[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015025837A1 - Method for continuously producing metal nanoparticles - Google Patents

Method for continuously producing metal nanoparticles Download PDF

Info

Publication number
WO2015025837A1
WO2015025837A1 PCT/JP2014/071628 JP2014071628W WO2015025837A1 WO 2015025837 A1 WO2015025837 A1 WO 2015025837A1 JP 2014071628 W JP2014071628 W JP 2014071628W WO 2015025837 A1 WO2015025837 A1 WO 2015025837A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material composition
reaction vessel
reaction
metal nanoparticles
Prior art date
Application number
PCT/JP2014/071628
Other languages
French (fr)
Japanese (ja)
Inventor
謙輔 川村
枝里子 山藤
諒 加藤
Original Assignee
ダイソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイソー株式会社 filed Critical ダイソー株式会社
Priority to JP2015532860A priority Critical patent/JP6365544B2/en
Publication of WO2015025837A1 publication Critical patent/WO2015025837A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm

Definitions

  • the present invention relates to a continuous method for producing metal nanoparticles.
  • Either a glass substrate or a plastic film substrate can be used as a substrate for printed electronics.
  • a PET (Polyethylene terephthalate) film substrate can be used among the plastic film substrates, there is a strong demand in the market in terms of cost. It is thought that it will be.
  • the heat resistance of a PET film is about 120 ° C.
  • functional inks Various proposals have been made to satisfy the above requirements. Among these, nano-sized metal particles are excellent in low-temperature sinterability and conductivity, and are considered promising.
  • Patent Document 1 describes a method for producing metal nanoparticles that forms a protective layer having high particle dispersibility using citric acid.
  • a special concentration method such as ultrafiltration is required for the recovery. It's hard to say.
  • a protective layer that inhibits sinterability is present on the surface of the metal particles, such as a citric acid layer, it is not detached by heat treatment at a low temperature, and the metal nanoparticles are fused when used as a conductive material. Will be disturbed.
  • Patent Document 2 describes a continuous method for producing metal nanoparticles.
  • the method of Patent Document 2 uses a harmful and explosive substance such as hydrazine as a reducing agent, and there is a concern about the difficulty in terms of safety.
  • Patent Document 3 describes a production method using a continuous particle production apparatus using a barrel screw. If it is the said method, a metal nanoparticle can be manufactured, performing efficient heating and slow heating by making it react little by little continuously.
  • it is necessary to perform a reducing agent or electrochemical reduction and there is a concern that chemical and mechanical safety is insufficient. This method is insufficient as a method for industrially mass-producing metal nanoparticles.
  • Patent Document 4 describes a method for producing metal nanoparticles using silver oxalate. Since this method can recover metal nanoparticles from a concentrated liquid without using a reducing agent having a safety problem as described above, it can be used for conductive pastes and inks with excellent productivity. It is regarded as a promising method for producing metal nanoparticles.
  • the present invention provides a method for solving the above-mentioned problems caused by the generation of carbon dioxide gas, and capable of producing metal nanoparticles industrially efficiently and at low cost while suppressing the influence on safety and the environment. Let it be an issue.
  • the present inventor repeated research, and as a raw material composition, an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy. Using the contained composition, this is continuously introduced into the reaction vessel, and the thermal decomposition reaction of the metal compound (c) proceeds in the reaction vessel, thereby controlling the increase in the internal pressure of the reaction vessel by controlling the reaction amount. As a result, it has been found that the leakage of the reaction liquid from the reaction vessel can be suppressed and the production efficiency of the metal nanoparticles can be improved.
  • the present invention has been completed based on the above findings, and provides the following method and apparatus for continuously producing metal nanoparticles, and metal nanoparticles obtained by this method or apparatus.
  • Item 1 A raw material composition containing an alkylamine (a), an organic solvent (b), and a metal compound (c) that is decomposed by heating to produce a single metal or an alloy is continuously introduced into the reaction vessel, and the metal is contained in the reaction vessel.
  • Item 2. The production method according to Item 1, wherein the metal compound (c) is a metal oxalate salt.
  • Item 3. Item 3. The method according to Item 1 or 2, wherein the temperature of the thermal decomposition reaction is 250 ° C or lower.
  • the organic solvent (b) has a boiling point of 150 ° C. or more and 350 ° C. or less under normal pressure and 1 g / L or more in water at 20 ° C. under normal pressure, and the organic solvent (b) in the raw material composition Item 4.
  • a supply device that continuously supplies the reaction vessel; a product recovery vessel that stores a product containing metal nanoparticles generated in the reaction vessel; and a volatile content recovery device that recovers volatile matter generated in the reaction vessel.
  • the amount of the raw material composition introduced into the reaction vessel per hour is controlled, and consequently, the reaction amount per hour is controlled, so that the internal pressure increasing factor or reaction liquid of the reaction vessel such as carbon dioxide gas is controlled. It is possible to control the generation amount of the liquid level increasing factor, thereby suppressing the leakage of the reaction liquid from the reaction vessel. Therefore, the capacity of the reaction liquid per volume of the reaction vessel can be increased, and metal nanoparticles can be produced efficiently at low cost.
  • the production amount of metal nanoparticles per one time is small, and only the laboratory scale production can be performed.
  • the method of the present invention it is possible to manufacture or mass-produce metal nanoparticles on an industrial scale.
  • the method of the present invention produces metal nanoparticles having a protective layer using a raw material composition containing an alkylamine, an organic solvent, and a metal compound that decomposes by heating to form a single metal or an alloy.
  • the conductive paste containing the metal nanoparticles thus formed has good dispersibility of the metal nanoparticles and can form a circuit having high conductivity even when sintered at a low temperature.
  • metal nanoparticles having a protective layer can be obtained without using a reducing agent. Since many reducing agents used for the production of metal nanoparticles are harmful, the method of the present invention is also safe and less harmful to the environment.
  • the raw material composition is continuously introduced into the reaction vessel, and the raw material composition is reacted in a state where a film is formed on the heated surface (for example, the heated wall surface of the reaction vessel). Since the raw material composition quickly reaches the thermal decomposition temperature in a short time, the production efficiency of the metal nanoparticles is further improved.
  • the method of the present invention comprises a raw material composition containing an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or alloy. It is a continuous production method of metal nanoparticles having an average particle diameter of 1 nm or more and 200 nm or less, including a reaction step of continuously introducing the reaction mixture into a reaction vessel and causing a thermal decomposition reaction of the metal compound (c) to proceed in the reaction vessel.
  • the raw material composition used in the method of the present invention contains an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy.
  • the raw material composition used in the present invention must have fluidity in order to continuously generate metal nanoparticles by being continuously introduced into a reaction vessel and subjected to a thermal decomposition reaction, for example, liquid or slurry It needs to be in the shape. Moreover, in order to perform a thermal decomposition reaction efficiently, it can be in the state which formed the film
  • the nature of the raw material composition is not particularly limited as long as it can be continuously introduced into the reaction vessel.
  • the viscosity of the raw material composition is preferably about 20 Pa ⁇ s or less, and more preferably about 10 Pa ⁇ s or less.
  • the viscosity of the raw material composition is usually about 1 mPa ⁇ s or more.
  • the surface of the present invention is a protective layer or a dispersion layer (hereinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Meteinafter referred to as “Metalkylamine coated with "protective layer” are produced. Therefore, the raw material composition used in the production method of the present invention contains an alkylamine having a substituent, which can be a protective layer, in addition to the metal compound (c) before forming the metal nanoparticles. Alkyl compounds other than amines can also be used.
  • the alkyl compound binds to the metal compound (c) in the composition, and further functions as a protective layer on the surface when metal nanoparticles are formed by thermal decomposition, and the metal nanoparticles are dispersed in the conductive ink.
  • the state can be maintained well.
  • the substituent of the alkyl compound include an aldehyde group, a hydroxy group, a sulfo group, an amino group, a carboxyl group, a mercapto group, a cyano group, a cyanato group, an isocyanato group, and an isothiocyanato group.
  • an amino group, A carboxyl group is preferred.
  • alkyl compound examples include alkyl amines, fatty acids, alkyl thiols, alkyl aldehydes, alkyl cyanates, alkyl isocyanates, alkyl isothiocyanates, alkyl sulfonic acids, alkane nitriles, and the like.
  • alkyl compound an alkylamine is suitable, and in addition to the alkylamine, a fatty acid may be included.
  • additives can be contained as necessary within a range that does not affect the effects of the present invention.
  • the additive include a viscosity adjusting agent, a drying inhibitor, an antifoaming agent, a leveling agent, and a surfactant.
  • alkylamine (a) has only the ability to bind to the metal compound (c) and functions as a protective layer on the surface of the metal nanoparticles when the metal nanoparticles are generated.
  • the alkylamine (a) may be any alkyl group having 3 to 18 carbon atoms, and preferably has an alkyl group having 4 to 12 carbon atoms.
  • Specific examples of the alkylamine (a) include ethylamine, n-propylamine, isopropylamine, 1,2-dimethylpropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, isoamylamine, tert- Amylamine, 3-pentylamine, n-amylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-octylamine, 2-ethylhexylamine, n-nonylamine, n-aminodecane, n-aminoundecane, n -Dodecylamine, n-tridecylamine, 2-tridecylamine
  • secondary amines such as dibutylamine and cyclic alkylamines such as cyclopropylamine, cyclobutylamine, cyclopropylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine can also be used.
  • secondary amines such as dibutylamine and cyclic alkylamines such as cyclopropylamine, cyclobutylamine, cyclopropylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine
  • the dispersion stability of metal nanoparticles in a solvent when conductive ink or conductive paste is produced using the obtained metal nanoparticles is improved, and the protective film derived from alkylamine is conductive.
  • N-Propylamine, Isopropylamine, Cyclopropylamine, n-Butylamine, Isobutylamine, sec-Butylamine, Tert-Butylamine, Cyclobutylamine, n-Amylamine, n-Hexyl are easily eliminated at low temperatures during film formation.
  • Alkylamine (a) can be used alone or in combination of two or more. When using 2 or more types of alkylamine (a), you may use 2 or
  • the content of the alkylamine (a) in the raw material composition may be about 1 equivalent or more, preferably about 1.5 equivalents or more with respect to the amount (mol) of the metal compound (c), about 2 More than equivalent is more preferable. If it is the said range, the conductive paste or conductive ink containing the obtained metal nanoparticles has a good dispersibility of the metal nanoparticles in the liquid and a circuit having high conductivity even when sintered at a low temperature. Can be formed. Further, the content of the alkylamine (a) in the raw material composition may be about 10 equivalents or less, preferably about 5 equivalents or less with respect to the substance amount (mol) of the metal compound (c).
  • the ratio of a metal compound (c) will not become low too much, and the production
  • most of the alkylamine (a) is desorbed from the surface of the metal nanoparticles by the heat treatment when forming the conductive film by subjecting the resulting conductive ink, conductive paste or the like containing the metal nanoparticles to the heat treatment. Therefore, even if the raw material composition contains a large amount of alkylamine (a), the conductivity of the conductive film is hardly affected.
  • the content of the alkylamine (a) is about 1 equivalent to about 5 equivalents, about 1 equivalent to about 10 equivalents, about 1.5 equivalents to about 5 equivalents with respect to the amount (mol) of the metal compound (c). Equivalents, about 1.5 equivalents to about 10 equivalents, about 2 equivalents to about 5 equivalents, about 2 equivalents to about 10 equivalents.
  • the fatty acid (d) may be further added to the raw material composition as necessary. Since the fatty acid (d) binds strongly to the surface of the metal nanoparticles, it contributes to improving the dispersibility of the metal nanoparticles in the conductive ink and conductive paste.
  • the fatty acid (d) is not particularly limited as long as it has an ability to bind to the metal compound (c) and functions as a protective layer on the surface of the metal nanoparticles when the metal nanoparticles are generated. be able to.
  • the alkyl group of the fatty acid (d) may have 3 to 18 carbon atoms, and preferably has 4 to 18 carbon atoms.
  • Specific examples of fatty acid (d) include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid And linoleic acid, ⁇ -linolenic acid, and the like.
  • Cyclic alkyl carboxylic acids such as cyclohexane carboxylic acid can also be used.
  • caproic acid 2-ethylhexanoic acid, oleic acid, linoleic acid, and ⁇ -linolenic acid are preferred from the viewpoint of good dispersion stability of the metal nanoparticles during and after formation in the reaction solution.
  • the fatty acid (d) can be used alone or in admixture of two or more.
  • the content of the fatty acid (d) in the raw material composition is such that the total amount of the alkylamine (a) and the fatty acid (d) is about 1 equivalent or more with respect to the amount (mol) of the metal compound (c).
  • the amount of about 1.5 equivalents or more is preferable, and the amount of about 2 equivalents or more is more preferable. If it is the said range, the dispersibility of the metal nanoparticle in a conductive ink and a conductive paste can fully be improved.
  • the total amount of the alkylamine (a) and the fatty acid (d) may be about 10 equivalents or less with respect to the amount (mol) of the metal compound (c), and about 5 equivalents or less. Is preferred.
  • the fatty acid (d) strongly binds to the metal nanoparticles.
  • the conductive ink, conductive paste or the like containing the obtained metal nanoparticles is subjected to a heat treatment to form a conductive film.
  • Many of the fatty acids used on the surface of the particles remain.
  • the residual fatty acid does not adversely affect the conductivity.
  • the total amount of alkylamine (a) and fatty acid (d) relative to the amount (mol) of metal compound (c) is about 1 equivalent to about 10 equivalents, about 1 equivalent to about 5 equivalents, about 1.5 equivalents. Equivalent to about 10 equivalents, about 1.5 equivalents to about 5 equivalents, about 2 equivalents to about 10 equivalents, about 2 equivalents to about 5 equivalents.
  • fatty acid (d) binds strongly to metal nanoparticles, and when a conductive ink, conductive paste or the like containing the obtained metal nanoparticles is subjected to heat treatment to form a conductive film
  • most of the fatty acids contained in the composition remain on the surface of the metal nanoparticles. Therefore, when the alkylamine (a) and the fatty acid (d) are contained in the raw material composition, the molar ratio of the alkylamine (a) and the fatty acid (d) is about 90% when the alkylamine (a): fatty acid (d) is about 90%.
  • Organic solvent (b) used in the present invention imparts fluidity to the raw material composition to such an extent that the raw material composition is continuously introduced into the reaction vessel and the thermal decomposition reaction of the metal compound (c) proceeds favorably. Anything is possible.
  • the organic solvent (b) is preferably one that can form a film on the heated surface of the raw material composition (for example, the heated wall surface of the reaction vessel).
  • the organic solvent (b) is used without any particular problem as long as the viscosity of the raw material composition is low (for example, about 20 Pa ⁇ s or less, and preferably about 10 Pa ⁇ s or less). be able to.
  • the organic solvent (b) examples include alcohols, glycols, glycol ethers, aprotic polar solvents, and the like. Among them, those having a high boiling point are preferable so that the raw material composition introduced into the reaction vessel does not evaporate to dryness.
  • the boiling point under normal pressure may be about 150 ° C. or higher and about 350 ° C. or lower, preferably about 150 ° C. or higher and about 330 ° C. or lower, more preferably about 150 ° C. or higher and about 300 ° C. or lower.
  • the organic solvent (b) can dissolve about 1 g / L or more in water at 20 ° C.
  • organic solvent (b) examples include straight-chain or branched-chain alkanes having 6 to 18 carbon atoms; aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzonitrile.
  • Ketones such as acetone, acetylacetone and methyl ethyl ketone; fatty acid esters such as ethyl acetate, butyl acetate, ethyl butyrate and ethyl formate; ethers such as diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran and 1,4-dioxane Halogenated hydrocarbons such as dichloromethane, chloroform, tetrachloromethane, dichloroethane; 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- Butanediol, 1,2-hexanediol, 1 Diols such as 6-hexanediol, 1,2-pentanediol, 1,5-pentanediol, 2-methyl-2,4
  • alcohols especially 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol
  • alcohols are easy to handle due to boiling point, polarity at normal pressure, and viscosity of the solvent.
  • Glycol ethers particularly ethylene glycol monobutyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether
  • the organic solvent (b) may be used alone or in combination of two or more so that the viscosity of the raw material composition is appropriate.
  • the content of the organic solvent (b) in the raw material composition may be about 50 parts by weight or more, preferably about 60 parts by weight or more, and about 75 parts by weight or more with respect to 100 parts by weight of the metal compound (c). Is more preferable. Further, it may be about 500 parts by weight or less, preferably about 450 parts by weight or less, more preferably about 400 parts by weight or less with respect to 100 parts by weight of the metal compound (c).
  • liquidity can be provided to a raw material composition to such an extent that a raw material composition is continuously introduce
  • the content of the organic solvent (b) with respect to 100 parts by weight of the metal compound (c) is about 50 parts by weight to about 400 parts by weight, about 50 parts by weight to about 450 parts by weight, about 50 parts by weight to about 500 parts by weight, About 60 parts by weight to about 400 parts by weight, about 60 parts by weight to about 450 parts by weight, about 60 parts by weight to about 500 parts by weight, about 75 parts by weight to about 400 parts by weight, about 75 parts by weight to about 450 parts by weight; About 75 parts by weight to about 500 parts by weight are included.
  • Metal compound (c) Metals such as organometallic compounds (for example, carboxylates), sulfonates, thiol salts, chlorides, nitrates, carbonates, etc., as metal compounds (c) that decompose by heating to produce simple metals or alloys Salts can be exemplified.
  • organometallic compounds for example, carboxylates
  • sulfonates for example, carboxylates
  • thiol salts chlorides
  • nitrates for example, carbonates, etc.
  • metal compounds (c) that decompose by heating to produce simple metals or alloys Salts can be exemplified.
  • organic metal compounds and carbonates are preferable and organic metal compounds are more preferable in that it is easy to remove a counterion-derived substance after the metal is generated.
  • organometallic compounds include carboxylates such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid and phthalic acid are preferable, and oxalate is more preferable from the viewpoint of easiness of thermal decomposition.
  • Examples of the metal species of the metal compound (c) include gold, silver, copper, platinum, palladium, nickel and the like. Among these, gold, silver and platinum are preferable in terms of good conductivity and oxidation resistance, and silver is more preferable in terms of low cost and low temperature sintering.
  • examples include copper, nickel malonate, aluminum malonate, silver benzoate, copper benzoate, nickel benzoate, aluminum benzoate, silver phthalate, copper phthalate, nickel phthalate, and aluminum phthalate.
  • silver oxalate, copper oxalate, nickel oxalate, and aluminum oxalate are preferable.
  • a metal compound (c) can be used individually or in combination of 2 or more types.
  • a commercially available product can be used for the metal compound (c) which is decomposed by heating to produce a single metal or an alloy. Also, it can be produced according to the method disclosed in JP2012-162767A.
  • the content of the metal compound (c) in the raw material composition may be about 12% by weight or more, preferably about 15% by weight or more, and more preferably about 20% by weight or more based on the total amount of the composition. If it is the said range, the conductive paste or conductive ink containing the obtained metal nanoparticles has a good dispersibility of the metal nanoparticles in the liquid and a circuit having high conductivity even when sintered at a low temperature. Can be formed.
  • the content of the metal compound (c) in the raw material composition may be about 55% by weight or less, preferably about 50% by weight or less, more preferably about 40% by weight or less based on the total amount of the composition. .
  • the content of the metal compound (c) in the raw material composition is about 12 to about 55% by weight, about 12 to about 50% by weight, about 12 to about 40% by weight, about 15 to about Examples include about 55%, about 15 to about 50%, about 15 to about 40%, about 20 to about 55%, about 20 to about 50%, about 20 to about 40% by weight.
  • each component of the raw material composition is in a state of being uniformly dispersed in the raw material composition in order to advance the thermal decomposition reaction of the metal compound (c) efficiently in the reaction vessel. Cost.
  • the order of adding each component and the mixing method are not particularly limited as long as each component is uniformly dispersed in the obtained raw material composition.
  • Examples of the mixing method of each component include a method using a mechanical stirrer, magnetic stirrer, vortex mixer, planetary mill, ball mill, three rolls, line mixer, planetary mixer, dissolver and the like.
  • a mixing device can be appropriately selected according to the scale and production capacity of the manufacturing facility.
  • each component During mixing of each component, the temperature of the composition rises due to the influence of heat of dissolution or frictional heat and the thermal decomposition reaction of the metal compound (c) may start. It is preferable to carry out so that it may become about 60 degrees C or less, and it is more preferable to carry out, suppressing the temperature of a composition to about 40 degrees C or less. You may mix, cooling a composition as needed.
  • the mixing time of each component is not particularly limited as long as each component is in a state of being uniformly mixed in the composition. For example, it may be in the range of 1 minute to several hours.
  • the method of the present invention may use an already prepared raw material composition, or an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to form a single metal or alloy.
  • a step of preparing a raw material composition containing for example, a step of mixing the components (a), (b), and (c)
  • the reaction step described below can also be performed. .
  • a thermal decomposition reaction of the metal compound occurs continuously, and metal nanoparticles having a film derived from alkylamine are generated.
  • a method for continuously introducing the raw material composition into the reaction vessel it is possible to adjust the introduction rate so that the thermal decomposition reaction of the metal compound proceeds efficiently while suppressing the amount of generated carbon dioxide.
  • it can be used without particular limitation.
  • the continuous introduction method of the raw material composition into the reaction vessel in the reaction step includes free fall of the raw material composition from the storage tank, dropping of the raw material composition into the reaction vessel by pressurization, raw material composition using various pumps
  • transduce into a reaction container can be illustrated.
  • liquid dropping by pressurization or introduction by a tube pump is preferably used.
  • the raw material composition introduced into the reaction vessel is preferably subjected to a thermal decomposition reaction in contact with the heating surface in the reaction vessel.
  • the contact method between the raw material composition and the heating surface is not particularly limited.
  • the raw material composition is heated in the reaction vessel by using a shower or spray to flow down the wall of the heated reaction vessel.
  • the method of dripping or spraying on a wall surface etc. is mentioned.
  • one or a plurality of surface members for example, a cylinder, a board, etc. having a surface are provided in the reaction container, and the surface of the surface member is heated (for example, the inner surface of a heated cylinder or square tube).
  • the raw material composition is allowed to flow down on the outer surface, the disk or the surface of the disk, or dropped or sprayed using a shower or spray.
  • a plurality of cylindrical surface members When a plurality of cylindrical surface members are provided, they may be installed in a nested manner in the reaction vessel.
  • the reaction step in the production method of the present invention when the raw material composition introduced into the reaction vessel is heated, a thermal decomposition reaction of the metal compound (c) occurs, and metal nanoparticles having a film derived from alkylamine are generated. To do.
  • the film is formed on the heated surface (for example, on the wall surface of the reaction vessel, on the surface of the surface member installed in the reaction vessel, etc.) in that the thermal decomposition reaction of the metal compound (c) can be performed efficiently. It is preferable to subject the raw material composition in a state of forming a thermal decomposition reaction.
  • the method for forming the film on the heated wall surface of the raw material composition may be any method as long as the raw material composition can flow in a state where the film is formed on the heated wall surface of the reaction vessel.
  • the “state in which a film is formed on the surface on which the raw material composition is heated” includes a state in which a film is continuously formed on the surface and a portion in which no film is partially formed. A state in which a film is continuously formed, a state in which a film is formed in a spot shape, and the like are included.
  • heterogenous are included.
  • the thickness of the raw material composition on the heated surface may be a film thickness that reaches the thermal decomposition reaction temperature immediately after the metal compound (c) in the raw material composition contacts the heated wall surface, It can adjust suitably according to reaction temperature, the composition of a raw material composition, etc.
  • the film thickness can be adjusted by selecting the dropping speed of the raw material composition on the surface, the film forming method, and the like.
  • the thickness of the film may be, for example, in the range of about 0.1 ⁇ m to about 5,000 ⁇ m, and preferably in the range of about 0.1 ⁇ m to about 2,000 ⁇ m.
  • the raw material composition As a mode of forming a film of the raw material composition on the heated surface, the raw material composition is allowed to flow down naturally on the heated wall surface of the reaction vessel or on the surface of the planar member installed in the reaction vessel, and further the wiper A method of forming a film by wiping with a blade or the like (wiper type), the raw material composition is allowed to flow down naturally on the heated wall surface of the reaction vessel or on the surface of the planar member installed in the reaction vessel, A method for forming a film by leveling with a scraper (scraper type), a method in which a raw material composition is transferred to the surface of a rotating disk to form a film (rotary type), or a relative rotating outer cylinder (reaction vessel And a method of forming a film having a gap thickness between the inner cylinder and the inner cylinder (rotary type), a system of forming a film by centrifugal force on both walls between the outer cylinder and the inner cylinder (centrifugal type), etc.
  • a method of a wiper type, a rotary type, a centrifugal type is preferable in that a film of a raw material composition having a uniform thickness can be formed on a heated surface, and a thermal decomposition reaction can be efficiently advanced.
  • a wiper system is more preferable.
  • the raw material composition that naturally flows down on the heated wall surface, or dripped or sprayed on the wall surface using a spray or shower examples thereof include a method of forming the raw material composition into a uniform film, a method of flowing the raw material composition onto a rotatable or slidable heating surface, and forming a uniform film with a fixed wiper blade or a scraper.
  • a raw material composition that naturally flows down the heated surface can be used with a rotary wiper blade in that a uniform film can be efficiently formed on the heated surface and the thermal decomposition reaction can proceed efficiently.
  • a method of forming a uniform film by using is preferable.
  • the material of the wiper blade or scraper used for the reaction is not particularly limited as long as it does not cause corrosion or heat deformation due to the composition in the reaction vessel.
  • a method of forming a film by naturally flowing the raw material composition along the heated wall surface of the reaction vessel (flowing type), inclining the reaction composition in the reaction vessel
  • a method in which the raw material composition is naturally allowed to flow down on the surface of the planar member to form a film (tilt type), and the heating surface is slid while the raw material composition is allowed to flow along the slidable heating surface.
  • a method of forming a film on the heating surface can be exemplified.
  • “flowing down” means flowing downward (vertically downward or diagonally downward) according to gravity.
  • Examples include a method in which a raw material composition is dropped or sprayed on a wall surface using a spray or shower to form a film on the heating surface.
  • a plate-like member installed in a hierarchy with an inclined angle As a method of forming a film by allowing the raw material composition to flow down naturally on the surface installed in a reaction vessel (inclined type), a plate-like member installed in a hierarchy with an inclined angle, an inclined angle is added
  • a method of causing the raw material composition to flow down from above along a plurality of columnar members or one or a plurality of coil-shaped members can be exemplified.
  • a reaction vessel such as a tube is installed in an inclined state, and the raw material composition is allowed to flow down along the heated wall surface of the reaction vessel.
  • the heating surface is a curved surface such as a columnar shape or a spherical shape. And a method of flowing down from above.
  • the inclination angle of the surface of the planar member installed in the reaction vessel and the inclination angle in the case of inclining the reaction vessel wall surface are the rates at which the metal compound (c) in the flowing raw material composition completely undergoes a thermal decomposition reaction. What is necessary is just to adjust to the inclination
  • the inclination angle may be in the range of about 1 to 90 degrees with respect to the horizontal, and is preferably in the range of about 15 to 90 degrees.
  • the inner wall material of the reaction vessel used in the reaction step of the present invention can heat the metal compound (c) to a temperature necessary for thermal decomposition by continuously introducing the raw material compound, and the metal nanoparticles are continuously formed by the thermal decomposition reaction. Anything can be used without particular limitation as long as it can be generated.
  • iron, steel (especially stainless steel) glass, or iron, steel, or stainless steel surface (reaction vessel inner surface) baked glass (eg, iron, steel, or stainless steel cylinder) And the inner surface of the glass lining).
  • the introduction rate of the raw material composition into the reaction vessel can be appropriately adjusted according to the capacity of the reaction vessel, the components of the raw material composition used for the reaction, and the viscosity, and the thermal decomposition reaction of the composition is completed on the heating surface. Such an introduction speed may be used.
  • the introduction rate of the raw material composition may be adjusted so that the generation of gas or the like during the thermal decomposition reaction does not increase excessively.
  • the introduction rate of the raw material composition into the reaction vessel is preferably within a range in which the amount of gas generated per minute generated by the thermal decomposition reaction of the metal compound (c) does not exceed the volume of the reaction vessel. It is more preferably 75% or less, and even more preferably 50% or less of the volume of the reaction vessel. Within the above range, the gas discharge rate can be suppressed, and the leakage of the reaction solution from the reaction vessel can be suppressed. Even if the introduction rate of the raw material composition (reaction amount per hour) is increased, it is industrially safe. It is possible to manufacture.
  • the generated gas there can be a volatile matter derived from alkylamine in addition to carbon dioxide gas generated by thermal decomposition of metal oxalate or the like.
  • the amount of carbon dioxide generated by the thermal decomposition reaction is used as the amount of gas.
  • the reaction temperature of the thermal decomposition reaction in the reaction step may be a temperature at which the thermal decomposition reaction proceeds continuously and metal nanoparticles are continuously generated. Specifically, it may be about 250 ° C. or less. More specifically, it may be about 50 ° C. or more and about 250 ° C. or less, preferably about 100 ° C. or more and about 240 ° C. or less, and more preferably about 120 ° C. or more and about 240 ° C. or less. If it is the said temperature range, a metal nanoparticle can be obtained efficiently and continuously by attaching
  • the reaction temperature is a heating temperature by a heater.
  • the temperature in the reaction vessel and the temperature of the reaction vessel wall or the surface of the planar member installed in the reaction vessel are usually almost the same as the heating temperature by the heater.
  • the reaction time can be arbitrarily set until a target amount of metal nanoparticles is obtained. Usually, it can be about several seconds to several hours.
  • the metal nanoparticles produced by the thermal decomposition reaction in the above reaction step are obtained as a mixture containing the organic solvent (b) and unreacted raw materials (alkylamine, fatty acid, etc.).
  • purifying the mixture obtained by reaction the metal nanoparticle which has the target physical property can be obtained.
  • the method for purifying the metal nanoparticles include a solid-liquid separation method by filter filtration and a precipitation method using the specific gravity difference between the metal nanoparticles and the organic solvent.
  • a specific method of solid-liquid separation a method such as centrifugation, a cyclone method, or a decanter can be exemplified.
  • the mixture may be diluted with a low-boiling solvent such as acetone or methanol in order to improve the work by reducing the viscosity and to efficiently remove unreacted substances.
  • metal nanoparticles having an alkylamine-derived film can be obtained.
  • the average particle diameter of the metal nanoparticles can be set to a desired value by appropriately adjusting the reaction conditions and the composition of the raw material composition.
  • the average particle size can be, for example, in the range of about 1 nm to about 200 nm, especially about 1 nm to about 100 nm, especially about 10 nm to about 60 nm. If it is the said range, since the dispersibility is good when it mix
  • the average particle diameter of the metal nanoparticles is a value measured by a dynamic light scattering method, and specifically, a value measured using the apparatus used in the examples.
  • metal nanoparticles are produced by a continuous method, the generation rate of volatile components such as carbon dioxide gas is suppressed, and as a result, metal nanoparticles can be produced on an industrial scale.
  • the above-described method of the present invention includes, for example, a reaction vessel, a heating device attached to the reaction vessel, and a supply device that continuously supplies the above-described raw material composition to the reaction vessel. And a product recovery container for storing a product containing metal nanoparticles generated in the reaction container, and a volatile content recovery device for recovering the volatile matter generated in the reaction container. It can be carried out using a particle production apparatus.
  • the heating device may heat the atmosphere in the reaction vessel or may heat the reaction vessel wall.
  • the apparatus of this invention can be equipped with the surface member for forming the film
  • the volatile content recovery device for recovering the volatile content may be a recovery device by reflux or separation of the volatile content.
  • the apparatus of the present invention can be produced using a generally used thin film distillation apparatus, molecular distillation apparatus, or the like. Other configurations such as a reaction vessel, a surface member, a device for forming a film of the raw material composition on the surface, a continuous introduction device of the raw material composition into the reaction vessel, and the like are as described for the method of the present invention.
  • the apparatus of the present invention attaches a pressure reducing device, a pressure adjusting device, an active force ray irradiation device, an external light shielding mechanism, an inert gas filling device, a heat retention mechanism, a cooling mechanism, and the like to the reaction vessel as necessary. be able to.
  • a pressure reducing device a pressure adjusting device
  • an active force ray irradiation device an external light shielding mechanism
  • an inert gas filling device a heat retention mechanism
  • a cooling mechanism and the like to the reaction vessel as necessary. be able to.
  • This apparatus includes a cylindrical reaction vessel R, a raw material composition supply device 2 that continuously supplies the raw material composition along the vessel wall of the reaction vessel R, a product recovery tank 3, and a volatile component by cooling. And a volatile component recovery device 4 that liquefies and recovers.
  • the reaction vessel R includes a heat exchanger H for heating the reaction vessel R, an exhaust device P for discharging the gas generated by the reaction to the outside through the heat exchanger H, and a raw material along the vessel wall A rotatable stirring blade W for forming a film of the composition and a stirring blade driver M are attached. Further, the heat exchanger H and the heater h for heating the wall surface are covered.
  • Alkylamine (a) a1: n-octylamine (carbon number 8, Wako Pure Chemical Industries, Ltd.) a2: n-butylamine (4 carbon atoms, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Metal compound (c) c1 Silver oxalate
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2012-162767.
  • Fatty acid (d) d1 caproic acid (carbon number 6, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Example 1 Formation reaction of metal nanoparticles
  • a rotating thin film molecular distillation apparatus MS-300 manufactured by Shibata Kagaku Co., Ltd.
  • the total volume of the reaction vessel and the liquid receiving part was about 1.6 L.
  • the vacuum pump attachment part of the apparatus was opened so that the generated gas was released.
  • the rotational speed of the fluororesin wiper blade provided inside the reaction vessel was 60 rpm, and the temperature of the ribbon heater mounted outside the reaction vessel was 180 ° C. Thereby, the temperature of the reaction vessel wall was also about 180 ° C.
  • the reaction vessel was introduced into the reaction vessel at an introduction rate of 1.5 g / min for 20 minutes. The reaction was continued. About 30 g of the raw material composition 1 was continuously charged into the reaction vessel, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction.
  • Example 2 In Example 2, the reaction was performed in the same manner as in Example 1 except that the raw material composition 2 shown in Table 1 was used. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • Example 3 In Example 3, the raw material composition 2 shown in Table 1 was used, and the reaction was carried out while the rotation of the wiper blade of the molecular distillation apparatus (MS-300, manufactured by Shibata Kagaku Co., Ltd.) used in Example 1 was stopped.
  • a tube pump Peristaltic tube pump MP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.
  • the introduction rate was 1.0 g / min
  • the reaction was continued for 30 minutes.
  • About 30 g of composition 2 was continuously charged into the reaction vessel, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction.
  • Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • Example 4 In Example 4, the raw material composition 3 shown in Table 1 was used, and the reaction was carried out in the same manner as in Example 3. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • Example 5 (Example 5) In Example 5, a glass tube having a diameter of 20 mm, a length of 800 mm, and an internal volume of about 0.25 L was fixed in a state having an inclination of 15 degrees from a horizontal plane, thereby obtaining a reaction vessel. A ribbon heater set to 150 ° C. around a glass tube was wound around a length of 500 mm, and the raw material composition 2 in Table 1 was introduced into the reaction vessel at a rate of 1.0 g / min with a tube pump. The reaction was continued for 30 minutes, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • Comparative Example 1 In Comparative Example 1, the reaction of metal nanoparticles was performed by a batch method (method described in Patent Document 4) which is a conventional technique. Specifically, using the raw material composition 2 in Table 1, each component was charged in a 500 mL glass beaker in the amount shown in Table 1, and mixed at room temperature with a magnetic stirrer for about 30 minutes. The composition volume was approximately 82 mL. 30 g (about 43 mL) of this mixture was extracted and placed in a 300 mL glass beaker, and the beaker was placed on a hot stirrer (HHE-19G-U manufactured by Koike Seimitsu Seisakusho) set in advance at 150 ° C., and stirring and heating were started. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • HHE-19G-U manufactured by Koike Seimitsu Seisakusho
  • Comparative Example 2 The comparative example 2 was made to react by the same method as Example 1 using the raw material composition 4 (no alkylamine addition) shown in Table 1. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • Comparative Example 3 In Comparative Example 3, the reaction was carried out in the same manner as in Example 1 using the raw material composition 5 (no organic solvent added) shown in Table 1. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
  • the mixed solution recovered from the reaction vessel is put into a centrifuge tube, and an equal amount of washing solution (methanol) is added to the mixed solution, and dispersed and mixed with a vortex mixer. Then, the silver nanoparticles were spun down by processing at 3000 rpm for 1 minute in a centrifuge (Himac small cooling centrifuge CF7D2 manufactured by Hitachi Koki Co., Ltd.), and the supernatant was removed to purify the metal nanoparticles. The metal nanoparticles were purified by repeating this process three times.
  • washing solution methanol
  • Metal nanoparticle-dispersed ink was prepared by the method described in Patent Document 4 using metal nanoparticles obtained by each reaction. Specifically, an equal volume of butanol: octane mixed solvent (volume ratio 1: 4) and the obtained silver nanoparticles (about 6.5 to 6.9 g) were put into (50 ml sample bottle) at room temperature. By stirring and mixing with a magnetic stirrer, a 50 wt% metal nanoparticle-dispersed ink (about 13 to 13.8 g) was obtained.
  • each metal nanoparticle obtained was measured with a dynamic light scattering particle size distribution analyzer (Spectres Nano, manufactured by Spectris).
  • Spectres Nano manufactured by Spectris
  • Each metal nanoparticle-dispersed ink was spin-coated (3000 rpm, 30 seconds) on a PET film (manufactured by Teijin Chemicals, HK188G-AB500H, cut to 60 ⁇ 60 mm), and heat-treated at 100 ° C. for 30 minutes.
  • the thickness of the coating film at this time was measured with a laser microscope (Lasertec OPTELICS HYBRID) to obtain an average coating thickness of five measurements.
  • a volume resistance value was obtained by a conductivity meter (Lorestar AX, manufactured by Mitsubishi Chemical Analytech), and conductivity was evaluated. The evaluation results are shown in Table 2.
  • Example 1 it took about 2 minutes from the initial charging of the raw material composition into the reaction vessel until the mixture containing metal nanoparticles was recovered. Moreover, it was after about 2 minutes that the dropping of the mixture containing the silver nanoparticles stopped after the stop of the charging. Meanwhile, a mixture containing metal nanoparticles continuously was obtained. Therefore, the residence time inside the reaction vessel was about 2 minutes. Moreover, the reaction amount per hour was estimated to be about 1.5 g / min from the charging speed. Therefore, the amount of carbon dioxide generated per hour was 0.13 L / min, that is, 8.0% of the reaction vessel volume. Therefore, it can be said that the amount of carbon dioxide generated by the thermal decomposition reaction could be controlled as compared with the batch reaction shown in Comparative Example 1 described later.
  • the obtained mixture was purified by the above-described purification method, and the yield was calculated. As a result, about 6.9 g of metal nanoparticles were obtained with respect to the theoretical value of about 7.4 g of metal nanoparticles generated from 30 g of the composition. It was.
  • Example 2 3-methoxy-1-butanol was used as the organic solvent (b).
  • the fluidity of the raw material composition was improved, and introduction into the reaction vessel was facilitated.
  • the yield was slightly reduced as compared with Example 1. This is because the boiling point of the organic solvent was lower than that of triethylene glycol monomethyl ether used in Example 1, so that the fluidity of the composition when thinned with a rotary wiper blade was lost, and the reaction vessel This is presumed to be due to an increase in the amount of adhesion to the inside.
  • the amount of carbon dioxide generated per hour was 0.13 L / min, that is, 8.0% of the volume of the reaction vessel.
  • Example 3 the raw material composition was introduced into the reaction vessel while the rotation of the rotary wiper blade was stopped. As a result, the heating surface in the reaction vessel and the composition reacted efficiently, and the composition and product did not adhere to the wall surface. In addition, compared with the case of thinning with a rotary wiper blade, because the composition is slightly longer until the thermal decomposition temperature is reached, the introduction rate of the composition into the reaction vessel is higher than when using a rotary wiper, Some suppression was necessary. As a result, the amount of gas generated per hour was 0.09 L / min, that is, 5.3% of the volume of the reaction vessel, and gas generation could also be controlled by this method.
  • Example 4 the reaction was carried out by changing the raw material composition to the composition 3 in Example 3. As a result, a slight increase in volume resistance value was observed as compared with Example 3. This is thought to be because the fatty acid (d) was not contained in the composition, which affected the physical properties of the coating film formed by the reduced dispersibility of the metal nanoparticles in the conductive ink. At this time, the amount of gas generated per hour was 0.09 L / min, that is, 5.3% of the volume of the reaction vessel.
  • Example 5 instead of the apparatus used in Examples 1 to 4, a heated glass tube was used as a reactor, and the composition was introduced into this reactor. As a result, it took about 3 minutes from the start of introduction until the first product was recovered. This is because when the composition introduced into the heating surface moves downstream, the flow rate is slower than when the heating surface is vertical, and the film is not forcibly thinned by the wiper blade. The time was longer than in Examples 1 to 4. Further, since the residence time is long, the thermal decomposition reaction progresses continuously even at 150 ° C., which is a lower temperature than in Examples 1 to 4. At this time, the amount of gas generated per hour was 0.08 L / min, that is, 31.6% of the volume of the reaction vessel.
  • Comparative Example 1 the reaction was performed in a batch according to the method described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2012-162767) for comparison with the continuous reaction. About 30 minutes were required from the start of heating to the start of the pyrolysis reaction, and the time from the start to the end of the pyrolysis reaction (can be confirmed that the generation of carbon dioxide was stopped) was about 4 minutes. From the amount of the composition, the amount of carbon dioxide generated per hour from the start to the end of the thermal decomposition was 0.60 L / min, which is about 5 to 6 times the amount generated in the example. It was estimated that carbon dioxide gas of 1.98 times the volume of the glass beaker was generated.
  • Comparative Example 2 the reaction was carried out using a composition containing no alkylamine (a).
  • the metal nanoparticles themselves were continuously produced, and the amount of gas generated per hour at this time was 0.12 L / min, that is, 7.8% of the volume of the reaction vessel.
  • the surface of the metal nanoparticle was bonded to the surface of the metal nanoparticle more strongly than the alkylamine, and the surface was coated with the fatty acid (d) that remained after the coating was formed. Conductivity was not obtained when forming.
  • Comparative Example 3 the composition was introduced into the reaction vessel without using the organic solvent (b). As a result, the composition gradually thickened, and the tube pump could not be introduced into the reaction vessel from the middle. In addition, immediately after the start of introduction, the formation reaction of the metal nanoparticles was confirmed from the composition introduced into the reaction vessel, but the mixture containing the metal nanoparticles produced thereafter was dried and solidified in the reaction vessel. Particles could not be obtained.
  • various metal nanoparticles can be continuously produced safely and at low cost.
  • the obtained metal nanoparticles can be applied to various printing methods by using them in various conductive inks or conductive pastes, and can be effectively used as printed electronics materials used for electric circuit wiring and electrode formation. Can do.
  • it can be effectively used in various fields such as conductive adhesives, electromagnetic wave absorbers, and light reflectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for continuously producing metal nanoparticles having an average particle diameter of from 1 nm to 200 nm (inclusive), which is characterized by comprising a reaction step wherein a starting material composition containing (a) an alkyl amine, (b) an organic solvent and (c) a metal compound that is decomposed when heated and produces an elemental metal or an alloy is continuously introduced into a reaction container and a thermal decomposition reaction of the metal compound (c) is caused to proceed in the reaction container. According to the method of the present invention, leakage of the reaction liquid from the reaction container due to generation of a large amount of a carbon dioxide gas can be prevented, thereby enabling commercially efficient and safe production of the metal nanoparticles at low cost, while suppressing impact on the environment. In addition, metal nanoparticles having relatively large particle diameters and good dispersibility can be obtained by using the above-described starting material composition.

Description

金属ナノ粒子の連続的な製造方法Continuous production method of metal nanoparticles
 本発明は、金属ナノ粒子の連続的な製造方法に関するものである。 The present invention relates to a continuous method for producing metal nanoparticles.
 近年、従来のめっき法や蒸着-フォトリソグラフィー法に代わる新たな回路形成(パターニング)方法として、印刷によって直接回路を形成する技術である「プリンテッドエレクトロニクス」が、次世代の産業基盤であるとして注目されている。この技術は、導電性ペースト、導電性インクを基板に印刷することにより、所望の回路パターンを形成するものであり、薄膜トランジスタ、抵抗、インダクター、コンデンサー等の基本的な回路部品の他、電池、ディスプレイ、センサー、RFID (Radio Frequency Identification)、太陽電池等、多数の用途への応用が可能である。これによりエレクトロニクス関連製品の製造工程が、劇的に簡便になり、また時間短縮化され、更なる省資源及び省エネルギー化も同時に達成できると期待されている。 In recent years, as a new circuit formation (patterning) method that replaces the conventional plating method and vapor deposition-photolithography method, “Printed Electronics”, a technology that directly forms circuits by printing, has been attracting attention as the next generation industrial base Has been. This technology forms a desired circuit pattern by printing a conductive paste and conductive ink on a substrate. In addition to basic circuit components such as thin film transistors, resistors, inductors and capacitors, batteries and displays , Sensors, RFID (Radio Frequency Identification), solar cells, etc., can be applied to many applications. As a result, the manufacturing process of electronics-related products is dramatically simplified, and the time is shortened, and further resource saving and energy saving can be achieved at the same time.
 プリンテッドエレクトロニクス用基板として、ガラス基板及びプラスティックフィルム基板の何れも用いる事が可能であるが、プラスティックフィルム基板の中でもPET(Polyethylene terephthalate)フィルム基板を用いる事ができれば、コストの面で市場に強く求められるものとなると考えられる。しかし、一般にPETフィルムの耐熱性は、120℃程度と言われているため、これを超えない温度での熱処理によって十分な導電性、及び基材との密着性が得られる導電性ペースト、及び導電性インクの開発が求められている。上記要求を満たすべく種々の提案がなされている。なかでもナノサイズの金属粒子は、低温焼結性及び導電性に優れており、有望視されている。 Either a glass substrate or a plastic film substrate can be used as a substrate for printed electronics. However, if a PET (Polyethylene terephthalate) film substrate can be used among the plastic film substrates, there is a strong demand in the market in terms of cost. It is thought that it will be. However, since it is generally said that the heat resistance of a PET film is about 120 ° C., a conductive paste capable of obtaining sufficient conductivity and adhesion with a base material by heat treatment at a temperature not exceeding this, and conductive There is a need for the development of functional inks. Various proposals have been made to satisfy the above requirements. Among these, nano-sized metal particles are excellent in low-temperature sinterability and conductivity, and are considered promising.
 金属ナノ粒子の製造方法としては、例えば、特許文献1には、クエン酸を用いた高い粒子分散性を有する保護層を形成する金属ナノ粒子の製造方法が記載されている。しかしながら、上記方法で得られた金属ナノ粒子は溶液中に希薄な濃度で分散するため、回収には限外ろ過のような特殊な濃縮方法が必要となり、工業的に大量生産可能な方法とは言い難い。さらに、クエン酸層のように低温の熱処理では脱離せず、焼結性を阻害する保護層が金属粒子の表面に存在している場合、導電材料として使用する際に金属ナノ粒子同士の融着を阻害してしまう。そのため、ナノ粒子の特徴である低温焼結反応が不十分となり、満足な導電性が得られない。従って、上記方法で製造される金属粒子は、金属ナノ粒子の本来の特性を十分に引き出しているものとは言えない。 As a method for producing metal nanoparticles, for example, Patent Document 1 describes a method for producing metal nanoparticles that forms a protective layer having high particle dispersibility using citric acid. However, since the metal nanoparticles obtained by the above method are dispersed in a dilute concentration in the solution, a special concentration method such as ultrafiltration is required for the recovery. It's hard to say. Furthermore, when a protective layer that inhibits sinterability is present on the surface of the metal particles, such as a citric acid layer, it is not detached by heat treatment at a low temperature, and the metal nanoparticles are fused when used as a conductive material. Will be disturbed. For this reason, the low-temperature sintering reaction that is characteristic of the nanoparticles becomes insufficient, and satisfactory conductivity cannot be obtained. Therefore, it cannot be said that the metal particles produced by the above method sufficiently bring out the original characteristics of the metal nanoparticles.
 上記課題を解決できる工業的な金属ナノ粒子の製造方法であるとして、特許文献2には、金属ナノ粒子の連続的な製造方法が記載されている。しかしながら、特許文献2の方法は、還元剤としてヒドラジンのように有害かつ爆発性の高いものを用いており、安全性の面での難点が懸念されている。
 また、特許文献3には、バレル-スクリューを用いた連続式の粒子製造装置を用いた製造方法が記載されている。上記方法であれば、連続的に少量ずつ反応させることで、効率的な加熱及び徐熱を行いながら、金属ナノ粒子の製造が可能となる。しかしながら、特許文献3の方法では、還元剤又は電気化学的還元を行うことが必要となり、化学的及び機械的安全性が不十分であることが懸念される。この方法は、金属ナノ粒子を工業的に大量製造する方法としては不十分である。
As an industrial method for producing metal nanoparticles capable of solving the above problems, Patent Document 2 describes a continuous method for producing metal nanoparticles. However, the method of Patent Document 2 uses a harmful and explosive substance such as hydrazine as a reducing agent, and there is a concern about the difficulty in terms of safety.
Patent Document 3 describes a production method using a continuous particle production apparatus using a barrel screw. If it is the said method, a metal nanoparticle can be manufactured, performing efficient heating and slow heating by making it react little by little continuously. However, in the method of Patent Document 3, it is necessary to perform a reducing agent or electrochemical reduction, and there is a concern that chemical and mechanical safety is insufficient. This method is insufficient as a method for industrially mass-producing metal nanoparticles.
 また、特許文献4には、蓚酸銀を用いた金属ナノ粒子の製造方法が記載されている。この方法は、上記のような安全面に難点のある還元剤を用いることなく、金属ナノ粒子を濃厚液から回収することが可能なため、生産性に優れた導電性ペースト、インクに用いることのできる金属ナノ粒子の製造方法として、有望視されている。 Patent Document 4 describes a method for producing metal nanoparticles using silver oxalate. Since this method can recover metal nanoparticles from a concentrated liquid without using a reducing agent having a safety problem as described above, it can be used for conductive pastes and inks with excellent productivity. It is regarded as a promising method for producing metal nanoparticles.
特許4919595Patent 4919595 特許4534098Patent 4534098 特表2005-531405Special table 2005-531405 特開2012-162767JP2012-162767
 しかし、本出願人が、特許文献4に記載の方法で金属ナノ粒子の製造を試みたところ、金属ナノ粒子を工業的に製造するには、蓚酸の熱分解によって発生する炭酸ガスによって以下の二つの問題が生じることが明らかとなった。
 第一に、発生する炭酸ガス中には、反応に用いるアルキルアミン等のアミン化合物が含まれており、環境への悪影響を排除するため、熱交換器を経由して排気する必要がある。しかし、炭酸ガスの発生量が多いため、能力の高い熱交換器が必要となり、設備コストが増加する。
 第二に、炭酸ガスの発生によって反応液の液面が上昇してしまうため、反応容器から内容物が漏洩するおそれがある。これを防止するため、反応容器の容積量当たりの反応液量を抑える必要があるため、1バッチ当たりの生産量が低下し、そのため製造コストが上昇する。
 従って、本発明は、炭酸ガスの発生に起因する上記問題を解消し、安全かつ環境への影響を抑えながら、金属ナノ粒子を工業的に効率よくかつ低コストで製造できる方法を提供することを課題とする。
However, when the present applicant tried to produce metal nanoparticles by the method described in Patent Document 4, in order to industrially produce metal nanoparticles, the following two types of carbon dioxide gas generated by thermal decomposition of oxalic acid were used. It became clear that two problems occurred.
First, the generated carbon dioxide gas contains an amine compound such as an alkylamine used for the reaction, and it is necessary to exhaust it through a heat exchanger in order to eliminate adverse effects on the environment. However, since the amount of carbon dioxide generated is large, a heat exchanger with high capacity is required, and the equipment cost increases.
Secondly, since the liquid level of the reaction liquid rises due to the generation of carbon dioxide, the contents may leak from the reaction vessel. In order to prevent this, it is necessary to suppress the amount of the reaction solution per volume of the reaction vessel, so that the production amount per batch is lowered, and thus the production cost is increased.
Accordingly, the present invention provides a method for solving the above-mentioned problems caused by the generation of carbon dioxide gas, and capable of producing metal nanoparticles industrially efficiently and at low cost while suppressing the influence on safety and the environment. Let it be an issue.
 上記課題を解決するために本発明者は研究を重ね、原料組成物として、アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金が生成する金属化合物(c)を含有する組成物を用い、これを連続的に反応容器に導入し、反応容器内で金属化合物(c)の熱分解反応を進行させることにより、反応量の制御により反応容器の内圧上昇を制御することができ、その結果、反応容器からの反応液の漏洩を抑制して、金属ナノ粒子の製造効率を向上させ得ることを見出した。
 本発明は上記知見に基づき完成されたものであり、下記の金属ナノ粒子の連続的製造方法及び装置、この方法又は装置により得られる金属ナノ粒子を提供する。
In order to solve the above-mentioned problems, the present inventor repeated research, and as a raw material composition, an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy. Using the contained composition, this is continuously introduced into the reaction vessel, and the thermal decomposition reaction of the metal compound (c) proceeds in the reaction vessel, thereby controlling the increase in the internal pressure of the reaction vessel by controlling the reaction amount. As a result, it has been found that the leakage of the reaction liquid from the reaction vessel can be suppressed and the production efficiency of the metal nanoparticles can be improved.
The present invention has been completed based on the above findings, and provides the following method and apparatus for continuously producing metal nanoparticles, and metal nanoparticles obtained by this method or apparatus.
項1. アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金が生成する金属化合物(c)を含有する原料組成物を連続的に反応容器に導入し、反応容器内で金属化合物(c)の熱分解反応を進行させる反応工程を含むことを特徴とする平均粒径1nm以上200nm以下の金属ナノ粒子の連続的製造方法。
項2. 金属化合物(c)が、蓚酸金属塩である項1に記載の製造方法。
項3. 熱分解反応の温度が、250℃以下である項1又は2に記載の製造方法。
項4. 有機溶媒(b)が、常圧下での沸点が150℃以上350℃以下、かつ常圧下20℃の水に対して1g/L以上溶解するものであり、原料組成物中の有機溶媒(b)の含有量が、金属化合物(c)100重量部に対して、50重量部以上500重量部以下である項1~3のいずれかに記載の製造方法。
項5. 原料組成物中におけるアルキルアミン(a)の含有量が、金属化合物(c)の物質量(mol)に対して、1当量以上10当量以下である項1~4のいずれかに記載の製造方法。
項6. 原料組成物が、さらに、脂肪酸(d)を含有する項1に記載の製造方法。
項7. 原料組成物中における脂肪酸(d)とアルキルアミン(a)の含有量の合計の物質量が、金属化合物(c)の物質量(mol)に対して、1当量以上10当量以下である項6に記載の製造方法。
項8. 反応工程において、反応容器内の加熱面上で原料組成物が膜を形成した状態で熱分解反応を進行させる項1~7のいずれかに記載の製造方法。
項9. 上記加熱面が反応容器の内壁面である項8に記載の製造方法。
項10. 原料組成物を、反応容器内の加熱面を自然流下させることにより膜を形成させる項8又は9に記載の製造方法。
項11. 反応容器内部で原料組成物を、反応容器の加熱された壁面を自然流下させ、更にワイパーブレードを用いてワイピングすることにより、膜を形成させることを特徴とする項9又は10に記載の製造方法。
項12. さらに、反応工程で生成した金属ナノ粒子を精製する工程を含む、項1~11のいずれかに記載の製造方法。
項13. 反応容器と、反応容器に付設された加熱装置と、アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金が生成する金属化合物(c)を含有する原料組成物を反応容器に連続的に供給する供給装置と、反応容器で生成した金属ナノ粒子を含む生成物を溜める生成物回収容器と、反応容器で発生した揮発分を回収する揮発分回収装置とを備える、平均粒径1nm以上200nm以下の金属ナノ粒子の製造装置。
項14. 項1~12のいずれかに記載の方法により得られる平均粒径1nm以上200nm以下の金属ナノ粒子。
Item 1. A raw material composition containing an alkylamine (a), an organic solvent (b), and a metal compound (c) that is decomposed by heating to produce a single metal or an alloy is continuously introduced into the reaction vessel, and the metal is contained in the reaction vessel. A process for continuously producing metal nanoparticles having an average particle diameter of 1 nm or more and 200 nm or less, comprising a reaction step of causing a thermal decomposition reaction of the compound (c).
Item 2. Item 2. The production method according to Item 1, wherein the metal compound (c) is a metal oxalate salt.
Item 3. Item 3. The method according to Item 1 or 2, wherein the temperature of the thermal decomposition reaction is 250 ° C or lower.
Item 4. The organic solvent (b) has a boiling point of 150 ° C. or more and 350 ° C. or less under normal pressure and 1 g / L or more in water at 20 ° C. under normal pressure, and the organic solvent (b) in the raw material composition Item 4. The production method according to any one of Items 1 to 3, wherein the content of is from 50 parts by weight to 500 parts by weight with respect to 100 parts by weight of the metal compound (c).
Item 5. Item 5. The production method according to any one of Items 1 to 4, wherein the content of the alkylamine (a) in the raw material composition is 1 equivalent or more and 10 equivalents or less with respect to the substance amount (mol) of the metal compound (c). .
Item 6. Item 2. The production method according to Item 1, wherein the raw material composition further contains a fatty acid (d).
Item 7. Item 6 wherein the total amount of the fatty acid (d) and alkylamine (a) in the raw material composition is 1 equivalent to 10 equivalents relative to the amount (mol) of the metal compound (c). The manufacturing method as described in.
Item 8. Item 8. The production method according to any one of Items 1 to 7, wherein in the reaction step, the thermal decomposition reaction proceeds in a state where the raw material composition forms a film on the heating surface in the reaction vessel.
Item 9. Item 9. The method according to Item 8, wherein the heating surface is an inner wall surface of the reaction vessel.
Item 10. Item 10. The method according to Item 8 or 9, wherein the raw material composition is formed into a film by allowing the heated surface in the reaction vessel to flow down naturally.
Item 11. Item 11. The production method according to Item 9 or 10, wherein the film is formed by allowing the raw material composition to naturally flow down the heated wall surface of the reaction vessel inside the reaction vessel and further wiping with a wiper blade. .
Item 12. Item 12. The production method according to any one of Items 1 to 11, further comprising a step of purifying the metal nanoparticles produced in the reaction step.
Item 13. A raw material composition containing a reaction vessel, a heating device attached to the reaction vessel, an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy. A supply device that continuously supplies the reaction vessel; a product recovery vessel that stores a product containing metal nanoparticles generated in the reaction vessel; and a volatile content recovery device that recovers volatile matter generated in the reaction vessel. An apparatus for producing metal nanoparticles having an average particle diameter of 1 nm to 200 nm.
Item 14. Item 13. Metal nanoparticles having an average particle diameter of 1 nm to 200 nm obtained by the method according to any one of Items 1 to 12.
 本発明方法によれば反応容器への時間当たりの原料組成物の導入量を制御し、ひいては、時間当たりの反応量を制御することによって、炭酸ガスのような反応容器の内圧上昇因子又は反応液の液面上昇因子の発生量を制御することができ、これにより、反応容器からの反応液の漏洩を抑えることができる。従って、反応容器の容積当たりの反応液の収容量を上げることができ、低コストで効率よく金属ナノ粒子を製造できる。 According to the method of the present invention, the amount of the raw material composition introduced into the reaction vessel per hour is controlled, and consequently, the reaction amount per hour is controlled, so that the internal pressure increasing factor or reaction liquid of the reaction vessel such as carbon dioxide gas is controlled. It is possible to control the generation amount of the liquid level increasing factor, thereby suppressing the leakage of the reaction liquid from the reaction vessel. Therefore, the capacity of the reaction liquid per volume of the reaction vessel can be increased, and metal nanoparticles can be produced efficiently at low cost.
 また、従来のバッチ法では、炭酸ガスの排出を抑えるために、1回当たりの金属ナノ粒子の製造量が少なく、実験室スケールの製造しか行えなかった。この点、本発明方法によれば、金属ナノ粒子の工業スケールでの製造ないしは量産が可能となった。 In addition, in the conventional batch method, in order to suppress the discharge of carbon dioxide gas, the production amount of metal nanoparticles per one time is small, and only the laboratory scale production can be performed. In this regard, according to the method of the present invention, it is possible to manufacture or mass-produce metal nanoparticles on an industrial scale.
 また、本発明方法は、アルキルアミン、有機溶媒、及び加熱により分解して単体金属又は合金を生成する金属化合物を含む原料組成物を使用して保護層を有する金属ナノ粒子を製造するため、得られた金属ナノ粒子を含む導電性ペーストは、金属ナノ粒子の分散性が良いと共に、低温で焼結しても高い導電性を有する回路を形成することができる。 In addition, the method of the present invention produces metal nanoparticles having a protective layer using a raw material composition containing an alkylamine, an organic solvent, and a metal compound that decomposes by heating to form a single metal or an alloy. The conductive paste containing the metal nanoparticles thus formed has good dispersibility of the metal nanoparticles and can form a circuit having high conductivity even when sintered at a low temperature.
 また、本発明方法によれば、還元剤を使用しなくても保護層を有する金属ナノ粒子を得ることができる。金属ナノ粒子の製造に使用される還元剤は有害なものが多いため、本発明方法は、この点でも、安全で環境への悪影響が抑えられたものとなる。 Moreover, according to the method of the present invention, metal nanoparticles having a protective layer can be obtained without using a reducing agent. Since many reducing agents used for the production of metal nanoparticles are harmful, the method of the present invention is also safe and less harmful to the environment.
 また、本発明方法において、原料組成物を連続的に反応容器に導入し、加熱された面上(例えば、反応容器の加熱された壁面)で膜を形成した状態で原料組成物を反応させる場合は、原料組成物が短時間で速やかに熱分解温度に達するため、金属ナノ粒子の製造効率が一層向上する。 In the method of the present invention, the raw material composition is continuously introduced into the reaction vessel, and the raw material composition is reacted in a state where a film is formed on the heated surface (for example, the heated wall surface of the reaction vessel). Since the raw material composition quickly reaches the thermal decomposition temperature in a short time, the production efficiency of the metal nanoparticles is further improved.
本発明装置の一実施態様を示す図である。It is a figure which shows one embodiment of this invention apparatus.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(1)金属ナノ粒子の製造方法
 本発明方法は、アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金を生成する金属化合物(c)を含有する原料組成物を連続的に反応容器に導入し、反応容器内で金属化合物(c)の熱分解反応を進行させる反応工程を含む、平均粒径1nm以上200nm以下の金属ナノ粒子の連続的な製造方法である。
(1) Method for Producing Metal Nanoparticles The method of the present invention comprises a raw material composition containing an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or alloy. It is a continuous production method of metal nanoparticles having an average particle diameter of 1 nm or more and 200 nm or less, including a reaction step of continuously introducing the reaction mixture into a reaction vessel and causing a thermal decomposition reaction of the metal compound (c) to proceed in the reaction vessel.
原料組成物
 本発明方法に用いる原料組成物は、アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金を生成する金属化合物(c)を含有するものである。
Raw Material Composition The raw material composition used in the method of the present invention contains an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy.
 本発明に用いる原料組成物は、反応容器へ連続的に導入し、熱分解反応に付することにより、連続的に金属ナノ粒子を生成させるために流動性を有する必要があり、例えば液状又はスラリー状であることを要する。また、熱分解反応を効率的に行うため、熱分解反応を加熱された面上(例えば、反応容器の加熱された壁面)で行えるように、面上で膜を形成した状態となり得るものであることが好ましい。原料組成物の性状は、反応容器に連続的に導入することが可能なものであれば特に制限されない。原料組成物の粘度は、約20Pa・s以下であることが好ましく、約10Pa・s以下であることがより好ましい。原料組成物の粘度は、通常、約1mPa・s以上とすればよい。 The raw material composition used in the present invention must have fluidity in order to continuously generate metal nanoparticles by being continuously introduced into a reaction vessel and subjected to a thermal decomposition reaction, for example, liquid or slurry It needs to be in the shape. Moreover, in order to perform a thermal decomposition reaction efficiently, it can be in the state which formed the film | membrane on the surface so that a thermal decomposition reaction can be performed on the heated surface (for example, the heated wall surface of reaction container). It is preferable. The nature of the raw material composition is not particularly limited as long as it can be continuously introduced into the reaction vessel. The viscosity of the raw material composition is preferably about 20 Pa · s or less, and more preferably about 10 Pa · s or less. The viscosity of the raw material composition is usually about 1 mPa · s or more.
 金属ナノ粒子の導電性インク、及び導電性ペースト中での凝集を防止し、また、所望の溶媒中で良好に分散させるために、本発明方法では、表面が保護層若しくは分散層(以下、「保護層」と記載する)で被覆された金属ナノ粒子を製造する。そのために、本発明の製造方法で使用する原料組成物は、金属ナノ粒子を生成させる前の金属化合物(c)に加えて、保護層となり得る、置換基を有するアルキルアミンを含有するが、アルキルアミン以外のアルキル化合物も使用することが可能である。
 アルキル化合物は、組成物中で金属化合物(c)と結合し、さらに熱分解により金属ナノ粒子が生成した際に、その表面で保護層として機能し、導電性インク中での金属ナノ粒子の分散状態を良好に維持することができる。
 アルキル化合物の置換基としては、アルデヒド基、ヒドロキシ基、スルホ基、アミノ基、カルボキシル基、メルカプト基、シアノ基、シアナト基、イソシアナト基、イソチオシアナト基等を例示することができ、中でも、アミノ基、カルボキシル基が好適である。
In order to prevent aggregation of the metal nanoparticles in the conductive ink and the conductive paste and to disperse them well in a desired solvent, the surface of the present invention is a protective layer or a dispersion layer (hereinafter referred to as “ Metal nanoparticles coated with "protective layer" are produced. Therefore, the raw material composition used in the production method of the present invention contains an alkylamine having a substituent, which can be a protective layer, in addition to the metal compound (c) before forming the metal nanoparticles. Alkyl compounds other than amines can also be used.
The alkyl compound binds to the metal compound (c) in the composition, and further functions as a protective layer on the surface when metal nanoparticles are formed by thermal decomposition, and the metal nanoparticles are dispersed in the conductive ink. The state can be maintained well.
Examples of the substituent of the alkyl compound include an aldehyde group, a hydroxy group, a sulfo group, an amino group, a carboxyl group, a mercapto group, a cyano group, a cyanato group, an isocyanato group, and an isothiocyanato group. Among them, an amino group, A carboxyl group is preferred.
 アルキル化合物として具体的には、アルキルアミン、脂肪酸、アルキルチオール、アルキルアルデヒド、アルキルシアネート、アルキルイソシアネート、アルキルイソチオシアネート、アルキルスルホン酸、アルカンニトリル等を例示することができる。アルキル化合物としては、アルキルアミンが好適であり、また、アルキルアミンに加えて、脂肪酸を含んでいてもよい。 Specific examples of the alkyl compound include alkyl amines, fatty acids, alkyl thiols, alkyl aldehydes, alkyl cyanates, alkyl isocyanates, alkyl isothiocyanates, alkyl sulfonic acids, alkane nitriles, and the like. As the alkyl compound, an alkylamine is suitable, and in addition to the alkylamine, a fatty acid may be included.
 原料組成物には、必要に応じて、本発明の効果に影響を与えない範囲で、添加剤を含有させることが可能である。添加剤としては、粘度調製剤、乾燥防止剤、消泡剤、レベリング剤、界面活性剤等を例示することができる。 In the raw material composition, additives can be contained as necessary within a range that does not affect the effects of the present invention. Examples of the additive include a viscosity adjusting agent, a drying inhibitor, an antifoaming agent, a leveling agent, and a surfactant.
<アルキルアミン(a)>
 アルキルアミン(a)は、金属化合物(c)と結合する能力を有し、かつ金属ナノ粒子が生成した際に、金属ナノ粒子の表面上で保護層として、機能するものであればよい。
<Alkylamine (a)>
The alkylamine (a) has only the ability to bind to the metal compound (c) and functions as a protective layer on the surface of the metal nanoparticles when the metal nanoparticles are generated.
 アルキルアミン(a)は、炭素数3以上18以下のアルキル基を有するものであればよく、炭素数4以上12以下のアルキル基を有するものが好ましい。
 アルキルアミン(a)として、具体的には、エチルアミン、n‐プロピルアミン、イソプロピルアミン、1,2‐ジメチルプロピルアミン、n‐ブチルアミン、イソブチルアミン、sec‐ブチルアミン、tert‐ブチルアミン、イソアミルアミン、tert‐アミルアミン、3‐ペンチルアミン、n‐アミルアミン、n‐ヘキシルアミン、n‐ヘプチルアミン、n‐オクチルアミン、2‐オクチルアミン、2‐エチルヘキシルアミン、n-ノニルアミン、n‐アミノデカン、n‐アミノウンデカン、n‐ドデシルアミン、n‐トリデシルアミン、2‐トリデシルアミン、n‐テトラデシルアミン、n‐ペンタデシルアミン、n‐ヘキサデシルアミン、n‐ヘプタデシルアミン、n‐オクタデシルアミン、n‐オレイルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-(2-エチルヘキシルオキシ)プロピルアミン、N‐エチル‐1,3‐ジアミノプロパン、N,N‐ジイソプロピルエチルアミン、N,N-ジメチル‐1,3‐ジアミノプロパン、N,N‐ジブチル‐1,3‐アミノプロパン、N,N‐ジイソブチル‐1,3‐ジアミノプロパン、N‐ラウリルジアミノプロパン等を例示することができる。
 さらに、2級アミンであるジブチルアミンや環状アルキルアミンであるシクロプロピルアミン、シクロブチルアミン、シクロプロピルアミン、シクロヘキシルアミン、シクロヘプチルアミン、シクロオクチルアミン等も用いることができる。
 このうち、得られる金属ナノ粒子を用いて導電性インクや導電性ペーストを作製した際の溶媒中での金属ナノ粒子の分散安定性が良好になり、また、アルキルアミンに由来する保護膜が導電膜形成時に低温で容易に脱離する点で、n‐プロピルアミン、イソプロピルアミン、シクロプロピルアミン、n‐ブチルアミン、イソブチルアミン、sec‐ブチルアミン、tert‐ブチルアミン、シクロブチルアミン、n‐アミルアミン、n‐ヘキシルアミン、シクロヘキシルアミン、n‐オクチルアミン、2‐エチルヘキシルアミン、n‐ドデシルアミン、n‐オレイルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、N,N-ジメチル‐1,3‐ジアミノプロパン、N,N‐ジブチル‐1,3‐アミノプロパンが好ましく、n‐ブチルアミン、n‐ヘキシルアミン、シクロヘキシルアミン、n‐オクチルアミン、n‐ドデシルアミン、N,N-ジメチル‐1,3‐ジアミノプロパン、N,N‐ジブチル‐1,3‐アミノプロパンがより好ましい。
 アルキルアミン(a)は、1種を単独で、又は2種以上使用できる。2種以上のアルキルアミン(a)を用いる場合は、異なる炭素数のものを2種以上用いてもよい。
The alkylamine (a) may be any alkyl group having 3 to 18 carbon atoms, and preferably has an alkyl group having 4 to 12 carbon atoms.
Specific examples of the alkylamine (a) include ethylamine, n-propylamine, isopropylamine, 1,2-dimethylpropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, isoamylamine, tert- Amylamine, 3-pentylamine, n-amylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-octylamine, 2-ethylhexylamine, n-nonylamine, n-aminodecane, n-aminoundecane, n -Dodecylamine, n-tridecylamine, 2-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-oleylamine, 3 -Methoxy Propylamine, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3- (2-ethylhexyloxy) propylamine, N-ethyl-1,3-diaminopropane, N , N-diisopropylethylamine, N, N-dimethyl-1,3-diaminopropane, N, N-dibutyl-1,3-aminopropane, N, N-diisobutyl-1,3-diaminopropane, N-lauryldiaminopropane Etc. can be illustrated.
Furthermore, secondary amines such as dibutylamine and cyclic alkylamines such as cyclopropylamine, cyclobutylamine, cyclopropylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine can also be used.
Among these, the dispersion stability of metal nanoparticles in a solvent when conductive ink or conductive paste is produced using the obtained metal nanoparticles is improved, and the protective film derived from alkylamine is conductive. N-Propylamine, Isopropylamine, Cyclopropylamine, n-Butylamine, Isobutylamine, sec-Butylamine, Tert-Butylamine, Cyclobutylamine, n-Amylamine, n-Hexyl are easily eliminated at low temperatures during film formation. Amine, cyclohexylamine, n-octylamine, 2-ethylhexylamine, n-dodecylamine, n-oleylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, N , N-Dimethyl-1,3-diamy Nopropane, N, N-dibutyl-1,3-aminopropane, n-butylamine, n-hexylamine, cyclohexylamine, n-octylamine, n-dodecylamine, N, N-dimethyl-1,3-diamino More preferred is propane, N, N-dibutyl-1,3-aminopropane.
Alkylamine (a) can be used alone or in combination of two or more. When using 2 or more types of alkylamine (a), you may use 2 or more types of different carbon numbers.
 原料組成物中のアルキルアミン(a)の含有量は、金属化合物(c)の物質量(mol)に対して、約1当量以上であればよく、約1.5当量以上が好ましく、約2当量以上がより好ましい。上記範囲であれば、得られた金属ナノ粒子を含む導電性ペースト又は導電性インクは、液中で金属ナノ粒子の分散性が良いと共に、低温で焼結しても高い導電性を有する回路を形成することができる。
 また、原料組成物中のアルキルアミン(a)の含有量は、金属化合物(c)の物質量(mol)に対して、約10当量以下であればよく、約5当量以下が好ましい。なお、上記範囲であれば、金属化合物(c)の比率が低くなりすぎて金属ナノ粒子の生成効率が低下するということがない。なお、得られる金属ナノ粒子を配合した導電性インク、導電性ペースト等を熱処理に付して導電膜を形成する際の熱処理によって、アルキルアミン(a)のほとんどが金属ナノ粒子の表面から脱離するため、原料組成物中にアルキルアミン(a)を多量に含有しても、導電膜の導電性にはほとんど影響を与えない。
 アルキルアミン(a)の含有量としては、金属化合物(c)の物質量(mol)に対して、約1当量~約5当量、約1当量~約10当量、約1.5当量~約5当量、約1.5当量~約10当量、約2当量~約5当量、約2当量~約10当量が挙げられる。
The content of the alkylamine (a) in the raw material composition may be about 1 equivalent or more, preferably about 1.5 equivalents or more with respect to the amount (mol) of the metal compound (c), about 2 More than equivalent is more preferable. If it is the said range, the conductive paste or conductive ink containing the obtained metal nanoparticles has a good dispersibility of the metal nanoparticles in the liquid and a circuit having high conductivity even when sintered at a low temperature. Can be formed.
Further, the content of the alkylamine (a) in the raw material composition may be about 10 equivalents or less, preferably about 5 equivalents or less with respect to the substance amount (mol) of the metal compound (c). In addition, if it is the said range, the ratio of a metal compound (c) will not become low too much, and the production | generation efficiency of a metal nanoparticle will not fall. In addition, most of the alkylamine (a) is desorbed from the surface of the metal nanoparticles by the heat treatment when forming the conductive film by subjecting the resulting conductive ink, conductive paste or the like containing the metal nanoparticles to the heat treatment. Therefore, even if the raw material composition contains a large amount of alkylamine (a), the conductivity of the conductive film is hardly affected.
The content of the alkylamine (a) is about 1 equivalent to about 5 equivalents, about 1 equivalent to about 10 equivalents, about 1.5 equivalents to about 5 equivalents with respect to the amount (mol) of the metal compound (c). Equivalents, about 1.5 equivalents to about 10 equivalents, about 2 equivalents to about 5 equivalents, about 2 equivalents to about 10 equivalents.
<脂肪酸(d)>
 原料組成物には、アルキルアミン(a)に加えて、必要に応じてさらに脂肪酸(d)を添加してもよい。脂肪酸(d)は、金属ナノ粒子の表面に強く結合するため、導電性インク及び導電性ペースト中における金属ナノ粒子の分散性向上に寄与する。脂肪酸(d)は、金属化合物(c)と結合する能力を有し、金属ナノ粒子が生成した際に、金属ナノ粒子の表面上で保護層として機能するものであれば、特に制限なく使用することができる。
<Fatty acid (d)>
In addition to the alkylamine (a), the fatty acid (d) may be further added to the raw material composition as necessary. Since the fatty acid (d) binds strongly to the surface of the metal nanoparticles, it contributes to improving the dispersibility of the metal nanoparticles in the conductive ink and conductive paste. The fatty acid (d) is not particularly limited as long as it has an ability to bind to the metal compound (c) and functions as a protective layer on the surface of the metal nanoparticles when the metal nanoparticles are generated. be able to.
 脂肪酸(d)のアルキル基の炭素数は、3以上18以下であればよく、炭素数4以上18以下が好ましい。
 脂肪酸(d)として、具体的には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、2-エチルヘキサン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、α-リノレン酸等を例示することができる。また、シクロヘキサンカルボン酸のような環状アルキルカルボン酸も使用することができる。中でも、反応液中での生成中及び生成後の金属ナノ粒子の分散安定性が良い点で、カプロン酸、2-エチルヘキサン酸、オレイン酸、リノール酸、α-リノレン酸が好ましい。
 脂肪酸(d)は、単独で又は2種以上を混合して用いることができる。
The alkyl group of the fatty acid (d) may have 3 to 18 carbon atoms, and preferably has 4 to 18 carbon atoms.
Specific examples of fatty acid (d) include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid And linoleic acid, α-linolenic acid, and the like. Cyclic alkyl carboxylic acids such as cyclohexane carboxylic acid can also be used. Of these, caproic acid, 2-ethylhexanoic acid, oleic acid, linoleic acid, and α-linolenic acid are preferred from the viewpoint of good dispersion stability of the metal nanoparticles during and after formation in the reaction solution.
The fatty acid (d) can be used alone or in admixture of two or more.
 原料組成物中の脂肪酸(d)の含有量は、金属化合物(c)の物質量(mol)に対して、アルキルアミン(a)と脂肪酸(d)の合計の物質量が、約1当量以上となる量であればよく、約1.5当量以上となる量が好ましく、約2当量以上となる量がより好ましい。上記範囲であれば、導電性インク及び導電性ペースト中における金属ナノ粒子の分散性を十分に向上させることができる。
 また、金属化合物(c)の物質量(mol)に対して、アルキルアミン(a)と脂肪酸(d)の合計の物質量が、約10当量以下となる量であればよく、約5当量以下となる量が好ましい。脂肪酸(d)は金属ナノ粒子と強く結合することが知られており、得られる金属ナノ粒子を配合した導電性インク、導電性ペースト等を熱処理に付し導電膜を形成する際に、金属ナノ粒子の表面に使用した脂肪酸の多くが残留する。しかし、上記範囲であれば、残留脂肪酸が導電性に悪影響を及ぼすということがない。
 金属化合物(c)の物質量(mol)に対するアルキルアミン(a)と脂肪酸(d)の合計の物質量としては、約1当量~約10当量、約1当量~約5当量、約1.5当量~約10当量、約1.5当量~約5当量、約2当量~約10当量、約2当量~約5当量が挙げられる。
The content of the fatty acid (d) in the raw material composition is such that the total amount of the alkylamine (a) and the fatty acid (d) is about 1 equivalent or more with respect to the amount (mol) of the metal compound (c). The amount of about 1.5 equivalents or more is preferable, and the amount of about 2 equivalents or more is more preferable. If it is the said range, the dispersibility of the metal nanoparticle in a conductive ink and a conductive paste can fully be improved.
Further, the total amount of the alkylamine (a) and the fatty acid (d) may be about 10 equivalents or less with respect to the amount (mol) of the metal compound (c), and about 5 equivalents or less. Is preferred. It is known that the fatty acid (d) strongly binds to the metal nanoparticles. When the conductive ink, conductive paste or the like containing the obtained metal nanoparticles is subjected to a heat treatment to form a conductive film, Many of the fatty acids used on the surface of the particles remain. However, within the above range, the residual fatty acid does not adversely affect the conductivity.
The total amount of alkylamine (a) and fatty acid (d) relative to the amount (mol) of metal compound (c) is about 1 equivalent to about 10 equivalents, about 1 equivalent to about 5 equivalents, about 1.5 equivalents. Equivalent to about 10 equivalents, about 1.5 equivalents to about 5 equivalents, about 2 equivalents to about 10 equivalents, about 2 equivalents to about 5 equivalents.
 上記の通り、脂肪酸(d)は金属ナノ粒子と強く結合することが知られており、得られる金属ナノ粒子を配合した導電性インク、導電性ペースト等を熱処理に付し導電膜を形成する際に、組成物中に含まれる脂肪酸の多くは金属ナノ粒子の表面に残留する。そのため、アルキルアミン(a)と脂肪酸(d)を原料組成物に含有させる場合のアルキルアミン(a)と脂肪酸(d)のモル比は、アルキルアミン(a):脂肪酸(d)が、約90:10~約99.9:0.1の範囲であればよく、約95:5~約99.9:0.1の範囲であることが好ましく、約95:5~約99.5:0.5の範囲であることがより好ましい。上記範囲内であれば、導電性インク及び導電性ペースト中における金属ナノ粒子の分散性を十分に向上させることができると共に、得られる金属ナノ粒子を含む導電性ペースト用いて形成した導電膜の導電性が良好になる。 As described above, it is known that fatty acid (d) binds strongly to metal nanoparticles, and when a conductive ink, conductive paste or the like containing the obtained metal nanoparticles is subjected to heat treatment to form a conductive film In addition, most of the fatty acids contained in the composition remain on the surface of the metal nanoparticles. Therefore, when the alkylamine (a) and the fatty acid (d) are contained in the raw material composition, the molar ratio of the alkylamine (a) and the fatty acid (d) is about 90% when the alkylamine (a): fatty acid (d) is about 90%. : 10 to about 99.9: 0.1, preferably about 95: 5 to about 99.9: 0.1, and about 95: 5 to about 99.5: 0. More preferably, it is in the range of .5. Within the above range, the dispersibility of the metal nanoparticles in the conductive ink and conductive paste can be sufficiently improved, and the conductivity of the conductive film formed using the conductive paste containing the obtained metal nanoparticles can be obtained. Good.
<有機溶媒(b)>
 本発明に用いる有機溶媒(b)は、原料組成物を反応容器へ連続的に導入し、また金属化合物(c)の熱分解反応を良好に進行させる程度に、原料組成物に流動性を付与できるものであればよい。また、有機溶媒(b)は、原料組成物を加熱された面上(例えば、反応容器の加熱された壁面)で膜を形成した状態とすることができるものが好ましい。有機溶媒(b)は、原料組成物の粘度が低くなる(例えば、約20Pa・s以下であればよく、約10Pa・s以下であることが好ましい。)ものであれば、特に問題なく使用することができる。
<Organic solvent (b)>
The organic solvent (b) used in the present invention imparts fluidity to the raw material composition to such an extent that the raw material composition is continuously introduced into the reaction vessel and the thermal decomposition reaction of the metal compound (c) proceeds favorably. Anything is possible. Further, the organic solvent (b) is preferably one that can form a film on the heated surface of the raw material composition (for example, the heated wall surface of the reaction vessel). The organic solvent (b) is used without any particular problem as long as the viscosity of the raw material composition is low (for example, about 20 Pa · s or less, and preferably about 10 Pa · s or less). be able to.
 有機溶媒(b)として、アルコール類、グリコール類、グリコールエーテル類、非プロトン性極性溶媒等を例示することができる。
 中でも、反応容器に導入された原料組成物が蒸発乾固しない程度に高沸点のものが好ましい。例えば、常圧下での沸点が約150℃以上約350℃以下のものであればよく、約150℃以上約330℃以下のものが好ましく、約150℃以上約300℃以下のものより好ましい。
 さらに、有機溶媒(b)は、金属ナノ粒子の精製の際に生成した金属ナノ粒子を容易に固液分離できる点で、常圧下20℃の水に対して、約1g/L以上溶解できるものであればよく、約10g/L以上溶解できるものが好ましく、約100g/L以上溶解できるものがより好ましい。
Examples of the organic solvent (b) include alcohols, glycols, glycol ethers, aprotic polar solvents, and the like.
Among them, those having a high boiling point are preferable so that the raw material composition introduced into the reaction vessel does not evaporate to dryness. For example, the boiling point under normal pressure may be about 150 ° C. or higher and about 350 ° C. or lower, preferably about 150 ° C. or higher and about 330 ° C. or lower, more preferably about 150 ° C. or higher and about 300 ° C. or lower.
Furthermore, the organic solvent (b) can dissolve about 1 g / L or more in water at 20 ° C. under normal pressure in that the metal nanoparticles produced during the purification of the metal nanoparticles can be easily solid-liquid separated. What is necessary is just what can be melt | dissolved about 10 g / L or more, and what can melt | dissolve about 100 g / L or more is more preferable.
 有機溶媒(b)として、具体的には、炭素数6~18の直鎖もしくは分岐鎖のアルカン;ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、ベンゾニトリル等の芳香族類;アセトン、アセチルアセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、酪酸エチル、蟻酸エチル等の脂肪酸エステル類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,2-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール等のジオール類;炭素数1~12の直鎖又は分岐鎖の脂肪族アルコール、シクロヘキサノール、3-メトキシ-3-メチル-1-ブタノール、3-メトキシ-1-ブタノール等のアルコール類;ポリエチレングリコール、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノヘキシルエーテル、エチレングリコールモノヘキシルエーテルアセテート、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテルアセテート、エチレングリコールモノフェニルエーテル、エチレングリコールモノフェニルエーテルアセテート、エチレングリコールモノベンジルエーテル、エチレングリコールモノベンジルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノブチルエーテル等のグリコール類もしくはグリコールエーテル類;メチル-n-アミルケトン;メチルエチルケトンオキシム;トリアセチン;γ-ブチロラクトン;2-ピロリドン;N-メチルピロリドン;アセトニトリル;N,N-ジメチルホルムアミド;N-(2-アミノエチル)ピペラジン;ジメチルスルホキシド;テルピネオール等のテルペン類などを例示することができる。 Specific examples of the organic solvent (b) include straight-chain or branched-chain alkanes having 6 to 18 carbon atoms; aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzonitrile. Ketones such as acetone, acetylacetone and methyl ethyl ketone; fatty acid esters such as ethyl acetate, butyl acetate, ethyl butyrate and ethyl formate; ethers such as diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran and 1,4-dioxane Halogenated hydrocarbons such as dichloromethane, chloroform, tetrachloromethane, dichloroethane; 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- Butanediol, 1,2-hexanediol, 1 Diols such as 6-hexanediol, 1,2-pentanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol; 1 to 12 carbon atoms Linear or branched aliphatic alcohols, cyclohexanol, 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol and other alcohols; polyethylene glycol, triethylene glycol monomethyl ether, tetraethylene glycol Monomethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, 3-methoxybutyl acetate, ethylene glycol monomethyl ether, Lenglycol monomethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monoisopropyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol monohexyl ether, ethylene Glycol monohexyl ether acetate, ethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether acetate, ethylene glycol monophenyl ether, ethylene glycol monophenyl ether acetate, ethylene glycol monobenzyl ether, ethylene glycol Monobenzyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene glycol Glycols or glycol ethers such as dimethyl monobutyl ether; methyl-n-amyl ketone; methyl ethyl ketone oxime; triacetin; γ-butyrolactone; 2-pyrrolidone; N-methylpyrrolidone; acetonitrile; Examples thereof include terpenes such as ethyl) piperazine; dimethyl sulfoxide; terpineol.
 中でも、常圧での沸点、極性、および溶媒の粘度に起因する取扱いの容易さの点で、アルコール類(特に、3-メトキシ-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール)、グリコールエーテル類(特に、エチレングリコールモノブチルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル)、γ-ブチロラクトンが好ましい。
 有機溶媒(b)は単独で用いてもよく、原料組成物粘度が適切になるように2種以上を組み合わせて用いてもよい。
Among them, alcohols (especially 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol) are easy to handle due to boiling point, polarity at normal pressure, and viscosity of the solvent. Glycol ethers (particularly ethylene glycol monobutyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether) and γ-butyrolactone are preferred.
The organic solvent (b) may be used alone or in combination of two or more so that the viscosity of the raw material composition is appropriate.
 原料組成物中の有機溶媒(b)の含有量は、金属化合物(c)100重量部に対して、約50重量部以上であればよく、約60重量部以上が好ましく、約75重量部以上がより好ましい。また、金属化合物(c)100重量部に対して、約500重量部以下であればよく、約450重量部以下が好ましく、約400重量部以下がより好ましい。
 上記範囲であれば、原料組成物を反応容器へ連続的に導入し、また金属化合物(c)の熱分解反応を良好に進行させる程度に、原料組成物に流動性を付与することができ、また、反応工程において原料組成物を加熱された面上で膜を形成した状態とすることができる。
 金属化合物(c)100重量部に対する有機溶媒(b)の含有量としては、約50重量部~約400重量部、約50重量部~約450重量部、約50重量部~約500重量部、約60重量部~約400重量部、約60重量部~約450重量部、約60重量部~約500重量部、約75重量部~約400重量部、約75重量部~約450重量部、約75重量部~約500重量部が挙げられる。
The content of the organic solvent (b) in the raw material composition may be about 50 parts by weight or more, preferably about 60 parts by weight or more, and about 75 parts by weight or more with respect to 100 parts by weight of the metal compound (c). Is more preferable. Further, it may be about 500 parts by weight or less, preferably about 450 parts by weight or less, more preferably about 400 parts by weight or less with respect to 100 parts by weight of the metal compound (c).
If it is the said range, fluidity | liquidity can be provided to a raw material composition to such an extent that a raw material composition is continuously introduce | transduced into a reaction container and the thermal decomposition reaction of a metal compound (c) advances favorably, Moreover, the raw material composition can be made into the state which formed the film | membrane on the heated surface in the reaction process.
The content of the organic solvent (b) with respect to 100 parts by weight of the metal compound (c) is about 50 parts by weight to about 400 parts by weight, about 50 parts by weight to about 450 parts by weight, about 50 parts by weight to about 500 parts by weight, About 60 parts by weight to about 400 parts by weight, about 60 parts by weight to about 450 parts by weight, about 60 parts by weight to about 500 parts by weight, about 75 parts by weight to about 400 parts by weight, about 75 parts by weight to about 450 parts by weight; About 75 parts by weight to about 500 parts by weight are included.
金属化合物(c)
 本発明で用いる加熱により分解し単体金属又は合金を生成する金属化合物(c)として、有機金属化合物(例えば、カルボン酸塩)、スルホン酸塩、チオール塩、塩化物、硝酸塩、炭酸塩等の金属塩を例示することができる。中でも、金属が生成した後、対イオン由来の物質の除去が容易である点で、有機金属化合物及び炭酸塩が好ましく、有機金属化合物がより好ましい。有機金属化合物の中では、蟻酸、酢酸、蓚酸、マロン酸、安息香酸、フタル酸等のカルボン酸塩が好ましく、熱分解の容易さの点から、蓚酸塩がさらに好ましい。
Metal compound (c)
Metals such as organometallic compounds (for example, carboxylates), sulfonates, thiol salts, chlorides, nitrates, carbonates, etc., as metal compounds (c) that decompose by heating to produce simple metals or alloys Salts can be exemplified. Among these, organic metal compounds and carbonates are preferable and organic metal compounds are more preferable in that it is easy to remove a counterion-derived substance after the metal is generated. Among the organometallic compounds, carboxylates such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid and phthalic acid are preferable, and oxalate is more preferable from the viewpoint of easiness of thermal decomposition.
 金属化合物(c)の金属種としては、金、銀、銅、白金、パラジウム、ニッケル等を例示することができる。中でも、導電性、及び耐酸化性が良い点で、金、銀、白金が好ましく、低コストかつ低温焼結できる点で、銀がより好ましい。 Examples of the metal species of the metal compound (c) include gold, silver, copper, platinum, palladium, nickel and the like. Among these, gold, silver and platinum are preferable in terms of good conductivity and oxidation resistance, and silver is more preferable in terms of low cost and low temperature sintering.
 金属化合物(c)としては、蓚酸銀、蓚酸銅、蓚酸ニッケル、蓚酸アルミニウム、蟻酸銀、蟻酸銅、蟻酸ニッケル、蟻酸アルミニウム、酢酸銀、酢酸銅、酢酸ニッケル、酢酸アルミニウム、マロン酸銀、マロン酸銅、マロン酸ニッケル、マロン酸アルミニウム、安息香酸銀、安息香酸銅、安息香酸ニッケル、安息香酸アルミニウム、フタル酸銀、フタル酸銅、フタル酸ニッケル、フタル酸アルミニウム等を例示することができる。中でも、蓚酸銀、蓚酸銅、蓚酸ニッケル、蓚酸アルミニウムが好ましい。
 金属化合物(c)は、単独で、又は2種以上を組み合わせて用いることができる。
As the metal compound (c), silver oxalate, copper oxalate, nickel oxalate, aluminum oxalate, silver formate, copper formate, nickel formate, aluminum formate, silver acetate, copper acetate, nickel acetate, aluminum acetate, silver malonate, malonic acid Examples include copper, nickel malonate, aluminum malonate, silver benzoate, copper benzoate, nickel benzoate, aluminum benzoate, silver phthalate, copper phthalate, nickel phthalate, and aluminum phthalate. Among these, silver oxalate, copper oxalate, nickel oxalate, and aluminum oxalate are preferable.
A metal compound (c) can be used individually or in combination of 2 or more types.
 加熱により分解し単体金属又は合金が生成する金属化合物(c)は、市販品を購入して用いることができる。また、特開2012-162767等に開示されている方法に従い製造することもできる。 A commercially available product can be used for the metal compound (c) which is decomposed by heating to produce a single metal or an alloy. Also, it can be produced according to the method disclosed in JP2012-162767A.
 原料組成物中の金属化合物(c)の含有量は、組成物全量に対して、約12重量%以上であればよく、約15重量%以上が好ましく、約20重量%以上がより好ましい。上記範囲であれば、得られた金属ナノ粒子を含む導電性ペースト又は導電性インクは、液中で金属ナノ粒子の分散性が良いと共に、低温で焼結しても高い導電性を有する回路を形成することができる。
 また、原料組成物中の金属化合物(c)の含有量は、組成物全量に対して、約55重量%以下であればよく、約50重量%以下が好ましく、約40重量%以下がより好ましい。上記範囲であれば、金属化合物(c)とアルキルアミン(a)とが効率よく相互作用し、本発明の効果、特に金属ナノ粒子の効率的な製造を達成することができる。
 原料組成物中の金属化合物(c)の含有量としては、組成物全量に対して、約12~約55重量%、約12~約50重量%、約12~約40重量%、約15~約55重量%、約15~約50重量%、約15~約40重量%、約20~約55重量%、約20~約50重量%、約20~約40重量%が挙げられる。
The content of the metal compound (c) in the raw material composition may be about 12% by weight or more, preferably about 15% by weight or more, and more preferably about 20% by weight or more based on the total amount of the composition. If it is the said range, the conductive paste or conductive ink containing the obtained metal nanoparticles has a good dispersibility of the metal nanoparticles in the liquid and a circuit having high conductivity even when sintered at a low temperature. Can be formed.
The content of the metal compound (c) in the raw material composition may be about 55% by weight or less, preferably about 50% by weight or less, more preferably about 40% by weight or less based on the total amount of the composition. . If it is the said range, a metal compound (c) and an alkylamine (a) will interact efficiently, and the effect of this invention, especially the efficient manufacture of a metal nanoparticle can be achieved.
The content of the metal compound (c) in the raw material composition is about 12 to about 55% by weight, about 12 to about 50% by weight, about 12 to about 40% by weight, about 15 to about Examples include about 55%, about 15 to about 50%, about 15 to about 40%, about 20 to about 55%, about 20 to about 50%, about 20 to about 40% by weight.
原料組成物の調製工程
 原料組成物の各成分は、反応容器内で効率的に金属化合物(c)の熱分解反応を進行させるため、原料組成物中で均一に分散した状態となっていることを要する。各成分の添加順序、及び混合方法は、得られた原料組成物中で各成分が均一に分散された状態となる方法であれば、特に制限されない。
 各成分の混合方法として、メカニカルスターラー、マグネティックスターラー、ボルテックスミキサー、遊星ミル、ボールミル、三本ロール、ラインミキサー、プラネタリーミキサー、ディゾルバー等を用いる方法を例示できる。製造設備の規模や生産能力に応じて、混合装置を適宜選択することができる。
Preparation process of raw material composition Each component of the raw material composition is in a state of being uniformly dispersed in the raw material composition in order to advance the thermal decomposition reaction of the metal compound (c) efficiently in the reaction vessel. Cost. The order of adding each component and the mixing method are not particularly limited as long as each component is uniformly dispersed in the obtained raw material composition.
Examples of the mixing method of each component include a method using a mechanical stirrer, magnetic stirrer, vortex mixer, planetary mill, ball mill, three rolls, line mixer, planetary mixer, dissolver and the like. A mixing device can be appropriately selected according to the scale and production capacity of the manufacturing facility.
 各成分の混合中に、溶解熱、又は摩擦熱等の影響で組成物の温度が上昇し、金属化合物(c)の熱分解反応が開始する可能性があるため、混合は組成物の温度が約60℃以下となるように行うことが好ましく、組成物の温度を約40℃以下に抑えながら行うこと事がより好ましい。必要に応じて組成物を冷却しながら、混合を行ってもよい。また、各成分の混合時間は、各成分が組成物中に均一に混合した状態となる時間であれば、特に限定されず、例えば、1分~数時間の範囲であればよい。 During mixing of each component, the temperature of the composition rises due to the influence of heat of dissolution or frictional heat and the thermal decomposition reaction of the metal compound (c) may start. It is preferable to carry out so that it may become about 60 degrees C or less, and it is more preferable to carry out, suppressing the temperature of a composition to about 40 degrees C or less. You may mix, cooling a composition as needed. The mixing time of each component is not particularly limited as long as each component is in a state of being uniformly mixed in the composition. For example, it may be in the range of 1 minute to several hours.
 本発明方法は、既に調整された原料組成物を使用してもよく、或いはアルキルアミン(a)、有機溶媒(b)、及び加熱により分解して単体金属又は合金を生成する金属化合物(c)を含有する原料組成物を調製する工程(例えば、(a)、(b)、及び(c)成分を混合する工程)を含み、この工程に引き続き、以下に説明する反応工程を行うこともできる。 The method of the present invention may use an already prepared raw material composition, or an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to form a single metal or alloy. Including a step of preparing a raw material composition containing (for example, a step of mixing the components (a), (b), and (c)), and following this step, the reaction step described below can also be performed. .
反応工程
 原料組成物を反応容器に連続的に導入することにより、連続的に金属化合物の熱分解反応が起こり、アルキルアミンに由来する皮膜を有する金属ナノ粒子が生成する。反応容器に原料組成物を連続的に導入する方法としては、発生する炭酸ガスの発生量を抑えながら、金属化合物の熱分解反応を効率的に進行する導入速度に調製することができる方法であれば、特に制限なく用いることができる。
By continuously introducing the raw material composition for the reaction process into the reaction vessel, a thermal decomposition reaction of the metal compound occurs continuously, and metal nanoparticles having a film derived from alkylamine are generated. As a method for continuously introducing the raw material composition into the reaction vessel, it is possible to adjust the introduction rate so that the thermal decomposition reaction of the metal compound proceeds efficiently while suppressing the amount of generated carbon dioxide. For example, it can be used without particular limitation.
 反応工程における原料組成物の反応容器への連続導入方法としては、貯蔵槽からの原料組成物の自由落下、加圧による反応容器への原料組成物の落液、各種ポンプを用いて原料組成物を反応容器へ導入する方法等を例示することができる。特に、組成物が高粘度である場合には、加圧による落液、又はチューブポンプによる導入が好適に用いられる。 The continuous introduction method of the raw material composition into the reaction vessel in the reaction step includes free fall of the raw material composition from the storage tank, dropping of the raw material composition into the reaction vessel by pressurization, raw material composition using various pumps The method etc. which introduce | transduce into a reaction container can be illustrated. In particular, when the composition has a high viscosity, liquid dropping by pressurization or introduction by a tube pump is preferably used.
 本発明方法は、反応容器へ導入された原料組成物を反応容器内の加熱面と接触した状態で熱分解反応させることが好ましい。
 原料組成物と加熱面との接触方法は特に限定されないが、例えば、原料組成物を加熱された反応容器の壁面を流下させる方法、シャワーやスプレーを用いて原料組成物を反応容器の加熱された壁面に滴下又は噴霧する方法などが挙げられる。また、反応容器内に、面を有する1又は複数の面部材(例えば、筒、盤など)を設けておき、その面部材の加熱された面上(例えば、加熱された円筒又は角筒の内面及び/又は外面上、円盤又は角盤の面上)に原料組成物を流下させたり、シャワーやスプレーを用いて滴下又は噴霧する方法も挙げられる。複数の筒状の面部材を備えるときは、それらを反応容器内に入れ子状に設置すればよい。
In the method of the present invention, the raw material composition introduced into the reaction vessel is preferably subjected to a thermal decomposition reaction in contact with the heating surface in the reaction vessel.
The contact method between the raw material composition and the heating surface is not particularly limited. For example, the raw material composition is heated in the reaction vessel by using a shower or spray to flow down the wall of the heated reaction vessel. The method of dripping or spraying on a wall surface etc. is mentioned. In addition, one or a plurality of surface members (for example, a cylinder, a board, etc.) having a surface are provided in the reaction container, and the surface of the surface member is heated (for example, the inner surface of a heated cylinder or square tube). And / or a method in which the raw material composition is allowed to flow down on the outer surface, the disk or the surface of the disk, or dropped or sprayed using a shower or spray. When a plurality of cylindrical surface members are provided, they may be installed in a nested manner in the reaction vessel.
 本発明の製造方法における反応工程では、反応容器に導入した原料組成物が加熱されることにより、金属化合物(c)の熱分解反応が起こり、アルキルアミンに由来する皮膜を有する金属ナノ粒子が生成する。
 反応工程において、金属化合物(c)の熱分解反応を効率よく行える点で、加熱された面上(例えば、反応容器の壁面上、反応容器内に設置された面部材の面上など)で膜を形成した状態の原料組成物を熱分解反応させることが好ましい。原料組成物を加熱された壁面で膜を形成させる方法は、連続的に反応させるために、原料組成物が反応容器の加熱された壁面で膜を形成した状態で流動できる方法であればよい。
 本発明において、「原料組成物が加熱された面上で膜を形成した状態」には、面上に連続的に膜を形成した状態、部分的に膜が形成されていない部分があり即ち不連続に膜が形成された状態、斑点状に膜が形成された状態などが含まれる。また、膜厚が均一な場合と不均一な場合が含まれる。
In the reaction step in the production method of the present invention, when the raw material composition introduced into the reaction vessel is heated, a thermal decomposition reaction of the metal compound (c) occurs, and metal nanoparticles having a film derived from alkylamine are generated. To do.
In the reaction step, the film is formed on the heated surface (for example, on the wall surface of the reaction vessel, on the surface of the surface member installed in the reaction vessel, etc.) in that the thermal decomposition reaction of the metal compound (c) can be performed efficiently. It is preferable to subject the raw material composition in a state of forming a thermal decomposition reaction. The method for forming the film on the heated wall surface of the raw material composition may be any method as long as the raw material composition can flow in a state where the film is formed on the heated wall surface of the reaction vessel.
In the present invention, the “state in which a film is formed on the surface on which the raw material composition is heated” includes a state in which a film is continuously formed on the surface and a portion in which no film is partially formed. A state in which a film is continuously formed, a state in which a film is formed in a spot shape, and the like are included. Moreover, the case where a film thickness is uniform and the case where it is non-uniform | heterogenous are included.
 加熱された面上における原料組成物の厚みは、原料組成物中の金属化合物(c)が、加熱された壁面に接触した直後に熱分解反応温度に達する程度の膜の厚みであればよく、反応温度や、原料組成物の組成等に応じて適宜調整することができる。膜厚は、面上での原料組成物の落下速度、膜形成方法などを選択することにより調整できる。本発明においては、膜の厚みは、例えば、約0.1μm以上約5,000μm以下の範囲であればよく、好ましくは約0.1μm以上約2,000μm以下の範囲である。 The thickness of the raw material composition on the heated surface may be a film thickness that reaches the thermal decomposition reaction temperature immediately after the metal compound (c) in the raw material composition contacts the heated wall surface, It can adjust suitably according to reaction temperature, the composition of a raw material composition, etc. The film thickness can be adjusted by selecting the dropping speed of the raw material composition on the surface, the film forming method, and the like. In the present invention, the thickness of the film may be, for example, in the range of about 0.1 μm to about 5,000 μm, and preferably in the range of about 0.1 μm to about 2,000 μm.
 加熱された面上に原料組成物の膜を形成させる態様として、原料組成物を反応容器の加熱された壁面上や反応容器内に設置した面状部材の面上を自然に流下させ、更にワイパーブレード等を用いてワイピングすることにより膜を形成させる方式(ワイパー式)、原料組成物を反応容器の加熱された壁面上や反応容器内に設置した面状部材の面上を自然に流下させ、スクレーパー等によってならすことにより膜を形成させる方式(スクレーパー式)、回転する円盤表面に原料組成物を伝い流し、膜を形成させる方式(回転式)、又は相対回転する外筒(反応容器であってもよい)と内筒との間隙に間隙厚の膜を形成させる方式(回転式)、外筒と内筒の間の両壁に遠心力で膜を形成させる方式(遠心式)等を例示することができる。中でも、加熱された面上で均一な厚さの原料組成物の膜を形成でき、熱分解反応を効率的に進行させることができる点で、ワイパー式、回転式、遠心式による方式が好ましく、ワイパー式による方式がより好ましい。 As a mode of forming a film of the raw material composition on the heated surface, the raw material composition is allowed to flow down naturally on the heated wall surface of the reaction vessel or on the surface of the planar member installed in the reaction vessel, and further the wiper A method of forming a film by wiping with a blade or the like (wiper type), the raw material composition is allowed to flow down naturally on the heated wall surface of the reaction vessel or on the surface of the planar member installed in the reaction vessel, A method for forming a film by leveling with a scraper (scraper type), a method in which a raw material composition is transferred to the surface of a rotating disk to form a film (rotary type), or a relative rotating outer cylinder (reaction vessel And a method of forming a film having a gap thickness between the inner cylinder and the inner cylinder (rotary type), a system of forming a film by centrifugal force on both walls between the outer cylinder and the inner cylinder (centrifugal type), etc. be able to. Among them, a method of a wiper type, a rotary type, a centrifugal type is preferable in that a film of a raw material composition having a uniform thickness can be formed on a heated surface, and a thermal decomposition reaction can be efficiently advanced. A wiper system is more preferable.
 ワイパー式やスクレーパー式として、回転式又は往復式のワイパーブレードやスクレーパー等を用いて、加熱された壁面上を自然に流下する原料組成物、又はスプレーやシャワーを用いて壁面に滴下若しくは噴霧された原料組成物を均一な膜にする方式、回転又はスライド可能な加熱面に原料組成物を流下し、固定式のワイパーブレード又はスクレーパー等によって均一な膜にする方法等を例示することができる。中でも、加熱された面上で均一な膜を効率的に形成させることができ、熱分解反応を効率よく進行できる点で、加熱された面を自然に流下する原料組成物を回転式ワイパーブレードを用いて均一な膜に形成する方法が好ましい。反応に用いられるワイパーブレードやスクレーパーの材質は、反応容器内において組成物による腐食や熱による変形が生じないものであれば、特に限定されない。 As a wiper type or scraper type, using a rotary or reciprocating wiper blade or scraper, etc., the raw material composition that naturally flows down on the heated wall surface, or dripped or sprayed on the wall surface using a spray or shower Examples thereof include a method of forming the raw material composition into a uniform film, a method of flowing the raw material composition onto a rotatable or slidable heating surface, and forming a uniform film with a fixed wiper blade or a scraper. Above all, a raw material composition that naturally flows down the heated surface can be used with a rotary wiper blade in that a uniform film can be efficiently formed on the heated surface and the thermal decomposition reaction can proceed efficiently. A method of forming a uniform film by using is preferable. The material of the wiper blade or scraper used for the reaction is not particularly limited as long as it does not cause corrosion or heat deformation due to the composition in the reaction vessel.
 原料組成物の膜を形成する他の態様として、反応容器の加熱された壁面に沿って原料組成物を自然に流下させて膜を形成させる方式(流下式)、反応容器内に傾斜させて設置した面状部材の面上に原料組成物を自然に流下させて膜を形成させる方式(傾斜式)、スライド可能な加熱面に沿って原料組成物を流下させながら加熱面をスライドさせて、この加熱面上に膜を形成させる方式(スライド式)等を例示することができる。
 本発明において「流下」とは、重力に従って下方(垂直下方又は斜め下方)に流動することを意味する。
As another mode of forming a film of the raw material composition, a method of forming a film by naturally flowing the raw material composition along the heated wall surface of the reaction vessel (flowing type), inclining the reaction composition in the reaction vessel A method in which the raw material composition is naturally allowed to flow down on the surface of the planar member to form a film (tilt type), and the heating surface is slid while the raw material composition is allowed to flow along the slidable heating surface. A method of forming a film on the heating surface (slide type) can be exemplified.
In the present invention, “flowing down” means flowing downward (vertically downward or diagonally downward) according to gravity.
 反応容器の加熱された壁面に沿って原料組成物を自然に流下させて膜を形成させる方式(流下式)として、反応容器の加熱された壁面の上方から原料組成物を膜状に流下させる方式、原料組成物をスプレーやシャワーを用いて壁面に滴下又は噴霧させ、加熱面に膜を形成させる方式等を例示することができる。 A system in which the raw material composition is allowed to flow naturally along the heated wall surface of the reaction vessel to form a film (flowing-down method), and the raw material composition is allowed to flow in a film form from above the heated wall surface of the reaction vessel. Examples include a method in which a raw material composition is dropped or sprayed on a wall surface using a spray or shower to form a film on the heating surface.
 反応容器内に傾斜させて設置した面上に原料組成物を自然に流下させて膜を形成させる方式(傾斜式)として、傾斜角をつけて階層状に設置した盤状部材、傾斜角をつけて設置した複数の柱状部材、又は1若しくは複数のコイル状部材に沿って、原料組成物を上方から流下させる方式等を例示できる。また、管状等の反応容器を傾けた状態で設置し、この反応容器の加熱された壁面に沿って原料組成物を流下させる方式、加熱面を円柱状又は球状等の曲面とし、この曲面に沿って上方から流下させる方法等を例示することができる。
 反応容器内に設置する面状部材の面の傾斜角や、反応容器の壁面を傾斜させる場合の傾斜角は、流下する原料組成物中の金属化合物(c)が完全に熱分解反応する速度で原料組成物が流下する傾斜角に調整すればよく、特に制限されない。この傾斜角は、水平に対して約1~90度の範囲であればよく、好ましくは、約15~90度の範囲である。
 原料組成物を反応容器の加熱された壁面で膜を形成させることにより、金属化合物(c)を効率的に熱分解反応させて、効率よく金属ナノ粒子を得ることができる。
As a method of forming a film by allowing the raw material composition to flow down naturally on the surface installed in a reaction vessel (inclined type), a plate-like member installed in a hierarchy with an inclined angle, an inclined angle is added A method of causing the raw material composition to flow down from above along a plurality of columnar members or one or a plurality of coil-shaped members can be exemplified. Also, a reaction vessel such as a tube is installed in an inclined state, and the raw material composition is allowed to flow down along the heated wall surface of the reaction vessel. The heating surface is a curved surface such as a columnar shape or a spherical shape. And a method of flowing down from above.
The inclination angle of the surface of the planar member installed in the reaction vessel and the inclination angle in the case of inclining the reaction vessel wall surface are the rates at which the metal compound (c) in the flowing raw material composition completely undergoes a thermal decomposition reaction. What is necessary is just to adjust to the inclination | tilt angle which a raw material composition flows down, and it does not restrict | limit in particular. The inclination angle may be in the range of about 1 to 90 degrees with respect to the horizontal, and is preferably in the range of about 15 to 90 degrees.
By forming a film of the raw material composition on the heated wall surface of the reaction vessel, the metal compound (c) can be efficiently thermally decomposed to obtain metal nanoparticles efficiently.
 本発明の反応工程に用いる反応容器の内壁面材料は、原料化合物の連続導入により金属化合物(c)を熱分解に必要な温度まで加熱することができ、熱分解反応により金属ナノ粒子を連続的に生成させる事ができるものであれば、特に制限なく用いることができる。例えば、鉄、鋼(特に、ステンレス鋼)、ガラス、又は鉄、鋼、若しくはステンレス鋼の面(反応容器内面)上にガラスを焼き付けたもの(例えば、鉄、鋼、又はステンレス鋼からなる筒状の内面にガラスライニングを施したもの)を例示することができる。 The inner wall material of the reaction vessel used in the reaction step of the present invention can heat the metal compound (c) to a temperature necessary for thermal decomposition by continuously introducing the raw material compound, and the metal nanoparticles are continuously formed by the thermal decomposition reaction. Anything can be used without particular limitation as long as it can be generated. For example, iron, steel (especially stainless steel), glass, or iron, steel, or stainless steel surface (reaction vessel inner surface) baked glass (eg, iron, steel, or stainless steel cylinder) And the inner surface of the glass lining).
 反応容器への原料組成物の導入速度は、反応容器の容量、反応に用いる原料組成物の成分及び粘度に応じて適宜調整することができ、加熱面上で組成物の熱分解反応が完了するような導入速度であれば良い。 The introduction rate of the raw material composition into the reaction vessel can be appropriately adjusted according to the capacity of the reaction vessel, the components of the raw material composition used for the reaction, and the viscosity, and the thermal decomposition reaction of the composition is completed on the heating surface. Such an introduction speed may be used.
 また、熱分解反応中のガス等の発生が多くなりすぎないように、原料組成物の導入速度を調整すればよい。反応容器への原料組成物の導入速度は、金属化合物(c)の熱分解反応により生じる1分間当たりのガス発生量が反応容器の容積を超えない範囲であることが好ましく、反応容器の容積の75%以下であることがより好ましく、反応容器の容積の50%以下であることがさらにより好ましい。上記範囲であれば、ガス排出速度が抑えられると共に、反応容器からの反応液の漏出が抑えられて、原料組成物の導入速度(時間当たりの反応量)を増加させても工業的に安全に製造することが可能である。 Further, the introduction rate of the raw material composition may be adjusted so that the generation of gas or the like during the thermal decomposition reaction does not increase excessively. The introduction rate of the raw material composition into the reaction vessel is preferably within a range in which the amount of gas generated per minute generated by the thermal decomposition reaction of the metal compound (c) does not exceed the volume of the reaction vessel. It is more preferably 75% or less, and even more preferably 50% or less of the volume of the reaction vessel. Within the above range, the gas discharge rate can be suppressed, and the leakage of the reaction solution from the reaction vessel can be suppressed. Even if the introduction rate of the raw material composition (reaction amount per hour) is increased, it is industrially safe. It is possible to manufacture.
 発生ガスとしては、金属蓚酸塩等の熱分解により生じる炭酸ガスの他、アルキルアミン由来の揮発分などがあり得る。しかし、発生ガスのほとんどは炭酸ガスであると考えられるため、本発明では、熱分解反応によって生じる炭酸ガス量をガス量とする。また、理想気体として気体の状態方程式(PV=nRT)を用いて、炭酸ガスの発生量を算出する。具体的には、P=ガス発生下の圧力(反応容器外部へ放出された際の体積として計算するため1気圧とする。)、V=発生したガスの体積、n=発生したガスのモル数(組成物中に蓚酸の金属塩を用いる場合、蓚酸の2倍モル当量となる)、R=気体定数、T=熱分解反応時の加熱温度(絶対温度)とする。 As the generated gas, there can be a volatile matter derived from alkylamine in addition to carbon dioxide gas generated by thermal decomposition of metal oxalate or the like. However, since most of the generated gas is considered to be carbon dioxide, in the present invention, the amount of carbon dioxide generated by the thermal decomposition reaction is used as the amount of gas. Further, the generation amount of carbon dioxide gas is calculated using a gas state equation (PV = nRT) as an ideal gas. Specifically, P = pressure under gas generation (1 atm for calculation as a volume when released to the outside of the reaction vessel), V = volume of generated gas, n = number of moles of generated gas. (When a metal salt of oxalic acid is used in the composition, it is twice the molar equivalent of oxalic acid), R = gas constant, and T = heating temperature (absolute temperature) during the pyrolysis reaction.
 反応工程における熱分解反応の反応温度としては、熱分解反応が連続的に進行し、金属ナノ粒子が連続的に生成する温度であればよく、具体的には、約250℃以下であればよく、より具体的には、約50℃以上約250℃以下であればよく、約100℃以上約240℃以下が好ましく、約120℃以上約240℃以下の範囲であることがより好ましい。上記温度範囲であれば、反応容器内で膜を形成した組成物を熱分解反応に付することにより、効率よく連続的に金属ナノ粒子を得ることができる。
 本発明において、反応温度は加熱機による加熱温度である。反応容器内の温度、反応容器壁又は反応容器内に設置した面状部材の面の温度は、加熱機による加熱温度と通常ほぼ一致する。
 また、反応時間は、目的とする量の金属ナノ粒子が得られるまでの時間を任意に設定できる。通常は、約数秒~数時間とすることができる。
The reaction temperature of the thermal decomposition reaction in the reaction step may be a temperature at which the thermal decomposition reaction proceeds continuously and metal nanoparticles are continuously generated. Specifically, it may be about 250 ° C. or less. More specifically, it may be about 50 ° C. or more and about 250 ° C. or less, preferably about 100 ° C. or more and about 240 ° C. or less, and more preferably about 120 ° C. or more and about 240 ° C. or less. If it is the said temperature range, a metal nanoparticle can be obtained efficiently and continuously by attaching | subjecting the composition which formed the film | membrane in reaction container to a thermal decomposition reaction.
In the present invention, the reaction temperature is a heating temperature by a heater. The temperature in the reaction vessel and the temperature of the reaction vessel wall or the surface of the planar member installed in the reaction vessel are usually almost the same as the heating temperature by the heater.
The reaction time can be arbitrarily set until a target amount of metal nanoparticles is obtained. Usually, it can be about several seconds to several hours.
精製工程
 上記反応工程において熱分解反応により生成した金属ナノ粒子は、有機溶媒(b)や未反応原料(アルキルアミンや脂肪酸等)を含む混合物として得られる。反応によって得られた混合物を精製することによって、目的とする物性を有する金属ナノ粒子を得ることができる。金属ナノ粒子の精製方法としては、フィルターろ過による固液分離方法、金属ナノ粒子と有機溶媒の比重差を利用した沈殿方法等を例示することができる。固液分離の具体的な方法として、遠心分離やサイクロン式、又はデカンタといった方法を例示することができる。また、精製する際には、低粘度にすることにより作業が改善され、また未反応物の除去を効率的に行える点で、混合物をアセトン、メタノール等の低沸点溶媒で希釈してもよい。
Purification step The metal nanoparticles produced by the thermal decomposition reaction in the above reaction step are obtained as a mixture containing the organic solvent (b) and unreacted raw materials (alkylamine, fatty acid, etc.). By refine | purifying the mixture obtained by reaction, the metal nanoparticle which has the target physical property can be obtained. Examples of the method for purifying the metal nanoparticles include a solid-liquid separation method by filter filtration and a precipitation method using the specific gravity difference between the metal nanoparticles and the organic solvent. As a specific method of solid-liquid separation, a method such as centrifugation, a cyclone method, or a decanter can be exemplified. Further, when purifying, the mixture may be diluted with a low-boiling solvent such as acetone or methanol in order to improve the work by reducing the viscosity and to efficiently remove unreacted substances.
(2)金属ナノ粒子
 上記説明した本発明方法により、アルキルアミン由来の皮膜を有する金属ナノ粒子が得られる。
 金属ナノ粒子の平均粒径は、反応条件や原料組成物の組成を適宜調整することで所望の値にすることができる。平均粒径は、例えば、約1nm~約200nm、中でも約1nm~約100nm、中でも約10nm~約60nmの範囲とすることができる。上記範囲であれば、導電性インクや導電ペーストに配合したときに分散性が良いため、溶媒の選択範囲が広くなる。また、上記範囲であれば、この金属ナノ粒子を配合した導電性インクや導電ペーストを比較的低温で熱処理しても、十分に低い体積抵抗値を有する回路が形成できるため、基板材料を広範囲から選択して使用できる。
 本発明において、金属ナノ粒子の平均粒径は、動的光散乱法で測定した値であり、具体的には、実施例で使用の装置を用いて測定した値である。
(2) Metal nanoparticles By the above-described method of the present invention, metal nanoparticles having an alkylamine-derived film can be obtained.
The average particle diameter of the metal nanoparticles can be set to a desired value by appropriately adjusting the reaction conditions and the composition of the raw material composition. The average particle size can be, for example, in the range of about 1 nm to about 200 nm, especially about 1 nm to about 100 nm, especially about 10 nm to about 60 nm. If it is the said range, since the dispersibility is good when it mix | blends with a conductive ink or a conductive paste, the selection range of a solvent becomes wide. In addition, within the above range, a circuit having a sufficiently low volume resistance value can be formed even if the conductive ink or conductive paste containing the metal nanoparticles is heat-treated at a relatively low temperature. You can select and use.
In the present invention, the average particle diameter of the metal nanoparticles is a value measured by a dynamic light scattering method, and specifically, a value measured using the apparatus used in the examples.
 本発明方法では、連続法で金属ナノ粒子を製造するため、炭酸ガスなどの揮発分の発生速度が抑えられており、その結果、金属ナノ粒子を工業スケールで製造することができる。 In the method of the present invention, since metal nanoparticles are produced by a continuous method, the generation rate of volatile components such as carbon dioxide gas is suppressed, and as a result, metal nanoparticles can be produced on an industrial scale.
(3)金属ナノ粒子の製造装置
 上記説明した本発明方法は、例えば、反応容器と、反応容器に付設された加熱装置と、上記説明した原料組成物を反応容器に連続的に供給する供給装置と、反応容器で生成した金属ナノ粒子を含む生成物を溜める生成物回収容器と、反応容器で発生した揮発分を回収する揮発分回収装置とを備える、平均粒径1nm以上200nm以下の金属ナノ粒子の製造装置を用いて実施することができる。
 上記加熱装置は、反応容器内の雰囲気を加熱するものであってもよく、反応容器壁を加熱するものであってもよい。また、本発明の装置は、反応容器内に、原料組成物の膜を形成するための面部材を備えることができ、その場合は、加熱装置は面部材を加熱するものとすればよい。
 揮発分を回収する揮発分回収装置は、揮発分の還流また分離による回収装置とすればよい。
 本発明の装置は、一般に使用されている薄膜蒸留装置や分子蒸留装置等を利用して作製できる。
 その他の構成、例えば、反応容器、面部材、原料組成物の膜を面上に形成させる装置、反応容器への原料組成物の連続導入装置などは、本発明方法について説明した通りである。
(3) Apparatus for producing metal nanoparticles The above-described method of the present invention includes, for example, a reaction vessel, a heating device attached to the reaction vessel, and a supply device that continuously supplies the above-described raw material composition to the reaction vessel. And a product recovery container for storing a product containing metal nanoparticles generated in the reaction container, and a volatile content recovery device for recovering the volatile matter generated in the reaction container. It can be carried out using a particle production apparatus.
The heating device may heat the atmosphere in the reaction vessel or may heat the reaction vessel wall. Moreover, the apparatus of this invention can be equipped with the surface member for forming the film | membrane of a raw material composition in reaction container, In that case, a heating apparatus should just heat a surface member.
The volatile content recovery device for recovering the volatile content may be a recovery device by reflux or separation of the volatile content.
The apparatus of the present invention can be produced using a generally used thin film distillation apparatus, molecular distillation apparatus, or the like.
Other configurations such as a reaction vessel, a surface member, a device for forming a film of the raw material composition on the surface, a continuous introduction device of the raw material composition into the reaction vessel, and the like are as described for the method of the present invention.
 また、本発明の装置は、必要に応じて、減圧装置、圧力調整装置、活性力線照射装置、外部光の遮蔽機構、不活性ガス充填装置、保温機構、冷却機構などを反応容器に付設することができる。
 本発明装置の一実施態様を図1に示す。この装置は、筒状の反応容器Rと、反応容器Rの容器壁に沿って原料組成物を連続的に供給する原料組成物供給装置2と、生成物回収槽3と、揮発分を冷却により液化して回収する揮発分回収装置4とを備える。反応容器Rには、反応容器Rを加熱するための熱交換器Hと、反応により生成したガスを熱交換器Hを介して外部に排出するための排気装置Pと、容器壁に沿って原料組成物の膜を形成するための回転可能な撹拌翼Wと、撹拌翼駆動器Mが付設されている。また、熱交換器Hと壁面を加熱するためのヒータhで覆われている。
In addition, the apparatus of the present invention attaches a pressure reducing device, a pressure adjusting device, an active force ray irradiation device, an external light shielding mechanism, an inert gas filling device, a heat retention mechanism, a cooling mechanism, and the like to the reaction vessel as necessary. be able to.
One embodiment of the device of the present invention is shown in FIG. This apparatus includes a cylindrical reaction vessel R, a raw material composition supply device 2 that continuously supplies the raw material composition along the vessel wall of the reaction vessel R, a product recovery tank 3, and a volatile component by cooling. And a volatile component recovery device 4 that liquefies and recovers. The reaction vessel R includes a heat exchanger H for heating the reaction vessel R, an exhaust device P for discharging the gas generated by the reaction to the outside through the heat exchanger H, and a raw material along the vessel wall A rotatable stirring blade W for forming a film of the composition and a stirring blade driver M are attached. Further, the heat exchanger H and the heater h for heating the wall surface are covered.
 以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.
(1)原料
 実施例及び比較例で用いた原料組成物の各成分を以下に示す。
(1) Each component of the raw material composition used in the raw material examples and comparative examples is shown below.
アルキルアミン(a)
a1:n-オクチルアミン(炭素数8、和光純薬工業株式会社製)
a2:n-ブチルアミン(炭素数4、和光純薬工業株式会社製)
Alkylamine (a)
a1: n-octylamine (carbon number 8, Wako Pure Chemical Industries, Ltd.)
a2: n-butylamine (4 carbon atoms, manufactured by Wako Pure Chemical Industries, Ltd.)
有機溶媒(b)
b1:3-メトキシ-1-ブタノール(沸点161℃、和光純薬工業株式会社製)
b2:トリエチレングリコールモノメチルエーテル(沸点249℃、和光純薬工業株式会社製)
Organic solvent (b)
b1: 3-methoxy-1-butanol (boiling point 161 ° C., manufactured by Wako Pure Chemical Industries, Ltd.)
b2: Triethylene glycol monomethyl ether (boiling point 249 ° C., manufactured by Wako Pure Chemical Industries, Ltd.)
金属化合物(c)
c1:蓚酸銀
 なお、蓚酸銀は特許文献4(特開2012-162767)に記載の方法により、合成した。
Metal compound (c)
c1: Silver oxalate Silver oxalate was synthesized by the method described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2012-162767).
脂肪酸(d)
d1:カプロン酸(炭素数6、和光純薬工業株式会社製)
Fatty acid (d)
d1: caproic acid (carbon number 6, manufactured by Wako Pure Chemical Industries, Ltd.)
(2)原料組成物の調製
 下記の表1に記載の量の各成分を秤量し、容器に投入した後、室温下にてマグネティックスターラーを用いて、約30分間攪拌することによって、原料組成物1~5を調製した。
 また、各組成物の粘度を(E型粘度計BROOKFIELD社製VISCOMETER DV-II+Pro、10rpm)により測定した。測定された各組成物の粘度を表1に示す。
(2) Preparation of raw material composition Each component of the amount shown in Table 1 below was weighed, put into a container, and then stirred for about 30 minutes using a magnetic stirrer at room temperature to obtain the raw material composition. 1-5 were prepared.
Further, the viscosity of each composition was measured by (E-type viscometer BROOKFIELD, VISCOMETER DV-II + Pro, 10 rpm). Table 1 shows the measured viscosity of each composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(3)金属ナノ粒子の生成反応
(実施例1)
 実施例1は、連続反応に用いる装置として、回転薄膜式の分子蒸留装置(柴田科学株式会社製 MS-300)を利用した。反応容器の容積と受液部の容積とを合わせた容積は約1.6Lとなった。装置の真空ポンプ取り付け部を開放し、発生したガスが放出されるようにした。反応容器内部に備え付けられたフッ素樹脂製ワイパーブレードの回転速度を60rpmとし、反応容器外部に装着したリボンヒーターの温度は180℃とした。これにより、反応容器壁の温度も約180℃となった。
 表1に示す原料組成物1を用い、反応容器へチューブポンプ(東京理化器械株式会社製 ペリスタルティックチューブポンプ MP-1000)を用い、導入速度1.5g/分で反応容器に導入し、20分間反応を継続させた。原料組成物1を反応容器へ約30g連続投入し、熱分解反応により、金属ナノ粒子が生成するか否かを確認した。
(3) Formation reaction of metal nanoparticles
Example 1
In Example 1, a rotating thin film molecular distillation apparatus (MS-300 manufactured by Shibata Kagaku Co., Ltd.) was used as an apparatus used for the continuous reaction. The total volume of the reaction vessel and the liquid receiving part was about 1.6 L. The vacuum pump attachment part of the apparatus was opened so that the generated gas was released. The rotational speed of the fluororesin wiper blade provided inside the reaction vessel was 60 rpm, and the temperature of the ribbon heater mounted outside the reaction vessel was 180 ° C. Thereby, the temperature of the reaction vessel wall was also about 180 ° C.
Using the raw material composition 1 shown in Table 1, using a tube pump (Peristaltic tube pump MP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.), the reaction vessel was introduced into the reaction vessel at an introduction rate of 1.5 g / min for 20 minutes. The reaction was continued. About 30 g of the raw material composition 1 was continuously charged into the reaction vessel, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction.
 金属ナノ粒子の混合物が連続的に生成できているか否か(連続反応性の評価)については、金属ナノ粒子が連続的に生成した場合を「○」、金属ナノ粒子が連続的に生成しない場合を「×」とした。また、得られた金属ナノ粒子の重量から収率を、原料組成物の導入量から理想気体とした場合のガス発生量を算出した。結果を表2に示す。 Whether or not a mixture of metal nanoparticles can be continuously formed (evaluation of continuous reactivity) is indicated by “○” when the metal nanoparticles are continuously formed, and when the metal nanoparticles are not continuously formed. Was marked “x”. Further, the yield was calculated from the weight of the obtained metal nanoparticles, and the amount of gas generated when the ideal gas was determined from the amount of the raw material composition introduced was calculated. The results are shown in Table 2.
(実施例2)
 実施例2は、表1に示す原料組成物2を用いた以外は、実施例1と同じ方法で反応を実施した。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Example 2)
In Example 2, the reaction was performed in the same manner as in Example 1 except that the raw material composition 2 shown in Table 1 was used. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(実施例3)
 実施例3は、表1に示す原料組成物2を用い、実施例1で用いた分子蒸留装置(柴田科学株式会社製 MS-300)のワイパーブレードの回転を停止した状態で反応を実施した。原料組成物2の反応容器への導入は、チューブポンプ(東京理化器械株式会社製 ペリスタルティックチューブポンプ MP-1000)を用い、導入速度を1.0g/分とし、30分間反応を継続させた。組成物2を反応容器へ約30g連続投入し、熱分解反応により、金属ナノ粒子が生成するか否かを確認した。その他は、実施例1と同様の操作を行った。連続反応性の評価、収率、ガスの発生量を表2に示す。
Example 3
In Example 3, the raw material composition 2 shown in Table 1 was used, and the reaction was carried out while the rotation of the wiper blade of the molecular distillation apparatus (MS-300, manufactured by Shibata Kagaku Co., Ltd.) used in Example 1 was stopped. For introducing the raw material composition 2 into the reaction vessel, a tube pump (Peristaltic tube pump MP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.) was used, the introduction rate was 1.0 g / min, and the reaction was continued for 30 minutes. About 30 g of composition 2 was continuously charged into the reaction vessel, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction. The other operations were the same as in Example 1. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(実施例4)
 実施例4は、表1に示す原料組成物3を用い、実施例3と同じ方法で反応を実施した。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Example 4)
In Example 4, the raw material composition 3 shown in Table 1 was used, and the reaction was carried out in the same manner as in Example 3. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(実施例5)
 実施例5は、直径20mm、長さ800mm、内部の体積が約0.25Lのガラス管を水平面から15度の傾斜を有する状態で固定し、反応容器とした。ガラス管の周囲に150℃となるよう設定したリボンヒーターを長さ500mmの範囲に巻き付け、表1の原料組成物2をチューブポンプにて1.0g/分の速度でこの反応容器へ導入し、30分間反応を継続させ、熱分解反応により金属ナノ粒子が生成するか否かを確認した。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Example 5)
In Example 5, a glass tube having a diameter of 20 mm, a length of 800 mm, and an internal volume of about 0.25 L was fixed in a state having an inclination of 15 degrees from a horizontal plane, thereby obtaining a reaction vessel. A ribbon heater set to 150 ° C. around a glass tube was wound around a length of 500 mm, and the raw material composition 2 in Table 1 was introduced into the reaction vessel at a rate of 1.0 g / min with a tube pump. The reaction was continued for 30 minutes, and it was confirmed whether or not metal nanoparticles were generated by the thermal decomposition reaction. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(比較例1)
 比較例1は、従来技術であるバッチ法(特許文献4に記載の方法)で金属ナノ粒子の反応を実施した。具体的には、表1の原料組成物2を用い、500mLガラスビーカーに表1に記載の分量で各成分を投入し、室温にてマグネティックスターラーで約30分間混合した。組成物の体積は、約82mLとなった。この混合物30g(約43mL)抜き取って300mLガラスビーカーに投入し、予め150℃に設定したホットスターラー(小池精密機器製作所製 HHE-19G-U)上にビーカーを設置し、攪拌及び加熱を開始した。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Comparative Example 1)
In Comparative Example 1, the reaction of metal nanoparticles was performed by a batch method (method described in Patent Document 4) which is a conventional technique. Specifically, using the raw material composition 2 in Table 1, each component was charged in a 500 mL glass beaker in the amount shown in Table 1, and mixed at room temperature with a magnetic stirrer for about 30 minutes. The composition volume was approximately 82 mL. 30 g (about 43 mL) of this mixture was extracted and placed in a 300 mL glass beaker, and the beaker was placed on a hot stirrer (HHE-19G-U manufactured by Koike Seimitsu Seisakusho) set in advance at 150 ° C., and stirring and heating were started. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(比較例2)
 比較例2は、表1に示す原料組成物4(アルキルアミン無添加)を用いて、実施例1と同じ方法で反応させた。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Comparative Example 2)
The comparative example 2 was made to react by the same method as Example 1 using the raw material composition 4 (no alkylamine addition) shown in Table 1. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(比較例3)
 比較例3は、表1に示す原料組成物5(有機溶媒無添加)を用いて、実施例1と同じ方法で反応を実施した。連続反応性の評価、収率、ガスの発生量を表2に示す。
(Comparative Example 3)
In Comparative Example 3, the reaction was carried out in the same manner as in Example 1 using the raw material composition 5 (no organic solvent added) shown in Table 1. Table 2 shows evaluation of continuous reactivity, yield, and amount of gas generated.
(4)金属ナノ粒子の精製
 各実施例及び比較例において反応容器から回収された混合液を遠沈管に入れ、混合液と等量程度の洗浄液(メタノール)を添加し、ボルテックスミキサーで分散、混合させた後、遠心分離機(日立工機製 himac 小型冷却遠心機CF7D2)にて3000rpm、1分処理することで銀ナノ粒子を遠沈させ、上澄み液を除去することにより金属ナノ粒子を精製した。この工程を3回繰り返すことにより金属ナノ粒子を精製した。
(4) Purification of metal nanoparticles In each of the examples and comparative examples, the mixed solution recovered from the reaction vessel is put into a centrifuge tube, and an equal amount of washing solution (methanol) is added to the mixed solution, and dispersed and mixed with a vortex mixer. Then, the silver nanoparticles were spun down by processing at 3000 rpm for 1 minute in a centrifuge (Himac small cooling centrifuge CF7D2 manufactured by Hitachi Koki Co., Ltd.), and the supernatant was removed to purify the metal nanoparticles. The metal nanoparticles were purified by repeating this process three times.
(5)金属ナノ粒子の評価
 各反応によって得られた金属ナノ粒子を用いて、特許文献4に記載の方法により金属ナノ微子分散インクを調製した。具体的には、ブタノール:オクタン混合溶媒(体積比1:4)と、得られた銀ナノ粒子(約6.5~6.9g)とを(50mlサンプル瓶)に等量投入し、室温下マグネティックスターラーにて攪拌混合することで、50wt%の金属ナノ粒子分散インク(約13~13.8g)を得た。
(5) Evaluation of Metal Nanoparticles Metal nanoparticle-dispersed ink was prepared by the method described in Patent Document 4 using metal nanoparticles obtained by each reaction. Specifically, an equal volume of butanol: octane mixed solvent (volume ratio 1: 4) and the obtained silver nanoparticles (about 6.5 to 6.9 g) were put into (50 ml sample bottle) at room temperature. By stirring and mixing with a magnetic stirrer, a 50 wt% metal nanoparticle-dispersed ink (about 13 to 13.8 g) was obtained.
 得られた各金属ナノ粒子分散インクを用い、動的光散乱法粒度分布測定装置(スペクトリス製 ゼータサイザーナノ)にて、得られた各金属ナノ粒子の平均粒径を測定した。また、各金属ナノ粒子分散インクをPETフィルム(帝人化成製 HK188G-AB500H、60×60mmにカットしたもの)上にスピンコート(3000rpm、30秒)したものを、100℃、30分熱処理した。この時の塗膜の厚みをレーザー顕微鏡(レーザーテック製 OPTELICS HYBRID)にて測定し、5回測定の平均塗膜厚を得た。得られた平均塗膜厚を用い、導電率計(三菱化学アナリテック製 ロレスターAX)によって体積抵抗値を求め、導電性を評価した。評価結果を表2に示す。 Using the obtained metal nanoparticle-dispersed ink, the average particle size of each metal nanoparticle obtained was measured with a dynamic light scattering particle size distribution analyzer (Spectres Nano, manufactured by Spectris). Each metal nanoparticle-dispersed ink was spin-coated (3000 rpm, 30 seconds) on a PET film (manufactured by Teijin Chemicals, HK188G-AB500H, cut to 60 × 60 mm), and heat-treated at 100 ° C. for 30 minutes. The thickness of the coating film at this time was measured with a laser microscope (Lasertec OPTELICS HYBRID) to obtain an average coating thickness of five measurements. Using the obtained average coating thickness, a volume resistance value was obtained by a conductivity meter (Lorestar AX, manufactured by Mitsubishi Chemical Analytech), and conductivity was evaluated. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1において、原料組成物の反応容器への最初の投入から金属ナノ粒子を含む混合物が回収されるまでに約2分間を要した。また、投入停止後、銀ナノ粒子を含む混合物の落液が停止したのも約2分後であった。その間、連続的に金属ナノ粒子を含む混合物が得られた。従って、反応容器内部の滞留時間は約2分であった。また、投入速度より時間当たりの反応量は、約1.5g/分と見積もられた。従って、時間当たりの炭酸ガスの発生量は0.13L/分、すなわち反応容器の容積の8.0%であった。従って、後述する比較例1に示すバッチ式の反応と比較して、熱分解反応による炭酸ガスの発生量を制御できたと言える。得られた混合物を上述した精製方法により精製し、収率を計算したところ、組成物30gから生成する金属ナノ粒子の理論値約7.4gに対して、約6.9gの金属ナノ粒子が得られた。 In Example 1, it took about 2 minutes from the initial charging of the raw material composition into the reaction vessel until the mixture containing metal nanoparticles was recovered. Moreover, it was after about 2 minutes that the dropping of the mixture containing the silver nanoparticles stopped after the stop of the charging. Meanwhile, a mixture containing metal nanoparticles continuously was obtained. Therefore, the residence time inside the reaction vessel was about 2 minutes. Moreover, the reaction amount per hour was estimated to be about 1.5 g / min from the charging speed. Therefore, the amount of carbon dioxide generated per hour was 0.13 L / min, that is, 8.0% of the reaction vessel volume. Therefore, it can be said that the amount of carbon dioxide generated by the thermal decomposition reaction could be controlled as compared with the batch reaction shown in Comparative Example 1 described later. The obtained mixture was purified by the above-described purification method, and the yield was calculated. As a result, about 6.9 g of metal nanoparticles were obtained with respect to the theoretical value of about 7.4 g of metal nanoparticles generated from 30 g of the composition. It was.
 実施例2においては、有機溶媒(b)として3-メトキシ-1-ブタノールを用いた。その結果、原料組成物の流動性が向上し、反応容器への導入が容易となった。しかし、実施例1と比較してやや収率が低下した。これは、有機溶媒の沸点が、実施例1で用いたトリエチレングリコールモノメチルエーテルと比較して低かったため、回転式ワイパーブレードで薄膜化された際の組成物の流動性が失われ、反応容器の内部への固着量が増加したためと推測される。また、時間当たりの炭酸ガスの発生量は0.13L/分、すなわち反応容器の容積の8.0%であった。 In Example 2, 3-methoxy-1-butanol was used as the organic solvent (b). As a result, the fluidity of the raw material composition was improved, and introduction into the reaction vessel was facilitated. However, the yield was slightly reduced as compared with Example 1. This is because the boiling point of the organic solvent was lower than that of triethylene glycol monomethyl ether used in Example 1, so that the fluidity of the composition when thinned with a rotary wiper blade was lost, and the reaction vessel This is presumed to be due to an increase in the amount of adhesion to the inside. The amount of carbon dioxide generated per hour was 0.13 L / min, that is, 8.0% of the volume of the reaction vessel.
 実施例3においては、回転式ワイパーブレードの回転を停止した状態で原料組成物を反応容器へ導入した。結果、反応容器内の加熱面と組成物が効率的に反応し、壁面への組成物及び生成物の付着が起こらなかった。なお、回転式ワイパーブレードで薄膜化した場合と比較して、組成物が熱分解温度に達するまで、やや長くなるため、反応容器への組成物の導入速度は回転式ワイパーを用いた場合より、若干抑制することが必要であった。結果、時間当たりのガス発生量は0.09L/分すなわち反応容器の容積の5.3%であり、この方法でもガス発生の制御が可能であった。 In Example 3, the raw material composition was introduced into the reaction vessel while the rotation of the rotary wiper blade was stopped. As a result, the heating surface in the reaction vessel and the composition reacted efficiently, and the composition and product did not adhere to the wall surface. In addition, compared with the case of thinning with a rotary wiper blade, because the composition is slightly longer until the thermal decomposition temperature is reached, the introduction rate of the composition into the reaction vessel is higher than when using a rotary wiper, Some suppression was necessary. As a result, the amount of gas generated per hour was 0.09 L / min, that is, 5.3% of the volume of the reaction vessel, and gas generation could also be controlled by this method.
 実施例4においては、実施例3において、原料組成物を組成物3に変更し反応を行った。その結果、実施例3と比較して若干の体積抵抗値の増加が見られた。これは、組成物に脂肪酸(d)が含有されないために、金属ナノ粒子の導電性インク中における分散性が低下したことで形成された塗膜の物性に影響したためと考えられる。なお、この際の時間当たりのガス発生量は0.09L/分すなわち反応容器の容積の5.3%であった。 In Example 4, the reaction was carried out by changing the raw material composition to the composition 3 in Example 3. As a result, a slight increase in volume resistance value was observed as compared with Example 3. This is thought to be because the fatty acid (d) was not contained in the composition, which affected the physical properties of the coating film formed by the reduced dispersibility of the metal nanoparticles in the conductive ink. At this time, the amount of gas generated per hour was 0.09 L / min, that is, 5.3% of the volume of the reaction vessel.
 実施例5においては、実施例1~4で使用した装置ではなく、傾斜させたガラス管を加熱したものを反応器とし、これに組成物を導入した。結果、導入開始から最初の生成物が回収されるまで約3分を要した。これは、加熱面に導入された組成物が下流に移動する際に加熱面が垂直である場合よりも流速が遅くなり、さらにはワイパーブレードで強制的に薄膜化されなかったため、装置内の滞留時間は実施例1~4と比較して長くなった。また、滞留時間が長い為に実施例1~4と比較して低温である150℃であっても熱分解反応が連続的に進行したものである。なお、この際の時間当たりのガス発生量は0.08L/分すなわち反応容器の容積の31.6%であった。 In Example 5, instead of the apparatus used in Examples 1 to 4, a heated glass tube was used as a reactor, and the composition was introduced into this reactor. As a result, it took about 3 minutes from the start of introduction until the first product was recovered. This is because when the composition introduced into the heating surface moves downstream, the flow rate is slower than when the heating surface is vertical, and the film is not forcibly thinned by the wiper blade. The time was longer than in Examples 1 to 4. Further, since the residence time is long, the thermal decomposition reaction progresses continuously even at 150 ° C., which is a lower temperature than in Examples 1 to 4. At this time, the amount of gas generated per hour was 0.08 L / min, that is, 31.6% of the volume of the reaction vessel.
 比較例1は、連続反応と比較するため、特許文献4(特開2012-162767)に記載の方法に準じてバッチにて反応を実施したものである。加熱開始から熱分解反応の開始までに約30分を要し、さらに熱分解反応の開始から終了(炭酸ガスの発生が停止したことを確認できる)までの時間は約4分間であった。組成物の量より、熱分解開始から終了までの時間当たりの炭酸ガス発生量は0.60L/分と実施例の約5~6倍の発生量、であり、また1分間で反応容器(300mLガラスビーカー)の容積の1.98倍の炭酸ガスが発生していると見積もられた。そのため、反応時に多量の炭酸ガスの噴出及び液面の上昇が見られた。より大スケールで反応させた際にも熱分解時間は大きく変化しないと考えられる為、時間当たりのガス発生量はより多くなると想定される。従って、このガス噴出及び液面上昇に耐えうる設備が必要であり、比較例1の方法は安全かつ低コストな工業的製造方法とは、なり難いことが確認された。なお、収率は小スケールであるため、連続反応と比較してやや高収率であった。 In Comparative Example 1, the reaction was performed in a batch according to the method described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2012-162767) for comparison with the continuous reaction. About 30 minutes were required from the start of heating to the start of the pyrolysis reaction, and the time from the start to the end of the pyrolysis reaction (can be confirmed that the generation of carbon dioxide was stopped) was about 4 minutes. From the amount of the composition, the amount of carbon dioxide generated per hour from the start to the end of the thermal decomposition was 0.60 L / min, which is about 5 to 6 times the amount generated in the example. It was estimated that carbon dioxide gas of 1.98 times the volume of the glass beaker was generated. Therefore, a large amount of carbon dioxide gas was ejected and the liquid level increased during the reaction. Since it is considered that the pyrolysis time does not change greatly even when the reaction is carried out on a larger scale, it is assumed that the amount of gas generated per hour is increased. Therefore, it is necessary to provide equipment capable of withstanding this gas ejection and liquid level rise, and it has been confirmed that the method of Comparative Example 1 is unlikely to be a safe and low-cost industrial manufacturing method. In addition, since the yield was a small scale, it was a slightly high yield compared with the continuous reaction.
 比較例2においては、アルキルアミン(a)を含有しない組成物を用いて反応させた。結果、金属ナノ粒子自体は連続的に生成し、この際の時間当たりのガス発生量は0.12L/分すなわち反応容器の容積の7.8%であった。たが、金属ナノ粒子の表面をアルキルアミンよりも強く金属ナノ粒子表面に結合し、塗膜形成後も残留してしまう脂肪酸(d)によって表面が被覆されてしまったため、導電性インクとして塗膜を形成した際に導電性が得られなかった。 In Comparative Example 2, the reaction was carried out using a composition containing no alkylamine (a). As a result, the metal nanoparticles themselves were continuously produced, and the amount of gas generated per hour at this time was 0.12 L / min, that is, 7.8% of the volume of the reaction vessel. However, the surface of the metal nanoparticle was bonded to the surface of the metal nanoparticle more strongly than the alkylamine, and the surface was coated with the fatty acid (d) that remained after the coating was formed. Conductivity was not obtained when forming.
 比較例3においては、有機溶媒(b)を用いずに組成物を反応容器への導入を行った。結果、組成物が徐々に増粘し、途中からチューブポンプでは、反応容器に導入することができなくなった。また、導入開始直後では反応容器に導入された組成物より金属ナノ粒子の生成反応を確認できたが、その後生成した金属ナノ粒子を含む混合物が、反応容器内で乾固してしまい、金属ナノ粒子を得ることができなかった。 In Comparative Example 3, the composition was introduced into the reaction vessel without using the organic solvent (b). As a result, the composition gradually thickened, and the tube pump could not be introduced into the reaction vessel from the middle. In addition, immediately after the start of introduction, the formation reaction of the metal nanoparticles was confirmed from the composition introduced into the reaction vessel, but the mixture containing the metal nanoparticles produced thereafter was dried and solidified in the reaction vessel. Particles could not be obtained.
 本発明の製造方法及び装置によれば、各種金属ナノ粒子を安全かつ低コストで連続的に製造することができる。また、得られた金属ナノ粒子は種々の導電性インク、若しくは導電性ペーストに用いることにより、各種印刷方法に適用でき、電気回路配線、電極形成に用いるプリンテッドエレクトロニクス向け材料として有効に利用することができる。さらには、導電性の接着剤、電磁波吸収体、光反射体等の各分野においても有効に利用することができる。 According to the production method and apparatus of the present invention, various metal nanoparticles can be continuously produced safely and at low cost. In addition, the obtained metal nanoparticles can be applied to various printing methods by using them in various conductive inks or conductive pastes, and can be effectively used as printed electronics materials used for electric circuit wiring and electrode formation. Can do. Furthermore, it can be effectively used in various fields such as conductive adhesives, electromagnetic wave absorbers, and light reflectors.

Claims (14)

  1.  アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金が生成する金属化合物(c)を含有する原料組成物を連続的に反応容器に導入し、反応容器内で金属化合物(c)の熱分解反応を進行させる反応工程を含むことを特徴とする平均粒径1nm以上200nm以下の金属ナノ粒子の連続的製造方法。 A raw material composition containing an alkylamine (a), an organic solvent (b), and a metal compound (c) that is decomposed by heating to produce a single metal or an alloy is continuously introduced into the reaction vessel, and the metal is contained in the reaction vessel. A process for continuously producing metal nanoparticles having an average particle diameter of 1 nm or more and 200 nm or less, comprising a reaction step of causing a thermal decomposition reaction of the compound (c).
  2.  金属化合物(c)が、蓚酸金属塩である請求項1に記載の製造方法。 The production method according to claim 1, wherein the metal compound (c) is a metal salt of oxalate.
  3.  熱分解反応の温度が、250℃以下である請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the temperature of the thermal decomposition reaction is 250 ° C or lower.
  4.  有機溶媒(b)が、常圧下での沸点が150℃以上350℃以下、かつ常圧下20℃の水に対して1g/L以上溶解するものであり、原料組成物中の有機溶媒(b)の含有量が、金属化合物(c)100重量部に対して、50重量部以上500重量部以下である請求項1~3のいずれかに記載の製造方法。 The organic solvent (b) has a boiling point of 150 ° C. or more and 350 ° C. or less under normal pressure and 1 g / L or more in water at 20 ° C. under normal pressure, and the organic solvent (b) in the raw material composition The production method according to any one of claims 1 to 3, wherein the content of is from 50 parts by weight to 500 parts by weight with respect to 100 parts by weight of the metal compound (c).
  5.  原料組成物中におけるアルキルアミン(a)の含有量が、金属化合物(c)の物質量(mol)に対して、1当量以上10当量以下である請求項1~4のいずれかに記載の製造方法。 The production according to any one of claims 1 to 4, wherein the content of the alkylamine (a) in the raw material composition is 1 equivalent or more and 10 equivalents or less with respect to the substance amount (mol) of the metal compound (c). Method.
  6.  原料組成物が、さらに、脂肪酸(d)を含有する請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material composition further contains a fatty acid (d).
  7.  原料組成物中における脂肪酸(d)とアルキルアミン(a)の含有量の合計の物質量が、金属化合物(c)の物質量(mol)に対して、1当量以上10当量以下である請求項6に記載の製造方法。 The total amount of the fatty acid (d) and alkylamine (a) in the raw material composition is 1 equivalent to 10 equivalents relative to the amount (mol) of the metal compound (c). 6. The production method according to 6.
  8.  反応工程において、反応容器内の加熱面上で原料組成物が膜を形成した状態で熱分解反応を進行させる請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein in the reaction step, the thermal decomposition reaction proceeds with the raw material composition forming a film on the heating surface in the reaction vessel.
  9.  上記加熱面が反応容器の内壁面である請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the heating surface is an inner wall surface of the reaction vessel.
  10.  原料組成物を、反応容器内の加熱面を自然流下させることにより膜を形成させる請求項8又は9に記載の製造方法。 The production method according to claim 8 or 9, wherein a film is formed by allowing the raw material composition to naturally flow down the heating surface in the reaction vessel.
  11.  反応容器内部で原料組成物を、反応容器の加熱された壁面を自然流下させ、更にワイパーブレードを用いてワイピングすることにより、膜を形成させることを特徴とする請求項9又は10に記載の製造方法。 The process according to claim 9 or 10, wherein the film is formed by allowing the raw material composition to naturally flow down the heated wall surface of the reaction vessel inside the reaction vessel and further wiping with a wiper blade. Method.
  12.  さらに、反応工程で生成した金属ナノ粒子を精製する工程を含む、請求項1~11のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 11, further comprising a step of purifying the metal nanoparticles produced in the reaction step.
  13.  反応容器と、反応容器に付設された加熱装置と、アルキルアミン(a)、有機溶媒(b)、及び加熱により分解し単体金属又は合金が生成する金属化合物(c)を含有する原料組成物を反応容器に連続的に供給する供給装置と、反応容器で生成した金属ナノ粒子を含む生成物を溜める生成物回収容器と、反応容器で発生した揮発分を回収する揮発分回収装置とを備える、平均粒径1nm以上200nm以下の金属ナノ粒子の製造装置。 A raw material composition containing a reaction vessel, a heating device attached to the reaction vessel, an alkylamine (a), an organic solvent (b), and a metal compound (c) that decomposes by heating to produce a single metal or an alloy. A supply device that continuously supplies the reaction vessel; a product recovery vessel that stores a product containing metal nanoparticles generated in the reaction vessel; and a volatile content recovery device that recovers volatile matter generated in the reaction vessel. An apparatus for producing metal nanoparticles having an average particle diameter of 1 nm to 200 nm.
  14.  請求項1~12のいずれかに記載の方法により得られる平均粒径1nm以上200nm以下の金属ナノ粒子。 Metal nanoparticles having an average particle size of 1 nm to 200 nm obtained by the method according to any one of claims 1 to 12.
PCT/JP2014/071628 2013-08-21 2014-08-19 Method for continuously producing metal nanoparticles WO2015025837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532860A JP6365544B2 (en) 2013-08-21 2014-08-19 Continuous production method of metal nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171020 2013-08-21
JP2013171020 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025837A1 true WO2015025837A1 (en) 2015-02-26

Family

ID=52483611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071628 WO2015025837A1 (en) 2013-08-21 2014-08-19 Method for continuously producing metal nanoparticles

Country Status (3)

Country Link
JP (1) JP6365544B2 (en)
TW (1) TWI635511B (en)
WO (1) WO2015025837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185728A1 (en) * 2015-05-20 2016-11-24 国立大学法人山形大学 Method for manufacturing silver nanoparticle dispersion and method for manufacturing silver nanoparticle ink
CN115041691A (en) * 2022-07-19 2022-09-13 陕西有色榆林新材料集团有限责任公司 Preparation method and preparation device of low-oxygen aluminum and aluminum alloy powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294937A (en) * 1987-05-27 1988-12-01 Stanley Electric Co Ltd Production of superfine particle and equipment thereof
JPH0693316A (en) * 1991-04-08 1994-04-05 Mitsubishi Gas Chem Co Inc Production of extremely fine copper powder
JP2005246339A (en) * 2004-03-08 2005-09-15 Masayoshi Murata Method and apparatus for manufacturing nanoparticle
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle
KR20090019781A (en) * 2006-04-12 2009-02-25 나노마스 테크놀러지스, 인코포레이티드 Nanoparticles, methods of making, and applications using same
KR100956684B1 (en) * 2007-10-26 2010-05-10 삼성전기주식회사 Manufacturing apparatus of nano-metal
JP6241908B2 (en) * 2011-02-04 2017-12-06 国立大学法人山形大学 Coated fine metal particles and production method thereof
JP6037494B2 (en) * 2012-01-11 2016-12-07 国立大学法人山形大学 Silver nanoparticle production method, silver nanoparticle, and silver coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294937A (en) * 1987-05-27 1988-12-01 Stanley Electric Co Ltd Production of superfine particle and equipment thereof
JPH0693316A (en) * 1991-04-08 1994-04-05 Mitsubishi Gas Chem Co Inc Production of extremely fine copper powder
JP2005246339A (en) * 2004-03-08 2005-09-15 Masayoshi Murata Method and apparatus for manufacturing nanoparticle
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185728A1 (en) * 2015-05-20 2016-11-24 国立大学法人山形大学 Method for manufacturing silver nanoparticle dispersion and method for manufacturing silver nanoparticle ink
JPWO2016185728A1 (en) * 2015-05-20 2018-04-26 国立大学法人山形大学 Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink
US20180354031A1 (en) * 2015-05-20 2018-12-13 National University Corporation Yamagata University Method for manufacturing silver nanoparticle dispersion and method for manufacturing silver nanoparticle ink
US10821506B2 (en) 2015-05-20 2020-11-03 National University Corporation Yamagata University Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink
CN115041691A (en) * 2022-07-19 2022-09-13 陕西有色榆林新材料集团有限责任公司 Preparation method and preparation device of low-oxygen aluminum and aluminum alloy powder

Also Published As

Publication number Publication date
JP6365544B2 (en) 2018-08-01
TWI635511B (en) 2018-09-11
TW201519258A (en) 2015-05-16
JPWO2015025837A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Yang et al. Metal particle-free inks for printed flexible electronics
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
US10214656B2 (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
Wu et al. Direct ink-jet printing of silver nitrate–silver nanowire hybrid inks to fabricate silver conductive lines
JP6673352B2 (en) Composition for producing metal nanoparticles
KR101526232B1 (en) Method for production of silver fine powder covered with organic substance, and silver fine powder
JP6212634B2 (en) Metal nanoparticle dispersion
JP2009161808A (en) Silver fine powder, silver ink, silver paint and method for producing them
WO2011126706A2 (en) Printable materials and methods of manufacture thereof
KR20150099595A (en) A method to prepare a metallic nanoparticle dispersion
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP6365544B2 (en) Continuous production method of metal nanoparticles
JP2016145299A (en) Conductive material and conductor using it
JP6414085B2 (en) Method for producing metal nanoparticles
JP2017048366A (en) Stabilized nanoparticles, dispersions of the stabilized nanoparticles, and methods of application
JP6152744B2 (en) Method for producing metal nanoparticles
JP2009215502A (en) Silver ink containing alicyclic and aromatic hydrocarbon as solvent
WO2019111795A1 (en) Inkjet printing ink
JP6902321B2 (en) Method for manufacturing copper film and conductor obtained by it
TWI544498B (en) Phase change ink compositions and conductive patterns formed therefrom
JP2006169557A (en) Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method
JP2009091634A (en) Method for producing silver fine powder
JP2020167167A (en) Conductor forming composition, method for producing conductor, conductor and device
JP2016037628A (en) Process for making copper-containing particle into conductor, method for manufacturing conductor, and conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838103

Country of ref document: EP

Kind code of ref document: A1