WO2015021782A1 - 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 - Google Patents
一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 Download PDFInfo
- Publication number
- WO2015021782A1 WO2015021782A1 PCT/CN2014/075083 CN2014075083W WO2015021782A1 WO 2015021782 A1 WO2015021782 A1 WO 2015021782A1 CN 2014075083 W CN2014075083 W CN 2014075083W WO 2015021782 A1 WO2015021782 A1 WO 2015021782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- dam
- artificial
- coal
- surrounding rock
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000004567 concrete Substances 0.000 claims abstract description 48
- 239000011435 rock Substances 0.000 claims abstract description 40
- 238000010276 construction Methods 0.000 claims description 12
- 229910052902 vermiculite Inorganic materials 0.000 claims description 7
- 235000019354 vermiculite Nutrition 0.000 claims description 7
- 239000010455 vermiculite Substances 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 3
- 239000011378 shotcrete Substances 0.000 claims description 3
- 230000008093 supporting effect Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 2
- 238000005065 mining Methods 0.000 description 10
- 239000003673 groundwater Substances 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000001363 water suppression through gradient tailored excitation Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/10—Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/16—Modification of mine passages or chambers for storage purposes, especially for liquids or gases
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D19/00—Keeping dry foundation sites or other areas in the ground
- E02D19/06—Restraining of underground water
- E02D19/12—Restraining of underground water by damming or interrupting the passage of underground water
- E02D19/18—Restraining of underground water by damming or interrupting the passage of underground water by making use of sealing aprons, e.g. diaphragms made from bituminous or clay material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/103—Dams, e.g. for ventilation
Definitions
- the invention relates to the intersection of coal mining and water conservancy engineering, and particularly relates to an artificial retaining dam for a coal mine distributed underground water reservoir and a damming method thereof. Background technique
- the key technology for water conservation in the “Energy Golden Triangle” area is how to realize the mine water not to be discharged, and the underground coal mining will form a goaf. If the goaf can be utilized, the mine water in the coal mining process will be used. It is stored in this space, and is supplemented by engineering measures to achieve the filtration and purification of water resources in the underground, and use the borehole to communicate with the ground for future water resources. Use the conditions provided.
- a plurality of water storage goafs are connected by coal roadways or pipelines to form an underground water storage space, which is a distributed underground water reservoir of the coal mine.
- the dam body construction is an important part of the distributed underground water reservoir of the coal mine. The safety of the water storage is ensured.
- the multiple goafs are integrated into one, and the height difference of the goaf is used to realize the mine water. Free flow in the reservoir to purify the mine water.
- the object of the present invention is to overcome the deficiencies of the prior art, 'providing a simple structure, and a technical solution of the present invention provides a manual ice blocking dam of a coal mine distributed underground water storage tank, the artificial water retaining dam including from the inside to the outside A support layer, a barrier layer and a concrete structural layer formed in the auxiliary tunnel, the concrete structural layer being embedded in the security coal pillar and/or surrounding rock surrounding the auxiliary roadway.
- the concrete structural layer is embedded in the security coal pillar and/or the surrounding rock has a depth of 30-80 cm.
- a plurality of anchor rods are disposed between the concrete structural layer and the security coal pillar and/or the surrounding rock.
- the length of the anchor rod is 180-210 cm, and the depth of insertion of the anchor rod into the safety coal pillar and/or the surrounding rock is 30-80 cm.
- the concrete structure layer is provided with an I-beam, and the I-beam is in the shape of a "well”.
- the support layer is a brick-concrete structure layer having a thickness of 1.5 m.
- the impermeable layer is a vermiculite structure layer or a loess structure layer having a thickness of 2 m.
- the artificial dam has a rectangular or curved cross section, and the curved person The concave surface of the work dam faces the groundwater reservoir.
- an observation emergency hole is reserved in the support layer, the anti-seepage layer and the concrete structure layer.
- Another technical solution of the present invention provides a method for constructing a dam for an artificial water retaining dam of a coal mine distributed underground water reservoir, comprising the following steps:
- High pressure shotcrete forming a layer of concrete structure in the groove.
- the step of selecting the dam location of the artificial dam further comprises: using geophysical exploration and drilling means to explore the coal rock properties, stratum and structure of the construction roadway;
- a site with a simple structure and stable coal and rock properties is selected as the damming position of the artificial retaining dam.
- the step of sequentially forming the support layer and the anti-seepage layer in the auxiliary roadway further comprises:
- the cross-sectional shape of the artificial dam is set according to the water pressure.
- the concrete structural layer is embedded in the security coal pillar and/or the surrounding rock around the auxiliary roadway, the artificial retaining dam and the security coal pillar are combined to form a water retaining dam of the underground water reservoir. . Due to the multi-layer design, its impermeability and structural strength can meet the water storage requirements of the underground reservoir. DRAWINGS
- FIG. 1 is a schematic structural view of a distributed underground water storage tank according to an embodiment of the present invention
- FIG. 2 is a schematic structural view of an artificial water retaining dam according to an embodiment of the present invention
- Figure 3 is a cross-sectional view of AA of Figure 2; 4 is a schematic structural view of an artificial dam according to another embodiment of the present invention. Reference list
- the security coal pillar 2 is designed to protect the surface and landforms, ground buildings, structures and main wells, prevent collapse, separate minefields, minefields, aquifers, fire zones and fracture zones, etc. Part of the ore body that is not taken, plays a supporting role and is located on the left and right sides of the auxiliary roadway 1.
- the surrounding rock 3 (see Fig. 3) is formed when the auxiliary roadway 1 is driven, and is located on the upper and lower sides of the auxiliary roadway 1.
- the auxiliary roadway 1 includes a transportation roadway 1 1 and a return air roadway 12, and the transportation roadway 11 and the return airway roadway 12 are connected by a communication roadway 13.
- the transportation lane 11 plays a role in transportation when mining coal; the return air passage 12 plays a role in ventilation when coal is mined.
- a goaf 4 is formed between the transport roadway 1 1 and the return airway 12 , and the overburden layer of the auxiliary roadway 1 falls, and the auxiliary roadway 1 and the goaf 4 form a groundwater reservoir together.
- the security coal pillar 2 is located between the underground water reservoir and the main lane 5, and the security coal pillar 2 is used to form a part of the underground reservoir dam body. Since the auxiliary roadway 1 communicates with the main lane 5, it is only necessary to block the position between the auxiliary lane 1 and the main lane 5.
- the artificial dam of the distributed underground water reservoir of the coal mine of the present invention comprises a support layer 10, an anti-seepage layer 20 and a concrete structural layer 30 formed in the auxiliary roadway 1 from the inside to the outside, and the concrete structural layer 30 is embedded.
- the support layer 10 is a brick-concrete structure layer having a thickness of 1.5 m
- the anti-mite layer 20 is a vermiculite structure layer or a loess structure layer having a thickness of 2 m
- the thickness of the concrete structure layer 30 is 1.5 m, which is artificially blocked by the dam.
- the total thickness is 5m.
- “Inside” in the present invention refers to the side close to the underground reservoir, and “outside” refers to the proximity to the main One side of Lane 5.
- the first layer from the inside to the outside that is, the brick-concrete structure layer bears part of the water retaining effect, and forms a supporting effect on the upper surrounding rock 3;
- the second layer that is, the vermiculite or loess structural layer is a relatively closed wall made of vermiculite and loess.
- the structure on the one hand, acts as a barrier to moisture, and at the same time saves the cost of artificial dams and makes full use of the waste in the coal mining process as a raw material.
- the concrete structural layer 30 itself has good anti-seepage performance. More importantly, the concrete structural layer 30 is embedded in the security coal pillar 2 on the left and right sides of the auxiliary roadway 1 and the surrounding rock 3 on the upper and lower sides of the auxiliary roadway 1, and the artificial retaining dam is added. Strength of.
- the thickness of the masonry structure layer is not limited to 1.5 m
- the thickness of the vermiculite structure layer or the loess structural layer is not limited to 2 m
- the thickness of the concrete structural layer 30 is not limited to 1.5 m.
- the anti-seepage material such as Roxie is added to the vermiculite structure layer or the loess structure layer to enhance the anti-seepage performance of the artificial retaining dam.
- the concrete structural layer 30 may be embedded only in the security coal pillar 2 or may be embedded only in the surrounding rock 3.
- the depth of the concrete structure layer 30 embedded in the security coal pillar 2 and the surrounding rock 3 is 30-80 cm, and the depth direction is the same as the width direction of the concrete structural layer 30.
- the depth of the concrete structural layer 30 embedded in the security coal pillar 2 may be 50-80 cm
- the depth of the concrete structural layer 30 embedded in the surrounding rock 3 may be 30-60 cm.
- the number of the anchors 31 may also be three or more, and the plurality of anchors 31 are arranged at intervals, and one can be arranged every 20 cm. Anchor 31.
- the length of the anchor 31 is 180-210 cm, and the depth of the anchor 31 inserted into the security coal pillar 2 and the surrounding rock 3 is 30 80 cm. Specifically, the depth of the anchor 31 inserted into the security coal pillar 2 may be 50-80 cm, and the depth of the anchor bolt 31 inserted into the surrounding rock 3 may be 30-60 cm. At the same time, the anchor 31 should be vertical to ensure better stability.
- the anchor 31 can be supported by steel bars to connect the artificial retaining dam with the security coal pillar 2 or the surrounding rock 3, further enhancing the strength of the artificial retaining dam.
- the anchor 31 may be formed only between the security coal pillar 2 and the concrete structural layer 30, or may be formed only between the surrounding rock 3 and the concrete structural layer 30. It is also possible that the concrete structural layer 30 is embedded in the security coal pillar 2, and the anchor rod 31 is inserted between the concrete structural layer 30 and the surrounding rock 3. Alternatively, the concrete structural layer 30 is embedded in the surrounding rock 3, and the anchor 31 is inserted between the concrete structural layer 30 and the security coal pillar 2. In this embodiment, as shown in FIG.
- the concrete structure layer 30 is further provided with an I-beam 32, and the I-beam 32 has a "well" shape, which is formed in the entire concrete structure layer 30, and the length of the longitudinal I-beam 32 Equal to the height of the concrete structural layer 30, the length of the transverse I-beam 32 is equal to the width of the concrete structural layer 30.
- I-beam can enhance the strength of the artificial dam and is sufficient to withstand the water pressure in the underground reservoir.
- the I-beams 32 may also be formed into other shapes, for example, in the shape of a "meter” or intersected in the layer of concrete structure.
- the cross section of the artificial dam is rectangular.
- the cross section of the artificial dam can also be curved, and the IHJ face of the isolated artificial dam faces the underground reservoir. It can effectively buffer the impact of sudden water pressure increase on the dam.
- an observation emergency hole (not shown) is reserved in the support layer 10, the anti-seepage layer 20 and the concrete structure layer 30.
- the observation emergency hole is set at the appropriate position of the artificial dam.
- the functions include: First, using the hole to observe the water pressure level and water quality in the reservoir. Sampling; At the same time, the valve is used to set the valve starting pressure. When the water pressure exceeds the approved safety warning value of the valve, it is automatically or manually started, and the drainage pressure is released to ensure the safety of the underground storage.
- the dam construction method for the artificial dam of the distributed underground water reservoir of the coal mine of the present invention comprises the following steps:
- Step S101 selecting a damming position of the artificial retaining dam between the security coal pillars 2 in the auxiliary roadway 1;
- Step S102 a support layer 10 and an anti-seepage layer 20 formed in the auxiliary lane 1 from the inside to the outside;
- Step S103 slotting the security coal pillar 2 and the surrounding rock 3 around the auxiliary roadway 1 outside the anti-seepage layer 20 to form a groove 33;
- Step S104 inserting a plurality of anchors 31 into the security coal pillar and the surrounding rock in the groove 33;
- Step S105 embedding the I-beam 32 into the groove 33;
- Step S106 High-pressure shotcrete, a concrete structural layer 30 is formed in the groove 33.
- the depth of the groove 33 can be 30-80 cm, and is adjusted according to the surrounding geological conditions and the storage capacity of the underground reservoir. Specifically, the depth of the groove 33 of the security coal pillar 2 may be 50-80 cm.
- the groove 33 of the surrounding rock 3 may have a depth of 30-60 cm.
- the step S101 of selecting the dam location of the artificial dam further comprises: Step S201: using geophysical exploration and drilling means to explore the coal rock properties, stratum and structure of the construction roadway;
- Step S202 Select a structural unit and a stable coal rock as a damming location of the artificial retaining dam.
- the method further includes:
- Step S301 estimating the water pressure in the auxiliary roadway 1;
- Step S302 setting the cross-sectional shape of the artificial dam according to the water pressure.
- the arc is preferred to buffer the water pressure.
- the curved artificial dam forms the groove 33
- the groove 33 in the surrounding rock also forms an arc.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
- Paleontology (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014308405A AU2014308405B2 (en) | 2013-08-14 | 2014-04-10 | An artificial dam of distributed coal mine underground reservoir and its constructing method |
US14/910,134 US9689128B2 (en) | 2013-08-14 | 2014-04-10 | Artificial dam of distributed coal mine underground reservoir and its constructing method |
RU2016103785A RU2611095C1 (ru) | 2013-08-14 | 2014-04-10 | Искусственная плотина распределенного подземного резервуара для угольных шахт и способ ее возведения |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013103542869A CN103422886A (zh) | 2013-08-14 | 2013-08-14 | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 |
CN201310354286.9 | 2013-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015021782A1 true WO2015021782A1 (zh) | 2015-02-19 |
Family
ID=49648217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/075083 WO2015021782A1 (zh) | 2013-08-14 | 2014-04-10 | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9689128B2 (zh) |
CN (1) | CN103422886A (zh) |
AU (1) | AU2014308405B2 (zh) |
RU (1) | RU2611095C1 (zh) |
WO (1) | WO2015021782A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018009970A1 (en) * | 2016-07-14 | 2018-01-18 | Strata Linings Pty Ltd | Seal, seal forming system, method of forming a seal and associated formwork support |
CN109236373A (zh) * | 2018-08-27 | 2019-01-18 | 清华大学 | 一种普适煤矿地下水库及其建造方法 |
CN109356101A (zh) * | 2018-11-23 | 2019-02-19 | 中国电建集团成都勘测设计研究院有限公司 | 超深厚覆盖层中的坝基防渗结构 |
CN109610622A (zh) * | 2018-11-05 | 2019-04-12 | 太原理工大学 | 一种采煤矿区条带式构造充填保-储水系统 |
CN114215558A (zh) * | 2021-11-30 | 2022-03-22 | 西北矿冶研究院 | 一种尾矿库近淹民采巷道的封堵方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103422886A (zh) * | 2013-08-14 | 2013-12-04 | 中国神华能源股份有限公司 | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 |
CN105507950B (zh) * | 2015-12-17 | 2018-02-23 | 大同煤矿集团有限责任公司 | 拱形缓冲墙防水密闭结构 |
CN107237651B (zh) * | 2017-06-23 | 2019-10-01 | 中国矿业大学 | 一种煤矿地下水库及水库坝体的多层次注浆防渗加固方法 |
CN107503326B (zh) * | 2017-09-15 | 2019-05-03 | 神华集团有限责任公司 | 水库人工堤坝的施工装置及施工方法 |
CN107524154B (zh) * | 2017-09-15 | 2019-05-24 | 神华集团有限责任公司 | 煤层采空区的人工堤坝建筑装置及建筑方法 |
CN107503324B (zh) * | 2017-09-15 | 2019-04-26 | 神华集团有限责任公司 | 人工堤坝防渗加固装置及防渗加固方法 |
CN107620608B (zh) * | 2017-09-27 | 2019-04-23 | 首钢集团有限公司 | 一种地下充填矿山采区布置装置及方法 |
CN108060656B (zh) * | 2017-11-29 | 2019-11-15 | 中国神华能源股份有限公司 | 地下水库人工坝体与煤柱坝体连接结构及其施工工艺 |
CN108468567B (zh) * | 2018-01-18 | 2019-09-24 | 中煤科工集团西安研究院有限公司 | 利用基岩弯曲带构建煤矿连通式地下水库的方法 |
RU2681760C1 (ru) * | 2018-03-02 | 2019-03-12 | Акционерное общество "ВНИИ Галургии" (АО "ВНИИ Галургии") | Способ гидроизоляции горных выработок калийных рудников |
CN109026152B (zh) * | 2018-08-27 | 2024-04-19 | 清华大学 | 一种包含心墙堆石挡水坝结构的露天煤矿地下水库 |
CN109057861B (zh) * | 2018-08-28 | 2023-07-04 | 清华大学 | 一种露天煤矿地下水库、水库储水体及水库库容计算方法 |
CN109469509A (zh) * | 2018-12-06 | 2019-03-15 | 安徽理工大学 | 一种积木组装式水资源隔离与保护装置 |
CN109595034B (zh) * | 2019-01-29 | 2019-10-29 | 中国矿业大学(北京) | 煤矿地下水库工字型强帮阻渗挡水坝 |
CN109826667B (zh) * | 2019-01-29 | 2020-05-19 | 中国矿业大学(北京) | 煤矿地下水库工字型挡水坝 |
CN110359957B (zh) * | 2019-07-31 | 2021-02-09 | 国家能源投资集团有限责任公司 | 一种坝体连接结构及其施工方法 |
CN110396982A (zh) * | 2019-07-31 | 2019-11-01 | 中国神华能源股份有限公司 | 一种人工坝体连接结构及施工方法 |
CN114075994A (zh) * | 2020-08-13 | 2022-02-22 | 神华神东煤炭集团有限责任公司 | 一种煤矿地下水库的人工挡水坝 |
CN112681236A (zh) * | 2020-12-23 | 2021-04-20 | 国能包头能源有限责任公司 | 一种煤矿地下水库人工坝体及其设计、施工方法 |
CN113931692B (zh) * | 2021-11-01 | 2024-05-14 | 太原理工大学 | 一种用于煤矿应急救援的快速密闭墙施工方法 |
CN114033489B (zh) * | 2021-11-18 | 2024-08-02 | 国家能源投资集团有限责任公司 | 一种煤矿地下水库坝体的防渗系统 |
CN114109492B (zh) * | 2021-12-10 | 2023-11-03 | 国家能源投资集团有限责任公司 | 一种煤矿双层地下水库的建造方法 |
CN114811404B (zh) * | 2022-03-30 | 2024-04-26 | 辽宁工程技术大学 | 一种煤矿井下便携储存二氧化碳的装置及其使用方法 |
CN115928665A (zh) * | 2022-12-26 | 2023-04-07 | 中国矿业大学(北京) | 一种观察地下水库动态储水的可视化坝体及建造方法 |
CN116219949B (zh) * | 2023-02-07 | 2023-12-22 | 国能经济技术研究院有限责任公司 | 煤矿地下水库的人工坝体结构及煤矿地下水库 |
CN117090573B (zh) * | 2023-10-17 | 2023-12-19 | 臣功环境科技有限公司 | 矿井z型全风压错位条带连采连充一体化工艺 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07156992A (ja) * | 1993-12-03 | 1995-06-20 | Kajima Corp | 地下貯留施設 |
CN2918533Y (zh) * | 2006-06-29 | 2007-07-04 | 中国水电顾问集团成都勘测设计研究院 | 大坝防渗结构 |
CN202047397U (zh) * | 2011-04-19 | 2011-11-23 | 青岛银河环保股份有限公司 | 一种平原人工坝的防渗系统 |
CN102767302A (zh) * | 2012-07-23 | 2012-11-07 | 中国神华能源股份有限公司 | 一种分布式地下水库及其建造方法 |
CN103422886A (zh) * | 2013-08-14 | 2013-12-04 | 中国神华能源股份有限公司 | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 |
CN203412629U (zh) * | 2013-08-14 | 2014-01-29 | 中国神华能源股份有限公司 | 一种煤矿分布式地下水库的人工挡水坝 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191310483A (en) * | 1913-05-03 | 1913-12-04 | Hugo Herzbruch | Improvements in Dams for Mines and other Places. |
US3407606A (en) * | 1966-02-14 | 1968-10-29 | Inst Gas Technology | Underground cavern storage for liquefied gases near atmospheric pressure |
US3469405A (en) * | 1968-08-14 | 1969-09-30 | Layne New York Co Inc | Mine water barrier |
US3583165A (en) * | 1969-10-07 | 1971-06-08 | Dow Chemical Co | Method for sealing off passageways |
SU416440A1 (zh) | 1971-12-13 | 1974-02-25 | ||
US4102138A (en) * | 1974-06-12 | 1978-07-25 | Bergwerksverband Gmbh | Method for closing off a mine gallery especially for use to prevent spreading of underground explosions |
SU726349A1 (ru) | 1977-05-25 | 1980-04-05 | Всесоюзный научно-исследовательский и проектный институт галургии | Шахтна перемычка |
SU840411A1 (ru) | 1979-09-19 | 1981-06-23 | Всесоюзный Научно-Исследовательскийи Проектный Институт Галургии | Гидроизол ционна перемычка |
US4315657A (en) * | 1980-03-17 | 1982-02-16 | Occidental Oil Shale, Inc. | Gas seal for an in situ oil shale retort and method of forming thermal barrier |
DD158717A3 (de) * | 1981-03-16 | 1983-02-02 | Eberhard Fuchs | Einrichtung fuer absperrungen untertaegiger gasspeicher |
DE3232906A1 (de) * | 1982-09-04 | 1984-03-08 | Ruhrkohle Ag, 4300 Essen | Verfahren zur herstellung von entlastungskammern |
DE3427978C1 (de) * | 1984-07-28 | 1985-05-15 | Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE), 3150 Peine | Verfahren und Vorrichtung zum Abdichten von Dammbauwerken in untertaegigen Strecken,insbesondere im Salzgebirge |
US4784522A (en) * | 1986-11-14 | 1988-11-15 | Dennis Mraz | Method and apparatus for effecting high pressure isolation of liquids |
US4818144A (en) * | 1986-11-14 | 1989-04-04 | Dennis Mraz | Flood isolation dam |
US5782539A (en) * | 1995-11-16 | 1998-07-21 | Peterson; Randall D. | Wall-to-wall surface mining process |
US6082828A (en) * | 1996-04-24 | 2000-07-04 | Bailey; Philip E. | Mine gallery curtain and method |
RU2219350C1 (ru) | 2002-06-10 | 2003-12-20 | Государственное учреждение Кузбасский государственный технический университет | Шахтная гидроизоляционная перемычка |
CN100523433C (zh) * | 2006-04-05 | 2009-08-05 | 杜剑 | 一种渗排型防污水资源再生的尾矿库区结构 |
US8342776B2 (en) * | 2007-06-07 | 2013-01-01 | Micon | Mine seal with adhesive |
WO2009097187A1 (en) * | 2008-01-14 | 2009-08-06 | Micon | Mine seal with adhesive |
EA200802025A1 (ru) | 2008-08-22 | 2009-08-28 | Открытое Акционерное Общество "Белгорхимпром" (Оао "Белгорхимпром") | Шахтная гидроизоляционная перемычка |
EP2406152A4 (en) * | 2009-03-11 | 2015-10-14 | Maurice B Dusseault | METHOD FOR SEQUESTRATING LIQUIDS IN GEOLOGICAL FORMATIONS |
CN102661169B (zh) * | 2012-04-28 | 2015-05-06 | 山东科技大学 | 一种用于无煤柱开采的锚栓网矸石袋墙体沿空留巷方法 |
CN102767395B (zh) * | 2012-07-23 | 2013-11-06 | 中国神华能源股份有限公司 | 一种矿井地下水库的防渗方法 |
CN203412696U (zh) | 2013-07-30 | 2014-01-29 | 金世光 | 一种集风轴流式风力发电装置 |
CN105421161A (zh) * | 2015-11-05 | 2016-03-23 | 中铁二十一局集团有限公司 | 一种防止黄土路堤湿化变形的路堤结构 |
-
2013
- 2013-08-14 CN CN2013103542869A patent/CN103422886A/zh active Pending
-
2014
- 2014-04-10 AU AU2014308405A patent/AU2014308405B2/en active Active
- 2014-04-10 WO PCT/CN2014/075083 patent/WO2015021782A1/zh active Application Filing
- 2014-04-10 US US14/910,134 patent/US9689128B2/en active Active
- 2014-04-10 RU RU2016103785A patent/RU2611095C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07156992A (ja) * | 1993-12-03 | 1995-06-20 | Kajima Corp | 地下貯留施設 |
CN2918533Y (zh) * | 2006-06-29 | 2007-07-04 | 中国水电顾问集团成都勘测设计研究院 | 大坝防渗结构 |
CN202047397U (zh) * | 2011-04-19 | 2011-11-23 | 青岛银河环保股份有限公司 | 一种平原人工坝的防渗系统 |
CN102767302A (zh) * | 2012-07-23 | 2012-11-07 | 中国神华能源股份有限公司 | 一种分布式地下水库及其建造方法 |
CN103422886A (zh) * | 2013-08-14 | 2013-12-04 | 中国神华能源股份有限公司 | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 |
CN203412629U (zh) * | 2013-08-14 | 2014-01-29 | 中国神华能源股份有限公司 | 一种煤矿分布式地下水库的人工挡水坝 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018009970A1 (en) * | 2016-07-14 | 2018-01-18 | Strata Linings Pty Ltd | Seal, seal forming system, method of forming a seal and associated formwork support |
CN109236373A (zh) * | 2018-08-27 | 2019-01-18 | 清华大学 | 一种普适煤矿地下水库及其建造方法 |
CN109236373B (zh) * | 2018-08-27 | 2024-04-16 | 清华大学 | 一种普适煤矿地下水库及其建造方法 |
CN109610622A (zh) * | 2018-11-05 | 2019-04-12 | 太原理工大学 | 一种采煤矿区条带式构造充填保-储水系统 |
CN109356101A (zh) * | 2018-11-23 | 2019-02-19 | 中国电建集团成都勘测设计研究院有限公司 | 超深厚覆盖层中的坝基防渗结构 |
CN109356101B (zh) * | 2018-11-23 | 2023-10-20 | 中国电建集团成都勘测设计研究院有限公司 | 超深厚覆盖层中的坝基防渗结构 |
CN114215558A (zh) * | 2021-11-30 | 2022-03-22 | 西北矿冶研究院 | 一种尾矿库近淹民采巷道的封堵方法 |
CN114215558B (zh) * | 2021-11-30 | 2023-10-10 | 西北矿冶研究院 | 一种尾矿库近淹民采巷道的封堵方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103422886A (zh) | 2013-12-04 |
RU2611095C1 (ru) | 2017-02-21 |
US9689128B2 (en) | 2017-06-27 |
AU2014308405A1 (en) | 2016-03-03 |
AU2014308405B2 (en) | 2016-07-28 |
US20160201460A1 (en) | 2016-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015021782A1 (zh) | 一种煤矿分布式地下水库的人工挡水坝及其筑坝方法 | |
WO2015021783A1 (zh) | 一种煤矿地下水库的人工挡水坝及其与煤柱坝体和围岩的连接方法 | |
CN107237651B (zh) | 一种煤矿地下水库及水库坝体的多层次注浆防渗加固方法 | |
Liu et al. | Geological investigation and treatment measures against water inrush hazard in karst tunnels: A case study in Guiyang, southwest China | |
WO2018214659A1 (zh) | 一种废弃矿井井下瓦斯治理新工艺 | |
CN113175325B (zh) | 基于关键层保护的煤与共生砂岩型铀矿协调开采方法 | |
CN104481588B (zh) | 一种煤矿采空区的密封方法 | |
CN108060908A (zh) | 建筑群下富水砂层长距离水平定向钻孔注浆加固工艺 | |
Yuan et al. | Countermeasures of water and mud inrush disaster in completely weathered granite tunnels: a case study | |
CN101709651A (zh) | 海底隧道的注浆堵水方法 | |
CN103437339A (zh) | 岩溶地层地下连续墙槽壁附近溶洞封闭的施工方法 | |
Tian et al. | Evolution characteristics of the surrounding rock pressure and construction techniques: A case study from Taoshuping tunnel | |
CN109577989B (zh) | 一种新型深部矿山竖井井壁结构及施工方法 | |
CN105927243B (zh) | 一种井下围岩断层支护装置及支护方法 | |
CN203412629U (zh) | 一种煤矿分布式地下水库的人工挡水坝 | |
CN106837382B (zh) | 一种地铁隧道围岩地面预注浆加固工艺 | |
CN107191188A (zh) | 基岩段不良含水层定位靶向注浆立井井壁结构、施工装置及方法 | |
Fan et al. | Failure analysis of coal pillars and overburden from underground water reservoir under the mining-water invasion coupling effect | |
CN207377561U (zh) | 基岩段不良含水层定位靶向注浆立井井壁结构及施工装置 | |
CN202181908U (zh) | 一种膨胀软岩巷道防水支护组合结构 | |
CN114075994A (zh) | 一种煤矿地下水库的人工挡水坝 | |
Ou et al. | Hydrogeological analysis and remediation strategies for water inrush hazards in highway karst tunnels | |
CN116220795A (zh) | 一种充填袋、随采随充充填隔离墙及构筑方法 | |
CN112302718A (zh) | 煤层顶板含水层水资源保护方法 | |
CN203022809U (zh) | 一种加固充填板墙 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14910134 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201600881 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836421 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014308405 Country of ref document: AU Date of ref document: 20140410 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016103785 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14836421 Country of ref document: EP Kind code of ref document: A1 |