[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015020507A1 - Method and apparatus for reordering pdcp in dual connectivity system - Google Patents

Method and apparatus for reordering pdcp in dual connectivity system Download PDF

Info

Publication number
WO2015020507A1
WO2015020507A1 PCT/KR2014/007456 KR2014007456W WO2015020507A1 WO 2015020507 A1 WO2015020507 A1 WO 2015020507A1 KR 2014007456 W KR2014007456 W KR 2014007456W WO 2015020507 A1 WO2015020507 A1 WO 2015020507A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
entity
base station
pdus
received
Prior art date
Application number
PCT/KR2014/007456
Other languages
French (fr)
Korean (ko)
Inventor
정명철
권기범
허강석
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130094915A external-priority patent/KR102156191B1/en
Priority claimed from KR1020130094916A external-priority patent/KR102156192B1/en
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2015020507A1 publication Critical patent/WO2015020507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for PDCP reordering in a wireless communication system supporting dual connectivity.
  • HetNet heterogeneous network
  • a macro cell In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Compared to macro cells, small cells such as femto cells and pico cells use low power and are also referred to as low power networks (LPNs). Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
  • LPNs low power networks
  • the terminal may configure dual connectivity through two or more base stations among the base stations configuring at least one serving cell. Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. In this case, the at least two different network points may be connected by non-ideal backhaul.
  • RRC_CONNECTED radio resource control connection
  • one of the at least two different network points may be called a macro base station (or a master base station or an anchor base station), and the rest may be called small base stations (or secondary base stations or assisting base stations or slave base stations).
  • a wireless communication system has a single flow structure in which a service is provided to a terminal through one radio bearer (RB) for one EPS bearer service.
  • RB radio bearer
  • one EPS bearer may provide a service to a terminal through two RBs configured in a macro cell and a small cell instead of one RB. That is, the service may be provided to the terminal through multi-flow.
  • one RB may be provided through only the macro cell, and the other RB may be configured through two base stations corresponding to the macro cell and the small cell.
  • one RB may be configured in a single base station and the other RB may be configured in a bearer split into two base stations.
  • RLC acknowlegdged mode when a received RLC packet data unit (RDU PDU) is received out of order in downlink, the RLC entity reorders the RLC PDUs.
  • RLC AM the missing RLC PDU may be retransmitted at the receiver.
  • the RLC entity reassembles an RLC Service Date Unit (SDU) based on the rearranged RLC PDUs and sequentially delivers them to a higher layer (ie, PDCP entity).
  • SDU RLC Service Date Unit
  • PDCP entity ie, PDCP entity
  • the PDCP entity should receive the RLC SDUs sequentially, except for re-establishment of the lower layer.
  • an RLC entity for a small base station and an RLC entity for a macro base station may be divided to receive each RLC PDU, and the RLC SDU may be delivered to a higher layer (ie, a PDCP layer). If the PDCP entity does not expect the sequential reception of the RLC SDU. Therefore, in case of a UE configured with multi-flow, a PDCP rearrangement method for ascending delivery of PDCP SDUs to a higher layer in a PDCP entity is required.
  • the present invention provides a method and apparatus for rearranging PDCP in a dual connectivity system.
  • Another technical problem of the present invention is to provide a method and apparatus for transmitting a PDCP SDU to an upper layer in an ascending order by a receiving end of a PDCP entity in a multiflow structure.
  • Another technical problem of the present invention is to perform PDCP rearrangement based on a timer in a multiflow structure.
  • a Packet Data Convergence Protocol (PDCP) entity of a UE configured for dual connectivity with a macro base station (Macro eNB) and a small eNB (small eNB) multi-flow
  • a method of reordering PDCP Service Data Units (SDUs) considering multi-flow is provided.
  • the PDCP SDU rearrangement method when sequentially receiving PDCP sequence number (PDCP SN) PD PD packet data units (PDUs), delivers a corresponding PDCP SDU to a higher layer and starts / restarts a rearrangement timer. And if the PDCP PDUs of PDCP SN n + 1, which are expected to be sequentially received before the rearrangement timer expires, are received, restarting the rearrangement timer.
  • a method of transmitting a PDCP PDU in consideration of multi-flow from a PDCP entity of a macro base station to a PDCP entity of a terminal having dual connectivity with a macro base station and a small base station may include generating PDCP PDUs by processing PDCP SDUs for a packet received from an upper layer, and generating the PDCP PDUs to an RLC entity of the macro base station and an RLC entity of the small base station according to a predetermined rule.
  • PDCP PDU is characterized in that for transmitting through the RLC entity of the macro base station.
  • the terminal when the terminal is dual-connected with the master base station and the secondary base station, in performing the multi-flow downlink reception, even if PDCP PDUs are received out of sequence in the PDCP entity of the terminal, based on a timer
  • the rearrangement of PDCP SDUs can be performed, ascending order of PDCP SDUs can be performed to an upper layer, and transmission efficiency can be improved.
  • the first PDCP PDU after the service disconnection is delivered to the PDCP entity of the terminal through both the master base station with a short path delay or the duplicated RLC entity of the master base station and the secondary base station RLC entity. By doing so, it is possible to support timely reception of the PDCP PDU.
  • the standby timer may be driven based on non-sequentially received PDCP PDUs, PDCP SDU rearrangement may be smoothly performed even if a time delay occurs while receiving a packet due to service interruption.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a diagram illustrating an outline of an example of an RLC sublayer model to which the present invention is applied.
  • FIG. 5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
  • FIG. 6 shows an example of a dual connection situation of a terminal applied to the present invention.
  • FIG. 7 shows an example of an EPS bearer structure when a single flow is configured.
  • FIG. 8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation.
  • FIG. 9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
  • FIG 10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
  • FIG. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
  • FIG. 13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • FIG. 14 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • 15A to 15E illustrate examples of PDCP SDU rearrangement through rearrangement timer operation according to the present invention.
  • 16A to 16B illustrate other examples of PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
  • 17 shows an example of transmission of PDCP SDUs to a higher layer when the rearrangement timer according to the present invention expires.
  • 18A to 18B illustrate an example of applying a PDCP SDU removal decision method according to the present invention.
  • FIG. 19 is a flowchart example of a PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
  • 20 is a diagram illustrating a case in which packets are intermittently transmitted due to service interruption.
  • 21A to 21B illustrate another example of PDCP PDU reception timing in a PDCP entity of the UE.
  • FIG. 22 shows an example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
  • FIG. 23 shows another example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
  • 24 is a diagram illustrating a case where a packet is intermittently received due to service disconnection.
  • 25A to 25C illustrate a PDCP SDU rearrangement method in consideration of multiflow according to an embodiment of the present invention.
  • 26 is a flowchart illustrating a PDCP SDU rearrangement method using a wait timer according to another embodiment of the present invention.
  • FIG. 27 is a block diagram of a macro base station, a small base station and a terminal according to the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • the E-UMTS system may be a Long Term Evolution (LTE) or LTE-A (Advanced) system.
  • Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
  • the E-UTRAN provides a base station 20 (evolved NodeB: eNB) which provides a control plane (CP) and a user plane (UP) to a user equipment (UE). Include.
  • eNB evolved NodeB
  • CP control plane
  • UP user plane
  • UE user equipment
  • the terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
  • MS mobile station
  • AMS advanced MS
  • UT user terminal
  • SS subscriber station
  • Wireless Device Wireless Device
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, and a femto-eNB. It may be called other terms such as a pico base station (pico-eNB), a home base station (Home eNB), a relay (relay).
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
  • OAM Operaation and Management
  • the EPC 30 includes an MME, an S-GW, and a packet data network-gateway (P-GW).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • the S-GW is a gateway having an E-UTRAN as an endpoint
  • the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
  • Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 connects to the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
  • EPS Evoled Packet System
  • the radio interface between the terminal and the base station is called a Uu interface.
  • the layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which are well known in a communication system. It may be divided into a second layer L2 and a third layer L3.
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between network and network.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
  • data is transmitted through a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver).
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical downlink control channel (PDCCH) of the physical channel informs the UE of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH.
  • the PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission.
  • a physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • the PHICH physical hybrid ARQ Indicator Channel
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
  • the RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes.
  • RLC protocol data units PDUs are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer), and when the transmission opportunity is notified, the RLC PDUs are delivered to the lower layer. The transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted.
  • a lower layer eg, MAC layer
  • the transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted.
  • the RLC layer will be described in detail with reference to FIG. 4.
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
  • PDCP Packet Data Convergence Protocol
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further classified into a signaling RB (SRB) and a data RB (DRB).
  • SRB signaling RB
  • DRB data RB
  • the NAS layer is located above the RRC layer and performs functions such as session management and mobility management.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for the physical downlink control channel (PDCCH).
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • FIG. 4 is a diagram illustrating an example of an example of an RLC sublayer model to which an embodiment of the present invention is applied.
  • RLC entities are classified into different RLC entities according to data transmission schemes. For example, there is a TM RLC entity 400, a UM RLC entity 420, and an AM RLC entity 440.
  • the UM RLC entity 400 may be configured to receive or forward RLC PDUs over logical channels (eg, DL / UL DTCH, MCCH or MTCH).
  • the UM RLC entity may deliver or receive a UMD PDU (Unacknowledged Mode Data PDU).
  • the UM RLC entity consists of a sending UM RLC entity or a receiving UM RLC entity.
  • the transmitting UM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer receiving UM RLC entity via the lower layer.
  • the sending UM RLC entity constructs UMD PDUs from the RLC SDUs, the total size of the RLC PDUs indicated by the lower layer by segmenting or concatenating the RLC SDUs when a specific transmission opportunity is notified by the lower layer.
  • the UMD PDUs are configured to be within and the related RLC headers are included in the UMD PDU.
  • the receiving UM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer receiving UM RLC entity through the lower layer.
  • the receiving UM RLC entity detects whether the UMD PDUs have been received in duplicate, removes the duplicate UMD PDUs, and when the UMD PDUs are received out of sequence.
  • Reorder the UMD PDUs detect loss of UMD PDUs in the lower layer to avoid excessive reordering delays, reassemble RLC SDUs from the rearranged UMD PDUs, and In addition, the reassembled RLC SDUs are delivered to an upper layer in an ascending order of an RLC sequence number, and UMD PDUs cannot be reassembled into an RLC SDU due to a loss of UMD PDUs belonging to a specific RLC SDU in a lower layer. Can be removed.
  • the receiving UM RLC entity Upon RLC re-establishment, the receiving UM RLC entity, if possible, reassembles the RLC SDUs from the received UMD PDUs out of sequence and forwards them to the higher layer, and the remaining UMD PDUs that could not be reassembled into RLC SDUs. Remove all, initialize the relevant state variables and stop the associated timers.
  • the AM RLC entity 440 may be configured to receive or deliver RLC PDUs through logical channels (eg, DL / UL DCCH or DL / UL DTCH).
  • the AM RLC entity delivers or receives an AMD PDU or ADM PDU segment, and delivers or receives an RLC control PDU (eg, a STATUS PDU).
  • AM RLC entity 440 delivers STATUS PDUs to peer AM RLC entities to provide positive and / or negative acknowledgment of RLC PDUs (or portions thereof). This may be called STATUS reporting.
  • a polling procedure may be involved from the peer AM RLC entity to trigger STATUS reporting. That is, an AM RLC entity may poll the peer AM RLC entity to trigger STATUS reporting at its peer AM RLC entity.
  • the STATUS PDU is sent at the next transmission opportunity. Accordingly, the UE estimates the size of the STATUS PDU and considers the STATUS PDU as data available for transmission in the RLC layer.
  • the AM RLC entity is composed of a transmitting side and a receiving side.
  • the transmitter of the AM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer AM RLC entity via the lower layer.
  • the transmitter of the AM RLC entity configures AMD PDUs from RLC SDUs, it splits the RLC SDUs to fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is notified by the lower layer. Segment or concatenate to configure AMD PDUs.
  • the transmitter of the AM RLC entity supports retransmission of RLC data PDUs (ARQ).
  • the AM RLC entity repartitions the RLC data PDU into AMD PDU segments. (re-segment)
  • the number of re-segmentation is not limited.
  • the transmitter of the AM RLC entity creates AMD PDUs from RLC SDUs received from the upper layer or AMD PDU segments from RLC data PDUs to be retransmitted, the relevant RLC headers are included in the RLC data PDU.
  • the receiver of the AM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer AM RLC entity via the lower layer.
  • the receiver of the AM RLC entity When the receiver of the AM RLC entity receives the RLC data PDUs, the receiver detects whether the RLC data PDUs are received in duplicate, removes the duplicate RLC data PDUs, and removes the RLC data PDUs out of sequence. Reorder the order of RLC data PDUs, detect the loss of RLC data PDUs occurring in the lower layer, request retransmission to the peer AM RLC entity, and reassemble RLC SDUs from the rearranged RLC data PDUs. reassemble, and deliver the reassembled RLC SDUs to an upper layer in reassembled order.
  • the receiver of the AM RLC entity When resetting the RLC, the receiver of the AM RLC entity, possibly out of sequence, reassembles the RLC SDUs from the received RLC data PDUs and delivers them to the higher layer, all remaining RLC data PDUs that cannot be reassembled into RLC SDUs. Remove it, initialize the relevant state variables and stop the associated timers.
  • FIG. 5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
  • the PDCP sublayer includes at least one PDCP entity 500.
  • Each RB eg, DRB and SRB, except SRB0
  • Each PDCP entity may be associated with one or two RLC entity (s) depending on the characteristics of the RB and the RLC mode.
  • the PDCP entity 500 receives user data from a higher layer (eg an application layer) or passes user data to a higher layer.
  • the user data here is an IP packet.
  • User data may be delivered via a Service Access Point (PDCP-SAP).
  • the PDCP layer receives a PDCP configuration request (PDCP_CONFIG_REQ) message, which is signaling data, from the RRC layer.
  • the PDCP configuration request message may be delivered through a control-service access point (C-SAP).
  • the PDCP configuration request message is a message requesting to configure PDCP according to the PDCP configuration parameters.
  • the transmitting side of the PDCP entity 500 starts a discard timer upon receipt of user data from a higher layer.
  • User data i.e. PDCP SDU
  • PDCP headers i.e., RLC SDUs
  • the transmitter PDCP delivers the PDCP PDU to the lower layer (eg, RLC layer).
  • the PDCP PDU may include a PDCP Data PDU and a PDCP Control PDU.
  • the PDCP Data PDU carries user plane data, control plane data, and the like, and carries a PDCP SDU Sequence Number (SN).
  • PDCP SDU SN may be called PDCP SN.
  • the PDCP Control PDU carries a PDCP status report and header compression control information.
  • the RLC SDU may be delivered to the RLC layer through the RLC-SAP. If the user data is not transmitted until the removal timer expires, the transmitting PDCP removes the user data (PDCP SDU including the user data).
  • the receiving side of the PDCP entity 500 receives an RLC SDU (ie PDCP PDU) from a lower layer.
  • PDCP PDUs become PDCP SDUs through PDCP header decompression, deciphering, and integrity verification (in the control domain).
  • the receiving end of the PDCP entity 500 delivers the PDCP SDUs to higher layers (eg, application layers).
  • the receiving end of the PDCP entity 500 generally expects to receive sequentially RLC SDUs (ie, PDCP PDUs), except for re-establishment of lower layers. Accordingly, except when the receiving end of the PDCP entity 500 receives the RLC SDU through the resetting of the lower layer, when the PDCP PDU is received, the receiving end of the PDCP entity 500 may transmit the corresponding PDCP SDU to the upper layer in ascending order. If there are stored PDCP SDUs, they are delivered to the upper layer in ascending order.
  • RLC SDUs ie, PDCP PDUs
  • the PDCP entity 500 forwards all stored PDCP SDU (s) with a count value lower than the count value of the received PDCP SDU to the upper layer in ascending order. And start with the count value of the received PDCP SDU and deliver all stored PDCP SDU (s) of the continuously associated count value to the upper layer in ascending order.
  • FIG. 6 shows an example in which a dual connection is configured in a terminal to which an embodiment of the present invention is applied.
  • a terminal 650 located in a service area of a macro cell in a macro base station may be a small base station (or a secondary base station or an assisting base station or a slave base station, 610).
  • the mobile station enters an area overlaid with the service area of the small cell.
  • the network configures dual connectivity for the terminal.
  • the user data arriving at the macro cell may be delivered to the terminal through the small cell in the small base station.
  • the F2 frequency band may be allocated to the macro base station
  • the F1 frequency band may be allocated to the small base station.
  • the terminal may receive the service through the F2 frequency band from the macro base station and at the same time receive the service through the F1 frequency band from the small base station.
  • FIG. 7 shows an example of an EPS bearer structure when a single flow is configured.
  • an RB is a bearer provided in a Uu interface to support a service of a user.
  • each bearer is defined for each interface to ensure independence between the interfaces.
  • Bearers provided by the wireless communication system are collectively referred to as EPS (Evolved Packet System) bearers.
  • the EPS bearer is a transmission path generated between the UE and the P-GW.
  • the P-GW may receive IP flows from the Internet or send IP flows to the Internet.
  • One or more EPS bearers may be configured per terminal, each EPS bearer may be divided into an E-UTRAN Radio Access Bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB may be a Radio Bearer (RB) or an S1.
  • E-RAB E-UTRAN Radio Access Bearer
  • S5 / S8 bearer S5 / S8 bearer
  • RB Radio Bearer
  • the IP flow may have different Quality of Service (QoS) characteristics, and IP flows having different QoS characteristics may be mapped and transmitted for each EPS bearer.
  • QoS Quality of Service
  • the EPS bearer may be classified based on an EPS bearer identity.
  • the EPS bearer identifier is allocated by the UE or MME.
  • P-GW Packet Gateway
  • EPS bearer is defined between the terminal and the P-GW.
  • EPS bearer is further subdivided between nodes, defined as RB between UE and BS, S1 bearer between BS and S-GW, and S5 / S8 bearer between S-GW and P-GW in EPC. do.
  • Each bearer is defined through QoS.
  • QoS is defined through data rate, error rate, delay, and the like.
  • each QoS is determined for each interface.
  • Each interface establishes a bearer according to the QoS that it must provide. Since bearers of each interface provide QoS of all EPS bearers by interface, EPS bearers, RBs, and S1 bearers are basically in a one-to-one relationship.
  • the LTE wireless communication system is basically a single flow structure, one RB is configured for one EPS bearer.
  • one EPS bearer is mapped with the S1 bearer through one RB.
  • one EPS bearer is serviced through one RB.
  • one RB eg, PDCP entity, RLC entity, MAC entity, PHY layer
  • one RB is configured in the terminal.
  • 8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation. 8 illustrates a case where a service is provided to a terminal through two EPS bearers.
  • a macro base station includes two PDCP entities, an RLC entity, a MAC entity, and a PHY layer
  • a small base station includes an RLC entity, a MAC entity, and a PHY layer
  • the EPS bearer # 1 800 provides a service to the terminal through the RB (PDCP / RLC / MAC / PHY) configured in the macro base station.
  • the EPS bearer # 2 850 provides a service to the terminal through the PDCP entity configured in the macro base station and the RB (RLC / MAC / PHY) configured in the small base station. Therefore, a service is provided through one RB per EPS bearer in a single flow.
  • a service is provided through two RBs configured for the macro base station and the small base station instead of one RB for one EPS bearer.
  • the terminal may simultaneously receive a service through one RB configured in the macro base station and one RB configured in the small base station for one EPS bearer.
  • This is a form in which one EPS bearer provides a service through two RBs.
  • one EPS bearer provides a service to a terminal through two or more RBs, it may be regarded that multi-flow is configured in the terminal.
  • the multi-flow may be configured when the RB providing the service only through the macro base station and another RB providing the RB divided into the macro base station and the small base station are simultaneously provided to the terminal.
  • the case of providing a service to a terminal through a macro base station and a small base station by dividing one RB may be referred to as bearer split.
  • FIG 10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
  • a macro base station includes a PDCP entity, an RLC entity, a MAC entity, and a PHY layer
  • a small base station includes an RLC entity, a MAC entity, and a PHY layer
  • an RB is configured at a macro base station and a small base station for one EPS bearer 1000 to provide a service to a terminal. That is, a macro base station and a small base station provide a service to a terminal through multiflow for one EPS bearer.
  • the packet forwarding process may be represented as follows.
  • FIG. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
  • the macro base station 1130 receives packets for each of two EPS bearers through the P-GW and the S-GW.
  • the flow through which packets are sent is mapped to each EPS bearer.
  • Packets transmitted through the EPS bearer # 1 are called packet 1
  • packets transmitted through the EPS bearer # 2 are assumed to be packet 2.
  • the PDCP 1135-1 of the macro base station 1130 receives Packet 1 from the S-GW, and the PDCP 1135-2 receives Packet 2 from the S-GW.
  • the PDCP 1135-1 generates PDCP PDU1 based on Packet 1, and the PDCP PDU1 is delivered to the RLC 1140 of the macro base station 1130, and each entity and the MAC 1145 through the PHY 1150. It is transformed into a form suitable for a layer and transmitted to the terminal 1100.
  • the PDCP 1135-2 of the macro base station 1130 generates a PDCP PDU2 based on Packet 2, and delivers the PDCP PDU2 to the RLC 1170 of the small base station 1160, and sends the MAC 1175 and the PHY 1180. ) Is transformed into a format suitable for each entity and layer and transmitted to the terminal 1100.
  • a radio protocol entity exists for each of the EPS bearer # 1 and the EPS bearer # 2.
  • the PDCP / RLC / MAC / PHY entity exists in the EPS bearer # 1 and the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 2.
  • PHY 1105-1, MAC 1110-1, RLC 1115-1, and PDCP 1120-1 exist with respect to EPS bearer # 1.
  • the PHY 1105-2, the MAC 1110-2, the RLC 1115-2, and the PDCP 1120-2 exist for the EPS bearer # 2, and service data and packets for the EPS bearer # 2 are present. Process.
  • the macro base station 1130 and the small base station 1160 may be connected through an X2 interface. That is, the macro base station 1130 transmits the PDCP PDU2 of the PDCP 1135-2 to the RLC 1140 of the small base station 1160 through the X2 interface.
  • the X2 interface may use other expressions indicating an X3 interface or an interface between other macro base stations and small base stations.
  • a transmission delay of about 20 to 60 ms may occur.
  • the size of the transmission delay may be changed according to a transmission line or a method as an example.
  • the terminal 1100 includes the RLC 1115-1 for the EPS bearer # 1, the PDCP 1120-1 for the EPS bearer # 2, and the RLC 1115-2 for the EPS bearer # 2 and the PDCP 1120-2. Since it is configured separately, no problem occurs even when sequential delivery of RLC SDUs is performed from the RLC entity of the AM to the PDCP entity. In other words, each PDCP entity corresponding to PDCP 1120-1 and PDCP 1120-2 is sequentially processed if it is processed in the order transmitted from each RLC entity corresponding to RLC 1115-1 and RLC 1115-2. Problem does not occur.
  • the macro base station 1230 receives packets for one EPS bearer through the P-GW and the S-GW.
  • the macro base station 1230 and the small base station 1260 each constitute an RB for the one EPS bearer.
  • the macro base station 1230 constitutes a PDCP 1235, an RLC 1240, a MAC 1245, and a PHY 1250
  • the small base station 1240 is an RLC 1270, a MAC 1275, and a PHY 1280.
  • the RB configured by the small base station 1240 shares the PDCP 1235 configured by the macro base station 1230. Therefore, one RB is divided into a macro base station 1230 and a small base station 1260.
  • the PDCP 1235 of the macro base station 1230 receives the packet from the S-GW.
  • the PDCP 1235 generates PDCP PDUs based on packets, and generates the PDCP PDUs according to a predefined rule or any method according to the RLC 1240 of the macro base station 1230 and the RLC 1270 of the small base station 1260.
  • PDCP PDUs having odd SNs among PDCP PDUs are transmitted to the RLC 1240 of the macro base station 1230, and PDCP PDUs having even SNs are transmitted to the RLC 1270 of the small base station 1260.
  • the RLC 1240 generates an RLC PDU1 (s), and the RLC PDU1 (s) is transformed into a format suitable for each entity and layer through the MAC 1245 and the PHY 1250 and transmitted to the terminal 1200.
  • the RLC 1270 generates an RLC PDU2 (s), and the RLC PDU2 (s) is transformed into a format suitable for each entity and layer through the MAC 1275 and the PHY 1280 and transmitted to the terminal 1200. do.
  • the terminal 1200 has two radio protocol entities for the EPS bearer.
  • the terminal 1200 includes a PDCP / RLC / MAC / PHY entity (or layer) as an RB corresponding to the macro base station 1230, and an RLC / MAC / PHY entity (as an RB corresponding to the small base station 1260). Or hierarchy).
  • the PHY 1205-1, the MAC 1210-1, the RLC 1215-1, and the PDCP 1220 corresponding to the macro base station 1230 exist for the EPS bearer, and the small base station 1260 is present.
  • the PDCP 1220 is a PDCP entity corresponding to the macro base station 1230 and the small base station 1260 simultaneously. That is, in this case, two RLC entities 1215-1 and 1215-2 exist at the terminal 1200, but the two RLC entities 1215-1 and 1215-2 are one PDCP entity 1220. Corresponds to.
  • the macro base station 1230 and the small base station 1260 may be connected through an X2 (or Xn) interface. That is, the macro base station 1230 transfers some of the PDCP PDUs of the PDCP 1235-2 to the RLC 1240 of the small base station 1260 through the X2 interface.
  • the X2 interface may use other expressions indicating an Xn interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1230 and the small base station 1260 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur.
  • the PDCP entity 1220 of the UE 1200 should receive RLC SDUs (ie, PDCP PDUs) from two RLC entities 1215-1 and 1215-2, respectively, generate PDCP SDUs, and deliver them to a higher layer. Due to the transmission delay, a time difference occurs between the RLC SDUs (ie, PDCP PDUs) received by the PDCP entity 1220 from those received from the RLC entity 1215-1, and from the RLC entity 1215-2.
  • the PDCP entity 1220 may have problems in performing ascending transmission to the upper layer of the PDCP SDU.
  • one PDCP 1235 exists in the macro base station 1230 and one PDCP entity 1220 exists in the UE 1200 for multi-flow in a dual connectivity environment.
  • the RLC entities 1240 and 1270 are present in the macro base station 1230 and the small base station 1230, respectively, and two RLC entities 1215-1 and 1215-2 are also present in the terminal 1200. . That is, in the RLC entities 1215-1 and 1215-2 of the terminal 1210, in-sequence delivery to the upper layer may be guaranteed.
  • RLC SDUs ie PDCP PDUs
  • the transmission of the PDCP PDU (s) from the PDCP entity 1235 of the macro base station 1230 to the RLC entity 1270 of the small base station 1260 may involve a transmission delay of about 20 to 60 ms. There may be a time delay between the transmission of the PDCP PDU (s) towards the RLC entity 1240 of 1230 and the transmission of the PDCP PDU (s) towards the RLC entity 1270 of the small base station 1230.
  • 13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • 13 exemplarily shows a time when a PDCP PDU transmitted through a macro base station and a PDCP PDU transmitted through a small base station arrive at a PDCP entity of a terminal.
  • the macro base station may determine a PDCP PDU to be transmitted through the macro base station and a PDCP PDU to be transmitted through the small base station for the service for one EPS bearer.
  • PDCP PDUs associated with an odd number of PDCP sequence numbers are transmitted through a macro base station
  • PDCP PDUs associated with an even number are transmitted through a small base station.
  • a transmission delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station is a time delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station.
  • a transmission delay of about 20 to 60 ms may occur in the PDCP PDU transmitted through the small base station. This is mainly caused by transmission delay occurring in the X2 (or Xn) interface when the PDCP PDU is transmitted from the macro base station to the small base station.
  • the PDCP entity of the terminal receives the PDCP PDUs out of order, and the PDCP entity processes them to a higher layer (for example, an application layer).
  • a higher layer for example, an application layer.
  • the PDCP PDUs transmitted from one PDCP entity of the macro base station in the multi-flow structure are transmitted through the RLC entity of the macro base station and the RLC entity of the small base station, the PDCP PDU of the UE receives a time delay. Therefore, a problem arises in performing ascending transmission of the PDCP SDU from the PDCP entity to the higher layer.
  • the PDCP entity of the UE reads the received PDCP PDU and performs header decompression, and transmits the PDCP SDU to the upper layer. At this time, if the PDCP SDU of the SN smaller than the SN (sequence number) of the current PDCP SDU is stored, the PDCP SDU is transmitted to the upper layer in order from the smallest SN to the largest SN.
  • the transmission side of the PDCP entity may operate a discard timer.
  • the duration of the removal timer may be configured from a higher layer, and the timer is started when the PDCP SDU is received from the higher layer.
  • the removal timer expires, the PDCP entity removes the corresponding PDCP SDU. Accordingly, due to expiration of the removal timer, PDCP SDUs of a specific SN may be removed, and the receiving end of the PDCP entity may transmit all PDCP SDUs in ascending order without having to sequentially transmit to the upper layer.
  • the PDCP entity may receive RLC SDUs (PDCP PDUs) from the two RLC entities with which it is associated.
  • PDCP PDUs RLC AMD SDUs
  • PDCP PDUs having a larger PDCP SN may be first received due to transmission path reception delay.
  • RLC SDUs ie, PDCP PDUs
  • PDCP PDUs PDCP PDUs
  • the PDCP entity may not be distinguished in any of the following two cases.
  • the discard timer may be expired.
  • the transmitting end of the PDCP entity drives a discard timer for each PDCP SDU processed by the PDCP entity. If the amount of packets flowing into the PDCP is greater than a certain standard due to the removal of the timer, the unprocessed packets are removed within the duration of the removal timer, and the corresponding packet is based on a retransmission request performed by a higher layer. Processing may be newly performed.
  • the PDCP entity of the macro base station may separate and transmit the PDCP PDU through the macro base station and the small base station due to the multi-flow.
  • a time difference may occur when the PDCP PDU is received by the PDCP entity of the UE due to a delay caused by different paths.
  • the order of PDCP SDUs is reversed and may be transmitted to a higher layer.
  • the PDCP rearrangement and PDCP SDU ascending order transfer to higher layers are as follows.
  • the PDCP entity drives a reordering timer upon reception of the PDCP PDU.
  • the PDCP entity waits for a reception delay of the PDCP PDU based on the rearrangement timer, rearranges the PDCP PDUs received within a predetermined time, and performs ascending order of PDCP SDUs to a higher layer. This is to prevent PDCP PDUs having a large PDCP SN first arriving at the PDCP entity and being transmitted to the higher layer, and PDCP PDUs having a smaller PDCP SN arriving at the PDCP entity later and being transmitted to the higher layer.
  • the PDCP entity waits for a certain amount of time in consideration of the delay time and, when the PDCP PDU of the missing PDCP SN (or count value) arrives, carries out an ascending order to the upper layer, including the PDCP of the missing PDCP SN within a certain time. If the PDU does not arrive, the PDCP PDU is considered to have been removed due to the expiration of the removal timer, and the ascending order is performed to the upper layer except the PDCP PDU.
  • the PDCP rearrangement method based on the rearrangement timer may be specifically performed as follows.
  • the receiving end of the PDCP entity starts the reordering timer when the reordering timer is not running (or not on duration) upon receiving the PDCP PDU.
  • the PDCP entity initially starts a reordering timer upon receiving the PDCP PDU or when the PDCP PDU is not running.
  • the rearrangement timer corresponds to a wait timer for waiting for a PDCP PDU that can be received sequentially in a received (or stored) PDCP PDU.
  • the corresponding (or associated) PDCP SDU is forwarded to the upper layer.
  • the PDCP SDU corresponding to the PDCP PDU is stored and is not delivered to the upper layer.
  • a PDCP PDU is received after the rearrangement timer expires, only PDCP SDUs that are sequentially received (except for PDCP SNs of PDCP SDUs expected to be received sequentially) among the stored PDCP SDUs are delivered to a higher layer. do.
  • PDCP SDUs stored at the time when the rearrangement timer expires only PDCP SDUs sequentially received (based on the rest of the PDCP SDUs expected to be sequentially received) are transferred to a higher layer.
  • the rearrangement timer may be determined in consideration of the transmission delay time between the macro base station and the small base station having dual connectivity to the terminal. For example, when considering the delay time of the X2 (or Xn) interface using the non-ideal backhaul between the macro base station and the small base station, the rearrangement timer may be set to, for example, 20 to 60 ms. As described above, the delay time may be changed and the rearrangement timer value may be changed according to a difference in a transmission line or a scheme.
  • the PDCP entity may identify the PDCP SN of the PDCP SDU (ie, received PDCP SDU) corresponding to the received PDCP PDU. By comparing the PDCP SN of the received PDCP SDU with the PDCP SN of the last PDCP SDU transmitted to the upper layer, it is possible to determine whether the PDCP PDU (or PDCP SDU) is sequentially received. The PDCP entity may restart the rearrangement timer if the received PDCP PDUs were received sequentially. If the PDCP entity has not received the received PDCP PDUs sequentially, the PDCP entity keeps a rearrangement timer and stores the PDCP SDUs corresponding to the received PDCP PDUs.
  • the PDCP entity determines that the PDCP PDU (or PDCP SDU) has been removed by expiration of the purge timer. And the remaining sequentially received (or stored) PDCP SDUs in ascending order to the upper layer.
  • the PDCP entity may compare the PDCP SNs of the received PDCP SDUs with the PDCP SNs of the PDCP SDUs last transmitted to the upper layer, and may determine that they are sequentially received if they are in order.
  • Next_PDCP_RX_SN is represented by Equation 1 and Equation 2 below. You can follow either.
  • Maximum_PDCP_SN represents the maximum value of the allowed PDCP SN. That is, Equation 2 indicates that the number starts again from 0 after the maximum value of the PDCP SN.
  • the start / restart method of the rearrangement timer is as follows.
  • the PDCP entity starts or restarts the rearrangement timer when the PDCP PDUs are sequentially received according to whether the rearrangement timer is running. For example, if the rearrangement timer is not running, the PDCP entity starts the rearrangement timer when it receives a PDCP PDU, and restarts the rearrangement timer if the rearrangement timer is running.
  • the PDCP entity stores PDCP SDUs corresponding to PDCP PDUs that are not sequentially received. This is in case the PDCP PDU with the smaller PDCP SN is received later.
  • the rearrangement timer may not be restarted if the PDCP PDUs are not sequentially received, but may be maintained and expired. If the rearrangement timer expires, when the rearrangement timer expires or when the PDCP PDU is received after the rearrangement timer expires, the PDCP entity is selected from among the stored PDCP SDUs. Sequential PDCP SDUs are transmitted to a higher layer except for Next_PDCP_RX_SN The present invention can be applied to both a DL data transfer procedure and an UL data transfer procedure. Explain the delivery process.
  • the receiving PDCP is the PDCP entity 1120 of the terminal
  • the transmitting PDCP is the PDCP entity 1135 of the macro base station.
  • the receiving PDCP is a PDCP entity 1135 of the macro base station
  • the transmitting PDCP is a PDCP entity 1120 of the UE.
  • the PDCP entity 1120 of the UE is responsible for each RLC (PDC RDU: 1115-1, small base station RLC: 1115-2) responsible for transmitting PDCP PDUs to the macro base station and the small base station.
  • the macro base station RLC 1140 and the small base station RLC 1170 respectively receive a PDCP PDU (RLC SDU) of the UE transmitted from the macro base station RLC 1115-1 and the small base station RLC 1115-2. Receive.
  • a PDCP PDU received by the PDCP entity 1135 of the macro base station from the small base station RLC 1170 may have a difference in reception time due to a transmission time difference between the base stations. Accordingly, the PDCP entity 1135 of the base station may generate a PDCP PDU. In-sequence reception cannot be guaranteed at the time of reception.
  • the UE should consider a scheme for receiving PDCP in-sequence in the PDCP entity 1135 of the base station even when transmitting uplink data. This may be applied in the same manner as that for the base station to receive in-sequence in the PDCP entity 1120 of the terminal during downlink data transmission.
  • 14 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • 14 is a multi-flow transmission scenario, and assumes that transmission of PDCP PDUs for one RB occurs at the same time in the macro base station and the small base station. That is, the PDCP PDUs are divided and transmitted from the PDCP entity of the macro base station to the RLC entity of the macro base station and the RLC entity of the small base station.
  • 14 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35 of the PDCP SN.
  • PDCP PDUs transmitted through a base station (of RLC entity) and associated with 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, 29, 30, 31, 32 are small base stations Assume a case of transmitting through (an RLC entity of).
  • no PDCP PDCP is transmitted through a small base station while a PDCP PDU up to PDCP SNs 1, 2, 3, 4, 5, 11, and 12 is received at a PDCP entity of a terminal through a macro base station. Not received by the PDCP entity. Thereafter, PDCP PDUs from PDCP SN 6 begin to be received by the PDCP entity of the UE through the small base station. This is because the PDCP PDU transmitted through the small base station is transmitted from the PDCP entity of the macro base station via the RLC entity of the small base station, resulting in a path delay.
  • the PDCP entity of the terminal when the PDCP entity of the terminal receives the PDCP PDU of the PDCP SN 11 immediately after the PDCP PDU of the PDCP SN 5 is received, the PDCP entity of the terminal is the PDCP PDU of the PDCP SN 6 which is different from the PDCP SN 6 which expected the reception. It is necessary to distinguish whether the PDCP PDU of PDCP SN # 6 is removed due to the removal timer expiration or is received later due to the multiflow reception delay.
  • FIG. 15 shows an example of PDCP SDU rearrangement through the rearrangement timer operation according to the present invention.
  • FIG. 15A illustrates a case in which the PDCP entity of the UE completes reception of PDCP PDUs of PDCP SN 11 after receiving PDCP PDUs of PDCP SNs 1 to 5 in the example of FIG. 14.
  • the PDCP entity of the UE starts a rearrangement timer upon reception of PDCP PDU of PDCP SN # 1. Since the rearrangement timer does not operate when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN # 1, the rearrangement timer starts when the PDCP PDU of PDCP SN # 1 is received.
  • the PDCP entity of the terminal maintains the rearrangement timer according to the rearrangement timer value RT.
  • the rearrangement timer value may be transmitted from the macro base station or the small base station to the terminal. For example, the rearrangement timer value may be included in the configuration information when the dual connection (or multiflow) is configured in the terminal and transmitted to the terminal.
  • the rearrangement timer is maintained for RT time after startup, or until the rearrangement timer is restarted by receiving a PDCP PDU of the sequential PDCP SN.
  • the received PDCP SN 1 is delivered to the upper layer.
  • the PDCP entity of the terminal restarts the rearrangement timer upon receiving the PDCP PDU of PDCP SN 2, and delivers the PDCP SDU corresponding to the PDCP PDU of PDCP SN 2 to a higher layer.
  • a PDCP PDU of a sequential PDCP SN is received before the rearrangement timer expires.
  • the PDCP entity of the terminal restarts the rearrangement timer every time PDCP PDUs of PDCP SN 3 to 5 are received. Meanwhile, PDCP SDUs corresponding to PDCP PDUs of PDCP SNs 3 to 5 that are sequentially received are delivered to a higher layer.
  • the PDCP layer of the terminal Since the PDCP layer of the terminal receives the PDCP PDUs out of sequence when receiving PDCP PDUs of PDCP SN 11, the PDCP layer does not restart the rearrangement timer and maintains them.
  • the PDCP layer of the UE receives PDCP PDUs of PDCP SN 5, it is expected to receive PDCP PDUs of PDCP SN 6.
  • the PDCP SN of the PDCP PDU received is 11, which corresponds to non-sequential reception, not sequential reception. Therefore, do not restart the rearrangement timer in this case.
  • PDCP SDUs corresponding to PDCP PDUs received out of order while the rearrangement timer is running are stored in a buffer. Therefore, in this case, PDCP SDUs corresponding to PDCP PDUs of PDCP SN 11 are stored in a buffer. In this case, the rearrangement timer is maintained.
  • FIG. 15B assumes a case in which a PDCP entity of a UE completes reception of PDCP PDUs of PDCP SN 12 after FIG. 15A.
  • the PDCP entity of the terminal still determines that PDCP PDU reception of PDCP SN 12 is still out of order. Because the PDCP SN of the last PDCP SDU delivered to the upper layer is 5, the PDCP entity of the UE expects to receive the PDCP PDU of PDCP SN # 6, which is next to the PDCP SN of the last PDCP SDU delivered to the upper layer. Because. Thus, in this case, the rearrangement timer continues to expire.
  • FIG. 15C assumes a case in which a PDCP entity of a UE completes reception until PDCP PDU of PDCP SN 6 after FIG. 15B.
  • the PDCP entity of the UE when the PDCP entity of the UE receives the PDCP PDU of PDCP SN 6, it determines that the PDCP PDU is sequentially received. This is because the PDCP PDU of PDCP SN 6, which is next to PDCP SN 5 of the last PDCP PDU delivered to the upper layer, is received. In this case, the terminal restarts the rearrangement timer, and delivers the PDCP SDU corresponding to the PDCP PDU of PDCP SN 6 to a higher layer.
  • the PDCP entity of the terminal does not receive PDCP PDUs of PDCP SN 6 until the rearrangement timer expires, the PDCP SDU corresponding to PDCP PDUs of PDCP SN 6 is considered to have been removed by expiration of the removal timer.
  • FIG. 15D assumes a case in which a PDCP entity of the UE completes reception until PDCP PDU of PDCP SN 19 after FIG. 15C.
  • the PDCP entity of the terminal receives PDCP PDUs in the order of 13, 7, 17, 8, 18, 9, 19 after PDCP SN 6 PDCP PDU reception.
  • the PDCP entity of the UE regards PDCP PDUs of PDCP SN 6, 7, 8, and 9 sequentially and delivers corresponding PDCP SDUs to a higher layer.
  • the PDCP entity of the terminal restarts the rearrangement timer every time PDCP PDUs of PDCP SN 6, 7, 8, and 9 are received.
  • the PDCP entity of the UE delivers corresponding PDCP SDUs to the upper layer because PDCP PDUs of PDCP SNs 11, 12, 13, 17, 18, and 19 are not sequentially received (PDCP PDUs of PDCP SN 10 are not received). Instead, store it in a buffer. In this case, the rearrangement timer is maintained without restarting.
  • FIG. 15E assumes a case in which a PDCP entity of the UE completes reception until PDCP PDU of PDCP SN 10 after FIG. 15D.
  • the PDCP entity of the terminal upon reception of a PDCP PDU of PDCP SN # 10, the PDCP entity of the terminal delivers a corresponding PDCP SDU and PDCP SDUs associated with stored PDCP SNs 11, 12, and 13 to a higher layer. Due to reception of PDCP PDUs of PDCP SN 10, the PDCP entity of the UE may deliver all of the PDCP SDUs corresponding to the consecutive order starting from PDCP SN 10 to a higher layer at a time.
  • the PDCP entity of the UE determines that the received PDCP PDUs of PDCP SN 17, 18 and 19 are out of order until receiving PDCP PDUs of PDCP SN 14, 15 and 16, and PDCP PDUs of PDCP SN 17, 18 and 19.
  • the PDCP SDUs corresponding to the PCP SDUs are stored in the buffer without being transferred to the upper layer. That is, since PDCP PDUs of PDCP SNs 17, 18 and 19 are not in sequential order until PDCP PDUs of PDCP SNs 14, 15 and 16 are received, corresponding PDCP SDUs are not delivered to the upper layer.
  • PDCP PDUs of PDCP SN 14, 15 and 16 should be received or removed.
  • Ascending order to the upper layer of the PDCP SDU can be guaranteed based on the rearrangement timer according to the above criteria.
  • FIG. 16 shows another example of PDCP SDU rearrangement through the rearrangement timer operation according to the present invention.
  • FIG. 16A illustrates a PDCP PDU of PDCP SN 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5 and 11 and 12 in FIG. 14. This is the case.
  • the PDCP entity of the terminal delivers corresponding PDCP SDUs to a higher layer whenever PDCP SNs 1 to 5 PDCP PDUs are received, and starts / restarts a rearrangement timer.
  • the PDCP PDUs of PDCP SN 6 have not yet been received (ie, out of sequence), so that the corresponding PDCP SDUs are stored and re-created. Keep the array timer. In this case, the PDCP entity of the terminal cannot clearly distinguish whether the PDCP PDU of PDCP SN 6 is removed due to the removal timer expiration or arrives late due to a path delay.
  • the PDCP entity of the terminal determines that the PDCP SDU corresponding to the PDCP PDU of the PDCP SN 6 is removed when the PDCP SN of the PDCP SN 6 is not received even if the rearrangement timer waits until the rearrangement timer expires.
  • FIG. 16b assumes that after FIG. 16a, the PDCP entity of the terminal has completed reception up to the PDCP PDU of PDCP SN 19. After the PDCP entity of the terminal receives PDCP SN 13, PDCP PDUs of PDCP SN 13 and 7 without receiving PDCP SN of PDCP SN 6, the rearrangement timer expires, and then the PDCP entity of the UE receives PDCP PDU of PDCP SN 17 One case.
  • the PDCP PDU of the UE determines that the PDCP SDU corresponding to the PDCP PDU of PDCP SN 6 is removed.
  • the rearrangement timer means a time that the PDCP PDU of the PDCP SN, which is expected to be sequentially received, can wait as much as possible in consideration of a path delay. Therefore, when the rearrangement timer expires, it is determined that the PDCP SDU corresponding to the PDCP PDU of the corresponding PDCP SN is removed.
  • packet loss is regarded as no packet loss in the X2 (or Xn) interface section between the macro base station and the small base station.
  • the PDCP entity considers the PDCP PDUs of PDCP SN 7 to be sequential because the PDCP SDUs associated with PDCP SN 6 have been removed. This is because the PDCP SDU associated with PDCP SN 6 is removed and cannot be received by the PDCP entity of the UE. Therefore, even if the PDCP SDU associated with PDCP SN 7 is delivered to a higher layer, there is no problem in ascending order. Therefore, except for the PDCP SDU thus removed, it is possible to grasp the sequential reception (or ascending order).
  • the PDCP entity may transmit a PDCP SDU associated with PDCP SN 7 to a higher layer, but may transmit the PDCP SDU associated with PDCP SN 7 to a higher layer when the rearrangement timer expires, or first receive after the rearrangement timer expires.
  • the PDCP SDU associated with PDCP SN 7 may be delivered to a higher layer.
  • the rearrangement timer is not started when the PDCP PDU of PDCP SN 17 is received, and thus the rearrangement timer is started.
  • 17 shows an example of transmission of PDCP SDUs to a higher layer when the rearrangement timer according to the present invention expires. 17, in the example of FIG. 14, after the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5, 11 and 12, PDCP SN 13 and PDCPs of PDCP SN 13 and 7 are received without receiving PDCP PDUs of PDCP SN 6.
  • the rearrangement timer is started when the PDCP entity of the UE receives the PDCP SN # 17 PDCP PDU, and without the PDCP SN # 8 PDCP PDU, PDCP SN 18, 9, 19, 10 PDCP PDUs have been received and the rearrangement timer has expired.
  • the PDCP entity when the PDCP entity receives the PDCP PDU, it describes on which criteria the corresponding PDCP SDU is transmitted to the upper layer. However, there is no description of the behavior of the PDCP entity when the rearrangement timer expires.
  • the PDCP entity may perform the next operation immediately when the reordering timer expires, or may perform the next operation upon receiving the PDCP PDU after the reordering timer expires. For example, a PDCP entity may forward PDCP SDUs treated as sequential reception to a higher layer except for PDCP SDUs that are treated as removed when the rearrangement timer expires.
  • the PDCP entity may deliver PDCP SDUs treated as sequential receptions to a higher layer except for the PDCP SDUs that are treated as removed by the rearrangement timer expiration. That is, when the rearrangement timer expires, delivering the PDCP SDUs treated as sequential receptions among the stored PDCP SDUs to a higher layer may be triggered immediately when the rearrangement timer expires, or After the rearrangement timer expires, it may be triggered at the time the PDCP PDU is received.
  • the larger the rearrangement timer value it can be clearly determined whether the missing PDCP SDU has been removed or not yet received, but the time delay occurs because the transfer to the upper layer of the remaining PDCP SDUs is reserved during the rearrangement timer time.
  • the rearrangement timer value is smaller, the time delay is reduced, but it may be less accurate to determine whether the missing PDCP SDU is removed or not received yet. Therefore, the rearrangement timer should be appropriately set in consideration of the above problem.
  • PDCP PDUs may be transmitted via a macro base station or a small base station.
  • the time interval between successive PDCP PDUs is determined to be insignificant.
  • the time that the PDCP removal timer is driven and progressed is about the same in successive PDCP PDUs. Therefore, it is sufficient to consider only the delay due to the difference in transmission paths between PDCP PDUs transmitted from the macro base station's PDCP entity through the macro base station's RLC entity or the small base station's RLC entity. For example, if it is assumed that the difference in the transmission delay in the radio section is insignificant, the main path delay will correspond to the delay time in the X2 (or Xn) path existing between the macro base station and the small base station.
  • the rearrangement timer value RT may be set to any value within 20 to 60 ms corresponding to the X2 (or Xn) path delay.
  • the rearrangement timer value RT may be signaled from a base station to a terminal in a dedicated or broadcast manner.
  • additional PDCP SDU removal confirmation method may be used.
  • FIG. 18A illustrates, after the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5, 11 and 12, the PDCP entity of the UE does not receive PDCP PDUs of PDCP SN 6 to PDCP SN 13 in FIG. 14. After receiving 7 PDCP PDUs, the rearrangement timer expires, and then the PDCP entity of the UE receives PDCP PDUs of PDCP SN 17 afterwards.
  • the PDCP entity of the terminal When the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 17, the PDCP SDU corresponding to the PDCP PDU of PDCP SN 7 is transferred to a higher layer and starts a rearrangement timer.
  • the PDCP entity stores the corresponding PDCP SDU (associated with PDCP SN 17) since the PDCP PDUs of PDCP SN 17 are not sequential receptions.
  • FIG. 18B illustrates a case in which a PDCP entity of the UE receives PDCP SN 18, PDPD # 9 without receiving PDCP PDUs of PDCP SN 8 after FIG. 18A.
  • the PDCP entity of the terminal receives PDCP SN 18 and PDCP PDUs in sequence 9 without receiving PDCP PDUs of PDCP SN 8.
  • a PDCP entity of a terminal can distinguish PDCP SNs of PDCP PDUs transmitted through an RLC entity of a macro base station and PDCP SNs of PDCP PDUs transmitted through an RLC entity of a small base station.
  • the PDCP entity may determine the PDCP SDU removal according to the following method.
  • the PDCP SN of a specific PDCP PDU expected to be received sequentially through one base station (for example, a small base station) to the PDCP entity of the terminal is called X, and the PDCP PDU received from another base station (for example, macro base station) If the maximum PDCP SN is Y, if the PDCP entity of the UE is Y> X, it may be determined that the PDCP PDU (or PDCP SDU) having the PDCP SN corresponding to X is removed.
  • a description with reference to FIG. 18B is as follows.
  • the PDCP entity of the UE is PDCP SN 6 of the PDCP PDU, which was expected to be sequentially received through the small base station, and the PDCP PDU received through the macro base station. Compare 20 times the maximum PDCP SN of, and since 20> 6, determine that the PDCP SDU associated with the corresponding PDCP SN 6 has been removed.
  • FIG. 19 is a flowchart example of a PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
  • the PDCP entity of the terminal when the PDCP entity of the terminal sequentially receives PDCP SN n PDCP PDUs, the PDCP entity forwards the corresponding PDCP SDU to the upper layer, and if the rearrangement timer is not running, starts the rearrangement timer. If the rearrangement timer is in operation, the rearrangement timer is restarted (S1900). In this case, the PDCP entity of the terminal restarts the rearrangement timer every time the PDCP PDU is sequentially received while the rearrangement timer is being driven.
  • the rearrangement timer corresponds to a waiting timer for waiting for the PDCP PDUs that are expected to be sequentially received after the last sequentially received PDCP PDUs.
  • the PDCP entity of the UE may check whether the corresponding PDCP PDUs are sequentially received based on the PDCP SN of the corresponding PDCP PDU.
  • the PDCP entity of the UE checks whether the PDCP PDU of PDCP SN n + 1 is received before the rearrangement timer expires (S1910). Although the PDCP entity of the terminal receives PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3, it is determined that the PDCP PDUs are not sequential reception and are determined to be PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3. Store the corresponding PDCP SDUs and maintain the rearrangement timer.
  • the PDCP entity of the UE receives PDCP SN n + 1 PDCP PDUs before the rearrangement timer expires in S1910, the PDCP entity of the UE continuously starts from PDCP SN n + 1 and is continuously associated with PDCP SN. All stored PDCP SDUs of the value are transmitted to the upper layer in ascending order (S1920).
  • the rearrangement timer expires in S1910, that is, if the PDCP entity of the terminal does not receive PDCP SN n + 1 PDCP PDUs until the rearrangement timer expires, the PDCP entity of the terminal PDPD SN n + 1
  • the PDCP SDUs associated with are reported to have been removed, and starting with PDCP SN n + 2, all stored PDCP SDUs of consecutively associated PDCP SN values are delivered to the upper layer in ascending order (S1930).
  • the PDCP entity of the UE may deliver all stored PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 2 at the time of reordering timer to the upper layer in ascending order.
  • the PDCP entity of the terminal is the first time any PDCP PDU received after the rearrangement timer expires, starting from PDCP SN n + 2 to the upper layer in the ascending order all the stored PDCP SDUs of the associated PDCP SN value I can deliver it.
  • various communication services provided to a user may have a service gap for various reasons.
  • the service disconnection refers to a phenomenon in which the packet transmission is not continuously and continuously interrupted or discontinuously transmitted for a specific time in providing Internet services.
  • Services provided on the Internet may be transmitted from the application server to the user via the Internet network.
  • the packet transmitted to the user may be discontinuously transmitted according to the load condition of the network.
  • Incoming packets can also be introduced discontinuously from various nodes in the network.
  • a packet may be generated discontinuously instead of continuously generating a packet.
  • packets for a service flowing into a base station are not continuously received continuously, and packet flow may be interrupted due to service disconnection.
  • 20 is a diagram illustrating a case in which packets are intermittently transmitted due to service interruption.
  • a packet is transmitted from a GW (gateway) 2060 to a base station 2030 for a service provided to the terminal 2000.
  • the application service may be provided through a server or the like, which is transmitted to the wireless network and transmitted to the base station 2030 in the form of a packet via the GW 260.
  • Packet traffic is then generally transmitted continuously from the GW 2060 to the base station 2030.
  • service disconnection may occur in which packets are not transmitted at regular or random intervals according to network conditions or applications.
  • the base station 2030 receives the transmitted packets in order from packet # 1.
  • the received packets correspond to PDCP SDUs. That is, the received packet is stored in the PDCP buffer in the form of PDCP SDU in the PDCP entity of the PDCP layer.
  • the PDCP SDUs stored in the buffer are sequentially processed as PDCP PDUs and transferred to the lower layer.
  • the time interval may also occur in a time when PDCP PDUs are delivered to a lower layer in a PDCP entity of the base station 2030. That is, PDCP PDUs in which PDCP SDUs corresponding to packets 4 and 5 and packets 8 and 9 received by the base station 2030 at intervals of Gap1 and Gap2 are processed may also be delivered to a lower layer with a time difference. Can be.
  • the terminal may receive the packets through two different transmission paths.
  • the terminal receives the service through the macro base station and the small base station.
  • the PDCP PDUs delivered by the PDCP entity of the macro base station are RLC of the macro base station. It is delivered to the PDCP entity of the terminal via the RLC entity of the entity or the small base station. Accordingly, the PDCP entity of the terminal receives PDCP PDUs that have experienced different path delays.
  • a problem may occur such that a PDCP PDU having a large PDCP SN arrives before a PDCP PDU having a small PDCP SN, and thus, a method of rearranging PDCP SDUs in a PDCP entity should be considered.
  • a timer considering path delay time may be used.
  • additional PDCP PDU transmission delays due to service interruption may also need to be considered to rearrange PDCP SDUs.
  • the PDCP SDUs may be rearranged in the PDCP entity in such a manner as to secure the time that the PDCP PDU can be received in consideration of the path delay.
  • the rearrangement timer value could be set in consideration of the path delay time.
  • the service disconnection time may be much larger than the path delay time, and in this case, it may be difficult to perform PDCP SDU rearrangement using only the rearrangement timer considering the path delay time.
  • FIG. 21 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • FIG. 21 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity), and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of).
  • 21A illustrates reception of PDCP PDUs in the absence of service disruption.
  • the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 7, delivers corresponding PDCP SDUs to a higher layer, and starts / restarts a rearrangement timer for each reception.
  • PDCP PDUs of PDCP SN 8 may be received at the PDCP entity after PDCP SN 9 PDCP PDUs are received before the rearrangement timer expires.
  • the PDCP entity may deliver PDCP SDUs associated with PDCP SNs 9 and 10 to a higher layer.
  • 21B illustrates reception of PDCP PDUs when there is a service disruption.
  • 21B illustrates a case where service disconnection occurs after PDCP PDUs of PDCP SN 7 are transmitted (or received).
  • the PDCP entity of the terminal receives the PDCP PDU of PDCP SN # 7, the PDCP entity transfers the corresponding PDCP SDU to the higher layer and restarts the rearrangement timer.
  • the delay due to service interruption is generated in addition to the path delay in receiving the PDCP PDU. Accordingly, PDCP PDUs of PDCP SN 8 are not received and the rearrangement timer expires. This is because the rearrangement timer is designed in consideration of the path delay time and does not consider the delay time due to service disconnection.
  • PDCP SN 8 PDCP PDUs (or PDCP SDUs) are considered to have been removed, so that a series of processing is performed (e.g. PDCP SN 9, 10 PDCP SDUs are higher layers).
  • PDCP PDUs of PDCP SN 8 may be received.
  • the PDCP entity of the UE may not be able to guarantee the ascending delivery of PDCP SDUs to higher layers.
  • the PDCP entity of the base station may transmit a PDCP PDU delivered for the first time after the service interruption occurs through a path having a relatively short path delay time.
  • the path delay is relatively shorter than when the PDCP PDU is delivered to the PDCP entity of the UE via the RLC entity of the UE. It can be seen that you have time.
  • the PDCP PDU of the UE before the rearrangement timer expires. Can increase the likelihood of receiving.
  • 22 shows an example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
  • 22 shows PDCP PDUs associated with Nos. 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity of) and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of).
  • FIG. 22 assumes a case where service disconnection occurs after transmission of PDCP PDUs of PDCP SN # 7.
  • the PDCP PDUs of PDCP SN # 8 may not use the small base station (the RLC entity) but the macro base station (the RLC entity).
  • the path delay time through the small base station is larger than the path delay time through the macro base station.
  • a transmission through a small base station including an X2 (or Xn) path delay is larger than a transmission through a macro base station.
  • the path delay of the transmission through the small base station may be smaller than the path delay of the transmission through the macro base station, and the macro base station may determine which path path is short.
  • PDCP PDUs of PDCP SN # 8 transmitted through the macro base station may be received by the PDCP entity of the UE before the rearrangement timer expires, and the PDCP entity of the UE may ensure the ascending delivery of PDCP SDUs to higher layers. Can be.
  • the PDCP entity of the base station first delivers the PDCP PDU delivered after the service break occurs to the RLC entity of the macro base station and the RLC entity of the small base station, respectively.
  • the PDCP entity of the UE may receive and process the PDCP PDU delivered first.
  • the PDCP entity of the UE may receive a PDCP PDU that arrives first among the duplicate PDCP PDUs, perform a process such as storage or forwarding to a higher layer, and remove the second received PDCP PDU.
  • FIG. 23 shows another example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
  • FIG. 23 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity), and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of).
  • FIG. 23 assumes a case where a service disconnection occurs after transmission of PDCP PDUs of PDCP SN # 7.
  • the PDCP entity duplicates the PDCP PDU # 8 of PDCP SN # 8 and the small base station (RLC entity of) and macro base station (RLC entity of). Through the PDCP entity of the terminal through the transmission.
  • the PDCP PDUs of PDCP SN No. 8 that are first transmitted after the service disconnection are repeatedly transmitted through the macro base station and the small base station
  • the PDCP PDU transmitted through the base station having the smallest path delay is first received by the PDCP entity of the UE. Can be.
  • the PDCP entity of the terminal may receive PDCP PDUs of PDCP SN 8 before the rearrangement timer expires.
  • the PDCP entity of the terminal first receives a PDCP PDU of PDCP SN # 8
  • the PDCP entity transmits a corresponding PDCP SDU to a higher layer and restarts the rearrangement timer. Since the PDCP PDU of PDCP SN # 8 received later corresponds to duplicate reception, it can be removed.
  • various communication services provided to a user may have a service gap for various reasons.
  • the service disconnection refers to a phenomenon in which the packet transmission is not continuously and continuously interrupted or discontinuously transmitted for a specific time in providing Internet services.
  • Services provided on the Internet may be transmitted from the application server to the user via the Internet network.
  • the packet transmitted to the user may be discontinuously transmitted according to the load condition of the network.
  • Incoming packets can also be introduced discontinuously from various nodes in the network.
  • a packet may be generated discontinuously instead of continuously generating a packet.
  • packets for a service flowing into a base station are not continuously received continuously, and packet flow may be interrupted due to service disconnection. It may be.
  • 24 is a diagram illustrating a case where a packet is intermittently received due to service disconnection.
  • a packet is transmitted from a GW (gateway) 2460 to a base station 2430 for a service provided to the terminal 1400.
  • the base station 2430 may be, for example, a macro base station.
  • the application service may be provided through a server or the like, which is transmitted to the wireless network and transmitted to the base station 2430 in the form of a packet via the GW 2460.
  • Packet traffic is then generally transmitted continuously from the GW 2460 to the base station 2430. However, service disconnection may occur in which packets are not transmitted at regular or random intervals according to network conditions or applications.
  • the base station 2430 side receives the transmitted packets in order from packet # 1.
  • the received packets correspond to PDCP SDUs. That is, the received packet is stored in the PDCP buffer in the form of PDCP SDU in the PDCP entity of the PDCP layer.
  • the PDCP SDUs stored in the buffer are sequentially processed as PDCP PDUs and transferred to the lower layer.
  • the time interval may also occur at a time when PDCP PDUs are delivered to a lower layer in the PDCP entity of the base station 2430. That is, PDCP PDUs in which PDCP SDUs corresponding to packets 4 and 5 and packets 8 and 9 received by the base station 2430 at intervals of Gap1 and Gap2 are processed may also be delivered to a lower layer with a time difference. Can be.
  • the terminal may receive the packets through two different transmission paths.
  • the terminal receives the service through the macro base station and the small base station.
  • the PDCP PDUs delivered by the PDCP entity of the macro base station are RLC of the macro base station. It is delivered to the PDCP entity of the terminal via the RLC entity of the entity or the small base station. Accordingly, the PDCP entity of the terminal receives PDCP PDUs that have experienced different path delays.
  • a problem may occur such that a PDCP PDU having a large PDCP SN arrives before a PDCP PDU having a small PDCP SN, and thus, a method of rearranging PDCP SDUs in a PDCP entity should be considered.
  • a timer considering path delay time may be used.
  • additional PDCP PDU transmission delays due to service interruption may also need to be considered to rearrange PDCP SDUs.
  • the service disconnection time may be much greater than the path delay time. Accordingly, there is a need for a PDCP SDU rearrangement method capable of delivering PDCP SDUs to an upper layer in ascending order in consideration of service interruption as well as path delay.
  • a standby timer that is driven when the PDCP entity receives the PDCP PDU out-of-sequence ( Based on the wait timer)
  • the wait timer may be referred to as an out-of-sequence timer.
  • the present invention can be applied to both a downlink data transfer procedure and an uplink data transfer procedure, and the following description will focus on the downlink data transfer procedure.
  • 25 illustrates a PDCP SDU rearrangement method in consideration of multiflow according to another embodiment of the present invention.
  • 25 shows that PDCP PDUs of PDCP SNs 1 to 8 are delivered through an RLC entity of a macro base station, and PDCP PDUs of PDCP SNs 9, 10, 14, 15, 16, 23 and 24 are delivered through an RLC entity of a small base station.
  • FIG. 15 assumes that other PDCP PDUs are not delivered for a certain time due to service disconnection after the PDCP PDUs of PDCP SN 7 are delivered.
  • FIG. 25A illustrates a case in which PDCP PDUs of PDCP SN 9 are received without PDCP PDUs of PDCP SN 8 after PDCP SN 1,2, 3, 4, 5, 6, and 7 PDCP PDUs are received by the PDCP entity of the UE.
  • a PDCP entity of a terminal sequentially receives PDCP PDUs of PDCP SNs 1 to 7.
  • the PDCP entity of the terminal processes the received PDCP PDUs and delivers corresponding PDCP SDUs to a higher layer.
  • the PDCP entity of the terminal does not run the wait timer.
  • the PDCP entity receives the PDCP PDU of PDCP SN # 9. Since the PDCP entity of the UE has not yet received PDCP PDUs of PDCP SN 8, PDCP PDUs of PDCP SN 9 are determined to be out of sequence and drive a standby timer.
  • the sequential reception may be determined based on, for example, the following criteria. If the PDCP SN of the last PDCP SDU delivered to the upper layer is defined as Last_Submitted_PDCP_RX_SN and the PDCP SN of the PDCP SDU expected to be sequentially received next is defined as Next_PDCP_RX_SN, Next_PDCP_RX_SN is represented by Equations 1 and 2 above. You can follow either.
  • the wait timer may mean a timer waiting for reception of a sequential PDCP PDU by a PDCP entity receiving an out of sequence PDCP PDU.
  • the wait timer may be set to, for example, a value of 20 to 60 ms in consideration of the path delay time of the X2 (or Xn) interface between the macro base station and the small base station.
  • a timer for rearranging PDCP SDUs may be operated based on sequential reception of PDCP PDUs, but in this case, in case of such service disconnection, the timer may undesirably expire and may be received when waiting longer. PDCP PDUs can be incorrectly treated as removed.
  • the standby timer based on the non-sequential reception of the PDCP PDU as described above, it is possible to solve the problem caused by the time delay due to service disconnection.
  • FIG. 25B assumes that, after FIG. 25A, the PDCP entity of the UE receives PDCP PDUs of PDCP SN 8 after the waiting timer expires after receiving PDCP SNs 10 and 14 PDCP PDUs.
  • the PDCP entity of the UE determines that PDCP PDUs of PDCP SN 10 and 14 are still out of order. Subsequently, if PDCP PDUs of PDCP SN # 8 are received, this is determined as sequential reception.
  • the PDCP entity of the terminal stops the wait timer when a PDCP PDU of PDCP SN 8 is received. Then, starting from PDCP SN 8, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order. For example, the PDCP entities PDCP SN 8, 9, and 10 PDCP SDUs of the UE are delivered to the upper layer in ascending order.
  • FIG. 25C assumes a case where the PDCP entity of the UE receives the PDCP PDU of PDCP SN 15 after FIG. 25B.
  • the PDCP entity of the UE when the PDCP entity of the UE receives the PDCP PDU of PDCP SN 15, it determines that the PDCP PDU is out of order and drives the standby timer again.
  • the PDCP entity of the terminal waits for the PDCP PDU of PDCP SN 11, which is expected to receive sequentially, until the waiting timer expires.
  • the PDCP entity of the terminal does not store all of the PDCP SN values continuously associated with the PDCP SN 11 starting from the PDCP SN 11 when the wait timer expires.
  • PDCP SDUs eg PDCP SDUs of PDCP SNs 11, 12, 13
  • all stored PDCP PDUs of successively associated PDCP SN values starting with the PDCP SN eg, For example, PDCP SDUs of PDCP SN 14 and 15
  • the PDCP entity of the UE receives a PDCP PDU for the first time after the waiting timer expires, it is determined that all unsaved PDCP SDUs of consecutively related PDCP SN values starting from the PDCP SN 11 are removed, and then the PDCP SN Starting from then, all stored PDCP PDUs of consecutively related PDCP SN values are transmitted to the upper layer.
  • the terminal when the terminal is configured for dual connection with the macro base station and the small base station, when performing the multi-flow downlink reception, due to the transmission path delay, out of order to the PDCP entity of the terminal Even if PDCP PDUs are received, rearrangement of PDCP SDUs may be performed based on a waiting timer, ascending order of PDCP SDUs to an upper layer, and transmission efficiency may be improved.
  • the standby timer is driven based on the non-sequentially received PDCP PDU, the PDCP SDU rearrangement can be smoothly performed even if a time delay occurs while the packet is received by the macro base station due to service disconnection.
  • 26 is a flowchart illustrating a PDCP SDU rearrangement method using a wait timer according to another embodiment of the present invention.
  • a PDCP entity of a terminal sequentially receives PDCP PDUs of PDCP SN n
  • the PDCP entity transmits a corresponding PDCP SDU to an upper layer (S2600).
  • the PDCP entity of the UE may check whether the corresponding PDCP PDUs are sequentially received based on the PDCP SN of the received PDCP PDU.
  • the wait timer may refer to a timer waiting for a PDCP entity receiving a non-sequential PDCP PDU to receive a sequential PDCP PDU.
  • the UE after receiving a PDCP PDU corresponding to PDCP SN 7, the UE may be in a state of receiving 8 PDCP PDUs of PDCP SN 7 + 1.
  • the UE receives a PDCP PDU corresponding to SN 9 instead of PDCP SN 8, which is expected to receive after a predetermined time elapses.
  • the terminal drives the timer to wait for the reception of PDCP PDU 8 after the reception of PDCP PDU 9.
  • the terminal receives the PDCP PDU corresponding to PDCP SN 9
  • the PDCP PDU corresponding to PDCP SN 7 is transmitted to a higher layer and is no longer stored in the terminal.
  • the terminal may store the SN of the PDCP PDU transmitted to the upper layer and may know the PDCP SN that it expects to receive next.
  • the terminal transmits all PDCP PDUs corresponding to PDCP SNs 8, 9, and 10 to the upper layer upon reception of PDCP PDU # 8. Accordingly, the terminal corresponds to PDCP corresponding to PDCP SN # 10. It is understood that the PDU is transmitted to a higher layer. At this time, the UE is aware of the PDCP SN 11 expected to receive the next time. In FIG. 25C, when the UE receives a PDCP PDU corresponding to PDCP SN 15, the UE differs from PDCP SN 11, which was expected to be received next, so that the UE drives a standby timer to wait for reception of PDCP PDU corresponding to PDCP SN 11. .
  • the UE stores PDCP PDU Nos. 14 and 15.
  • PDCP SN 11 is expected to receive the wait timer, it is reasonable to determine that PDCP PDUs 12 and 13 were transmitted through macro or small base stations before PDCP PDUs 14 and 15. Therefore, when the terminal receives the PDCP PDU No. 15, it is appropriate to receive within the waiting timer operation period. If not received, it is considered discarded. Therefore, PDCP PDUs that do not arrive at the time when the waiting timer, which is driven by the UE when the PDCP PDU 15 is received, may be determined to have been removed.
  • the PDCP entity of the UE checks whether the PDCP PDU of PDCP SN n + 1 is received before the waiting timer expires (S2620).
  • the PDCP entity of the terminal does not start / restart the standby timer even if the standby timer receives another out of sequence PDCP PDU during operation.
  • the PDCP entity of the UE If the PDCP entity of the UE receives PDCP SN n + 1 PDCP PDUs before the timer expires in S2620, the PDCP entity of the UE stops the standby timer and starts from PDCP SN n + 1. All stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order (S2630).
  • the wait timer expires in S2620, that is, if the PDCP entity of the terminal does not receive PDCP SN n + 1 PDCP PDU until the wait timer expires, the PDCP entity of the terminal is smaller than PDCP SN n + k times All PDCP SDUs associated with PDCP SN values that have not yet been received are considered to have been removed (S2640). That is, the PDCP entity of the UE removes PDCP SDUs except for the PDCP SDUs currently stored among the associated PDCP SDUs having a PDCP SN value smaller than the PDCP SN value n + k starting from the PDCP SN value n + 1 expected to be sequentially received.
  • the PDCP entity of the terminal delivers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n + k to a higher layer (S2650), starting with PDCP SN n + k and having all consecutive PDCP SN values.
  • the stored PDCP SDUs are transferred to an upper layer (S2660).
  • the PDCP entity of the terminal delivers all stored PDCP SDUs associated with PDCP SN values less than PDCP SN n + k times to the upper layer in ascending order at the time of waiting timer expiration, and starts continuously from n + k times All stored PDCP SDUs of SN value may be delivered to the upper layer in ascending order.
  • the PDCP entity of the terminal forwards all stored PDCP SDUs associated with the PDCP SN value less than PDCP SN n + k to the upper layer at the time of receiving any PDCP PDU for the first time after the rearrangement timer expires, Starting from n + k, all stored PDCP SDUs of consecutively related PDCP SN values may be delivered to the upper layer in ascending order.
  • FIG. 27 is an example of a block diagram of a macro base station, a small base station, and a terminal according to the present invention. to be.
  • the terminal 2700 according to the present invention may configure dual connectivity with the macro base station 2730 and the small base station 2760.
  • the terminal 2700, the macro base station 2730 and the small base station 2760 according to the present invention supports the above-described multi-flow.
  • the macro base station 2730 includes a macro transmitter 2735, a macro receiver 2740, and a macro processor 2750.
  • the macro receiver 2740 receives a packet for one EPS bearer from the S-GW.
  • the macro processor 2750 controls the PDCP entity of the macro base station 2730 to process PDCP SDUs corresponding to the received packet and generate PDCP PDUs.
  • the macro processor 2750 distributes the PDCP PDUs according to a reference, transfers (or transmits) a part of the PDCP PDUs to the RLC entity of the macro base station 2740, and transmits the PDCP PDUs to the terminal through the macro transmitter 2735.
  • the macro processor 2750 transmits (or forwards) the remaining part to the RLC entity of the small base station 2760 through the macro transmitter 2735.
  • PDCP SDUs corresponding to PDCP PDUs may be identified and indicated as PDCP SN.
  • the macro processor 2750 generates information on the rearrangement timer for the PDCP SDU and transmits the information to the terminal through the macro transmitter 2735.
  • the information on the rearrangement timer may be signaled exclusively to the terminal 2700 or may be signaled in a broadcast manner.
  • the macro transmitter 2735 may transmit the information on the rearrangement timer to the terminal 2700 through an RRC message (eg, an RRC connection reconfiguration message).
  • the macro processor 2750 receives the PDCP entity of the terminal 2700 for the first time after the service disconnection of the PDCP entity of the macro processor 2750.
  • the PDCP PDU delivered to the entity may be controlled to be delivered through the RLC entity of the macro base station 2730.
  • the macro processor 2750 may duplicate the PDCP PDU delivered by the PDCP entity to the PDCP entity of the terminal 2700 for the first time after the service disconnection, and thus the RLC entity and the small of the macro base station 2730. Control may be delivered via all of the RLC entities of base station 2760.
  • the macro processor 2750 may generate information on a wait timer for the PDCP SDU and transmit the information to the terminal 2700 through the macro transmitter 2735.
  • the information on the wait timer may be signaled exclusively to the terminal 2700 or may be signaled in a broadcast manner.
  • the macro transmitter 2735 may transmit the information on the wait timer to the terminal 2700 through an RRC message (eg, an RRC connection reconfiguration message).
  • the small base station 2760 includes a small transmitter 2765, a small receiver 2770, and a small processor 2780.
  • the small receiver 2770 receives the remaining PDCP PDUs from the macro base station 2730.
  • the small processor 2780 processes the PDCP PDU by controlling the RLC entity, the MAC entity, and the PHY layer of the small base station 2730, and transmits the PDCP PDU to the terminal through the small transmitter 2765.
  • the terminal 2700 includes a terminal receiver 2705, a terminal transmitter 2710, and a terminal processor 2720.
  • the terminal processor 2720 performs the functions and controls necessary to implement the features of the present invention as described above.
  • the terminal receiver 2705 receives the information on the rearrangement timer from the macro base station 2730.
  • the information on the rearrangement timer may be included in an RRC message (eg, an RRC connection reconfiguration message) and received by the terminal receiver 2705.
  • the terminal transmitter 2710 may transmit an RRC connection reconfiguration complete message to the macro base station 2730.
  • the terminal receiver 2705 may receive information on a standby timer from the macro base station 2730.
  • the information on the wait timer may be included in an RRC message (eg, an RRC connection reconfiguration message) and may be received by the terminal receiver 2705.
  • the terminal transmitter 2710 may transmit an RRC connection reconfiguration complete message to the macro base station 2730.
  • the terminal receiving unit 2705 receives data for PDCP PDUs from the macro base station 2730 and the small base station 2760, respectively.
  • the terminal processor 2720 interprets the data and controls the PHY layer (s), the MAC entity (s), the RLC entity (s), and the PDCP entity of the terminal 2700 to obtain PDCP SDUs.
  • the UE processor 2720 transfers the corresponding PDCP SDU to the higher layer.
  • the terminal processor 1720 may check whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the received PDCP PDU. For example, the PDCP SN value of the PDCP SDU (or PDU) which is expected to be sequentially received based on Equation 1 or 2 may be determined.
  • the UE processor 2720 starts the rearrangement timer if the rearrangement timer is not running, and restarts the rearrangement timer if the rearrangement timer is running. In this case, the terminal processor 2720 restarts the rearrangement timer every time the PDCP PDU is sequentially received while the rearrangement timer is driven to the PDCP entity of the terminal.
  • the rearrangement timer corresponds to a timer for waiting for PDCP PDUs that are expected to be sequentially received after the last sequentially received PDCP PDUs.
  • the terminal processor 2720 may determine whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the corresponding PDCP PDU.
  • the terminal processor 2720 checks whether PDCP SN n + 1 PDCP PDUs are received by the PDCP entity before the rearrangement timer expires. The terminal processor 2720 determines that the PDCP entity is not a sequential reception even though PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3 are received by the PDCP entity, and are not PDCP SN n + 2 and PDCP SN n. Store PDCP SDUs corresponding to +3 PDCP PDUs in a buffer and maintain a rearrangement timer.
  • the terminal processor 2720 If the PDCP entity receives PDCP SN n + 1 PDCP PDUs before the rearrangement timer expires, the terminal processor 2720 ascends all stored PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 1. To the upper layer of the PDCP entity.
  • the terminal processor 2720 is assigned to PDCP SN n + 1
  • the associated PDCP SDUs are considered to have been removed, and all PDCP SDUs of the associated PDCP SN value are delivered to the upper layer in ascending order starting from PDCP SN n + 2 stored in the PDCP entity.
  • the terminal processor 2720 may deliver all PDCP SDUs of consecutively related PDCP SN values to the upper layer starting from PDCP SN n + 2 stored in the PDCP entity at the time of reordering timer expiration in ascending order.
  • the terminal processor 2720 in the ascending order of all PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 2 stored in the PDCP entity, at the time of receiving any PDCP PDU for the first time after the rearrangement timer expires. Can be passed to the layer.
  • the PD processor 1720 drives the standby timer. can do.
  • the UE processor 2720 stops the wait timer.
  • the terminal processor 2720 transfers all stored PDCP SDUs of consecutively related PDCP SN values starting with PDCP SN n + 1 to the upper layer of the PDCP entity in ascending order.
  • the terminal processor 2720 has a PDCP SN value of less than PDCP SN n + k times. All associated unreceived PDCP SDUs may be considered to have been removed.
  • the terminal processor 2720 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n + k times to an upper layer in ascending order. In addition, the terminal processor 2720 transfers all stored PDCP SDUs of PDCP SN values consecutively associated with PDCP SN n + k to the upper layer in ascending order.
  • the terminal processor 2720 may deliver all stored PDCP SDUs associated with a PDCP SN value smaller than the PDCP SN n + k stored in the PDCP entity to the upper layer at the time of waiting timer expiration, starting from PDCP SN n + k. All PDCP SDUs of consecutively associated PDCP SN values may be delivered to the upper layer in ascending order.
  • the terminal processor 2720 in the ascending order of all stored PDCP SDUs associated with a PDCP SN value less than PDCP SN n + k stored in the PDCP entity, at the time of receiving any PDCP PDU for the first time after the wait timer expires. All PDCP SDUs of PDCP SN values consecutively associated with PDCP SN n + k may be delivered to the upper layer in ascending order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method and an apparatus for reordering a packet data convergence protocol (PDCP) in a wireless communication system supporting dual connectivity. According to the present invention, provided is a method for reordering PDCP service data units (SDU) by a PDCP entity of user equipment (UE) to which dual connectivity between a master eNB and a secondary eNB is configured. According to the present invention, when the dual connectivity is configured to the user equipment, even if the PDCP PDUs are received non-sequentially by the PDCP entity of the user equipment, the PDCP SDUs can be reordered based on a timer, the PDCP SDUs can be delivered to an upper layer in ascending order, and transmission efficiency can be improved.

Description

이중연결 시스템에서 PDCP 재배열 방법 및 장치Method and apparatus for rearranging PDCP in dual connectivity system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 이중 연결(dual connectivity)를 지원하는 무선 통신 시스템에서 PDCP 재배열(reordering) 방법 및 그 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for PDCP reordering in a wireless communication system supporting dual connectivity.
셀 내부의 핫 스팟(hotspot)과 같은 특정 지역에서는 특별히 많은 통신 수요가 발생하고, 셀 경계(cell edge) 또는 커버리지 홀(coverage hole)과 같은 특정 지역에서는 전파의 수신 감도가 떨어질 수 있다. 무선 통신 기술이 발달함에 따라, 핫 스팟이나, 셀 경계, 커버리지 홀과 같은 지역에서 통신을 가능하게 하기 위한 목적으로 매크로 셀(Macro Cell)내에 스몰 셀(small cell)들, 예를 들어, 피코 셀(Pico Cell), 펨토 셀(Femto Cell), 마이크로 셀(Micro Cell), 원격 무선 헤드(remote radio head: RRH), 릴레이(relay), 중계기(repeater)등이 함께 설치된다. 이러한 네트워크를 이종 네트워크(Heterogeneous Network: HetNet)라 부른다. 이종 네트워크 환경에서는 상대적으로 매크로 셀은 커버리지(coverage)가 큰 셀(large cell)이고, 펨토 셀과 피코 셀과 같은 스몰 셀은 커버리지가 작은 셀이다. 매크로 셀에 비하여 펨토 셀과 피코 셀과 같은 스몰 셀은 저전력을 사용함으로 저전력네트웍(LPN: Low Power Network)라고도 한다. 이종 네트워크 환경에서 다수의 매크로 셀들 및 스몰 셀들 간에 커버리지 중첩이 발생한다.In particular areas, such as hot spots inside the cell, there is a great demand for communication, and in certain areas such as cell edges or coverage holes, the reception sensitivity of radio waves may be reduced. With the development of wireless communication technology, small cells, such as pico cells, within a macro cell for the purpose of enabling communication in areas such as hot spots, cell boundaries, and coverage holes. (Pico Cell), femto cell (Femto Cell), micro cell (Micro Cell), remote radio head (RRH), relay (relay), repeater (repeater) is installed together. Such a network is called a heterogeneous network (HetNet). In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Compared to macro cells, small cells such as femto cells and pico cells use low power and are also referred to as low power networks (LPNs). Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
단말은 적어도 하나의 서빙셀을 구성하는 기지국들 중 둘 이상의 기지국을 통하여 이중 연결(dual connectivity)을 구성할 수 있다. 이중 연결은 무선 자원 제어 연결(RRC_CONNECTED) 모드에서 적어도 두 개의 서로 다른 네트워크 포인트(예, 매크로 기지국 및 스몰 기지국)에 의해 제공되는 무선 자원들을 해당 단말이 소비하는 동작(operation)이다. 이 경우 상기 적어도 두 개의 서로 다른 네트워크 포인트는 이상적이지 않은 백홀(non-ideal backhaul)로 연결될 수 있다.The terminal may configure dual connectivity through two or more base stations among the base stations configuring at least one serving cell. Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. In this case, the at least two different network points may be connected by non-ideal backhaul.
이때, 상기 적어도 두개의 서로 다른 네트워크 포인트 중 하나는 매크로 기지국(또는 마스터 기지국 또는 앵커 기지국)이라 불릴 수 있고, 나머지는 스몰 기지국(또는 세컨더리 기지국 또는 어시스팅 기지국 또는 슬레이브 기지국)들이라 불릴 수 있다. In this case, one of the at least two different network points may be called a macro base station (or a master base station or an anchor base station), and the rest may be called small base stations (or secondary base stations or assisting base stations or slave base stations).
일반적으로 무선 통신 시스템은 하나의 EPS 베어러서비스를 위하여 하나의 RB(radio bearer)를 통하여 서비스가 단말에 제공되는 싱글 플로우(single flow) 구조이다. 그러나, 이중 연결을 지원하는 무선 통신 시스템의 경우 하나의 EPS 베어러를 하나의 RB가 아닌 매크로 셀과 스몰 셀에 각각 설정되는 두 개의 RB를 통하여 서비스를 단말에 제공할 수 있다. 즉, 멀티 플로우(multi-flow)를 통하여 서비스가 단말로 제공될 수 있다. 상기에서 하나의 RB는 매크로 셀 만을 통하여 제공되며 다른 하나의 RB는 매크로 셀과 스몰 셀에 해당하는 두 개의 기지국에 거쳐서 설정될 수 있다. 다시 말해, 하나의 RB는 단일 기지국에 설정되며 나머지 하나의 RB는 두 개의 기지국에 분할된 형태 (Bearer split)로 설정될 수 있다.In general, a wireless communication system has a single flow structure in which a service is provided to a terminal through one radio bearer (RB) for one EPS bearer service. However, in a wireless communication system supporting dual connectivity, one EPS bearer may provide a service to a terminal through two RBs configured in a macro cell and a small cell instead of one RB. That is, the service may be provided to the terminal through multi-flow. In the above, one RB may be provided through only the macro cell, and the other RB may be configured through two base stations corresponding to the macro cell and the small cell. In other words, one RB may be configured in a single base station and the other RB may be configured in a bearer split into two base stations.
RLC AM(Acknowlegdged mode)의 경우 하향링크에서 단말의 RLC 엔티티는 수신한 RLC PDU(Packet Data Unit)가 순차에 어긋나게 수신된 경우, 상기 RLC PDU를 재배열(reorder)한다. RLC AM의 경우 수신 측에서 수신누락된 RLC PDU를 송신 측에서 다시 재전송(retransmission)할 수 있다. 상기 RLC 엔티티는 상기 재배열된 RLC PDU를 기반으로 RLC SDU(Service Date Unit)를 재조립(reassemble)하고, 상위 계층(즉, PDCP 엔티티)으로 순차적으로 전달한다. RLC AM의 경우 RLC PDU의 재배열(Reordering)과 재전송(Retransmission) 방식을 통하여 순차적인 전달이 가능하다. 다시 말해, PDCP 엔티티는 하위 계층의 재설정(re-establishment)를 제외한 경우, RLC SDU를 순차적으로 전달받아야 한다. 그러나 멀티 플로우가 구성되는 단말의 경우 스몰 기지국에 대한 RLC 엔티티와 매크로 기지국에 대한 RLC 엔티티가 구분되어 각각의 RLC PDU를 수신하고, RLC SDU를 상위 계층(즉, PDCP 계층)으로 전달할 수 있고, 이 경우 PDCP 엔티티에서는 RLC SDU의 순차적인 수신을 기대할 수 없다. 따라서, 멀티 플로우가 구성된 단말의 경우 PDCP 엔티티에서의 상위계층으로 PDCP SDU의 오름차순 전달을 위한 PDCP 재배열 방안이 요구된다.In the case of an RLC acknowlegdged mode (AMC), when a received RLC packet data unit (RDU PDU) is received out of order in downlink, the RLC entity reorders the RLC PDUs. In the case of RLC AM, the missing RLC PDU may be retransmitted at the receiver. The RLC entity reassembles an RLC Service Date Unit (SDU) based on the rearranged RLC PDUs and sequentially delivers them to a higher layer (ie, PDCP entity). In the case of RLC AM, sequential delivery is possible through reordering and retransmission of the RLC PDU. In other words, the PDCP entity should receive the RLC SDUs sequentially, except for re-establishment of the lower layer. However, in case of a UE configured with multi-flow, an RLC entity for a small base station and an RLC entity for a macro base station may be divided to receive each RLC PDU, and the RLC SDU may be delivered to a higher layer (ie, a PDCP layer). If the PDCP entity does not expect the sequential reception of the RLC SDU. Therefore, in case of a UE configured with multi-flow, a PDCP rearrangement method for ascending delivery of PDCP SDUs to a higher layer in a PDCP entity is required.
본 발명의 기술적 과제는 이중연결 시스템에서 PDCP 재배열 방법 및 장치를 제공함에 있다.The present invention provides a method and apparatus for rearranging PDCP in a dual connectivity system.
본 발명의 다른 기술적 과제는 멀티 플로우 구조에서 PDCP 엔티티의 수신단이 PDCP SDU를 상위계층으로 오름차순으로 전달하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for transmitting a PDCP SDU to an upper layer in an ascending order by a receiving end of a PDCP entity in a multiflow structure.
본 발명의 또 다른 기술적 과제는 멀티 플로우 구조에서 타이머를 기반으로 PDCP 재배열을 수행함에 있다. Another technical problem of the present invention is to perform PDCP rearrangement based on a timer in a multiflow structure.
본 발명의 일 양태에 따르면, 매크로 기지국(Macro eNB) 및 스몰 기지국(small eNB)와 이중 연결(dual connectivity)이 구성된 단말(UE)의 PDCP(Packet Data Convergence Protocol) 엔티티(entity)에서, 멀티 플로우(multi-flow)를 고려한 PDCP SDU(Service Data Unit)들 재배열(reordering) 방법을 제공한다. 상기 PDCP SDU 재배열 방법은, PDCP SN(sequence number) n번의 PDCP PDU(Packet Data Unit)를 순차적으로 수신하였을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 시작/재시작하는 단계, 및 상기 재배열 타이머가 만료되기 전에 순차 수신이 기대되는(expected) PDCP SN n+1번의 PDCP PDU가 수신된 경우, 상기 재배열 타이머를 재시작하는 단계를 포함함을 특징으로 한다.According to an aspect of the present invention, in a Packet Data Convergence Protocol (PDCP) entity of a UE configured for dual connectivity with a macro base station (Macro eNB) and a small eNB (small eNB), multi-flow A method of reordering PDCP Service Data Units (SDUs) considering multi-flow is provided. The PDCP SDU rearrangement method, when sequentially receiving PDCP sequence number (PDCP SN) PD PD packet data units (PDUs), delivers a corresponding PDCP SDU to a higher layer and starts / restarts a rearrangement timer. And if the PDCP PDUs of PDCP SN n + 1, which are expected to be sequentially received before the rearrangement timer expires, are received, restarting the rearrangement timer.
본 발명의 다른 일 양태에 따르면, 매크로 기지국의 PDCP 엔티티에서, 매크로 기지국 및 스몰 기지국과 이중 연결이 구성된 단말의 PDCP 엔티티로 멀티 플로우를 고려하여 PDCP PDU를 전송하는 방법을 제공한다. 상기 PDCP PDU 전송 방법은, 상위 계층으로부터 수신한 패킷에 대한 PDCP SDU들를 처리하여 PDCP PDU들을 생성하는 단계, 및 상기 PDCP PDU들을 정해진 규칙에 따라 상기 매크로 기지국의 RLC 엔티티 및 상기 스몰 기지국의 RLC 엔티티에 분배하여 상기 단말의 PDCP 엔티티로 전달하는 단계를 포함하되, 상위 계층으로부터 일정 시간 이상 패킷이 수신되지 않는 서비스 단절(service gap)이 발생한 경우, 상기 서비스 단절 이후에 처음으로 상기 단말의 PDCP 엔티티로 전달하는 PDCP PDU는 상기 매크로 기지국의 RLC 엔티티를 통하여 전달함을 특징으로 한다.According to another aspect of the present invention, there is provided a method of transmitting a PDCP PDU in consideration of multi-flow from a PDCP entity of a macro base station to a PDCP entity of a terminal having dual connectivity with a macro base station and a small base station. The PDCP PDU transmission method may include generating PDCP PDUs by processing PDCP SDUs for a packet received from an upper layer, and generating the PDCP PDUs to an RLC entity of the macro base station and an RLC entity of the small base station according to a predetermined rule. And distributing the packet to a PDCP entity of the terminal, and if a service gap occurs in which a packet is not received from a higher layer for a predetermined time, the service is delivered to the PDCP entity of the terminal for the first time after the service disconnection. PDCP PDU is characterized in that for transmitting through the RLC entity of the macro base station.
본 발명에 따르면 단말이 마스터 기지국 및 세컨더리 기지국과 이중 연결이 구성된 경우에, 멀티 플로우(multi flow) 하향링크 수신을 수행함에 있어, 단말의 PDCP 엔티티에 비순차적으로 PDCP PDU들이 수신되더라도, 타이머를 기반으로 PDCP SDU들의 재배열을 수행하고, 상위 계층으로 PDCP SDU들의 오름차순 전달을 수행할 수 있고, 전송 효율을 향상할 수 있다.According to the present invention, when the terminal is dual-connected with the master base station and the secondary base station, in performing the multi-flow downlink reception, even if PDCP PDUs are received out of sequence in the PDCP entity of the terminal, based on a timer The rearrangement of PDCP SDUs can be performed, ascending order of PDCP SDUs can be performed to an upper layer, and transmission efficiency can be improved.
또한, 서비스 단절이 발생하는 경우에도, 서비스 단절 후의 처음 PDCP PDU는 경로 지연이 짧은 마스터 기지국, 또는 중복하여(duplicate) 마스터 기지국의 RLC 엔티티 및 세컨더리 기지국의 RLC 엔티티 모두를 통하여 단말의 PDCP 엔티티로 전달함으로써, 상기 PDCP PDU의 시기적절한(timely) 수신을 지원할 수 있다.In addition, even when a service disconnection occurs, the first PDCP PDU after the service disconnection is delivered to the PDCP entity of the terminal through both the master base station with a short path delay or the duplicated RLC entity of the master base station and the secondary base station RLC entity. By doing so, it is possible to support timely reception of the PDCP PDU.
또한, 비순차 수신된 PDCP PDU를 기준으로 대기 타이머를 구동할 수 있으므로, 서비스 단절로 인하여 매크로 기지국으로 패킷이 수신되는 도중에 시간 지연이 발생하더라도, 원활하게 PDCP SDU 재배열을 수행할 수 있다. In addition, since the standby timer may be driven based on non-sequentially received PDCP PDUs, PDCP SDU rearrangement may be smoothly performed even if a time delay occurs while receiving a packet due to service interruption.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.3 is a block diagram illustrating a radio protocol structure for a control plane.
도 4는 본 발명이 적용되는 RLC 서브계층 모델의 일 예의 개요를 나타낸 도이다.4 is a diagram illustrating an outline of an example of an RLC sublayer model to which the present invention is applied.
도 5는 본 발명이 적용되는 PDCP 서브계층 모델의 일 예의 개요를 나타낸 도이다.5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
도 6은 본 발명에 적용되는 단말의 이중 연결 상황의 일 예를 나타낸다.6 shows an example of a dual connection situation of a terminal applied to the present invention.
도 7은 싱글 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다. 7 shows an example of an EPS bearer structure when a single flow is configured.
도 8은 이중 연결 상황에서, 싱글 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation.
도 9는 이중 연결 상황에서, 멀티 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다.9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
도 10은 멀티 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
도 11은 이중 연결을 고려할 때, 싱글 플로우인 경우 패킷 전달 과정을 나타낸다. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
도 12는 이중 연결을 고려할 때, 멀티 플로우인 경우 패킷 전달 과정을 나타낸다. 12 illustrates a packet forwarding process in the case of multi-flow when considering dual connectivity.
도 13은 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 예를 나타낸다.13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal.
도 14는 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 다른 예를 나타낸다.14 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal.
도 15a 내지 도 15e는 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 예들을 나타낸다.15A to 15E illustrate examples of PDCP SDU rearrangement through rearrangement timer operation according to the present invention.
도 16a 내지 도 16b은 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 다른 예들을 나타낸다.16A to 16B illustrate other examples of PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
도 17은 본 발명에 따른 재배열 타이머가 만료된 경우 PDCP SDU들의 상위계층으로의 전송의 일 예를 나타낸다.17 shows an example of transmission of PDCP SDUs to a higher layer when the rearrangement timer according to the present invention expires.
도 18a 내지 도 18b는 본 발명에 따른 PDCP SDU 제거 확정 방안을 적용하는 예를 나타낸다.18A to 18B illustrate an example of applying a PDCP SDU removal decision method according to the present invention.
도 19는 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 흐름도 예이다.19 is a flowchart example of a PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
도 20은 서비스 단절로 인하여 패킷이 간헐적으로 전송되는 경우를 나타내는 도면이다.20 is a diagram illustrating a case in which packets are intermittently transmitted due to service interruption.
도 21a 내지 도 21b는 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 또 다른 예를 나타낸다.21A to 21B illustrate another example of PDCP PDU reception timing in a PDCP entity of the UE.
도 22는 본 발명에 따른 서비스 단절을 고려한 PDCP PDU 전송 방식의 일 예를 나타낸다.22 shows an example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
도 23은 본 발명에 따른 서비스 단절을 고려한 PDCP PDU 전송 방식의 다른 예를 나타낸다.23 shows another example of a PDCP PDU transmission scheme considering service disconnection according to the present invention.
도 24는 서비스 단절로 인하여 패킷이 간헐적으로 수신되는 경우를 나타내는 도면이다.24 is a diagram illustrating a case where a packet is intermittently received due to service disconnection.
도 25a 내지 도 25c는 본 발명의 일 예에 따른 멀티 플로우를 고려한, PDCP SDU 재배열 방법을 나타낸다.25A to 25C illustrate a PDCP SDU rearrangement method in consideration of multiflow according to an embodiment of the present invention.
도 26은 본 발명의 다른 예에 따른 대기 타이머를 이용한 PDCP SDU 재배열 방법의 흐름도이다.26 is a flowchart illustrating a PDCP SDU rearrangement method using a wait timer according to another embodiment of the present invention.
도 27은 본 발명에 따른 매크로 기지국, 스몰 기지국 및 단말의 블록도이다.27 is a block diagram of a macro base station, a small base station and a terminal according to the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UMTS 시스템(Evolved- Universal Mobile Telecommunications System)의 네트워크 구조일 수 있다. E-UMTS 시스템은 LTE(Long Term Evolution) 또는 LTE-A(advanced)시스템 일 수 있다. 무선통신 시스템은 CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 1 shows a wireless communication system to which the present invention is applied. This may be a network structure of an Evolved-Universal Mobile Telecommunications System. The E-UMTS system may be a Long Term Evolution (LTE) or LTE-A (Advanced) system. Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
도 1을 참조하면, E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane:CP)과 사용자 평면(user plane:UP)을 제공하는 기지국(20; evolved NodeB :eNB)을 포함한다. Referring to FIG. 1, the E-UTRAN provides a base station 20 (evolved NodeB: eNB) which provides a control plane (CP) and a user plane (UP) to a user equipment (UE). Include.
단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. The terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, BS(Base Station, BS), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. S1 인터페이스는 MME와 신호를 교환함으로써 단말(10)의 이동을 지원하기 위한 OAM(Operation and Management) 정보를 주고받는다. The base station 20 generally refers to a station communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, and a femto-eNB. It may be called other terms such as a pico base station (pico-eNB), a home base station (Home eNB), a relay (relay). The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface. The S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
EPC(30)는 MME, S-GW 및 P-GW(Packet data network-Gateway)를 포함한다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이이다.The EPC 30 includes an MME, an S-GW, and a packet data network-gateway (P-GW). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. The S-GW is a gateway having an E-UTRAN as an endpoint, and the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
E-UTRAN과 EPC(30)를 통합하여 EPS(Evoled Packet System)라 불릴 수 있으며, 단말(10)이 기지국(20)에 접속하는 무선링크로부터 서비스 엔티티로 연결해주는 PDN까지의 트래픽 흐름은 모두 IP(Internet Protocol) 기반으로 동작한다. Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 connects to the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 제1계층(L1), 제2계층(L2), 제3계층(L3)로 구분될 수 있다. 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 RRC 메시지를 교환하여 단말과 네트워크 간에 무선자원을 제어한다.The radio interface between the terminal and the base station is called a Uu interface. The layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which are well known in a communication system. It may be divided into a second layer L2 and a third layer L3. Among these, the physical layer belonging to the first layer provides an information transfer service using a physical channel, and the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between network and network.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.FIG. 2 is a block diagram showing a radio protocol architecture for a user plane, and FIG. 3 is a block diagram showing a radio protocol architecture for a control plane. The user plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission.
도 2 및 도 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 매체접근제어(Medium Access Control: MAC) 계층과는 전송채널(transport channel)을 통해 연결된다. MAC 계층과 물리계층 사이에서 전송채널을 통해 데이터가 전달된다. 무선 인터페이스를 통해 데이터가 어떻게 전송되는가에 따라 전송채널이 분류된다. 2 and 3, a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel. The physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
또한, 서로 다른 물리계층 사이(즉, 송신기와 수신기의 물리계층 사이)에서 물리채널을 통해 데이터가 전달된다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다. In addition, data is transmitted through a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver). The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
일 예로, 물리채널 중 PDCCH(physical downlink control channel)는 단말에게 PCH(paging channel)와 DL-SCH(downlink shared channel)의 자원 할당 및 DL-SCH와 관련된 HARQ(hybrid automatic repeat request) 정보를 알려주며, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. 또한, PCFICH(physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임마다 전송된다. 또한, PHICH(physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. 또한, PUCCH(Physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. 또한, PUSCH(Physical uplink shared channel)은 UL-SCH(uplink shared channel)을 나른다. For example, the physical downlink control channel (PDCCH) of the physical channel informs the UE of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH. The PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission. In addition, a physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe. In addition, the PHICH (physical hybrid ARQ Indicator Channel) carries a HARQ ACK / NAK signal in response to uplink transmission. In addition, the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission. In addition, a physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
MAC 계층은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화 또는 역다중화를 수행할 수 있다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에 서비스를 제공한다. 논리채널은 제어 영역 정보의 전달을 위한 제어채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 나눌 수 있다.The MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel. The logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선 베어러(Radio Bearer:RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
RLC SDU들은 다양한 사이즈로 지원되며, 일 예로 바이트(byte) 단위로 지원될 수 있다. RLC PDU(protocol data unit)들은 하위계층(예, MAC 계층)으로부터 전송 기회(transmission opportunity)가 통보(notify)될 때에만 규정되며, 상기 전송기회가 통보될 때 RLC PDU들은 하위계층으로 전달된다. 상기 전송기회는 전송될 총 RLC PDU들의 크기와 함께 통보될 수 있다. 이하 도 4에서 RLC 계층에 대해서 자세히 설명한다.The RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes. RLC protocol data units (PDUs) are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer), and when the transmission opportunity is notified, the RLC PDUs are delivered to the lower layer. The transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted. Hereinafter, the RLC layer will be described in detail with reference to FIG. 4.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결점 보호(integrity protection)를 포함한다. Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 구성된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB), DRB(Data RB)로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지 및 NAS(Non-Access Stratum) 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network. The configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. The RB may be further classified into a signaling RB (SRB) and a data RB (DRB). The SRB is used as a path for transmitting RRC messages and non-access stratum (NAS) messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
NAS 계층은 RRC 계층 상위에 위치하며 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The NAS layer is located above the RRC layer and performs functions such as session management and mobility management.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우 단말은 RRC 연결 상태(RRC connected state)에 있고, 그렇지 못할 경우 RRC 휴지 상태(RRC idle state)에 있다.If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.The downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic (MTCH). Channel).
물리채널(Physical Channel)은 시간 영역에서 여러 개의 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심볼(Symbol)들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel)를 위해 해당 서브프레임의 특정 심볼들(가령, 첫 번째 심볼)의 특정 부반송파들을 이용할 수 있다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain. One sub-frame consists of a plurality of OFDM symbols in the time domain. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for the physical downlink control channel (PDCCH). The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
도 4는 본 발명의 실시예가 적용되는 RLC 서브계층 모델의 일 예의 개요를 나타낸 도이다.4 is a diagram illustrating an example of an example of an RLC sublayer model to which an embodiment of the present invention is applied.
도 4를 참조하면, 임의의 RLC 엔티티(entity)는 데이터 전송 방식에 따라 서로 다른 RLC 엔티티로 분류된다. 일 예로, TM RLC 엔티티(400), UM RLC 엔티티(420), AM RLC 엔티티(440)가 있다.Referring to FIG. 4, certain RLC entities are classified into different RLC entities according to data transmission schemes. For example, there is a TM RLC entity 400, a UM RLC entity 420, and an AM RLC entity 440.
UM RLC 엔티티(400)는 RLC PDU들을 논리채널들(예, DL/UL DTCH, MCCH 또는 MTCH)을 통해 수신 또는 전달되도록 구성될 수 있다. 또한, UM RLC 엔티티는 UMD PDU(Unacknowledged Mode Data PDU)를 전달하거나 수신할 수 있다. The UM RLC entity 400 may be configured to receive or forward RLC PDUs over logical channels (eg, DL / UL DTCH, MCCH or MTCH). In addition, the UM RLC entity may deliver or receive a UMD PDU (Unacknowledged Mode Data PDU).
UM RLC 엔티티는 송신 UM RLC 엔티티 또는 수신 UM RLC 엔티티로 구성된다. The UM RLC entity consists of a sending UM RLC entity or a receiving UM RLC entity.
송신 UM RLC 엔티티는 상위 계층으로부터 RLC SDU들을 수신하고 RLC PDU들을 하위 계층을 통해 피어 수신 UM RLC 엔티티로 전송한다. 송신 UM RLC 엔티티가 RLC SDU들로부터 UMD PDU들을 구성할 때, 하위계층에 의해 특정 전송 기회가 통보되면 RLC SDU들을 분할(segment)하거나 연접(concatenate)하여 하위계층에 의해 지시된 RLC PDU들의 총 크기 이내가 되도록 UMD PDU들을 구성하고, UMD PDU내에 관련 RLC 헤더들이 포함되도록 구성한다.The transmitting UM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer receiving UM RLC entity via the lower layer. When the sending UM RLC entity constructs UMD PDUs from the RLC SDUs, the total size of the RLC PDUs indicated by the lower layer by segmenting or concatenating the RLC SDUs when a specific transmission opportunity is notified by the lower layer. The UMD PDUs are configured to be within and the related RLC headers are included in the UMD PDU.
수신 UM RLC 엔티티는 상위 계층으로 RLC SDU들을 전달하고 하위 계층을 통해 피어(peer) 수신 UM RLC 엔티티로부터 RLC PDU들을 수신한다. 수신 UM RLC 엔티티가 UMD PDU들을 수신했을 때, 수신 UM RLC 엔티티는 UMD PDU들이 중복으로 수신되었는지 여부를 감지하여 중복된 UMD PDU들은 제거하고, UMD PDU들이 순차에서 벗어나(out of sequence) 수신된 경우 UMD PDU들의 순서를 재배열(reorder)하고, 하위계층에서의 UMD PDU들의 손실을 감지하여 과도한 재배열 지연들을 방지하고(avoid), 재배열된 UMD PDU들로부터 RLC SDU들을 재조립(reassemble)하고, 상기 재조립된 RLC SDU들을 RLC SN(sequence number)의 오름차순(ascending order)으로 상위계층으로 전달하고, 하위계층에서의 특정 RLC SDU에 속한 UMD PDU 손실로 인해 RLC SDU로 재조립이 불가능한 UMD PDU들은 제거할 수 있다. RLC 재설정(re-establishment)시, 수신 UM RLC 엔티티는 가능하다면 순차에서 벗어나 수신된 UMD PDU들로부터 RLC SDU들을 재조립하여 상위계층으로 전달하고, RLC SDU들로 재조립할 할 수 없었던 남아있는 UMD PDU들은 모두 제거하고, 관련 상태 변수들을 초기화하고 관련 타이머들을 중지한다.The receiving UM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer receiving UM RLC entity through the lower layer. When the receiving UM RLC entity receives UMD PDUs, the receiving UM RLC entity detects whether the UMD PDUs have been received in duplicate, removes the duplicate UMD PDUs, and when the UMD PDUs are received out of sequence. Reorder the UMD PDUs, detect loss of UMD PDUs in the lower layer to avoid excessive reordering delays, reassemble RLC SDUs from the rearranged UMD PDUs, and In addition, the reassembled RLC SDUs are delivered to an upper layer in an ascending order of an RLC sequence number, and UMD PDUs cannot be reassembled into an RLC SDU due to a loss of UMD PDUs belonging to a specific RLC SDU in a lower layer. Can be removed. Upon RLC re-establishment, the receiving UM RLC entity, if possible, reassembles the RLC SDUs from the received UMD PDUs out of sequence and forwards them to the higher layer, and the remaining UMD PDUs that could not be reassembled into RLC SDUs. Remove all, initialize the relevant state variables and stop the associated timers.
한편, AM RLC 엔티티(440)는 RLC PDU들을 논리채널(예, DL/UL DCCH or DL/UL DTCH)들을 통해 수신 또는 전달되도록 구성될 수 있다. AM RLC 엔티티는 AMD PDU 또는 ADM PDU 세그먼트(segnement)를 전달하거나 수신하고, RLC 제어 PDU(예, STATUS PDU)를 전달하거나 수신한다. Meanwhile, the AM RLC entity 440 may be configured to receive or deliver RLC PDUs through logical channels (eg, DL / UL DCCH or DL / UL DTCH). The AM RLC entity delivers or receives an AMD PDU or ADM PDU segment, and delivers or receives an RLC control PDU (eg, a STATUS PDU).
AM RLC 엔티티(440)은 RLC PDUs(또는 그 일부분)의 포지티브(positive) 및/또는 네거티브(negative) ACK(akcnowledgement)을 제공하기 위하여 STATUS PDUs를 피어 AM RLC 엔티티로 전달한다. 이는 STATUS 보고(reporting)라고 불릴 수 있다. STATUS 보고를 트리거하기 위하여 피어 AM RLC 엔티티로부터 폴링(polling) 절차가 수반될 수 있다. 즉, AM RLC 엔티티는 그의 피어 AM RLC 엔티티에서 STATUS 보고를 트리거하기 위하여 상기 피어 AM RLC 엔티티를 폴(poll)할 수 있다. AM RLC entity 440 delivers STATUS PDUs to peer AM RLC entities to provide positive and / or negative acknowledgment of RLC PDUs (or portions thereof). This may be called STATUS reporting. A polling procedure may be involved from the peer AM RLC entity to trigger STATUS reporting. That is, an AM RLC entity may poll the peer AM RLC entity to trigger STATUS reporting at its peer AM RLC entity.
만약, STATUS 보고가 트리거되어 있으며 차단타이머(t-StatusProhibit)가 진행중(running)이지 않거나 만료되었을 때, 상기 STATUS PDU는 다음 전송 기회에 전송된다. 따라서 단말은 STATUS PDU의 크기를 예측하고, RLC 계층에서 전송을 위해 사용 가능한 데이터로써 상기 STATUS PDU를 고려한다.If a STATUS report is triggered and the t-StatusProhibit is not running or has expired, the STATUS PDU is sent at the next transmission opportunity. Accordingly, the UE estimates the size of the STATUS PDU and considers the STATUS PDU as data available for transmission in the RLC layer.
AM RLC 엔티티는 송신부(transmitting side)와 수신부(receiving side)로 구성된다. The AM RLC entity is composed of a transmitting side and a receiving side.
AM RLC 엔티티의 송신부는 상위 계층으로부터 RLC SDU들을 수신하고 RLC PDU들을 하위 계층을 통해 피어 AM RLC 엔티티로 전송한다. AM RLC 엔티티의 송신부는 RLC SDU들로부터 AMD PDU들을 구성할 때, 하위계층에 의해 특정 전송 기회가 통보될 때 하위계층에 의해 지시된 RLC PDU(들)의 총 크기 내로 맞추기 위해 RLC SDU들을 분할(segment)하거나 연접(concatenate)하여 AMD PDU들을 구성한다. AM RLC 엔티티의 송신부는 RLC data PDU들의 재전송(ARQ)을 지원한다. 만일 재전송될 상기 RLC data PDU가 하위계층에 의해 특정 전송 기회가 통보될 때 하위계층에 의해 지시된 RLC PDU(들)의 총 크기 내로 맞지 않는다면 AM RLC 엔티티는 RLC data PDU를 AMD PDU segment들로 재분할(re-segment)한다.The transmitter of the AM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer AM RLC entity via the lower layer. When the transmitter of the AM RLC entity configures AMD PDUs from RLC SDUs, it splits the RLC SDUs to fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is notified by the lower layer. Segment or concatenate to configure AMD PDUs. The transmitter of the AM RLC entity supports retransmission of RLC data PDUs (ARQ). If the RLC data PDU to be retransmitted does not fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is informed by the lower layer, then the AM RLC entity repartitions the RLC data PDU into AMD PDU segments. (re-segment)
이때, 재분할의 개수(the number of re-segmentation)는 제한되지 않는다. AM RLC 엔티티의 송신부가 상위계층으로부터 수신된 RLC SDU들로부터 AMD PDU들을 만들거나 또는 재전송될 RLC data PDU들로부터 AMD PDU 세그먼트들을 만들 때, RLC data PDU안에 관련 RLC 헤더들이 포함된다.At this time, the number of re-segmentation is not limited. When the transmitter of the AM RLC entity creates AMD PDUs from RLC SDUs received from the upper layer or AMD PDU segments from RLC data PDUs to be retransmitted, the relevant RLC headers are included in the RLC data PDU.
AM RLC 엔티티의 수신부는 상위 계층으로 RLC SDU들을 전달하고 RLC PDU들을 하위 계층을 통해 피어 AM RLC 엔티티로부터 수신한다. The receiver of the AM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer AM RLC entity via the lower layer.
AM RLC 엔티티의 수신부는 RLC 데이터 PDU들을 수신했을 때, RLC 데이터 PDU들이 중복으로 수신되었는지 여부를 감지하고, 중복된 RLC 데이터 PDU들은 제거하고, RLC 데이터 PDU들이 시퀀스에서 벗어나(out of sequence) 수신된 경우 RLC 데이터 PDU들의 순서를 재배열(reorder)하고, 하위계층에서 발생한 RLC 데이터 PDU들의 손실을 감지하고 피어 AM RLC 엔티티에 재전송을 요구하고, 재배열된 RLC 데이터 PDU들로부터 RLC SDU들을 재조립(reassemble)하고, 상기 재조립된 RLC SDU들을 재조립된 순차대로(in sequence) 상위계층으로 전달한다.When the receiver of the AM RLC entity receives the RLC data PDUs, the receiver detects whether the RLC data PDUs are received in duplicate, removes the duplicate RLC data PDUs, and removes the RLC data PDUs out of sequence. Reorder the order of RLC data PDUs, detect the loss of RLC data PDUs occurring in the lower layer, request retransmission to the peer AM RLC entity, and reassemble RLC SDUs from the rearranged RLC data PDUs. reassemble, and deliver the reassembled RLC SDUs to an upper layer in reassembled order.
RLC 재설정시, AM RLC 엔티티의 수신부는 가능하다면 시퀀스에서 벗어나 수신된 RLC 데이터 PDU들로부터 RLC SDU들을 재조립하여 상위계층으로 전달하고, RLC SDU들로 재조립할 할 수 없는 남아있는 RLC 데이터 PDU들을 모두 제거하고, 관련 상태 변수들을 초기화하고 관련 타이머들을 중지한다.When resetting the RLC, the receiver of the AM RLC entity, possibly out of sequence, reassembles the RLC SDUs from the received RLC data PDUs and delivers them to the higher layer, all remaining RLC data PDUs that cannot be reassembled into RLC SDUs. Remove it, initialize the relevant state variables and stop the associated timers.
도 5는 본 발명이 적용되는 PDCP 서브계층 모델의 일 예의 개요를 나타낸 도이다.5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
PDCP 서브계층은 적어도 하나의 PDCP 엔티티(500)를 포함한다. 각 RB(예를 들어, DRB 및 SRB, 다만 SRB0는 제외)는 하나의 PDCP 엔티티(500)와 연관(associated)된다. 각 PDCP 엔티티는 RB의 특성(characteristic) 및 RLC 모드에 따라 하나 또는 두개의 RLC 엔티티(들)과 연관될 수 있다.The PDCP sublayer includes at least one PDCP entity 500. Each RB (eg, DRB and SRB, except SRB0) is associated with one PDCP entity 500. Each PDCP entity may be associated with one or two RLC entity (s) depending on the characteristics of the RB and the RLC mode.
PDCP 엔티티(500)는 상위 계층(예를 들어 어플리케이션 계층)으로부터 사용자 데이터를 수신하거나 상위 계층으로 사용자 데이터(user data)를 전달한다. 여기서 사용자 데이터는 IP 패킷이다. 사용자 데이터는 PDCP-SAP(Service Access Point)를 통해 전달될 수 있다. PDCP 계층은 RRC 계층으로부터 시그널링 데이터인 PDCP 구성 요청(PDCP_CONFIG_REQ) 메시지를 전달받는다. PDCP 구성 요청 메시지는 C-SAP(Control-Service Access Point)를 통해 전달될 수 있다. PDCP 구성 요청 메시지는 PDCP 구성 파라미터에 따라 PDCP를 구성할 것을 요청하는 메시지이다. The PDCP entity 500 receives user data from a higher layer (eg an application layer) or passes user data to a higher layer. The user data here is an IP packet. User data may be delivered via a Service Access Point (PDCP-SAP). The PDCP layer receives a PDCP configuration request (PDCP_CONFIG_REQ) message, which is signaling data, from the RRC layer. The PDCP configuration request message may be delivered through a control-service access point (C-SAP). The PDCP configuration request message is a message requesting to configure PDCP according to the PDCP configuration parameters.
PDCP 엔티티(500)의 송신단(trnasmitting side)은 상위 계층으로부터 사용자 데이터의 수신에 따라 제거(discard) 타이머를 개시(start)한다. 사용자 데이터(즉, PDCP SDU)는 헤더 압축, 무결점 보호(제어 평면에서), 암호화(cipering)을 거쳐 PDCP 헤더가 부가되어, PDCP PDU(즉, RLC SDU)가 된다. 송신단 PDCP는 PDCP PDU를 하위 계층(예를 들어 RLC 계층)으로 전달한다. PDCP PDU는 PDCP Data PDU 및 PDCP Control PDU를 포함할 수 있다. PDCP Data PDU는 사용자 평면 데이터, 제어 평면 데이터 등을 나르며, PDCP SDU SN(Sequence Number)을 나른다. PDCP SDU SN은 PDCP SN이라 불릴 수 있다. PDCP Control PDU는 PDCP 상태 보고(PDCP status report) 및 헤더 압축 제어 정보를 나른다.The transmitting side of the PDCP entity 500 starts a discard timer upon receipt of user data from a higher layer. User data (i.e. PDCP SDU) is subject to PDCP headers (i.e., RLC SDUs) through header compression, flawless protection (in the control plane), and encryption. The transmitter PDCP delivers the PDCP PDU to the lower layer (eg, RLC layer). The PDCP PDU may include a PDCP Data PDU and a PDCP Control PDU. The PDCP Data PDU carries user plane data, control plane data, and the like, and carries a PDCP SDU Sequence Number (SN). PDCP SDU SN may be called PDCP SN. The PDCP Control PDU carries a PDCP status report and header compression control information.
RLC SDU는 RLC-SAP를 통해 RLC 계층으로 전달될 수 있다. 만일, 제거 타이머가 만료될 때까지 사용자 데이터가 전송되지 않으면, 송신단 PDCP는 사용자 데이터(사용자 데이터를 포함하는 PDCP SDU)를 제거한다.The RLC SDU may be delivered to the RLC layer through the RLC-SAP. If the user data is not transmitted until the removal timer expires, the transmitting PDCP removes the user data (PDCP SDU including the user data).
PDCP 엔티티(500)의 수신단(receiving side)은 하위 계층으로부터 RLC SDU(즉, PDCP PDU)를 수신한다. PDCP PDU는 PDCP 헤더 압축해제, 판독(deciphering) 및 무결점 검사(integrity verification, 제어 영역에서)을 거쳐 PDCP SDU가 된다. PDCP 엔티티(500)의 수신단은 PDCP SDU를 상위 계층(예를 들어 어플리케이션 계층)으로 전달한다.The receiving side of the PDCP entity 500 receives an RLC SDU (ie PDCP PDU) from a lower layer. PDCP PDUs become PDCP SDUs through PDCP header decompression, deciphering, and integrity verification (in the control domain). The receiving end of the PDCP entity 500 delivers the PDCP SDUs to higher layers (eg, application layers).
PDCP 엔티티(500)의 수신단은 하위 계층의 재설정(re-establishment)를 제외한 경우, 일반적으로 RLC SDU(즉, PDCP PDU)를 순차적으로 전달받는 것으로 기대한다. 따라서 PDCP 엔티티(500)의 수신단은 하위 계층의 재설정을 통하여 RLC SDU를 수신한 경우를 제외하고는, PDCP PDU를 수신한 경우, 이에 대응하는 PDCP SDU를 오름차순으로 상위계층으로 전달할 수 있었다. 만약 저장되어 있는 PDCP SDU가 있으면, 오름차순으로 상위 계층으로 전달한다. 예를 들어, PDCP 엔티티(500)는 하위계층의 재설정이 아닌 이유로 PDCP PDU를 수신한 경우, 수신된 PDCP SDU의 카운트 값보다 낮은 카운트 값의 모든 저장된 PDCP SDU(s)을 오름차순으로 상위 계층으로 전달하고, 수신된 PDCP SDU의 카운트 값에서 시작하여 연속적으로(consecutively) 연관된 카운트 값의 모든 저장된 PDCP SDU(s)을 오름차순으로 상위 계층으로 전달한다. The receiving end of the PDCP entity 500 generally expects to receive sequentially RLC SDUs (ie, PDCP PDUs), except for re-establishment of lower layers. Accordingly, except when the receiving end of the PDCP entity 500 receives the RLC SDU through the resetting of the lower layer, when the PDCP PDU is received, the receiving end of the PDCP entity 500 may transmit the corresponding PDCP SDU to the upper layer in ascending order. If there are stored PDCP SDUs, they are delivered to the upper layer in ascending order. For example, if the PDCP entity 500 receives a PDCP PDU for reasons other than resetting the lower layer, the PDCP entity 500 forwards all stored PDCP SDU (s) with a count value lower than the count value of the received PDCP SDU to the upper layer in ascending order. And start with the count value of the received PDCP SDU and deliver all stored PDCP SDU (s) of the continuously associated count value to the upper layer in ascending order.
도 6은 본 발명의 실시예가 적용되는 단말에 이중 연결이 구성된 일 예를 나타낸다.6 shows an example in which a dual connection is configured in a terminal to which an embodiment of the present invention is applied.
도 6을 참조하면, 매크로 기지국(또는 마스터 기지국 또는 앵커 기지국, 600) 내 매크로 셀의 서비스 지역에 위치하는 단말(650)이 스몰 기지국(또는 세컨더리 기지국 또는 어시스팅(assisting) 기지국 또는 슬레이브 기지국, 610) 내 스몰 셀의 서비스 지역과 중첩(over-laid)된 지역으로 진입한 경우이다. Referring to FIG. 6, a terminal 650 located in a service area of a macro cell in a macro base station (or a master base station or an anchor base station 600) may be a small base station (or a secondary base station or an assisting base station or a slave base station, 610). In this case, the mobile station enters an area overlaid with the service area of the small cell.
매크로 기지국 내 매크로 셀을 통한 기존 무선 연결 및 데이터 서비스 연결을 유지한 채로 스몰 기지국 내 스몰 셀을 통한 추가적인 데이터 서비스를 지원하기 위하여, 네트워크는 단말에 대하여 이중 연결을 구성한다.In order to support additional data service through the small cell in the small base station while maintaining the existing wireless connection and data service connection through the macro cell in the macro base station, the network configures dual connectivity for the terminal.
이에 따라, 매크로 셀에 도착한 사용자 데이터는 스몰 기지국내 스몰 셀을 통해 단말에게 전달될 수 있다. 구체적으로, F2 주파수 대역이 매크로 기지국에 할당되고, F1 주파수 대역이 스몰 기지국에 할당될 수 있다. 이 경우 단말은 매크로 기지국으로부터 F2 주파수 대역을 통해 서비스를 수신하는 동시에, 스몰 기지국으로부터 F1 주파수 대역을 통해 서비스를 수신할 수 있다.Accordingly, the user data arriving at the macro cell may be delivered to the terminal through the small cell in the small base station. Specifically, the F2 frequency band may be allocated to the macro base station, and the F1 frequency band may be allocated to the small base station. In this case, the terminal may receive the service through the F2 frequency band from the macro base station and at the same time receive the service through the F1 frequency band from the small base station.
도 7은 싱글 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다. 7 shows an example of an EPS bearer structure when a single flow is configured.
도 7을 참조하면, RB는 사용자의 서비스를 지원하기 위해 Uu 인터페이스에서 제공되는 베어러(bearer)이다. 상기 무선통신 시스템에서는 각 인터페이스마다 각각의 베어러를 정의하여, 인터페이스들간의 독립성을 보장하고 있다.Referring to FIG. 7, an RB is a bearer provided in a Uu interface to support a service of a user. In the wireless communication system, each bearer is defined for each interface to ensure independence between the interfaces.
상기 무선통신 시스템이 제공하는 베어러를 총칭하여 EPS(Evolved Packet System) 베어러라고 한다. EPS 베어러는 단말과 P-GW 간에 생성되는 전송로(transmission path)이다. P-GW는 인터넷으로부터 IP 플로우를 수신 또는 인터넷으로 IP 플로우를 전송할 수 있다. EPS 베어러는 단말당 하나 이상 구성될 수 있으며, 각 EPS 베어러는 E-RAB(E-UTRAN Radio Access Bearer) 및 S5/S8 베어러로 나누어질 수 있고, 상기 E-RAB는 RB(Radio Bearer), S1 베어러로 나누어질 수 있다. 즉, 하나의 EPS 베어러는 각각 하나의 RB, S1 베어러, S5/S8 베어러에 대응된다. 어떤 서비스(또는 어플리케이션)을 이용하는가에 따라 IP 플로우는 다른 QoS(Quality of Service) 특성을 가질 수 있고, 각 EPS 베어러별로 서로 다른 QoS 특성을 가지는 IP 플로우가 맵핑되어 전송될 수 있다. EPS 베어러 식별자(EPS bearer identity)를 기반으로 EPS 베어러가 구분될 수 있다. 상기 EPS 베어러 식별자는 UE 또는 MME에 의하여 할당(allocate)된다. Bearers provided by the wireless communication system are collectively referred to as EPS (Evolved Packet System) bearers. The EPS bearer is a transmission path generated between the UE and the P-GW. The P-GW may receive IP flows from the Internet or send IP flows to the Internet. One or more EPS bearers may be configured per terminal, each EPS bearer may be divided into an E-UTRAN Radio Access Bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB may be a Radio Bearer (RB) or an S1. Can be divided into bearers. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively. Depending on which service (or application) is used, the IP flow may have different Quality of Service (QoS) characteristics, and IP flows having different QoS characteristics may be mapped and transmitted for each EPS bearer. The EPS bearer may be classified based on an EPS bearer identity. The EPS bearer identifier is allocated by the UE or MME.
P-GW(Packet Gateway)는 본 발명에 따른 무선통신 네크워크(예를 들어 LTE 네트워크)와 다른 네트워크 사이를 연결하는 네트워크 노드이다. EPS 베어러는 단말과 P-GW사이에 정의된다. EPS 베어러는 각 노드(node) 사이에 더욱 세분화되어, 단말과 기지국 사이는 RB, 기지국과 S-GW 사이는 S1 베어러, 그리고 EPC 내부의 S-GW와 P-GW 사이는 S5/S8 베어러로 정의된다. 각각의 베어러는 QoS를 통해 정의된다. QoS는 데이터율(data rate), 에러율(error rate), 지연(delay) 등을 통해 정의된다.P-GW (Packet Gateway) is a network node connecting between a wireless communication network (for example, LTE network) and another network according to the present invention. EPS bearer is defined between the terminal and the P-GW. EPS bearer is further subdivided between nodes, defined as RB between UE and BS, S1 bearer between BS and S-GW, and S5 / S8 bearer between S-GW and P-GW in EPC. do. Each bearer is defined through QoS. QoS is defined through data rate, error rate, delay, and the like.
따라서, 상기 무선통신 시스템이 전체적으로 제공해야 하는 QoS가 EPS 베어러로 정의되고 나면, 각 인터페이스마다 각각의 QoS가 정해진다. 각 인터페이스는 자신이 제공해야 하는 QoS에 맞춰 베어러를 설정하는 것이다. 각 인터페이스의 베어러는 전체 EPS 베어러의 QoS를 인터페이스별로 나누어 제공하므로, EPS 베어러와 RB, S1 베어러 등은 모두 기본적으로 일대일의 관계에 있다. Therefore, once the QoS that the wireless communication system should provide as a whole is defined as an EPS bearer, each QoS is determined for each interface. Each interface establishes a bearer according to the QoS that it must provide. Since bearers of each interface provide QoS of all EPS bearers by interface, EPS bearers, RBs, and S1 bearers are basically in a one-to-one relationship.
즉, LTE 무선 통신 시스템은 기본적으로 싱글 플로우 구조로서, 하나의 EPS 베어러를 위하여 하나의 RB가 구성된다. 다시 말해, 하나의 EPS 베어러는 하나의 RB를 통하여 S1 베어러와 맵핑된다. 싱글 플로우의 경우 하나의 EPS 베어러가 하나의 RB를 통하여 서비스된다. 이 경우 기지국에는 해당 EPS 베어러를 위하여 하나의 RB(예를 들어, PDCP 엔티티, RLC 엔티티, MAC 엔티티, PHY 계층)가 설정되고, 단말에서도 하나의 RB가 설정된다.That is, the LTE wireless communication system is basically a single flow structure, one RB is configured for one EPS bearer. In other words, one EPS bearer is mapped with the S1 bearer through one RB. In the case of a single flow, one EPS bearer is serviced through one RB. In this case, one RB (eg, PDCP entity, RLC entity, MAC entity, PHY layer) is configured for the corresponding EPS bearer, and one RB is configured in the terminal.
도 8은 이중 연결 상황에서, 싱글 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다. 도 8은 두 EPS 베어러를 통하여 단말에 서비스가 제공되고 있는 경우이다. 8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation. 8 illustrates a case where a service is provided to a terminal through two EPS bearers.
도 8을 참조하면, 매크로 기지국은 2개의 PDCP 엔티티, RLC 엔티티, MAC 엔티티, 그리고 PHY 계층을 포함하지만, 스몰 기지국은 RLC 엔티티, MAC 엔티티 그리고 PHY 계층을 포함한다. EPS 베어러 #1(800)은 매크로 기지국에 구성된 RB(PDCP/RLC/MAC/PHY)를 통하여 단말에 서비스를 제공한다. 반면에 EPS 베어러 #2(850)는 매크로 기지국에 구성된 PDCP 엔티티와 스몰 기지국에 구성된 RB(RLC/MAC/PHY)를 통하여 단말에 서비스를 제공한다. 따라서, 싱글 플로우에서 하나의 EPS 베어러 별로 하나의 RB를 통하여 서비스가 제공된다.Referring to FIG. 8, a macro base station includes two PDCP entities, an RLC entity, a MAC entity, and a PHY layer, while a small base station includes an RLC entity, a MAC entity, and a PHY layer. The EPS bearer # 1 800 provides a service to the terminal through the RB (PDCP / RLC / MAC / PHY) configured in the macro base station. On the other hand, the EPS bearer # 2 850 provides a service to the terminal through the PDCP entity configured in the macro base station and the RB (RLC / MAC / PHY) configured in the small base station. Therefore, a service is provided through one RB per EPS bearer in a single flow.
도 9를 참조하면, 멀티 플로우가 구성된 경우 하나의 EPS 베어러에 대하여 하나의 RB가 아닌 매크로 기지국 및 스몰 기지국에 각각 구성된 2개의 RB를 통하여 서비스가 제공된다. 단말은 하나의 EPS 베어러에 대하여 매크로 기지국에 구성된 RB와 스몰 기지국에 구성된 RB를 통하여 동시에 서비스를 제공받을 수 있다. 이는 하나의 EPS 베어러가 두 개의 RB를 통하여 서비스를 제공하는 형태이다. 상기와 같이 하나의 EPS 베어러가 두 개 이상의 RB를 통하여 단말에 서비스를 제공하는 경우를 단말에 멀티 플로우가 구성되었다고 볼 수 있다. 또는 매크로 기지국을 통해서만 서비스를 제공하는 RB와 매크로 기지국과 스몰 기지국으로 하나의 RB를 분할하여 제공하는 다른 RB가 동시에 단말에 제공될 경우에 멀티 플로우가 구성되었다고 볼 수 있다. 상기에서 하나의 RB를 분할하여 매크로 기지국과 스몰 기지국을 통해 단말에 서비스를 제공하는 경우를 베어러 분할 (Bearer split) 이라고 할 수 있다. Referring to FIG. 9, when multi-flow is configured, a service is provided through two RBs configured for the macro base station and the small base station instead of one RB for one EPS bearer. The terminal may simultaneously receive a service through one RB configured in the macro base station and one RB configured in the small base station for one EPS bearer. This is a form in which one EPS bearer provides a service through two RBs. As described above, when one EPS bearer provides a service to a terminal through two or more RBs, it may be regarded that multi-flow is configured in the terminal. Alternatively, the multi-flow may be configured when the RB providing the service only through the macro base station and another RB providing the RB divided into the macro base station and the small base station are simultaneously provided to the terminal. The case of providing a service to a terminal through a macro base station and a small base station by dividing one RB may be referred to as bearer split.
도 10은 멀티 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
도 10을 참조하면, 매크로 기지국은 PDCP 엔티티, RLC 엔티티, MAC 엔티티, 그리고 PHY 계층을 포함하지만, 스몰 기지국은 RLC 엔티티, MAC 엔티티 그리고 PHY 계층을 포함한다. 도 10에서는 도 8과 달리 하나의 EPS 베어러(1000)에 대하여 매크로 기지국 및 스몰 기지국에 RB가 각각 구성되어 단말에 서비스를 제공한다. 즉, 하나의 EPS 베어러에 대하여 매크로 기지국 및 스몰 기지국이 멀티플로우를 통하여 단말에 서비스를 제공한다. Referring to FIG. 10, a macro base station includes a PDCP entity, an RLC entity, a MAC entity, and a PHY layer, while a small base station includes an RLC entity, a MAC entity, and a PHY layer. In FIG. 10, unlike FIG. 8, an RB is configured at a macro base station and a small base station for one EPS bearer 1000 to provide a service to a terminal. That is, a macro base station and a small base station provide a service to a terminal through multiflow for one EPS bearer.
한편, 이중 연결을 고려할 때, 싱글 플로우인 경우와 멀티 플로우인 경우 패킷 전달 과정은 다음과 같이 나타낼 수 있다.On the other hand, in consideration of dual connectivity, in the case of single flow and multi-flow, the packet forwarding process may be represented as follows.
도 11은 이중 연결을 고려할 때, 싱글 플로우인 경우 패킷 전달 과정을 나타낸다. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
도 11을 참조하면, 매크로 기지국(1130)은 P-GW 및 S-GW를 통하여 2개의 EPS 베어러 각각에 대한 패킷들을 수신한다. 여기서 패킷들이 전송되는 플로우는 각 EPS 베어러에 맵핑된다. EPS 베어러 #1을 통하여 전송되는 패킷들을 패킷1이라 하고, EPS 베어러 #2를 통하여 전송되는 패킷들을 패킷2라고 가정한다. Referring to FIG. 11, the macro base station 1130 receives packets for each of two EPS bearers through the P-GW and the S-GW. Here, the flow through which packets are sent is mapped to each EPS bearer. Packets transmitted through the EPS bearer # 1 are called packet 1, and packets transmitted through the EPS bearer # 2 are assumed to be packet 2.
매크로 기지국(1130)의 PDCP(1135-1)은 패킷1을 S-GW로부터 수신하고, PDCP(1135-2)는 패킷2를 S-GW로부터 수신한다. PDCP(1135-1)은 패킷1을 기반으로 PDCP PDU1을 생성하고, 상기 PDCP PDU1은 매크로 기지국(1130)의 RLC(1140)으로 전달되고, MAC(1145), PHY(1150)를 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1100)로 전송된다. The PDCP 1135-1 of the macro base station 1130 receives Packet 1 from the S-GW, and the PDCP 1135-2 receives Packet 2 from the S-GW. The PDCP 1135-1 generates PDCP PDU1 based on Packet 1, and the PDCP PDU1 is delivered to the RLC 1140 of the macro base station 1130, and each entity and the MAC 1145 through the PHY 1150. It is transformed into a form suitable for a layer and transmitted to the terminal 1100.
매크로 기지국(1130)의 PDCP(1135-2)는 패킷2를 기반으로 PDCP PDU2를 생성하고, 상기 PDCP PDU2는 스몰 기지국(1160)의 RLC(1170)로 전달하고, MAC(1175), PHY(1180)을 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1100)로 전송된다.The PDCP 1135-2 of the macro base station 1130 generates a PDCP PDU2 based on Packet 2, and delivers the PDCP PDU2 to the RLC 1170 of the small base station 1160, and sends the MAC 1175 and the PHY 1180. ) Is transformed into a format suitable for each entity and layer and transmitted to the terminal 1100.
단말(1100)에는 EPS 베어러 #1 및 EPS 베어러 #2 각각에 대하여 무선 프로토콜 엔티티가 존재한다. 다시 말해 단말(1100)에는 EPS 베어러 #1에 대하여 PDCP/RLC/MAC/PHY 엔티티(또는 계층)가 존재하고, EPS 베어러 #2에 대하여 PDCP/RLC/MAC/PHY 엔티티(또는 계층)이 존재한다. 구체적으로 EPS 베어러 #1에 대하여 PHY(1105-1), MAC(1110-1), RLC(1115-1), 및 PDCP(1120-1)이 존재하여 EPS 베어러 #1에 대한 서비스 데이터 및 패킷 등을 처리한다. EPS 베어러 #2에 대하여 PHY(1105-2), MAC(1110-2), RLC(1115-2), 및 PDCP(1120-2)가 존재하며, EPS 베어러 #2에 대한 서비스 데이터 및 패킷 등을 처리한다. In the terminal 1100, a radio protocol entity exists for each of the EPS bearer # 1 and the EPS bearer # 2. In other words, the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 1 and the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 2. . In more detail, PHY 1105-1, MAC 1110-1, RLC 1115-1, and PDCP 1120-1 exist with respect to EPS bearer # 1. To deal with. The PHY 1105-2, the MAC 1110-2, the RLC 1115-2, and the PDCP 1120-2 exist for the EPS bearer # 2, and service data and packets for the EPS bearer # 2 are present. Process.
한편, 매크로 기지국(1130)과 스몰 기지국(1160)은 X2 인터페이스를 통하여 연결될 수 있다. 즉, 매크로 기지국(1130)는 PDCP(1135-2)의 PDCP PDU2를 X2 인터페이스를 통하여 스몰 기지국(1160)의 RLC(1140)로 전달한다. 여기서 X2 인터페이스는 X3 인터페이스 혹은 기타 매크로 기지국과 스몰 기지국 간의 인터페이스를 지칭하는 다른 표현이 사용될 수 있다. 이 경우 상기 매크로 기지국(1130)과 스몰 기지국(1160) 간의 X2 인터페이스가 비-이상적인 백홀(non-ideal backhaul)로 구성된 경우 약 20~60ms 정도의 전송 지연이 발생할 수 있다. 상기 전송 지연의 크기는 하나의 예로서 전송 선로 혹은 방식 등에 따라서 변경될 수 있다.Meanwhile, the macro base station 1130 and the small base station 1160 may be connected through an X2 interface. That is, the macro base station 1130 transmits the PDCP PDU2 of the PDCP 1135-2 to the RLC 1140 of the small base station 1160 through the X2 interface. Herein, the X2 interface may use other expressions indicating an X3 interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1130 and the small base station 1160 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur. The size of the transmission delay may be changed according to a transmission line or a method as an example.
다만, 이 경우에도 단말(1100)에는 EPS 베어러 #1에 대한 RLC(1115-1), PDCP(1120-1)와 EPS 베어러 #2에 대한 RLC(1115-2), PDCP(1120-2)가 따로 구성되므로, AM의 RLC 엔티티에서 PDCP 엔티티로 RLC SDU의 순차적인 전달을 수행하는 경우에도 문제가 발생하지 않는다. 다시 말해, PDCP(1120-1)와 PDCP(1120-2) 에 해당하는 각 PDCP 엔티티는 RLC(1115-1)와 RLC(1115-2) 에 해당하는 각 RLC 엔티티에서 전송되는 순차대로 처리하면 순차가 바뀌거나 하는 문제가 발생하지 않는다. However, even in this case, the terminal 1100 includes the RLC 1115-1 for the EPS bearer # 1, the PDCP 1120-1 for the EPS bearer # 2, and the RLC 1115-2 for the EPS bearer # 2 and the PDCP 1120-2. Since it is configured separately, no problem occurs even when sequential delivery of RLC SDUs is performed from the RLC entity of the AM to the PDCP entity. In other words, each PDCP entity corresponding to PDCP 1120-1 and PDCP 1120-2 is sequentially processed if it is processed in the order transmitted from each RLC entity corresponding to RLC 1115-1 and RLC 1115-2. Problem does not occur.
도 12는 이중 연결을 고려할 때, 멀티 플로우인 경우 패킷 전달 과정을 나타낸다. 12 illustrates a packet forwarding process in the case of multi-flow when considering dual connectivity.
도 12를 참조하면, 매크로 기지국(1230)은 P-GW 및 S-GW를 통하여 하나의 EPS 베어러에 대한 패킷들을 수신한다. 상기 하나의 EPS 베어러에 대하여 매크로 기지국(1230) 및 스몰 기지국(1260)은 각각 RB를 구성한다. 구체적으로 매크로 기지국(1230)은 PDCP(1235), RLC(1240), MAC(1245), PHY(1250)을 구성하고, 스몰 기지국(1240)은 RLC(1270), MAC(1275), PHY(1280)을 구성한다. 스몰 기지국(1240)이 구성한 RB는 매크로 기지국(1230)이 구성한 PDCP(1235)를 공유한다. 따라서, 하나의 RB가 매크로 기지국(1230)과 스몰 기지국(1260)으로 분할되어 구성된다. Referring to FIG. 12, the macro base station 1230 receives packets for one EPS bearer through the P-GW and the S-GW. The macro base station 1230 and the small base station 1260 each constitute an RB for the one EPS bearer. Specifically, the macro base station 1230 constitutes a PDCP 1235, an RLC 1240, a MAC 1245, and a PHY 1250, and the small base station 1240 is an RLC 1270, a MAC 1275, and a PHY 1280. ). The RB configured by the small base station 1240 shares the PDCP 1235 configured by the macro base station 1230. Therefore, one RB is divided into a macro base station 1230 and a small base station 1260.
매크로 기지국(1230)의 PDCP(1235)는 패킷을 S-GW로부터 수신한다. PDCP(1235)은 패킷을 기반으로 PDCP PDUs를 생성하고, 미리 정의된 규칙 또는 임의의 방법을 따라 상기 PDCP PDUs를 매크로 기지국(1230)의 RLC(1240) 및 스몰 기지국(1260)의 RLC(1270)로 적절히 배분하여 전달한다. 예를 들면, PDCP PDU 들 중에 홀수 번의 SN을 가지는 PDCP PDU는 매크로 기지국(1230)의 RLC(1240)로 전송하고, 짝수 번의 SN을 가지는 PDCP PDU는 스몰 기지국(1260)의 RLC(1270)로 전송할 수 있다. The PDCP 1235 of the macro base station 1230 receives the packet from the S-GW. The PDCP 1235 generates PDCP PDUs based on packets, and generates the PDCP PDUs according to a predefined rule or any method according to the RLC 1240 of the macro base station 1230 and the RLC 1270 of the small base station 1260. Properly distribute to For example, PDCP PDUs having odd SNs among PDCP PDUs are transmitted to the RLC 1240 of the macro base station 1230, and PDCP PDUs having even SNs are transmitted to the RLC 1270 of the small base station 1260. Can be.
RLC(1240)은 RLC PDU1(s)를 생성하고, 상기 RLC PDU1(s)는 MAC(1245), PHY(1250)를 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1200)로 전송된다. 또한, RLC(1270)은 RLC PDU2(s)를 생성하고, 상기 RLC PDU2(s)는 MAC(1275), PHY(1280)을 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1200)로 전송된다.The RLC 1240 generates an RLC PDU1 (s), and the RLC PDU1 (s) is transformed into a format suitable for each entity and layer through the MAC 1245 and the PHY 1250 and transmitted to the terminal 1200. In addition, the RLC 1270 generates an RLC PDU2 (s), and the RLC PDU2 (s) is transformed into a format suitable for each entity and layer through the MAC 1275 and the PHY 1280 and transmitted to the terminal 1200. do.
단말(1200)에는 EPS 베어러에 대하여 두개의 무선 프로토콜 엔티티가 존재한다. 다시 말해 단말(1200)에는 매크로 기지국(1230)에 대응하는 RB로서 PDCP/RLC/MAC/PHY 엔티티(또는 계층)가 존재하고, 스몰 기지국(1260)에 대응하는 RB로서 RLC/MAC/PHY 엔티티(또는 계층)이 존재한다. 구체적으로 EPS 베어러에 대하여 매크로 기지국(1230)에 대응하는 PHY(1205-1), MAC(1210-1), RLC(1215-1), 및 PDCP(1220)이 존재하고, 스몰 기지국(1260)에 대응하는 PHY(1205-2), MAC(1210-2), RLC(1215-2)가 존재한다. PDCP(1220)는 매크로 기지국(1230) 및 스몰 기지국(1260)에 동시에 대응되는 PDCP 엔티티이다. 즉, 이 경우는 단말(1200) 단에 2개의 RLC 엔티티(1215-1, 1215-2)가 존재하나, 상기 두 개의 RLC 엔티티(1215-1, 1215-2)는 하나의 PDCP 엔티티(1220)에 대응한다. The terminal 1200 has two radio protocol entities for the EPS bearer. In other words, the terminal 1200 includes a PDCP / RLC / MAC / PHY entity (or layer) as an RB corresponding to the macro base station 1230, and an RLC / MAC / PHY entity (as an RB corresponding to the small base station 1260). Or hierarchy). In detail, the PHY 1205-1, the MAC 1210-1, the RLC 1215-1, and the PDCP 1220 corresponding to the macro base station 1230 exist for the EPS bearer, and the small base station 1260 is present. There is a corresponding PHY 1205-2, MAC 1210-2, and RLC 1215-2. The PDCP 1220 is a PDCP entity corresponding to the macro base station 1230 and the small base station 1260 simultaneously. That is, in this case, two RLC entities 1215-1 and 1215-2 exist at the terminal 1200, but the two RLC entities 1215-1 and 1215-2 are one PDCP entity 1220. Corresponds to.
상술한 바와 같이 매크로 기지국(1230)과 스몰 기지국(1260)은 X2(또는 Xn) 인터페이스를 통하여 연결될 수 있다. 즉, 매크로 기지국(1230)는 PDCP(1235-2)의 PDCP PDUs 중 일부를 X2 인터페이스를 통하여 스몰 지기국(1260)의 RLC(1240)로 전달한다. 여기서 X2 인터페이스는 Xn 인터페이스 혹은 기타 매크로 기지국과 스몰 기지국 간의 인터페이스를 지칭하는 다른 표현이 사용될 수 있다. 이 경우 상기 매크로 기지국(1230)과 스몰 기지국(1260) 간의 X2 인터페이스가 비-이상적인 백홀로 구성된 경우 약 20~60ms 정도의 전송 지연이 발생할 수 있다. 단말(1200)의 PDCP 엔티티(1220)는 두개의 RLC 엔티티(1215-1, 1215-2)로부터 RLC SDU(즉, PDCP PDU)들을 각각 수신하고, PDCP SDU를 생성하여 상위 계층으로 전달해야 하는데, 상기 전송 지연으로 인하여 PDCP 엔티티(1220)에서 수신하는 RLC SDU(즉, PDCP PDU)들은 RLC 엔티티(1215-1)로부터 수신되는 것과, RLC 엔티티(1215-2)로부터 수신되는 것에 시간차가 발생하고, PDCP 엔티티(1220)는 PDCP SDU의 상위 계층으로의 오름차순 전송을 수행함에 있어 문제가 발생할 수 있다.As described above, the macro base station 1230 and the small base station 1260 may be connected through an X2 (or Xn) interface. That is, the macro base station 1230 transfers some of the PDCP PDUs of the PDCP 1235-2 to the RLC 1240 of the small base station 1260 through the X2 interface. Herein, the X2 interface may use other expressions indicating an Xn interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1230 and the small base station 1260 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur. The PDCP entity 1220 of the UE 1200 should receive RLC SDUs (ie, PDCP PDUs) from two RLC entities 1215-1 and 1215-2, respectively, generate PDCP SDUs, and deliver them to a higher layer. Due to the transmission delay, a time difference occurs between the RLC SDUs (ie, PDCP PDUs) received by the PDCP entity 1220 from those received from the RLC entity 1215-1, and from the RLC entity 1215-2. The PDCP entity 1220 may have problems in performing ascending transmission to the upper layer of the PDCP SDU.
도 12에서 볼 수 있는 바와 같이 이중 연결 환경에서 멀티 플로우를 위하여 매크로 기지국(1230)에 하나의 PDCP(1235)가 존재하고, 단말(1200)에 하나의 PDCP 엔티티(1220)가 존재한다. 그리고, 매크로 기지국(1230) 및 스몰 기지국(1230)에 RLC 엔티티(1240, 1270)가 각각 존재하고, 단말(1200)에도 이에 대응하여 2개의 RLC 엔티티(1215-1, 1215-2)가 존재한다. 즉, 단말(1210)의 RLC 엔티티(1215-1, 1215-2) 단에서는 상위 계층으로 순차적인(in-sequence) 전달이 보장될 수 있다. 하지만 단말(1210)의 PDCP 엔티티(1220) 단에서는 하나의 RLC 엔티티가 아닌 두개의 RLC 엔티티(1215-1, 1215-2)로부터 RLC SDU(즉, PDCP PDU)가 전달된다. 따라서, RLC 엔티티(1215-1, 1215-2) 단에서의 순차적인 전달이 PDCP 엔티티 단에서의 PDCP PDU의 순차적인 수신을 보장하지 못한다. 또한, 매크로 기지국(1230)의 PDCP 엔티티(1235)로부터 스몰 기지국(1260)의 RLC 엔티티(1270)로의 PDCP PDU(s)의 전송은 약 20~60ms의 전송 지연을 수반할 수 있으며, 매크로 기지국(1230)의 RLC 엔티티(1240)를 향한 PDCP PDU(s)의 전송과 스몰 기지국(1230)의 RLC 엔티티(1270)을 향한 PDCP PDU(s)의 전송 사이에는 시간지연이 발생할 수 있다. 결국 매크로 기지국(1230)의 PDCP 엔티티(1235)에서 전송한 PDCP PDU(s)를 단말(1200) 단의 PDCP 엔티티(1220)에서 수신함에 있어도 매크로 기지국(1230)의 RLC 이하 단을 통한 전송과 스몰 기지국(1260)의 RLC 이하 단을 통한 전송에 있어 수신시간에 차이가 발생하고, 단말(1200) 단의 PDCP 엔티티(1220)는 PDCP PDU(s)의 순차적인 수신을 기대하기 어렵게 된다.As shown in FIG. 12, one PDCP 1235 exists in the macro base station 1230 and one PDCP entity 1220 exists in the UE 1200 for multi-flow in a dual connectivity environment. In addition, the RLC entities 1240 and 1270 are present in the macro base station 1230 and the small base station 1230, respectively, and two RLC entities 1215-1 and 1215-2 are also present in the terminal 1200. . That is, in the RLC entities 1215-1 and 1215-2 of the terminal 1210, in-sequence delivery to the upper layer may be guaranteed. However, at the PDCP entity 1220 end of the terminal 1210, RLC SDUs (ie PDCP PDUs) are transmitted from two RLC entities 1215-1 and 1215-2 instead of one RLC entity. Thus, sequential delivery at the RLC entity 1215-1, 1215-2 end does not guarantee sequential reception of PDCP PDUs at the PDCP entity end. In addition, the transmission of the PDCP PDU (s) from the PDCP entity 1235 of the macro base station 1230 to the RLC entity 1270 of the small base station 1260 may involve a transmission delay of about 20 to 60 ms. There may be a time delay between the transmission of the PDCP PDU (s) towards the RLC entity 1240 of 1230 and the transmission of the PDCP PDU (s) towards the RLC entity 1270 of the small base station 1230. As a result, even when the PDCP PDU (s) transmitted from the PDCP entity 1235 of the macro base station 1230 is received by the PDCP entity 1220 of the terminal 1200, transmission and small through the RLC sub-terminal of the macro base station 1230 are performed. In the transmission through the RLC stage of the base station 1260, a difference occurs in the reception time, and the PDCP entity 1220 of the terminal 1200 is difficult to expect the sequential reception of the PDCP PDU (s).
도 13은 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 예를 나타낸다. 도 13은 매크로 기지국을 통하여 전송된 PDCP PDU와 스몰 기지국을 통하여 전송된 PDCP PDU가 단말의 PDCP 엔티티에 도착하는 시간을 예시적으로 나타낸다. 매크로 기지국은 하나의 EPS 베어러에 대한 서비스에 대하여 매크로 기지국을 통하여 전송할 PDCP PDU와 스몰 기지국을 통하여 전송할 PDCP PDU를 결정할 수 있다. 도 13에서는 PDCP SN(Sequence Number) 중 홀수 번에 연관된 PDCP PDU들은 매크로 기지국을 통하여 전송되고, 짝수 번에 연관된 PDCP PDU들은 스몰 기지국을 통하여 전송한 경우를 예시적으로 나타낸다.13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal. 13 exemplarily shows a time when a PDCP PDU transmitted through a macro base station and a PDCP PDU transmitted through a small base station arrive at a PDCP entity of a terminal. The macro base station may determine a PDCP PDU to be transmitted through the macro base station and a PDCP PDU to be transmitted through the small base station for the service for one EPS bearer. In FIG. 13, PDCP PDUs associated with an odd number of PDCP sequence numbers are transmitted through a macro base station, and PDCP PDUs associated with an even number are transmitted through a small base station.
도 13를 참조하면, 매크로 기지국을 통하여 전송된 PDCP PDU의 단말에서의 수신 시점과 스몰 기지국을 통하여 전송된 PDCP PDU의 단말에서의 수신 시점은 시간 지연 차이가 있다. 스몰 기지국을 통하여 전송되는 PDCP PDU에 약 20~60ms의 전송 지연이 발생할 수 있다. 이는 매크로 기지국에서 스몰 기지국으로 PDCP PDU를 전송하는 경우 X2(또는 Xn) 인터페이스에서 발생하는 전송지연이 주된 원인이다. 이러한 경우 단말의 PDCP 엔티티가 두 개의 RLC 엔티티로부터 전달받는 RLC (AMD) SDU의 시간 차이로 인하여 비순차적으로 PDCP PDU를 수신하게 되고, PDCP 엔티티가 이를 처리하여 상위계층(예를 들어 어플리케이션 계층)으로 전송하게 될 경우, 오름차순 전송을 보장하기 어렵다. 즉, 멀티 플로우 구조에서 매크로 기지국의 하나의 PDCP 엔티티에서 전송되는 PDCP PDU들이 매크로 기지국의 RLC 엔티티 및 스몰 기지국의 RLC 엔티티를 통하여 전송되기에 단말의 PDCP 엔티티에서 PDCP PDU를 수신함에 있어, 시간 지연이 발생하고, 따라서 PDCP 엔티티에서 상위계층으로 PDCP SDU의 오름차순 전송을 수행하는 데 있어 문제가 발생하게 된다. Referring to FIG. 13, there is a time delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station. A transmission delay of about 20 to 60 ms may occur in the PDCP PDU transmitted through the small base station. This is mainly caused by transmission delay occurring in the X2 (or Xn) interface when the PDCP PDU is transmitted from the macro base station to the small base station. In this case, due to the time difference between the RLC (AMD) SDUs received from the two RLC entities, the PDCP entity of the terminal receives the PDCP PDUs out of order, and the PDCP entity processes them to a higher layer (for example, an application layer). In case of transmission, it is difficult to guarantee ascending transmission. That is, since the PDCP PDUs transmitted from one PDCP entity of the macro base station in the multi-flow structure are transmitted through the RLC entity of the macro base station and the RLC entity of the small base station, the PDCP PDU of the UE receives a time delay. Therefore, a problem arises in performing ascending transmission of the PDCP SDU from the PDCP entity to the higher layer.
단말의 PDCP 엔티티는 수신한 PDCP PDU를 판독(deciphering) 및 헤더 압축해제(header decompression) 등을 수행하고, PDCP SDU를 상위 계층으로 전송한다. 이 때, 만약 현재의 PDCP SDU의 SN(sequence number)보다 작은 SN의 PDCP SDU가 저장되어 있으면 작은 SN부터 큰 SN 순으로 PDCP SDU를 상위 계층으로 전송한다.The PDCP entity of the UE reads the received PDCP PDU and performs header decompression, and transmits the PDCP SDU to the upper layer. At this time, if the PDCP SDU of the SN smaller than the SN (sequence number) of the current PDCP SDU is stored, the PDCP SDU is transmitted to the upper layer in order from the smallest SN to the largest SN.
한편, PDCP 엔티티의 전송단(transmission side)는 제거 타이머(discard timer)를 운용할 수 있다. 상기 제거 타이머의 지속시간(duration)은 상위 계층으로부터 구성될 수 있으며, 상위계층으로부터 PDCP SDU를 수신하면 타이머가 시작된다. 상기 제거 타이머가 만료되면 PDCP 엔티티는 해당하는 PDCP SDU를 제거한다. 따라서, 제거 타이머의 만료로 인하여 특정 SN의 PDCP SDU가 제거될 수 있고, PDCP 엔티티의 수신단은 모든 PDCP SDU들을 순차적으로 상위 계층에 전송할 필요 없이 오름차순으로 전송할 있다. Meanwhile, the transmission side of the PDCP entity may operate a discard timer. The duration of the removal timer may be configured from a higher layer, and the timer is started when the PDCP SDU is received from the higher layer. When the removal timer expires, the PDCP entity removes the corresponding PDCP SDU. Accordingly, due to expiration of the removal timer, PDCP SDUs of a specific SN may be removed, and the receiving end of the PDCP entity may transmit all PDCP SDUs in ascending order without having to sequentially transmit to the upper layer.
하지만, 상술한 이중 연결 상황에서 멀티 플로우를 지원하는 경우, PDCP 엔티티는 연관되는 두 개의 RLC 엔티티들로부터 RLC SDU(PDCP PDU)들을 수신할 수 있다. 이와 같은 경우 PDCP 엔티티에 PDCP PDU(특히, RLC AMD SDU)들이 순차적으로 수신되지 않고, 전송경로 수신지연의 문제로 인하여 PDCP SN이 더 큰 PDCP PDU가 먼저 수신될 수 있다.However, when supporting the multi-flow in the aforementioned dual connectivity situation, the PDCP entity may receive RLC SDUs (PDCP PDUs) from the two RLC entities with which it is associated. In this case, PDCP PDUs (particularly, RLC AMD SDUs) are not sequentially received at the PDCP entity, and PDCP PDUs having a larger PDCP SN may be first received due to transmission path reception delay.
PDCP 엔티티에 RLC SDU(즉, PDCP PDU)들이 비순차적으로 수신되는 경우, 다음과 같은 두 가지 경우 중 어느 하나로 파악할 수 있다. 하지만, PDCP 엔티티의 입장에서는 아래의 두 경우 중 어느 경우인지는 구분되지 않을 수 있다.When RLC SDUs (ie, PDCP PDUs) are received out of order in a PDCP entity, one of two cases may be determined. However, the PDCP entity may not be distinguished in any of the following two cases.
첫째, 제거 타이머(discard timer)가 만료된 경우일 수 있다. PDCP 엔티티의 송신단은 PDCP 엔티티에서 처리하는 PDCP SDU마다 제거 타이머(discard timer)를 구동한다. 상기 제거 타이머의 구동에 의하여 PDCP로 유입되는 패킷의 양이 일정 기준보다 많을 경우 등의 경우, 제거 타이머 지속시간 내에 처리되지 않은 패킷은 제거하고, 상위 계층에서 수행되는 재전송 요구 등을 기반하여 해당 패킷에 대한 처리가 새로이 수행될 수 있다.First, the discard timer may be expired. The transmitting end of the PDCP entity drives a discard timer for each PDCP SDU processed by the PDCP entity. If the amount of packets flowing into the PDCP is greater than a certain standard due to the removal of the timer, the unprocessed packets are removed within the duration of the removal timer, and the corresponding packet is based on a retransmission request performed by a higher layer. Processing may be newly performed.
둘째, PDCP PDU 전송경로 수신지연의 경우일 수 있다. 매크로 기지국의 PDCP 엔티티에서는 멀티 플로우로 인하여 매크로 기지국 및 스몰 기지국을 통하여 PDCP PDU를 분리하여 전송할 수 있다. 이 경우 서로 다른 경로로 인하여 발생하는 지연으로 인하여 단말의 PDCP 엔티티에서 PDCP PDU 수신시 시간차가 발생할 수 있다. 이는 그 반대도 마찬가지이다. 이와 같은 경우 PDCP SDU의 순서가 뒤바뀌어 상위계층으로 전송될 수 있다.Second, it may be the case of reception delay of PDCP PDU transmission path. The PDCP entity of the macro base station may separate and transmit the PDCP PDU through the macro base station and the small base station due to the multi-flow. In this case, a time difference may occur when the PDCP PDU is received by the PDCP entity of the UE due to a delay caused by different paths. The opposite is also true. In this case, the order of PDCP SDUs is reversed and may be transmitted to a higher layer.
따라서, 멀티 플로우 전송경로 수신지연의 경우를 PDCP 제거 타이머 만료의 경우와 구분하여, 단말의 PDCP 엔티티에서 PDCP SDU를 오름차순으로 상위계층으로 전송할 수 있는 방안이 요구된다.Accordingly, there is a need for a method of transmitting PDCP SDUs to an upper layer in an ascending order from a PDCP entity of a terminal, in which the case of multiflow transmission path reception delay is distinguished from the case of PDCP removal timer expiration.
본 발명의 일 예에 따른 PDCP 재배열 및 상위계층으로의 PDCP SDU 오름차순 전달 방법은 다음과 같다.The PDCP rearrangement and PDCP SDU ascending order transfer to higher layers according to an embodiment of the present invention are as follows.
본 발명에서는 PDCP 엔티티가 PDCP PDU 수신 시에 재배열 타이머(reordering timer)를 구동한다. PDCP 엔티티는 상기 재배열 타이머를 기반으로 PDCP PDU의 수신 지연을 대기하고, 일정 시간 내에 수신된 PDCP PDU들을 재배열하여, 상위계층으로 PDCP SDU들의 오름차순 전달을 수행한다. 이는 PDCP SN이 큰 PDCP PDU가 먼저 PDCP 엔티티에 도착하여 상위계층으로 전송되고, PDCP SN이 작은 PDCP PDU가 나중에 PDCP 엔티티에 도착하여, 상위계층으로 전송됨을 방지하기 위함이다. PDCP 엔티티는 지연 시간을 고려한 일정 시간을 대기하고 누락된 PDCP SN(또는 카운트 값)의 PDCP PDU가 도착하면, 이를 포함하여 상위계층으로 오름차순 전달을 수행하고, 만약 일정 시간 내에 누락된 PDCP SN의 PDCP PDU가 도착하지 않으면, 해당 PDCP PDU는 제거 타이머 만료로 제거된 것으로 보고, 해당 PDCP PDU를 제외하고 상위계층으로 오름차순 전달을 수행한다. In the present invention, the PDCP entity drives a reordering timer upon reception of the PDCP PDU. The PDCP entity waits for a reception delay of the PDCP PDU based on the rearrangement timer, rearranges the PDCP PDUs received within a predetermined time, and performs ascending order of PDCP SDUs to a higher layer. This is to prevent PDCP PDUs having a large PDCP SN first arriving at the PDCP entity and being transmitted to the higher layer, and PDCP PDUs having a smaller PDCP SN arriving at the PDCP entity later and being transmitted to the higher layer. The PDCP entity waits for a certain amount of time in consideration of the delay time and, when the PDCP PDU of the missing PDCP SN (or count value) arrives, carries out an ascending order to the upper layer, including the PDCP of the missing PDCP SN within a certain time. If the PDU does not arrive, the PDCP PDU is considered to have been removed due to the expiration of the removal timer, and the ascending order is performed to the upper layer except the PDCP PDU.
재배열 타이머에 기반한 PDCP 재배열 방법은 구체적으로 다음과 같이 수행될 수 있다.The PDCP rearrangement method based on the rearrangement timer may be specifically performed as follows.
먼저 재배열 타이머의 기본동작은 다음과 같다.First, the basic operation of the rearrangement timer is as follows.
PDCP 엔티티의 수신단은 PDCP PDU 수신 시에 재배열 타이머가 동작중이 아닌(not running)(또는 구동중이 아닌(not on duration) 상태이면 재배열 타이머를 시작(start)한다.The receiving end of the PDCP entity starts the reordering timer when the reordering timer is not running (or not on duration) upon receiving the PDCP PDU.
PDCP 엔티티의 수신단은 PDCP PDU 수신 시에 PDCP PDU가 순차적으로 수신된 경우,When the receiving end of the PDCP entity receives the PDCP PDU sequentially when the PDCP PDU is received,
-만약, 재배열 타이머가 동작중이 아닌 상태이면 재배열 타이머를 시작한다.If the rearrangement timer is not running, start the rearrangement timer.
-만약, 재배열 타이머가 동작(또는 구동)중인 경우(running or on duration) 상태이면 재배열 타이머를 재시작(restart)한다.-If the rearrangement timer is running (or running), restart the rearrangement timer.
즉, PDCP 엔티티는 초기에 또는 PDCP PDU가 구동중이 아닌 경우 PDCP PDU를 수신하면 재배열 타이머를 시작한다.That is, the PDCP entity initially starts a reordering timer upon receiving the PDCP PDU or when the PDCP PDU is not running.
재배열 타이머는 수신된(또는 저장된) PDCP PDU에 순차적으로 수신될 수 있는 PDCP PDU를 기다리도록 하는 대기 타이머에 해당한다.The rearrangement timer corresponds to a wait timer for waiting for a PDCP PDU that can be received sequentially in a received (or stored) PDCP PDU.
재배열 타이머가 동작중인 경우,If the reorder timer is running,
-만약 PDCP PDU를 순차적(in-sequence)으로 수신한 경우 대응하는(또는 연관된) PDCP SDU를 상위 계층으로 전달한다.If a PDCP PDU is received in-sequence, the corresponding (or associated) PDCP SDU is forwarded to the upper layer.
-만약 PDCP PDU를 비순차적(out-of-sequence)으로 수신시 해당 PDCP PDU에 대응하는 PDCP SDU를 저장하고, 상위 계층으로 전달하지 않는다.If a PDCP PDU is received out-of-sequence, the PDCP SDU corresponding to the PDCP PDU is stored and is not delivered to the upper layer.
재배열 타이머가 만료된 이후에 PDCP PDU가 수신되는 경우, 저장된 PDCP SDU들 중, (순차 수신을 기대한 PDCP SDU의 PDCP SN을 제외한 나머지를 기준으로) 순차적으로 수신된 PDCP SDU들만 상위 계층으로 전달한다. 또는 재배열 타이머가 만료되는 시점에 저장된 PDCP SDU들 중, (순차 수신을 기대한 PDCP SDU의 PDCP SN을 제외한 나머지를 기준으로) 순차적으로 수신된 PDCP SDU들만 상위 계층으로 전달한다.If a PDCP PDU is received after the rearrangement timer expires, only PDCP SDUs that are sequentially received (except for PDCP SNs of PDCP SDUs expected to be received sequentially) among the stored PDCP SDUs are delivered to a higher layer. do. Alternatively, among PDCP SDUs stored at the time when the rearrangement timer expires, only PDCP SDUs sequentially received (based on the rest of the PDCP SDUs expected to be sequentially received) are transferred to a higher layer.
재배열 타이머는 단말에 이중 연결이 구성된 매크로 기지국과 스몰 기지국 사이의 전송 지연 시간을 고려하여 결정될 수 있다. 예를 들어 매크로 기지국과 스몰 기지국 간 비이상적인 백홀을 사용하는 X2(또는 Xn) 인터페이스의 지연 시간을 고려하는 경우, 재배열 타이머는 예를 들어 20~60ms로 설정될 수 있다. 전송 선로 혹은 방식 등의 차이에 따라 지연 시간은 변경될 수 있고, 재배열 타이머 값도 변경될 수 있음은 상술한 바와 같다.The rearrangement timer may be determined in consideration of the transmission delay time between the macro base station and the small base station having dual connectivity to the terminal. For example, when considering the delay time of the X2 (or Xn) interface using the non-ideal backhaul between the macro base station and the small base station, the rearrangement timer may be set to, for example, 20 to 60 ms. As described above, the delay time may be changed and the rearrangement timer value may be changed according to a difference in a transmission line or a scheme.
PDCP 엔티티는 수신된 PDCP PDU에 대응하는 PDCP SDU(즉, 수신된 PDCP SDU)의 PDCP SN을 확인할 수 있다. 수신된 PDCP SDU의 PDCP SN과 마지막으로 상위계층으로 전송된 PDCP SDU의 PDCP SN과 비교함으로써, PDCP PDU(또는 PDCP SDU)의 순차적 수신 여부를 판단할 수 있다. PDCP 엔티티는 수신한 PDCP PDU가 순차적으로 수신된 것이라면, 재배열 타이머를 재시작할 수 있다. PDCP 엔티티는 수신한 PDCP PDU가 순차적으로 수신되지 않은 것이라면, 재배열 타이머를 계속 유지하고, 수신된 PDCP PDU에 대응하는 PDCP SDU는 저장한다. 재배열 타이머가 만료되기까지 마지막으로 상위계층으로 전송된 PDCP PDU의 다음 PDCP SN의 PDCP PDU가 도착하지 않는 경우, PDCP 엔티티는 해당 PDCP PDU(또는 PDCP SDU)가 제거 타이머 만료에 의하여 제거된 것으로 판단하고, 나머지 순차적으로 수신한(또는 저장된) PDCP SDU들을 오름차순으로 상위계층으로 전달한다. PDCP 엔티티는 수신된 PDCP SDU의 PDCP SN과 이전에 마지막으로 상위계층으로 전송된 PDCP SDU의 PDCP SN을 비교하여, 순서대로라면 순차적으로 수신된 것으로 판단할 수 있다.The PDCP entity may identify the PDCP SN of the PDCP SDU (ie, received PDCP SDU) corresponding to the received PDCP PDU. By comparing the PDCP SN of the received PDCP SDU with the PDCP SN of the last PDCP SDU transmitted to the upper layer, it is possible to determine whether the PDCP PDU (or PDCP SDU) is sequentially received. The PDCP entity may restart the rearrangement timer if the received PDCP PDUs were received sequentially. If the PDCP entity has not received the received PDCP PDUs sequentially, the PDCP entity keeps a rearrangement timer and stores the PDCP SDUs corresponding to the received PDCP PDUs. If the PDCP PDU of the next PDCP SN of the last PDCP PDU sent to the higher layer does not arrive until the rearrangement timer expires, the PDCP entity determines that the PDCP PDU (or PDCP SDU) has been removed by expiration of the purge timer. And the remaining sequentially received (or stored) PDCP SDUs in ascending order to the upper layer. The PDCP entity may compare the PDCP SNs of the received PDCP SDUs with the PDCP SNs of the PDCP SDUs last transmitted to the upper layer, and may determine that they are sequentially received if they are in order.
만약, 상위계층으로 마지막으로 전송한 PDCP SDU의 PDCP SN을 Last_Submitted_PDCP_RX_SN로 정의하고, 다음에 순차적으로 수신할 것으로 기대되는 PDCP SDU의 PDCP SN을 Next_PDCP_RX_SN이라 정의한다면, Next_PDCP_RX_SN은 다음 수학식 1 및 수학식 2 중 하나를 따를 수 있다.If the PDCP SN of the last PDCP SDU transmitted to the upper layer is defined as Last_Submitted_PDCP_RX_SN and the PDCP SN of the PDCP SDU expected to be sequentially received next is defined as Next_PDCP_RX_SN, Next_PDCP_RX_SN is represented by Equation 1 and Equation 2 below. You can follow either.
수학식 1
Figure PCTKR2014007456-appb-M000001
Equation 1
Figure PCTKR2014007456-appb-M000001
수학식 2
Figure PCTKR2014007456-appb-M000002
Equation 2
Figure PCTKR2014007456-appb-M000002
수학식 2에서 Maximum_PDCP_SN은 허용된 PDCP SN의 최대값을 나타낸다. 즉, 수학식 2는 PDCP SN의 최대값 이후에 번호가 0부터 다시 시작하는 것을 나타낸다.In Equation 2, Maximum_PDCP_SN represents the maximum value of the allowed PDCP SN. That is, Equation 2 indicates that the number starts again from 0 after the maximum value of the PDCP SN.
한편, 재배열 타이머의 시작/재시작 방식은 다음과 같다. PDCP 엔티티는 재배열 타이머의 동작중인지(running) 여부에 따라서 PDCP PDU를 순차적으로 수신한 경우, 재배열 타이머를 시작 또는 재시작한다. 예를 들어, 만약 재배열 타이머가 동작중이 아닌(not running) 경우, PDCP 엔티티는 PDCP PDU를 수신한 때 재배열 타이머를 시작하고, 재배열 타이머가 동작중인 경우 재배열 타이머를 재시작한다.Meanwhile, the start / restart method of the rearrangement timer is as follows. The PDCP entity starts or restarts the rearrangement timer when the PDCP PDUs are sequentially received according to whether the rearrangement timer is running. For example, if the rearrangement timer is not running, the PDCP entity starts the rearrangement timer when it receives a PDCP PDU, and restarts the rearrangement timer if the rearrangement timer is running.
또한, 재배열 타이머가 동작중(running or on duration)인 경우 PDCP 엔티티는 순차적으로 수신되지 않은 PDCP PDU들에 대응하는 PDCP SDU들을 저장한다. 이는 더 작은 PDCP SN을 갖는 PDCP PDU가 나중에 수신되는 경우를 대비하기 위함이다.In addition, when the rearrangement timer is running or on duration, the PDCP entity stores PDCP SDUs corresponding to PDCP PDUs that are not sequentially received. This is in case the PDCP PDU with the smaller PDCP SN is received later.
한편, 재배열 타이머는 PDCP PDU가 순차적으로 수신되지 않는 경우 재시작 되지 않고, 유지되다가 만료될 수 있다. 만약, 재배열 타이머가 만료되는 경우에는 재배열 타이머 만료시 또는 재배열 타이머가 만료된 이후 PDCP PDU 수신시 PDCP 엔티티는 저장된 PDCP SDU들 중, (순차 수신을 기대한 PDCP SDU의 PDCP SN(즉, Next_PDCP_RX_SN을 제외하고) 순차적인 PDCP SDU들을 상위계층으로 전송한다. 본 발명은 하향링크 데이터 전달(DL Data transfer) 절차 및 상향링크 데이터 전달 (UL Data transfer) 절차 모두에 적용될 수 있으며, 이하 하향링크 데이터 전달 절차를 위주로 설명한다.On the other hand, the rearrangement timer may not be restarted if the PDCP PDUs are not sequentially received, but may be maintained and expired. If the rearrangement timer expires, when the rearrangement timer expires or when the PDCP PDU is received after the rearrangement timer expires, the PDCP entity is selected from among the stored PDCP SDUs. Sequential PDCP SDUs are transmitted to a higher layer except for Next_PDCP_RX_SN The present invention can be applied to both a DL data transfer procedure and an UL data transfer procedure. Explain the delivery process.
예를 들면, 하향링크 데이터 전달의 경우에는 수신 PDCP 는 단말의 PDCP 엔티티 (1120) 이며, 송신 PDCP 는 매크로 기지국의 PDCP 엔티티 (1135) 이다. For example, in case of downlink data transmission, the receiving PDCP is the PDCP entity 1120 of the terminal, and the transmitting PDCP is the PDCP entity 1135 of the macro base station.
예를 들면, 상향링크 데이터 전달의 경우에는 수신 PDCP 는 매크로 기지국의 PDCP 엔티티 (1135) 이며, 송신 PDCP 는 단말의 PDCP 엔티티 (1120) 이다. For example, in the case of uplink data transmission, the receiving PDCP is a PDCP entity 1135 of the macro base station, and the transmitting PDCP is a PDCP entity 1120 of the UE.
상향링크 데이터 전달을 위하여, 단말의 PDCP 엔티티 (1120)는 PDCP PDU 들은 매크로 기지국과 스몰 기지국으로의 전송을 담당하는 각각의 RLC (매크로 기지국용 RLC: 1115-1, 스몰 기지국용 RLC: 1115-2)로 전송한다. 매크로 기지국용 RLC (1140)과 스몰 기지국용 RLC(1170) 은 각각 단말의 매크로 기지국용 RLC(1115-1)과 스몰 기지국용 RLC(1115-2)으로부터 전송된 단말의 PDCP PDU (RLC SDU)를 수신한다. For uplink data transfer, the PDCP entity 1120 of the UE is responsible for each RLC (PDC RDU: 1115-1, small base station RLC: 1115-2) responsible for transmitting PDCP PDUs to the macro base station and the small base station. To send). The macro base station RLC 1140 and the small base station RLC 1170 respectively receive a PDCP PDU (RLC SDU) of the UE transmitted from the macro base station RLC 1115-1 and the small base station RLC 1115-2. Receive.
이때, 매크로 기지국의 PDCP 엔티티(1135)가 스몰 기지국용 RLC(1170 으로부터 수신한 PDCP PDU는 기지국 간의 전송 시간차로 인하여 수신 시간의 차이가 발생할 수 있다. 따라서, 기지국의 PDCP 엔티티(1135) 는 PDCP PDU 수신 시에 in-sequence 한 수신을 보장할 수 없다. In this case, a PDCP PDU received by the PDCP entity 1135 of the macro base station from the small base station RLC 1170 may have a difference in reception time due to a transmission time difference between the base stations. Accordingly, the PDCP entity 1135 of the base station may generate a PDCP PDU. In-sequence reception cannot be guaranteed at the time of reception.
따라서, 단말이 상향링크 데이터 전송 시에도 기지국의 PDCP 엔티티(1135)에서 in-sequence 한 PDCP 수신을 위한 방안을 고려하여야 한다. 이는 기지국이 하향링크 데이터 전송 시에 단말의 PDCP 엔티티(1120)에서 in-sequence 한 수신을 위한 방안과 동일한 방식을 적용할 수 있다.Therefore, the UE should consider a scheme for receiving PDCP in-sequence in the PDCP entity 1135 of the base station even when transmitting uplink data. This may be applied in the same manner as that for the base station to receive in-sequence in the PDCP entity 1120 of the terminal during downlink data transmission.
도 14는 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 다른 예를 나타낸다. 도 14는 멀티 플로우 전송 시나리오로, 하나의 RB에 대한 PDCP PDU들의 전송이, 매크로 기지국과 스몰 기지국에서 동시에 발생하게 되는 경우를 가정한다. 즉, 매크로 기지국의 PDCP 엔티티에서, 매크로 기지국의 RLC 엔티티 및 스몰 기지국의 RLC 엔티티로 PDCP PDU들이 나누어져서 전송되는 경우이다. 도 14는 PDCP SN 중 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, 35번에 연관된 PDCP PDU들은 매크로 기지국(의 RLC 엔티티)을 통하여 전송되고, 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, 29, 30, 31, 32번에 연관된 PDCP PDU들은 스몰 기지국(의 RLC 엔티티)을 통하여 전송된 경우를 가정한다.14 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal. 14 is a multi-flow transmission scenario, and assumes that transmission of PDCP PDUs for one RB occurs at the same time in the macro base station and the small base station. That is, the PDCP PDUs are divided and transmitted from the PDCP entity of the macro base station to the RLC entity of the macro base station and the RLC entity of the small base station. 14 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35 of the PDCP SN. PDCP PDUs transmitted through a base station (of RLC entity) and associated with 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, 29, 30, 31, 32 are small base stations Assume a case of transmitting through (an RLC entity of).
도 14를 참조하면, 매크로 기지국을 통하여 PDCP SN 1, 2, 3, 4, 5, 11, 12번까지의 PDCP PDU가 단말의 PDCP 엔티티에 수신되는 동안 스몰 기지국을 통하여는 아무런 PDCP PDCP가 단말의 PDCP 엔티티에 수신되지 않고 있다. 그 후 스몰 기지국을 통하여 PDCP SN 6번부터의 PDCP PDU가 단말의 PDCP 엔티티에 수신되기 시작한다. 이는 스몰 기지국을 통하여 전송되는 PDCP PDU는 매크로 기지국의 PDCP 엔티티에서 스몰 기지국의 RLC 엔티티를 거쳐 전송되며, 이에 따른 거쳐 경로 지연이 발생하기 때문이다. 여기서, 무선 구간에서의 지연 차이 발생은 거의 같거나 없는 것으로 가정한다. Referring to FIG. 14, no PDCP PDCP is transmitted through a small base station while a PDCP PDU up to PDCP SNs 1, 2, 3, 4, 5, 11, and 12 is received at a PDCP entity of a terminal through a macro base station. Not received by the PDCP entity. Thereafter, PDCP PDUs from PDCP SN 6 begin to be received by the PDCP entity of the UE through the small base station. This is because the PDCP PDU transmitted through the small base station is transmitted from the PDCP entity of the macro base station via the RLC entity of the small base station, resulting in a path delay. Here, it is assumed that the occurrence of delay difference in the wireless section is almost the same or not.
상기와 같이 단말의 PDCP 엔티티에서는 PDCP SN 5번의 PDCP PDU 수신 이후에 바로 PDCP SN 11번의 PDCP PDU를 수신하게 되는 경우, 단말의 PDCP 엔티티는 수신을 기대한 PDCP SN 6번과 다른 PDCP SN의 PDCP PDU를 수신하게 되고, PDCP SN 6번의 PDCP PDU가 제거 타이머 만료로 제거된 것인지, 아니면 멀티 플로우 수신 지연으로 나중에 수신될 것인지에 대한 구분이 필요하다. As described above, when the PDCP entity of the terminal receives the PDCP PDU of the PDCP SN 11 immediately after the PDCP PDU of the PDCP SN 5 is received, the PDCP entity of the terminal is the PDCP PDU of the PDCP SN 6 which is different from the PDCP SN 6 which expected the reception. It is necessary to distinguish whether the PDCP PDU of PDCP SN # 6 is removed due to the removal timer expiration or is received later due to the multiflow reception delay.
도 15는 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 일 예를 나타낸다. 도 15a는 도 14의 예에서, 단말의 PDCP 엔티티가 PDCP SN 1번~5번의 PDCP PDU들을 수신한 이후, PDCP SN 11번의 PDCP PDU의 수신을 완료한 경우를 가정한다.15 shows an example of PDCP SDU rearrangement through the rearrangement timer operation according to the present invention. FIG. 15A illustrates a case in which the PDCP entity of the UE completes reception of PDCP PDUs of PDCP SN 11 after receiving PDCP PDUs of PDCP SNs 1 to 5 in the example of FIG. 14.
도 15a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 1번의 PDCP PDU 수신 시에 재배열 타이머를 시작한다. 단말의 PDCP 엔티티가 PDCP SN 1번의 PDCP PDU를 수신 시에는 재배열 타이머가 동작하지 않는 초기 상태이므로, PDCP SN 1번의 PDCP PDU 수신 시에 재배열 타이머를 시작한다. 단말의 PDCP 엔티티는 재배열 타이머 값(RT)에 따라서 재배열 타이머를 유지한다. 재배열 타이머 값은 매크로 기지국 또는 스몰 기지국에서 단말로 전송될 수 있다. 예를 들어 상기 재배열 타이머 값은 단말에 이중 연결(또는 멀티 플로우) 구성시 그 구성 정보에 포함되어 단말로 전송될 수 있다. 재배열 타이머는 시작 이후에 RT 시간 동안 유지되거나, 또는 순차적인 PDCP SN의 PDCP PDU를 수신해서 재배열 타이머를 재시작하기 전까지 유지된다. 한편, 수신된 PDCP SN 1번은 상위계층으로 전달된다.Referring to FIG. 15A, the PDCP entity of the UE starts a rearrangement timer upon reception of PDCP PDU of PDCP SN # 1. Since the rearrangement timer does not operate when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN # 1, the rearrangement timer starts when the PDCP PDU of PDCP SN # 1 is received. The PDCP entity of the terminal maintains the rearrangement timer according to the rearrangement timer value RT. The rearrangement timer value may be transmitted from the macro base station or the small base station to the terminal. For example, the rearrangement timer value may be included in the configuration information when the dual connection (or multiflow) is configured in the terminal and transmitted to the terminal. The rearrangement timer is maintained for RT time after startup, or until the rearrangement timer is restarted by receiving a PDCP PDU of the sequential PDCP SN. On the other hand, the received PDCP SN 1 is delivered to the upper layer.
이후, 단말의 PDCP 엔티티는 PDCP SN 2번의 PDCP PDU 수신 시에 재배열 타이머를 재시작하고, PDCP SN 2번의 PDCP PDU에 대응하는 PDCP SDU를 상위계층으로 전달한다. 이는 재배열 타이머 만료 전에 순차적인 PDCP SN의 PDCP PDU를 수신한 경우를 가정한다. 이후 단말의 PDCP 엔티티는 PDCP SN 3번~5번의 PDCP PDU 수신 시마다 재배열 타이머를 재시작한다. 한편, 순차적으로 수신된 PDCP SN 3번 내지 5번의 PDCP PDU들에 대응하는 PDCP SDU들은 상위계층으로 전달된다.Thereafter, the PDCP entity of the terminal restarts the rearrangement timer upon receiving the PDCP PDU of PDCP SN 2, and delivers the PDCP SDU corresponding to the PDCP PDU of PDCP SN 2 to a higher layer. This assumes that a PDCP PDU of a sequential PDCP SN is received before the rearrangement timer expires. Thereafter, the PDCP entity of the terminal restarts the rearrangement timer every time PDCP PDUs of PDCP SN 3 to 5 are received. Meanwhile, PDCP SDUs corresponding to PDCP PDUs of PDCP SNs 3 to 5 that are sequentially received are delivered to a higher layer.
단말의 PDCP 계층은 PDCP SN 11번의 PDCP PDU 수신 시에 비순차적으로 PDCP PDU를 수신하였으므로, 재배열 타이머를 재시작하지 않고, 유지한다. 단말의 PDCP 계층이 PDCP SN 5번의 PDCP PDU를 수신한 경우, PDCP SN 6번의 PDCP PDU를 수신할 것으로 기대한다. 하지만 실제 수신한 PDCP PDU의 PDCP SN은 11번으로, 이는 순차적인 수신이 아니라 비순차적인 수신에 해당한다. 따라서, 이 경우 재배열 타이머를 재시작하지 않는다. 재배열 타이머가 동작하는 동안 비순차적으로 수신된 PDCP PDU들에 대응하는 PDCP SDU들은 버퍼에 저장한다. 따라서, 이 경우 PDCP SN 11번의 PDCP PDU에 대응하는 PDCP SDU는 버퍼에 저장된다. 이 경우, 재배열 타이머는 계속 유지된다.Since the PDCP layer of the terminal receives the PDCP PDUs out of sequence when receiving PDCP PDUs of PDCP SN 11, the PDCP layer does not restart the rearrangement timer and maintains them. When the PDCP layer of the UE receives PDCP PDUs of PDCP SN 5, it is expected to receive PDCP PDUs of PDCP SN 6. However, the PDCP SN of the PDCP PDU received is 11, which corresponds to non-sequential reception, not sequential reception. Therefore, do not restart the rearrangement timer in this case. PDCP SDUs corresponding to PDCP PDUs received out of order while the rearrangement timer is running are stored in a buffer. Therefore, in this case, PDCP SDUs corresponding to PDCP PDUs of PDCP SN 11 are stored in a buffer. In this case, the rearrangement timer is maintained.
도 15b은 도 15a 이후 단말의 PDCP 엔티티가 PDCP SN 12번의 PDCP PDU의 수신을 완료한 경우를 가정한다.FIG. 15B assumes a case in which a PDCP entity of a UE completes reception of PDCP PDUs of PDCP SN 12 after FIG. 15A.
도 15b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 12번의 PDCP PDU 수신도 여전히 비순차적인 수신으로 판단한다. 왜냐하면 상위계층으로 마지막으로 전달한 PDCP SDU의 PDCP SN은 5번으로, 단말의 PDCP 엔티티는 상기 상위계층으로 마지막으로 전달한 PDCP SDU의 PDCP SN의 다음 번인 6번 PDCP SN의 PDCP PDU가 수신될 것으로 기대하기 때문이다. 따라서, 이 경우 재배열 타이머는 만료되기까지 계속 유지된다.Referring to FIG. 15B, the PDCP entity of the terminal still determines that PDCP PDU reception of PDCP SN 12 is still out of order. Because the PDCP SN of the last PDCP SDU delivered to the upper layer is 5, the PDCP entity of the UE expects to receive the PDCP PDU of PDCP SN # 6, which is next to the PDCP SN of the last PDCP SDU delivered to the upper layer. Because. Thus, in this case, the rearrangement timer continues to expire.
도 15c는 도 15b 이후 단말의 PDCP 엔티티가 PDCP SN 6번의 PDCP PDU까지 수신을 완료한 경우를 가정한다.FIG. 15C assumes a case in which a PDCP entity of a UE completes reception until PDCP PDU of PDCP SN 6 after FIG. 15B.
도 15c를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 6번의 PDCP PDU를 수신하면, 순차적으로 PDCP PDU를 수신한 것으로 판단한다. 이는 상위계층으로 마지막으로 전달한 PDCP PDU의 PDCP SN 5번의 다음 번인 PDCP SN 6번의 PDCP PDU를 수신하였기 때문이다. 이 경우, 단말은 재배열 타이머를 재시작하고, PDCP SN 6번의 PDCP PDU에 대응하는 PDCP SDU를 상위계층으로 전달한다. 만약, 단말의 PDCP 엔티티가 재배열 타이머가 만료되기까지 PDCP SN 6번의 PDCP PDU를 수신하지 못한 경우, PDCP SN 6번의 PDCP PDU에 대응하는 PDCP SDU는 제거 타이머 만료로 제거된 것으로 간주한다.Referring to FIG. 15C, when the PDCP entity of the UE receives the PDCP PDU of PDCP SN 6, it determines that the PDCP PDU is sequentially received. This is because the PDCP PDU of PDCP SN 6, which is next to PDCP SN 5 of the last PDCP PDU delivered to the upper layer, is received. In this case, the terminal restarts the rearrangement timer, and delivers the PDCP SDU corresponding to the PDCP PDU of PDCP SN 6 to a higher layer. If the PDCP entity of the terminal does not receive PDCP PDUs of PDCP SN 6 until the rearrangement timer expires, the PDCP SDU corresponding to PDCP PDUs of PDCP SN 6 is considered to have been removed by expiration of the removal timer.
도 15d는 도 15c 이후 단말의 PDCP 엔티티가 PDCP SN 19번의 PDCP PDU까지 수신을 완료한 경우를 가정한다.FIG. 15D assumes a case in which a PDCP entity of the UE completes reception until PDCP PDU of PDCP SN 19 after FIG. 15C.
도 15d를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 6번의 PDCP PDU 수신 이후, 13, 7, 17, 8, 18, 9, 19번 순서로, PDCP PDU들을 수신한다. 이 경우, 단말의 PDCP 엔티티는 PDCP SN 6, 7, 8, 9번의 PDCP PDU들은 순차적으로 수신한 것으로 간주하여, 대응하는 PDCP SDU들을 상위 계층으로 전달한다. 이 경우, 단말의 PDCP 엔티티는 각각의 PDCP SN 6, 7, 8, 9번의 PDCP PDU들 수신 시마다 재배열 타이머를 재시작한다.Referring to FIG. 15D, the PDCP entity of the terminal receives PDCP PDUs in the order of 13, 7, 17, 8, 18, 9, 19 after PDCP SN 6 PDCP PDU reception. In this case, the PDCP entity of the UE regards PDCP PDUs of PDCP SN 6, 7, 8, and 9 sequentially and delivers corresponding PDCP SDUs to a higher layer. In this case, the PDCP entity of the terminal restarts the rearrangement timer every time PDCP PDUs of PDCP SN 6, 7, 8, and 9 are received.
그런, 단말의 PDCP 엔티티는 PDCP SN 11, 12, 13, 17, 18, 19번의 PDCP PDU들은 순차적 수신이 아니므로(PDCP SN 10번의 PDCP PDU가 수신되지 않음) 대응하는 PDCP SDU들을 상위 계층으로 전달하지 않고, 버퍼에 저장한다. 이 경우, 재배열 타이머는 재시작하지 않고 유지된다.As such, the PDCP entity of the UE delivers corresponding PDCP SDUs to the upper layer because PDCP PDUs of PDCP SNs 11, 12, 13, 17, 18, and 19 are not sequentially received (PDCP PDUs of PDCP SN 10 are not received). Instead, store it in a buffer. In this case, the rearrangement timer is maintained without restarting.
도 15e는 도 15d 이후 단말의 PDCP 엔티티가 PDCP SN 10번의 PDCP PDU까지 수신을 완료한 경우를 가정한다.FIG. 15E assumes a case in which a PDCP entity of the UE completes reception until PDCP PDU of PDCP SN 10 after FIG. 15D.
도 15e를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 10번의 PDCP PDU 수신 시, 대응하는 PDCP SDU와, 저장된 PDCP SN 11, 12, 13번과 연관된 PDCP SDU들을 상위계층으로 전달한다. 단말의 PDCP 엔티티는 PDCP SN 10번의 PDCP PDU 수신으로 인하여, 상기 PDCP SN 10번부터 시작하여 연속적인 순서에 해당하는 PDCP SDU들 모두를 한 번에 상위계층으로 전달할 수 있다.Referring to FIG. 15E, upon reception of a PDCP PDU of PDCP SN # 10, the PDCP entity of the terminal delivers a corresponding PDCP SDU and PDCP SDUs associated with stored PDCP SNs 11, 12, and 13 to a higher layer. Due to reception of PDCP PDUs of PDCP SN 10, the PDCP entity of the UE may deliver all of the PDCP SDUs corresponding to the consecutive order starting from PDCP SN 10 to a higher layer at a time.
단말의 PDCP 엔티티는 수신된 PDCP SN 17, 18, 19번의 PDCP PDU들은 PDCP SN 14, 15, 16번의 PDCP PDU들 수신시까지는 비순차적인 것으로 판단하고,PDCP SN 17, 18, 19번의 PDCP PDU들에 대응하는 PDCP SDU들을 상위계층으로 전달하지 않고, 버퍼에 저장한다. 즉, PDCP SN 17, 18, 19번의 PDCP PDU들은 PDCP SN 14, 15, 16번의 PDCP PDU들 수신 전까지는 순차적인 순서가 아니므로, 대응하는 PDCP SDU들이 상위계층으로 전달되지 않는다. 다시 말해, PDCP SN 17, 18, 19번의 PDCP PDU들에 대응하는 PDCP SDU들의 상위계층 전달을 위하여는, PDCP SN 14, 15, 16번의 PDCP PDU들이 수신되던지, 또는 제거된 것으로 판단되어야 한다. 상기와 같은 기준에 따라 재배열 타이머를 기반으로, PDCP SDU의 상위계층으로 오름차순 전달이 보장될 수 있다. The PDCP entity of the UE determines that the received PDCP PDUs of PDCP SN 17, 18 and 19 are out of order until receiving PDCP PDUs of PDCP SN 14, 15 and 16, and PDCP PDUs of PDCP SN 17, 18 and 19. The PDCP SDUs corresponding to the PCP SDUs are stored in the buffer without being transferred to the upper layer. That is, since PDCP PDUs of PDCP SNs 17, 18 and 19 are not in sequential order until PDCP PDUs of PDCP SNs 14, 15 and 16 are received, corresponding PDCP SDUs are not delivered to the upper layer. In other words, for higher layer delivery of PDCP SDUs corresponding to PDCP PDUs of PDCP SN 17, 18 and 19, PDCP PDUs of PDCP SN 14, 15 and 16 should be received or removed. Ascending order to the upper layer of the PDCP SDU can be guaranteed based on the rearrangement timer according to the above criteria.
도 16은 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 다른 예를 나타낸다. 도 16a는 도 14의 예에서, 단말의 PDCP 엔티티가 PDCP SN 1번~5번, 11, 12의 PDCP PDU들을 수신한 이후, PDCP SN 6번의 PDCP PDU의 수신 없이 PDCP SN 13, 7번의 PDCP PDU들을 수신한 경우이다.16 shows another example of PDCP SDU rearrangement through the rearrangement timer operation according to the present invention. FIG. 16A illustrates a PDCP PDU of PDCP SN 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5 and 11 and 12 in FIG. 14. This is the case.
도 16a를 참조하면, 본 발명에 따른 단말의 PDCP 엔티티는 PDCP SN 1~5번의 PDCP PDU들을 수신시마다 대응하는 PDCP SDU들을 상위계층으로 전달하고, 재배열 타이머를 시작/재시작한다. 그러나, PDCP SN 11, 12, 13, 7번의 PDCP PDU들을 수신시에는, 아직 PDCP SN 6번의 PDCP PDU가 수신되지 않았으므로(즉, 비순차적인 수신이므로), 대응하는 PDCP SDU들을 저장하고, 재배열 타이머는 유지한다. 이 경우 단말의 PDCP 엔티티는 PDCP SN 6번의 PDCP PDU가 제거 타이머 만료로 제거된 것인지 또는 경로지연으로 인하여 늦게 도착할 것인지 명확하게 구분할 수 없다. 단말의 PDCP 엔티티는 상기 재배열 타이머가 만료되기까지 기다려도 PDCP SN 6번의 PDCP PDU가 수신되지 않으면, 상기 PDCP SN 6번의 PDCP PDU에 대응하는 PDCP SDU는 제거된 것으로 판단한다.Referring to FIG. 16A, the PDCP entity of the terminal according to the present invention delivers corresponding PDCP SDUs to a higher layer whenever PDCP SNs 1 to 5 PDCP PDUs are received, and starts / restarts a rearrangement timer. However, upon receiving PDCP SN 11, 12, 13, and 7 PDCP PDUs, the PDCP PDUs of PDCP SN 6 have not yet been received (ie, out of sequence), so that the corresponding PDCP SDUs are stored and re-created. Keep the array timer. In this case, the PDCP entity of the terminal cannot clearly distinguish whether the PDCP PDU of PDCP SN 6 is removed due to the removal timer expiration or arrives late due to a path delay. The PDCP entity of the terminal determines that the PDCP SDU corresponding to the PDCP PDU of the PDCP SN 6 is removed when the PDCP SN of the PDCP SN 6 is not received even if the rearrangement timer waits until the rearrangement timer expires.
도 16b는 도 16a 이후, 단말의 PDCP 엔티티가 PDCP SN 19번의 PDCP PDU까지 수신을 완료한 경우를 가정한다. PDCP SN 6번의 PDCP PDU의 수신 없이 단말의 PDCP 엔티티가 PDCP SN 13, 7번의 PDCP PDU들을 수신한 후, 재배열 타이머가 만료되고, 그 후, 단말의 PDCP 엔티티가 PDCP SN 17번의 PDCP PDU를 수신한 경우이다.FIG. 16b assumes that after FIG. 16a, the PDCP entity of the terminal has completed reception up to the PDCP PDU of PDCP SN 19. After the PDCP entity of the terminal receives PDCP SN 13, PDCP PDUs of PDCP SN 13 and 7 without receiving PDCP SN of PDCP SN 6, the rearrangement timer expires, and then the PDCP entity of the UE receives PDCP PDU of PDCP SN 17 One case.
도 16b를 참조하면, 단말의 PDCP PDU는 재배열 타이머 만료 시에 PDCP SN 6번의 PDCP PDU에 대응하는 PDCP SDU는 제거된 것으로 판단한다. 왜냐하면 재배열 타이머는 다음 순차적으로 수신할 것으로 기대되는 PDCP SN의 PDCP PDU를 경로지연 등을 고려하여 최대한으로 기다려줄 수 있는 시간을 의미하기 때문이다. 따라서, 재배열 타이머가 만료된 경우 해당 PDCP SN의 PDCP PDU에 대응하는 PDCP SDU는 제거된 것으로 판단한다. 일반적으로 매크로 기지국과 스몰 기지국 간 X2(또는 Xn) 인터페이스 구간에서는 패킷 손실(packet loss)가 없는 것으로 간주하고, RLC AM을 사용하는 경우에는, 지연 시간이 있더라도 기지국과 단말 사이에서는 패킷 손실 없는 전송이 가능한 것으로 간주한다. 따라서, 재배열 타이머가 지났음에도 불구하고 단말의 PDCP 엔티티가 다음 순차적인 수신을 기대한 PDCP SN의 PDCP PDU를 수신하지 못한 경우, 해당 PDCP PDU에 대응하는 PDCP SDU는 제거된 것으로 봄이 타당하다.Referring to FIG. 16B, when the rearrangement timer expires, the PDCP PDU of the UE determines that the PDCP SDU corresponding to the PDCP PDU of PDCP SN 6 is removed. This is because the rearrangement timer means a time that the PDCP PDU of the PDCP SN, which is expected to be sequentially received, can wait as much as possible in consideration of a path delay. Therefore, when the rearrangement timer expires, it is determined that the PDCP SDU corresponding to the PDCP PDU of the corresponding PDCP SN is removed. In general, packet loss is regarded as no packet loss in the X2 (or Xn) interface section between the macro base station and the small base station. When using the RLC AM, transmission without packet loss between the base station and the terminal is performed even if there is a delay time. It is considered possible. Therefore, even though the rearrangement timer has elapsed, when the PDCP entity of the UE does not receive the PDCP PDU of the PDCP SN that expected the next sequential reception, it is reasonable to consider that the PDCP SDU corresponding to the PDCP PDU has been removed.
따라서, PDCP 엔티티는 PDCP SN 6번에 연관된 PDCP SDU가 제거되었으므로, PDCP SN 7번의 PDCP PDU가 순차적인 것으로 간주한다. 이는 PDCP SN 6번에 연관된 PDCP SDU는 제거되어 단말의 PDCP 엔티티가 수신할 수 없으므로, PDCP SN 7번에 연관된 PDCP SDU를 상위계층으로 전달하더라도 오름차순 전달에 문제가 없기 때문이다. 따라서, 이와 같이 제거된 PDCP SDU를 제외하고, 순차적 수신(또는 오름차순 전달)에 대하여 파악할 수 있다. PDCP 엔티티는 PDCP SN 7번에 연관된 PDCP SDU는 상위계층으로 전송하되, 상기 재배열 타이머 만료시 상기 PDCP SN 7번에 연관된 PDCP SDU를 상위계층으로 전달할 수 있고, 또는 상기 재배열 타이머 만료 후 처음 수신되는 PDCP SN 17번의 PDCP PDU 수신 시 상기 PDCP SN 7번에 연관된 PDCP SDU를 상위계층으로 전달할 수 있다. 또한, PDCP SN 17번의 PDCP PDU 수신 시 재배열 타이머가 동작중이 아니므로, 재배열 타이머가 시작된다.Accordingly, the PDCP entity considers the PDCP PDUs of PDCP SN 7 to be sequential because the PDCP SDUs associated with PDCP SN 6 have been removed. This is because the PDCP SDU associated with PDCP SN 6 is removed and cannot be received by the PDCP entity of the UE. Therefore, even if the PDCP SDU associated with PDCP SN 7 is delivered to a higher layer, there is no problem in ascending order. Therefore, except for the PDCP SDU thus removed, it is possible to grasp the sequential reception (or ascending order). The PDCP entity may transmit a PDCP SDU associated with PDCP SN 7 to a higher layer, but may transmit the PDCP SDU associated with PDCP SN 7 to a higher layer when the rearrangement timer expires, or first receive after the rearrangement timer expires. Upon receiving the PDCP PDU of PDCP SN 17, the PDCP SDU associated with PDCP SN 7 may be delivered to a higher layer. In addition, the rearrangement timer is not started when the PDCP PDU of PDCP SN 17 is received, and thus the rearrangement timer is started.
도 17은 본 발명에 따른 재배열 타이머가 만료된 경우 PDCP SDU들의 상위계층으로의 전송의 일 예를 나타낸다. 도 17은 도 14의 예에서, 단말의 PDCP 엔티티가 PDCP SN 1~5, 11, 12번의 PDCP PDU들을 수신한 이후, PDCP SN 6번의 PDCP PDU의 수신 없이 PDCP SN 13, 7번의 PDCP PDU들을 수신한 후, 재배열 타이머가 만료되고, 그 후, 단말의 PDCP 엔티티가 PDCP SN 17번 PDCP PDU 수신시 재배열 타이머가 시작되고, PDCP SN 8번의 PDCP PDU 수신 없이, PDCP SN 18, 9, 19, 10번의 PDCP PDU를 수신하고, 재배열 타이머가 만료된 경우이다.17 shows an example of transmission of PDCP SDUs to a higher layer when the rearrangement timer according to the present invention expires. 17, in the example of FIG. 14, after the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5, 11 and 12, PDCP SN 13 and PDCPs of PDCP SN 13 and 7 are received without receiving PDCP PDUs of PDCP SN 6. After the rearrangement timer expires, the rearrangement timer is started when the PDCP entity of the UE receives the PDCP SN # 17 PDCP PDU, and without the PDCP SN # 8 PDCP PDU, PDCP SN 18, 9, 19, 10 PDCP PDUs have been received and the rearrangement timer has expired.
PDCP 계층에 대한 표준에 따르면, PDCP 엔티티가 PDCP PDU를 수신하였을 경우에, 대응되는 PDCP SDU을 어떤 기준에 따라 상위계층으로 전송하는지에 대하여 기술하고 있다. 그러나, 재배열 타이머가 만료된 경우의 PDCP 엔티티의 동작에 대하여는 기술되어 있지 않다. PDCP 엔티티는 재배열 타이머가 만료될 때, 바로 다음 동작을 수행할 수도 있고, 또는 재배열 타이머가 만료된 이후 PDCP PDU 수신시에 다음 동작을 수행할 수도 있다. 예를 들어, 재배열 타이머가 만료된 때에 제거된 것으로 취급되는 PDCP SDU를 제외하고 순차적인 수신으로 취급되는 PDCP SDU들을 PDCP 엔티티가 상위계층으로 전달할 수 있다. 또는 재배열 타이머가 만료된 이후에 PDCP PDU 수신 시에, 재배열 타이머 만료로 제거된 것으로 취급되는 PDCP SDU를 제외하고 순차적인 수신으로 취급되는 PDCP SDU들을 PDCP 엔티티가 상위계층으로 전달할 수도 있다. 즉, 재배열 타이머가 만료된 경우, 저장된 PDCP SDU들 중에서 순차적인 수신으로 취급되는 PDCP SDU들을 상위 계층으로 전달하는 동작은, 재배열 타이머가 만료되는 시점에 바로 트리거링(triggering)될 수 있고, 또는 재배열 타이머가 만료 된 이후에 PDCP PDU가 수신되는 시점에 트리거링될 수 있다.According to the standard for the PDCP layer, when the PDCP entity receives the PDCP PDU, it describes on which criteria the corresponding PDCP SDU is transmitted to the upper layer. However, there is no description of the behavior of the PDCP entity when the rearrangement timer expires. The PDCP entity may perform the next operation immediately when the reordering timer expires, or may perform the next operation upon receiving the PDCP PDU after the reordering timer expires. For example, a PDCP entity may forward PDCP SDUs treated as sequential reception to a higher layer except for PDCP SDUs that are treated as removed when the rearrangement timer expires. Alternatively, when the PDCP PDU is received after the rearrangement timer expires, the PDCP entity may deliver PDCP SDUs treated as sequential receptions to a higher layer except for the PDCP SDUs that are treated as removed by the rearrangement timer expiration. That is, when the rearrangement timer expires, delivering the PDCP SDUs treated as sequential receptions among the stored PDCP SDUs to a higher layer may be triggered immediately when the rearrangement timer expires, or After the rearrangement timer expires, it may be triggered at the time the PDCP PDU is received.
한편, 재배열 타이머 값이 클수록 누락된 PDCP SDU가 제거된 것인지 아니면 아직 수신되지 않은 것인지 명확히 판단할 수 있으나, 재배열 타이머 시간 동안 나머지 PDCP SDU들의 상위계층으로 전달이 유보되기에 시간 지연이 발생하게 되고, 재배열 타이머 값이 작을수록 시간 지연은 줄어드나, 누락된 PDCP SDU가 제거된 것인지 아니면 아직 수신되지 않은 것인지에 대한 판단의 정확성이 떨어질 수 있다. 따라서, 재배열 타이머는 상기의 문제점을 고려하여 적절하게 설정되어야 한다. On the other hand, the larger the rearrangement timer value, it can be clearly determined whether the missing PDCP SDU has been removed or not yet received, but the time delay occurs because the transfer to the upper layer of the remaining PDCP SDUs is reserved during the rearrangement timer time. In addition, as the rearrangement timer value is smaller, the time delay is reduced, but it may be less accurate to determine whether the missing PDCP SDU is removed or not received yet. Therefore, the rearrangement timer should be appropriately set in consideration of the above problem.
PDCP PDU들은 매크로 기지국 또는 스몰 기지국을 통하여 전송될 수 있다. 이 때 연속적으로 전송되는 PDCP PDU들 간의 시간 간격은 미미한 것으로 판단한다. 또한 PDCP 제거 타이머가 구동되어 진행되는 시간은 연속되는 PDCP PDU들에서 거의 동일한다. 따라서, 매크로 기지국의 PDCP 엔티티에서 매크로 기지국의 RLC 엔티티 또는 스몰 기지국의 RLC 엔티티를 거쳐서 전송되는 PDCP PDU들 간에는 전송 경로의 차이로 인한 지연만을 고려하면 충분하다. 예를 들어 무선구간에서의 전송 지연의 차이가 미미한 것으로 가정한다면, 주요한 경로지연은 매크로 기지국과 스몰 기지국 사이에 존재하는 X2(또는 Xn) 경로에서의 지연 시간에 해당할 것이다. 따라서, 재배열 타이머 값 RT는 X2(또는 Xn) 경로 지연에 해당하는 20~60ms 내의 임의의 값으로 설정될 수 있다. 상기 재배열 타이머 값 RT는 기지국에서 단말로 전용적(dedicated)으로, 또는 브로드캐스트(broadcast) 방식으로 시그널링될 수 있다.PDCP PDUs may be transmitted via a macro base station or a small base station. At this time, the time interval between successive PDCP PDUs is determined to be insignificant. Also, the time that the PDCP removal timer is driven and progressed is about the same in successive PDCP PDUs. Therefore, it is sufficient to consider only the delay due to the difference in transmission paths between PDCP PDUs transmitted from the macro base station's PDCP entity through the macro base station's RLC entity or the small base station's RLC entity. For example, if it is assumed that the difference in the transmission delay in the radio section is insignificant, the main path delay will correspond to the delay time in the X2 (or Xn) path existing between the macro base station and the small base station. Therefore, the rearrangement timer value RT may be set to any value within 20 to 60 ms corresponding to the X2 (or Xn) path delay. The rearrangement timer value RT may be signaled from a base station to a terminal in a dedicated or broadcast manner.
한편, 재배열 타이머가 만료된 경우, 누락된 PDCP SDU가 제거된 것인지 아니면 아직 수신되지 않은 것인지에 대한 판단의 정확성을 높이기 위하여, 추가적으로 PDCP SDU 제거 확정 방안을 사용할 수 있다.On the other hand, when the rearrangement timer expires, in order to increase the accuracy of the determination of whether the missing PDCP SDU is removed or not yet received, additional PDCP SDU removal confirmation method may be used.
도 18은 본 발명에 따른 PDCP SDU 제거 확정 방안을 적용하는 일 예를 나타낸다. 도 18a는 도 14의 예에서, 단말의 PDCP 엔티티가 PDCP SN 1번~5번, 11, 12의 PDCP PDU들을 수신한 이후, PDCP SN 6번의 PDCP PDU의 수신 없이 단말의 PDCP 엔티티가 PDCP SN 13, 7번의 PDCP PDU들을 수신한 후, 재배열 타이머가 만료되고, 그 후, 단말의 PDCP 엔티티가 PDCP SN 17번의 PDCP PDU를 수신한 경우이다.18 shows an example of applying a PDCP SDU removal determination method according to the present invention. FIG. 18A illustrates, after the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 5, 11 and 12, the PDCP entity of the UE does not receive PDCP PDUs of PDCP SN 6 to PDCP SN 13 in FIG. 14. After receiving 7 PDCP PDUs, the rearrangement timer expires, and then the PDCP entity of the UE receives PDCP PDUs of PDCP SN 17 afterwards.
단말의 PDCP 엔티티는 PDCP SN 17번의 PDCP PDU를 수신시 PDCP SN 7번의 PDCP PDU에 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 시작한다. PDCP 엔티티는 PDCP SN 17번의 PDCP PDU는 순차적 수신이 아니므로, 대응하는 PDCP SDU(PDCP SN 17번에 연관된)를 저장한다.When the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 17, the PDCP SDU corresponding to the PDCP PDU of PDCP SN 7 is transferred to a higher layer and starts a rearrangement timer. The PDCP entity stores the corresponding PDCP SDU (associated with PDCP SN 17) since the PDCP PDUs of PDCP SN 17 are not sequential receptions.
도 18b는 도 18a 이후, 단말의 PDCP 엔티티가 PDCP SN 8번의 PDCP PDU의 수신 없이 PDCP SN 18, 9번의 PDCP PDU들을 수신한 경우이다.FIG. 18B illustrates a case in which a PDCP entity of the UE receives PDCP SN 18, PDPD # 9 without receiving PDCP PDUs of PDCP SN 8 after FIG. 18A.
도 18b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU의 수신 없이, PDCP SN 18, 9번의 PDCP PDU들을 순서대로 수신한다. Referring to FIG. 18B, the PDCP entity of the terminal receives PDCP SN 18 and PDCP PDUs in sequence 9 without receiving PDCP PDUs of PDCP SN 8.
멀티 플로우 환경에서, 단말의 PDCP 엔티티가 매크로 기지국의 RLC 엔티티를 통하여 전송되는 PDCP PDU들의 PDCP SN들과, 스몰 기지국의 RLC 엔티티를 통하여 전송되는 PDCP PDU들의 PDCP SN들을 구분할 수 있다고 가정하면, 단말의 PDCP 엔티티는 재배열 타이머가 만료된 경우, 다음과 같은 방법에 따라 PDCP SDU 제거 확정을 할 수 있다. In a multi-flow environment, assuming that a PDCP entity of a terminal can distinguish PDCP SNs of PDCP PDUs transmitted through an RLC entity of a macro base station and PDCP SNs of PDCP PDUs transmitted through an RLC entity of a small base station. When the rearrangement timer expires, the PDCP entity may determine the PDCP SDU removal according to the following method.
단말의 PDCP 엔티티에 어느 한 기지국(예를 들어 스몰 기지국)을 통해 순차적으로 수신될 것으로 기대되는 특정 PDCP PDU의 PDCP SN을 X라고 하고, 다른 기지국(예를 들어 매크로 기지국)에서 수신된 PDCP PDU의 최대 PDCP SN을 Y라고 한다면, 단말의 PDCP 엔티티는 Y>X인 경우, X에 해당하는 PDCP SN을 가지는 PDCP PDU(또는 PDCP SDU)는 제거된 것으로 판단할 수 있다. 도 18b을 참조하여 설명하면 다음과 같다. The PDCP SN of a specific PDCP PDU expected to be received sequentially through one base station (for example, a small base station) to the PDCP entity of the terminal is called X, and the PDCP PDU received from another base station (for example, macro base station) If the maximum PDCP SN is Y, if the PDCP entity of the UE is Y> X, it may be determined that the PDCP PDU (or PDCP SDU) having the PDCP SN corresponding to X is removed. A description with reference to FIG. 18B is as follows.
DCP SN 8번의 PDCP PDU의 수신 없이 재배열 타이머가 만료된 경우, 단말의 PDCP 엔티티는 스몰 기지국을 통해 순차적으로 수신될 것으로 기대하였던 PDCP PDU의 PDCP SN 6번과, 매크로 기지국을 통해 수신된 PDCP PDU의 최대 PDCP SN인 20번을 비교하고, 20>6 이므로, 해당 PDCP SN 6번에 연관된 PDCP SDU가 제거된 것으로 확정한다. When the rearrangement timer expires without receiving the PDCP PDUs of the DCP SN 8, the PDCP entity of the UE is PDCP SN 6 of the PDCP PDU, which was expected to be sequentially received through the small base station, and the PDCP PDU received through the macro base station. Compare 20 times the maximum PDCP SN of, and since 20> 6, determine that the PDCP SDU associated with the corresponding PDCP SN 6 has been removed.
도 19는 본 발명에 따른 재배열 타이머 운용을 통한 PDCP SDU 재배열의 흐름도 예이다.19 is a flowchart example of a PDCP SDU rearrangement using the rearrangement timer operation according to the present invention.
도 19를 참조하면, 단말의 PDCP 엔티티는 PDCP SN n번의 PDCP PDU를 순차적으로 수신하였을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머가 구동중이 아니면 재배열 타이머를 시작하고, 재배열 타이머가 구동중이면 상기 재배열 타이머를 재시작한다(S1900). 이 경우, 단말의 PDCP 엔티티는 재배열 타이머 구동중에 PDCP PDU의 순차적 수신 시마다 상기 재배열 타이머를 재시작한다. 여기서 재배열 타이머는 마지막으로 순차적으로 수신된 PDCP PDU 다음에 순차적으로 수신되기를 기대하는 PDCP PDU를 기다리기 위한 대기 타이머(waiting timer)에 해당한다. 단말의 PDCP 엔티티는 해당 PDCP PDU의 PDCP SN을 기반으로 해당 PDCP PDU가 순차적으로 수신되었는지 확인할 수 있다.Referring to FIG. 19, when the PDCP entity of the terminal sequentially receives PDCP SN n PDCP PDUs, the PDCP entity forwards the corresponding PDCP SDU to the upper layer, and if the rearrangement timer is not running, starts the rearrangement timer. If the rearrangement timer is in operation, the rearrangement timer is restarted (S1900). In this case, the PDCP entity of the terminal restarts the rearrangement timer every time the PDCP PDU is sequentially received while the rearrangement timer is being driven. Here, the rearrangement timer corresponds to a waiting timer for waiting for the PDCP PDUs that are expected to be sequentially received after the last sequentially received PDCP PDUs. The PDCP entity of the UE may check whether the corresponding PDCP PDUs are sequentially received based on the PDCP SN of the corresponding PDCP PDU.
단말의 PDCP 엔티티는 재배열 타이머가 만료되기 전에 PDCP SN n+1번의 PDCP PDU가 수신되는지 확인한다(S1910). 단말의 PDCP 엔티티는 PDCP SN n+2번 및 PDCP SN n+3번의 PDCP PDU들이 수신되더라도, 이는 순차적 수신이 아닌 걸로 판단하고, PDCP SN n+2번 및 PDCP SN n+3번의 PDCP PDU들에 대응하는 PDCP SDU들을 저장하고, 재배열 타이머를 유지한다. The PDCP entity of the UE checks whether the PDCP PDU of PDCP SN n + 1 is received before the rearrangement timer expires (S1910). Although the PDCP entity of the terminal receives PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3, it is determined that the PDCP PDUs are not sequential reception and are determined to be PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3. Store the corresponding PDCP SDUs and maintain the rearrangement timer.
만약 S1910에서 단말의 PDCP 엔티티가 재배열 타이머가 만료되기 전에 PDCP SN n+1번의 PDCP PDU를 수신하는 경우, 단말의 PDCP 엔티티는 PDCP SN n+1부터 시작하여(starting from)연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다(S1920).If the PDCP entity of the UE receives PDCP SN n + 1 PDCP PDUs before the rearrangement timer expires in S1910, the PDCP entity of the UE continuously starts from PDCP SN n + 1 and is continuously associated with PDCP SN. All stored PDCP SDUs of the value are transmitted to the upper layer in ascending order (S1920).
만약 S1910에서 재배열 타이머가 만료된 경우, 즉, 단말의 PDCP 엔티티가 재배열 타이머가 만료되기까지 PDCP SN n+1번의 PDCP PDU를 수신하지 못한 경우, 단말의 PDCP 엔티티는 PDCP SN n+1번에 연관된 PDCP SDU는 제거된 것으로 보고, PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다(S1930). 일 예로, 단말의 PDCP 엔티티는 재배열 타이머 만료 시점에 PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다. 다른 예로, 단말의 PDCP 엔티티는 재배열 타이머가 만료된 이후 처음으로 임의의 PDCP PDU 수신시점에, PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다.If the rearrangement timer expires in S1910, that is, if the PDCP entity of the terminal does not receive PDCP SN n + 1 PDCP PDUs until the rearrangement timer expires, the PDCP entity of the terminal PDPD SN n + 1 The PDCP SDUs associated with are reported to have been removed, and starting with PDCP SN n + 2, all stored PDCP SDUs of consecutively associated PDCP SN values are delivered to the upper layer in ascending order (S1930). As an example, the PDCP entity of the UE may deliver all stored PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 2 at the time of reordering timer to the upper layer in ascending order. As another example, the PDCP entity of the terminal is the first time any PDCP PDU received after the rearrangement timer expires, starting from PDCP SN n + 2 to the upper layer in the ascending order all the stored PDCP SDUs of the associated PDCP SN value I can deliver it.
한편, 사용자에게 제공되는 다양한 통신 서비스는 여러 가지 이유로 인하여 서비스 단절(service gap)이 있을 수 있다. 서비스 단절이란 인터넷 서비스 제공에 있어서 사용자와 서버 간에 패킷 전송의 흐름이 계속하여 연속적으로 발생하지 않고, 특정 시간 동안 패킷 전송이 중단되거나 불연속적으로 전송되는 등의 현상을 의미한다. 인터넷 상에서 제공되는 서비스는 어플리케이션 서버에서 사용자에게 인터넷 네트워크를 거쳐 전송될 수 있다. 이 때 네트워크의 부하(load) 상황 등에 따라서 사용자에게 전송되는 패킷은 불연속적으로 전송될 수 있다. 네트워크 내의 여러 노드(node) 측면에서도 유입되는 패킷이 불연속적으로 유입될 수 있다. 또한, 어플리케이션에 따라서는 연속적인 패킷 발생이 아닌, 불연속적으로 패킷이 발생하는 특징을 가질 수도 잇다.Meanwhile, various communication services provided to a user may have a service gap for various reasons. The service disconnection refers to a phenomenon in which the packet transmission is not continuously and continuously interrupted or discontinuously transmitted for a specific time in providing Internet services. Services provided on the Internet may be transmitted from the application server to the user via the Internet network. At this time, the packet transmitted to the user may be discontinuously transmitted according to the load condition of the network. Incoming packets can also be introduced discontinuously from various nodes in the network. In addition, depending on the application, a packet may be generated discontinuously instead of continuously generating a packet.
본 발명에 따른 무선 통신 시스템의 네트워크(예를 들어 LTE 네트워크)에서도 기지국으로 유입되는 서비스에 대한 패킷이 계속하여 연속적으로 수신되지 않고, 서비스 단절로 인하여 패킷 흐름이 중단될 수 있다.Even in a network (eg, LTE network) of the wireless communication system according to the present invention, packets for a service flowing into a base station are not continuously received continuously, and packet flow may be interrupted due to service disconnection.
도 20은 서비스 단절로 인하여 패킷이 간헐적으로 전송되는 경우를 나타내는 도면이다.20 is a diagram illustrating a case in which packets are intermittently transmitted due to service interruption.
도 20을 참조하면, 단말(2000)에 제공되는 서비스를 위하여 GW(gateway, 2060)에서 기지국(2030)으로 패킷이 전송된다. 어플리케이션 서비스는 서버 등을 통하여 제공될 수 있으며, 이는 무선 네트워크로 전송되어 GW(260)를 거쳐서 패킷 형태로 기지국(2030)으로 전송된다. 이때 패킷 트래픽(packet traffic)은 GW(2060)로부터 기지국(2030)으로 일반적으로 계속적으로 전송된다. 하지만, 네트워크 상황이나 어플리케이션 등에 따라서 일정한 또는 임의의 간격으로 패킷이 전송되지 않는 서비스 단절이 발생할 수 있다. Referring to FIG. 20, a packet is transmitted from a GW (gateway) 2060 to a base station 2030 for a service provided to the terminal 2000. The application service may be provided through a server or the like, which is transmitted to the wireless network and transmitted to the base station 2030 in the form of a packet via the GW 260. Packet traffic is then generally transmitted continuously from the GW 2060 to the base station 2030. However, service disconnection may occur in which packets are not transmitted at regular or random intervals according to network conditions or applications.
비록 도 20에서는 패킷 1에서 패킷 4까지 약간의 간격이 있는 것으로 도시되었으나, 이는 패킷의 흐름을 명시적으로 도식하기 위한 것으로, 실제적으로는 패킷간에 거의 간격이 없거나 미미한 시간차를 가지고 전송된다. 하지만 패킷 4번과 패킷 5번 사이는 Gap 1에 해당하는 상대적으로 긴 시간 간격 동안에 패킷이 전송되지 않는다. 또한 패킷 8번과 패킷 9번 사이에서도 Gap 2에 해당하는 상대적으로 긴 시간 간격 동안에 패킷이 전송되지 않는다. 여기서 Gap1 및 Gap2는 서비스 단절로 취급될 수 있다. 기지국(2030) 측면에서는 상기 전송되는 패킷들을 패킷 1번부터 순서대로 수신하게 된다. 수신된 패킷들은 PDCP SDU에 대응된다. 즉, 수신된 패킷은 PDCP 계층의 PDCP 엔티티에서 PDCP SDU 형태로 PDCP 버퍼에 저장된다. 이 때, 버퍼에 저장된 PDCP SDU들은 순서대로 PDCP PDU로 처리되고, 하위계층에 전달된다. 상술한 바와 같이 서비스 단절로 인하여 패킷들이 기지국(2030)에 수신되는 시간 간격의 차이가 발생하면, 기지국(2030)의 PDCP 엔티티에서 PDCP PDU들이 하위계층으로 전달되는 시간에도 시간 간격이 발생할 수 있다. 즉, Gap1, Gap2의 시간 간격을 두고 기지국(2030)에 수신되는 패킷 4,5번과 패킷 8,9번에 대응하는 PDCP SDU들이 처리된 PDCP PDU들 또한 시간의 차이를 가지고 하위계층으로 전달될 수 있다.Although shown in FIG. 20, there is a slight gap from packet 1 to packet 4, this is to illustrate the flow of packets explicitly, and in practice, there is little gap or little time difference between packets. However, between packet 4 and packet 5, no packet is transmitted during the relatively long time interval corresponding to gap 1. In addition, between packets 8 and 9, packets are not transmitted during the relatively long time interval corresponding to Gap 2. Here, Gap1 and Gap2 may be treated as service interruptions. The base station 2030 receives the transmitted packets in order from packet # 1. The received packets correspond to PDCP SDUs. That is, the received packet is stored in the PDCP buffer in the form of PDCP SDU in the PDCP entity of the PDCP layer. At this time, the PDCP SDUs stored in the buffer are sequentially processed as PDCP PDUs and transferred to the lower layer. As described above, if a time interval in which packets are received by the base station 2030 due to service disconnection occurs, the time interval may also occur in a time when PDCP PDUs are delivered to a lower layer in a PDCP entity of the base station 2030. That is, PDCP PDUs in which PDCP SDUs corresponding to packets 4 and 5 and packets 8 and 9 received by the base station 2030 at intervals of Gap1 and Gap2 are processed may also be delivered to a lower layer with a time difference. Can be.
단말에 이중 연결이 구성된 경우에, 싱글 플로우 상황의 경우, 일반적으로 하나의 PDCP 엔티티가 하나의 RLC 엔티티와 연관된다. 따라서, 서비스 단절이 발생하더라도 단말의 PDCP 엔티티에서 수신하는 PDCP PDU들 간 시간 간격은 존재할 수 있지만, 이러한 상황이 PDCP 엔티티에서의 PDCP PDU들의 순차적 수신에 문제를 발생시키지는 않는다. PDCP 엔티티에서 생성된 PDCP PDU는 하위계층의 RLC 엔티티를 거쳐서 전달되며, 특히 RLC AM의 경우 순차 전달을 지원하기 때문이다. 따라서, 시간 간격을 두고 유입되는 PDCP PDU는 일정 시간 뒤에 처리되면 되고, 서비스단절이 시스템 성능에 특별한 문제를 발생시키지는 않는다.When dual connectivity is configured in the terminal, in case of a single flow situation, generally one PDCP entity is associated with one RLC entity. Therefore, even if service disconnection occurs, there may be a time interval between PDCP PDUs received by the PDCP entity of the UE, but this situation does not cause a problem in the sequential reception of PDCP PDUs in the PDCP entity. The PDCP PDU generated in the PDCP entity is delivered through the RLC entity in the lower layer, especially in the case of RLC AM, which supports sequential delivery. Therefore, the incoming PDCP PDUs should be processed after a certain period of time, and the service disconnection does not cause any special problems in system performance.
그러나, 단말에 이중 연결이 구성된 경우에, 멀티 플로우 상황의 경우, 단말은 상기 패킷들을 두 가지 다른 전송경로를 통하여 수신할 수 있다. 다시 말하면, 단말과 네트워크에 구성된 하나의 EPS 베어러에 대하여, 단말은 매크로 기지국 및 스몰 기지국을 통하여 서비스를 수신한다. 예를 들어, 하나의 EPS 베어러에 대하여 매크로 기지국에 하나의 PDCP 엔티티가 존재하고, RLC 엔티티는 매크로 기지국과 스몰 기지국에 각각 존재하는 경우, 매크로 기지국의 PDCP 엔티티에서 전달하는 PDCP PDU들은 매크로 기지국의 RLC 엔티티 또는 스몰 기지국의 RLC 엔티티를 거쳐서 단말의 PDCP 엔티티로 전달된다. 따라서, 단말의 PDCP 엔티티는 서로 다른 경로 지연을 겪은 PDCP PDU들을 수신하게 된다. 이 경우 PDCP SN이 큰 PDCP PDU가 PDCP SN이 작은 PDCP PDU보다 먼저 도착하는 등의 문제가 발생할 수 있고, 따라서, PDCP 엔티티에서 PDCP SDU들을 재배열하는 방법을 고려해야 한다. PDCP 엔티티에서 PDCP SDU를 재배열 하기 위하여 경로 지연시간을 고려한 타이머 등을 사용할 수 있다. 하지만 서비스 단절 등으로 인한 추가적인 PDCP PDU 전송 지연시간도 함께 고려되어야 PDCP SDU 들을 재배열 할 수 있다. However, when the dual connection is configured in the terminal, in the case of a multi-flow situation, the terminal may receive the packets through two different transmission paths. In other words, for one EPS bearer configured in the terminal and the network, the terminal receives the service through the macro base station and the small base station. For example, if one PDCP entity exists in the macro base station and one RLC entity exists in the macro base station and the small base station for one EPS bearer, the PDCP PDUs delivered by the PDCP entity of the macro base station are RLC of the macro base station. It is delivered to the PDCP entity of the terminal via the RLC entity of the entity or the small base station. Accordingly, the PDCP entity of the terminal receives PDCP PDUs that have experienced different path delays. In this case, a problem may occur such that a PDCP PDU having a large PDCP SN arrives before a PDCP PDU having a small PDCP SN, and thus, a method of rearranging PDCP SDUs in a PDCP entity should be considered. In order to rearrange PDCP SDUs in a PDCP entity, a timer considering path delay time may be used. However, additional PDCP PDU transmission delays due to service interruption may also need to be considered to rearrange PDCP SDUs.
상술한 본 발명에 따른 재배열 타이머를 이용하여, 경로 지연을 감안하여 PDCP PDU가 수신될 수 있는 시간을 확보해 주는 방법으로, PDCP 엔티티에서 PDCP SDU들의 재배열을 수행할 수 있었다. 이 경우 재배열 타이머 값은 경로 지연시간을 고려하여 설정될 수 있었다. 그러나, 서비스 단절로 인하여 시간 간격이 발생하는 경우에는 서비스 단절 시간이 경로 지연시간보다 매우 클 수 있고, 이러한 경우 경로 지연시간을 고려한 재배열 타이머만을 사용해서는 PDCP SDU 재배열을 수행하기 어려울 수 있다.By using the rearrangement timer according to the present invention as described above, the PDCP SDUs may be rearranged in the PDCP entity in such a manner as to secure the time that the PDCP PDU can be received in consideration of the path delay. In this case, the rearrangement timer value could be set in consideration of the path delay time. However, when a time interval occurs due to service disconnection, the service disconnection time may be much larger than the path delay time, and in this case, it may be difficult to perform PDCP SDU rearrangement using only the rearrangement timer considering the path delay time.
도 21은 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 또 다른 예를 나타낸다. 도 21은 PDCP SN 중 1, 2, 3, 4, 5, 6, 7, 8번에 연관된 PDCP PDU들은 스몰 기지국(의 RLC 엔티티)을 통하여 전송되고, 9, 10, 14, 15, 16, 23, 24번에 연관된 PDCP PDU들은 매크로 기지국(의 RLC 엔티티)을 통하여 전송된 경우를 가정한다.21 shows another example of a PDCP PDU reception timing in a PDCP entity of a terminal. FIG. 21 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity), and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of).
도 21a는 서비스 단절이 없는 상황에서 PDCP PDU들 수신을 나타낸다. 21A illustrates reception of PDCP PDUs in the absence of service disruption.
도 21a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 1 내지 7번의 PDCP PDU들을 각각 수신하고, 대응하는 PDCP SDU들을 상위계층으로 전달하며, 각 수신시마다 재배열 타이머를 시작/재시작한다. 서비스 단절이 없는 상황에서, PDCP SN 9번의 PDCP PDU 수신 후에 PDCP SN 8번의 PDCP PDU가 재배열 타이머가 만료되기 전에 PDCP 엔티티에 수신될 수 있다. 이와 같은 경우 PDCP 엔티티는 PDCP SN 9, 10번에 연관되는 PDCP SDU들을 상위계층으로 전달할 수 있다.Referring to FIG. 21A, the PDCP entity of the UE receives PDCP PDUs of PDCP SNs 1 to 7, delivers corresponding PDCP SDUs to a higher layer, and starts / restarts a rearrangement timer for each reception. In the absence of service disconnection, PDCP PDUs of PDCP SN 8 may be received at the PDCP entity after PDCP SN 9 PDCP PDUs are received before the rearrangement timer expires. In this case, the PDCP entity may deliver PDCP SDUs associated with PDCP SNs 9 and 10 to a higher layer.
도 21b는 서비스 단절이 있는 경우, PDCP PDU들의 수신을 나타낸다. 도 21b는 PDCP SN 7번의 PDCP PDU가 전송(또는 수신)된 후에 서비스 단절이 발생한 경우이다. 21B illustrates reception of PDCP PDUs when there is a service disruption. 21B illustrates a case where service disconnection occurs after PDCP PDUs of PDCP SN 7 are transmitted (or received).
도 21b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 7번의 PDCP PDU를 수신한 경우 순차적 수신으로 보아, 대응되는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 재시작한다. 서비스 단절이 발생함에 따라 PDCP PDU의 수신에 있어 서비스 단절로 인한 지연시간이 경로 지연시간에 추가하여 발생된다. 따라서, PDCP SN 8번의 PDCP PDU가 수신되지 못하고, 재배열 타이머가 만료된다. 이는 재배열 타이머는 경로 지연시간을 고려하여 설계된 타이머로, 서비스 단절로 인한 지연시간을 고려하고 있지 않기 때문이다. 이와 같은 경우 재배열 타이머의 만료로 인하여 PDCP SN 8번의 PDCP PDU(또는 PDCP SDU)가 제거된 것으로 간주되어, 그에 따른 일련의 처리가 수행(예를 들어 PDCP SN 9, 10번의 PDCP SDU가 상위계층으로 전달)된 후에, PDCP SN 8번의 PDCP PDU가 수신될 수 있다. 이와 같은 경우, 단말의 PDCP 엔티티는 상위계층으로 PDCP SDU의 오름차순 전달을 보장할 수 없게 되는 문제가 발생한다.Referring to FIG. 21B, when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN # 7, the PDCP entity transfers the corresponding PDCP SDU to the higher layer and restarts the rearrangement timer. As service interruption occurs, the delay due to service interruption is generated in addition to the path delay in receiving the PDCP PDU. Accordingly, PDCP PDUs of PDCP SN 8 are not received and the rearrangement timer expires. This is because the rearrangement timer is designed in consideration of the path delay time and does not consider the delay time due to service disconnection. In this case, due to expiration of the rearrangement timer, PDCP SN 8 PDCP PDUs (or PDCP SDUs) are considered to have been removed, so that a series of processing is performed ( e.g. PDCP SN 9, 10 PDCP SDUs are higher layers). PDCP PDUs of PDCP SN 8 may be received. In such a case, the PDCP entity of the UE may not be able to guarantee the ascending delivery of PDCP SDUs to higher layers.
따라서, 서비스 단절의 경우에 추가적으로 적용될 수 있는 PDCP SDU 재배열을 위한 방법이 필요하며, 이는 다음과 같이 수행될 수 있다.Therefore, there is a need for a method for PDCP SDU rearrangement that can be additionally applied in case of service disconnection, which can be performed as follows.
일 예로, 기지국의 PDCP 엔티티는 서비스 단절이 발생한 경우, 서비스 단절이 발생한 이후에 처음으로 전달되는 PDCP PDU는 상대적으로 짧은 경로 지연시간을 갖는 경로를 통하여 전달할 수 있다. 예를 들어, 매크로 기지국의 RLC 엔티티를 경유하여 PDCP PDU가 단말의 PDCP 엔티티로 전달되는 경우에 스몰 기지국의 RLC 엔티티를 경유하여 PDCP PDU가 단말의 PDCP 엔티티로 전달되는 경우보다 상대적으로 더 짧은 경로 지연시간을 갖는다고 볼 수 있다. 이와 같이 서비스 단절이 발생한 이후에 처음으로 전달되는 PDCP PDU가 상대적으로(또는 가장) 짧은 경로 지연시간을 갖는 경로를 통하여 전달되는 경우, 단말의 PDCP 엔티티가 재배열 타이머가 만료되기 이전에 해당 PDCP PDU를 수신할 가능성을 높일 수 있다.For example, when a service disconnection occurs, the PDCP entity of the base station may transmit a PDCP PDU delivered for the first time after the service interruption occurs through a path having a relatively short path delay time. For example, when the PDCP PDU is delivered to the PDCP entity of the UE via the RLC entity of the macro base station, the path delay is relatively shorter than when the PDCP PDU is delivered to the PDCP entity of the UE via the RLC entity of the UE. It can be seen that you have time. As such, when the first PDCP PDU delivered after a service disconnection is delivered through a path having a relatively (or the shortest) path delay time, the PDCP PDU of the UE before the rearrangement timer expires. Can increase the likelihood of receiving.
도 22는 본 발명에 따른 서비스 단절을 고려한 PDCP PDU 전송 방식의 일 예를 나타낸다. 도 22는 PDCP SN 중 1, 2, 3, 4, 5, 6, 7, 8번에 연관된 PDCP PDU들은 스몰 기지국(의 RLC 엔티티)을 통하여 전송되고, 9, 10, 14, 15, 16, 23, 24번에 연관된 PDCP PDU들은 매크로 기지국(의 RLC 엔티티)을 통하여 전송된 경우를 가정한다. 또한, 도 22는 PDCP SN 7번의 PDCP PDU의 전송 후에 서비스 단절이 발생한 경우를 가정한다.22 shows an example of a PDCP PDU transmission scheme considering service disconnection according to the present invention. 22 shows PDCP PDUs associated with Nos. 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity of) and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of). In addition, FIG. 22 assumes a case where service disconnection occurs after transmission of PDCP PDUs of PDCP SN # 7.
도 22를 가정하면, 기지국의 PDCP 엔티티는 PDCP SN 7번의 PDCP PDU 전송 후에, 서비스 단절이 발생한 경우, PDCP SN 8번의 PDCP PDU는 스몰 기지국(의 RLC 엔티티)가 아닌 매크로 기지국(의 RLC 엔티티)를 통하여 단말의 PDCP 엔티티로 전송한다. 이는 스몰 기지국을 통한 경로 지연시간이 매크로 기지국을 통한 경로 지연시간보다 큰 경우이다. 일반적으로 X2(또는 Xn) 경로 지연을 포함하는 스몰 기지국을 통한 전송이 매크로 기지국을 통한 전송보다 경로 지연이 크다고 가정할 수 있다. 하지만 경우에 따라 스몰 기지국을 통한 전송의 경로 지연이 매크로 기지국을 통한 전송의 경로 지연보다 작을 수도 있으며, 어느 쪽이 경로 지연이 짧은지에 대하여는 상황에 따라 매크로 기지국에서 결정할 수 있다.Assuming that FIG. 22 shows that the PDCP entity of the base station transmits PDCP SN # 7 PDCP PDUs, if a service disconnection occurs, the PDCP PDUs of PDCP SN # 8 may not use the small base station (the RLC entity) but the macro base station (the RLC entity). Through the PDCP entity of the terminal through. This is the case where the path delay time through the small base station is larger than the path delay time through the macro base station. In general, it may be assumed that a transmission through a small base station including an X2 (or Xn) path delay is larger than a transmission through a macro base station. However, in some cases, the path delay of the transmission through the small base station may be smaller than the path delay of the transmission through the macro base station, and the macro base station may determine which path path is short.
이 경우, 매크로 기지국을 통해 전송된 PDCP SN 8번의 PDCP PDU는 재배열 타이머가 만료되기 이전에 단말의 PDCP 엔티티에 수신될 수 있고, 단말의 PDCP 엔티티는 상위계층으로 PDCP SDU의 오름차순 전달을 보장할 수 있다.In this case, PDCP PDUs of PDCP SN # 8 transmitted through the macro base station may be received by the PDCP entity of the UE before the rearrangement timer expires, and the PDCP entity of the UE may ensure the ascending delivery of PDCP SDUs to higher layers. Can be.
다른 예로, 기지국의 PDCP 엔티티는 서비스 단절이 발생한 경우, 서비스 단절이 발생한 이후에 처음으로 전달되는 PDCP PDU는 중복하여(duplicate) 매크로 기지국의 RLC 엔티티 및 스몰 기지국의 RLC 엔티티로 각각 전달한다. 이와 같이 서비스 단절이 발생한 이후에 처음으로 전달되는 PDCP PDU를 중복하여 매크로 기지국의 RLC 엔티티 및 스몰 기지국의 RLC 엔티티로 전달하는 경우, 단말의 PDCP 엔티티는 먼저 전달되는 PDCP PDU를 수신하여 처리할 수 있으며, 재배열 타이머가 만료되기 이전에 해당 PDCP PDU를 수신할 가능성을 높일 수 있다. 이 경우 단말의 PDCP 엔티티는 중복된 PDCP PDU들 중 먼저 도착한 PDCP PDU를 수신하여 저장 또는 상위계층으로 전달 등의 처리를 수행하고, 두번째로 수신한 PDCP PDU는 제거할 수 있다.As another example, when a service break occurs, the PDCP entity of the base station first delivers the PDCP PDU delivered after the service break occurs to the RLC entity of the macro base station and the RLC entity of the small base station, respectively. As such, when a PDCP PDU delivered for the first time after the service disconnection is duplicated and delivered to the RLC entity of the macro base station and the RLC entity of the small base station, the PDCP entity of the UE may receive and process the PDCP PDU delivered first. As a result, it is possible to increase the likelihood of receiving the PDCP PDU before the rearrangement timer expires. In this case, the PDCP entity of the UE may receive a PDCP PDU that arrives first among the duplicate PDCP PDUs, perform a process such as storage or forwarding to a higher layer, and remove the second received PDCP PDU.
도 23은 본 발명에 따른 서비스 단절을 고려한 PDCP PDU 전송 방식의 다른 예를 나타낸다. 도 23은 PDCP SN 중 1, 2, 3, 4, 5, 6, 7, 8번에 연관된 PDCP PDU들은 스몰 기지국(의 RLC 엔티티)을 통하여 전송되고, 9, 10, 14, 15, 16, 23, 24번에 연관된 PDCP PDU들은 매크로 기지국(의 RLC 엔티티)을 통하여 전송된 경우를 가정한다. 또한, 도 23은 PDCP SN 7번의 PDCP PDU의 전송 후에 서비스 단절이 발생한 경우를 가정한다.23 shows another example of a PDCP PDU transmission scheme considering service disconnection according to the present invention. FIG. 23 shows PDCP PDUs associated with 1, 2, 3, 4, 5, 6, 7, and 8 of the PDCP SNs are transmitted through the small base station (the RLC entity), and 9, 10, 14, 15, 16, 23 Assume that PDCP PDUs associated with No. 24 are transmitted through a macro base station (the RLC entity of). In addition, FIG. 23 assumes a case where a service disconnection occurs after transmission of PDCP PDUs of PDCP SN # 7.
도 23을 가정하면, 기지국의 PDCP 엔티티는 PDCP SN 7번의 PDCP PDU 전송 후에, 서비스 단절이 발생한 경우, PDCP SN 8번의 PDCP PDU를 중복하여 스몰 기지국(의 RLC 엔티티) 및 매크로 기지국(의 RLC 엔티티)를 통하여 단말의 PDCP 엔티티로 전송한다. 이와 같이 서비스 단절 이후에 처음 전송하는 PDCP SN 8번의 PDCP PDU를 중복하여 매크로 기지국 및 스몰 기지국을 통하여 전송하는 경우, 경로 지연이 제일 작은 기지국을 통하여 전송된 PDCP PDU가 제일 먼저 단말의 PDCP 엔티티에 수신될 수 있다. 이 경우 단말의 PDCP 엔티티는 재배열 타이머가 만료되기 전에 PDCP SN 8번의 PDCP PDU를 수신할 수 있다. 단말의 PDCP 엔티티는 처음 PDCP SN 8번의 PDCP PDU를 수신하면, 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 재시작한다. 이후에 수신되는 PDCP SN 8번의 PDCP PDU는 중복된 수신에 해당하므로 제거할 수 있다.Referring to FIG. 23, if a service disconnection occurs after PDCP SN # 7 PDCP PDU transmission, the PDCP entity duplicates the PDCP PDU # 8 of PDCP SN # 8 and the small base station (RLC entity of) and macro base station (RLC entity of). Through the PDCP entity of the terminal through the transmission. As such, when the PDCP PDUs of PDCP SN No. 8 that are first transmitted after the service disconnection are repeatedly transmitted through the macro base station and the small base station, the PDCP PDU transmitted through the base station having the smallest path delay is first received by the PDCP entity of the UE. Can be. In this case, the PDCP entity of the terminal may receive PDCP PDUs of PDCP SN 8 before the rearrangement timer expires. When the PDCP entity of the terminal first receives a PDCP PDU of PDCP SN # 8, the PDCP entity transmits a corresponding PDCP SDU to a higher layer and restarts the rearrangement timer. Since the PDCP PDU of PDCP SN # 8 received later corresponds to duplicate reception, it can be removed.
한편, 사용자에게 제공되는 다양한 통신 서비스는 여러 가지 이유로 인하여 서비스 단절(service gap)이 있을 수 있다. 서비스 단절이란 인터넷 서비스 제공에 있어서 사용자와 서버 간에 패킷 전송의 흐름이 계속하여 연속적으로 발생하지 않고, 특정 시간 동안 패킷 전송이 중단되거나 불연속적으로 전송되는 등의 현상을 의미한다. 인터넷 상에서 제공되는 서비스는 어플리케이션 서버에서 사용자에게 인터넷 네트워크를 거쳐 전송될 수 있다. 이 때 네트워크의 부하(load) 상황 등에 따라서 사용자에게 전송되는 패킷은 불연속적으로 전송될 수 있다. 네트워크 내의 여러 노드(node) 측면에서도 유입되는 패킷이 불연속적으로 유입될 수 있다. 또한, 어플리케이션에 따라서는 연속적인 패킷 발생이 아닌, 불연속적으로 패킷이 발생하는 특징을 가질 수도 있다.Meanwhile, various communication services provided to a user may have a service gap for various reasons. The service disconnection refers to a phenomenon in which the packet transmission is not continuously and continuously interrupted or discontinuously transmitted for a specific time in providing Internet services. Services provided on the Internet may be transmitted from the application server to the user via the Internet network. At this time, the packet transmitted to the user may be discontinuously transmitted according to the load condition of the network. Incoming packets can also be introduced discontinuously from various nodes in the network. In addition, depending on the application, a packet may be generated discontinuously instead of continuously generating a packet.
본 발명에 따른 무선 통신 시스템의 네트워크(예를 들어 LTE 네트워크)에서도 기지국(예를 들어 매크로 기지국)으로 유입되는 서비스에 대한 패킷이 계속하여 연속적으로 수신되지 않고, 서비스 단절로 인하여 패킷 흐름이 중단될 수도 있다.Even in a network (for example, an LTE network) of a wireless communication system according to the present invention, packets for a service flowing into a base station (for example, a macro base station) are not continuously received continuously, and packet flow may be interrupted due to service disconnection. It may be.
도 24는 서비스 단절로 인하여 패킷이 간헐적으로 수신되는 경우를 나타내는 도면이다.24 is a diagram illustrating a case where a packet is intermittently received due to service disconnection.
도 24를 참조하면, 단말(1400)에 제공되는 서비스를 위하여 GW(gateway, 2460)에서 기지국(2430)으로 패킷이 전송된다. 여기서 기지국(2430)은 예를 들어 매크로 기지국일 수 있다. 어플리케이션 서비스는 서버 등을 통하여 제공될 수 있으며, 이는 무선 네트워크로 전송되어 GW(2460)를 거쳐서 패킷 형태로 기지국(2430)으로 전송된다. 이때 패킷 트래픽(packet traffic)은 GW(2460)로부터 기지국(2430)으로 일반적으로 계속적으로 전송된다. 하지만, 네트워크 상황이나 어플리케이션 등에 따라서 일정한 또는 임의의 간격으로 패킷이 전송되지 않는 서비스 단절이 발생할 수 있다. Referring to FIG. 24, a packet is transmitted from a GW (gateway) 2460 to a base station 2430 for a service provided to the terminal 1400. The base station 2430 may be, for example, a macro base station. The application service may be provided through a server or the like, which is transmitted to the wireless network and transmitted to the base station 2430 in the form of a packet via the GW 2460. Packet traffic is then generally transmitted continuously from the GW 2460 to the base station 2430. However, service disconnection may occur in which packets are not transmitted at regular or random intervals according to network conditions or applications.
비록 도 24에서는 패킷 1에서 패킷 4까지 약간의 간격이 있는 것으로 도시되었으나, 이는 패킷의 흐름을 명시적으로 도식하기 위한 것으로, 실제적으로는 패킷간에 거의 간격이 없거나 미미한 시간차를 가지고 전송된다. 하지만 패킷 4번과 패킷 5번 사이는 Gap 1에 해당하는 상대적으로 긴 시간 간격 동안에 패킷이 전송되지 않는다. 또한 패킷 8번과 패킷 9번 사이에서도 Gap 2에 해당하는 상대적으로 긴 시간 간격 동안에 패킷이 전송되지 않는다. 여기서 Gap1 및 Gap2는 서비스 단절로 취급될 수 있다. 기지국(2430) 측면에서는 상기 전송되는 패킷들을 패킷 1번부터 순서대로 수신하게 된다. 수신된 패킷들은 PDCP SDU에 대응된다. 즉, 수신된 패킷은 PDCP 계층의 PDCP 엔티티에서 PDCP SDU 형태로 PDCP 버퍼에 저장된다. 이 때, 버퍼에 저장된 PDCP SDU들은 순서대로 PDCP PDU로 처리되고, 하위계층에 전달된다. 상술한 바와 같이 서비스 단절로 인하여 패킷들이 기지국(2430)에 수신되는 시간 간격의 차이가 발생하면, 기지국(2430)의 PDCP 엔티티에서 PDCP PDU들이 하위계층으로 전달되는 시간에도 시간 간격이 발생할 수 있다. 즉, Gap1, Gap2의 시간 간격을 두고 기지국(2430)에 수신되는 패킷 4,5번과 패킷 8,9번에 대응하는 PDCP SDU들이 처리된 PDCP PDU들 또한 시간의 차이를 가지고 하위계층으로 전달될 수 있다.Although shown in FIG. 24, there is a slight gap from packet 1 to packet 4, this is to illustrate the flow of the packet explicitly, and in practice, there is little or no time difference between the packets. However, between packet 4 and packet 5, no packet is transmitted during the relatively long time interval corresponding to gap 1. In addition, between packets 8 and 9, packets are not transmitted during the relatively long time interval corresponding to Gap 2. Here, Gap1 and Gap2 may be treated as service interruptions. The base station 2430 side receives the transmitted packets in order from packet # 1. The received packets correspond to PDCP SDUs. That is, the received packet is stored in the PDCP buffer in the form of PDCP SDU in the PDCP entity of the PDCP layer. At this time, the PDCP SDUs stored in the buffer are sequentially processed as PDCP PDUs and transferred to the lower layer. As described above, if a time interval in which packets are received at the base station 2430 due to service disconnection occurs, the time interval may also occur at a time when PDCP PDUs are delivered to a lower layer in the PDCP entity of the base station 2430. That is, PDCP PDUs in which PDCP SDUs corresponding to packets 4 and 5 and packets 8 and 9 received by the base station 2430 at intervals of Gap1 and Gap2 are processed may also be delivered to a lower layer with a time difference. Can be.
단말에 이중 연결이 구성된 경우에, 싱글 플로우 상황의 경우, 일반적으로 하나의 PDCP 엔티티가 하나의 RLC 엔티티와 연관된다. 따라서, 서비스 단절이 발생하더라도 단말의 PDCP 엔티티에서 수신하는 PDCP PDU들 간 시간 간격은 존재할 수 있지만, 이러한 상황이 문제를 발생하지는 않는다. PDCP 엔티티에서 생성된 PDCP PDU는 하위계층의 RLC 엔티티를 거쳐서 전달되며, 특히 RLC AM의 경우 순차 전달을 지원하기 때문이다. 따라서, 시간 간격을 두고 유입되는 PDCP PDU는 일정 시간 뒤에 처리되면 되고, 서비스단절이 시스템 성능에 특별한 문제를 발생시키지는 않는다.When dual connectivity is configured in the terminal, in case of a single flow situation, generally one PDCP entity is associated with one RLC entity. Therefore, even if service disconnection occurs, a time interval between PDCP PDUs received by the PDCP entity of the UE may exist, but this situation does not cause a problem. The PDCP PDU generated in the PDCP entity is delivered through the RLC entity in the lower layer, especially in the case of RLC AM, which supports sequential delivery. Therefore, the incoming PDCP PDUs should be processed after a certain period of time, and the service disconnection does not cause any special problems in system performance.
그러나, 단말에 이중 연결이 구성된 경우에, 멀티 플로우 상황의 경우, 단말은 상기 패킷들을 두 가지 다른 전송경로를 통하여 수신할 수 있다. 다시 말하면, 단말과 네트워크에 구성된 하나의 EPS 베어러에 대하여, 단말은 매크로 기지국 및 스몰 기지국을 통하여 서비스를 수신한다. 예를 들어, 하나의 EPS 베어러에 대하여 매크로 기지국에 하나의 PDCP 엔티티가 존재하고, RLC 엔티티는 매크로 기지국과 스몰 기지국에 각각 존재하는 경우, 매크로 기지국의 PDCP 엔티티에서 전달하는 PDCP PDU들은 매크로 기지국의 RLC 엔티티 또는 스몰 기지국의 RLC 엔티티를 거쳐서 단말의 PDCP 엔티티로 전달된다. 따라서, 단말의 PDCP 엔티티는 서로 다른 경로 지연을 겪은 PDCP PDU들을 수신하게 된다. 이 경우 PDCP SN이 큰 PDCP PDU가 PDCP SN이 작은 PDCP PDU보다 먼저 도착하는 등의 문제가 발생할 수 있고, 따라서, PDCP 엔티티에서 PDCP SDU들을 재배열하는 방법을 고려해야 한다. PDCP 엔티티에서 PDCP SDU를 재배열 하기 위하여 경로 지연시간을 고려한 타이머 등을 사용할 수 있다. 하지만 서비스 단절 등으로 인한 추가적인 PDCP PDU 전송 지연시간도 함께 고려되어야 PDCP SDU 들을 재배열 할 수 있다.However, when the dual connection is configured in the terminal, in the case of a multi-flow situation, the terminal may receive the packets through two different transmission paths. In other words, for one EPS bearer configured in the terminal and the network, the terminal receives the service through the macro base station and the small base station. For example, if one PDCP entity exists in the macro base station and one RLC entity exists in the macro base station and the small base station for one EPS bearer, the PDCP PDUs delivered by the PDCP entity of the macro base station are RLC of the macro base station. It is delivered to the PDCP entity of the terminal via the RLC entity of the entity or the small base station. Accordingly, the PDCP entity of the terminal receives PDCP PDUs that have experienced different path delays. In this case, a problem may occur such that a PDCP PDU having a large PDCP SN arrives before a PDCP PDU having a small PDCP SN, and thus, a method of rearranging PDCP SDUs in a PDCP entity should be considered. In order to rearrange PDCP SDUs in a PDCP entity, a timer considering path delay time may be used. However, additional PDCP PDU transmission delays due to service interruption may also need to be considered to rearrange PDCP SDUs.
이와 같이 서비스 단절로 인하여 시간 간격이 발생하는 경우에는 서비스 단절 시간이 경로 지연시간보다 매우 클 수 있다. 따라서, 경로 지연 뿐 아니라 서비스 단절을 고려하여, PDCP 엔티티에서 PDCP SDU를 오름차순으로 상위계층으로 전달할 수 있는, PDCP SDU 재배열 방법이 요구된다.As such, when a time interval occurs due to service disconnection, the service disconnection time may be much greater than the path delay time. Accordingly, there is a need for a PDCP SDU rearrangement method capable of delivering PDCP SDUs to an upper layer in ascending order in consideration of service interruption as well as path delay.
이하, 본 발명의 다른 실시예에서는 다중 경로를 통한 수신 지연 및 서비스단절 등의 상황을 고려하여, PDCP 엔티티가 PDCP PDU를 비순차적(out-of-sequence)으로 수신한 경우에 구동되는 대기 타이머(wait timer)를 기반으로, PDCP SDU 재배열을 수행하는 방법에 대하여 제안한다. 여기서 상기 대기 타이머는 비순차 타이머(out-of-sequence timer)라고 불릴 수 있다. 본 발명은 하향링크 데이터 전달(DL Data transfer) 절차 및 상향링크 데이터 전달 절차 모두에 적용될 수 있으며, 이하 하향링크 데이터 전달 절차를 위주로 설명한다.Hereinafter, in another embodiment of the present invention, in consideration of situations such as reception delay and service disconnection through multipath, a standby timer that is driven when the PDCP entity receives the PDCP PDU out-of-sequence ( Based on the wait timer), we propose a method of performing PDCP SDU rearrangement. The wait timer may be referred to as an out-of-sequence timer. The present invention can be applied to both a downlink data transfer procedure and an uplink data transfer procedure, and the following description will focus on the downlink data transfer procedure.
도 25는 본 발명의 다른 일 예에 따른 멀티 플로우를 고려한, PDCP SDU 재배열 방법을 나타낸다. 도 25는 PDCP SN 1번 내지 8번의 PDCP PDU는 매크로 기지국의 RLC 엔티티를 통하여 전달되고, PDCP SN 9, 10, 14, 15, 16, 23, 24번의 PDCP PDU는 스몰 기지국의 RLC 엔티티를 통하여 전달되는 경우를 가정한다. 또한, 도 15는 PDCP SN 7번의 PDCP PDU가 전달된 이후 서비스 단절로 인하여 일정 시간 다른 PDCP PDU들이 전달되지 않는 경우를 가정한다. 25 illustrates a PDCP SDU rearrangement method in consideration of multiflow according to another embodiment of the present invention. 25 shows that PDCP PDUs of PDCP SNs 1 to 8 are delivered through an RLC entity of a macro base station, and PDCP PDUs of PDCP SNs 9, 10, 14, 15, 16, 23 and 24 are delivered through an RLC entity of a small base station. Assume the case In addition, FIG. 15 assumes that other PDCP PDUs are not delivered for a certain time due to service disconnection after the PDCP PDUs of PDCP SN 7 are delivered.
도 25a는 단말의 PDCP 엔티티에서 PDCP SN 1,2,3,4,5,6,7번의 PDCP PDU 수신 후, PDCP SN 8번의 PDCP PDU 수신 없이, PDCP SN 9번의 PDCP PDU를 수신한 경우이다.FIG. 25A illustrates a case in which PDCP PDUs of PDCP SN 9 are received without PDCP PDUs of PDCP SN 8 after PDCP SN 1,2, 3, 4, 5, 6, and 7 PDCP PDUs are received by the PDCP entity of the UE.
도 25a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 1번부터 7번까지의 PDCP PDU들을 순차적으로 수신한다. 단말의 PDCP 엔티티는 수신된 PDCP PDU들을 처리하고, 대응하는 PDCP SDU들을 상위계층으로 전달한다. PDCP PDU들이 순차적으로 수신되는 경우 단말의 PDCP 엔티티는 대기 타이머를 구동하지 않는다. 단말의 PDCP 엔티티는 이후 일정 시간 다른 PDCP PDU들을 수신하지 못하다가, PDCP SN 9번의 PDCP PDU를 수신한다. 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU를 아직 수신하지 않은 상태이기에, PDCP SN9번의 PDCP PDU 수신은 비순차적인 수신으로 판단하고, 대기 타이머를 구동시킨다. Referring to FIG. 25A, a PDCP entity of a terminal sequentially receives PDCP PDUs of PDCP SNs 1 to 7. The PDCP entity of the terminal processes the received PDCP PDUs and delivers corresponding PDCP SDUs to a higher layer. When the PDCP PDUs are sequentially received, the PDCP entity of the terminal does not run the wait timer. After the PDCP entity of the terminal does not receive other PDCP PDUs for a predetermined time, the PDCP entity receives the PDCP PDU of PDCP SN # 9. Since the PDCP entity of the UE has not yet received PDCP PDUs of PDCP SN 8, PDCP PDUs of PDCP SN 9 are determined to be out of sequence and drive a standby timer.
여기서 상기 순차적 수신이라 함은 예를 들어, 다음과 같은 기준에 따라 판단될 수 있다. 만약, 상위계층으로 마지막으로 전달한 PDCP SDU의 PDCP SN을 Last_Submitted_PDCP_RX_SN로 정의하고, 다음에 순차적으로 수신할 것으로 기대되는 PDCP SDU의 PDCP SN을 Next_PDCP_RX_SN이라 정의한다면, Next_PDCP_RX_SN은 상술한 수학식 1 및 수학식 2 중 하나를 따를 수 있다.In this case, the sequential reception may be determined based on, for example, the following criteria. If the PDCP SN of the last PDCP SDU delivered to the upper layer is defined as Last_Submitted_PDCP_RX_SN and the PDCP SN of the PDCP SDU expected to be sequentially received next is defined as Next_PDCP_RX_SN, Next_PDCP_RX_SN is represented by Equations 1 and 2 above. You can follow either.
또한, 상기 대기 타이머는 비순차적인 PDCP PDU를 수신한 PDCP 엔티티가 순차적인 PDCP PDU의 수신을 기다리는 타이머를 의미할 수 있다. 상기 대기 타이머는 매크로 기지국과 스몰 기지국 간 X2(또는 Xn) 인터페이스의 경로지연시간을 고려하여 예를 들어, 20~60ms의 값으로 설정될 수 있다.In addition, the wait timer may mean a timer waiting for reception of a sequential PDCP PDU by a PDCP entity receiving an out of sequence PDCP PDU. The wait timer may be set to, for example, a value of 20 to 60 ms in consideration of the path delay time of the X2 (or Xn) interface between the macro base station and the small base station.
상기와 같이 PDCP PDU의 비순차적 수신을 기준으로 대기 타이머를 구동시키는 경우, 서비스 단절로 인한 시간지연으로 인하여 타이머가 만료됨을 방지할 수 있다. 예를 들어, PDCP PDU의 순차적 수신을 기준으로 PDCP SDU 재배열을 위한 타이머를 운용할 수도 있으나, 이 경우 상기와 같은 서비스 단절의 경우에 원치 않게 타이머가 만료될 수 있고, 더 기다리면 수신될 수 있는 PDCP PDU를 제거된 것으로 잘못 취급할 수 있다. 그러나, 상기와 같이 PDCP PDU의 비순차적 수신을 기준으로 대기 타이머를 운용함으로써, 서비스 단절로 인한 시간지연으로 인하여 발생하는 문제를 해결할 수 있다.As described above, when the standby timer is driven based on the non-sequential reception of the PDCP PDU, it is possible to prevent the timer from expiring due to time delay due to service disconnection. For example, a timer for rearranging PDCP SDUs may be operated based on sequential reception of PDCP PDUs, but in this case, in case of such service disconnection, the timer may undesirably expire and may be received when waiting longer. PDCP PDUs can be incorrectly treated as removed. However, by operating the standby timer based on the non-sequential reception of the PDCP PDU as described above, it is possible to solve the problem caused by the time delay due to service disconnection.
도 25b는 도 25a 이후, 단말의 PDCP 엔티티가 PDCP SN 10, 14번의 PDCP PDU들 수신 후, 상기 대기 타이머가 만료되기 전에 PDCP SN 8번의 PDCP PDU를 수신한 경우를 가정한다.FIG. 25B assumes that, after FIG. 25A, the PDCP entity of the UE receives PDCP PDUs of PDCP SN 8 after the waiting timer expires after receiving PDCP SNs 10 and 14 PDCP PDUs.
도 25b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 10, 14번의 PDCP PDU들이 수신도 여전히 비순차적인 수신으로 판단한다. 이후에 PDCP SN 8번의 PDCP PDU가 수신되면, 이를 순차적인 수신으로 판단한다. 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU가 수신되면 상기 대기 타이머를 중단(stop)시킨다. 그리고, PDCP SN 8번부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다. 예를 들어, 단말의 PDCP 엔티티 PDCP SN 8, 9, 10번의 PDCP SDU들을 오름차순으로 상위계층으로 전달한다. Referring to FIG. 25B, the PDCP entity of the UE determines that PDCP PDUs of PDCP SN 10 and 14 are still out of order. Subsequently, if PDCP PDUs of PDCP SN # 8 are received, this is determined as sequential reception. The PDCP entity of the terminal stops the wait timer when a PDCP PDU of PDCP SN 8 is received. Then, starting from PDCP SN 8, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order. For example, the PDCP entities PDCP SN 8, 9, and 10 PDCP SDUs of the UE are delivered to the upper layer in ascending order.
도 25c는 도 25b 이후, 단말의 PDCP 엔티티가 PDCP SN 15번의 PDCP PDU를 수신한 경우를 가정한다. FIG. 25C assumes a case where the PDCP entity of the UE receives the PDCP PDU of PDCP SN 15 after FIG. 25B.
도 25c를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 15번의 PDCP PDU를 수신하면, 이는 비순차적 수신으로 판단하고, 다시 대기 타이머를 구동시킨다. 단말의 PDCP 엔티티는 상기 대기 타이머가 만료되기까지 순차 수신을 기대하는 PDCP SN 11번의 PDCP PDU가 수신되기를 기다린다. Referring to FIG. 25C, when the PDCP entity of the UE receives the PDCP PDU of PDCP SN 15, it determines that the PDCP PDU is out of order and drives the standby timer again. The PDCP entity of the terminal waits for the PDCP PDU of PDCP SN 11, which is expected to receive sequentially, until the waiting timer expires.
만약 상기 대기 타이머가 만료되기까지 상기 PDCP SN 11번의 PDCP PDU가 수신되지 않는 경우, 일 예로, 단말의 PDCP 엔티티는 대기 타이머 만료시 상기 PDCP SN 11부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장되지 않은 PDCP SDU들(예를 들어, PDCP SN 11, 12, 13번의 PDCP SDU들)은 제거된 것으로 판단하고, 그 다음 PDCP SN부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP PDU들(예를 들어, PDCP SN 14, 15번의 PDCP SDU들)을 상위계층으로 전송한다.If the PDCP PDUs of the PDCP SN 11 are not received until the wait timer expires, for example, the PDCP entity of the terminal does not store all of the PDCP SN values continuously associated with the PDCP SN 11 starting from the PDCP SN 11 when the wait timer expires. PDCP SDUs (eg PDCP SDUs of PDCP SNs 11, 12, 13) that have not been determined are removed and then all stored PDCP PDUs of successively associated PDCP SN values starting with the PDCP SN (eg, For example, PDCP SDUs of PDCP SN 14 and 15) are transmitted to an upper layer.
다른 예로, 단말의 PDCP 엔티티는 대기 타이머 만료 후 처음으로 PDCP PDU 수신시, 상기 PDCP SN 11부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장되지 않은 PDCP SDU들은 제거된 것으로 판단하고, 그 다음 PDCP SN부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP PDU들을 상위계층으로 전송한다. As another example, when the PDCP entity of the UE receives a PDCP PDU for the first time after the waiting timer expires, it is determined that all unsaved PDCP SDUs of consecutively related PDCP SN values starting from the PDCP SN 11 are removed, and then the PDCP SN Starting from then, all stored PDCP PDUs of consecutively related PDCP SN values are transmitted to the upper layer.
상기와 같은 본 발명에 따르면 단말이 매크로 기지국 및 스몰 기지국과 이중 연결이 구성된 경우에, 멀티 플로우(multi flow) 하향링크 수신을 수행함에 있어, 전송경로 지연으로 인하여, 단말의 PDCP 엔티티에 비순차적으로 PDCP PDU들이 수신되더라도, 대기 타이머를 기반으로 PDCP SDU들의 재배열을 수행하고, 상위 계층으로 PDCP SDU들의 오름차순 전달을 수행할 수 있고, 전송 효율을 향상할 수 있다.According to the present invention as described above, when the terminal is configured for dual connection with the macro base station and the small base station, when performing the multi-flow downlink reception, due to the transmission path delay, out of order to the PDCP entity of the terminal Even if PDCP PDUs are received, rearrangement of PDCP SDUs may be performed based on a waiting timer, ascending order of PDCP SDUs to an upper layer, and transmission efficiency may be improved.
또한, 비순차 수신된 PDCP PDU를 기준으로 대기 타이머를 구동하므로, 서비스 단절로 인하여 매크로 기지국으로 패킷이 수신되는 도중에 시간 지연이 발생하더라도, 원활하게 PDCP SDU 재배열을 수행할 수 있다. In addition, since the standby timer is driven based on the non-sequentially received PDCP PDU, the PDCP SDU rearrangement can be smoothly performed even if a time delay occurs while the packet is received by the macro base station due to service disconnection.
도 26은 본 발명의 다른 일 예에 따른 대기 타이머를 이용한 PDCP SDU 재배열 방법의 흐름도이다.26 is a flowchart illustrating a PDCP SDU rearrangement method using a wait timer according to another embodiment of the present invention.
도 26을 참조하면, 단말의 PDCP 엔티티는 PDCP SN n번의 PDCP PDU를 순차적으로 수신하였을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달한다(S2600). 단말의 PDCP 엔티티는 수신된 PDCP PDU의 PDCP SN을 기반으로 해당 PDCP PDU가 순차적으로 수신되었는지 확인할 수 있다.Referring to FIG. 26, when a PDCP entity of a terminal sequentially receives PDCP PDUs of PDCP SN n, the PDCP entity transmits a corresponding PDCP SDU to an upper layer (S2600). The PDCP entity of the UE may check whether the corresponding PDCP PDUs are sequentially received based on the PDCP SN of the received PDCP PDU.
단말의 PDCP 엔티티는 순차적 수신이 기대(expect)되는 PDCP SN n+1번이 아닌 PDCP SN n+k(k는 1이 아닌 자연수)의 PDCP PDU가 수신된 경우, 대기 타이머를 구동한다(S2610). 상기 대기 타이머는 비순차적인 PDCP PDU를 수신한 PDCP 엔티티가 순차적인 PDCP PDU의 수신을 기다리는 타이머를 의미할 수 있다. When the PDCP entity of the UE receives a PDCP PDU of PDCP SN n + k (k is a natural number other than 1) instead of PDCP SN n + 1, which is expected to be sequentially received, the PDCP entity drives a standby timer (S2610). . The wait timer may refer to a timer waiting for a PDCP entity receiving a non-sequential PDCP PDU to receive a sequential PDCP PDU.
예를 들면, 도 25a 에서 단말은 PDCP SN 7번에 해당하는 PDCP PDU를 수신한 이후에 PDCP SN 7+1 인 8번의 PDCP PDU의 수신을 기대하는 상태일 수 있다. 이때, 일정한 시간 경과 후에 단말이 수신을 기대하는 PDCP SN 8번이 아닌 SN 9번에 해당하는 PDCP PDU를 수신한 상황이다. 단말은 PDCP PDU 9번 수신 이후에 PDCP PDU 8번의 수신을 기다리기 위하여 타이머를 구동 시키는 것이다. 상기에서 단말이 PDCP SN 9번에 해당하는 PDCP PDU를 수신하는 시점에 PDCP SN 7번에 해당하는 PDCP PDU는 상위계층으로 전송되어 더 이상 단말에 저장되어 있지 않은 상태이다. 하지만, 단말은 상위계층으로 전송된 PDCP PDU의 SN를 기억하고 있고 다음에 수신하기를 기대하는 PDCP SN 를 알 수 있다. For example, in FIG. 25A, after receiving a PDCP PDU corresponding to PDCP SN 7, the UE may be in a state of receiving 8 PDCP PDUs of PDCP SN 7 + 1. In this case, the UE receives a PDCP PDU corresponding to SN 9 instead of PDCP SN 8, which is expected to receive after a predetermined time elapses. The terminal drives the timer to wait for the reception of PDCP PDU 8 after the reception of PDCP PDU 9. When the terminal receives the PDCP PDU corresponding to PDCP SN 9, the PDCP PDU corresponding to PDCP SN 7 is transmitted to a higher layer and is no longer stored in the terminal. However, the terminal may store the SN of the PDCP PDU transmitted to the upper layer and may know the PDCP SN that it expects to receive next.
또한, 도 25b를 참조하면 단말은 PDCP PDU 8번의 수신 시에 PDCP SN 8, 9, 10번까지에 해당하는 PDCP PDU를 모두 상위계층으로 전송하도록 한다 따라서, 단말은 PDCP SN 10번에 해당하는 PDCP PDU를 상위계층으로 전송한 것으로 파악하고 있다. 이때, 단말은 다음에 수신하기를 기대하는 PDCP SN를 11번으로 파악하고 있는 상황이다. 도 25c에서 단말은 PDCP SN 15번에 해당하는 PDCP PDU를 수신하면 다음에 수신하기를 기대했던 PDCP SN 11번과 다르므로 PDCP SN 11번에 해당하는 PDCP PDU 수신을 기다리기 위하여 대기 타이머를 구동하도록 한다. 이때, 단말은 PDCP PDU 14번, 15번을 저장하고 있는 상황이다. 비록 PDCP SN 11번에 대한 수신을 기대하고 대기 타이머를 구동하였지만 PDCP PDU 12번, 13번의 경우에도 PDCP PDU 14번과 15번 전송 이전에 매크로 혹은 스몰 기지국을 통하여 전송했을 것으로 판단하는 것이 타당하다. 따라서, 단말이 PDCP PDU 15번을 수신하였을 경우 대기 타이머 동작 구간 내에 수신하는 것이 타당하다. 만약 수신되지 않으면 discard 된 것으로 볼 수 있다. 따라서, 단말이 PDCP PDU 15번 수신 시에 구동 시킨 대기 타이머가 만료되는 시점에 도착하지 않은 PDCP PDU들은 제거된 것으로 판단할 수 있다.In addition, referring to FIG. 25B, the terminal transmits all PDCP PDUs corresponding to PDCP SNs 8, 9, and 10 to the upper layer upon reception of PDCP PDU # 8. Accordingly, the terminal corresponds to PDCP corresponding to PDCP SN # 10. It is understood that the PDU is transmitted to a higher layer. At this time, the UE is aware of the PDCP SN 11 expected to receive the next time. In FIG. 25C, when the UE receives a PDCP PDU corresponding to PDCP SN 15, the UE differs from PDCP SN 11, which was expected to be received next, so that the UE drives a standby timer to wait for reception of PDCP PDU corresponding to PDCP SN 11. . In this case, the UE stores PDCP PDU Nos. 14 and 15. Although PDCP SN 11 is expected to receive the wait timer, it is reasonable to determine that PDCP PDUs 12 and 13 were transmitted through macro or small base stations before PDCP PDUs 14 and 15. Therefore, when the terminal receives the PDCP PDU No. 15, it is appropriate to receive within the waiting timer operation period. If not received, it is considered discarded. Therefore, PDCP PDUs that do not arrive at the time when the waiting timer, which is driven by the UE when the PDCP PDU 15 is received, may be determined to have been removed.
단말의 PDCP 엔티티는 대기 타이머가 만료되기 전에 PDCP SN n+1번의 PDCP PDU가 수신되는지 확인한다(S2620). 단말의 PDCP 엔티티는 대기 타이머가 동작 중에 다른 비순차적인 PDCP PDU를 수신하더라도 대기 타이머를 시작/재시작하지 않는다.The PDCP entity of the UE checks whether the PDCP PDU of PDCP SN n + 1 is received before the waiting timer expires (S2620). The PDCP entity of the terminal does not start / restart the standby timer even if the standby timer receives another out of sequence PDCP PDU during operation.
만약 S2620에서 단말의 PDCP 엔티티가 대기 타이머가 만료되기 전에 PDCP SN n+1번의 PDCP PDU를 수신하는 경우, 단말의 PDCP 엔티티는 상기 대기 타이머를 중단(stop)하고, PDCP SN n+1부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다(S2630).If the PDCP entity of the UE receives PDCP SN n + 1 PDCP PDUs before the timer expires in S2620, the PDCP entity of the UE stops the standby timer and starts from PDCP SN n + 1. All stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order (S2630).
만약 S2620에서 대기 타이머가 만료된 경우, 즉, 단말의 PDCP 엔티티가 대기 타이머가 만료되기까지 PDCP SN n+1번의 PDCP PDU를 수신하지 못한 경우, 단말의 PDCP 엔티티는 PDCP SN n+k번보다 작은 아직 수신되지 않은 PDCP SN 값에 연관된 모든 PDCP SDU들은 제거된 것으로 본다(S2640). 즉, 단말의 PDCP 엔티티는 순차 수신을 기대한 PDCP SN 값 n+1부터 시작하여 PDCP SN 값n+k보다 작은 PDCP SN 값의 연관된 PDCP SDU들 중 현재 저장된 PDCP SDU들을 제외한 PDCP SDU들을 제거된 것으로 간주할 수 있다. 이 경우 단말의 PDCP 엔티티는 PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들은 상위계층으로 전달하고(S2650), PDCP SN n+k부터 시작하여 연속적으로 연관된 PDCP SN 값을 갖는 모든 저장된 PDCP SDU들을 상위계층으로 전달한다(S2660). 일 예로, 단말의 PDCP 엔티티는 대기 타이머 만료 시점에 PDCP SN n+k번보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하고, n+k번부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다. 다른 예로, 단말의 PDCP 엔티티는 재배열 타이머가 만료된 이후 처음으로 임의의 PDCP PDU 수신시점에, PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하고, n+k번부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다.If the wait timer expires in S2620, that is, if the PDCP entity of the terminal does not receive PDCP SN n + 1 PDCP PDU until the wait timer expires, the PDCP entity of the terminal is smaller than PDCP SN n + k times All PDCP SDUs associated with PDCP SN values that have not yet been received are considered to have been removed (S2640). That is, the PDCP entity of the UE removes PDCP SDUs except for the PDCP SDUs currently stored among the associated PDCP SDUs having a PDCP SN value smaller than the PDCP SN value n + k starting from the PDCP SN value n + 1 expected to be sequentially received. Can be considered. In this case, the PDCP entity of the terminal delivers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n + k to a higher layer (S2650), starting with PDCP SN n + k and having all consecutive PDCP SN values. The stored PDCP SDUs are transferred to an upper layer (S2660). As an example, the PDCP entity of the terminal delivers all stored PDCP SDUs associated with PDCP SN values less than PDCP SN n + k times to the upper layer in ascending order at the time of waiting timer expiration, and starts continuously from n + k times All stored PDCP SDUs of SN value may be delivered to the upper layer in ascending order. As another example, the PDCP entity of the terminal forwards all stored PDCP SDUs associated with the PDCP SN value less than PDCP SN n + k to the upper layer at the time of receiving any PDCP PDU for the first time after the rearrangement timer expires, Starting from n + k, all stored PDCP SDUs of consecutively related PDCP SN values may be delivered to the upper layer in ascending order.
또는 PDCP SN n+1부터 시작하여 연속적으로 연관된 PDCP SN 값인 PDCP SN n+m까지의 모든 저장되지 않은 PDCP SDU들은 제거된 것으로 보고, 상기 제거된 것으로 보는 PDCP SDU들의 마지막(가장 큰) PDCP SN 값 n+m의 +1번부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수도 있다.도 27은 본 발명에 따른 매크로 기지국, 스몰 기지국 및 단말의 블록도의 예이다.Or all unsaved PDCP SDUs starting with PDCP SN n + 1 up to successively associated PDCP SN values PDCP SN n + m are considered to have been removed and the last (largest) PDCP SN value of the PDCP SDUs considered to have been removed. Starting from +1 of n + m, all stored PDCP SDUs of consecutively associated PDCP SN values may be delivered to the upper layer in ascending order. FIG. 27 is an example of a block diagram of a macro base station, a small base station, and a terminal according to the present invention. to be.
도 27을 참조하면, 본 발명에 따른 단말(2700)은 매크로 기지국(2730) 및 스몰 기지국(2760)과 이중 연결(daul connectivity)를 구성할 수 있다. 또한, 본 발명에 따른 단말(2700), 매크로 기지국(2730) 및 스몰 기지국(2760)은 상술한 멀티 플로우를 지원한다.Referring to FIG. 27, the terminal 2700 according to the present invention may configure dual connectivity with the macro base station 2730 and the small base station 2760. In addition, the terminal 2700, the macro base station 2730 and the small base station 2760 according to the present invention supports the above-described multi-flow.
매크로 기지국(2730)은 매크로 전송부(2735), 매크로 수신부(2740) 및 매크로 프로세서(2750)를 포함한다.The macro base station 2730 includes a macro transmitter 2735, a macro receiver 2740, and a macro processor 2750.
매크로 수신부(2740)은 S-GW로부터 하나의 EPS 베어러에 대한 패킷을 수신한다. 매크로 프로세서(2750)는 매크로 기지국(2730)의 PDCP 엔티티를 제어하여 수신한 패킷에 대응하는 PDCP SDU들을 처리하고, PDCP PDU들을 생성한다. 매크로 프로세서(2750)는 상기 PDCP PDU들을 기준에 따라 분배하여 일부를 매크로 기지국(2740)의 RLC 엔티티로 전달(또는 전송)하고 매크로 전송부(2735)를 통하여 단말로 전송한다. 매크로 프로세서(2750)는 나머지 일부를 매크로 전송부(2735)를 통하여 스몰 기지국(2760)의 RLC 엔티티로 전송(또는 전달)한다. 이 경우 PDCP PDU들에 대응하는 PDCP SDU들은 PDCP SN으로 구분 및 지시될 수 있다.The macro receiver 2740 receives a packet for one EPS bearer from the S-GW. The macro processor 2750 controls the PDCP entity of the macro base station 2730 to process PDCP SDUs corresponding to the received packet and generate PDCP PDUs. The macro processor 2750 distributes the PDCP PDUs according to a reference, transfers (or transmits) a part of the PDCP PDUs to the RLC entity of the macro base station 2740, and transmits the PDCP PDUs to the terminal through the macro transmitter 2735. The macro processor 2750 transmits (or forwards) the remaining part to the RLC entity of the small base station 2760 through the macro transmitter 2735. In this case, PDCP SDUs corresponding to PDCP PDUs may be identified and indicated as PDCP SN.
또한, 매크로 프로세서(2750)는 PDCP SDU에 대한 재배열 타이머에 대한 정보를 생성하고 매크로 전송부(2735)를 통하여 단말로 전송한다. 상기 재배열 타이머에 대한 정보는 단말(2700)에 전용하게 시그널링될 수도 있고, 또는 브로드캐스트 방식으로 시그널링될 수도 있다. 매크로 전송부(2735)는 상기 재배열 타이머에 대한 정보를 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)를 통하여 단말(2700)로 전송할 수 있다.In addition, the macro processor 2750 generates information on the rearrangement timer for the PDCP SDU and transmits the information to the terminal through the macro transmitter 2735. The information on the rearrangement timer may be signaled exclusively to the terminal 2700 or may be signaled in a broadcast manner. The macro transmitter 2735 may transmit the information on the rearrangement timer to the terminal 2700 through an RRC message (eg, an RRC connection reconfiguration message).
한편, 매크로 프로세서(2750)는 일정 시간 이상 패킷이 수신되지 않는 서비스 단절(service gap)이 발생한 경우, 매크로 프로세서(2750)의 상기 PDCP 엔티티가 상기 서비스 단절 이후에 처음으로 상기 단말(2700)의 PDCP 엔티티로 전달하는 PDCP PDU는 상기 매크로 기지국(2730)의 RLC 엔티티를 통하여 전달하도록 제어할 수 있다. 또한, 매크로 프로세서(2750)는 상기 PDCP 엔티티가 상기 서비스 단절 이후에 처음으로 상기 단말(2700)의 PDCP 엔티티로 전달하는 PDCP PDU는 중복(duplicate)하여 상기 매크로 기지국(2730)의 RLC 엔티티 및 상기 스몰 기지국(2760)의 RLC 엔티티 모두를 통하여 전달하도록 제어할 수 있다.On the other hand, when a service gap occurs in which the packet is not received for a predetermined time or more, the macro processor 2750 receives the PDCP entity of the terminal 2700 for the first time after the service disconnection of the PDCP entity of the macro processor 2750. The PDCP PDU delivered to the entity may be controlled to be delivered through the RLC entity of the macro base station 2730. In addition, the macro processor 2750 may duplicate the PDCP PDU delivered by the PDCP entity to the PDCP entity of the terminal 2700 for the first time after the service disconnection, and thus the RLC entity and the small of the macro base station 2730. Control may be delivered via all of the RLC entities of base station 2760.
또한, 매크로 프로세서(2750)는 PDCP SDU에 대한 대기 타이머에 대한 정보를 생성하고 매크로 전송부(2735)를 통하여 단말(2700)로 전송할 수 있다. 상기 대기 타이머에 대한 정보는 단말(2700)에 전용하게 시그널링될 수도 있고, 또는 브로드캐스트 방식으로 시그널링될 수도 있다. 매크로 전송부(2735)는 상기 대기 타이머에 대한 정보를 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)를 통하여 단말(2700)로 전송할 수 있다.In addition, the macro processor 2750 may generate information on a wait timer for the PDCP SDU and transmit the information to the terminal 2700 through the macro transmitter 2735. The information on the wait timer may be signaled exclusively to the terminal 2700 or may be signaled in a broadcast manner. The macro transmitter 2735 may transmit the information on the wait timer to the terminal 2700 through an RRC message (eg, an RRC connection reconfiguration message).
스몰 기지국(2760)은 스몰 전송부(2765), 스몰 수신부(2770) 및 스몰 프로세서(2780)을 포함한다.The small base station 2760 includes a small transmitter 2765, a small receiver 2770, and a small processor 2780.
스몰 수신부(2770)은 매크로 기지국(2730)으로부터 상기 나머지 일부의 PDCP PDU들을 수신한다. The small receiver 2770 receives the remaining PDCP PDUs from the macro base station 2730.
스몰 프로세서(2780)는 스몰 기지국(2730)의 RLC 엔티티, MAC 엔티티, 및 PHY 계층을 제어하여 상기 PDCP PDU를 처리하고, 스몰 전송부(2765)를 통하여 단말로 전송한다.The small processor 2780 processes the PDCP PDU by controlling the RLC entity, the MAC entity, and the PHY layer of the small base station 2730, and transmits the PDCP PDU to the terminal through the small transmitter 2765.
단말(2700)은 단말 수신부(2705), 단말 전송부(2710) 및 단말 프로세서(2720)을 포함한다. 단말 프로세서(2720)는 상술한 바와 같은 본 발명의 특징이 구현되도록 필요한 기능과 제어를 수행한다.The terminal 2700 includes a terminal receiver 2705, a terminal transmitter 2710, and a terminal processor 2720. The terminal processor 2720 performs the functions and controls necessary to implement the features of the present invention as described above.
단말 수신부(2705)는 매크로 기지국(2730)으로부터 재배열 타이머에 대한 정보를 수신한다. 상기 재배열 타이머에 대한 정보는 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)에 포함되어 단말 수신부(2705)가 수신할 수 있다. 이 경우 단말 전송부(2710)는 매크로 기지국(2730)으로 RRC 연결 재구성 완료 메시지를 전송할 수도 있다.The terminal receiver 2705 receives the information on the rearrangement timer from the macro base station 2730. The information on the rearrangement timer may be included in an RRC message (eg, an RRC connection reconfiguration message) and received by the terminal receiver 2705. In this case, the terminal transmitter 2710 may transmit an RRC connection reconfiguration complete message to the macro base station 2730.
단말 수신부(2705)는 매크로 기지국(2730)으로부터 대기 타이머에 대한 정보를 수신할 수 있다. 상기 대기 타이머에 대한 정보는 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)에 포함되어 단말 수신부(2705)가 수신할 수 있다. 이 경우 단말 전송부(2710)는 매크로 기지국(2730)으로 RRC 연결 재구성 완료 메시지를 전송할 수도 있다.The terminal receiver 2705 may receive information on a standby timer from the macro base station 2730. The information on the wait timer may be included in an RRC message (eg, an RRC connection reconfiguration message) and may be received by the terminal receiver 2705. In this case, the terminal transmitter 2710 may transmit an RRC connection reconfiguration complete message to the macro base station 2730.
또한, 단말 수신부(2705)는 매크로 기지국(2730) 및 스몰 기지국(2760)으로부터 각각 PDCP PDU들에 대한 데이터를 수신한다. In addition, the terminal receiving unit 2705 receives data for PDCP PDUs from the macro base station 2730 and the small base station 2760, respectively.
단말 프로세서(2720)는 상기 데이터를 해석하고, 단말(2700)의 PHY 계층(s), MAC 엔티티(s), RLC 엔티티(s), 및 PDCP 엔티티를 제어하여 PDCP SDU들을 획득한다. The terminal processor 2720 interprets the data and controls the PHY layer (s), the MAC entity (s), the RLC entity (s), and the PDCP entity of the terminal 2700 to obtain PDCP SDUs.
단말 프로세서(2720)는 PDCP 엔티티에서 PDCP SN n번의 PDCP PDU를 순차적으로 수신하였을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달한다. 여기서 단말 프로세서(1720)는 수신된 PDCP PDU의 PDCP SN을 기반으로 해당 PDCP PDU가 PDCP 엔티티에 순차적으로 수신되었는지 확인할 수 있다. 예를 들어 상술한 수학식 1 또는 2를 기반으로 순차적으로 수신되기를 기대하는 PDCP SDU(또는 PDU)의 PDCP SN 값을 판단할 수 있다. 단말 프로세서(2720)은 PDCP PDU를 순차적으로 수신하였을 경우에 재배열 타이머가 구동중이 아니면 재배열 타이머를 시작하고, 재배열 타이머가 구동중이면 상기 재배열 타이머를 재시작한다. 이 경우, 단말 프로세서(2720)는 단말의 PDCP 엔티티에 재배열 타이머 구동중에 PDCP PDU의 순차적 수신 시마다 상기 재배열 타이머를 재시작한다. 여기서 재배열 타이머는 마지막으로 순차적으로 수신된 PDCP PDU 다음에 순차적으로 수신되기를 기대하는 PDCP PDU를 기다리기 위한 타이머에 해당한다. 단말 프로세서(2720)는 해당 PDCP PDU의 PDCP SN을 기반으로 해당 PDCP PDU가 PDCP 엔티티에 순차적으로 수신되었는지 확인할 수 있다.When the PDCP 2720 sequentially receives the PDCP SN n PDCP PDUs from the PDCP entity, the UE processor 2720 transfers the corresponding PDCP SDU to the higher layer. Here, the terminal processor 1720 may check whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the received PDCP PDU. For example, the PDCP SN value of the PDCP SDU (or PDU) which is expected to be sequentially received based on Equation 1 or 2 may be determined. When the PDCP PDUs are sequentially received, the UE processor 2720 starts the rearrangement timer if the rearrangement timer is not running, and restarts the rearrangement timer if the rearrangement timer is running. In this case, the terminal processor 2720 restarts the rearrangement timer every time the PDCP PDU is sequentially received while the rearrangement timer is driven to the PDCP entity of the terminal. Here, the rearrangement timer corresponds to a timer for waiting for PDCP PDUs that are expected to be sequentially received after the last sequentially received PDCP PDUs. The terminal processor 2720 may determine whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the corresponding PDCP PDU.
단말 프로세서(2720)는 재배열 타이머가 만료되기 전에 PDCP 엔티티에 PDCP SN n+1번의 PDCP PDU가 수신되는지 확인한다. 단말 프로세서(2720)는 PDCP 엔티티는 PDCP 엔티티에 PDCP SN n+2번 및 PDCP SN n+3번의 PDCP PDU들이 수신되더라도, 이는 순차적 수신이 아닌 걸로 판단하고, PDCP SN n+2번 및 PDCP SN n+3번의 PDCP PDU들에 대응하는 PDCP SDU들을 버퍼에 저장하고, 재배열 타이머를 유지한다. The terminal processor 2720 checks whether PDCP SN n + 1 PDCP PDUs are received by the PDCP entity before the rearrangement timer expires. The terminal processor 2720 determines that the PDCP entity is not a sequential reception even though PDCP PDUs of PDCP SN n + 2 and PDCP SN n + 3 are received by the PDCP entity, and are not PDCP SN n + 2 and PDCP SN n. Store PDCP SDUs corresponding to +3 PDCP PDUs in a buffer and maintain a rearrangement timer.
재배열 타이머가 만료되기 전에 PDCP 엔티티에 PDCP SN n+1번의 PDCP PDU가 수신되는 경우, 단말 프로세서(2720)는 PDCP SN n+1부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 PDCP 엔티티의 상위 계층으로 전달한다.If the PDCP entity receives PDCP SN n + 1 PDCP PDUs before the rearrangement timer expires, the terminal processor 2720 ascends all stored PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 1. To the upper layer of the PDCP entity.
만약 재배열 타이머가 만료된 경우, 즉, 단말의 PDCP 엔티티에 재배열 타이머가 만료되기까지 PDCP SN n+1번의 PDCP PDU가 수신되지 못한 경우, 단말 프로세서(2720)는 PDCP SN n+1번에 연관된 PDCP SDU는 제거된 것으로 보고, PDCP 엔티티에 저장된 PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다. 일 예로, 단말 프로세서(2720)는 재배열 타이머 만료 시점에 PDCP 엔티티에 저장된 PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다. 다른 예로, 단말 프로세서(2720)는 재배열 타이머가 만료된 이후 처음으로 임의의 PDCP PDU 수신시점에, PDCP 엔티티에 저장된 PDCP SN n+2부터 연속적으로 연관된 PDCP SN 값의 모든 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다.If the rearrangement timer expires, that is, if the PDCP PDU of PDCP SN n + 1 has not been received until the rearrangement timer expires in the PDCP entity of the terminal, the terminal processor 2720 is assigned to PDCP SN n + 1 The associated PDCP SDUs are considered to have been removed, and all PDCP SDUs of the associated PDCP SN value are delivered to the upper layer in ascending order starting from PDCP SN n + 2 stored in the PDCP entity. For example, the terminal processor 2720 may deliver all PDCP SDUs of consecutively related PDCP SN values to the upper layer starting from PDCP SN n + 2 stored in the PDCP entity at the time of reordering timer expiration in ascending order. As another example, the terminal processor 2720, in the ascending order of all PDCP SDUs of consecutively associated PDCP SN values starting from PDCP SN n + 2 stored in the PDCP entity, at the time of receiving any PDCP PDU for the first time after the rearrangement timer expires. Can be passed to the layer.
한편, 단말 프로세서(1720)는 PDCP 엔티티에 순차적 수신이 기대되는 PDCP SN n+1번이 아닌 PDCP SN n+k(여기서 k는 1이 아닌 자연수)의 PDCP PDU가 수신된 경우, 대기 타이머를 구동할 수 있다. Meanwhile, when the PDCP PDU of PDCP SN n + k (where k is a natural number other than 1) is received instead of PDCP SN n + 1, which is expected to be sequentially received, the PD processor 1720 drives the standby timer. can do.
대기 타이머가 만료되기 전에 PDCP 엔티티에 PDCP SN n+1번의 PDCP PDU가 수신된 경우, 단말 프로세서(2720)는 대기 타이머를 중단(stop)한다. 그리고 단말 프로세서(2720)는 PDCP SN n+1부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 PDCP 엔티티의 상위 계층으로 전달한다.If a PDCP PDU of PDCP SN n + 1 is received at the PDCP entity before the wait timer expires, the UE processor 2720 stops the wait timer. The terminal processor 2720 transfers all stored PDCP SDUs of consecutively related PDCP SN values starting with PDCP SN n + 1 to the upper layer of the PDCP entity in ascending order.
대기 타이머가 만료된 경우, 즉, PDCP 엔티티에 대기 타이머가 만료되기까지 PDCP SN n+1번의 PDCP PDU가 수신되지 못한 경우, 단말 프로세서(2720)는 PDCP SN n+k번보다 작은 PDCP SN 값에 연관된 모든 수신되지 않은 PDCP SDU들은 제거된 것으로 볼 수 있다.If the wait timer expires, that is, if no PDCP PDUs of PDCP SN n + 1 are received until the PDCP entity expires, the terminal processor 2720 has a PDCP SN value of less than PDCP SN n + k times. All associated unreceived PDCP SDUs may be considered to have been removed.
이 경우, 단말 프로세서(2720)는 PDCP SN n+k번보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다. 또한, 단말 프로세서(2720)는 PDCP SN n+k번부터 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달한다.In this case, the terminal processor 2720 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n + k times to an upper layer in ascending order. In addition, the terminal processor 2720 transfers all stored PDCP SDUs of PDCP SN values consecutively associated with PDCP SN n + k to the upper layer in ascending order.
일 예로, 단말 프로세서(2720)는 대기 타이머 만료 시점에 PDCP 엔티티에 저장된 PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있고, PDCP SN n+k부터 연속적으로 연관된 PDCP SN 값의 모든 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다. 다른 예로, 단말 프로세서(2720)는 대기 타이머가 만료된 이후 처음으로 임의의 PDCP PDU 수신시점에, PDCP 엔티티에 저장된 PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있고, PDCP SN n+k부터 연속적으로 연관된 PDCP SN 값의 모든 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다. For example, the terminal processor 2720 may deliver all stored PDCP SDUs associated with a PDCP SN value smaller than the PDCP SN n + k stored in the PDCP entity to the upper layer at the time of waiting timer expiration, starting from PDCP SN n + k. All PDCP SDUs of consecutively associated PDCP SN values may be delivered to the upper layer in ascending order. As another example, the terminal processor 2720, in the ascending order of all stored PDCP SDUs associated with a PDCP SN value less than PDCP SN n + k stored in the PDCP entity, at the time of receiving any PDCP PDU for the first time after the wait timer expires. All PDCP SDUs of PDCP SN values consecutively associated with PDCP SN n + k may be delivered to the upper layer in ascending order.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (20)

  1. 이중 연결(dual connectivity)이 구성된 단말(UE)의 PDCP(Packet Data Convergence Protocol) 엔티티(entity)에서, PDCP SDU(Service Data Unit)들 재배열(reordering) 방법으로, In a Packet Data Convergence Protocol (PDCP) entity of a UE configured with dual connectivity, as a method for reordering PDCP SDUs (Service Data Units),
    PDCP SN(sequence number) n번의 PDCP PDU(Packet Data Unit)를 순차적으로 수신하였을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 시작/재시작하는 단계; 및When sequentially receiving PDCP sequence number (PDCP SN) packet data units (PDUs) n times, delivering a corresponding PDCP SDU to a higher layer and starting / restarting a rearrangement timer; And
    상기 재배열 타이머가 만료되기 전에 순차 수신이 기대되는(expected) PDCP SN n+1번의 PDCP PDU가 수신된 경우, 상기 재배열 타이머를 재시작하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And restarting the rearrangement timer when a PDCP PDU of the PDCP SN n + 1 times expected to be sequentially received before the rearrangement timer expires is restarted. .
  2. 제 1항에 있어서,The method of claim 1,
    상기 재배열 타이머의 값(value)은 20ms~60ms 내의 값으로 설정됨을 특징으로 하는, PDCP SDU 재배열 방법.The value of the rearrangement timer is set to a value within 20ms ~ 60ms, PDCP SDU rearrangement method.
  3. 제 1항에 있어서,The method of claim 1,
    상기 재배열 타이머가 만료되기 전에 상기 PDCP SN n+1번의 PDCP PDU가 수신된 경우, 상기 PDCP SN n+1부터 시작하여(starting from) 연속적으로(consecutively) 연관된(associated) PDCP SN 값을 갖는 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are received before the rearrangement timer expires, all PDCP SN values that have a contiguously associated PDCP SN starting from the PDCP SN n + 1 are received. Delivering the stored PDCP SDUs to the upper layer in ascending order.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 재배열 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, 상기 PDCP SN n+1번에 연관된 PDCP SDU는 제거된 것으로 판단하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And if the PDCP PDU of PDCP SN n + 1 is not received until the rearrangement timer expires, determining that the PDCP SDU associated with PDCP SN n + 1 is removed. How to rearrange SDUs.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 재배열 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, 상기 순차 수신이 기대되는 PDCP SN n+1번의 PDCP PDU가 매크로 기지국 및 스몰 기지국 중 어느 하나의 기지국의 RLC 엔티티를 통하여 상기 PDCP 엔티티로 수신될 것으로 기대되는 경우, 다른 하나의 기지국에 구성된 RLC 엔티티를 통하여 상기 PDCP 엔티티로 수신된 PDCP PDU들의 최대 PDCP SN 값인 k와 상기 n+1을 비교하고, k>n+1인 경우, 상기 PDCP SN n+1번에 연관된 PDCP SDU는 제거된 것으로 확정함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are not received until the rearrangement timer expires, the PDCP PDUs of PDCP SN n + 1 which are expected to be sequentially received are the RLCs of any one of a macro base station and a small base station. If it is expected to be received by the PDCP entity via an entity, compare n + 1 with k, which is the maximum PDCP SN value of PDCP PDUs received by the PDCP entity via an RLC entity configured in another base station, and k> n If +1, the PDCP SDU rearrangement method characterized in that it is determined that the PDCP SDU associated with PDCP SN n + 1 has been removed.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 재배열 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 배열 방법.If the PDCP SN n + 1 PDCP PDUs are not received until the rearrangement timer expires, starting from PDCP SN n + 2, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order. PDCP SDU arrangement method, characterized in that it comprises a step.
  7. 제 6항에 있어서,The method of claim 6,
    상기 재배열 타이머가 만료된 시점에 상기 PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 배열 방법.And all stored PDCP SDUs of consecutively associated PDCP SN values starting from the PDCP SN n + 2 at the time when the rearrangement timer expires, to the upper layer in ascending order.
  8. 제 6항에 있어서,The method of claim 6,
    상기 재배열 타이머가 만료된 후 처음으로 임의의 PDCP PDU가 수신되는 시점에 상기 PDCP SN n+2부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 배열 방법. At the time when any PDCP PDU is received for the first time after the rearrangement timer expires, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order starting from the PDCP SN n + 2. PDCP SDU array method.
  9. 이중 연결(dual connectivity)이 구성되고, PDCP SDU(Service Data Unit)들 재배열(reordering)하는 단말(UE)로, A dual connectivity (dual connectivity) is configured, the terminal (UE) to rearrange (reordering) PDCP Service Data Units (SDUs),
    상기 단말에 이중 연결이 구성된 마스터 기지국 및 스몰 기지국 중 적어도 하나의 기지국으로부터 PDCP PDU들을 수신하는 수신부;A receiver configured to receive PDCP PDUs from at least one of a master base station and a small base station having dual connectivity with the terminal;
    상기 수신한 PDCP PDU들 중에서 PDCP SN(sequence number) n번의 PDCP PDU(Packet Data Unit)가 순차적으로 수신되었을 경우에, 대응하는 PDCP SDU를 상위계층으로 전달하고, 재배열 타이머를 시작/재시작하는 프로세서를 포함하되,A processor for delivering a corresponding PDCP SDU to a higher layer and starting / restarting a rearrangement timer when PDCP sequence number (PDCP PDU) packet data units (PDCP) n times among the received PDCP PDUs are sequentially received. Including,
    상기 프로세서는 상기 재배열 타이머가 만료되기 전에 순차 수신이 기대되는(expected) PDCP SN n+1번의 PDCP PDU가 수신된 경우, 상기 재배열 타이머를 재시작하는 것을 특징으로 하는, 단말.And the processor restarts the rearrangement timer when a PDCP PDU of PDCP SN n + 1 received sequentially is received before the rearrangement timer expires.
  10. 이중 연결(dual connectivity)이 구성된 단말(UE)의 PDCP(Packet Data Convergence Protocol) 엔티티(entity)에서, PDCP SDU(Service Data Unit)들 재배열(reordering) 방법으로, In a Packet Data Convergence Protocol (PDCP) entity of a UE configured with dual connectivity, as a method for reordering PDCP SDUs (Service Data Units),
    PDCP SN(sequence number) n번의 PDCP PDU(Packet Data Unit)를 순차적으로 수신하는 단계;Sequentially receiving PDCP sequence number (SN) PDCP Packet Data Units (PDUs);
    다음 순차적 수신이 기대(expect)되는 PDCP SN n+1번이 아닌 PDCP SN n+k의 PDCP PDU가 수신된 경우, 대기 타이머(wait timer)를 구동하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And when a PDCP PDU of PDCP SN n + k is received instead of PDCP SN n + 1, which is expected to receive the next sequential reception, driving a wait timer. Rearrangement method.
  11. 제 10항에 있어서,The method of claim 10,
    상기 대기 타이머의 값(value)은 20ms~60ms 내의 값으로 설정됨을 특징으로 하는, PDCP SDU 재배열 방법.The value of the wait timer is set to a value within 20ms ~ 60ms, PDCP SDU rearrangement method.
  12. 제 10항에 있어서,The method of claim 10,
    비순차적 수신인 PDCP SN n+k의 PDCP PDU가 수신된 경우에도, 대기 타이머가 동작 중이 아닌 경우에만 대기 타이머를 구동함을 특징으로 하는, PDCP SDU 재배열 방법. The PDCP SDU rearrangement method is characterized in that the standby timer is driven only when the standby timer is not running even when a PDCP PDU of PDCP SN n + k, which is a non-sequential reception, is received.
  13. 제 10항에 있어서,The method of claim 10,
    상기 대기 타이머가 만료되기 전에 상기 PDCP SN n+1번의 PDCP PDU가 수신된 경우, 상기 PDCP SN n+1부터 시작하여(starting from) 연속적으로(consecutively) 연관된(associated) PDCP SN 값을 갖는 모든 저장된 PDCP SDU들을 오름차순으로 상위 계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are received before the wait timer expires, all stored with associated PDCP SN values starting from the PDCP SN n + 1 and continuously associated with them. Delivering the PDCP SDUs to the upper layer in ascending order.
  14. 제 13항에 있어서,The method of claim 13,
    상기 대기 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, 상기 PDCP SN n+k번보다 작은(less than) PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are not received until the wait timer expires, the not yet received PDCP SDUs associated with the PDCP SN value less than the PDCP SN n + k times are removed. And determining the PDCP SDU rearrangement method.
  15. 제 14항에 있어서,The method of claim 14,
    상기 대기 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are not received until the wait timer expires, forwarding all stored PDCP SDUs associated with a PDCP SN value less than PDCP SN n + k to an upper layer in ascending order. Characterized in that, PDCP SDU rearrangement method.
  16. 제 15항에 있어서,The method of claim 15,
    상기 대기 타이머가 만료된 시점에, 상기 PDCP SN n+k보다 작은 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 재배열 방법.At the time when the wait timer expires, deliver all stored PDCP SDUs having a PDCP SN value less than the PDCP SN n + k to an upper layer in ascending order.
  17. 제 15항에 있어서,The method of claim 15,
    상기 대기 타이머가 만료된 후 처음으로 임의의 PDCP PDU가 수신되는 시점에, 상기 PDCP SN n+k부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 재배열 방법.At the time when any PDCP PDU is received for the first time after the waiting timer expires, all stored PDCP SDUs of consecutively related PDCP SN values starting from the PDCP SN n + k are delivered to the upper layer in ascending order. PDCP SDU rearrangement method.
  18. 제 15항에 있어서,The method of claim 15,
    상기 대기 타이머가 만료되기까지 상기 PDCP SN n+1번의 PDCP PDU가 수신되지 않은 경우, PDCP SN n+k부터 시작하여 연속적으로 연관되는 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If the PDCP SN n + 1 PDCP PDUs are not received until the wait timer expires, starting with PDCP SN n + k, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order. PDCP SDU rearrangement method, characterized in that it comprises a step.
  19. 제 18항에 있어서,The method of claim 18,
    상기 대기 타이머가 만료된 시점에 상기 PDCP SN n+k보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 재배열 방법.And all stored PDCP SDUs associated with a PDCP SN value less than PDCP SN n + k are delivered to the upper layer in ascending order when the wait timer expires.
  20. 제 18항에 있어서,The method of claim 18,
    상기 대기 타이머가 만료된 후 처음으로 임의의 PDCP PDU가 수신되는 시점에 상기 PDCP SN n+k부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달함을 특징으로 하는, PDCP SDU 재배열 방법.At the time when any PDCP PDU is received for the first time after the waiting timer expires, all stored PDCP SDUs of consecutively related PDCP SN values are delivered to the upper layer in ascending order starting from the PDCP SN n + k. , PDCP SDU Rearrangement Method.
PCT/KR2014/007456 2013-08-09 2014-08-11 Method and apparatus for reordering pdcp in dual connectivity system WO2015020507A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130094915A KR102156191B1 (en) 2013-08-09 2013-08-09 Method and apparatus of pdcp reordering considering multi-flow in dual connectivity system
KR10-2013-0094915 2013-08-09
KR10-2013-0094916 2013-08-09
KR1020130094916A KR102156192B1 (en) 2013-08-09 2013-08-09 Method and apparatus of pdcp reordering considering multi-flow in dual connectivity system

Publications (1)

Publication Number Publication Date
WO2015020507A1 true WO2015020507A1 (en) 2015-02-12

Family

ID=52461718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007456 WO2015020507A1 (en) 2013-08-09 2014-08-11 Method and apparatus for reordering pdcp in dual connectivity system

Country Status (1)

Country Link
WO (1) WO2015020507A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192138A3 (en) * 2016-05-04 2018-02-15 Intel IP Corporation User equipment (ue) and methods for reception of packets on a split radio bearer
WO2019194641A1 (en) * 2018-04-05 2019-10-10 Samsung Electronics Co., Ltd. Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
KR20190116885A (en) * 2018-04-05 2019-10-15 삼성전자주식회사 Method and apparatus for performing cell selection and reselection in inactive mode in next generation wireless communication system
US10694446B2 (en) 2015-11-06 2020-06-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
WO2020231040A1 (en) * 2019-05-10 2020-11-19 Lg Electronics Inc. Method and apparatus for transmitting status report by user equipment in wireless communication system
CN114079955A (en) * 2016-02-05 2022-02-22 瑞典爱立信有限公司 Method and apparatus for receiving status report

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088342A1 (en) * 2008-01-07 2009-07-16 Telefonaktiebolaget L M Ericsson (Publ) Reordering timer for a retransmission protocol
US20090190554A1 (en) * 2008-01-25 2009-07-30 Cho Yoon Jung Method for performing handover procedure and creating data
US20120082096A1 (en) * 2010-10-01 2012-04-05 Interdigital Patent Holdings, Inc. Mac and rlc architecture and procedures to enable reception from multiple transmission points
US20120155438A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Method of reordering and reassembling packet data in radio link control layer
US20120307741A1 (en) * 2008-06-23 2012-12-06 Chih-Hsiang Wu Method for Synchronizing PDCP Operations after RRC Connection Re-establishment in a Wireless Communication System and Related Apparatus Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088342A1 (en) * 2008-01-07 2009-07-16 Telefonaktiebolaget L M Ericsson (Publ) Reordering timer for a retransmission protocol
US20090190554A1 (en) * 2008-01-25 2009-07-30 Cho Yoon Jung Method for performing handover procedure and creating data
US20120307741A1 (en) * 2008-06-23 2012-12-06 Chih-Hsiang Wu Method for Synchronizing PDCP Operations after RRC Connection Re-establishment in a Wireless Communication System and Related Apparatus Thereof
US20120082096A1 (en) * 2010-10-01 2012-04-05 Interdigital Patent Holdings, Inc. Mac and rlc architecture and procedures to enable reception from multiple transmission points
US20120155438A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Method of reordering and reassembling packet data in radio link control layer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10694446B2 (en) 2015-11-06 2020-06-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
US11743801B2 (en) 2015-11-06 2023-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
CN114079955A (en) * 2016-02-05 2022-02-22 瑞典爱立信有限公司 Method and apparatus for receiving status report
US11949515B2 (en) 2016-02-05 2024-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for receipt status reporting
WO2017192138A3 (en) * 2016-05-04 2018-02-15 Intel IP Corporation User equipment (ue) and methods for reception of packets on a split radio bearer
KR20190116885A (en) * 2018-04-05 2019-10-15 삼성전자주식회사 Method and apparatus for performing cell selection and reselection in inactive mode in next generation wireless communication system
US10912031B2 (en) 2018-04-05 2021-02-02 Samsung Electronics Co., Ltd. Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
KR102503003B1 (en) 2018-04-05 2023-02-24 삼성전자 주식회사 Method and apparatus for performing cell selection and reselection in inactive mode in next generation wireless communication system
KR20230030609A (en) * 2018-04-05 2023-03-06 삼성전자주식회사 Method and apparatus for performing cell selection and reselection in inactive mode in next generation wireless communication system
US11678268B2 (en) 2018-04-05 2023-06-13 Samsung Electronics Co., Ltd. Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
KR102568700B1 (en) 2018-04-05 2023-08-22 삼성전자주식회사 Method and apparatus for performing cell selection and reselection in inactive mode in next generation wireless communication system
WO2019194641A1 (en) * 2018-04-05 2019-10-10 Samsung Electronics Co., Ltd. Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
US12069573B2 (en) 2018-04-05 2024-08-20 Samsung Electronics Co., Ltd. Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
WO2020231040A1 (en) * 2019-05-10 2020-11-19 Lg Electronics Inc. Method and apparatus for transmitting status report by user equipment in wireless communication system

Similar Documents

Publication Publication Date Title
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2019245256A1 (en) Method and apparatus for efficient packet duplication transmission in mobile communication system
WO2020197214A1 (en) Method and device for recovering connection failure to network in next generation mobile communication system
WO2015046976A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
WO2019098663A1 (en) Method and apparatus for deprioritizing duplicated packet transmission in wireless communication system
WO2015115854A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2018079998A1 (en) Method for performing handover in wireless communication system and device for same
WO2013022318A2 (en) Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
WO2018012874A1 (en) Uplink signal transmission method and user equipment
WO2014025141A1 (en) A method for transferring a status report and a communication device thereof in a wireless communication system
WO2014163287A1 (en) Method for reporting buffer status and communication device thereof
WO2016153130A1 (en) Method and device for transmitting or receiving data by terminal in wireless communication system
WO2019156528A1 (en) Method and apparatus for deprioritizing packet transmission based on reliability level or congestion level in wireless communication system
WO2013169048A2 (en) Method and apparatus for transceiving data using plurality of carriers in mobile communication system
WO2013176473A1 (en) Method and device for transmitting and receiving data in mobile communication system
WO2019194563A1 (en) Method and apparatus for controlling data receiving rate in mobile communication system
WO2016047904A1 (en) Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor
WO2014157898A1 (en) Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
WO2017188698A1 (en) Method and device for receiving data unit
EP3100376A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2017191952A1 (en) Method for transmitting and receiving data in wireless communication system, and device for supporting same
WO2015020507A1 (en) Method and apparatus for reordering pdcp in dual connectivity system
WO2019212249A1 (en) Method for data processing through relay node and apparatus thereof
WO2016163856A1 (en) Method, carried out by terminal, for transmitting psbch in wireless communication system and terminal utilizing the method
WO2016148357A1 (en) Data transmission/reception method and apparatus for terminal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834845

Country of ref document: EP

Kind code of ref document: A1