citrulline-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli mutant N-acetylglutamate synthase strains 237/pMADSl 1 , 237/pMADS12, and 237/pMADS13 (Russian patent No. 2215783, European patent No. 1 170361 Bl , U.S. Patent No. 6790647 B2).
  • L-citrulline is an intermediate of L-arginine biosynthetic pathway
  • parent strains which can be used to derive L-citrulline-producing bacteria, include strains in which expression of one or more genes encoding an L-arginine biosynthetic enzyme is enhanced.
  • genes include, but are not limited to, genes encoding N- acetylglutamate synthase (argA), N-acetylglutamate kinase (argB), N-acetylglutamyl phosphate reductase (argC), acetylornithine transaminase (argD), acetylornithine deacetylase (argE), ornithine carbamoyltransferase (argF/ ⁇ ), and carbamoyl phosphate synthetase (carAB), and combinations thereof.
  • argA N- acetylglutamate synthase
  • argB N-acetylglutamate kinase
  • argC N-acetylglutamyl phosphate reductase
  • argD acetylornithine transaminase
  • argE acetylornithine deacetylase
  • L-Citrulline-producing bacterium can be also easily obtained from any L-arginine- producing bacterium, for example E. coli 382 stain (VKPM B-7926), by inactivation of argininosuccinate synthase encoded by argG gene.
  • Examples of parental strains which can be used to derive L-cysteine-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli JM15 which is transformed with different cysE alleles encoding feedback-resistant serine acetyltransferases (U.S. Patent No. 6,218,168, Russian patent No. 2279477), E. coli W31 10 having overexpressed genes which encode proteins suitable for secreting substances toxic for cells (U.S. Patent No. 5,972,663), E. coli strains having lowered cysteine desulfohydrase activity (JP11 155571 A2), E.
  • coli W31 10 with increased activity of a positive transcriptional regulator for cysteine regulon encoded by the cysB gene (WO0127307 Al), E. coli JM15(ydeD) (U.S. Patent No. 6,218,168), and the like.
  • parental strains which can be used to derive L-glutamic acid- producing bacteria include, but are not limited to strains belonging to the genus
  • Escherichia such as E. coli VL334thrC + (EP 1 172433).
  • the E. coli VL334 (VKPM B- 1641) is an L-isoleucine and L-threonine auxotrophic strain having mutations in thrC and ilvA genes (U.S. Patent No. 4,278,765).
  • a wild-type allele of the thrC gene was transferred by the method of general transduction using a bacteriophage PI grown on the wild-type E. coli strain K-12 (VKPM B-7) cells.
  • an L-isoleucine auxotrophic strain VL334thrC + (VKPM B-8961), which is able to produce L-glutamic acid, was obtained.
  • parental strains which can be used to derive the L-glutamic acid- producing bacteria include, but are not limited to strains in which expression of one or more genes encoding an L-glutamic acid biosynthetic enzyme are enhanced.
  • genes include genes encoding glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltAB), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citrate synthase (gltA), phosphoenolpyruvate carboxylase (ppc), pyruvate carboxylase (pyc), pyruvate dehydrogenase ( ceEF, IpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase (eno), phosphoglyceromutase pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3- phophate dehydr
  • strains modified so that expression of the citrate synthetase gene, the phosphoenolpyruvate carboxylase gene, and/or the glutamate dehydrogenase gene is/are enhanced include those disclosed in EP 1078989 A2, EP955368 A2, and EP952221 A2.
  • parental strains which can be used to derive the L-glutamic acid- producing bacteria also include strains having decreased or eliminated activity of an enzyme that catalyzes synthesis of a compound other than L-glutamic acid by branching off from an L-glutamic acid biosynthesis pathway.
  • Such enzymes include isocitrate lyase (aceA), a-ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase ( vG), acetolactate synthase (ilvl), formate acetyltransferase (pfl), lactate dehydrogenase (Idh), and glutamate decarboxylase (gadAB).
  • aceA isocitrate lyase
  • sucA a-ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetate kinase
  • vG acetohydroxy acid synthase
  • ilvl acetolactate synthase
  • pfl lactate dehydrogenase
  • Idh lactate dehydrogenase
  • E. coli W31 10sucA::Km R is a strain obtained by disrupting the a-ketoglutarate dehydrogenase gene (hereinafter referred to as "sucA gene") of E. coli W31 10. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase.
  • L-glutamic acid-producing bacterium examples include those which belong to the genus Escherichia and have resistance to an aspartic acid antimetabolite. These strains can also be deficient in the ⁇ -ketoglutarate dehydrogenase activity and include, for example, E. coli AJ13199 (FERM BP-5807) (U.S. Patent No. 5,908,768), FFRM P-12379, which additionally has a low L-glutamic acid decomposing ability (U.S. Patent No. 5,393,671), AJ13138 (FERM BP-5565) (U.S. Patent No. 6,1 10,714), and the like.
  • L-glutamic acid-producing bacteria examples include mutant strains belonging to the genus Pantoea that are deficient in the -ketoglutarate dehydrogenase activity or have a decreased a-ketoglutarate dehydrogenase activity, and can be obtained as described above.
  • Such strains include Pantoea ananatis AJ13356. (U.S. Patent No.
  • Pantoea ananatis AJ13356 was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry (currentlyjncorporated Administrative Agency, National Institute of Technology and Evaluation, International Patent Organism Depositary (NITE-IPOD), #120, 2-5-8 Kazusakamatari, Kisarazu-shi, Chiba-ken 292- 0818, JAPAN) on February 19, 1998 under an accession number of FERM P- 16645. It was then converted to an international deposit under the provisions of Budapest Treaty on January 1 1, 1999 and received an accession number of FERM BP-6615.
  • Pantoea ananatis AJ13356 is deficient in a-ketoglutarate dehydrogenase activity as a result of disruption of the a GDH-El subunit gene ⁇ sue A).
  • the above strain was identified as Enterobacter agglomerans when it was isolated and deposited as the Enterobacter agglomerans AJ13356.
  • Pantoea ananatis on the basis of nucleotide sequencing of 16S rRNA and so forth.
  • AJ13356 was deposited at the aforementioned depository as Enterobacter agglomerans, for the purposes of this specification, they are described as Pantoea ananatis.
  • Examples of parental strains which can be used to derive L-histidine-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli strain 24 (VKPM B-5945, RU2003677), E. coli strain 80 (VKPM B-7270, RU21 19536), E. coli NRRL B-121 16 - B12121 (U.S. Patent No. 4,388,405), E. coli H- 9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087), E. coli AI80/pFM201 (U,S. Patent No. 6,258,554), and the like.
  • E. coli strain 24 VKPM B-5945, RU2003677
  • E. coli strain 80 VKPM B-7270, RU21 19536)
  • Examples of parental strains which can be used to derive L-histidine-producing bacteria also include strains in which expression of one or more genes encoding an L- histidine biosynthetic enzyme are enhanced.
  • Examples of such genes include genes encoding ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisl), phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase (hisIE), phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase (hisA), amidotransferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), histidinol dehydrogenase (hisD), and so forth.
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are inhibited by L-histidine, and therefore L-histidine-producing ability can also be efficiently enhanced by introducing a mutation into ATP
  • strains having an L-histidine-producing ability include E. coli FERM-P 5038 and 5048 which have been transformed with a vector carrying a DNA encoding an L-histidine-biosynthetic enzyme (JP 56-005099 A), E. coli strains transformed with rht, a gene for an amino acid-export (EP1016710A), E. coli 80 strain imparted with sulfaguanidine, DL-l,2,4-triazole-3-alanine, and streptomycin-resistance (VKPM B-7270, RU2119536), and E. coli MG1655+AwGr hisL'_ purR (RU2119536 and Doroshenko V.G. et al., The directed modification of Escherichia coli MG1655 to obtain histidine-producing mutants, Prikl. Biochim. Mikrobiol. (Russian), 2013,
  • parental strains which can be used to derive L-isoleucine-producing bacteria include, but are not limited to mutants having resistance to 6- dimethylaminopurine (JP 5-304969 A), mutants having resistance to an isoleucine analogue such as thiaisoleucine and isoleucine hydroxamate, and mutants additionally having resistance to DL-ethionine and/or arginine hydroxamate (JP 5-130882 A).
  • recombinant strains transformed with genes encoding proteins involved in L- isoleucine biosynthesis can also be used as parental strains (JP 2-458 A, EP0356739 Al, and U.S. Patent No.
  • Examples of parental strains which can be used to derive L-leucine-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli strains resistant to leucine (for example, the strain 57 (VKPM B-7386, U.S. Patent No. 6,124,121)) or leucine analogs including ⁇ -2-thienylalanine, 3-hydroxyleucine, 4- azaleucine, 5,5,5-trifluoroleucine (JP 62-34397 B and JP 8-70879 A); E. coli strains obtained by the gene engineering method described in WO96/06926; E. coli H-9068 (JP 8-70879 A), and the like.
  • E. coli strains resistant to leucine for example, the strain 57 (VKPM B-7386, U.S. Patent No. 6,124,121)
  • leucine analogs including ⁇ -2-thienylalanine, 3-hydroxyleucine, 4-
  • the bacterium can be improved by enhancing the expression of one or more genes involved in L-leucine biosynthesis. Examples include genes of the leuABCD operon, which can be represented by a mutant leuA gene encoding isopropylmalate synthase freed from feedback inhibition by L-leucine (U.S. Patent No. 6,403,342).
  • the bacterium can be improved by enhancing the expression of one or more genes encoding proteins that excrete L-amino acid from the bacterial cell. Examples of such genes include b2682 and b2683 (ygaZH genes) (EP1239041 A2).
  • L-lysine-producing bacteria belonging to the family Escherichia include mutants having resistance to an L-lysine analogue.
  • the L-lysine analogue inhibits growth of bacteria belonging to the genus Escherichia, but this inhibition is fully or partially desensitized when L-lysine is present in the medium.
  • Examples of the L-lysine analogue include, but are not limited to oxalysine, lysine hydroxamate, S-(2-aminoethyl)- L-cysteine (AEC), ⁇ -methyllysine, oc-chlorocaprolactam, and so forth.
  • Mutants having resistance to these lysine analogues can be obtained by subjecting bacteria belonging to the genus Escherichia to a conventional artificial mutagenesis treatment.
  • Specific examples of bacterial strains useful for producing L-lysine include E. coli AJ1 1442 (FERM BP-1543, NRRL B-12185; see U.S. Patent No. 4,346,170) and E. coli VL61 1. In these microorganisms, feedback inhibition of aspartokinase by L-lysine is desensitized.
  • parental strains which can be used to derive L-lysine-producing bacteria also include, but are not limited to strains in which expression of one or more genes encoding an L-lysine biosynthetic enzyme are enhanced.
  • genes include, but are not limited to genes encoding dihydrodipicolinate synthase (dapA), aspartokinase (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate
  • the parental strains may have an increased level of expression of the gene involved in energy efficiency (cyo) (EP1 170376 Al), the gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (U.S. Patent No. 5,830,716), the ybjE gene (WO2005/073390), or combinations thereof.
  • L-Amino acid-producing bacteria may have reduced or no activity of an enzyme that catalyzes a reaction which causes a branching off from the L-amino acid biosynthesis pathway and results in the production of another compound. Also, the bacteria may have reduced or no activity of an enzyme that negatively acts on L-amino acid synthesis or accumulation.
  • enzymes involved in L-lysine production include homoserine dehydrogenase, lysine decarboxylase (cadA, IdcC), malic enzyme, and so forth, and strains in which activities of these enzymes are decreased or deleted are disclosed in W095/23864, WO96/17930, WO2005/010175, and so forth.
  • Expression of both the cadA and IdcC genes encoding lysine decarboxylase can be decreased in order to decrease or delete the lysine decarboxylase activity. Expression of the both genes can be decreased by, for example, the method described in
  • L-lysine-producing bacteria can include the E. coli
  • WC196AcadAAldcC/pCABD2 strain (WO2006/078039).
  • the strain was constructed by introducing the plasmid pCABD2 containing lysine biosynthesis genes (U.S. Patent No. 6,040,160) into the WC196 strain having disrupted cadA and IdcC genes which encode lysine decarboxylase.
  • the WC196 strain was bred from the W31 10 strain, which was derived from E. coli K-12 by replacing the wild-type lysC gene on the chromosome of the W31 10 strain with a mutant lysC gene encoding a mutant aspartokinase III in which threonine at position 352 was replaced with isoleucine, resulting in desensitization of the feedback inhibition by L-lysine (U.S. Patent No. 5,661,012), and conferring AEC resistance to the resulting strain (U.S. Patent No. 5,827,698).
  • the WC196 strain was designated E.
  • the WC 196AcadAAldcC strain itself is also an exemplary L-lysine-producing bacterium.
  • the WC196AcadAAldcC was designated AJ1 10692 and deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology (currently, Incorporated Administrative Agency, National Institute of Technology and Evaluation, International Patent Organism Depositary (NITE-IPOD), #120, 2-5-8 Kazusakamatari, Kisarazu-shi, Chiba-ken 292-0818, JAPAN) on October 7, 2008 as an international deposit under an accession number of FERM BP-1 1027.
  • L-methionine-producing bacteria and parent strains which can be used to derive L-methionine-producing bacteria include, but are not limited to
  • Escherichia bacteria strains such as strains AJ1 1539 (NRRL B-12399), AJ1 1540 (NRRL B-12400), AJ11541 (NRRL B-12401), AJ 11542 (NRRL B-12402) (patent GB2075055); strains 218 (VKPM B-8125) (patent RU2209248) and 73 (VKPM B-8126) (patent RU2215782) resistant to norleucine, the L-methionine analog, or the like.
  • the strain E. coli 73 has been deposited in the Russian National Collection of Industrial
  • VKPM Microorganisms (VKPM) (Russian Federation, 1 17545 Moscow, 1 st Dorozhny Proezd, 1) on May 14, 2001 under accession number VKPM B-8126, and was converted to an international deposit under the Budapest Treaty on February 1, 2002. Furthermore, a methionine repressor-deficient strain and recombinant strains transformed with genes encoding proteins involved in L-methionine biosynthesis such as homoserine
  • transsuccinylase and cystathionine ⁇ -synthase (JP 2000-139471 A) can also be used as parent strains.
  • L-oraithine-producing bacterium can be easily obtained from any L-arginine- producing bacterium, for example E. coli 382 stain (VKPM B-7926), by inactivation of ornithine carbamoyltransferase encoded by both argF and argl genes. Methods for inactivation of ornithine carbamoyltransferase are described herein.
  • parental strains which can be used to derive L-phenylalanine- producing bacteria include, but are not limited to strains belonging to the genus
  • Escherichia such as E. coli AJ12739 (tyrA::Tnl0, tyrR) (VKPM B-8197), E. coli HW1089 (ATCC 55371) harboring the mutant pheA34 gene (U.S. Patent No. 5,354,672), E. coli MWEClOl-b (KR8903681), E. coli NRRL B-12141, NRRL B-12145, NRRL B- 12146 and NRRL B-12147 (U.S. Patent No. 4,407,952). Also, E. coli K-12 [W31 10 (tyrA)/pPHAB (FERM BP-3566), E.
  • coli K-12 [W31 10 (tyrA)/pPHAD] (FERM BP- 12659), E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM BP-12662), and E. coli K-12 [W31 10 (tyrA)/pBR-aroG4, pACMAB] named as AJ 12604 (FERM BP-3579) may be used as a parental strain (EP488424 Bl).
  • L-phenylalanine-producing bacteria belonging to the genus Escherichia with an enhanced activity of the protein encoded by the yedA gene or the yddG gene may also be used (U.S. patent applications 2003/0148473 Al and 2003/0157667 Al).
  • Examples of parental strains which can be used to derive L-proline-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli 702ilvA (VKPM B-8012) which is deficient in the ilvA gene and is able to produce L-proline (EP1 172433 Al).
  • the bacterium can be improved by enhancing the expression of one or more genes involved in L-proline biosynthesis.
  • Examples of genes which can be used in L-proline-producing bacteria include the proB gene encoding glutamate kinase with desensitized feedback inhibition by L-proline (DE3127361 Al).
  • the bacterium can be improved by enhancing the expression of one or more genes encoding proteins responsible for excreting L-amino acids from the bacterial cell.
  • genes are exemplified by b2682 and b2683 (ygaZH genes) (EP1239041 A2).
  • Examples of bacteria belonging to the genus Escherichia, which have an activity to produce L-proline include the following E. coli strains: NRRL B- 12403 and NRRL B- 12404 (GB Patent 2075056), VKPM B-8012 (Russian patent application No.
  • Examples of parental strains which can be used to derive L-threonine-producing bacteria include, but are not limited to strains belonging to the genus Escherichia such as E. coli TDH-6/pVIC40 (VKPM B-3996) (U.S. Patent No. 5, 175, 107, U.S. Patent No. 5,705,371), E. coli 472T23/pYN7 (ATCC 98081) (U.S. Patent No.5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E.
  • E. coli TDH-6/pVIC40 VKPM B-3996
  • E.S. Patent No. 5, 175, 107, U.S. Patent No. 5,705,371 E. coli 472T23/pYN7 (ATCC 98081) (U.S. Patent No.5,63
  • E. coli FERM BP-3519 and FERM BP-3520 U.S. Patent No. 5,376,538, E. coli MG442 (Gusyatiner et al., Genetika ( Russian), 1978, 14:947-956), E. coli VL643 and VL2055 (EPl 14991 1 A2), and the like.
  • the strain TDH-6 is deficient in the thrC gene, as well as being sucrose- assimilative, and the ilvA gene has a leaky mutation. This strain also has a mutation in the rhtA gene, which imparts resistance to high concentrations of threonine or homoserine.
  • the strain B-3996 contains the plasmid pVIC40 which was obtained by inserting a thrA*BC operon which includes a mutant thrA gene into a RSFlOlO-derived vector. This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which has substantially desensitized feedback inhibition by threonine.
  • the strain B-3996 was deposited on November 19, 1987 in the All-Union Scientific Center of Antibiotics (USDn Federation, 1 17105 Moscow, Nagatinskaya Street 3 -A) under the accession number RIA 1867. The strain was also deposited in the Russian National Collection of Industrial Microorganisms (VKPM) (Russian Federation, 117545 Moscow, 1 st Dorozhny proezd, 1) on April 7, 1987 under the accession number B-3996.
  • VKPM Russian National Collection of Industrial Microorganisms
  • E. coli VKPM B-5318 (EP0593792 Al) may also be used as a parental strain for deriving L-threonine-producing bacteria.
  • the strain B-5318 is prototrophic with regard to isoleucine; and a temperature-sensitive lambda-phage CI repressor and PR promoter replace the regulatory region of the threonine operon in plasmid pVIC40.
  • the strain VKPM B-5318 was deposited in the Russian National Collection of Industrial
  • VKPM Microorganisms
  • the bacterium can be additionally modified to enhance expression of one or more of the following genes:
  • mutant thrA gene which encodes aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine;
  • rhtA gene which encodes a putative transmembrane protein of the threonine and homoserine efflux system
  • the asd gene which encodes aspartate-P-semialdehyde dehydrogenase
  • the aspC gene which encodes aspartate aminotransferase (aspartate transaminase)
  • the thrA gene which encodes aspartokinase I and homoserine dehydrogenase I of E. coli has been elucidated (KEGG entry No. b0002; GenBank accession No.
  • the thrA gene is located between the thrL and thrB genes on the chromosome of E. coli K-12.
  • the thrB gene which encodes homoserine kinase of E. coli has been elucidated (KEGG entry No. b0003; GenBank accession No. NC_000913.2; nucleotide positions: 2,801 to 3,733; Gene ID: 947498).
  • the thrB gene is located between the thrA and thrC genes on the chromosome of E. coli K-12.
  • the thrC gene which encodes threonine synthase of E. coli has been elucidated (KEGG entry No. b0004; GenBank accession No. NC_000913.2; nucleotide positions: 3,734 to 5,020; Gene ID: 945198).
  • the thrC gene is located between the thrB zndyaaX genes on the chromosome of E. coli K-12. All three genes function as a single threonine operon thrABC. To enhance expression of the threonine operon, the attenuator region which affects transcription is desirably removed from the operon (WO2005049808 Al, WO2003097839 Al).
  • mutant thrA gene which encodes aspartokinase I and homoserine
  • dehydrogenase I resistant to feedback inhibition by L-threonine, as well as, the thrB and thrC genes can be obtained as one operon from the well-known plasmid pVIC40 which is present in the L-threonine-producing E. coli strain VKPM B-3996. Plasmid pVIC40 is described in detail in U.S. Patent No. 5,705,371.
  • the rhtA gene which encodes a protein of the threonine and homoserine efflux system (an inner membrane transporter) of E. coli has been elucidated (KEGG entry No. b0813; GenBank accession No. NC 000913.2; nucleotide positions: 848,433 to 849,320, complement; Gene ID: 947045).
  • the rhtA gene is located between the dps and ompX genes on the chromosome of E. coli K-12 close to the glnHPQ operon, which encodes components of the glutamine transport system.
  • the rhtA gene is identical to the ybiF gene (KEGG entry No. B0813).
  • the asd gene which encodes aspartate-P-semialdehyde dehydrogenase of E. coli has been elucidated (KEGG entry No. b3433; GenBank accession No. NC 000913.2; nucleotide positions: 3,571,798 to 3,572,901, complement; Gene ID: 947939).
  • the asd gene is located between the glgB and gntU gene on the same strand (yhgN gene on the opposite strand) on the chromosome of E. coli K-12.
  • the aspC gene which encodes aspartate aminotransferase of E. coli has been elucidated (KEGG entry No. b0928; GenBank accession No. NC_000913.2; nucleotide positions: 983,742 to 984,932, complement; Gene ID: 945553).
  • the aspC gene is located between the ycbL gene on the opposite strand and the ompF gene on the same strand on the chromosome of E. coli K-12.
  • parental strains which can be used to derive the L-tryptophan- producing bacteria include, but are not limited to strains belonging to the genus
  • Escherichia such as E. coli JP4735/pMU3028 (DSM10122) and JP6015/pMU91
  • DSM10123 deficient in the tryptophanyl-tRNA synthetase encoded by mutant trpS gene (U.S. Patent No. 5,756,345), E. coli SV164 (pGH5) having a serA allele encoding phosphoglycerate dehydrogenase free from feedback inhibition by serine and a trpE allele encoding anthranilate synthase free from feedback inhibition by tryptophan (U.S. Patent No. 6,180,373), E. coli AGX17 (pGX44) (NRRL B- 12263) and AGX6(pGX50)aroP (NRRL B-12264) deficient in the enzyme tryptophanase (U.S.
  • Patent No. 4,371 ,614) E. coli AGX17/pGX50,pACKG4-pps in which a phosphoenolpyruvate-producing ability is enhanced (WO9708333, U.S. Patent No. 6,319,696), and the like may be used.
  • L- tryptophan-producing bacteria belonging to the genus Escherichia with an enhanced activity of the identified protein encoded by and the yedA gene or the yddG gene may also be used (U.S. patent applications 2003/0148473 Al and 2003/0157667 Al).
  • Examples of parental strains which can be used to derive the L-tryptophan- producing bacteria also include strains in which one or more activities of the enzymes selected from anthranilate synthase, phosphoglycerate dehydrogenase, and tryptophan synthase are enhanced.
  • the anthranilate synthase and phosphoglycerate dehydrogenase are both subject to feedback inhibition by L-tryptophan and L-serine, so that a mutation desensitizing the feedback inhibition may be introduced into these enzymes.
  • Specific examples of strains having such a mutation include an E. coli SV164 which harbors desensitized anthranilate synthase and a transformant strain obtained by introducing into the E. coli SV164 the plasmid pGH5 (WO 94/08031), which contains a mutant serA gene encoding feedback-desensitized phosphoglycerate dehydrogenase.
  • Examples of parental strains which can be used to derive the L-tryptophan- producing bacteria also include strains into which the tryptophan operon which contains a gene encoding desensitized anthranilate synthase has been introduced (JP 57-71397 A, JP 62-244382 A, U.S. Patent No. 4,371,614).
  • L-tryptophan-producing ability may be imparted by enhancing expression of a gene which encodes tryptophan synthase, among tryptophan operons (trpBA).
  • the tryptophan synthase consists of a and ⁇ subunits which are encoded by the trpA and trpB genes, respectively.
  • L-tryptophan- producing ability may be improved by enhancing expression of the isocitrate lyase-malate synthase operon (WO2005/103275).
  • parental strains which can be used to derive L-valine-producing bacteria include, but are not limited to strains which have been modified to overexpress the ilvGMEDA operon (U.S. Patent No. 5,998,178). It is desirable to remove the region of the ilvGMEDA operon which is required for attenuation so that expression of the operon is not attenuated by the L-valine that is produced. Furthermore, the ilvA gene in the operon is desirably disrupted so that threonine deaminase activity is decreased.
  • Examples of parental strains for deriving L-valine-producing bacteria also include mutants having a mutation of aminoacyl-tRNA synthetase (U.S. Patent No. 5,658,766).
  • E. coli VL1970 which has a mutation in the ileS gene encoding isoleucine tRNA synthetase, can be used.
  • E. coli VL1970 was deposited in the Russian National Collection of Industrial Microorganisms (VKPM) (Russian Federation, 1 17545 Moscow, 1 st Dorozhny Proezd, 1) on June 24, 1988 under the accession number VKPM B-4411.
  • mutants requiring lipoic acid for growth and/or lacking H + -ATPase can also be used as parental strains (WO96/06926).
  • L-valine-producing strain examples include E. coli strain H-81 (VKPM B- 8066), NRRL B-12287 and NRRL B-12288 (US patent No. 4,391,907), VKPM B-4411 (US patent No. 5,658,766), VKPM B-7707 (European patent application EP1016710A2), or the like.
  • the bacterium of the present invention belonging to the family
  • Enterobacteriaceae has been modified to attenuate expression of at least one of the genes from the znuACB gene cluster.
  • a bacterium modified to attenuate expression of at least one of the genes from the znuACB gene cluster can mean that the bacterium has been modified in such a way that in the modified bacterium, expression of at least one of the genes from the znuACB gene cluster is decreased as compared to a bacterium which contains a non- modified znuACB gene cluster, for example, a wild-type or parental strain, or at least one of the genes from the znuACB gene cluster is inactivated.
  • any of the genes znuA, znuC or znuB also referred to as znuACB genes
  • all three genes znuA, znuC and znuB constituting the entire znuACB gene cluster can be attenuated.
  • the phrase "at least one of the genes from the znuACB gene cluster is inactivated” can mean that a modified gene from the znuACB gene cluster such as znuA, znuC or znuB encodes a completely inactive or non-functional protein
  • the phrase "at least one of the genes from the znuACB gene cluster is inactivated” can also mean that a modified gene from the znuACB gene cluster such as znuA, znuC or znuB encodes a completely inactive or nonfunctional protein so that the ZnuABC transporter is inactive or non-functional, as compared to a bacterium which contains the non-modified gene.
  • the phrase "at least one of the genes from the znuACB gene cluster is inactivated" can also mean that a combination of two or three genes selected from znuA, znuC and znuB may be chosen to inactivate the genes from the znuACB gene cluster so that the modified genes encode completely inactive or non-functional proteins so that the ZnuABC transporter is inactive or non-functional, as compared to a bacterium which contains the non-modified genes.
  • At least one of the modified DNA regions from the znuACB gene cluster is unable to naturally express the gene due to deletion of a part of the gene or deletion of the entire gene, replacement of one base or more to cause an amino acid substitution in the protein encoded by the gene (missense mutation), introduction of a stop codon (nonsense mutation), deletion of one or two bases to cause a reading frame shift of the gene, insertion of a drug-resistance gene and/or transcription termination signal, or modification of an adjacent region of the gene, including sequences controlling gene expression such as promoter(s), enhancer(s), attenuator(s), ribosome-binding site(s) (RBS), etc.
  • Inactivation of at least one of the genes from the znuACB gene cluster can also be performed, for example, by conventional methods such as a mutagenesis treatment using UV irradiation or nitrosoguanidine (N-methyl-N'-nitro-N- nitrosoguanidirie), site-directed mutagenesis, gene disruption using homologous recombination, and/or insertion-deletion mutagenesis (Yu D. et al., Proc. Natl. Acad. Sci. USA, 2000, 97(1 1):5978-5983; Datsenko K.A. and Wanner B.L., Proc. Natl. Acad. Sci. USA, 2000, 97(12):6640-6645; Zhang Y. et al., Nature Genet., 1998, 20: 123-128) based on "Red/ET-driven integration" or ' ⁇ Red/ET-mediated integration".
  • the phrase "at least one of the genes from the znuACB gene cluster is attenuated” can mean that an amount of the protein encoded by a modified gene from the znuACB gene cluster such as znuA, znuC or znuB in the modified bacterium, in which expression of the gene is attenuated, is reduced as compared with a non-modified bacterium, for example, a wild-type or parental strain such as E. coli K-12.
  • the phrase "at least one of the genes from the znuACB gene cluster is attenuated” can also mean that an amount of the
  • the phrase "at least one of the genes from the znuACB gene cluster is attenuated” can also mean that a combination of two or three genes selected from znuA, znuC and znuB may be chosen to attenuate the genes from the znuACB gene cluster so that an amount of the proteins encoded by modified genes from the znuACB gene cluster or an amount of the ZnuABC transporter in the modified bacterium, in which expression of the genes is attenuated, is reduced as compared with a non-modified bacterium.
  • the phrase "at least one of the genes from the znuACB gene cluster is attenuated” can also mean that the modified bacterium contains one or more regions operably linked to one or more genes from the znuACB gene cluster, including sequences controlling expression of genes from the znuACB gene cluster such as promoters, enhancers, attenuators and transcription termination signals, ribosome-binding sites (RBS), and other expression control elements, which are modified resulting in a decrease in the expression level of at least one of the genes from the znuACB gene cluster; and other examples (see, for example, W095/34672; Carrier T.A. and Keasling J.D., Biotechnol.
  • the phrase "one or more genes" can mean znuA, znuC and/or znuB in any combination.
  • operably linked to the gene is a specific example of the phrase “operably linked to one or more genes” and can mean that the regulatory region(s) is/are linked to the nucleotide sequence of the nucleic acid molecule or gene in a manner which allows for expression (e.g., enhanced, increased, constitutive, basal, antiterminated, attenuated, deregulated, decreased or repressed expression) of the nucleotide sequence, specifically, expression of a gene product encoded by the nucleotide sequence.
  • Expression of at least one of the genes from the znuACB gene cluster can be attenuated by replacing an expression control sequence of the gene, such as a promoter on the chromosomal DNA, with a weaker one.
  • the strength of a promoter is defined by the frequency of initiation acts of RNA synthesis. Examples of methods for evaluating the strength of promoters and strong promoters are described in Goldstein M.A. et al.
  • nucleotides in the Shine-Dalgarno (SD) sequence and/or in the spacer between the SD sequence and the start codon, and/or a sequence immediately upstream and/or
  • RBS ribosome-binding site
  • Expression of at least one of the genes from the znuACB gene cluster can also be attenuated by insertion of a transposon or an insertion sequence (IS) into the coding region of the gene (U.S. Patent No. 5,175,107) or in the region controlling gene expression, or by conventional methods such as mutagenesis with ultraviolet irradiation (UV) irradiation or nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine).
  • a transposon or an insertion sequence IS
  • incorporation of a site-specific mutation can be conducted by known chromosomal editing methods based, for example, on Red/ET-mediated recombination.
  • the copy number, presence or absence of a gene from the znuACB gene cluster such as znuA, znuC and znuB can be measured, for example, by restricting the
  • chromosomal DNA followed by Southern blotting using a probe based on the gene sequence, fluorescence in situ hybridization (FISH), and the like.
  • FISH fluorescence in situ hybridization
  • the level of gene expression can be determined by measuring the amount of mRNA transcribed from the gene using various well-known methods, including Northern blotting, quantitative RT- PCR, and the like.
  • the amount of the protein encoded by the gene can be measured by known methods including SDS-PAGE followed by immunoblotting assay (Western blotting analysis), or mass spectrometry analysis of the protein samples, and the like.
  • the specific activity of ZnuABC transporter encoded by the znuACB genes per mg crude protein or an amount of cells expressed as an optical density (OD) at a specific wavelength can be determined by measuring the 65 Zn 2+ -uptake using radioactive 65 ZnCl 2 as the substrate and ⁇ -counter (Patzer S.I. and Hantke K., Mol. Microbiol, 1998, 28(6):1 199-1210).
  • the specific activity of a modified ZnuA, ZnuB or ZnuC, or their combination can be determined by measuring activity of the entire ZnuABC protein complex, containing the modified ZnuA, ZnuB or/and ZnuC, as described above.
  • the crude protein concentration can be determined by the Bradford protein assay (Bradford M.M., Anal. Biochem., 1976, 72:248-254) using bovine serum albumin as a standard.
  • Methods for manipulation with recombinant molecules of DNA and molecular cloning such as preparation of plasmid DNA, digestion, ligation and transformation of DNA, selection of an oligonucleotide as a primer, incorporation of mutations, and the like may be ordinary methods well-known to the person skilled in the art. These methods are described, for example, in Sambrook J., Fritsch E.F. and Maniatis T., "Molecular
  • the znuA gene (synonyms yebL, yzzP) encodes a zinc transporter subunit, a periplasmic-binding component of ABC superfamily ZnuA (KEGG, Kyoto Encyclopedia of Genes and Genomes, entry No.
  • the znuA (GenBank accession No. NC 000913.2; nucleotide positions: 1939675 to 1940607, complement; Gene ID: 946375) is located between the yebA gene on the same strand and the znuC gene on the opposite strand on the
  • the nucleotide sequence of the znuA gene and the amino acid sequence of the ZnuA protein encoded by the znuA gene are shown in SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • the znuC gene (synonyms yebM) encodes a zinc transporter subunit, an ATP- binding component of ABC superfamily ZnuC (KEGG, entry No. bl 858;
  • NC_000913.2; nucleotide positions: 1940686 to 1941441 ; Gene ID: 946374) is located between the znuA gene on the opposite strand and the znuB gene on the same strand on the chromosome of E. coli strain K-12.
  • the nucleotide sequence of the znuC gene and the amino acid sequence of the ZnuC protein encoded by the znuC gene are shown in SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
  • the znuB gene (synonyms yebl encodes a zinc transporter subunit, a membrane component of ABC superfamily ZnuB (KEGG, entry No. M859; UniProtKB/Swiss-Prot, accession No. P39832).
  • the znuB (GenBank accession No. NC 000913.2; nucleotide positions: 1941438 to 1942223, complement; Gene ID: 946372) is located between the znuC on the same strand and the ruvB gene on the opposite strand on the chromosome of E. coli strain K-12.
  • the nucleotide sequence of the znuB gene and the amino acid sequence of the ZnuB protein encoded by the znuB gene are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
  • the znuA, znuC and znuB genes are not limited to the genes shown in SEQ ID NOs: 1, 3 and 5, respectively, but may include genes which are variant nucleotide sequences of or homologous to SEQ ID NOs: 1, 3 and 5, and which encode variants of the ZnuA, ZnuC and ZnuB proteins, respectively.
  • a variant protein can mean a protein which has one or several changes in the sequence compared with SEQ ID NO: 2, 4 or 6, whether they are substitutions, deletions, insertions, and/or additions of one or several amino acid residues, but still maintains an activity or function similar to that of the ZnuA, ZnuC or ZnuB protein, respectively, or the three-dimensional structure of the ZnuA, ZnuC or ZnuB protein is not significantly changed relative to the wild-type or non-modified protein.
  • the number of changes in the variant protein depends on the position in the three-dimensional structure of the protein or the type of amino acid residues.
  • It can be, but is not strictly limited to, 1 to 30, in another example 1 to 15, in another example 1 to 10, and in another example 1 to 5, in SEQ ID NO: 2, 4 or 6. This is because some amino acids have high homology to one another so that the activity or function is not affected by such a change, or the three-dimensional structure of ZnuA, ZnuC or ZnuB protein is not significantly changed relative to the wild-type or non-modified protein.
  • the protein variants encoded by the zn A, znuC and znuB genes may have a homology, defined as the parameter "identity" when using the computer program BLAST, of not less than 80%, not less than 90%, not less than 95%, or not less than 98% with respect to the entire amino acid sequence shown in SEQ ID NO: 2, 4 or 6, respectively, as long as the activity or function of the ZnuA, ZnuC and ZnuB proteins is maintained, or the three-dimensional structure of the ZnuA, ZnuC and ZnuB is not significantly changed relative to the wild- type or non-modified proteins.
  • the exemplary substitution, deletion, insertion, and/or addition of one or several amino acid residues can be a conservative mutation(s).
  • the representative conservative mutation is a conservative substitution.
  • the conservative substitution can be, but is not limited to a substitution, wherein substitution takes place mutually among Phe, Trp and Tyr, if the substitution site is an aromatic amino acid; among Ala, Leu, He and Val, if the substitution site is a hydrophobic amino acid; between Glu, Asp, Gin, Asn > Ser, His and Thr, if the substitution site is a hydrophilic amino acid; between Gin and Asn, if the substitution site is a polar amino acid; among Lys, Arg and His, if the substitution site is a basic amino acid; between Asp and Glu, if the substitution site is an acidic amino acid; and between Ser and Thr, if the substitution site is an amino acid having hydroxyl group.
  • conservative substitutions include substitution of Ser or Thr for Ala, substitution of Gin, His or Lys for Arg, substitution of Glu, Gin, Lys, His or Asp for Asn, substitution of Asn, Glu or Gin for Asp, substitution of Ser or Ala for Cys, substitution of Asn, Glu, Lys, His, Asp or Arg for Gin, substitution of Asn, Gin, Lys or Asp for Glu, substitution of Pro for Gly, substitution of Asn, Lys, Gin, Arg or Tyr for His, substitution of Leu, Met, Val or Phe for He, substitution of He, Met, Val or Phe for Leu, substitution of Asn, Glu, Gin, His or Arg for Lys, substitution of lie, Leu, Val or Phe for Met, substitution of Trp, Tyr, Met, He or Leu for Phe, substitution of Thr or Ala for Ser, substitution of Ser or Ala for Trp, substitution of His, Phe or Trp for Tyr, and substitution of Met, He
  • the exemplary substitution, deletion, insertion, and/or addition of one or several amino acid residues can also be a non-conservative mutation(s) provided that the mutation(s) is/are compensated by one or more secondary mutations in the different position(s) of amino acids sequence so that the activity or function of the variant protein is maintained and similar to that of the ZnuA, ZnuC or ZnuB protein, or the three- dimensional structure of ZnuA, ZnuC or ZnuB is not significantly changed relative to the wild-type or non-modified protein. .
  • BLAST search is the heuristic search algorithm employed by the programs blastp, blastn, blastx, megablast, tblastn, and tblastx; these programs ascribe significance to their findings using the statistical methods of Samuel K. and Altschul S.F. ("Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes" Proc. Natl. Acad. Sci.
  • the computer program BLAST calculates three parameters: score, identity and similarity.
  • the FASTA search method is described by Pearson W.R. ("Rapid and sensitive sequence comparison with FASTP and FASTA", Methods EnzymoL, 1990, 183:63-98).
  • the ClustalW method is described by Thompson J.D. et al. ("CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice", Nucleic Acids Res., 1994, 22:4673-4680).
  • the znuA, znuC and znuB genes can be variant nucleotide sequences.
  • the phrase "a variant nucleotide sequence" can mean a nucleotide sequence which encodes the ZnuA, ZnuC or ZnuB protein using any synonymous amino acid codons according to the standard genetic code table (see, e.g., Lewin B., "Genes VIIF, 2004, Pearson Education, Inc., Upper Saddle River, NJ 07458) , or "a variant protein" of the ZnuA, ZnuC or ZnuB protein.
  • the znuA, znuC and znuB genes can be variant nucleotide sequences due to degeneracy of genetic code.
  • a variant nucleotide sequence can also mean, but is not limited to a nucleotide sequence which hybridizes under stringent conditions with the nucleotide sequence complementary to the sequence shown in SEQ ID NO: 1, 3 or 5, or a probe which can be prepared from the nucleotide sequence under stringent conditions provided that it encodes active or functional protein.
  • “Stringent conditions” include those under which a specific hybrid, for example, a hybrid having homology, defined as the parameter "identity" when using the computer program BLAST, of not less than 70%, not less than 80%, not less than 90%, not less than 95%, not less than 96%, not less than 97%, not less than 98%, or not less than 99% is formed, and a non-specific hybrid, for example, a hybrid having homology lower than the * above is not formed.
  • stringent conditions can be exemplified by washing one time or more, or in another example, two or three times, at a salt concentration of 1 xSSC (standard sodium citrate or standard sodium chloride), 0.1% SDS (sodium dodecyl sulphate), or in another example, O.l xSSC, 0.1% SDS at 60°C or 65°C.
  • Duration of washing depends on the type of membrane used for blotting and, as a rule, can be what is recommended by the manufacturer. For example, the recommended duration of washing for the Amersham HybondTM-N+ positively charged nylon membrane (GE Healthcare) under stringent conditions is 15 minutes.
  • the washing step can be performed 2 to 3 times.
  • a part of the sequences complementary to the sequences shown in SEQ ID NO: 1, 3 or 5 may also be used.
  • Such a probe can be produced by PCR using oligonucleotides as primers prepared on the basis of the sequences shown in SEQ ID NO: 1 , 3 and 5 and a DNA-fragment containing the nucleotide sequence as template.
  • the length of the probe is recommended to be >50 bp; it can be suitably selected depending on the hybridization conditions, and is usually 100 bp to 1 kbp.
  • the washing conditions after hybridization can be exemplified by 2xSSC, 0.1% SDS at 50°C, 60°C or 65°C.
  • the variant nucleotide sequences encoding variant proteins of ZnuA, ZnuC and ZnuB proteins can be obtained by PCR (polymerase chain reaction; refer to White T.J.
  • a wild-type protein can mean a native protein naturally produced by a wild-type or parent bacterial strain of the family Enter obacteriaceae, for example, by the wild-type E. coli MG1655 strain.
  • a wild-type protein can be encoded by the "wild- type gene", or the "non-modified gene” naturally occurring in genome of a wild-type bacterium.
  • the bacterium as described herein can be obtained by attenuating expression of at least one of the genes from the znuACB gene cluster in a bacterium inherently having an ability to produce an L-amino acid.
  • the bacterium as described herein can be obtained by imparting the ability to produce an L-amino acid to a bacterium
  • the bacterium can have, in addition to the properties already mentioned, other specific properties such as various nutrient requirements, drug resistance, drug sensitivity, and drug dependence, without departing from the scope of the present invention.
  • a method of the present invention includes the method for producing an L-amino acid such as L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L- methionine, L-ornithine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine, or a mixture thereof.
  • L-amino acid such as L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine
  • a method of the present invention includes the method for producing an L-amino acid of the glutamate family such as L-arginine, L-citrulline, L-glutamic acid, L-glutamine, L-proline, and L-ornithine, or a mixture thereof.
  • the method for producing an L-amino acid can include the steps of cultivating the bacterium in a culture medium to allow the L-amino acid to be produced, excreted, or accumulated in the culture medium, and collecting the L-amino acid from the culture medium and/or the bacterial cells. Collected amino acid can be further purified.
  • the L-amino acid can be produced in a salt or a hydrate form thereof, or a combination thereof.
  • sodium, potassium, ammonium, and the like salts of the L-amino acid can be produced by the method.
  • the L-amino acid can be produced in an adduct form thereof with, for example, another organic or inorganic compound.
  • a monochlorhydrate salt of an L-amino acid can be produced by the method such as monochlorhydrate salt of L-lysine (L-lysine-HCl) or monochlorhydrate salt of L-arginine (L-arginine-HCl).
  • the cultivation of the bacterium, and collection and purification of L-amino acid, or a salt or hydrate thereof, from the medium and the like may be performed in a manner similar to conventional fermentation methods wherein L-amino acid is produced using a microorganism.
  • the culture medium for production of the L-amino acid can be either a synthetic or natural medium such as a typical medium that contains a carbon source, a nitrogen source, a sulphur source, inorganic ions, and other organic and inorganic components as required.
  • the carbon source saccharides such as glucose, lactose, galactose, fructose, sucrose, arabinose, maltose, xylose, trehalose, ribose, and
  • hydrolyzates of starches can be used.
  • alcohols such as glycerol, mannitol, and sorbitol
  • organic acids such as gluconic acid, fumaric acid, citric acid, malic acid, and succinic acid; and the like
  • nitrogen source inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate
  • organic nitrogen such as of soy bean hydrolyzates
  • ammonia gas; aqueous ammonia; and the like can be used.
  • the sulphur source can include ammonium sulphate, magnesium sulphate, ferrous sulphate, manganese sulphate, and the like.
  • Vitamins such as vitamin B 1 , required substances, for example, organic nutrients such as nucleic acids such as adenine and RNA, or yeast extract, and the like may be present in appropriate, even if trace, amounts. Other than these, small amounts of calcium phosphate, iron ions, manganese ions, and the like may be added, if necessary.
  • Cultivation can be performed under aerobic conditions for 16 to 72 h, or for 16 to 65 h; the culture temperature during cultivation can be controlled within 30 to 45°C, or within 30 to 37°C; and the pH can be adjusted between 5 and 8, or between 6.5 and 7.5.
  • the pH can be adjusted by using an inorganic or organic acidic or alkaline substance, as well as ammonia gas.
  • solids such as cells and cell debris can be removed from the liquid medium by centrifugation or membrane filtration, and then the target L-amino acid, or a salt or hydrate thereof, can be recovered from the fermentation liquor by any combination of conventional techniques such as concentration, ion-exchange
  • the collected target L-amino acid composition may contain microbial cells, medium components, moisture, and by-product metabolites of the microorganism in addition to the target substance. Purity of the collected target substance is 50% or higher, preferably 85% or higher, particularly preferably 95% or higher (U.S. Patent No.
  • Example 1 Construction of a E. coli strain having an inactivated znuACB gene cluster.
  • E. coli strain in which the znuACB gene cluster is inactivated was constructed by the method initially developed by Datsenko K.A. and Wanner B.L. called " Red/ET- mediated integration" (Datsenko K.A. and Wanner B.L., Proc. Natl. Acad. Sci. USA, 2000, 97(12):6640-6645).
  • a DNA-fragment containing the kanamycin resistance marker (Km R ) was obtained by PCR using primers PI (SEQ ID NO: 7) and P2 (SEQ ID NO: 8), and the pMWl ⁇ S- attL-Km R - attR plasmid (WO2011043485 Al) as the template.
  • the pMWl ⁇ S- attL-Km R - attR plasmid was constructed using the pMWl ⁇ S-attL-Tc R -attR plasmid (WO2005/010175) and substituting the tetracycline resistance marker gene with the kanamycin resistance marker gene from pUC4K plasmid (Vieira J. and Messing J., Gene, 1982, 19(3):259-268).
  • Primer PI contains a region complementary to the region located at the 5 '-end of the znuA gene and a region complementary to the attR region.
  • Primer P2 contains a region complementary to the region located at the 3 '-end of the znuB gene and a region complementary to the attL region.
  • the conditions for PCR were as follows: initial denaturation for 3 min at 95°C; profile for the initial 2 cycles: 1 min at 95°C, 30 sec at 50°C, 40 sec at 72°C; profile for the final 25 cycles: 30 sec at 95°C, 30 sec at 54°C, 40 sec at 72°C; final elongation for 5 min at 72°C.
  • the obtained PCR- product (about 1.6 kbp) was purified by electrophoresis in agarose gel and used for electroporation of the E.
  • the pKD46 plasmid includes a 2,154 nucleotides DNA-fragment of phage ⁇ (nucleotide positions from 31088 to 33241, GenBank accession No.: J02459), and contains genes of the ⁇ Red homologous recombination system ( ⁇ , ⁇ exo genes) under the control of the arabinose-inducible ParaB promoter.
  • the pKD46 plasmid is necessary for integration of the PCR-product into the chromosome of the E. coli MG1655 strain (ATCC 47076).
  • the E. coli MG1655 strain containing the recombinant plasmid pKD46 can be obtained from the E. coli Genetic Stock Center, Yale University, New Haven, USA (Accession No. CGSC7669).
  • Electrocompetent cells were prepared as follows: the E. coli MG1655/pKD46 strain was grown at 30°C overnight in LB-medium (Luria-Bertani broth, also referred to as lysogenic broth; Sambrook J. and Russell D.W., Molecular Cloning: A Laboratory Manual (3 rd ed.), Cold Spring Harbor Laboratory Press, 2001) containing ampicillin (150 mg/L); then the culture was diluted 100 times with 5 mL of SOB-medium (Sambrook J. and Russell D.W., Molecular Cloning: A Laboratory Manual (3 rd ed.), Cold Spring Harbor Laboratory Press, 2001) containing ampicillin (150 mg/L) and L-arabinose (1 mM). The cells were grown with aeration (250 rpm) at 30°C to OD 60 o of -0.6.
  • Electrocompetent cells were made by concentrating 100-fold and washing three times with ice-cold deionized H 2 0. Electroporation was performed using 70 of cells and -100 ng of the PCR-product. Electroporated cells were incubated with 1 mL of SOC- medium (Sambrook J. and Russell D.W., Molecular Cloning: A Laboratory Manual (3 rd ed.), Cold Spring Harbor Laboratory Press, 2001) at 37°C for 2.5 hours, plated onto L- agar containing kanamycin (25 mg/L), and grown at 37°C to select Km R -recombinants.
  • SOC- medium Standardbrook J. and Russell D.W., Molecular Cloning: A Laboratory Manual (3 rd ed.), Cold Spring Harbor Laboratory Press, 2001
  • E. coli 382 ilvA + Clones of E. coli 382 ilvA + were selected as good-growing colonies on minimal agar plates.
  • the strain 382 ilvA + was obtained from the arginine-producing strain 382 (VKPM B-7926, EP1 170358 Al) by PI -transduction of the wild-type ilvA gene from E. coli K-12 strain.
  • the strain 382 was deposited in the Russian National Collection of Industrial Microorganisms (VKPM) (Russian Federation, 1 17545 Moscow, 1 st Dorozhny proezd, 1) on April 10, 2000 under the accession number VKPM B-7926 and then converted to a deposit under the Budapest Treaty on May 18, 2001.
  • DNA-fragment from the chromosome of the obtained E. coli MG1655AznuACB::Km was transferred to the L-arginine-producing E. coli strain 382ilvA + by PI -transduction (Miller J.H.
  • Both E. coli strains 382ilvA + and 382ilvA + AznuACB::Km were each cultivated with shaking (220 rpm) at 37°C for 18 hours in 3 mL of nutrient broth. Then 0.3 mL of the obtained cultures was inoculated into 2 mL of a fermentation medium in 20 x 200-mm test tubes and cultivated at 32°C for 48 hours on a rotary shaker to an OD 540 of -40 until glucose consumption.
  • composition of the fermentation medium (g/L) was as follows:
  • Glucose and magnesium sulfate were sterilized separately.
  • CaC0 3 was dry-heat sterilized at 180°C for 2 hours.
  • the pH was adjusted to 7.0 with KOH solution.
  • the DNA-fragments from the chromosome of the above-described E. coli MG1655AznuACB::Km strain are transferred to the citrulline producing E. coli strain 382AargG by PI -transduction to obtain the strain 382AargG,AznuACB::Km.
  • the strain 382AargG is obtained by deletion of argG gene on the chromosome of the L-arginine- producing strain 382 (VKPM B-7926, EPl 170358 Al) by the method initially developed by Datsenko K.A. and Wanner B.L.
  • E. coli strains 382AargG and 382AargG,AznuACB::Km are separately cultivated with shaking at 37°C for 18 h in 3 mL of nutrient broth, and 0.3 mL of the obtained cultures are inoculated into 2 mL of a fermentation medium in 20 x 200-mm test tubes and cultivated at 32°C for 48 h on a rotary shaker.
  • a solution of ninhydrin (2%) in acetone is used as a visualizing reagent.
  • a spot containing citrulline is cut out, L-citrulline is eluted with 0.5% water solution of CdCl 2 , and the amount of L-citrulline is estimated
  • composition of the fermentation medium (g/L) is as follows:
  • Glucose and magnesium sulfate are sterilized separately.
  • CaC0 3 is dry-heat sterilized at 180°C for 2 h. The pH is adjusted to 7.0.
  • the DNA-fragments from the chromosome of the above-described E. coli MG1655AznuACB::Km strain are transferred to the glutamate-producing E. coli strain VL334thrC + (EP1172433 Al) by P 1 -transduction to obtain the strain
  • VL334thrC + AznuACB::Km The strain VL334thrC + was deposited in the Russian National Collection of Industrial Microorganisms (VKPM) (Russian Federation, 117545 Moscow, I s Dorozhny proezd, 1) on December 6, 2004 under the accession number B- 8961 and then converted to a deposit under the Budapest Treaty on December 8, 2004.
  • VKPM Russian National Collection of Industrial Microorganisms
  • E. coli strains VL334thrC + and VL334thrC + AznuACB::Km are separately cultivated for 18-24 h at 37°C on L-agar plates. Then, one loop of the cells is transferred into test tubes containing 2 mL of fermentation medium. Cultivation is carried out at 30°C for 3 days with shaking.
  • composition of the fermentation medium (g/L) is as follows:
  • Glucose and CaC0 3 are sterilized separately. The pH is adjusted to 7.2.
  • the DNA-fragments from the chromosome of the above-described E. coli MG1655AznuACB::Km strain are transferred to the L-ornithine producing E. coli strain 382AargFAargI by PI -transduction to obtain the strain 382AargFAargI,AznuACB::Km.
  • the strain 382AargFAargI is obtained by consecutive deletion of argF and argl genes on the chromosome of the L-arginine-producing strain 382 (VKPM B-7926, EPl 170358 Al) by the method initially developed by Datsenko K.A.
  • coli strains 382AargFAargI and 382AargFAargI,AznuACB::Km are separately cultivated with shaking at 37°C for 18 h in 3 mL of nutrient broth, and 0.3 mL of the obtained cultures are inoculated into 2 mL of a fermentation medium in 20 x 200-mm test tubes and cultivated at 32°C for 48 h on a rotary shaker.
  • a solution of ninhydrin (2%) in acetone is used as a visualizing reagent.
  • a spot containing ornithine is cut out, ornithine is eluted with 0.5% water solution of CdCl 2 , and the amount of ornithine is estimated spectrophotometrically at 540 nm.
  • composition of the fermentation medium (g/L) is as follows:
  • Glucose and magnesium sulfate are sterilized separately.
  • CaC0 3 is dry-heat sterilized at 180°C for 2 h. The pH is adjusted to 7.0.
  • the DNA-fragments from the chromosome of the above-described E. coli MG1655AznuACB::Km strain are transferred to the proline-producing E. coli strain 702ilvA by PI -transduction to obtain the strain 702ilvAAznuACB::Km.
  • the strain 702ilvA was deposited in the Russian National Collection of Industrial Microorganisms (VKPM) (Russian Federation, 1 17545 Moscow, 1 st Dorozhny proezd, 1) on July 18, 2000 under the accession number VKPM B-8012 and then converted to a deposit under the Budapest Treaty on May 18, 2001.
  • E. coli strains 702ilvA and 702ilvAAznuACB::Km are separately cultivated for 18-24 h at 37°C on L-agar plates. Then, these strains are cultivated under the same conditions as in Example 4 (Production of L-glutamic acid).
  • L-amino acids such as those belonging to the glutamate family of amino acids
  • Enterobacteriaceae family can be improved.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention porte sur un procédé de production d'acides L-aminés, tels que les acides L-aminés appartenant à la famille du glutamate, par une fermentation utilisant une bactérie de la famille des Enterobacteriaceae, en particulier une bactérie appartenant au genre Escherichia, qui a été modifiée pour atténuer l'expression d'au moins l'un des gènes de la batterie de gènes znuACB.
PCT/JP2014/072346 2013-08-30 2014-08-20 Procédé de production d'un acide l-aminé par utilisation d'une bactérie de la famille des enterobacteriaceae ayant une expression atténuée de la batterie de gènes znuacb WO2015030019A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013140115 2013-08-30
RU2013140115/10A RU2013140115A (ru) 2013-08-30 2013-08-30 СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ НАРУШЕНА ЭКСПРЕССИЯ КЛАСТЕРА ГЕНОВ znuACB

Publications (1)

Publication Number Publication Date
WO2015030019A1 true WO2015030019A1 (fr) 2015-03-05

Family

ID=51539308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072346 WO2015030019A1 (fr) 2013-08-30 2014-08-20 Procédé de production d'un acide l-aminé par utilisation d'une bactérie de la famille des enterobacteriaceae ayant une expression atténuée de la batterie de gènes znuacb

Country Status (2)

Country Link
RU (1) RU2013140115A (fr)
WO (1) WO2015030019A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138178A1 (fr) 2018-12-27 2020-07-02 Ajinomoto Co., Inc. Procédé de production d'acides l-aminés basiques ou de sels de ceux-ci par fermentation d'une bactérie enterobacteriaceae

Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
GB2075055A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-methionone-producing Microorganisms
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
US4391907A (en) 1979-12-13 1983-07-05 Ajinomoto Company Incorporated Method for producing L-valine by fermentation
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
JPS6234397B2 (fr) 1979-11-15 1987-07-27 Ajinomoto Kk
JPS62244382A (ja) 1986-04-16 1987-10-24 Ajinomoto Co Inc 新規プロモーター及び該プロモーターを用いた遺伝子発現方法
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
JPH01214636A (ja) 1988-02-23 1989-08-29 Toto Ltd 和風便器の施工方法
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
EP0356739A1 (fr) 1988-08-03 1990-03-07 Ajinomoto Co., Inc. ADN recombinant, micro-organisme contenant cet ADN recombinant, et procédé de préparation de L-aminoacides en utilisant ce micro-organisme
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
US5175107A (en) 1988-10-25 1992-12-29 Ajinomoto Co., Inc. Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine
JPH05130882A (ja) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
JPH05304969A (ja) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるアミノ酸の製造法
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
WO1994008031A1 (fr) 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Micro-organismes producteurs de tryptophane et leur procede de production
EP0593792A1 (fr) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Nouvelle micro-bactérie capable de produire de la L-thréonine et procédé de production de la L-thréonine
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
WO1995016042A1 (fr) 1993-12-08 1995-06-15 Ajinomoto Co., Inc. Procede de production de l-lysine par fermentation
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
WO1995023864A1 (fr) 1994-03-04 1995-09-08 Ajinomoto Co., Inc. Procede de production de l-lysine
EP0685555A1 (fr) 1994-05-30 1995-12-06 Ajinomoto Co., Inc. Bactérie productrice de L-isoleucine et procédé de préparation de L-isoleucine par fermentation
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
WO1996006926A1 (fr) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Procede pour produire de la l-valine et de la l-leucine
JPH0870879A (ja) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−ロイシンの製造法
WO1996015246A1 (fr) 1994-11-11 1996-05-23 Forschungszentrum Jülich GmbH Adn regulant l'expression genique dans des bacteries du genre corynebacterium
WO1996017930A1 (fr) 1994-12-09 1996-06-13 Ajinomoto Co., Inc. Nouveau gene de decarboxylase de lysine et procede de production de lysine l
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
EP0488424B1 (fr) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Séquences d'ADN recombinantes codant pour des enzymes insensibles à l'inhibition de feedback, plasmides les comprenant, micro-organismes transformés utiles à la production d'acides aminés aromatiques, et procédé pour les préparer par fermentation
WO1997008333A1 (fr) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Procede de production d'acides amines levogyres
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5661012A (en) 1992-11-10 1997-08-26 Ajinomoto Co., Inc. Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
US5939307A (en) 1996-07-30 1999-08-17 The Archer-Daniels-Midland Company Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
EP0952221A2 (fr) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. Bactérie produisant de l'acide glutamique et procédé de préparation de l'acide glutamique
EP0955368A2 (fr) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. Bactérie produisant de l'acide glutamique et procédé de préparation de l'acide glutamique
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000139471A (ja) 1998-11-17 2000-05-23 Ajinomoto Co Inc 発酵法によるl−メチオニンの製造法
EP1016710A2 (fr) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Procede de preparation de l-aminoacides
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
EP1078989A2 (fr) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Procédé de préparation d'acide l-glutamique par fermentation et accompagné d'une précipitation
EP1085087A2 (fr) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Procédé de production d'acides aminés par fermentation de souches bactériennes résistantes à l'aminoquinoline
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
WO2001027307A1 (fr) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Procedes pour produire de la l-cysteine ou des derives de cette derniere par fermentation
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
EP1149911A2 (fr) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Souches d'Escherichia produisant des acides aminés et procédé de production d'acide aminé
EP1170361A2 (fr) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. Nouveau mutant de la N-acetylglutamate synthase et procédé pour la production de la L-arginine
EP1170376A1 (fr) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Procédé de production de substances par la utilisation des microorganismes
EP1170358A1 (fr) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. Escherichia coli produisant de la L-arginine et procédé de préparation de L-arginine
EP1172433A1 (fr) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bactérie étant capable de produire de l'acide L-glutamique, de la L-proline et de la L-arginine, et procédé de préparation d'acide L-glutamique, de L-proline et de L-arginine
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1239041A2 (fr) 2001-02-13 2002-09-11 Ajinomoto Co., Inc. Procédé de production des acides L-aminés au moyen de bactéries du genre Escherichia
EP1253195A1 (fr) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Procede de production de l-lysine
RU2000124295A (ru) 2000-09-26 2003-02-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Бактерия, обладающая способностью к продукции l-глутаминовой кислоты, l-пролина или l-аргинина, и способ получения l-глутаминовой кислоты, l-пролина или l-аргинина
US20030148473A1 (en) 2001-11-23 2003-08-07 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus escherichia
US20030157667A1 (en) 2001-11-23 2003-08-21 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria belonging to the genus escherichia
RU2215783C2 (ru) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА
WO2003097839A1 (fr) 2002-05-15 2003-11-27 Cj Corporation Sequence nucleotidique d'operon threonine irrepressible par l'isoleucine et methode de production de l-threonine au moyen d'une cellule hote transformee la contenant
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
WO2005010175A1 (fr) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Procede de production de l-lysine ou de l-threonine au moyen de bacteries escherichia a activite enzyme malique attenuee
WO2005049808A1 (fr) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Technique de production d'acides amines l par fermentation
WO2005073390A2 (fr) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. Microorganisme produisant des acides amines l et procede de production de l’acide amine l
WO2005103275A1 (fr) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. Procédé de fabrication de l-tryptophane selon le procédé de fermentation
RU2264459C2 (ru) 2001-08-03 2005-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Новая мутантная карбамоилфосфатсинтетаза и способ продукции соединений - производных карбамоилфосфата
RU2279477C2 (ru) 2003-12-05 2006-07-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная серинацетилтрансфераза, фрагмент днк, кодирующий мутантную серинацетилтрансферазу (варианты), бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина, и способ продукции l-цистеина
WO2006078039A1 (fr) 2005-01-18 2006-07-27 Ajinomoto Co., Inc. Micro-organismes produisant un acide amine l et procede permettant de produire un acide amine l
US20090286290A1 (en) 2006-12-19 2009-11-19 Yoshihiko Hara Method for producing an l-amino acid
EP2133417A1 (fr) 2007-03-14 2009-12-16 Ajinomoto Co., Inc. Microorganisme capable de produire un acide aminé de type acide l-glutamique et procédé de fabrication d'acide aminé
WO2011043485A1 (fr) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. Procédé de production de l-cystéine, l-cystine, d'un de leurs dérivés ou précurseurs ou d'un mélange de ceux-ci à l'aide d'une bactérie de la famille des enterobacteriaceae

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
US4388405A (en) 1979-06-25 1983-06-14 Ajinomoto Company Incorporated Method for producing L-histidine by fermentation
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
JPS6234397B2 (fr) 1979-11-15 1987-07-27 Ajinomoto Kk
US4391907A (en) 1979-12-13 1983-07-05 Ajinomoto Company Incorporated Method for producing L-valine by fermentation
GB2075055A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-methionone-producing Microorganisms
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
US4371614A (en) 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
JPS62244382A (ja) 1986-04-16 1987-10-24 Ajinomoto Co Inc 新規プロモーター及び該プロモーターを用いた遺伝子発現方法
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
JPH01214636A (ja) 1988-02-23 1989-08-29 Toto Ltd 和風便器の施工方法
EP0356739A1 (fr) 1988-08-03 1990-03-07 Ajinomoto Co., Inc. ADN recombinant, micro-organisme contenant cet ADN recombinant, et procédé de préparation de L-aminoacides en utilisant ce micro-organisme
US5175107A (en) 1988-10-25 1992-12-29 Ajinomoto Co., Inc. Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine
US5631157A (en) 1988-10-25 1997-05-20 Ajinomoto Co., Inc. Bacterial strain of Escherichia coli VNII genetika 472T23 as the producer of L-threonine
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
EP0488424B1 (fr) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Séquences d'ADN recombinantes codant pour des enzymes insensibles à l'inhibition de feedback, plasmides les comprenant, micro-organismes transformés utiles à la production d'acides aminés aromatiques, et procédé pour les préparer par fermentation
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
US5393671A (en) 1991-08-07 1995-02-28 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
JPH05130882A (ja) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
US5474918A (en) 1992-02-25 1995-12-12 Kyowa Kakko Kogyo Co., Ltd. Process for the production of L-threonine and L-isoleucine by fermentation of Escherichia coli
JPH05304969A (ja) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるアミノ酸の製造法
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
WO1994008031A1 (fr) 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Micro-organismes producteurs de tryptophane et leur procede de production
EP0593792A1 (fr) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Nouvelle micro-bactérie capable de produire de la L-thréonine et procédé de production de la L-thréonine
US5661012A (en) 1992-11-10 1997-08-26 Ajinomoto Co., Inc. Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
WO1995016042A1 (fr) 1993-12-08 1995-06-15 Ajinomoto Co., Inc. Procede de production de l-lysine par fermentation
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
WO1995023864A1 (fr) 1994-03-04 1995-09-08 Ajinomoto Co., Inc. Procede de production de l-lysine
EP0685555A1 (fr) 1994-05-30 1995-12-06 Ajinomoto Co., Inc. Bactérie productrice de L-isoleucine et procédé de préparation de L-isoleucine par fermentation
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
JPH0870879A (ja) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−ロイシンの製造法
WO1996006926A1 (fr) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Procede pour produire de la l-valine et de la l-leucine
WO1996015246A1 (fr) 1994-11-11 1996-05-23 Forschungszentrum Jülich GmbH Adn regulant l'expression genique dans des bacteries du genre corynebacterium
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
WO1996017930A1 (fr) 1994-12-09 1996-06-13 Ajinomoto Co., Inc. Nouveau gene de decarboxylase de lysine et procede de production de lysine l
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
US6319696B1 (en) 1995-08-30 2001-11-20 Ajinomoto Co., Inc. Process for producing L-amino acids
WO1997008333A1 (fr) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Procede de production d'acides amines levogyres
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
US5939307A (en) 1996-07-30 1999-08-17 The Archer-Daniels-Midland Company Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
EP0952221A2 (fr) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. Bactérie produisant de l'acide glutamique et procédé de préparation de l'acide glutamique
EP0955368A2 (fr) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. Bactérie produisant de l'acide glutamique et procédé de préparation de l'acide glutamique
US6331419B1 (en) 1998-03-18 2001-12-18 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
JP2000139471A (ja) 1998-11-17 2000-05-23 Ajinomoto Co Inc 発酵法によるl−メチオニンの製造法
EP1016710A2 (fr) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Procede de preparation de l-aminoacides
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1078989A2 (fr) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Procédé de préparation d'acide l-glutamique par fermentation et accompagné d'une précipitation
EP1085087A2 (fr) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Procédé de production d'acides aminés par fermentation de souches bactériennes résistantes à l'aminoquinoline
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
WO2001027307A1 (fr) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Procedes pour produire de la l-cysteine ou des derives de cette derniere par fermentation
EP1253195A1 (fr) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Procede de production de l-lysine
EP1149911A2 (fr) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Souches d'Escherichia produisant des acides aminés et procédé de production d'acide aminé
US6790647B2 (en) 2000-06-28 2004-09-14 Ajinomoto Co., Inc. Mutant N-acetylglutamate synthase and method for L-arginine production
EP1170361A2 (fr) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. Nouveau mutant de la N-acetylglutamate synthase et procédé pour la production de la L-arginine
EP1170361B1 (fr) 2000-06-28 2004-10-20 Ajinomoto Co., Inc. Nouveau mutant de la N-acetylglutamate synthase et procédé pour la production de la L-arginine
EP1170376A1 (fr) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Procédé de production de substances par la utilisation des microorganismes
EP1170358A1 (fr) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. Escherichia coli produisant de la L-arginine et procédé de préparation de L-arginine
EP1172433A1 (fr) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bactérie étant capable de produire de l'acide L-glutamique, de la L-proline et de la L-arginine, et procédé de préparation d'acide L-glutamique, de L-proline et de L-arginine
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
RU2000124295A (ru) 2000-09-26 2003-02-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Бактерия, обладающая способностью к продукции l-глутаминовой кислоты, l-пролина или l-аргинина, и способ получения l-глутаминовой кислоты, l-пролина или l-аргинина
EP1239041A2 (fr) 2001-02-13 2002-09-11 Ajinomoto Co., Inc. Procédé de production des acides L-aminés au moyen de bactéries du genre Escherichia
RU2215783C2 (ru) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА
RU2264459C2 (ru) 2001-08-03 2005-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Новая мутантная карбамоилфосфатсинтетаза и способ продукции соединений - производных карбамоилфосфата
US20030157667A1 (en) 2001-11-23 2003-08-21 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria belonging to the genus escherichia
US20030148473A1 (en) 2001-11-23 2003-08-07 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus escherichia
WO2003097839A1 (fr) 2002-05-15 2003-11-27 Cj Corporation Sequence nucleotidique d'operon threonine irrepressible par l'isoleucine et methode de production de l-threonine au moyen d'une cellule hote transformee la contenant
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
WO2005010175A1 (fr) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Procede de production de l-lysine ou de l-threonine au moyen de bacteries escherichia a activite enzyme malique attenuee
WO2005049808A1 (fr) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Technique de production d'acides amines l par fermentation
US20060216796A1 (en) 2003-11-21 2006-09-28 Kenichi Hashiguchi Method for producing l-amino acid by fermentation
RU2279477C2 (ru) 2003-12-05 2006-07-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная серинацетилтрансфераза, фрагмент днк, кодирующий мутантную серинацетилтрансферазу (варианты), бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина, и способ продукции l-цистеина
WO2005073390A2 (fr) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. Microorganisme produisant des acides amines l et procede de production de l’acide amine l
WO2005103275A1 (fr) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. Procédé de fabrication de l-tryptophane selon le procédé de fermentation
WO2006078039A1 (fr) 2005-01-18 2006-07-27 Ajinomoto Co., Inc. Micro-organismes produisant un acide amine l et procede permettant de produire un acide amine l
US20090286290A1 (en) 2006-12-19 2009-11-19 Yoshihiko Hara Method for producing an l-amino acid
EP2133417A1 (fr) 2007-03-14 2009-12-16 Ajinomoto Co., Inc. Microorganisme capable de produire un acide aminé de type acide l-glutamique et procédé de fabrication d'acide aminé
WO2011043485A1 (fr) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. Procédé de production de l-cystéine, l-cystine, d'un de leurs dérivés ou précurseurs ou d'un mélange de ceux-ci à l'aide d'une bactérie de la famille des enterobacteriaceae

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
"Applications and statistics for multiple high-scoring segments in molecular sequences", PROC. NAT/. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
BACHMANN, B.J. ET AL.: "E. coli and Salmonella: cellular and molecular biology", 1996, ASM PRESS, article "Derivations and genotypes of some mutant derivatives of E. coli K-12", pages: 2460 - 2488
BERNARD R. GLICK; JACK J. PASTERNAK; CHERYL L. PATTEN: "Molecular Biotechnology: principles and applications of recombinant DNA", 2009, ASM PRESS
BLOOM F.R. ET AL., THE 15TH MIAMI WINTER SYMPOSIUM, 1983, pages 34
BRADFORD M.M., ANAL. BIOCHEM., vol. 72, 1976, pages 248 - 254
CARRIER T.A.; KEASLING J.D., BIOTECHNOL. PROG., vol. 15, 1999, pages 58 - 64
CASTELLI ET AL: "Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 430, 1 December 2012 (2012-12-01), pages 769 - 773, XP028975482 *
CERASI ET AL: "Competition for zinc binding in the host-pathogen interaction", FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, vol. 3, 24 December 2013 (2013-12-24), pages 1 - 7, XP002732912 *
DATSENKO K.A.; WANNER B.L., PROC. NAIL. CAD SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645
DATSENKO K.A.; WANNER B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645
DATSENKO K.A.; WANNER B.L., PROC. NATL.ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645
DOROSHENKO V.G. ET AL.: "The directed modification of Escherichia coli MG1655 to obtain histidine-producing mutants", PRIKL. BIOCHIM.MIKROBIOL. (RUSSIAN), vol. 49, no. 2, 2013, pages 149 - 154
GOLDSTEIN M.A.; DOI R.H.: "Prokaryotic promoters in biotechnology", BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128
GREEN M.R.; SAMBROOK J.R.: "Molecular Cloning: A Laboratory Manual", 2012, COLD SPRING HARBOR LABORATORY PRESS
GUSYATINER ET AL., GENETIKA (RUSSIAN), vol. 14, 1978, pages 947 - 956
LEWIN B.: "Genes VII", 2004, PEARSON EDUCATION, INC.
MANDRAND-BERTHELOT M.A.: "A family of homologous substrate-binding proteins with a broad range of substrate specificity and dissimilar biological functions", BIOCHIMIE, vol. 77, no. 9, 1995, pages 744 - 750
MBROOK J.; RUSSELL D. W.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
MILLER J.H.: "Experiments in molecular genetics", 1972, COLD SPRING HARBOR LABORATORY
PATZER S.I.; HANTKE K., MOL. MICROBIOL., vol. 28, no. 6, 1998, pages 1199 - 1210
PATZER S.I.; HANTKE K.: "The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli", MOL. MICROBIOL., vol. 28, no. 6, 1998, pages 1199 - 1210
PEARSON W.R.: "Rapid and sensitive sequence comparison with FASTP and FASTA", METHODS ENZYMOL., vol. 183, 1990, pages 63 - 98
REES D.C. ET AL.: "ABC transporters: the power to change", NAT. REV. MOL. CELL BIOL., vol. 10, no. 3, 2009, pages 218 - 227
SAMBROOK J.; FRITSCH E.F.; MANIATIS T.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK J.; RUSSELL D.W.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SAMUEL K.; ALTSCHUL S.F.: "Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes", PROC. N?TL ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 2268
THOMPSON J.D. ET AL.: "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice", NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680
VIEIRA J.; MESSING J., GENE, vol. 19, no. 3, 1982, pages 259 - 268
WHITE T.J. ET AL.: "The polymerase chain reaction", TRENDS GENET., vol. 5, 1989, pages 185 - 189
YU D. ET AL., PROC. NAIL. ACAD. SCI. USA, vol. 97, no. 11, 2000, pages 59 8 - 59 3
ZHANG Y. ET AL., NATURE GENET., vol. 20, 1998, pages 123 - 128

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138178A1 (fr) 2018-12-27 2020-07-02 Ajinomoto Co., Inc. Procédé de production d'acides l-aminés basiques ou de sels de ceux-ci par fermentation d'une bactérie enterobacteriaceae
US11999983B2 (en) 2018-12-27 2024-06-04 Ajinomoto Co., Inc. Method for producing basic L-amino acids or salts thereof by fermentation of an Enterobacteriaceae bacterium

Also Published As

Publication number Publication date
RU2013140115A (ru) 2015-03-10

Similar Documents

Publication Publication Date Title
US9873898B2 (en) Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
EP1899452B1 (fr) Procede de production d'un acide l amine au moyen d'une bacterie de la famille des enterobacteriaceae a expression renforcee de l' operon fucpikur
US9175319B2 (en) Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of the yjjK gene
US8114639B2 (en) Method for producing an L-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the sfmACDFH-fimZ cluster or the fimZ gene
EP3098319B1 (fr) Procédé de production d'un acide l-aminé au moyen d'une bactérie de la famille des enterobacteriaceae présentant une expression atténuée du gène gsha
US8691537B2 (en) Method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of the rcsA gene
EP3420096A1 (fr) Procédé de production d'acides l-aminés faisant appel à une bactérie de la famille des enterobacteriaceae surexprimant un gène codant pour un exporteur de fer
US9493777B1 (en) Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having overexpressed the yajL gene
EP1856243B1 (fr) Procédé de production d'un l-acide aminé en utilisant d'une bacterie issue de la famille des enterobacteriaceae présentant une expression attenuée du gène leuo
US9840725B2 (en) Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway
EP1976994A1 (fr) Procédé de production d'un acide l-aminé en utilisant une bactérie de la famille des entérobactériacées présentant une expression atténuée du gène aldh
WO2015030019A1 (fr) Procédé de production d'un acide l-aminé par utilisation d'une bactérie de la famille des enterobacteriaceae ayant une expression atténuée de la batterie de gènes znuacb
WO2007086547A1 (fr) Procédé de production d'un acide l-amino à l'aide d'une bactérie de la famille des enterobacteriaceae avec une expression atténuée du gène yrbg
WO2007139220A1 (fr) PROCÉDÉ DE PRODUCTION D'UN L-AMINOACIDE AU MOYEN D'UNE BACTÉRIE DE LA FAMILLE ENTEROBACTERIACEAE PRÉSENTANT UNE EXPRESSION ATTÉNUÉE DU GROUPE yehABCDE
WO2012011595A1 (fr) Procédé pour produire un acide aminé l en utilisant une bactérie de la famille enterobacteriaceae ayant une expression atténuée de l'opéron astcadbe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14766006

Country of ref document: EP

Kind code of ref document: A1