WO2015016027A1 - 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 - Google Patents
感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 Download PDFInfo
- Publication number
- WO2015016027A1 WO2015016027A1 PCT/JP2014/068367 JP2014068367W WO2015016027A1 WO 2015016027 A1 WO2015016027 A1 WO 2015016027A1 JP 2014068367 W JP2014068367 W JP 2014068367W WO 2015016027 A1 WO2015016027 A1 WO 2015016027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- monovalent
- atom
- hydrocarbon group
- polymer
- Prior art date
Links
- MWOZMHNFIROPIQ-UHFFFAOYSA-N CC(C(C(OCC(F)(F)F)=O)(F)F)(C(OC)=O)OC(C(C)=C)=O Chemical compound CC(C(C(OCC(F)(F)F)=O)(F)F)(C(OC)=O)OC(C(C)=C)=O MWOZMHNFIROPIQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2041—Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0046—Photosensitive materials with perfluoro compounds, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
- G03F7/0397—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
Definitions
- the present invention relates to a radiation sensitive resin composition, a resist pattern forming method, a polymer and a compound.
- Such a radiation sensitive resin composition generates an acid in an exposed area by irradiation with far ultraviolet rays such as an ArF excimer laser or an electron beam, and develops an exposed area and an unexposed area by the catalytic action of this acid. A difference is generated in the dissolution rate with respect to the liquid, and a resist pattern is formed on the substrate.
- an immersion exposure method liquid immersion lithography
- the exposure optical path space (between the lens and the resist film) is filled with an immersion medium having a refractive index (n) larger than that of air or an inert gas, such as pure water or a fluorine-based inert liquid.
- NA numerical aperture
- the resin composition used in the immersion exposure method suppresses elution of an acid generator and the like from the formed resist film to the immersion medium, prevents resist film performance degradation and contamination of the lens and other devices, and Water-repellent polymer additive comprising a fluorine atom-containing polymer for the purpose of improving the hydrophobicity of the resist film surface in order to improve the water resistance of the resist film to prevent the remaining of the watermark and enable high-speed scanning.
- Water-repellent polymer additive comprising a fluorine atom-containing polymer for the purpose of improving the hydrophobicity of the resist film surface in order to improve the water resistance of the resist film to prevent the remaining of the watermark and enable high-speed scanning.
- Defects such as blob defects may occur.
- a fluorine atom-containing polymer that is hydrophobic during immersion exposure but exhibits hydrophilicity during alkali development, specifically, a fluoroalkyl ester structure of a carboxylic acid Has been proposed (see JP 2010-32994), and the use of such a polymer as a water-repellent polymer additive can suppress the occurrence of defects. Yes.
- the above water-repellent polymer additive enhances the LWR (Line Width Roughness) performance and CDU (Critical Dimension Uniformity) performance of the radiation-sensitive resin composition containing the additive, and further EL (Exposure Latitude) (exposure).
- LWR Line Width Roughness
- CDU Critical Dimension Uniformity
- EL Exposure Latitude
- the present invention has been made based on the above circumstances, and is to provide a radiation-sensitive resin composition having excellent LWR performance, CDU performance, EL performance, and defect suppression.
- the invention made in order to solve the above-mentioned problems is a first polymer having a first structural unit represented by the following formula (1) (hereinafter also referred to as “structural unit (I)”) (hereinafter referred to as “[A ] And a radiation-sensitive acid generator (hereinafter also referred to as “[B] acid generator”).
- structural unit (I) a first structural unit represented by the following formula (1)
- [A ] a radiation-sensitive acid generator
- [B] acid generator hereinafter also referred to as “[B] acid generator”.
- R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 2 is a divalent linking group.
- Z 1 to Z 4 are each independently , A hydrogen atom, a fluorine atom, a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group, or a monovalent group containing a divalent or higher hetero atom, L is a single bond or a divalent hydrocarbon group Two or more of Z 3 , Z 4, and L may be combined with each other to form a ring structure (a) having 3 to 20 ring members constituted with the carbon atom to which they are bonded.
- Two or more of 1 to Z 4 and L may be combined with each other to form a ring structure (b) having 3 to 8 ring members composed of carbon atoms to which they are bonded, and n is 0 or R 3 is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group, provided that Z At least one of 1 , Z 2 and R 3 contains a fluorine atom, and at least one of Z 1 to Z 4 , the ring structure (a) and the ring structure (b) is a divalent or higher valent hetero atom.
- R 2 is —COO— and n is 0, Z 1 and Z 2 are not alkoxy groups.
- Another invention made in order to solve the above-mentioned problems comprises a step of forming a resist film, a step of immersion exposure of the resist film, and a step of developing the resist film subjected to the immersion exposure, Is a method of forming a resist pattern by using the radiation-sensitive resin composition.
- Still another invention made to solve the above problems is a polymer having a structural unit represented by the above formula (1).
- R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 2 is a divalent linking group.
- Z 1 to Z 4 are each independently , A hydrogen atom, a fluorine atom, a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group, or a monovalent group containing a divalent or higher hetero atom, L is a single bond or a divalent hydrocarbon group Two or more of Z 3 , Z 4, and L may be combined with each other to form a ring structure (a) having 3 to 20 ring members constituted with the carbon atom to which they are bonded.
- Two or more of 1 to Z 4 and L may be combined with each other to form a ring structure (b) having 3 to 8 ring members composed of carbon atoms to which they are bonded, and n is 0 or R 3 is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group, provided that Z At least one of 1 , Z 2 and R 3 contains a fluorine atom, and at least one of Z 1 to Z 4 , the ring structure (a) and the ring structure (b) is a divalent or higher valent hetero atom.
- R 2 is —COO— and n is 0, Z 1 and Z 2 are not alkoxy groups.
- the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
- the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
- the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
- alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
- “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
- the “ring member number” of the ring structure means the number of atoms constituting the ring such as an alicyclic structure, an aromatic ring structure, an aliphatic heterocyclic structure, etc., and includes a polycyclic alicyclic structure, a polycyclic aromatic ring structure and a polycyclic ring. In the case of the aliphatic heterocyclic structure, it means the number of atoms constituting this polycycle.
- the “organic group” refers to a group containing at least one carbon atom.
- the radiation-sensitive resin composition and resist pattern forming method of the present invention it is possible to form a resist pattern with small LWR and CDU and few defects while exhibiting excellent EL performance.
- the polymer of this invention can be used suitably as a polymer component of the said radiation sensitive resin composition.
- the compound of the present invention can be suitably used as a monomer for the polymer. Accordingly, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.
- the radiation-sensitive resin composition contains a [A] polymer and a [B] acid generator.
- the radiation-sensitive resin composition is a polymer different from the first polymer ([A] polymer) as a suitable component, and is a second polymer having a structural unit containing an acid dissociable group (hereinafter “ [C] polymer ”), [D] acid diffusion controller, and [E] solvent may be contained, and other optional components may be contained within a range not impairing the effects of the present invention.
- [C] polymer an acid dissociable group
- [E] solvent an acid dissociable group
- each component will be described.
- the polymer is a polymer having the structural unit (I).
- the polymer constitutes a water-repellent polymer additive in the radiation-sensitive resin composition.
- the radiation-sensitive resin composition is a fluorine atom-containing polymer in the resist film when the resist film is formed by containing the [A] polymer as a water-repellent polymer additive. Due to the oil repellency characteristics of the polymer, the distribution tends to be unevenly distributed on the surface of the resist film, and it is possible to suppress the dissolution of acid generators, acid diffusion control agents, etc. in the immersion medium during immersion exposure. it can.
- the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range, and the occurrence of bubble defects can be suppressed. Furthermore, the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets.
- the resist film suitable for an immersion exposure method can be formed.
- the radiation-sensitive resin composition has an LWR performance, a CDU performance, an EL performance, and a defect suppression property (hereinafter referred to as the “A” polymer having the structural unit (I) as the water-repellent polymer additive. These are collectively referred to as “LWR performance etc.”).
- LWR performance etc. a defect suppression property
- [A] at least one of Z 1 , Z 2 and R 3 adjacent to —COO— in the above formula (1) of the structural unit (I) of the polymer contains a fluorine atom, and R 3 is an alkali It can exhibit dissociation properties and generates a carboxy group by alkali development.
- R 3 is an alkali It can exhibit dissociation properties and generates a carboxy group by alkali development.
- at least one of Z 1 to Z 4 , ring structure (a) and ring structure (b) in the vicinity of the above-mentioned —COO— contains a divalent or higher valent heteroatom
- the hydrophilicity of the resist film surface formed by the radiation-sensitive resin composition containing the coalescence after alkali development is higher than that of the conventional water-repellent polymer additive.
- the performance of suppressing defects derived from development of the radiation-sensitive resin composition is improved, and in addition, the LWR performance, CDU performance, and EL performance are improved.
- the [A] polymer preferably has a higher fluorine atom content (% by mass) than the [C] polymer described later in the radiation-sensitive resin composition.
- fluorine atom content of the polymer is higher than the fluorine atom content of the [C] polymer, the degree of uneven distribution described above becomes higher, and the water repellency and elution suppression of the resulting resist film, etc. Improved characteristics.
- the fluorine atom content of the polymer is preferably 1% by mass or more, more preferably 2% by mass to 60% by mass, further preferably 4% by mass to 40% by mass, and more preferably 7% by mass to 30% by mass. Particularly preferred.
- the fluorine atom content of the polymer is less than the above lower limit, the hydrophobicity of the resist film surface may decrease.
- the fluorine atom content (% by mass) of the polymer can be calculated from the structure of the polymer obtained by 13 C-NMR spectrum measurement.
- the polymer preferably has a second structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (II)”).
- a structural unit other than the structural unit (I), which will be described later, may have a third structural unit containing a fluorine atom (hereinafter also referred to as “structural unit (III)”). You may have other structural units other than (III).
- the polymer may have one or more of the above structural units. Hereinafter, each structural unit will be described.
- R ⁇ 1 > is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
- R 2 is a divalent linking group.
- Z 1 to Z 4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group or a monovalent group containing a divalent or higher hetero atom.
- L is a single bond or a divalent hydrocarbon group. Two or more of Z 3 , Z 4, and L may be combined with each other to form a ring structure (a) having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded.
- Z 1 to Z 4 and L may be combined with each other to form a ring structure (b) having 3 to 8 ring members composed of carbon atoms to which they are bonded.
- n is 0 or 1.
- R 3 is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group. However, at least one of Z 1 , Z 2 and R 3 contains a fluorine atom. Further, at least one of Z 1 to Z 4 , the ring structure (a), and the ring structure (b) contains a divalent or higher valent hetero atom.
- R 2 is —COO— and n is 0, neither Z 1 nor Z 2 is an alkoxy group.
- R 1 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
- Examples of the divalent linking group represented by R 2 include a divalent group containing at least one heteroatom, —O—, —CO—, —COO—, —CONR′— , -S-, -CS-, -COS-, -CSO- and the like.
- R ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Examples of the monovalent hydrocarbon group represented by Z 1 to Z 4 and R 3 include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic ring having 3 to 20 carbon atoms. And a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- Examples of the monovalent chain hydrocarbon group include: Alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, and t-butyl; Alkenyl groups such as ethenyl group, propenyl group, butenyl group, pentenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group, butynyl group, and pentynyl group.
- Monocyclic cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group;
- a polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group and a tricyclodecyl group;
- a monocyclic cycloalkenyl group such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group;
- Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
- Examples of the monovalent aromatic hydrocarbon group include: Aryl groups such as phenyl, tolyl, xylyl, naphthyl and anthryl; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
- Examples of the monovalent fluorinated hydrocarbon group represented by Z 1 to Z 4 and R 3 include monovalent fluorinated chain hydrocarbon groups having 1 to 20 carbon atoms and 1 to 3 carbon atoms. And a monovalent fluorinated aromatic hydrocarbon group having 6 to 20 carbon atoms.
- Examples of the monovalent fluorinated chain hydrocarbon group include: Fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, trifluoroethyl group, pentafluoroethyl group, fluoropropyl group, trifluoro-n-propyl group, pentafluoro-n-propyl group, heptafluoro- n-propyl group, fluoro-i-propyl group, trifluoro-i-propyl group, hexafluoro-i-propyl group, heptafluoro-i-propyl group, fluoro-n-butyl group, nonafluoro-n-butyl group, etc.
- a fluorinated alkyl group of Fluorinated alkenyl groups such as a fluoroethenyl group, a trifluoroethenyl group, a fluoropropenyl group, a pentafluoropropenyl group, a fluorobutenyl group, and a nonafluorobutenyl group;
- fluorinated alkynyl groups such as a fluoroethynyl group, a fluoropropynyl group, a trifluoropropynyl group, a fluorobutynyl group, and a pentafluorobutynyl group.
- Examples of the monovalent fluorinated alicyclic hydrocarbon group include: Monocyclic fluorinated cycloalkyl groups such as fluorocyclopropyl group, pentafluorocyclopropyl group, fluorocyclobutyl group, heptafluorocyclobutyl group, fluorocyclopentyl group, nonafluorocyclopentyl group, fluorocyclohexyl group, undecafluorocyclohexyl group ; A polycyclic fluorinated cycloalkyl group such as a fluoronorbornyl group, a heptafluoronorbornyl group, a fluoroadamantyl group, a pentadecafluoroadamantyl group; Monocyclic fluorine such as fluorocyclopropenyl group, trifluorocyclopropenyl group, fluorocyclobutenyl group, pentafluorocyclobutyl group, flu
- Examples of the monovalent fluorinated aromatic hydrocarbon group include: Fluorophenyl group, difluorophenyl group, trifluorophenyl group, pentafluorophenyl group, fluorotolyl group, trifluorotolyl group, fluoroxylyl group, trifluoroxylyl group, fluoronaphthyl group, heptafluoronaphthyl group, fluoroanthryl group , Fluorinated aryl groups such as nonafluoroanthryl group; Fluorinated aralkyl groups such as a fluorobenzyl group, a difluorobenzyl group, a trifluorobenzyl group, a pentafluorobenzyl group, a heptafluorobenzyl group, a fluorophenethyl group, a tetrafluorophenethyl group, and a nonafluorophenethyl group.
- the divalent or higher hetero atom in the monovalent group containing a divalent or higher valent hetero atom represented by Z 1 to Z 4 is not particularly limited as long as it is a hetero atom having a valence of 2 or higher.
- Examples thereof include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
- [A] From the viewpoint of making the polarity of the polymer more appropriate and from the viewpoint of ease of synthesis, atoms of nonmetallic elements are preferable, and oxygen atoms, nitrogen atoms, sulfur atoms, phosphorus atoms, and silicon atoms are more preferable.
- an oxygen atom and a sulfur atom are more preferable, and an oxygen atom is particularly preferable.
- Examples of the monovalent group containing a divalent or higher valent hetero atom represented by Z 1 to Z 4 include a monovalent group composed of a hetero atom and a hydrogen atom, and a carbon-carbon of a monovalent hydrocarbon group.
- Examples of the monovalent group consisting of the hetero atom and the hydrogen atom include a hydroxy group, a sulfanyl group (—SH), and an amino group.
- heteroatom-containing group examples include divalent groups composed of heteroatoms such as —SO—, —SO 2 —, —SO 2 O—; —CO—, —COS—, —CONH—, —OCOO— , —OCOS—, —OCONH—, —SCONH—, —SCSNH—, —SCSS— and the like, and the like, and the like, and the like, and the like.
- —COO—, —CONH—, —SO 2 —, —SO 2 O— are preferable, and —COO— is more preferable.
- the substituent having a hetero atom examples include a hydroxy group, a carboxy group, a sulfanyl group (—SH), a keto group ( ⁇ O), a thioketo group ( ⁇ S), a nitrilo group (trivalent nitrogen atom), a halogen atom, An atom etc. are mentioned.
- a fluorine atom a chlorine atom, a bromine atom, an iodine atom etc.
- a fluorine atom is preferable.
- the substituent having a hetero atom is preferably a hydroxy group, a carboxy group, a keto group, or a nitrilo group, and more preferably a hydroxy group.
- Z 1 and Z 2 are preferably a hydrogen atom, a fluorine atom, a monovalent fluorinated hydrocarbon group, or a monovalent group containing a divalent or higher valent atom, a hydrogen atom, a fluorine atom, a trifluoromethyl group, A group containing a lactone structure is more preferable, a hydrogen atom, a fluorine atom, a trifluoromethyl group, or a butyrolactone-yl group is more preferable, and a fluorine atom is particularly preferable.
- Z 3 and Z 4 are preferably a hydrogen atom, a monovalent hydrocarbon group, or a monovalent group containing a divalent or higher hetero atom, including a hydrogen atom, a monovalent chain hydrocarbon group, or an oxygen atom.
- a monovalent group and a monovalent group containing a sulfur atom are more preferred, a hydrogen atom, an alkyl group, a hydroxy group and an alkoxycarbonyl group are more preferred, and a hydrogen atom, a methyl group, a hydroxy group, a methoxycarbonyl group and a methoxymethyl group are preferred. Particularly preferred.
- R 3 is preferably a monovalent chain hydrocarbon group or a monovalent fluorinated chain hydrocarbon group, more preferably an alkyl group or a fluorinated alkyl group, a methyl group, an ethyl group, a trifluoroethyl group, More preferred are a pentafluoro-n-propyl group and a hexafluoro-i-propyl group.
- Examples of the divalent hydrocarbon group represented by L include a divalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, and a carbon number. Examples thereof include 6-30 divalent aromatic hydrocarbon groups.
- Examples of the divalent chain hydrocarbon group include: Alkanediyl groups such as methanediyl, ethanediyl, propanediyl, butanediyl; Alkenediyl groups such as ethenediyl group, propenediyl group, butenediyl group; Examples include alkynediyl groups such as ethynediyl group, propynediyl group, and butynediyl group.
- Examples of the divalent alicyclic hydrocarbon group include: Monocyclic cycloalkanediyl groups such as cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, cyclohexanediyl group; Monocyclic cycloalkenediyl groups such as cyclopropenediyl group and cyclobutenediyl group; A polycyclic cycloalkanediyl group such as a norbornanediyl group, an adamantanediyl group, a tricyclodecanediyl group, a tetracyclododecanediyl group; And polycyclic cycloalkenediyl groups such as norbornenediyl group and tricyclodecenediyl group.
- divalent aromatic hydrocarbon group examples include: Arenediyl groups such as benzenediyl group, toluenediyl group, xylenediyl group, naphthalenediyl group, anthracenediyl group, phenanthrenediyl group; Examples thereof include arenediyl (cyclo) alkanediyl groups such as benzenediylmethanediyl group and naphthalenediylcyclohexanediyl group.
- Arenediyl groups such as benzenediyl group, toluenediyl group, xylenediyl group, naphthalenediyl group, anthracenediyl group, phenanthrenediyl group
- arenediyl (cyclo) alkanediyl groups such as benzenediylmethanediyl group and naphthalenediylcyclohexanediyl group.
- the divalent hydrocarbon group is preferably a divalent chain hydrocarbon group or a divalent alicyclic hydrocarbon group, more preferably an alkanediyl group or a cycloalkanediyl group.
- L is preferably a single bond or a divalent chain hydrocarbon group, more preferably a single bond or a 1,1-ethanediyl group.
- Examples of the ring structure (a) having 3 to 20 ring members composed of two or more of Z 3 , Z 4 and L combined with the carbon atom to which they are bonded include a cyclopropane structure, a cyclobutane structure, Monocyclic alicyclic structures such as cyclopentane structure and cyclohexane structure; polycyclic alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; oxacyclopentane structure, oxacyclohexane structure and butyrolactone structure Monocyclic aliphatic heterocyclic structures such as valerolactone structure, thiacyclopentane structure, thiacyclohexane structure, azacyclopentane structure, azacyclohexane structure; oxanorbornane structure, oxaadamantane structure, norbornane lactone structure,
- the ring structure (a) is preferably a polycyclic alicyclic structure or a monocyclic aliphatic heterocyclic structure, more preferably an adamantane structure, an oxacyclopentane structure, or a thiacyclopentane structure.
- Examples of the ring structure (b) having 3 to 8 ring members composed of two or more of Z 1 to Z 4 and L combined with the carbon atom to which they are bonded include a cyclopropane structure, a cyclobutane structure, Monocyclic alicyclic structures such as cyclopentane structures and cyclohexane structures; alicyclic structures such as norbornane structures; monocyclic aliphatic heterocyclic structures such as oxacyclopentane structures, oxacyclohexane structures, butyrolactone structures, and valerolactone structures; Examples thereof include polycyclic aliphatic heterocyclic structures such as a norbornane structure.
- a monocyclic alicyclic structure and a monocyclic aliphatic heterocyclic structure are preferable, and a cyclopentane structure, a cyclohexane structure, a butyrolactone structure, and a valerolactone structure are more preferable.
- the ring structure (a) has 3 to 20 ring members, and the ring structure (b) has 3 to 8 ring members, which is too bulky when the upper limit of the ring members is exceeded. Therefore, dissociation of the alkali dissociable group is inhibited, and as a result, the effect of the present invention cannot be exhibited.
- R 2 is —COO— and n is 0, Z 1 and Z 2 are not alkoxy groups, but in this case, —COO—C (OR) —COO— (OR is alkoxy This is because the structure of the base group is unstable, and thus the effect of the present invention cannot be exhibited.
- structural unit (I) examples include structural units represented by the following formulas (1-1) to (1-3) (hereinafter also referred to as “structural units (I-1) to (I-3)”). Etc.
- R 1 , R 2 and L are as defined in the above formula (1).
- Z A and Z B are each independently a hydrogen atom, a monovalent hydrocarbon group, or a monovalent group containing a divalent or higher valent heteroatom. Two or more of Z A , Z B and L may be combined with each other to form a ring structure (a ′) having 3 to 20 ring members composed of carbon atoms to which they are bonded. However, at least one of Z A , Z B and the ring structure (a ′) contains a divalent or higher valent hetero atom.
- R A is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- Z C , Z D , Z E and Z F are each independently a hydrogen atom, a monovalent hydrocarbon group or a monovalent group containing a divalent or higher hetero atom. is there.
- Two or more of Z E , Z F and L may be combined with each other to form a ring structure (a ′′) having 3 to 20 ring members composed of the carbon atoms to which they are bonded.
- At least one of C 1 , Z D , Z E , Z F and the ring structure (a ′′) contains a divalent or higher valent hetero atom.
- R B is a monovalent fluorinated hydrocarbon group.
- Z G is a fluorine atom or a monovalent fluorinated hydrocarbon group.
- Z H is a monovalent group containing a divalent or higher valent hetero atom.
- R C is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- the monovalent hydrocarbon group represented by Z A to Z F and the monovalent group containing a divalent or higher hetero atom represented by Z H examples thereof include the same groups as the groups exemplified as Z 1 to Z 4 above.
- Examples of the valent fluorinated hydrocarbon group include the same groups as the groups exemplified as R 3 above.
- Examples of the ring structure (a ′) and the ring structure (a ′′) include ring structures similar to those exemplified as the ring structure (a).
- the structural unit (I) is preferably the structural unit (I-1) or the structural unit (I-2).
- Examples of the structural unit (I-1) include structural units represented by the following formulas (1-1-1) to (1-1-10), and the structural unit (I-2) includes The structural units represented by (1-2-1) to (1-2-3) are represented by the following formulas (1-3-1) to (1-3-3) as the structural unit (I-3). And the like (hereinafter also referred to as “structural units (1-1-1) to (1-3-3)”), respectively.
- R 1 has the same meaning as in the above formula (1).
- the structural unit (I) includes the structural unit (I-1-1), the structural unit (I-1-2), the structural unit (I-1-3), and the structural unit (I-1- 4), the structural unit (I-1-9), the structural unit (I-1-10), the structural unit (I-2-1), and the structural unit (I-3-1) are preferable.
- the content rate of structural unit (I) 10 mol% is preferable with respect to all the structural units which comprise a [A] polymer, 40 mol% is more preferable, 50 mol% is further more preferable, 55 mol % Is particularly preferred.
- Examples of the compound giving the structural unit (I) include compounds represented by the following formula (i).
- R ⁇ 1 > is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
- R 2 is a divalent linking group.
- Z 1 to Z 4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group or a monovalent group containing a divalent or higher hetero atom.
- L is a single bond or a divalent hydrocarbon group. Two or more of Z 3 , Z 4, and L may be combined with each other to form a ring structure (a) having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded.
- Z 1 to Z 4 and L may be combined with each other to form a ring structure (b) having 3 to 8 ring members composed of carbon atoms to which they are bonded.
- n is 0 or 1.
- R 3 is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group. However, at least one of Z 1 , Z 2 and R 3 contains a fluorine atom. Further, at least one of Z 1 to Z 4 , the ring structure (a), and the ring structure (b) contains a divalent or higher valent hetero atom.
- R 2 is —COO— and n is 0, neither Z 1 nor Z 2 is an alkoxy group.
- Examples of the compound (i) include compounds represented by the following formulas (1m-1) to (1m-3) (hereinafter also referred to as “compounds (1m-1) to (1m-3)”).
- R 1 , R 2 and L are as defined in the above formula (1).
- Z A and Z B are each independently a hydrogen atom, a monovalent hydrocarbon group, or a monovalent group containing a divalent or higher hetero atom. Two or more of Z A , Z B and L may be combined with each other to form a ring structure (a ′) having 3 to 20 ring members composed of carbon atoms to which they are bonded. However, at least one of Z A , Z B and the ring structure (a ′) contains a divalent or higher valent hetero atom.
- R A is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- Z C , Z D , Z E and Z F are each independently a hydrogen atom, a monovalent hydrocarbon group or a monovalent group containing a divalent or higher valent hetero atom. is there.
- Two or more of Z E , Z F and L may be combined with each other to form a ring structure (a ′′) having 3 to 20 ring members composed of the carbon atoms to which they are bonded.
- At least one of C 1 , Z D , Z E , Z F and the ring structure (a ′′) contains a divalent or higher valent hetero atom.
- R B is a monovalent fluorinated hydrocarbon group.
- Z G represents a fluorine atom or a monovalent fluorinated hydrocarbon group.
- Z H is a monovalent group containing a divalent or higher valent hetero atom.
- R C is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- Examples of the compound (1m-1) include compounds represented by the following formulas (1m-1-1) to (1m-1-10), and examples of the compound (1m-2) include those represented by the following formula:
- the compounds represented by (1m-2-1) to (1m-2-3) are, for example, the following formulas (1m-3-1) to (1m-3-3) ) And the like.
- R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- compound (1m-1-1), compound (1m-1-2), compound (1m-1-3), compound (1m-1-4), compound (1m-1-9), The compound (1m-1-10), the compound (1m-2-1), and the compound (1m-3-1) are preferable.
- R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- L is a single bond or a divalent hydrocarbon group.
- Z B is a hydrogen atom, a monovalent hydrocarbon group, or a monovalent group containing a divalent or higher valent hetero atom. Z B and L may be combined with each other to form a ring structure (a ′) having 3 to 20 ring members that is composed of carbon atoms to which they are bonded.
- R A is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- E is a halogen atom, a hydroxy group or —OCOR ′.
- R ′ is a monovalent hydrocarbon group.
- X is a halogen atom.
- the halogen atom represented by E is preferably a chlorine atom or a bromine atom, more preferably a chlorine atom, from the viewpoint of yield improvement.
- the halogen atom represented by X is preferably a chlorine atom or a bromine atom, and more preferably a bromine atom, from the viewpoint of yield improvement.
- Compound (i) is a compound (i′-1b) in which R 2 is —COO— and L is a single bond in the above compound (1m-1), for example, (A ′) A ketone compound represented by the following formula (1-a2) and a halo- ⁇ , ⁇ -difluoroacetate compound represented by the following formula (1-b2) are reacted in the presence of zinc. A step of obtaining a hydroxy compound represented by the following formula (1-c2), and (B ′) a step of reacting the hydroxy compound with a (meth) acryloyl compound represented by the following formula (1-d2). According to the synthesis method provided, it can be synthesized simply and with good yield according to the following scheme.
- R 1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- Z A and Z B are each independently a hydrogen atom, a monovalent hydrocarbon group, or a monovalent group containing a divalent or higher valent heteroatom.
- Z A and Z B may be combined with each other to form a ring structure (a ′) having 3 to 20 ring members that is composed of carbon atoms to which they are bonded. However, at least one of Z A , Z B and the ring structure (a ′) contains a divalent or higher valent hetero atom.
- R A is a monovalent hydrocarbon group or a monovalent fluorinated hydrocarbon group.
- E is a halogen atom, a hydroxy group or —OCOR ′.
- R ′ is a monovalent hydrocarbon group.
- X is a halogen atom.
- Compound (i) is a compound of the above compound (1m-2) when R 2 is —COO— and Z D and Z F are hydrogen atoms,
- (A ′′) An acylacetate compound represented by the following formula (1-a3) and an organic halide represented by the following formula (1-b3) are reacted to form a compound represented by the following formula (1-c3).
- the compound can be synthesized simply and with high yield by a synthesis method including a step of reacting a hydroxy compound with a (meth) acryloyl compound represented by the following formula (1-e3).
- Z C and Z E are each independently a monovalent hydrocarbon group or a monovalent group containing a divalent or higher valent heteroatom. At least one of Z C and Z E includes a divalent or higher valent hetero atom.
- R B is a monovalent fluorinated hydrocarbon group.
- E is a halogen atom, a hydroxy group or —OCOR ′.
- R ′ is a monovalent hydrocarbon group.
- X is a halogen atom.
- the substituted acyl acetate compound is reacted with the acyl acetate compound (1-a3) and the organic halide (1-b3) in a solvent such as tetrahydrofuran in the presence of a base such as sodium hydride. (1-c3) is obtained.
- the obtained substituted acyl acetate compound (1-c3) is hydrogenated in a solvent such as tetrahydrofuran using a hydrogenation reagent such as sodium borohydride to obtain the hydroxy compound (1-d3). It is done.
- a solvent such as dichloromethane in the presence of a strong acid such as trifluoroacetic acid.
- a chlorination reagent such as oxalyl chloride in a solvent such as toluene, and further 1,1,1,3,3,3-hexafluoro-2-propanol, 2,
- the reaction can be carried out by reacting a fluorine atom-containing alcohol such as 2,2-trifluoroethanol with a base such as triethylamine.
- Compound (i) can be isolated by appropriately purifying the obtained reaction product by a liquid separation operation, distillation, recrystallization, column chromatography or the like.
- the structural unit (II) is a structural unit represented by the following formula (2).
- the group represented by —CR 5 R 6 R 7 in the structural unit (II) is an acid dissociable group.
- the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group and dissociates by the action of an acid.
- R 5 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 6 is a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
- R 7 and R 8 are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or these groups Represents an alicyclic structure having 3 to 20 carbon atoms which is constituted together with carbon atoms to which they are bonded to each other.
- R 4 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (II).
- Examples of the monovalent chain hydrocarbon group having 1 to 10 carbon atoms represented by R 5 , R 6 and R 7 include, for example, Alkyl groups such as methyl, ethyl, n-propyl and i-propyl; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group, and butynyl group.
- Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 5 , R 6 and R 7 include, for example, Monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group; A monocyclic cycloalkenyl group such as a cyclopentenyl group and a cyclohexenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group and a tricyclodecyl group; And polycyclic cycloalkenyl groups such as a norbornenyl group and a tricyclodecenyl group.
- Examples of the alicyclic structure having 3 to 20 carbon atoms represented by the carbon atoms to which these groups are combined and bonded to each other include, for example, Monocyclic cycloalkane structures such as cyclopropane structure, cyclobutane structure, cyclopentane structure, cyclohexane structure, cycloheptane structure, cyclooctane structure; Examples thereof include polycyclic cycloalkane structures such as a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
- structural units (II) As the structural unit (II), structural units represented by the following formulas (2-1) to (2-4) (hereinafter also referred to as “structural units (II-1) to (II-4)”) are preferable. .
- R 5 to R 7 have the same meanings as the above formula (2).
- i and j are each independently an integer of 1 to 4.
- I and j are preferably 1, 2 or 4, more preferably 1 or 4, and still more preferably 1.
- Examples of the structural units (II-1) to (II-4) include structural units represented by the following formulas.
- R ⁇ 4 > is synonymous with the said Formula (2).
- the structural unit (II) is preferably a structural unit containing an alicyclic structure, more preferably a structural unit containing a cycloalkane structure, a structural unit containing a cyclopentane structure, a structural unit containing a cyclohexane structure, or a structure containing a cyclooctane structure.
- the structural unit containing an adamantane structure is a structural unit derived from 1-alkyl-1-cyclopentyl (meth) acrylate, a structural unit derived from 1-alkyl-1-cyclooctyl (meth) acrylate, or 2-alkyl -2-Structural units derived from adamantyl (meth) acrylate, structural units derived from 2- (adamantan-1-yl) propan-2-yl (meth) acrylate, 2-cyclohexylpropan-2-yl (meth) acrylate
- the content rate of structural unit (II) 5 mol% is preferable with respect to all the structural units which comprise a [A] polymer, 10 mol% is more preferable, 15 mol% is further more preferable, 18 mol % Is particularly preferred.
- 80 mol% is preferable, 60 mol% is more preferable, 40 mol% is further more preferable, 35 mol% is especially preferable.
- the structural unit (III) is a structural unit other than the structural unit (I) and includes a fluorine atom.
- the polymer further has the structural unit (III), whereby the fluorine atom content can be adjusted, and as a result, the LWR performance and the like of the radiation-sensitive resin composition can be further improved.
- the structural unit (III) includes a structural unit represented by the following formula (fa) (hereinafter also referred to as “structural unit (III-1)”), and a structural unit represented by the following formula (fb) (Hereinafter also referred to as “structural unit (III-2)”) and the like.
- the structural unit (III-1) is a structural unit represented by the following formula (fa).
- R D is a hydrogen atom, a methyl group or a trifluoromethyl group.
- G is a single bond, an oxygen atom, a sulfur atom, —CO—O—, —SO 2 —O—NH—, —CO—NH— or —O—CO—NH—.
- R E is a monovalent chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom or a monovalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom. It is.
- the chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom represented by R E for example, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, perfluoroethyl Group, 2,2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, perfluoro n-propyl group, perfluoro i-propyl group, perfluoro Examples thereof include n-butyl group, perfluoro i-butyl group, perfluoro t-butyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, perfluorohexyl group and the like.
- Examples of the aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom represented by R E for example, monofluoromethyl cyclopentyl group, difluorocyclopentyl groups, perfluorocyclopentyl group, monofluoromethyl cyclohexyl , Difluorocyclopentyl group, perfluorocyclohexylmethyl group, fluoronorbornyl group, fluoroadamantyl group, fluorobornyl group, fluoroisobornyl group, fluorotricyclodecyl group, fluorotetracyclodecyl group and the like.
- Examples of the monomer that gives the structural unit (3a) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, and 2,2,2-trifluoro.
- Ethyloxycarbonylmethyl (meth) acrylic acid ester perfluoroethyl (meth) acrylic acid ester, perfluoro n-propyl (meth) acrylic acid ester, perfluoro i-propyl (meth) acrylic acid ester, perfluoro n-butyl (Meth) acrylic acid ester, perfluoro i-butyl (meth) acrylic acid ester, perfluoro t-butyl (meth) acrylic acid ester, 2- (1,1,1,3,3,3-hexafluoropropyl) (Meth) acrylic acid ester, 1- (2,2,3,3,4,4,5,5-octaful Lopentyl) (meth) acrylic acid ester, perfluorocyclohexy
- the content ratio of the structural unit (III-1) is preferably 0 mol% to 30 mol%, more preferably 5 mol% to 30 mol%, based on all the structural units constituting the [A] polymer. More preferred is mol% to 20 mol%. By setting it as such a content rate, the LWR performance etc. of the said radiation sensitive resin composition can be improved more.
- the structural unit (III-2) is a structural unit represented by the following formula (fb).
- R F is a hydrogen atom, a methyl group or a trifluoromethyl group.
- R 8 is an (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, and an oxygen atom, a sulfur atom, —NR′—, a carbonyl group, —CO—O—, or a terminal at the R 9 side of R 8 Also includes a structure in which —CO—NH— is bonded.
- R ′ is a hydrogen atom or a monovalent organic group.
- R 9 is a single bond, a divalent chain hydrocarbon group having 1 to 10 carbon atoms, or a divalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms.
- X 2 is a C 1-20 divalent chain hydrocarbon group having at least one fluorine atom.
- a 1 is an oxygen atom, —NR ′′ —, —CO—O— *, or —SO 2 —O— *.
- R ′′ is a hydrogen atom or a monovalent organic group. * Indicates a binding site that binds to R 10.
- R 10 is a hydrogen atom or a monovalent organic group. s is an integer of 1 to 3. When s is 2 or 3, the plurality of R 9 , X 2 , A 1 and R 10 may be the same or different.
- R 10 is a hydrogen atom, it is preferable in that the solubility of the [A] polymer in an alkaline developer can be improved.
- Examples of the monovalent organic group represented by R 10 include an acid-dissociable group, an alkali-dissociable group, or a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
- structural unit (III-2) examples include structural units represented by the following formulas (fb-1) to (fb-3) (hereinafter referred to as “structural unit (III-2-1) to (III-2-3) ”) and the like.
- R 8 ′ is a divalent linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms. It is.
- R F , X 2 , R 10 and s are as defined in the above formula (fb). When s is 2 or 3, the plurality of X 2 and R 10 may be the same or different.
- the structural unit (III-2-2) is preferable, R 8 ′ is a branched hydrocarbon group, X 2 is a perfluoroalkanediyl group, and R 10 is a hydrogen atom. More preferred is a structural unit derived from 2-hydroxy-2-trifluoromethyl-5,5,5-trifluoropentan-2-yl (meth) acrylate.
- the content ratio of the structural unit (III-2) is preferably 0 mol% to 50 mol%, more preferably 0 mol% to 30 mol%, based on all structural units constituting the [A] polymer. 10 mol% to 25 mol% is more preferable. By setting it as such a content rate, the LWR performance of the said radiation sensitive resin composition can be improved more.
- the [A] polymer includes, for example, a structural unit containing at least one selected from the group consisting of a structural unit containing an alkali-soluble group, a lactone structure, a cyclic carbonate structure and a sultone structure
- a structural unit containing a cyclic group As said alkali-soluble group, a carboxy group, a sulfonamide group, a sulfo group etc. are mentioned, for example.
- Examples of the structural unit having at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure include a structural unit (C-II) in a [C] polymer described later.
- the content ratio of the other structural units is usually 30 mol% or less, preferably 20 mol% or less, based on all the structural units constituting the [A] polymer.
- the content ratio of the other structural unit exceeds the upper limit, the solubility of the polymer [A] in the exposed portion of the polymer in the alkaline developer is lowered, and as a result, a resist formed from the radiation-sensitive resin composition.
- the rectangularity of the cross-sectional shape of the pattern may deteriorate.
- the lower limit of the content of the polymer is preferably 0.1 parts by weight, more preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to the total solid content in the radiation-sensitive resin composition. 3 parts by mass are preferable.
- As a maximum of content of a polymer 30 mass parts is preferred, 20 mass parts is more preferred, 15 mass parts is still more preferred, and 10 mass parts is especially preferred.
- 0.1 mass part is preferable with respect to 100 mass parts of [C] polymer mentioned later, 0.5 mass part is more preferable, 1 mass part is Further preferred is 3 parts by mass.
- the polymer can be synthesized, for example, by polymerizing a monomer giving each structural unit in a suitable solvent using a radical polymerization initiator or the like.
- radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, And peroxide radical initiators such as cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferable, and AIBN is more preferable. These radical initiators can be used alone or in combination of two or more.
- Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, methyl ethyl ketone
- the reaction temperature in the above polymerization is usually preferably 40 ° C to 150 ° C and 50 ° C to 120 ° C.
- the reaction time is usually preferably 1 hour to 48 hours and 1 hour to 24 hours.
- the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but is preferably 1,000 or more and 50,000 or less, more preferably 2,000 or more and 30,000 or less. Preferably, 5,000 or more and 25,000 or less are more preferable, and 7,000 or more and 20,000 or less are particularly preferable.
- Mw of a polymer By making Mw of a polymer into the said range, the applicability
- the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually from 1 to 5, preferably from 1 to 3, more preferably from 1 to 2. .
- Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
- GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL", 1 "G4000HXL” Column temperature: 40 ° C
- Elution solvent Tetrahydrofuran from Wako Pure Chemical Industries, Ltd.
- Flow rate 1.0 mL / min
- Sample concentration 1.0% by mass
- Sample injection volume 100 ⁇ L
- Detector Differential refractometer Standard material: Monodisperse polystyrene
- the acid generator is a substance that generates an acid upon exposure.
- the generated acid dissociates an acid-dissociable group of the [A] polymer, the [C] polymer described later, and the like to generate a carboxy group and the like, and as a result, a resist pattern can be formed.
- the contained form of the [B] acid generator in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter also referred to as “[B] acid generator” as appropriate), as described later. It may be in the form of an acid generating group incorporated as a part, or in both forms.
- Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, and diazoketone compounds.
- onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
- the acid generator is preferably a compound represented by the following formula (3).
- the acid generator has the following structure, due to the interaction with the [A] polymer and the [C] polymer, the diffusion length of the acid generated by exposure in the resist film is appropriately shortened. As a result, the LWR performance and the like of the radiation sensitive resin composition can be improved.
- R 11 is a monovalent group containing an alicyclic structure having 7 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 7 or more ring members.
- R 12 is a fluorinated alkanediyl group having 1 to 10 carbon atoms.
- X + is a monovalent radiolytic onium cation.
- Examples of the monovalent group containing an alicyclic structure having 7 or more ring members represented by R 11 include: A monocyclic cycloalkyl group such as a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cyclododecyl group; A monocyclic cycloalkenyl group such as a cyclooctenyl group and a cyclodecenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; And polycyclic cycloalkenyl groups such as a norbornenyl group and a tricyclodecenyl group.
- Examples include groups containing an ester group such as a cyclooctylcarbonyloxy group, a norbornyloxycarbonyl group, an adamantylcarbonyloxy group, and a hydroxyadamantylmethyloxycarbonyl group.
- Examples of the monovalent group containing an aliphatic heterocyclic structure having 7 or more ring members represented by R 11 include: A group containing a lactone structure such as a norbornanelactone-yl group; A group containing a sultone structure such as a norbornane sultone-yl group; An oxygen atom-containing heterocyclic group such as an oxacycloheptyl group and an oxanorbornyl group; A nitrogen atom-containing heterocyclic group such as an azacycloheptyl group or a diazabicyclooctane-yl group; And sulfur atom-containing heterocyclic groups such as a thiacycloheptyl group and a thianorbornyl group.
- the number of ring members of the group represented by R 11 is preferably 8 or more, more preferably 9 to 15 and even more preferably 10 to 13 from the viewpoint that the diffusion length of the acid described above becomes more appropriate.
- R 11 is preferably a monovalent group containing an alicyclic structure having 9 or more ring members, preferably a monovalent group containing an aliphatic heterocyclic structure having 9 or more ring members.
- a monovalent group containing an alicyclic structure is more preferred, a group containing a polycyclic cycloalkyl group or an ester group is more preferred, and an adamantyl group, an adamantylcarbonyloxy group, or a hydroxyadamantylmethyloxycarbonyl group is particularly preferred.
- Examples of the fluorinated alkanediyl group having 1 to 10 carbon atoms represented by R 12 include one of hydrogen atoms of an alkanediyl group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, and a propanediyl group. Examples include groups in which the above is substituted with a fluorine atom.
- SO 3 - fluorinated alkane diyl group which has a fluorine atom to carbon atom is bonded to adjacent groups are preferred, SO 3 - 2 fluorine atoms to the carbon atom adjacent to the group is attached
- a fluorinated alkanediyl group is more preferable, and a 1,1-difluoromethanediyl group, a 1,1-difluoroethanediyl group, and a 1,1,3,3,3-pentafluoro-1,2-propanediyl group are more preferable.
- the monovalent radiolytic onium cation represented by X + is a cation that decomposes upon irradiation with radiation. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the radiolytic onium cation and the sulfonate anion.
- Examples of the monovalent radiolytic onium cation represented by X + include elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, and Bi. And radiation-decomposable onium cations.
- Examples of the cation containing S (sulfur) as an element include a sulfonium cation and a tetrahydrothiophenium cation.
- Examples of the cation containing I (iodine) as an element include an iodonium cation.
- an iodonium cation examples include an iodonium cation.
- R a1 , R a2 and R a3 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted group.
- aromatic hydrocarbon group having 6 to 12 carbon atoms represents or is a -OSO 2 -R P or -SO 2 -R Q, or two or more are combined with each other configured ring of these groups .
- R P and R Q are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
- R b1 represents a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon having 6 to 8 carbon atoms. It is a group.
- k4 is an integer of 0 to 7.
- R b1 is plural, the plurality of R b1 may be the same or different, and plural R b1 may form a constructed ring aligned with each other.
- R b2 is a substituted or unsubstituted linear or branched alkyl group having 1 to 7 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 or 7 carbon atoms.
- k5 is an integer of 0 to 6. If R b2 is plural, the plurality of R b2 may be the same or different, and plural R b2 may form a keyed configured ring structure.
- q is an integer of 0 to 3.
- R c1 and R c2 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon number of 6 aromatic hydrocarbon group having 1-12, indicating whether it is -OSO 2 -R R or -SO 2 -R S, or two or more are combined with each other configured ring of these groups.
- R R and R S each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
- R c1, R c2, R when R and R S is plural respective plurality of R c1, R c2, R R and R S may have respectively the same or different.
- Examples of the unsubstituted linear alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include a methyl group, an ethyl group, an n-propyl group, and n-butyl. Groups and the like.
- Examples of the unsubstituted branched alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include an i-propyl group, i-butyl group, sec-butyl group, Examples thereof include t-butyl group.
- Examples of the unsubstituted aromatic hydrocarbon group represented by R a1 to R a3 , R c1 and R c2 include aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group and naphthyl group; benzyl group And aralkyl groups such as a phenethyl group.
- Examples of the unsubstituted aromatic hydrocarbon group represented by R b1 and R b2 include a phenyl group, a tolyl group, and a benzyl group.
- Examples of the substituent that may substitute the hydrogen atom of the alkyl group and aromatic hydrocarbon group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
- a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
- a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
- a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy
- R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, and an unsubstituted monovalent aromatic hydrocarbon group.
- —OSO 2 —R ′′ and —SO 2 —R ′′ are preferred, fluorinated alkyl groups, unsubstituted monovalent aromatic hydrocarbon groups are more preferred, and fluorinated alkyl groups are more preferred.
- R ′′ is an unsubstituted monovalent alicyclic hydrocarbon group or an unsubstituted monovalent aromatic hydrocarbon group.
- k1, k2 and k3 are preferably integers of 0 to 2, more preferably 0 or 1, and even more preferably 0.
- k4 is preferably an integer of 0 to 2, more preferably 0 or 1, and further preferably 1.
- k5 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
- k6 and k7 are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
- Examples of the acid generator represented by the above formula (3) include compounds represented by the following formulas (3-1) to (3-11) (hereinafter referred to as “compounds (3-1) to (3-11)”. ) ”)) And the like.
- X + has the same meaning as in the above formula (3).
- the acid generator is preferably an onium salt compound, more preferably a sulfonium salt or a tetrahydrothiophenium salt, and the compound (3-2), the compound (3-3), or the compound (3-11). Is more preferable.
- the content of the acid generator is preferably 2 parts by mass or more and 600 parts by mass or less with respect to 100 parts by mass of the polymer [A] when the [B] acid generator is a [B] acid generator. 10 mass parts or more and 400 mass parts or less are more preferable, 20 mass parts or more and 300 mass parts or less are more preferable, and 60 mass parts or more and 200 mass parts or less are especially preferable. Moreover, as content of [B] acid generator, 0.1 mass part or more and 30 mass parts or less are preferable with respect to [C] polymer 100 mass parts mentioned later, and 0.5 mass part or more and 20 mass parts are preferable. The following is more preferable, 1 to 15 parts by mass is further preferable, and 3 to 10 parts by mass is particularly preferable.
- [B] By making content of an acid generator into the said range, the sensitivity and developability of the said radiation sensitive resin composition can be made moderate, As a result, LWR performance etc. can be improved.
- [B] 1 type (s) or 2 or more types can be used for an acid generator.
- the [C] polymer is a polymer different from the [A] polymer and has a structural unit containing an acid dissociable group.
- the radiation sensitive resin composition usually contains a [C] polymer.
- the polymer constitutes the base polymer in the radiation-sensitive resin composition.
- the “base polymer” refers to a polymer that is a main component of a polymer constituting a resist pattern formed from a radiation-sensitive resin composition, and preferably 50% of the total polymer constituting the resist pattern. A polymer occupying at least mass%.
- the polymer is at least selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure, in addition to a structural unit containing an acid-dissociable group (hereinafter also referred to as “structural unit (CI)”). It is preferable to have a structural unit containing one kind (hereinafter also referred to as “structural unit (C-II)”), and to have other structural units other than the structural units (CI) and (C-II). You may do it.
- the structural unit (CI) is a structural unit containing an acid dissociable group.
- the [C] polymer has the structural unit (CI), whereby sensitivity and resolution are improved, and as a result, LWR performance and the like are improved.
- Examples of the structural unit (CI) include the structural unit (II) in the [A] polymer.
- the content ratio of the structural unit (CI) is preferably 20 mol% to 90 mol%, more preferably 30 mol% to 75 mol%, and more preferably 35 mol% to all structural units constituting the [C] polymer. More preferred is mol% to 65 mol%.
- the structural unit (C-II) is a structural unit containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure.
- the polymer further includes the structural unit (C-II) in addition to the structural unit (CI), so that the solubility in the developer can be adjusted.
- the LWR performance and the like of the conductive resin composition can be improved.
- substrate can be improved.
- Examples of the structural unit (C-II) include a structural unit represented by the following formula.
- R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- the structural unit (C-II) is preferably a structural unit containing a norbornane lactone structure, a structural unit containing a ⁇ -butyrolactone structure, a structural unit containing an ethylene carbonate structure, or a structural unit containing a norbornane sultone structure
- a structural unit containing a norbornane lactone structure, a structural unit containing a ⁇ -butyrolactone structure is more preferred, a structural unit derived from norbornane lactone-yl (meth) acrylate, a structural unit derived from cyano-substituted norbornane lactone-yl (meth) acrylate, More preferred are structural units derived from ⁇ -butyrolactone-yl (meth) acrylate and structural units derived from ⁇ -butyrolactone-ylcyclohexanediyl (meth) acrylate.
- the content ratio of the structural unit (C-II) is preferably from 0 to 80 mol%, more preferably from 10 to 70 mol%, based on all the structural units constituting the [C] polymer. More preferred is mol% to 65 mol%.
- the polymer may have other structural units other than the structural units (CI) and (C-II). Examples of other structural units include structural units containing a hydroxy group.
- Examples of the structural unit containing the hydroxy group include a structural unit represented by the following formula.
- R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- the content ratio of the structural unit containing a hydroxy group is preferably 30 mol% or less, more preferably 20 mol% or less, based on all the structural units constituting the [C] polymer. When the said content rate exceeds the said upper limit, the pattern formation property of the said radiation sensitive resin composition may fall.
- the polymer may have other structural units in addition to the above structural units.
- As a content rate of the said other structural unit 20 mol% or less is preferable and 10 mol% or less is more preferable.
- the content of the polymer is preferably 300 parts by mass to 100,000 parts by mass, more preferably 500 parts by mass to 20,000 parts by mass, and 700 parts by mass with respect to 100 parts by mass of the polymer [A]. Part to 10,000 parts by weight is more preferable, and 1,000 parts to 3,000 parts by weight is particularly preferable. Moreover, as content of [C] polymer, 70 mass% or more is preferable in the total solid of the said radiation sensitive resin composition, 80 mass% or more is more preferable, 85 mass% or more is further more preferable. [C] By making content of a polymer into the said range, it can promote the uneven distribution of [A] polymer to the resist film surface layer, As a result, LWR performance of the said radiation sensitive resin composition Etc. can be improved.
- the said radiation sensitive resin composition may contain a [D] acid diffusion control body as needed.
- the acid diffusion control body controls the diffusion phenomenon in the resist film of the acid generated from the [B] acid generator upon exposure, and has the effect of suppressing an undesirable chemical reaction in the non-exposed region, and the resulting radiation sensitive
- the storage stability of the photosensitive resin composition is further improved, the resolution of the resist is further improved, and the change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, thereby stabilizing the process.
- a radiation-sensitive resin composition having excellent properties can be obtained.
- the content of the acid diffusion controller in the radiation-sensitive resin composition is incorporated as a part of the polymer even in the form of a free compound (hereinafter referred to as “[D] acid diffusion controller” as appropriate). Or both of these forms.
- Examples of the acid diffusion controller include a compound represented by the following formula (4) (hereinafter also referred to as “nitrogen-containing compound (I)”), a compound having two nitrogen atoms in the same molecule (hereinafter referred to as “nitrogen-containing compound (I)”). , “Nitrogen-containing compound (II)”, compounds having three nitrogen atoms (hereinafter also referred to as “nitrogen-containing compound (III)”), amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, etc. Can be mentioned.
- R 13 , R 14 and R 15 are each independently a hydrogen atom, an optionally substituted linear, branched or cyclic alkyl group, aryl group or aralkyl group. .
- nitrogen-containing compound (I) examples include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; aromatic amines such as aniline and the like. Can be mentioned.
- nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, and the like.
- nitrogen-containing compound (III) examples include polyamine compounds such as polyethyleneimine and polyallylamine; and polymers such as dimethylaminoethylacrylamide.
- amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. Can be mentioned.
- urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
- nitrogen-containing heterocyclic compound examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like.
- nitrogen-containing heterocyclic compound a compound having an acid dissociable group can also be used.
- nitrogen-containing heterocyclic compound having an acid dissociable group examples include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl.
- N- (t-butoxycarbonyl) di-n-octylamine N- (t-butoxycarbonyl) diethanolamine
- N- (t-butoxycarbonyl) dicyclohexylamine N- (t-butoxycarbonyl ) Diphenylamine, Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
- the acid diffusion controller is preferably a nitrogen-containing heterocyclic compound, more preferably a morpholine or a nitrogen-containing heterocyclic compound having an acid-dissociable group, and N- (undecylcarbonyloxyethyl). More preferred are morpholine and Nt-alkyloxycarbonyl-4-hydroxypiperidine.
- a photodegradable base that is exposed to light and generates a weak acid
- the photodegradable base include an onium salt compound that decomposes upon exposure and loses acid diffusion controllability.
- the onium salt compound include a sulfonium salt compound represented by the following formula (5-1), an iodonium salt compound represented by the following formula (5-2), and the like.
- R 16 to R 20 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group, or a halogen atom.
- E ⁇ and Q ⁇ are each independently OH ⁇ , R ⁇ —COO ⁇ , R ⁇ —SO 3 — or an anion represented by the following formula (5-3).
- R ( beta) is an alkyl group, an aryl group, or an aralkyl group.
- R 21 represents a linear or branched alkyl group having 1 to 12 carbon atoms in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or 1 carbon atom 12 to 12 linear or branched alkoxyl groups.
- u is an integer of 0-2.
- Examples of the photodegradable base include compounds represented by the following formulas.
- the photodegradable base is preferably a sulfonium salt, more preferably a triarylsulfonium salt, more preferably triphenylsulfonium salicylate, triphenylsulfonium 10-camphorsulfonate, and triphenylsulfonium 10-camphor. Sulfonate is particularly preferred.
- the content of the acid diffusion controller is 0 to 400 parts by mass with respect to 100 parts by mass of the polymer [A] when the [D] acid diffusion controller is a [D] acid diffusion controller. It is preferably 2 parts by mass to 300 parts by mass, more preferably 6 parts by mass to 200 parts by mass.
- the content of the acid spreading control agent is preferably 0 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, with respect to 100 parts by weight of the [C] polymer. More preferred is 0.3 to 10 parts by mass. [D] By making content of an acid diffusion control agent into the said range, LWR performance of the said radiation sensitive resin composition etc. can be improved.
- the radiation-sensitive resin composition usually contains an [E] solvent.
- the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] polymer, the [B] acid generator, and the optionally contained [C] polymer.
- Examples of the solvent include alcohol solvents, ether solvents, ketone organic solvents, amide solvents, ester organic solvents, hydrocarbon solvents, and the like.
- an alcohol solvent for example, C1-C18 aliphatic monoalcohol solvents such as 4-methyl-2-pentanol, n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
- ether solvent for example, Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether) are exemplified.
- ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
- amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
- cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
- chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
- ester solvents include: Monocarboxylic acid ester solvents such as acetates such as n-butyl acetate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as polyhydric alcohol partial alkyl ether acetates such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Examples include carbonate solvents such as diethyl carbonate, ethylene carbonate, and propylene carbonate.
- Monocarboxylic acid ester solvents such as acetates such as n-butyl acetate
- Polyhydric alcohol carboxylate solvents such as propylene glycol acetate
- Polyhydric alcohol partial ether carboxylate solvents such as polyhydric alcohol partial alkyl ether acetates such as propy
- hydrocarbon solvent examples include linear or branched hydrocarbons having 5 to 10 carbon atoms, alicyclic hydrocarbons having 5 to 12 carbon atoms, aromatic hydrocarbons having 6 to 18 carbon atoms, and the like. It is done. Some or all of the hydrogen atoms on the ring of the alicyclic hydrocarbon and aromatic hydrocarbon may be substituted with a linear or branched alkyl group having 1 to 5 carbon atoms.
- ester solvents and ketone solvents are preferable, polyhydric alcohol partial ether carboxylate solvents, cyclic ketone solvents, and lactone solvents are more preferable, and propylene glycol monomethyl ether acetate, cyclohexanone, and ⁇ -butyrolactone are further included.
- the radiation-sensitive resin composition may contain one or more [E] solvents.
- the radiation-sensitive resin composition may contain other optional components in addition to the above [A] to [E].
- the other optional components include surfactants, alicyclic skeleton-containing compounds, and sensitizers. Each of these other optional components may be used alone or in combination of two or more.
- Surfactant Surfactants have the effect of improving coatability, striation, developability, and the like.
- the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
- Nonionic surfactants such as stearate; commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
- the alicyclic skeleton-containing compound has an effect of improving dry etching resistance, pattern shape, adhesion to the substrate, and the like.
- Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as tert-butyl lithocholic acid, tert-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 .
- adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl
- Deoxycholic acid esters such
- sensitizer exhibits the effect
- sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like. These sensitizers may be used alone or in combination of two or more. As content of the sensitizer in the said radiation sensitive resin composition, it is 40 mass parts or less normally with respect to 100 mass parts of [A] polymers.
- the radiation sensitive resin composition includes, for example, [A] polymer, [B] acid generator, optional components such as [C] polymer contained as necessary, and [E] solvent in a predetermined ratio. Can be prepared by mixing.
- the radiation-sensitive resin composition is preferably filtered after mixing with, for example, a filter having a pore size of about 0.2 ⁇ m.
- the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, and more preferably 1% by mass to 20% by mass.
- the resist pattern forming method is: Step of forming a resist film (hereinafter also referred to as “resist film forming step”) A step of immersion exposure of the resist film (hereinafter also referred to as “immersion exposure step”), and a step of developing the resist film subjected to immersion exposure (hereinafter also referred to as “development step”). With The resist film is formed from the radiation sensitive resin composition.
- the radiation sensitive resin composition described above since the radiation sensitive resin composition described above is used, it is possible to form a resist pattern with small LWR and CDU and few defects while exhibiting excellent EL performance. it can. Hereinafter, each step will be described.
- a resist film is formed from the radiation sensitive resin composition.
- the substrate on which the resist film is formed include conventionally known ones such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum.
- an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
- the application method include spin coating (spin coating), cast coating, roll coating, and the like.
- pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film.
- the PB temperature is usually 60 ° C. to 140 ° C., preferably 80 ° C. to 120 ° C.
- the PB time is usually 5 seconds to 600 seconds, and preferably 10 seconds to 300 seconds.
- the film thickness of the formed resist film is preferably 10 nm to 1,000 nm, and more preferably 10 nm to 500 nm.
- the resist film formed in the above step is subjected to immersion exposure.
- exposure is performed by irradiating radiation through a photomask and an immersion medium.
- radiation include far ultraviolet rays such as visible light, ultraviolet rays, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), X-rays, ⁇ rays, etc., depending on the line width of the target pattern.
- Electromagnetic waves Charged particle beams such as electron beams and ⁇ rays. Among these, far ultraviolet rays and electron beams are preferable, ArF excimer laser light, KrF excimer laser light, and electron beams are more preferable, and ArF excimer laser light and electron beams are more preferable.
- the immersion liquid used examples include water and a fluorine-based inert liquid.
- the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
- excimer laser light wavelength 193 nm
- water it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints.
- an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. This additive is preferably one that does not dissolve the resist film on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
- the water used is preferably distilled water.
- PEB post-exposure baking
- the PEB temperature is usually 50 ° C. to 180 ° C., preferably 80 ° C. to 130 ° C.
- the PEB time is usually 5 to 600 seconds, and preferably 10 to 300 seconds.
- an alkali developer is usually used.
- the alkali developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, Methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3.0] -5
- TMAH tetramethylammonium hydroxide
- aqueous alkaline solution in which at least one of alkaline compounds such as 5-nonene is dissolved may be mentioned.
- a TMAH aqueous solution is preferable and a 2.38 mass% TMAH a
- a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
- 13 C-NMR analysis 13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent.
- reaction solution was concentrated under reduced pressure using an evaporator to remove unreacted oxalyl chloride, and 100 mL of toluene was added to obtain a reaction product solution (A).
- 100 mL of toluene, 22.2 g of 1,1,1,3,3,3-hexafluoro-2-propanol and 13.4 g of triethylamine was added to a 500 mL three-necked flask purged with nitrogen, and stir with a stirrer.
- the internal temperature was lowered to 5 ° C. or less in a bath.
- the said reaction product solution (A) was dripped there over 1 hour, and stirring was continued at 23 degreeC after completion
- the organic layer (lower layer) was recovered by a liquid separation operation. 100 mL of 0.2N hydrochloric acid was added to the recovered organic layer, and the organic layer (lower layer) was recovered again by liquid separation operation. Further, the organic layer was washed twice with 50 mL of ultrapure water, and the recovered organic layer was concentrated under reduced pressure using an evaporator to recover a crude product.
- the organic layer was washed once with 100 mL of a 5 mass% aqueous sodium hydrogen carbonate solution, then washed 5 times with 100 mL of pure water, and the organic layer was concentrated under reduced pressure using an evaporator to obtain 122.6 g of a residue.
- the obtained residue was transferred to a 500 mL three-necked flask purged with nitrogen and dissolved in 300 mL of acetonitrile.
- the internal temperature was cooled to 5 ° C. with an ice bath, 61.2 g of triethylamine was added thereto, and then 63.2 g of methacryloyl chloride was added dropwise over 30 minutes. After the inner temperature was 23 ° C.
- Lithium hydroxide (13.1 g) and pure water (120 g) were added to a nitrogen-substituted 1,000 mL three-necked flask and dissolved by stirring.
- a solution prepared by dissolving 133.5 g of the synthesized intermediate (ia-3) in 300 mL of acetonitrile was added thereto over 5 minutes, and the mixture was stirred at 23 ° C. for 3 hours. Thereafter, the reaction solution was transferred to a separatory funnel, 300 mL of toluene was added, and a liquid separation operation was performed, and an aqueous layer (lower layer) was collected.
- the recovered lower layer was returned to the separatory funnel, 200 mL of 3N hydrochloric acid was added to adjust the pH to 1, and 300 mL of toluene was added to perform a liquid separation operation to recover the organic layer (upper layer).
- the collected organic layer was concentrated under reduced pressure using an evaporator to obtain 95.3 g of a residue.
- the obtained residue was transferred to a 1,000 mL three-necked flask purged with nitrogen, 200 mL of toluene and 0.5 g of N, N-dimethylformamide were added, and the mixture was stirred with a stirrer.
- Oxalyl chloride 54.4g was dripped there over 30 minutes, and it stirred for 2 hours after completion
- reaction solution was concentrated under reduced pressure using an evaporator to remove unreacted oxalyl chloride, and 100 mL of toluene was added to obtain a reaction product solution (B).
- 200 mL of toluene, 42.9 g of 2,2,2-trifluoroethanol and 43.3 g of triethylamine were added to a nitrogen-substituted 1,000 mL three-necked flask, and the mixture was stirred with a stirrer. It was as follows.
- the reaction product solution (B) obtained above was added dropwise thereto over 1 hour, and stirring was continued at 23 ° C. for 2 hours after the completion of the addition.
- Example 4 Synthesis of Compound (i-4)
- methyl bromodifluoroacetate was used as a raw material instead of ethyl bromodifluoroacetate
- methyl pyruvate was used instead of 2-methyltetrahydrofuran-3-one
- vacuum distillation was performed at 1 mmHg and 110 ° C.
- compound (i-4) (a compound represented by the following formula (i-4)) was synthesized in the same manner as Example 3 (yield 51% (based on methyl bromofluoroacetate)).
- M + 348.1.
- Example 5 Synthesis of Compound (i-5)
- compound (i-5) was prepared in the same manner as in Example 3, except that methoxyacetone was used instead of 2-methyltetrahydrofuran-3-one as a raw material and vacuum distillation was performed at 1 mmHg and 101 ° C.
- a compound represented by the following formula (i-5)) was synthesized (yield 46% (based on ethyl bromodifluoroacetate)).
- Example 6 Synthesis of Compound (i-6)
- tetrahydrothiophen-3-one was used instead of 2-methyltetrahydrofuran-3-one as a raw material, and vacuum distillation was performed at 1 mmHg and 106 ° C.
- Compound (i-6) (a compound represented by the following formula (i-6)) was synthesized in the same manner as in Example 3 except for carrying out (yield: 43% (based on ethyl bromodifluoroacetate)).
- Compounds (i-1) to (i-6) are structural units (I) of [A] polymer
- compounds (M-1) to (M-7) are structural units of [A] polymer ( II) or [C] the structural unit (CI) of the polymer
- the compounds (M-8) to (M-11) are the structural unit (C-II) of the [C] polymer
- the compound (M- 12) gives the structural unit (III) of the [C] polymer, respectively.
- the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
- the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower.
- the cooled polymerization reaction liquid was transferred to a 2 L separatory funnel, 450 g of n-hexane and 90 g of acetonitrile were added and mixed, and allowed to stand for 30 minutes. Thereafter, the lower layer was recovered and solvent substitution into propylene glycol monomethyl ether acetate was performed to obtain a propylene glycol monomethyl ether acetate solution of polymer (A-1) (yield 88%).
- Mw of the polymer (A-1) was 12,000, and Mw / Mn was 1.66.
- the content ratios of structural units derived from (i-1) and compound (M-2) were 81.0 mol% and 19.0 mol%, respectively.
- Example 8 to 13 and Synthesis Examples 1 to 4 Polymers (A-2) to (A-7) and (a-1) to (a-) were used in the same manner as in Example 1 except that monomers of the types and amounts used shown in Table 1 below were used. 4) was obtained. In Table 1, “-” indicates that the corresponding monomer was not used. The total mass of the monomers used was 30 g. The content (mol%), yield (%), Mw, and Mw / Mn ratio of each structural unit of these polymers are shown in Table 1.
- the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
- the polymerization reaction solution was cooled to 30 ° C. or less by water cooling.
- the cooled polymerization reaction solution was put into 1,500 g of methanol, and the precipitated white powder was filtered off.
- the filtered white powder was washed twice with 300 g of methanol, filtered and dried at 50 ° C. for 17 hours to obtain 81 g of a white powdery polymer (C-1) (yield 81%).
- Mw of the polymer (C-1) was 6,900, and Mw / Mn was 1.55.
- the content ratios of structural units derived from (M-6) and (M-9) were 53.3 mol% and 46.7 mol%.
- B-1 Triphenylsulfonium 3-hydroxyadamantan-1-ylmethyloxycarbonyldifluoromethanesulfonate
- B-2 Triphenylsulfonium adamantane-1-ylcarbonyloxy-1,1,3,3,3-pentafluoropropane- 1-sulfonate
- B-3 4-butoxynaphthalen-1-yltetrahydrothiophenium 3-hydroxyadamantan-1-ylmethyloxycarbonyldifluoromethanesulfonate
- B-4 triphenylsulfonium 2- (adamantan-1-yl)- 1,1-difluoroethanesulfonate
- Example 14 [A] 5 parts by mass of (A-1) as a polymer, 100 parts by mass of (C-1) as a [C] polymer, [B] 5.1 parts by mass of (B-1) as an acid generator [D] 7.9 parts by mass of (D-1) as an acid diffusion controller, and (E-1) 1,980 parts by mass, (E-2) 850 parts by mass and (E- 3) 100 parts by mass was mixed, and the resulting mixed solution was filtered through a membrane filter having a pore size of 0.2 ⁇ m to prepare a radiation sensitive resin composition (J-1).
- Example 15 to 20 and Comparative Examples 1 to 4 The radiation-sensitive resin compositions (J-2) to (J-7) and (CJ-1) to (CJ) were used in the same manner as in Example 14 except that the components having the types and contents shown in Table 2 were used. -4) was prepared.
- ⁇ Formation of resist pattern> On the surface of a 12-inch silicon wafer, using a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron), a composition for forming a lower antireflection film (“ARC66” manufactured by Brewer Science) was applied at 205 ° C. Was heated for 60 seconds to form a lower antireflection film having a thickness of 105 nm. Each radiation-sensitive resin composition was applied onto the lower antireflection film using the spin coater, and PB was performed at 100 ° C. for 50 seconds. Thereafter, it was cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 90 nm.
- a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron)
- ARC66 manufactured by Brewer Science
- each radiation sensitive resin composition was evaluated by measuring according to the following method. The evaluation results are shown in Table 4 below.
- a scanning electron microscope (Hitachi High-Technologies “CG-4100”) was used for measuring the resist pattern.
- sensitivity In the formation of the resist pattern, an exposure amount for forming a 38 nm line and space (1L / 1S) resist pattern was determined as an optimum exposure amount (Eop), and this was defined as sensitivity (mJ / cm 2 ). The sensitivity can be evaluated as “good” when it is 30 mJ / cm 2 or less, and “bad” when it exceeds 30 mJ / cm 2 .
- LWR performance The resist pattern formed by irradiating the exposure amount of Eop obtained above was observed from above the pattern using the scanning electron microscope. A total of 500 line width variations were measured, and a 3-sigma value was determined from the distribution of the measured values, and this was defined as LWR performance (nm). The smaller the value of the LWR performance, the smaller the line play and the better. The LWR performance can be evaluated as “good” when it is 2.5 nm or less, and “bad” when it exceeds 2.5 nm.
- CDU performance The resist pattern formed by irradiating the exposure amount of Eop obtained above was observed from above the pattern using the scanning electron microscope.
- the line width is measured at 20 points in the range of 400 nm, the average value is obtained, the average value is measured at a total of 500 points, and the 3 sigma value is obtained from the distribution of the measured values. ).
- the smaller the value of the CDU performance the better the line width variation over a long period.
- the CDU performance can be evaluated as “good” when it is 1.5 nm or less, and “bad” when it exceeds 2.0 nm.
- the minimum pattern width (Bridge limit) (nm) at which a bridge is generated is obtained, and this value is used as an index of the Bridge limit. As the value of the Bridge limit is larger, the bridge defect is less likely to occur.
- the Bridge limit can be evaluated as “good” when it is 50 nm or more, and “bad” when it is less than 50 nm.
- Collapse limit In the formation of the resist pattern, when the exposure amount is increased from the Eop, the minimum pattern width (Collapse limit) (nm) at which pattern collapse occurs is obtained, and this value is used as an index of the Collapse limit. The smaller the Collapse limit value, the less likely the resist pattern collapses.
- the Collapse limit can be evaluated as “good” when it is 28 nm or less, and “bad” when it exceeds 28 nm.
- NSR-S610C ArF excimer laser immersion exposure apparatus
- a scanning electron microscope (Hitachi High-Technologies Corporation, CG-4000) was used.
- the number of defects on the defect inspection wafer was measured using a defect inspection apparatus (“KLA2810” manufactured by KLA-Tencor). Then, the measured defects were classified into those judged to be derived from the resist film and foreign matters derived from the outside, and the number of those judged to be derived from the resist film was calculated. The smaller the number of defects judged to be derived from this resist film, the better the defect suppression. Defect suppression can be evaluated as “good” when the number of defects judged to be derived from the resist film is 0.1 piece / cm 2 or less, and “bad” when it exceeds 0.1 piece / cm 2. .
- a resist pattern with small LWR and CDU and few defects can be formed while exhibiting excellent EL performance.
- the polymer of this invention can be used suitably as a polymer component of the said radiation sensitive resin composition.
- the compound of the present invention can be suitably used as a monomer for the polymer. Accordingly, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本発明は、下記式(1)で表される第1構造単位を有する第1重合体、及び感放射線性酸発生体を含有する感放射線性樹脂組成物である。下記式(1)中、Z1~Z4は、それぞれ独立して、水素原子、フッ素原子、1価の炭化水素基、1価のフッ素化炭化水素基又は2価以上のヘテロ原子を含む1価の基である。R3は、1価の炭化水素基又は1価のフッ素化炭化水素基である。但し、Z1、Z2及びR3の少なくともいずれかはフッ素原子を含む。また、Z1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。
Description
本発明は、感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物に関する。
半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンのさらなる微細化が要求されており、そのため、種々の感放射線性樹脂組成物が検討されている。このような感放射線性樹脂組成物は、ArFエキシマレーザー等の遠紫外線、電子線などの放射線の照射により、露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。
このような感放射線性樹脂組成物において、例えば、線幅45nm程度のさらに微細なレジストパターンを形成する方法として、液浸露光法(リキッドイマージョンリソグラフィ)が利用されている。この方法では露光光路空間(レンズとレジスト膜との間)を、空気や不活性ガスに比して屈折率(n)が大きい液浸媒体、例えば、純水、フッ素系不活性液体等で満たした状態で露光を行う。従って、レンズの開口数(NA)を増大させた場合でも、焦点深度が低下し難く、しかも高い解像性が得られるという利点がある。
液浸露光法において用いられる樹脂組成物には、形成されるレジスト膜から液浸媒体への酸発生剤等の溶出を抑制し、レジスト膜性能の低下やレンズ等装置の汚染を防止すると共に、レジスト膜表面の水切れ性を良くしてウォーターマークの残存を防止し、高速スキャンを可能にするため、レジスト膜表面の疎水性を高める目的で、フッ素原子含有重合体からなる撥水性重合体添加剤が用いられる(国際公開第2007/116664号参照)。しかし、レジスト膜表面の疎水性を上げると、現像液やリンス液に対する表面濡れ性が低下するため、現像時にレジスト膜表面の未露光部に沈着した現像残渣の除去が不十分となり、レジストパターンにブロッブ欠陥等の欠陥が発生することがある。このような欠陥の発生を抑制することを目的として、液浸露光時には疎水性であるが、アルカリ現像時には親水性を発揮するフッ素原子含有重合体、具体的には、カルボン酸のフルオロアルキルエステル構造を導入した重合体が提案されており(特開2010-32994号公報参照)、このような重合体を撥水性重合体添加剤として用いることにより、欠陥の発生を抑制することができるとされている。
しかし、レジストパターンの微細化が線幅45nm以下のレベルまで進展している現在にあっては、上記欠陥抑制性の要求レベルはさらに高まっている。また、上記撥水性重合体添加剤には、これを含有する感放射線性樹脂組成物のLWR(Line Width Roughness)性能、及びCDU(Critical Dimension Unifomity)性能を高め、さらにはEL(Exposure Latitude(露光余裕度))性能を高めることにより、高精度のパターンを高い歩留まりで得ることを可能にすることも求められている。しかし、上記従来の感放射線性樹脂組成物では、これらの要求を満足させることはできていない。
本発明は以上のような事情に基づいてなされたものであり、LWR性能、CDU性能、EL性能及び欠陥抑制性に優れる感放射線性樹脂組成物を提供することにある。
上記課題を解決するためになされた発明は、下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する第1重合体(以下、「[A]重合体」ともいう)、及び感放射線性酸発生体(以下、「[B]酸発生体」ともいう)を含有する感放射線性樹脂組成物である。
(式(1)中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2は、2価の連結基である。Z1~Z4は、それぞれ独立して、水素原子、フッ素原子、1価の炭化水素基、1価のフッ素化炭化水素基又は2価以上のヘテロ原子を含む1価の基である。Lは、単結合又は2価の炭化水素基である。Z3、Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a)を形成してもよい。Z1~Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~8の環構造(b)を形成してもよい。nは、0又は1である。R3は、1価の炭化水素基又は1価のフッ素化炭化水素基である。但し、Z1、Z2及びR3の少なくともいずれかはフッ素原子を含む。また、Z1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではない。)
上記課題を解決するためになされた別の発明は、レジスト膜を形成する工程、上記レジスト膜を液浸露光する工程、及び上記液浸露光されたレジスト膜を現像する工程を備え、上記レジスト膜を当該感放射線性樹脂組成物により形成するレジストパターン形成方法である。
上記課題を解決するためになされたさらに別の発明は、上記式(1)で表される構造単位を有する重合体である。
上記課題を解決するためになされたさらに別の発明は、下記式(i)で表される化合物である。
(式(i)中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2は、2価の連結基である。Z1~Z4は、それぞれ独立して、水素原子、フッ素原子、1価の炭化水素基、1価のフッ素化炭化水素基又は2価以上のヘテロ原子を含む1価の基である。Lは、単結合又は2価の炭化水素基である。Z3、Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a)を形成してもよい。Z1~Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~8の環構造(b)を形成してもよい。nは、0又は1である。R3は、1価の炭化水素基又は1価のフッ素化炭化水素基である。但し、Z1、Z2及びR3の少なくともいずれかはフッ素原子を含む。また、Z1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではない。)
ここで、「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
環構造の「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造等の環を構成する原子数をいい、多環の脂環構造、多環の芳香環構造及び多環の脂肪族複素環構造の場合は、この多環を構成する原子数をいう。
また、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
環構造の「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造等の環を構成する原子数をいい、多環の脂環構造、多環の芳香環構造及び多環の脂肪族複素環構造の場合は、この多環を構成する原子数をいう。
また、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたEL性能を発揮しつつ、LWR及びCDUが小さく、かつ欠陥の少ないレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いることができる。本発明の化合物は、当該重合体の単量体として好適に用いることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
<感放射線性樹脂組成物>
当該感放射線性樹脂組成物は、[A]重合体及び[B]酸発生体を含有する。当該感放射線性樹脂組成物は、好適成分として、第1重合体([A]重合体)とは異なる重合体であって、酸解離性基を含む構造単位を有する第2重合体(以下「[C]重合体」ともいう)、[D]酸拡散制御体、[E]溶媒を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有してもよい。
以下、各成分について説明する。
当該感放射線性樹脂組成物は、[A]重合体及び[B]酸発生体を含有する。当該感放射線性樹脂組成物は、好適成分として、第1重合体([A]重合体)とは異なる重合体であって、酸解離性基を含む構造単位を有する第2重合体(以下「[C]重合体」ともいう)、[D]酸拡散制御体、[E]溶媒を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有してもよい。
以下、各成分について説明する。
<[A]重合体>
[A]重合体は、構造単位(I)を有する重合体である。[A]重合体は、当該感放射線性樹脂組成物において、撥水性重合体添加剤を構成する。当該感放射線性樹脂組成物は、撥水性重合体添加剤としての[A]重合体を含有することで、レジスト膜を形成した際に、レジスト膜中のフッ素原子含有重合体である[A]重合体の撥油性的特徴により、その分布がレジスト膜表層に偏在化する傾向があり、液浸露光時における酸発生剤や酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、この[A]重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角が所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように当該感放射線性樹脂組成物が撥水性重合体添加剤としての[A]重合体を含有することにより、液浸露光法に好適なレジスト膜を形成することができる。
[A]重合体は、構造単位(I)を有する重合体である。[A]重合体は、当該感放射線性樹脂組成物において、撥水性重合体添加剤を構成する。当該感放射線性樹脂組成物は、撥水性重合体添加剤としての[A]重合体を含有することで、レジスト膜を形成した際に、レジスト膜中のフッ素原子含有重合体である[A]重合体の撥油性的特徴により、その分布がレジスト膜表層に偏在化する傾向があり、液浸露光時における酸発生剤や酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、この[A]重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角が所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように当該感放射線性樹脂組成物が撥水性重合体添加剤としての[A]重合体を含有することにより、液浸露光法に好適なレジスト膜を形成することができる。
また、当該感放射線性樹脂組成物は、この撥水性重合体添加剤としての[A]重合体が構造単位(I)を有することで、LWR性能、CDU性能、EL性能及び欠陥抑制性(以下、これらをまとめて「LWR性能等」ともいう)に優れる。
当該感放射線性樹脂組成物が上記構成を有することで、上記効果を奏する理由については必ずしも明確ではないが、例えば、以下のように推察することができる。すなわち、[A]重合体の構造単位(I)の上記式(1)における-COO-に隣接するZ1、Z2及びR3の少なくともいずれかがフッ素原子を含むことで、R3はアルカリ解離性を発揮することができ、アルカリ現像によりカルボキシ基を生じる。また、上記-COO-の近傍にあるZ1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかが2価以上のヘテロ原子を含むことにより、この[A]重合体を含有する感放射線性樹脂組成物により形成されるレジスト膜表面のアルカリ現像後における親水性が、従来の撥水性重合体添加剤に比較してより高くなる。その結果、当該感放射線性樹脂組成物の現像由来の欠陥を抑制する性能が向上し、加えて、LWR性能、CDU性能及びEL性能が向上する。
当該感放射線性樹脂組成物が上記構成を有することで、上記効果を奏する理由については必ずしも明確ではないが、例えば、以下のように推察することができる。すなわち、[A]重合体の構造単位(I)の上記式(1)における-COO-に隣接するZ1、Z2及びR3の少なくともいずれかがフッ素原子を含むことで、R3はアルカリ解離性を発揮することができ、アルカリ現像によりカルボキシ基を生じる。また、上記-COO-の近傍にあるZ1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかが2価以上のヘテロ原子を含むことにより、この[A]重合体を含有する感放射線性樹脂組成物により形成されるレジスト膜表面のアルカリ現像後における親水性が、従来の撥水性重合体添加剤に比較してより高くなる。その結果、当該感放射線性樹脂組成物の現像由来の欠陥を抑制する性能が向上し、加えて、LWR性能、CDU性能及びEL性能が向上する。
[A]重合体としては、当該感放射線性樹脂組成物における後述する[C]重合体よりも、フッ素原子含有率(質量%)が高いことが好ましい。[A]重合体のフッ素原子含有率が[C]重合体のフッ素原子含有率よりも高いことで、上述の偏在化の度合いがより高くなり、得られるレジスト膜の撥水性及び溶出抑制性等の特性が向上する。
[A]重合体のフッ素原子含有率としては、1質量%以上が好ましく、2質量%~60質量%がより好ましく、4質量%~40質量%がさらに好ましく、7質量%~30質量%が特に好ましい。[A]重合体のフッ素原子含有率が上記下限未満だと、レジスト膜表面の疎水性が低下する場合がある。なお重合体のフッ素原子含有率(質量%)は、13C-NMRスペクトル測定により重合体の構造を求め、その構造から算出することができる。
[A]重合体は、構造単位(I)以外にも、後述する下記式(2)で表される第2構造単位(以下、「構造単位(II)」ともいう)を有することが好ましく、後述する構造単位(I)以外の構造単位であってフッ素原子を含む第3構造単位(以下、「構造単位(III)」ともいう)を有してもよく、また、構造単位(I)~(III)以外のその他の構造単位を有してもよい。[A]重合体は、上記構造単位をそれぞれ1種又は2種以上有していてもよい。
以下、各構造単位について説明する。
以下、各構造単位について説明する。
[構造単位(I)]
構造単位(I)は、下記式(1)で表される。
構造単位(I)は、下記式(1)で表される。
上記式(1)中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2は、2価の連結基である。Z1~Z4は、それぞれ独立して、水素原子、フッ素原子、1価の炭化水素基、1価のフッ素化炭化水素基又は2価以上のヘテロ原子を含む1価の基である。Lは、単結合又は2価の炭化水素基である。Z3、Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a)を形成してもよい。Z1~Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~8の環構造(b)を形成してもよい。nは、0又は1である。R3は、1価の炭化水素基又は1価のフッ素化炭化水素基である。但し、Z1、Z2及びR3の少なくともいずれかはフッ素原子を含む。また、Z1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではない。
上記R1としては、構造単位(I)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
上記R2で表される2価の連結基としては、例えば、少なくとも1個のヘテロ原子を含む2価の基等が挙げられ、-O-、-CO-、-COO-、-CONR’-、-S-、-CS-、-COS-、-CSO-等が挙げられる。R’は、炭素数1~10の1価の炭化水素基である。
上記Z1~Z4及びR3で表される1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
上記1価の鎖状炭化水素基としては、例えば、
メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基、ペンチニル基等のアルキニル基などが挙げられる。
メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基、ペンチニル基等のアルキニル基などが挙げられる。
上記1価の脂環式炭化水素としては、例えば、
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
上記1価の芳香族炭化水素基としては、例えば、
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
上記Z1~Z4及びR3で表される1価のフッ素化炭化水素基としては、例えば、炭素数1~20の1価のフッ素化鎖状炭化水素基、炭素数3~20の1価のフッ素化脂環式炭化水素基、炭素数6~20の1価のフッ素化芳香族炭化水素基等が挙げられる。
上記1価のフッ素化鎖状炭化水素基としては、例えば、
フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基、フルオロプロピル基、トリフルオロ-n-プロピル基、ペンタフルオロ-n-プロピル基、ヘプタフルオロ-n-プロピル基、フルオロ-i-プロピル基、トリフルオロ-i-プロピル基、ヘキサフルオロ-i-プロピル基、ヘプタフルオロ-i-プロピル基、フルオロ-n-ブチル基、ノナフルオロ-n-ブチル基等のフッ素化アルキル基;
フルオロエテニル基、トリフルオロエテニル基、フルオロプロペニル基、ペンタフルオロプロペニル基、フルオロブテニル基、ノナフルオロブテニル基等のフッ素化アルケニル基;
フルオロエチニル基、フルオロプロピニル基、トリフルオロプロピニル基、フルオロブチニル基、ペンタフルオロブチニル基等のフッ素化アルキニル基などが挙げられる。
フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基、フルオロプロピル基、トリフルオロ-n-プロピル基、ペンタフルオロ-n-プロピル基、ヘプタフルオロ-n-プロピル基、フルオロ-i-プロピル基、トリフルオロ-i-プロピル基、ヘキサフルオロ-i-プロピル基、ヘプタフルオロ-i-プロピル基、フルオロ-n-ブチル基、ノナフルオロ-n-ブチル基等のフッ素化アルキル基;
フルオロエテニル基、トリフルオロエテニル基、フルオロプロペニル基、ペンタフルオロプロペニル基、フルオロブテニル基、ノナフルオロブテニル基等のフッ素化アルケニル基;
フルオロエチニル基、フルオロプロピニル基、トリフルオロプロピニル基、フルオロブチニル基、ペンタフルオロブチニル基等のフッ素化アルキニル基などが挙げられる。
上記1価のフッ素化脂環式炭化水素基としては、例えば、
フルオロシクロプロピル基、ペンタフルオロシクロプロピル基、フルオロシクロブチル基、ヘプタフルオロシクロブチル基、フルオロシクロペンチル基、ノナフルオロシクロペンチル基、フルオロシクロヘキシル基、ウンデカフルオロシクロヘキシル基等の単環のフッ素化シクロアルキル基;
フルオロノルボルニル基、ヘプタフルオロノルボルニル基、フルオロアダマンチル基、ペンタデカフルオロアダマンチル基等の多環のフッ素化シクロアルキル基;
フルオロシクロプロペニル基、トリフルオロシクロプロペニル基、フルオロシクロブテニル基、ペンタフルオロシクロブチル基、フルオロシクロペンテニル基、ヘプタフルオロシクロペンテニル基、フルオロシクロヘキセニル基、ペンタフルオロシクロヘキセニル基等の単環のフッ素化シクロアルケニル基;
フルオロノルボルネニル基、ペンタフルオロノルボルネニル基等の多環のフッ素化シクロアルケニル基などが挙げられる。
フルオロシクロプロピル基、ペンタフルオロシクロプロピル基、フルオロシクロブチル基、ヘプタフルオロシクロブチル基、フルオロシクロペンチル基、ノナフルオロシクロペンチル基、フルオロシクロヘキシル基、ウンデカフルオロシクロヘキシル基等の単環のフッ素化シクロアルキル基;
フルオロノルボルニル基、ヘプタフルオロノルボルニル基、フルオロアダマンチル基、ペンタデカフルオロアダマンチル基等の多環のフッ素化シクロアルキル基;
フルオロシクロプロペニル基、トリフルオロシクロプロペニル基、フルオロシクロブテニル基、ペンタフルオロシクロブチル基、フルオロシクロペンテニル基、ヘプタフルオロシクロペンテニル基、フルオロシクロヘキセニル基、ペンタフルオロシクロヘキセニル基等の単環のフッ素化シクロアルケニル基;
フルオロノルボルネニル基、ペンタフルオロノルボルネニル基等の多環のフッ素化シクロアルケニル基などが挙げられる。
上記1価のフッ素化芳香族炭化水素基としては、例えば、
フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、ペンタフルオロフェニル基、フルオロトリル基、トリフルオロトリル基、フルオロキシリル基、トリフルオロキシリル基、フルオロナフチル基、ヘプタフルオロナフチル基、フルオロアントリル基、ノナフルオロアントリル基等のフッ素化アリール基;
フルオロベンジル基、ジフルオロベンジル基、トリフルオロベンジル基、ペンタフルオロベンジル基、ヘプタフルオロベンジル基、フルオロフェネチル基、テトラフルオロフェネチル基、ノナフルオロフェネチル基等のフッ素化アラルキル基などが挙げられる。
フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、ペンタフルオロフェニル基、フルオロトリル基、トリフルオロトリル基、フルオロキシリル基、トリフルオロキシリル基、フルオロナフチル基、ヘプタフルオロナフチル基、フルオロアントリル基、ノナフルオロアントリル基等のフッ素化アリール基;
フルオロベンジル基、ジフルオロベンジル基、トリフルオロベンジル基、ペンタフルオロベンジル基、ヘプタフルオロベンジル基、フルオロフェネチル基、テトラフルオロフェネチル基、ノナフルオロフェネチル基等のフッ素化アラルキル基などが挙げられる。
上記Z1~Z4で表される2価以上のヘテロ原子を含む1価の基における2価以上のへテロ原子としては、2価以上の原子価を有するヘテロ原子であれば特に限定されず、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、リン原子、ホウ素原子等が挙げられる。これらの中で、[A]重合体の極性がより適度になる観点及び合成容易性の観点から、非金属元素の原子が好ましく、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子がより好ましく、酸素原子、硫黄原子がさらに好ましく、酸素原子が特に好ましい。
上記Z1~Z4で表される2価以上のヘテロ原子を含む1価の基としては、例えば、ヘテロ原子と水素原子とからなる1価の基、1価の炭化水素基の炭素-炭素間又は結合手側の末端にヘテロ原子含有基を含む基(α)、上記炭化水素基及び基(α)が有する水素原子の一部又は全部をヘテロ原子を有する置換基で置換した基(β)等が挙げられる。
上記ヘテロ原子と水素原子とからなる1価の基としては、例えば、ヒドロキシ基、スルファニル基(-SH)、アミノ基等が挙げられる。
上記ヘテロ原子含有基としては、例えば、-SO-、-SO2-、-SO2O-等のヘテロ原子からなる2価の基;-CO-、-COS-、-CONH-、-OCOO-、-OCOS-、-OCONH-、-SCONH-、-SCSNH-、-SCSS-等のヘテロ原子と炭素原子とを含む2価の基などが挙げられる。これらの中で、-COO-、-CONH-、-SO2-、-SO2O-が好ましく、-COO-がより好ましい。
上記ヘテロ原子を有する置換基としては、例えば、ヒドロキシ基、カルボキシ基、スルファニル基(-SH)、ケト基(=O)、チオケト基(=S)、ニトリロ基(3価の窒素原子)、ハロゲン原子等が挙げられる。上記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらの中で、フッ素原子が好ましい。
上記ヘテロ原子を有する置換基としては、これらの中で、ヒドロキシ基、カルボキシ基、ケト基、ニトリロ基が好ましく、ヒドロキシ基がより好ましい。
上記ヘテロ原子を有する置換基としては、これらの中で、ヒドロキシ基、カルボキシ基、ケト基、ニトリロ基が好ましく、ヒドロキシ基がより好ましい。
上記Z1及びZ2としては、水素原子、フッ素原子、1価のフッ素化炭化水素基、2価以上のヘテロ原子を含む1価の基が好ましく、水素原子、フッ素原子、トリフルオロメチル基、ラクトン構造を含む基がより好ましく、水素原子、フッ素原子、トリフルオロメチル基、ブチロラクトン-イル基がさらに好ましく、フッ素原子が特に好ましい。
上記Z3及びZ4としては、水素原子、1価の炭化水素基、2価以上のヘテロ原子を含む1価の基が好ましく、水素原子、1価の鎖状炭化水素基、酸素原子を含む1価の基、硫黄原子を含む1価の基がより好ましく、水素原子、アルキル基、ヒドロキシ基、アルコキシカルボニル基がさらに好ましく、水素原子、メチル基、ヒドロキシ基、メトキシカルボニル基、メトキシメチル基が特に好ましい。
上記R3としては、1価の鎖状炭化水素基、1価のフッ素化鎖状炭化水素基が好ましく、アルキル基、フッ素化アルキル基がより好ましく、メチル基、エチル基、トリフルオロエチル基、ペンタフルオロ-n-プロピル基、ヘキサフルオロ-i-プロピル基がさらに好ましい。
上記Lで表される2価の炭化水素基としては、例えば、炭素数1~30の2価の鎖状炭化水素基、炭素数3~30の2価の脂環式炭化水素基、炭素数6~30の2価の芳香族炭化水素基等が挙げられる。
上記2価の鎖状炭化水素基としては、例えば、
メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基等のアルカンジイル基;
エテンジイル基、プロペンジイル基、ブテンジイル基等のアルケンジイル基;
エチンジイル基、プロピンジイル基、ブチンジイル基等のアルキンジイル基等が挙げられる。
メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基等のアルカンジイル基;
エテンジイル基、プロペンジイル基、ブテンジイル基等のアルケンジイル基;
エチンジイル基、プロピンジイル基、ブチンジイル基等のアルキンジイル基等が挙げられる。
上記2価の脂環式炭化水素基としては、例えば、
シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基等の単環のシクロアルカンジイル基;
シクロプロペンジイル基、シクロブテンジイル基等の単環のシクロアルケンジイル基;
ノルボルナンジイル基、アダマンタンジイル基、トリシクロデカンジイル基、テトラシクロドデカンジイル基等の多環のシクロアルカンジイル基;
ノルボルネンジイル基、トリシクロデセンジイル基等の多環のシクロアルケンジイル基等が挙げられる。
シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基等の単環のシクロアルカンジイル基;
シクロプロペンジイル基、シクロブテンジイル基等の単環のシクロアルケンジイル基;
ノルボルナンジイル基、アダマンタンジイル基、トリシクロデカンジイル基、テトラシクロドデカンジイル基等の多環のシクロアルカンジイル基;
ノルボルネンジイル基、トリシクロデセンジイル基等の多環のシクロアルケンジイル基等が挙げられる。
上記2価の芳香族炭化水素基としては、例えば、
ベンゼンジイル基、トルエンジイル基、キシレンジイル基、ナフタレンジイル基、アントラセンジイル基、フェナンスレンジイル基等のアレーンジイル基;
ベンゼンジイルメタンジイル基、ナフタレンジイルシクロヘキサンジイル基等のアレーンジイル(シクロ)アルカンジイル基等が挙げられる。
ベンゼンジイル基、トルエンジイル基、キシレンジイル基、ナフタレンジイル基、アントラセンジイル基、フェナンスレンジイル基等のアレーンジイル基;
ベンゼンジイルメタンジイル基、ナフタレンジイルシクロヘキサンジイル基等のアレーンジイル(シクロ)アルカンジイル基等が挙げられる。
上記2価の炭化水素基としては、これらの中で、2価の鎖状炭化水素基、2価の脂環式炭化水素基が好ましく、アルカンジイル基、シクロアルカンジイル基がより好ましい。
上記Lとしては、単結合、2価の鎖状炭化水素基が好ましく、単結合、1,1-エタンジイル基がより好ましい。
Z3、Z4及びLのうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a)としては、例えば、シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の脂環構造;ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の脂環構造;オキサシクロペンタン構造、オキサシクロヘキサン構造、ブチロラクトン構造、バレロラクトン構造、チアシクロペンタン構造、チアシクロヘキサン構造、アザシクロペンタン構造、アザシクロヘキサン構造等の単環の脂肪族複素環構造;オキサノルボルナン構造、オキサアダマンタン構造、ノルボルナンラクトン構造、チアノルボルナン構造、アザノルボルナン構造等の多環の脂肪族複素環構造などが挙げられる。
環構造(a)としては、これらの中で、多環の脂環構造、単環の脂肪族複素環構造が好ましく、アダマンタン構造、オキサシクロペンタン構造、チアシクロペンタン構造がより好ましい。
環構造(a)としては、これらの中で、多環の脂環構造、単環の脂肪族複素環構造が好ましく、アダマンタン構造、オキサシクロペンタン構造、チアシクロペンタン構造がより好ましい。
Z1~Z4及びLのうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~8の環構造(b)としては、例えば、シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の脂環構造;ノルボルナン構造等の脂環構造;オキサシクロペンタン構造、オキサシクロヘキサン構造、ブチロラクトン構造、バレロラクトン構造等の単環の脂肪族複素環構造;オキサノルボルナン構造等の多環の脂肪族複素環構造などが挙げられる。
環構造(b)としては、これらの中で、単環の脂環構造、単環の脂肪族複素環構造が好ましく、シクロペンタン構造、シクロヘキサン構造、ブチロラクトン構造、バレロラクトン構造がより好ましい。
環構造(b)としては、これらの中で、単環の脂環構造、単環の脂肪族複素環構造が好ましく、シクロペンタン構造、シクロヘキサン構造、ブチロラクトン構造、バレロラクトン構造がより好ましい。
なお、環構造(a)の環員数は3~20であり、環構造(b)の環員数は3~8であるが、これは、環員数の上限を超える場合、上記環構造が嵩高過ぎるため、上述のアルカリ解離性基の解離が阻害され、その結果、本発明の効果を発揮することができないためである。
また、R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではないが、これは、この場合、-COO-C(OR)-COO-(ORは、アルコキシ基である)の構造が不安定であるため、本発明の効果を発揮することができないためである。
また、R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではないが、これは、この場合、-COO-C(OR)-COO-(ORは、アルコキシ基である)の構造が不安定であるため、本発明の効果を発揮することができないためである。
構造単位(I)としては、例えば、下記式(1-1)~(1-3)で表される構造単位(以下、「構造単位(I-1)~(I-3)」ともいう)等が挙げられる。
上記式(1-1)~(1-3)中、R1、R2及びLは、上記式(1)と同義である。
上記式(1-1)中、ZA及びZBは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZA、ZB及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。但し、ZA、ZB及び環構造(a’)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1-2)中、ZC、ZD、ZE及びZFは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZE、ZF及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a”)を形成してもよい。但し、ZC、ZD、ZE、ZF及び環構造(a”)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RBは、1価のフッ素化炭化水素基である。
上記式(1-3)中、ZGは、フッ素原子又は1価のフッ素化炭化水素基である。ZHは、2価以上のヘテロ原子を含む1価の基である。RCは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1-1)中、ZA及びZBは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZA、ZB及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。但し、ZA、ZB及び環構造(a’)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1-2)中、ZC、ZD、ZE及びZFは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZE、ZF及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a”)を形成してもよい。但し、ZC、ZD、ZE、ZF及び環構造(a”)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RBは、1価のフッ素化炭化水素基である。
上記式(1-3)中、ZGは、フッ素原子又は1価のフッ素化炭化水素基である。ZHは、2価以上のヘテロ原子を含む1価の基である。RCは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記ZA~ZFで表される1価の炭化水素基及び2価以上のヘテロ原子を含む1価の基、並びにZHで表される2価以上のヘテロ原子を含む1価の基としては、例えば、上記Z1~Z4として例示したそれぞれの基と同様の基等が挙げられる。
上記RA及びRCで表される1価の炭化水素基及び1価のフッ素化炭化水素基、、RBで表される1価のフッ素化炭化水素基、並びにZGで表される1価のフッ素化炭化水素基としては、例えば、上記R3として例示したそれぞれの基と同様の基等が挙げられる。
上記環構造(a’)及び環構造(a”)としては、例えば、上記環構造(a)として例示したものと同様の環構造等が挙げられる。
構造単位(I)としては、これらの中で、構造単位(I-1)、構造単位(I-2)が好ましい。
構造単位(I-1)としては、例えば、下記式(1-1-1)~(1-1-10)で表される構造単位等が、構造単位(I-2)としては、下記式(1-2-1)~(1-2-3)で表される構造単位等が、構造単位(I-3)としては、下記式(1-3-1)~(1-3-3)で表される構造単位等がそれぞれ挙げられる(以下、それぞれ「構造単位(1-1-1)~(1-3-3)」ともいう)。
上記式(1-1-1)~(1-3-3)中、R1は、上記式(1)と同義である。
構造単位(I)としては、これらの中で、構造単位(I-1-1)、構造単位(I-1-2)、構造単位(I-1-3)、構造単位(I-1-4)、構造単位(I-1-9)、構造単位(I-1-10)、構造単位(I-2-1)、構造単位(I-3-1)が好ましい。
構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、40モル%がより好ましく、50モル%がさらに好ましく、55モル%が特に好ましい。構造単位(I)の含有割合の上限としては、95モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましい。上記含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。上記含有割合が上記下限未満だと、上記効果が十分に発揮されない場合がある。上記含有割合が上記上限を超えると、当該感放射線性樹脂組成物から形成されるレジストパターンの形状の良好性が低下する場合がある。
構造単位(I)を与える化合物としては、例えば、下記式(i)で表される化合物等が挙げられる。
上記式(i)中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2は、2価の連結基である。Z1~Z4は、それぞれ独立して、水素原子、フッ素原子、1価の炭化水素基、1価のフッ素化炭化水素基又は2価以上のヘテロ原子を含む1価の基である。Lは、単結合又は2価の炭化水素基である。Z3、Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a)を形成してもよい。Z1~Z4及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~8の環構造(b)を形成してもよい。nは、0又は1である。R3は、1価の炭化水素基又は1価のフッ素化炭化水素基である。但し、Z1、Z2及びR3の少なくともいずれかはフッ素原子を含む。また、Z1~Z4、環構造(a)及び環構造(b)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。R2が-COO-かつnが0の場合、Z1及びZ2はいずれもアルコキシ基ではない。
化合物(i)としては、下記式(1m-1)~(1m-3)で表される化合物(以下、「化合物(1m-1)~(1m-3)」ともいう)等が挙げられる。
上記式(1m-1)~(1m-3)中、R1、R2及びLは、上記式(1)と同義である。
上記式(1m-1)中、ZA及びZBは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZA、ZB及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。但し、ZA、ZB及び環構造(a’)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1m-2)中、ZC、ZD、ZE及びZFは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZE、ZF及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a”)を形成してもよい。但し、ZC、ZD、ZE、ZF及び環構造(a”)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RBは、1価のフッ素化炭化水素基である。
上記式(1m-3)中、ZGは、フッ素原子又は1価のフッ素化炭化水素基である。ZHは、2価以上のヘテロ原子を含む1価の基である。RCは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1m-1)中、ZA及びZBは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZA、ZB及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。但し、ZA、ZB及び環構造(a’)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記式(1m-2)中、ZC、ZD、ZE及びZFは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZE、ZF及びLのうちの2つ以上は、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a”)を形成してもよい。但し、ZC、ZD、ZE、ZF及び環構造(a”)のうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RBは、1価のフッ素化炭化水素基である。
上記式(1m-3)中、ZGは、フッ素原子又は1価のフッ素化炭化水素基である。ZHは、2価以上のヘテロ原子を含む1価の基である。RCは、1価の炭化水素基又は1価のフッ素化炭化水素基である。
上記化合物(1m-1)としては、例えば、下記式(1m-1-1)~(1m-1-10)で表される化合物が、上記化合物(1m-2)としては、例えば、下記式(1m-2-1)~(1m-2-3)で表される化合物が、上記化合物(1m-3)としては、例えば、下記式(1m-3-1)~(1m-3-3)で表される化合物等が挙げられる。
上記式(1m-1-1)~(1m-3-3)中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
これらの中で、化合物(1m-1-1)、化合物(1m-1-2)、化合物(1m-1-3)、化合物(1m-1-4)、化合物(1m-1-9)、化合物(1m-1-10)、化合物(1m-2-1)、化合物(1m-3-1)が好ましい。
<化合物(i)の合成方法>
化合物(i)は、上記化合物(1m-1)においてR2が-COO-かつZAがヒドロキシ基である化合物(i’-1a)の場合、例えば、
(A)下記式(1-a1)で表されるヒドロキシ基含有ケトン化合物と、下記式(1-b1)で表される(メタ)アクリロイル化合物とを反応させて、下記式(1-c1)で表される(メタ)アクリロイルオキシ基含有ケトン化合物を得る工程、及び
(B)上記(メタ)アクリロイルオキシ基含有ケトン化合物と、下記式(1-d1)で表されるハロ-α,α-ジフルオロ酢酸エステル化合物とを亜鉛の存在下に反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
化合物(i)は、上記化合物(1m-1)においてR2が-COO-かつZAがヒドロキシ基である化合物(i’-1a)の場合、例えば、
(A)下記式(1-a1)で表されるヒドロキシ基含有ケトン化合物と、下記式(1-b1)で表される(メタ)アクリロイル化合物とを反応させて、下記式(1-c1)で表される(メタ)アクリロイルオキシ基含有ケトン化合物を得る工程、及び
(B)上記(メタ)アクリロイルオキシ基含有ケトン化合物と、下記式(1-d1)で表されるハロ-α,α-ジフルオロ酢酸エステル化合物とを亜鉛の存在下に反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
上記スキーム中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Lは、単結合又は2価の炭化水素基である。ZBは、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZB及びLは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。Eは、ハロゲン原子、ヒドロキシ基又は-OCOR’である。R’は、1価の炭化水素基である。Xは、ハロゲン原子である。
上記Eで表されるハロゲン原子としては、収率向上の観点から、塩素原子、臭素原子が好ましく、塩素原子がより好ましい。
上記Xで表されるハロゲン原子としては、収率向上の観点から、塩素原子、臭素原子が好ましく、臭素原子がより好ましい。
上記Xで表されるハロゲン原子としては、収率向上の観点から、塩素原子、臭素原子が好ましく、臭素原子がより好ましい。
上記ヒドロキシ基含有ケトン化合物(1-a1)と、上記(メタ)アクリロイル化合物(1-b1)とを、トリエチルアミン等の塩基存在下、ジクロロメタン等の溶媒中で反応させることにより、上記(メタ)アクリロイルオキシ基含有ケトン化合物(1-c1)が得られる。この得られた化合物(1-c1)と、上記ハロ-α,α-ジフルオロ酢酸エステル化合物(1-d1)とを、亜鉛及び活性化剤としてのトリメチルシリルクロリド等の存在下、テトラヒドロフラン等の溶媒中で反応させることにより、上記化合物(i’-1a)が得られる。
また化合物(i)は、上記化合物(1m-1)において、R2が-COO-かつLが単結合である化合物(i’-1b)の場合、例えば、
(A’)下記式(1-a2)で表されるケトン化合物と、下記式(1-b2)で表されるハロ-α,α-ジフルオロ酢酸エステル化合物とを亜鉛の存在下に反応させて、下記式(1-c2)で表されるヒドロキシ化合物を得る工程、及び
(B’)上記ヒドロキシ化合物と、下記式(1-d2)で表される(メタ)アクリロイル化合物とを反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
(A’)下記式(1-a2)で表されるケトン化合物と、下記式(1-b2)で表されるハロ-α,α-ジフルオロ酢酸エステル化合物とを亜鉛の存在下に反応させて、下記式(1-c2)で表されるヒドロキシ化合物を得る工程、及び
(B’)上記ヒドロキシ化合物と、下記式(1-d2)で表される(メタ)アクリロイル化合物とを反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
上記スキーム中、R1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。ZA及びZBは、それぞれ独立して、水素原子、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZA及びZBは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造(a’)を形成してもよい。但し、ZA、ZB及び環構造(a’)のうちの少なくともいずれかは2価以上のヘテロ原子を含む。RAは、1価の炭化水素基又は1価のフッ素化炭化水素基である。Eは、ハロゲン原子、ヒドロキシ基又は-OCOR’である。R’は、1価の炭化水素基である。Xは、ハロゲン原子である。
上記ケトン化合物(1-a2)と、上記ハロ-α,α-ジフルオロ酢酸エステル化合物(1-b2)とを、亜鉛及び活性化剤としてのトリメチルシリルクロリド等の存在下、テトラヒドロフラン等の溶媒中で反応させることにより、上記ヒドロキシ化合物(1-c2)が得られる。この得られた化合物(1-c2)と、上記(メタ)アクリロイル化合物(1-d2)とを、トリエチルアミン等の塩基存在下、アセトニトリル等の溶媒中で反応させることにより、上記化合物(i’-1b)が得られる。
また化合物(i)は、上記化合物(1m-2)において、R2が-COO-、ZD及びZFが水素原子の場合、例えば、
(A”)下記式(1-a3)で表されるアシル酢酸エステル化合物と、下記式(1-b3)で表される有機ハロゲン化物とを反応させて、下記式(1-c3)で表される置換アシル酢酸エステル化合物を得る工程、及び
(B”)上記置換アシル酢酸エステル化合物を水素化して、下記式(1-d3)で表されるヒドロキシ化合物を得る工程、及び
(C”)上記ヒドロキシ化合物と、下記式(1-e3)で表される(メタ)アクリロイル化合物とを反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
(A”)下記式(1-a3)で表されるアシル酢酸エステル化合物と、下記式(1-b3)で表される有機ハロゲン化物とを反応させて、下記式(1-c3)で表される置換アシル酢酸エステル化合物を得る工程、及び
(B”)上記置換アシル酢酸エステル化合物を水素化して、下記式(1-d3)で表されるヒドロキシ化合物を得る工程、及び
(C”)上記ヒドロキシ化合物と、下記式(1-e3)で表される(メタ)アクリロイル化合物とを反応させる工程
を備える合成方法により下記スキームに従い、簡便かつ収率よく合成することができる。
上記スキーム中、ZC及びZEは、それぞれ独立して、1価の炭化水素基又は2価以上のヘテロ原子を含む1価の基である。ZC及びZEのうちの少なくともいずれかは、2価以上のヘテロ原子を含む。RBは、1価のフッ素化炭化水素基である。Eは、ハロゲン原子、ヒドロキシ基又は-OCOR’である。R’は、1価の炭化水素基である。Xは、ハロゲン原子である。
上記アシル酢酸エステル化合物(1-a3)と、上記有機ハロゲン化物(1-b3)とを、水素化ナトリウム等の塩基存在下、テトラヒドロフラン等の溶媒中で反応させることにより、上記置換アシル酢酸エステル化合物(1-c3)が得られる。この得られた置換アシル酢酸エステル化合物(1-c3)を、水素化ホウ素ナトリウム等の水素化試剤を用い、テトラヒドロフラン等の溶媒中で水素化することにより、上記ヒドロキシ化合物(1-d3)が得られる。この得られたヒドロキシ化合物(1-d3)と、上記(メタ)アクリロイル化合物(1-e3)とを、トリエチルアミン等の塩基存在下、アセトニトリル等の溶媒中で反応させることにより、上記化合物(i’-2a)が得られる。
なお、上記RA及びRBで表される1価の炭化水素基を、1価のフッ素化炭化水素基に変換するには、例えば、トリフルオロ酢酸等の強酸の存在下、ジクロロメタン等の溶媒中で処理した後、反応生成物を、オキサリルクロリド等の塩素化試剤とトルエン等の溶媒中で反応させ、さらに1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール等のフッ素原子含有アルコールと、トリエチルアミン等の塩基の存在下に反応させることにより行うことができる。
化合物(i)は、上記得られた反応生成物を、分液操作、蒸留、再結晶、カラムクロマトグラフィー等により適切に精製することにより単離することができる。
上記構造以外の化合物(i)も、上記同様の方法によって、合成することができる。
[構造単位(II)]
構造単位(II)は、下記式(2)で表される構造単位である。構造単位(II)の-CR5R6R7で表される基は、酸解離性基である。「酸解離性基」とは、カルボキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体は、構造単位(II)を有することで、露光部における現像液への溶解性が向上し、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
構造単位(II)は、下記式(2)で表される構造単位である。構造単位(II)の-CR5R6R7で表される基は、酸解離性基である。「酸解離性基」とは、カルボキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体は、構造単位(II)を有することで、露光部における現像液への溶解性が向上し、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
上記式(2)中、R5は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R6は、炭素数1~10の1価の鎖状炭化水素基又は炭素数3~20の1価の脂環式炭化水素基である。R7及びR8は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の脂環構造を表す。
上記R4としては、構造単位(II)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
上記R5、R6及びR7で表される炭素数1~10の1価の鎖状炭化水素基としては、例えば、
メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基等のアルキニル基等が挙げられる。
メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基等のアルキニル基等が挙げられる。
上記R5、R6及びR7で表される炭素数3~20の1価の脂環式炭化水素基としては、例えば、
シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
上記これらの基が互いに合わせられこれらが結合する炭素原子と共に構成され表す炭素数3~20の脂環構造としては、例えば、
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造等の単環のシクロアルカン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造等が挙げられる。
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造等の単環のシクロアルカン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造等が挙げられる。
構造単位(II)としては、下記式(2-1)~(2-4)で表される構造単位(以下、「構造単位(II-1)~(II-4)」ともいう)が好ましい。
上記式(2-1)~(2-4)中、R5~R7は、上記式(2)と同義である。i及びjは、それぞれ独立して、1~4の整数である。
i及びjとしては、1、2又は4が好ましく、1又は4がより好ましく、1がさらに好ましい。
構造単位(II-1)~(II-4)としては、例えば、下記式で表される構造単位等が挙げられる。
上記式中、R4は、上記式(2)と同義である。
構造単位(II)としては、脂環構造を含む構造単位が好ましく、シクロアルカン構造を含む構造単位がより好ましく、シクロペンタン構造を含む構造単位、シクロヘキサン構造を含む構造単位、シクロオクタン構造を含む構造単位、アダマンタン構造を含む構造単位がさらに好ましく、1-アルキル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、1-アルキル-1-シクロオクチル(メタ)アクリレートに由来する構造単位、2-アルキル-2-アダマンチル(メタ)アクリレートに由来する構造単位、2-(アダマンタン-1-イル)プロパン-2-イル(メタ)アクリレートに由来する構造単位、2-シクロヘキシルプロパン-2-イル(メタ)アクリレートに由来する構造単位が好ましく、1-メチル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、1-i-プロピル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、1-エチル-1-シクロオクチル(メタ)アクリレートに由来する構造単位、2-メチル-2-アダマンチル(メタ)アクリレートに由来する構造単位、2-i-プロピル-2-アダマンチル(メタ)アクリレートに由来する構造単位、2-(アダマンタン-1-イル)プロパン-2-イル(メタ)アクリレートに由来する構造単位、2-シクロヘキシルプロパン-2-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましく、18モル%が特に好ましい。構造単位(II)の含有割合の上限としては、80モル%が好ましく、60モル%がより好ましく、40モル%がさらに好ましく、35モル%が特に好ましい。構造単位(II)の含有割合を上記範囲とすることで、[A]重合体の現像液への溶解性をより向上させることができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。
[構造単位(III)]
構造単位(III)は、構造単位(I)以外の構造単位であって、フッ素原子を含む構造単位である。[A]重合体は、構造単位(III)をさらに有することで、フッ素原子含有率を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。構造単位(III)としては、下記式(f-a)で表される構造単位(以下、「構造単位(III-1)」ともいう)、下記式(f-b)で表される構造単位(以下、「構造単位(III-2)」ともいう)等が挙げられる。
構造単位(III)は、構造単位(I)以外の構造単位であって、フッ素原子を含む構造単位である。[A]重合体は、構造単位(III)をさらに有することで、フッ素原子含有率を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。構造単位(III)としては、下記式(f-a)で表される構造単位(以下、「構造単位(III-1)」ともいう)、下記式(f-b)で表される構造単位(以下、「構造単位(III-2)」ともいう)等が挙げられる。
[構造単位(III-1)]
構造単位(III-1)は、下記式(f-a)で表される構造単位である。
構造単位(III-1)は、下記式(f-a)で表される構造単位である。
上記式(f-a)中、RDは、水素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-CO-O-、-SO2-O-NH-、-CO-NH-又は-O-CO-NH-である。REは、少なくとも1個のフッ素原子を有する炭素数1~6の1価の鎖状炭化水素基又は少なくとも1個のフッ素原子を有する炭素数4~20の1価の脂肪族環状炭化水素基である。
上記REで表される少なくとも1個のフッ素原子を有する炭素数1~6の鎖状炭化水素基としては、例えば、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロピル基、パーフルオロn-プロピル基、パーフルオロi-プロピル基、パーフルオロn-ブチル基、パーフルオロi-ブチル基、パーフルオロt-ブチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
上記REで表される少なくとも1個のフッ素原子を有する炭素数4~20の脂肪族環状炭化水素基としては、例えば、モノフルオロシクロペンチル基、ジフルオロシクロペンチル基、パーフルオロシクロペンチル基、モノフルオロシクロヘキシル基、ジフルオロシクロペンチル基、パーフルオロシクロヘキシルメチル基、フルオロノルボルニル基、フルオロアダマンチル基、フルオロボルニル基、フルオロイソボルニル基、フルオロトリシクロデシル基、フルオロテトラシクロデシル基等が挙げられる。
上記構造単位(3a)を与える単量体としては、例えば、トリフルオロメチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステル、パーフルオロエチル(メタ)アクリル酸エステル、パーフルオロn-プロピル(メタ)アクリル酸エステル、パーフルオロi-プロピル(メタ)アクリル酸エステル、パーフルオロn-ブチル(メタ)アクリル酸エステル、パーフルオロi-ブチル(メタ)アクリル酸エステル、パーフルオロt-ブチル(メタ)アクリル酸エステル、2-(1,1,1,3,3,3-ヘキサフルオロプロピル)(メタ)アクリル酸エステル、1-(2,2,3,3,4,4,5,5-オクタフルオロペンチル)(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、1-(2,2,3,3,3-ペンタフルオロプロピル)(メタ)アクリル酸エステル、モノフルオロシクロペンチル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロペンチル(メタ)アクリル酸エステル、モノフルオロシクロヘキシル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、フルオロノルボルニル(メタ)アクリル酸エステル、フルオロアダマンチル(メタ)アクリル酸エステル、フルオロボルニル(メタ)アクリル酸エステル、フルオロイソボルニル(メタ)アクリル酸エステル、フルオロトリシクロデシル(メタ)アクリル酸エステル、フルオロテトラシクロデシル(メタ)アクリル酸エステル等が挙げられる。
これらの中で、2,2,2-トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステルが好ましい。
これらの中で、2,2,2-トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステルが好ましい。
構造単位(III-1)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%~30モル%が好ましく、5モル%~30モル%がより好ましく、5モル%~20モル%がさらに好ましい。このような含有割合にすることによって、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。
[構造単位(III-2)]
構造単位(III-2)は、下記式(f-b)で表される構造単位である。
構造単位(III-2)は、下記式(f-b)で表される構造単位である。
上記式(f-b)中、RFは、水素原子、メチル基又はトリフルオロメチル基である。R8は、炭素数1~20の(s+1)価の炭化水素基であり、R8のR9側の末端に酸素原子、硫黄原子、-NR’-、カルボニル基、-CO-O-又は-CO-NH-が結合された構造のものも含む。R’は、水素原子又は1価の有機基である。R9は、単結合、炭素数1~10の2価の鎖状炭化水素基又は炭素数4~20の2価の脂肪族環状炭化水素基である。X2は、少なくとも1個のフッ素原子を有する炭素数1~20の2価の鎖状炭化水素基である。A1は、酸素原子、-NR”-、-CO-O-*又は-SO2-O-*である。R”は、水素原子又は1価の有機基である。*は、R10に結合する結合部位を示す。R10は、水素原子又は1価の有機基である。sは、1~3の整数である。sが2又は3の場合、複数のR9、X2、A1及びR10はそれぞれ同一でも異なっていてもよい。
上記R10が水素原子である場合には、[A]重合体のアルカリ現像液に対する溶解性を向上させることができる点で好ましい。
上記R10で表される1価の有機基としては、例えば、酸解離性基、アルカリ解離性基又は置換基を有していてもよい炭素数1~30の炭化水素基等が挙げられる。
上記構造単位(III-2)としては、例えば、下記式(f-b-1)~(f-b-3)で表される構造単位(以下、「構造単位(III-2-1)~(III-2-3)」ともいう)等が挙げられる。
上記式(f-b-1)~(f-b-3)中、R8’は、炭素数1~20の2価の直鎖状、分岐状若しくは環状の飽和若しくは不飽和の炭化水素基である。RF、X2、R10及びsは、上記式(f-b)と同義である。sが2又は3の場合、複数のX2及びR10はそれぞれ同一でも異なっていてもよい。
構造単位(III-2)としては、構造単位(III-2-2)が好ましく、R8’が分岐状の炭化水素基、X2がパーフルオロアルカンジイル基、かつR10が水素原子であることがより好ましく、2-ヒドロキシ-2-トリフルオロメチル-5,5,5-トリフルオロペンタン-2-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
上記構造単位(III-2)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%~50モル%が好ましく、0モル%~30モル%がより好ましく、10モル%~25モル%がさらに好ましい。このような含有割合にすることによって、当該感放射線性樹脂組成物のLWR性能をより向上させることができる。
[他の構造単位]
また、[A]重合体は、上記構造単位以外にも、例えば、アルカリ可溶性基を含む構造単位、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位、脂環式基を含む構造単位等の他の構造単位を有していてもよい。上記アルカリ可溶性基としては、例えば、カルボキシ基、スルホンアミド基、スルホ基等が挙げられる。ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種の構造を有する構造単位としては、後述する[C]重合体における構造単位(C-II)等が挙げられる。
また、[A]重合体は、上記構造単位以外にも、例えば、アルカリ可溶性基を含む構造単位、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位、脂環式基を含む構造単位等の他の構造単位を有していてもよい。上記アルカリ可溶性基としては、例えば、カルボキシ基、スルホンアミド基、スルホ基等が挙げられる。ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種の構造を有する構造単位としては、後述する[C]重合体における構造単位(C-II)等が挙げられる。
上記他の構造単位の含有割合としては、[A]重合体を構成する全構造単位に対して、通常、30モル%以下であり、20モル%以下が好ましい。上記他の構造単位の含有割合が上記上限を超えると、[A]重合体の露光部におけるアルカリ現像液への溶解性が低下し、その結果、当該感放射線性樹脂組成物から形成されるレジストパターンの断面形状の矩形性が低下する場合がある。
[A]重合体の含有量の下限としては、当該感放射線性樹脂組成物における全固形分に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、3質量部が特に好ましい。[A]重合体の含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。
また、[A]重合体の含有量の下限としては、後述する[C]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、3質量部が特に好ましい。[A]重合体の含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。
[A]重合体の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をより高めることができる。
また、[A]重合体の含有量の下限としては、後述する[C]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、3質量部が特に好ましい。[A]重合体の含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。
[A]重合体の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をより高めることができる。
<[A]重合体の合成方法>
[A]重合体は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
[A]重合体は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN、ジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
上記重合に使用される溶媒としては、例えば
n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの重合に使用される溶媒は、1種単独で又は2種以上を併用してもよい。
n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの重合に使用される溶媒は、1種単独で又は2種以上を併用してもよい。
上記重合における反応温度としては、通常40℃~150℃、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間、1時間~24時間が好ましい。
[A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)は特に限定されないが、1,000以上50,000以下が好ましく、2,000以上30,000以下がより好ましく、5,000以上25,000以下がさらに好ましく、7,000以上20,000以下が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗布性及び現像欠陥抑制性を向上させることができる。
[A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
カラム温度:40℃
溶出溶媒:和光純薬工業社のテトラヒドロフラン
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
カラム温度:40℃
溶出溶媒:和光純薬工業社のテトラヒドロフラン
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
<[B]酸発生体>
[B]酸発生体は、露光により酸を発生する物質である。この発生した酸により、[A]重合体、後述する[C]重合体等が有する酸解離性基が解離してカルボキシ基等が生じ、その結果、レジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた酸発生基の形態でも、これらの両方の形態でもよい。
[B]酸発生体は、露光により酸を発生する物質である。この発生した酸により、[A]重合体、後述する[C]重合体等が有する酸解離性基が解離してカルボキシ基等が生じ、その結果、レジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた酸発生基の形態でも、これらの両方の形態でもよい。
[B]酸発生剤としては、例えば、オニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
オニウム塩化合物としては、例えば、スルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
[B]酸発生剤の具体例としては、例えば、特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
[B]酸発生剤としては、下記式(3)で表される化合物が好ましい。[B]酸発生剤が下記構造を有することで、[A]重合体及び[C]重合体との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
上記式(3)中、R11は、環員数7以上の脂環構造を含む1価の基又は環員数7以上の脂肪族複素環構造を含む1価の基である。R12は、炭素数1~10のフッ素化アルカンジイル基である。X+は、1価の放射線分解性オニウムカチオンである。
上記R11で表される環員数7以上の脂環構造を含む1価の基としては、例えば、
シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基等の単環のシクロアルキル基;
シクロオクテニル基、シクロデセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
シクロオクチルカルボニルオキシ基、ノルボルニルオキシカルボニル基、アダマンチルカルボニルオキシ基、ヒドロキシアダマンチルメチルオキシカルボニル基等のエステル基を含む基等が挙げられる。
シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基等の単環のシクロアルキル基;
シクロオクテニル基、シクロデセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
シクロオクチルカルボニルオキシ基、ノルボルニルオキシカルボニル基、アダマンチルカルボニルオキシ基、ヒドロキシアダマンチルメチルオキシカルボニル基等のエステル基を含む基等が挙げられる。
上記R11で表される環員数7以上の脂肪族複素環構造を含む1価の基としては、例えば、
ノルボルナンラクトン-イル基等のラクトン構造を含む基;
ノルボルナンスルトン-イル基等のスルトン構造を含む基;
オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
アザシクロヘプチル基、ジアザビシクロオクタン-イル基等の窒素原子含有複素環基;
チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基等が挙げられる。
ノルボルナンラクトン-イル基等のラクトン構造を含む基;
ノルボルナンスルトン-イル基等のスルトン構造を含む基;
オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
アザシクロヘプチル基、ジアザビシクロオクタン-イル基等の窒素原子含有複素環基;
チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基等が挙げられる。
R11で表される基の環員数しては、上述の酸の拡散長がさらに適度になる観点から、8以上が好ましく、9~15がより好ましく、10~13がさらに好ましい。
R11としては、これらの中で、環員数9以上の脂環構造を含む1価の基が、環員数9以上の脂肪族複素環構造を含む1価の基が好ましく、環員数9以上の脂環構造を含む1価の基がより好ましく、多環のシクロアルキル基、エステル基を含む基がさらに好ましく、アダマンチル基、アダマンチルカルボニルオキシ基、ヒドロキシアダマンチルメチルオキシカルボニル基が特に好ましい。
上記R12で表される炭素数1~10のフッ素化アルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が有する水素原子の1個以上をフッ素原子で置換した基等が挙げられる。
これらの中で、SO3 -基に隣接する炭素原子にフッ素原子が結合しているフッ素化アルカンジイル基が好ましく、SO3 -基に隣接する炭素原子に2個のフッ素原子が結合しているフッ素化アルカンジイル基がより好ましく、1,1-ジフルオロメタンジイル基、1,1-ジフルオロエタンジイル基、1,1,3,3,3-ペンタフルオロ-1,2-プロパンジイル基がさらに好ましい。
これらの中で、SO3 -基に隣接する炭素原子にフッ素原子が結合しているフッ素化アルカンジイル基が好ましく、SO3 -基に隣接する炭素原子に2個のフッ素原子が結合しているフッ素化アルカンジイル基がより好ましく、1,1-ジフルオロメタンジイル基、1,1-ジフルオロエタンジイル基、1,1,3,3,3-ペンタフルオロ-1,2-プロパンジイル基がさらに好ましい。
上記X+で表される1価の放射線分解性オニウムカチオンは、放射線の照射により分解するカチオンである。露光部では、この放射線分解性オニウムカチオンの分解により生成するプロトンと、スルホネートアニオンとからスルホン酸を生じる。上記X+で表される1価の放射線分解性オニウムカチオンとしては、例えば、S、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含む放射線分解性オニウムカチオンが挙げられる。元素としてS(イオウ)を含むカチオンとしては、例えば、スルホニウムカチオン、テトラヒドロチオフェニウムカチオン等が挙げられ、元素としてI(ヨウ素)を含むカチオンとしては、ヨードニウムカチオン等が挙げられる。これらの中で、下記式(X-1)で表されるスルホニウムカチオン、下記式(X-2)で表されるテトラヒドロチオフェニウムカチオン、下記式(X-3)で表されるヨードニウムカチオンが好ましい。
上記式(X-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO2-RP若しくは-SO2-RQであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。RP及びRQは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにRP及びRQがそれぞれ複数の場合、複数のRa1~Ra3並びにRP及びRQはそれぞれ同一でも異なっていてもよい。
上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~8の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基である。k4は、0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を形成してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。k5は、0~6の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を形成してもよい。qは、0~3の整数である。
上記式(X-3)中、Rc1及びRc2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO2-RR若しくは-SO2-RSであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。RR及びRSは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k6及びk7は、それぞれ独立して0~5の整数である。Rc1、Rc2、RR及びRSがそれぞれ複数の場合、複数のRc1、Rc2、RR及びRSはそれぞれ同一でも異なっていてもよい。
上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~8の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基である。k4は、0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を形成してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。k5は、0~6の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を形成してもよい。qは、0~3の整数である。
上記式(X-3)中、Rc1及びRc2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO2-RR若しくは-SO2-RSであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。RR及びRSは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k6及びk7は、それぞれ独立して0~5の整数である。Rc1、Rc2、RR及びRSがそれぞれ複数の場合、複数のRc1、Rc2、RR及びRSはそれぞれ同一でも異なっていてもよい。
上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の直鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。
上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の分岐状のアルキル基としては、例えば、i-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
上記Ra1~Ra3、Rc1及びRc2で表される非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
上記Rb1及びRb2で表される非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基等が挙げられる。
上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の分岐状のアルキル基としては、例えば、i-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
上記Ra1~Ra3、Rc1及びRc2で表される非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
上記Rb1及びRb2で表される非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基等が挙げられる。
上記アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO2-R”、-SO2-R”が好ましく、フッ素化アルキル基、非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。R”は、非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。
上記式(X-1)におけるk1、k2及びk3としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(X-2)におけるk4としては、0~2の整数が好ましく、0又は1がより好ましく、1がさらに好ましい。k5としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(X-3)におけるk6及びk7としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(X-2)におけるk4としては、0~2の整数が好ましく、0又は1がより好ましく、1がさらに好ましい。k5としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(X-3)におけるk6及びk7としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(3)で表される酸発生剤としては、例えば、下記式(3-1)~(3-11)で表される化合物(以下、「化合物(3-1)~(3-11)」ともいう)等が挙げられる。
上記式(3-1)~(3-11)中、X+は、上記式(3)と同義である。
[B]酸発生剤としては、これらの中でも、オニウム塩化合物が好ましく、スルホニウム塩、テトラヒドロチオフェニウム塩がより好ましく、化合物(3-2)、化合物(3-3)、化合物(3-11)がさらに好ましい。
[B]酸発生体の含有量としては、[B]酸発生体が[B]酸発生剤の場合、[A]重合体100質量部に対して、2質量部以上600質量部以下が好ましく、10質量部以上400質量部以下がより好ましく、20質量部以上300質量部以下がさらに好ましく、60質量部以上200質量部以下が特に好ましい。
また、[B]酸発生剤の含有量としては、後述する[C]重合体100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1質量部以上15質量部以下がさらに好ましく、3質量部以上10質量部以下が特に好ましい。
[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度及び現像性を適度にすることができ、その結果、LWR性能等を向上させることができる。[B]酸発生体は、1種又は2種以上を用いることができる。
また、[B]酸発生剤の含有量としては、後述する[C]重合体100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1質量部以上15質量部以下がさらに好ましく、3質量部以上10質量部以下が特に好ましい。
[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度及び現像性を適度にすることができ、その結果、LWR性能等を向上させることができる。[B]酸発生体は、1種又は2種以上を用いることができる。
<[C]重合体>
[C]重合体は、[A]重合体とは異なる重合体であって、酸解離性基を含む構造単位を有する重合体である。当該感放射線性樹脂組成物は、通常、[C]重合体を含有する。[C]重合体は、当該感放射線性樹脂組成物におけるベース重合体を構成する。「ベース重合体」とは、感放射線性樹脂組成物から形成されるレジストパターンを構成する重合体の主成分となる重合体をいい、好ましくは、レジストパターンを構成する全重合体に対して50質量%以上を占める重合体をいう。
[C]重合体は、[A]重合体とは異なる重合体であって、酸解離性基を含む構造単位を有する重合体である。当該感放射線性樹脂組成物は、通常、[C]重合体を含有する。[C]重合体は、当該感放射線性樹脂組成物におけるベース重合体を構成する。「ベース重合体」とは、感放射線性樹脂組成物から形成されるレジストパターンを構成する重合体の主成分となる重合体をいい、好ましくは、レジストパターンを構成する全重合体に対して50質量%以上を占める重合体をいう。
[C]重合体は、酸解離性基を含む構造単位(以下、「構造単位(C-I)」ともいう)以外にも、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位(以下、「構造単位(C-II)」ともいう)を有することが好ましく、また、構造単位(C-I)及び(C-II)以外のその他の構造単位を有していてもよい。
[構造単位(C-I)]
構造単位(C-I)は、酸解離性基を含む構造単位である。当該感放射線性樹脂組成物は、[C]重合体が構造単位(C-I)を有することで、感度及び解像性が向上し、その結果、LWR性能等が向上する。構造単位(C-I)としては、例えば、[A]重合体における構造単位(II)等が挙げられる。
構造単位(C-I)は、酸解離性基を含む構造単位である。当該感放射線性樹脂組成物は、[C]重合体が構造単位(C-I)を有することで、感度及び解像性が向上し、その結果、LWR性能等が向上する。構造単位(C-I)としては、例えば、[A]重合体における構造単位(II)等が挙げられる。
構造単位(C-I)の含有割合としては、[C]重合体を構成する全構造単位に対して、20モル%~90モル%が好ましく、30モル%~75モル%がより好ましく、35モル%~65モル%がさらに好ましい。構造単位(C-I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能を向上させることができる。
[構造単位(C-II)]
構造単位(C-II)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位である。[C]重合体は、構造単位(C-I)に加えて、構造単位(C-II)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。
構造単位(C-II)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位である。[C]重合体は、構造単位(C-I)に加えて、構造単位(C-II)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。
構造単位(C-II)としては、例えば、下記式で表される構造単位等が挙げられる。
上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
構造単位(C-II)としては、これらの中で、ノルボルナンラクトン構造を含む構造単位、γ-ブチロラクトン構造を含む構造単位、エチレンカーボネート構造を含む構造単位、ノルボルナンスルトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位、γ-ブチロラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、シアノ置換ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、γ-ブチロラクトン-イル(メタ)アクリレートに由来する構造単位、γ-ブチロラクトン-イルシクロヘキサンジイル(メタ)アクリレートに由来する構造単位がさらに好ましい。
構造単位(C-II)の含有割合としては、[C]重合体を構成する全構造単位に対して、0モル%~80モル%が好ましく、10モル%~70モル%がより好ましく、30モル%~65モル%がさらに好ましい。上記含有割合を上記範囲とすることで、当該感放射線性樹脂組成物から形成されるレジストパターンの基板への密着性をより向上させることができる。
[その他の構造単位]
[C]重合体は、上記構造単位(C-I)及び(C-II)以外のその他の構造単位を有していてもよい。その他の構造単位としては、例えば、ヒドロキシ基を含む構造単位等が挙げられる。
[C]重合体は、上記構造単位(C-I)及び(C-II)以外のその他の構造単位を有していてもよい。その他の構造単位としては、例えば、ヒドロキシ基を含む構造単位等が挙げられる。
上記ヒドロキシ基を含む構造単位としては、例えば、下記式で表される構造単位等が挙げられる。
上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
上記ヒドロキシ基を含む構造単位の含有割合としては、[C]重合体を構成する全構造単位に対して30モル%以下が好ましく、20モル%以下が好ましい。上記含有割合が上記上限を超えると、当該感放射線性樹脂組成物のパターン形成性が低下する場合がある。
[C]重合体は、上記構造単位以外にもその他の構造単位を有してもよい。上記その他の構造単位の含有割合としては、20モル%以下が好ましく、10モル%以下がより好ましい。
[C]重合体の含有量としては、[A]重合体100質量部に対して、300質量部~100,000質量部が好ましく、500質量部~20,000質量部がより好ましく、700質量部~10,000質量部がさらに好ましく、1,000質量部~3,000質量部が特に好ましい。
また、[C]重合体の含有量としては、当該感放射線性樹脂組成物の全固形分中、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
[C]重合体の含有量を上記範囲とすることで、[A]重合体のレジスト膜表層への偏在化をより促進させることができ、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
また、[C]重合体の含有量としては、当該感放射線性樹脂組成物の全固形分中、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
[C]重合体の含有量を上記範囲とすることで、[A]重合体のレジスト膜表層への偏在化をより促進させることができ、その結果、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
<[D]酸拡散制御体>
当該感放射線性樹脂組成物は、必要に応じて、[D]酸拡散制御体を含有してもよい。
[D]酸拡散制御体は、露光により[B]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、得られる感放射線性樹脂組成物の貯蔵安定性がさらに向上し、またレジストとしての解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。[D]酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物(以下、適宜「[D]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
当該感放射線性樹脂組成物は、必要に応じて、[D]酸拡散制御体を含有してもよい。
[D]酸拡散制御体は、露光により[B]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、得られる感放射線性樹脂組成物の貯蔵安定性がさらに向上し、またレジストとしての解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。[D]酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物(以下、適宜「[D]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
[D]酸拡散制御剤としては、例えば、下記式(4)で表される化合物(以下、「含窒素化合物(I)」ともいう)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(II)」ともいう)、窒素原子を3個有する化合物(以下、「含窒素化合物(III)」ともいう)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
上記式(4)中、R13、R14及びR15は、それぞれ独立して、水素原子、置換されていてもよい直鎖状、分岐状若しくは環状のアルキル基、アリール基又はアラルキル基である。
含窒素化合物(I)としては、例えば、n-ヘキシルアミン等のモノアルキルアミン類;ジ-n-ブチルアミン等のジアルキルアミン類;トリエチルアミン等のトリアルキルアミン類;アニリン等の芳香族アミン類等が挙げられる。
含窒素化合物(II)としては、例えば、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等が挙げられる。
含窒素化合物(III)としては、例えば、ポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;ジメチルアミノエチルアクリルアミド等の重合体等が挙げられる。
アミド基含有化合物としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。
ウレア化合物としては、例えば、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。
含窒素複素環化合物としては、例えば、ピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデシルカルボニルオキシエチル)モルホリン等のモルホリン類;ピラジン、ピラゾール等が挙げられる。
また上記含窒素複素環化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する含窒素複素環化合物としては、例えば、N-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。
[D]酸拡散制御剤としては、これらの中で、含窒素複素環化合物が好ましく、モルホリン類、酸解離性基を有する含窒素複素環化合物がより好ましく、N-(ウンデシルカルボニルオキシエチル)モルホリン、N-t-アルキルオキシカルボニル-4-ヒドロキシピペリジンがさらに好ましい。
また、[D]酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば、露光により分解して酸拡散制御性を失うオニウム塩化合物等が挙げられる。オニウム塩化合物としては、例えば、下記式(5-1)で表されるスルホニウム塩化合物、下記式(5-2)で表されるヨードニウム塩化合物等が挙げられる。
上記式(5-1)及び式(5-2)中、R16~R20は、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。E-及びQ-は、それぞれ独立して、OH-、Rβ-COO-、Rβ-SO3
-又は下記式(5-3)で表されるアニオンである。但し、Rβは、アルキル基、アリール基又はアラルキル基である。
上記式(5-3)中、R21は、水素原子の一部又は全部がフッ素原子で置換されていてもよい炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は炭素数1~12の直鎖状若しくは分岐状のアルコキシル基である。uは、0~2の整数である。
上記光崩壊性塩基としては、例えば、下記式で表される化合物等が挙げられる。
上記光崩壊性塩基としては、これらの中で、スルホニウム塩が好ましく、トリアリールスルホニウム塩がより好ましく、トリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネートがさらに好ましく、トリフェニルスルホニウム10-カンファースルホネートが特に好ましい。
[D]酸拡散制御体の含有量としては、[D]酸拡散制御体が[D]酸拡散制御剤である場合、[A]重合体100質量部に対して0質量部~400質量部が好ましく、2質量部~300質量部がより好ましく、6質量部~200質量部がさらに好ましい。
また、[D]酸拡制御剤の含有量としては、[C]重合体100質量部に対して、0質量部~20質量部が好ましく、0.1質量部~15質量部がより好ましく、0.3質量部~10質量部がさらに好ましい。
[D]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
また、[D]酸拡制御剤の含有量としては、[C]重合体100質量部に対して、0質量部~20質量部が好ましく、0.1質量部~15質量部がより好ましく、0.3質量部~10質量部がさらに好ましい。
[D]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等を向上させることができる。
<[E]溶媒>
当該感放射線性樹脂組成物は、通常、[E]溶媒を含有する。[E]溶媒は、少なくとも[A]重合体、[B]酸発生体及び所望により含有される[C]重合体等を溶解又は分散可能な溶媒であれば特に限定されない。
当該感放射線性樹脂組成物は、通常、[E]溶媒を含有する。[E]溶媒は、少なくとも[A]重合体、[B]酸発生体及び所望により含有される[C]重合体等を溶解又は分散可能な溶媒であれば特に限定されない。
[E]溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系有機溶媒、アミド系溶媒、エステル系有機溶媒、炭化水素系溶媒等が挙げられる。
アルコール系溶媒としては、例えば、
4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
エーテル系溶媒としては、例えば、
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒等が挙げられる。
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒等が挙げられる。
ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
エステル系溶媒としては、例えば、
酢酸n-ブチル等の酢酸エステルなどのモノカルボン酸エステル系溶媒;
プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分アルキルエーテルアセテートなどの多価アルコール部分エーテルカルボキシレート系溶媒;
シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。
酢酸n-ブチル等の酢酸エステルなどのモノカルボン酸エステル系溶媒;
プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分アルキルエーテルアセテートなどの多価アルコール部分エーテルカルボキシレート系溶媒;
シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。
炭化水素系溶媒としては、例えば、炭素数5~10の直鎖状又は分岐鎖状炭化水素、炭素数5~12の脂環式炭化水素、炭素数6~18の芳香族炭化水素等が挙げられる。脂環式炭化水素及び芳香族炭化水素の環上の水素原子の一部又は全部は、炭素数1~5の直鎖状又は分岐鎖状アルキル基によって置換されていてもよい。
これらの中で、エステル系溶媒、ケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒、環状ケトン系溶媒、ラクトン系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、γ-ブチロラクトンがさらに好ましい。当該感放射線性樹脂組成物は、[E]溶媒を1種又は2種以上含有していてもよい。
<その他の任意成分>
当該感放射線性樹脂組成物は、上記[A]~[E]以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、界面活性剤、脂環式骨格含有化合物、増感剤等が挙げられる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
当該感放射線性樹脂組成物は、上記[A]~[E]以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、界面活性剤、脂環式骨格含有化合物、増感剤等が挙げられる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
(界面活性剤)
界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業社)等が挙げられる。当該感放射線性樹脂組成物における界面活性剤の含有量としては、[A]重合体100質量部に対して通常40質量部以下である。
界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業社)等が挙げられる。当該感放射線性樹脂組成物における界面活性剤の含有量としては、[A]重合体100質量部に対して通常40質量部以下である。
(脂環式骨格含有化合物)
脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
脂環式骨格含有化合物としては、例えば
1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。当該感放射線性樹脂組成物における脂環式骨格含有化合物の含有量としては、[A]重合体100質量部に対して通常100質量部以下である。
1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。当該感放射線性樹脂組成物における脂環式骨格含有化合物の含有量としては、[A]重合体100質量部に対して通常100質量部以下である。
(増感剤)
増感剤は、[B]酸発生剤等からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
増感剤は、[B]酸発生剤等からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。当該感放射線性樹脂組成物における増感剤の含有量としては、[A]重合体100質量部に対して通常40質量部以下である。
<感放射線性樹脂組成物の調製方法>
当該感放射線性樹脂組成物は、例えば、[A]重合体、[B]酸発生体、必要に応じて含有される[C]重合体等の任意成分、及び[E]溶媒を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、混合後に、例えば、孔径0.2μm程度のフィルター等でろ過することが好ましい。当該感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
当該感放射線性樹脂組成物は、例えば、[A]重合体、[B]酸発生体、必要に応じて含有される[C]重合体等の任意成分、及び[E]溶媒を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、混合後に、例えば、孔径0.2μm程度のフィルター等でろ過することが好ましい。当該感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
<レジストパターン形成方法>
当該レジストパターン形成方法は、
レジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)
上記レジスト膜を液浸露光する工程(以下、「液浸露光工程」ともいう)、及び
上記液浸露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)
を備え、
上記レジスト膜を当該感放射線性樹脂組成物で形成する。
当該レジストパターン形成方法は、
レジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)
上記レジスト膜を液浸露光する工程(以下、「液浸露光工程」ともいう)、及び
上記液浸露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)
を備え、
上記レジスト膜を当該感放射線性樹脂組成物で形成する。
当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、優れたEL性能を発揮しつつ、LWR及びCDUが小さく、かつ欠陥の少ないレジストパターンを形成することができる。以下、各工程について説明する。
[レジスト膜形成工程]
本工程では、当該感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。塗布した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
本工程では、当該感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。塗布した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
[液浸露光工程]
本工程では、上記工程で形成されたレジスト膜を液浸露光する。具体的には、例えば、フォトマスク及び液浸媒体を介して、放射線を照射し、露光する。放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、電子線が好ましく、ArFエキシマレーザー光、KrFエキシマレーザー光、電子線がより好ましく、ArFエキシマレーザー光、電子線がさらに好ましい。
本工程では、上記工程で形成されたレジスト膜を液浸露光する。具体的には、例えば、フォトマスク及び液浸媒体を介して、放射線を照射し、露光する。放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、電子線が好ましく、ArFエキシマレーザー光、KrFエキシマレーザー光、電子線がより好ましく、ArFエキシマレーザー光、電子線がさらに好ましい。
用いる液浸液としては、例えば、水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により[B]酸発生体から発生した酸による[A]重合体、[C]重合体等が有する酸解離性基の解離を促進させることが好ましい。PEB温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
[現像工程]
本工程では、上記工程で液浸露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水等のリンス液で洗浄し、乾燥することが一般的である。
本工程では、上記工程で液浸露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水等のリンス液で洗浄し、乾燥することが一般的である。
上記現像に用いる現像液としては、通常、アルカリ現像液が用いられる。
上記アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
上記アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[Mw及びMn]
重合体のMw及びMnは、GPCにより、下記条件で測定した。
GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
カラム温度:40℃
溶出溶媒:テトラヒドロフラン(和光純薬工業社製)
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
重合体のMw及びMnは、GPCにより、下記条件で測定した。
GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
カラム温度:40℃
溶出溶媒:テトラヒドロフラン(和光純薬工業社製)
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
[13C-NMR分析]
13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用し、測定溶媒として、重クロロホルムを用いて行った。
13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用し、測定溶媒として、重クロロホルムを用いて行った。
<化合物の合成>
[実施例1](化合物(i-1)の合成)
窒素置換した500mLの三口フラスコに、水素化ナトリウム(鉱油中60質量%)を8.8gと、テトラヒドロフラン200mLとを入れ、氷浴にて内温を0℃に冷やした。そこへアセト酢酸tert-ブチル31.6gを内温が上昇しないようにゆっくり滴下し、滴下終了後0℃で30分間撹拌した。その後、内温を0℃に保持し、α-ブロモ-γ-ブチロラクトン36.3gをゆっくり滴下し、滴下終了後、内温を30℃まで昇温させた。30℃で一晩撹拌し、0.5N塩酸100mLを加えて反応停止した。反応液からジクロロメタン100mLずつを用いて3回抽出操作を繰り返し、回収した有機層をひとまとめにしてエバポレーターで減圧濃縮した。得られた残渣をアセトニトリル100mLに溶解させ、n-ヘキサンを加えてから分液し、アセトニトリル層を回収し、エバポレーターで減圧濃縮することでtert-ブチル3-オキソ-2-(2-オキソオキソランー3-イル)ブタノエートを得た。次に、それを500mLの三口フラスコに全量移してテトラヒドロフラン200mLに溶解させ、氷浴にて内温を0℃とし、そこへ水素化ホウ素ナトリウム2.5gを20gの水に溶解させた溶液をゆっくり滴下した。0℃で3時間撹拌し、飽和食塩水100mLを加えてから、ジクロロメタン100mLで3回抽出操作を行った。有機層をひとまとめにし、エバポレーターで減圧濃縮して残渣を得た。得られた残渣を500mLの三口フラスコに全量移し、アセトニトリル200mL、ジブチルヒドロキシトルエン0.03g及びトリエチルアミン20.24gを加え、氷浴にて内温を0℃にした。そこへ塩化メタクリロイル20.91gをゆっくり滴下し、0℃に保持して4時間撹拌した。反応液に純水を200mL加え、ジクロロメタン100mLで3回抽出操作を行った。有機層をひとまとめにし、シリカゲルクロマトグラフィー(展開溶媒:酢酸エチル/n-ヘキサン=1/4(体積比))にて精製することで、下記式(ia-1)で表される合成中間体35.9gを得た(収率55%(アセト酢酸tert-ブチル基準))。得られた合成中間体(ia-1)を、LC-MSで分析した結果、M+=326.1であることを確認した。
[実施例1](化合物(i-1)の合成)
窒素置換した500mLの三口フラスコに、水素化ナトリウム(鉱油中60質量%)を8.8gと、テトラヒドロフラン200mLとを入れ、氷浴にて内温を0℃に冷やした。そこへアセト酢酸tert-ブチル31.6gを内温が上昇しないようにゆっくり滴下し、滴下終了後0℃で30分間撹拌した。その後、内温を0℃に保持し、α-ブロモ-γ-ブチロラクトン36.3gをゆっくり滴下し、滴下終了後、内温を30℃まで昇温させた。30℃で一晩撹拌し、0.5N塩酸100mLを加えて反応停止した。反応液からジクロロメタン100mLずつを用いて3回抽出操作を繰り返し、回収した有機層をひとまとめにしてエバポレーターで減圧濃縮した。得られた残渣をアセトニトリル100mLに溶解させ、n-ヘキサンを加えてから分液し、アセトニトリル層を回収し、エバポレーターで減圧濃縮することでtert-ブチル3-オキソ-2-(2-オキソオキソランー3-イル)ブタノエートを得た。次に、それを500mLの三口フラスコに全量移してテトラヒドロフラン200mLに溶解させ、氷浴にて内温を0℃とし、そこへ水素化ホウ素ナトリウム2.5gを20gの水に溶解させた溶液をゆっくり滴下した。0℃で3時間撹拌し、飽和食塩水100mLを加えてから、ジクロロメタン100mLで3回抽出操作を行った。有機層をひとまとめにし、エバポレーターで減圧濃縮して残渣を得た。得られた残渣を500mLの三口フラスコに全量移し、アセトニトリル200mL、ジブチルヒドロキシトルエン0.03g及びトリエチルアミン20.24gを加え、氷浴にて内温を0℃にした。そこへ塩化メタクリロイル20.91gをゆっくり滴下し、0℃に保持して4時間撹拌した。反応液に純水を200mL加え、ジクロロメタン100mLで3回抽出操作を行った。有機層をひとまとめにし、シリカゲルクロマトグラフィー(展開溶媒:酢酸エチル/n-ヘキサン=1/4(体積比))にて精製することで、下記式(ia-1)で表される合成中間体35.9gを得た(収率55%(アセト酢酸tert-ブチル基準))。得られた合成中間体(ia-1)を、LC-MSで分析した結果、M+=326.1であることを確認した。
次に、窒素置換した500mLの三口フラスコに、上記合成した化合物(ia-1)35.9gを入れ、ジクロロメタン200mLに溶解させた。そこへトリフルオロ酢酸20mLを加え、23℃で3時間撹拌した。その後、エバポレーターで減圧濃縮し、トルエン100mLを入れてから再度減圧濃縮してトリフルオロ酢酸を留去した。得られた残渣をトルエン100mLに溶解させ、N,N-ジメチルホルムアミド0.4gを加えた。内温を23℃に保持し、スターラーで撹拌しながらオキサリルクロリド20.9gを30分かけて加え、滴下終了後から2時間撹拌した。その後、エバポレーターで反応液を減圧濃縮して未反応のオキサリルクロリドを留去し、トルエン100mLを加えて反応生成物溶液(A)を得た。次いで、窒素置換した500mLの三口フラスコに、トルエン100mL、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール22.2g及びトリエチルアミン13.4gを加え、スターラーにて撹拌し、氷浴にて内温を5℃以下にした。そこへ上記反応生成物溶液(A)を1時間かけて滴下し、滴下終了後から23℃で2時間撹拌を続けた。その後、1N塩酸200mLを加えて5分撹拌し、反応液を分液ロートに移し、分液操作により有機層(上層)を回収した。得られた有機層を純水100mLで5回、分液洗浄を繰り返した後、有機層をエバポレーターで減圧濃縮することにより、粗生成物43.3gを得た。これをシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/n-ヘキサン=1/4(体積比))で精製することで、化合物(i-1)(下記式(I-1)で表される化合物)37.9gを得た(収率82%(合成中間体(ia-1)基準))。得られた化合物(i-1)を、LC-MSで分析した結果、M+=420.1であることを確認した。
[実施例2](化合物(i-2)の合成)
窒素置換した200mLの三口フラスコに、塩化メタクリロイル10.8g及びジクロロメタン100mLを加えて氷浴で0℃に冷却した。そこへヒドロキシアセトン7.4gを内温が上昇しないようにゆっくり滴下し、続いてトリエチルアミン11.1gを内温が上昇しないようにゆっくり滴下した。0℃で2時間撹拌し、ガスクロマトグラフィーにてヒドロキシアセトンの消失を確認した。次いで、反応液に超純水100mL加えて30分撹拌した。その後、分液操作により有機層(下層)を回収した。回収した有機層に0.2N塩酸100mLを加え、再度分液操作により有機層(下層)を回収した。さらにその有機層を超純水50mLで2回洗浄し、回収した有機層をエバポレーターにて減圧濃縮し、粗生成物を回収した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/n-ヘキサン=1/5(体積比))で精製することにより、2-オキソプロピルメタクリレート(下記式(ia-2)で表される化合物)12.7gを得た(収率89%(ヒドロキシアセトン基準))。得られた2-オキシプロピルメタクリレートを、LC-MSで分析した結果、M+=142.06であることを確認した。
窒素置換した200mLの三口フラスコに、塩化メタクリロイル10.8g及びジクロロメタン100mLを加えて氷浴で0℃に冷却した。そこへヒドロキシアセトン7.4gを内温が上昇しないようにゆっくり滴下し、続いてトリエチルアミン11.1gを内温が上昇しないようにゆっくり滴下した。0℃で2時間撹拌し、ガスクロマトグラフィーにてヒドロキシアセトンの消失を確認した。次いで、反応液に超純水100mL加えて30分撹拌した。その後、分液操作により有機層(下層)を回収した。回収した有機層に0.2N塩酸100mLを加え、再度分液操作により有機層(下層)を回収した。さらにその有機層を超純水50mLで2回洗浄し、回収した有機層をエバポレーターにて減圧濃縮し、粗生成物を回収した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/n-ヘキサン=1/5(体積比))で精製することにより、2-オキソプロピルメタクリレート(下記式(ia-2)で表される化合物)12.7gを得た(収率89%(ヒドロキシアセトン基準))。得られた2-オキシプロピルメタクリレートを、LC-MSで分析した結果、M+=142.06であることを確認した。
窒素置換した500mLの三口フラスコに亜鉛粉末3.9g及びテトラヒドロフラン100mLを加え、スターラーで撹拌することで懸濁液とした。そこへトリメチルシリルクロリド0.05gを滴下し、27℃で30分撹拌した。その後、内温を35℃まで上昇させ、そこにブロモジフルオロ酢酸エチル10.5gと、上記合成した化合物(ia-2)(2-オキソプロピルメタクリレート)7.1gのテトラヒドロフラン50mL溶液を1時間かけてゆっくり滴下した。35℃で2時間反応させ、ガスクロマトグラフィーにて2-オキソプロピルメタクリレートの消失を確認後、1N塩酸100mLを加えて30分撹拌した。分液操作により有機層を回収し、水層からジクロロメタンを用いて繰り返し生成物を抽出し、回収したジクロロメタン層を最初に回収した有機層と合わせた。その有機層を5質量%炭酸水素ナトリウム水溶液100mLで洗浄し、その後純水で3回洗浄した。回収した有機層をエバポレーターで減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィ(展開溶媒:酢酸エチル/n-ヘキサン=1/1(体積比))で精製することにより、化合物(i-2)(下記式(i-2)で表される化合物)10.8gを得た(収率81%(2-オキシプロピルメタクリレート基準))。得られた化合物(i-2)を、LC-MSで分析した結果、M+=266.24であることを確認した。
[実施例3](化合物(i-3)の合成)
窒素置換した1,000mLの三口フラスコに、亜鉛粉末68.65g及びテトラヒドロフラン200mLを加え、スターラーで撹拌することで懸濁液とした。そこへトリメチルシリルクロリド5mLを滴下し、30℃で30分間撹拌した。その後、内温を35℃まで上昇させ、そこへブロモジフルオロ酢酸エチル152.24g及び2-メチルテトラヒドロフラン-3-オン75.09gをテトラヒドロフラン100mLに溶解させた溶液を3時間かけて滴下した。滴下終了後、35℃で2時間撹拌を続け、その後、3N塩酸500mLを加えて30分間撹拌した。反応液を分液ロートに移し、トルエン500mLを加え、分液して有機層(上層)を回収した。有機層を5質量%炭酸水素ナトリウム水溶液100mLで1回洗浄した後、純水100mLで5回洗浄し、有機層をエバポレーターで減圧濃縮することにより残渣122.6gを得た。得られた残渣を窒素置換した500mLの三口フラスコに移し、アセトニトリル300mLに溶解させた。氷浴で内温を5℃に冷却し、そこへトリエチルアミン61.2gを加え、続いて、塩化メタクリロイル63.2gを30分間かけて滴下した。その内温を23℃として2時間撹拌した後、1N塩酸300mLを加えて30分間撹拌した。反応液を分液ロートに移し、分液操作により有機層(上層)を回収した。回収した有機層を5質量%炭酸水素ナトリウム水溶液100mLで1回洗浄した後、純水100mLで5回洗浄し、有機層をエバポレーターで減圧濃縮することにより、残渣155.5gを得た。得られた残渣を減圧蒸留(1mmHg、125℃)することにより、下記式(ia-3)で表される合成中間体133.5gを得た。この合成中間体(ia-3)を、LC-MSで分析した結果、M+=292.1であることを確認した。
窒素置換した1,000mLの三口フラスコに、亜鉛粉末68.65g及びテトラヒドロフラン200mLを加え、スターラーで撹拌することで懸濁液とした。そこへトリメチルシリルクロリド5mLを滴下し、30℃で30分間撹拌した。その後、内温を35℃まで上昇させ、そこへブロモジフルオロ酢酸エチル152.24g及び2-メチルテトラヒドロフラン-3-オン75.09gをテトラヒドロフラン100mLに溶解させた溶液を3時間かけて滴下した。滴下終了後、35℃で2時間撹拌を続け、その後、3N塩酸500mLを加えて30分間撹拌した。反応液を分液ロートに移し、トルエン500mLを加え、分液して有機層(上層)を回収した。有機層を5質量%炭酸水素ナトリウム水溶液100mLで1回洗浄した後、純水100mLで5回洗浄し、有機層をエバポレーターで減圧濃縮することにより残渣122.6gを得た。得られた残渣を窒素置換した500mLの三口フラスコに移し、アセトニトリル300mLに溶解させた。氷浴で内温を5℃に冷却し、そこへトリエチルアミン61.2gを加え、続いて、塩化メタクリロイル63.2gを30分間かけて滴下した。その内温を23℃として2時間撹拌した後、1N塩酸300mLを加えて30分間撹拌した。反応液を分液ロートに移し、分液操作により有機層(上層)を回収した。回収した有機層を5質量%炭酸水素ナトリウム水溶液100mLで1回洗浄した後、純水100mLで5回洗浄し、有機層をエバポレーターで減圧濃縮することにより、残渣155.5gを得た。得られた残渣を減圧蒸留(1mmHg、125℃)することにより、下記式(ia-3)で表される合成中間体133.5gを得た。この合成中間体(ia-3)を、LC-MSで分析した結果、M+=292.1であることを確認した。
窒素置換した1,000mLの三口フラスコに、水酸化リチウム13.1g及び純水120gを加え、撹拌して溶解させた。そこへ、上記合成した合成中間体(ia-3)133.5gをアセトニトリル300mLに溶解させた溶液を5分間かけて加え、23℃で3時間撹拌した。その後、反応液を分液ロートに移し、トルエン300mLを加えて分液操作を行い、水層(下層)を回収した。回収した下層を分液ロートに戻し、3N塩酸200mLを加えてpHを1とし、トルエン300mLを加えて分液操作を行い、有機層(上層)を回収した。回収した有機層をエバポレーターで減圧濃縮し、残渣95.3gを得た。得られた残渣を、窒素置換した1,000mLの三口フラスコに移し、トルエン200mL及びN,N-ジメチルホルムアミド0.5gを加えてスターラーにて撹拌した。そこへオキサリルクロリド54.4gを30分間かけて滴下し、滴下終了後から2時間撹拌した。その後、エバポレーターで反応液を減圧濃縮して未反応のオキサリルクロリドを留去し、トルエン100mLを加え、反応生成物溶液(B)を得た。次に、窒素置換した1,000mLの三口フラスコに、トルエン200mL、2,2,2-トリフルオロエタノール42.9g及びトリエチルアミン43.3gを加えてスターラーで撹拌し、氷浴で内温を5℃以下にした。そこへ上記得られた反応生成物溶液(B)を1時間かけて滴下し、滴下終了後から2時間、23℃で撹拌を続けた。その後、1N塩酸400mLを加えて5分間撹拌し、反応液を分液ロートに移し、分液操作により有機層(上層)を回収した。回収した有機層を100mLずつの純水で5回分液洗浄を繰り返し、有機層をエバポレーターで減圧濃縮することにより、粗生成物105.2gを得た。この粗生成物を減圧蒸留(1mmHg、98℃)することにより化合物(i-3)(下記式(i-3)で表される化合物)85.1gを得た(収率69%(合成中間体(ia-3)基準))。得られた化合物(i-3)を、LC-MSで分析した結果、M+=346.1であることを確認した。
[実施例4](化合物(i-4)の合成)
実施例3において、原料として、ブロモジフルオロ酢酸エチルの代わりに、ブロモジフルオロ酢酸メチルを用い、2-メチルテトラヒドロフラン-3-オンの代わりにピルビン酸メチルを用い、減圧蒸留を1mmHg、110℃で行った以外は、実施例3と同様にして、化合物(i-4)(下記式(i-4)で表される化合物)を合成した(収率51%(ブロモフルオロ酢酸メチル基準))。得られた化合物(i-4)を、LC-MSで分析した結果、M+=348.1であることを確認した。
実施例3において、原料として、ブロモジフルオロ酢酸エチルの代わりに、ブロモジフルオロ酢酸メチルを用い、2-メチルテトラヒドロフラン-3-オンの代わりにピルビン酸メチルを用い、減圧蒸留を1mmHg、110℃で行った以外は、実施例3と同様にして、化合物(i-4)(下記式(i-4)で表される化合物)を合成した(収率51%(ブロモフルオロ酢酸メチル基準))。得られた化合物(i-4)を、LC-MSで分析した結果、M+=348.1であることを確認した。
[実施例5](化合物(i-5)の合成)
実施例3において、原料として、2-メチルテトラヒドロフラン-3-オンの代わりにメトキシアセトンを用い、減圧蒸留を1mmHg、101℃で行った以外は、実施例3と同様にして、化合物(i-5)(下記式(i-5)で表される化合物)を合成した(収率46%(ブロモジフルオロ酢酸エチル基準))。得られた化合物(i-5)を、LC-MSで分析した結果、M+=334.1であることを確認した。
実施例3において、原料として、2-メチルテトラヒドロフラン-3-オンの代わりにメトキシアセトンを用い、減圧蒸留を1mmHg、101℃で行った以外は、実施例3と同様にして、化合物(i-5)(下記式(i-5)で表される化合物)を合成した(収率46%(ブロモジフルオロ酢酸エチル基準))。得られた化合物(i-5)を、LC-MSで分析した結果、M+=334.1であることを確認した。
[実施例6](化合物(i-6)の合成
実施例3において、原料として、2-メチルテトラヒドロフラン-3-オンの代わりにテトラヒドロチオフェン-3-オンを用い、減圧蒸留を1mmHg、106℃で行った以外は、実施例3と同様にして、化合物(i-6)(下記式(i-6)で表される化合物)を合成した(収率43%(ブロモジフルオロ酢酸エチル基準))。得られた化合物(i-6)を、LC-MSで分析した結果、M+=348.1であることを確認した。
実施例3において、原料として、2-メチルテトラヒドロフラン-3-オンの代わりにテトラヒドロチオフェン-3-オンを用い、減圧蒸留を1mmHg、106℃で行った以外は、実施例3と同様にして、化合物(i-6)(下記式(i-6)で表される化合物)を合成した(収率43%(ブロモジフルオロ酢酸エチル基準))。得られた化合物(i-6)を、LC-MSで分析した結果、M+=348.1であることを確認した。
<重合体の合成>
[A]重合体(撥水性重合体添加剤)及び[C]重合体(ベース重合体)の合成に用いた各単量体を以下に示す。
[A]重合体(撥水性重合体添加剤)及び[C]重合体(ベース重合体)の合成に用いた各単量体を以下に示す。
なお、化合物(i-1)~(i-6)は[A]重合体の構造単位(I)を、化合物(M-1)~(M-7)は[A]重合体の構造単位(II)又は[C]重合体の構造単位(C-I)を、化合物(M-8)~(M-11)は[C]重合体の構造単位(C-II)を、化合物(M-12)は[C]重合体の構造単位(III)をそれぞれ与える。
([A]重合体の合成)
[実施例7]
上記化合物(i-1)26.8g(80モル%)及び化合物(M-2)3.2g(20モル%)を30gの2-ブタノンに溶解し、さらに、ラジカル重合開始剤としてのジメチル2,2’-アゾビスイソブチレート0.27gを溶解させて単量体溶液を調製した。次に、30gの2-ブタノンを入れた300mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。上記冷却した重合反応液を2L分液漏斗に移液した後、450gのn-ヘキサンと90gのアセトニトリルを投入して混合し30分間静置した。その後、下層を回収し、プロピレングリコールモノメチルエーテルアセテートへ溶媒置換を行うことにより、重合体(A-1)のプロピレングリコールモノメチルエーテルアセテート溶液とした(収率88%)。重合体(A-1)のMwは12,000、Mw/Mnは1.66であった。13C-NMR分析の結果、(i-1)及び化合物(M-2)に由来する構造単位の含有割合は、それぞれ81.0モル%及び19.0モル%であった。
[実施例7]
上記化合物(i-1)26.8g(80モル%)及び化合物(M-2)3.2g(20モル%)を30gの2-ブタノンに溶解し、さらに、ラジカル重合開始剤としてのジメチル2,2’-アゾビスイソブチレート0.27gを溶解させて単量体溶液を調製した。次に、30gの2-ブタノンを入れた300mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。上記冷却した重合反応液を2L分液漏斗に移液した後、450gのn-ヘキサンと90gのアセトニトリルを投入して混合し30分間静置した。その後、下層を回収し、プロピレングリコールモノメチルエーテルアセテートへ溶媒置換を行うことにより、重合体(A-1)のプロピレングリコールモノメチルエーテルアセテート溶液とした(収率88%)。重合体(A-1)のMwは12,000、Mw/Mnは1.66であった。13C-NMR分析の結果、(i-1)及び化合物(M-2)に由来する構造単位の含有割合は、それぞれ81.0モル%及び19.0モル%であった。
[実施例8~13及び合成例1~4]
下記表1に示す種類及び使用量の単量体を用いた以外は、実施例1と同様にして、重合体(A-2)~(A-7)及び(a-1)~(a-4)を得た。なお、表1中の「-」は、該当する単量体を用いなかったことを示す。なお、使用する単量体の合計質量は30gとした。これらの重合体の各構造単位の含有割合(モル%)、収率(%)、Mw及びMw/Mn比を、表1に合わせて示す。
下記表1に示す種類及び使用量の単量体を用いた以外は、実施例1と同様にして、重合体(A-2)~(A-7)及び(a-1)~(a-4)を得た。なお、表1中の「-」は、該当する単量体を用いなかったことを示す。なお、使用する単量体の合計質量は30gとした。これらの重合体の各構造単位の含有割合(モル%)、収率(%)、Mw及びMw/Mn比を、表1に合わせて示す。
([C]重合体の合成)
[合成例5]
上記化合物(M-6)51.0g(55モル%)及び化合物(M-9)49.0g(45モル%)を2-ブタノン150gに溶解し、さらに、ラジカル重合開始剤としてのAIBN3.62g(化合物の合計モル数に対して5モル%)を溶解させて単量体溶液を調製した。次に、50gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷により30℃以下に冷却した。1,500gのメタノール中に、上記冷却した重合反応液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を300gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(C-1)を81g得た(収率81%)。重合体(C-1)のMwは6,900、Mw/Mnは1.55であった。また、13C-NMR分析の結果、(M-6)及び(M-9)に由来する構造単位の含有割合は、53.3モル%及び46.7モル%であった。
[合成例5]
上記化合物(M-6)51.0g(55モル%)及び化合物(M-9)49.0g(45モル%)を2-ブタノン150gに溶解し、さらに、ラジカル重合開始剤としてのAIBN3.62g(化合物の合計モル数に対して5モル%)を溶解させて単量体溶液を調製した。次に、50gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷により30℃以下に冷却した。1,500gのメタノール中に、上記冷却した重合反応液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を300gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(C-1)を81g得た(収率81%)。重合体(C-1)のMwは6,900、Mw/Mnは1.55であった。また、13C-NMR分析の結果、(M-6)及び(M-9)に由来する構造単位の含有割合は、53.3モル%及び46.7モル%であった。
[合成例6及び7]
下記表2に示す種類及び使用量の各単量体を用いた以外は、合成例5と同様にして、重合体(C-2)及び(C-3)を合成した。なお、使用する単量体の合計質量は100gとした。これらの重合体の各構造単位の含有割合、収率(%)、Mw及びMw/Mn比を、表2に合わせて示す。
下記表2に示す種類及び使用量の各単量体を用いた以外は、合成例5と同様にして、重合体(C-2)及び(C-3)を合成した。なお、使用する単量体の合計質量は100gとした。これらの重合体の各構造単位の含有割合、収率(%)、Mw及びMw/Mn比を、表2に合わせて示す。
<感放射線性樹脂組成物の調製>
感放射線性樹脂組成物の調製に用いた各成分を以下に示す。
感放射線性樹脂組成物の調製に用いた各成分を以下に示す。
[[B]酸発生剤]
各構造式を下記に示す。
B-1:トリフェニルスルホニウム3-ヒドロキシアダマンタン-1-イルメチルオキシカルボニルジフルオロメタンスルホネート
B-2:トリフェニルスルホニウムアダマンタン-1-イルカルボニルオキシ-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート
B-3:4-ブトキシナフタレン-1-イルテトラヒドロチオフェニウム3-ヒドロキシアダマンタン-1-イルメチルオキシカルボニルジフルオロメタンスルホネート
B-4:トリフェニルスルホニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタンスルホネート
各構造式を下記に示す。
B-1:トリフェニルスルホニウム3-ヒドロキシアダマンタン-1-イルメチルオキシカルボニルジフルオロメタンスルホネート
B-2:トリフェニルスルホニウムアダマンタン-1-イルカルボニルオキシ-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート
B-3:4-ブトキシナフタレン-1-イルテトラヒドロチオフェニウム3-ヒドロキシアダマンタン-1-イルメチルオキシカルボニルジフルオロメタンスルホネート
B-4:トリフェニルスルホニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタンスルホネート
[[D]酸拡散制御剤]
各構造式を下記に示す。
D-1:トリフェニルスルホニウム10-カンファースルホネート
各構造式を下記に示す。
D-1:トリフェニルスルホニウム10-カンファースルホネート
[[E]溶媒]
E-1:プロピレングリコールモノメチルエーテルアセテート
E-2:シクロヘキサノン
E-3:γ-ブチロラクトン
E-1:プロピレングリコールモノメチルエーテルアセテート
E-2:シクロヘキサノン
E-3:γ-ブチロラクトン
[実施例14]
[A]重合体としての(A-1)5質量部、[C]重合体としての(C-1)100質量部、[B]酸発生剤としての(B-1)5.1質量部、[D]酸拡散制御剤としての(D-1)7.9質量部並びに[E]溶媒としての(E-1)1,980質量部、(E-2)850質量部及び(E-3)100質量部を混合し、得られた混合液を孔径0.2μmのメンブランフィルターで濾過し、感放射線性樹脂組成物(J-1)を調製した。
[A]重合体としての(A-1)5質量部、[C]重合体としての(C-1)100質量部、[B]酸発生剤としての(B-1)5.1質量部、[D]酸拡散制御剤としての(D-1)7.9質量部並びに[E]溶媒としての(E-1)1,980質量部、(E-2)850質量部及び(E-3)100質量部を混合し、得られた混合液を孔径0.2μmのメンブランフィルターで濾過し、感放射線性樹脂組成物(J-1)を調製した。
[実施例15~20及び比較例1~4]
下記表2に示す種類及び含有量の各成分を用いた以外は実施例14と同様にして感放射線性樹脂組成物(J-2)~(J-7)及び(CJ-1)~(CJ-4)を調製した。
下記表2に示す種類及び含有量の各成分を用いた以外は実施例14と同様にして感放射線性樹脂組成物(J-2)~(J-7)及び(CJ-1)~(CJ-4)を調製した。
<レジストパターンの形成>
12インチのシリコンウェハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して各感放射線性樹脂組成物を塗布し、100℃で50秒間PBを行った。その後23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Dipole35X(σ=0.97/0.77)の光学条件にて、38nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを介して露光した。露光後、下記表4に示すPEB温度で50秒間PEBを行った。その後、2.38質量%TMAH水溶液を用い、23℃で30秒間パドル現像を行い、次いで、超純水を用いて7秒間リンスし、その後、2,000rpm、15秒間振り切りでスピンドライすることにより、38nmラインアンドスペース(1L/1S)のレジストパターンを形成した。
12インチのシリコンウェハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して各感放射線性樹脂組成物を塗布し、100℃で50秒間PBを行った。その後23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Dipole35X(σ=0.97/0.77)の光学条件にて、38nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを介して露光した。露光後、下記表4に示すPEB温度で50秒間PEBを行った。その後、2.38質量%TMAH水溶液を用い、23℃で30秒間パドル現像を行い、次いで、超純水を用いて7秒間リンスし、その後、2,000rpm、15秒間振り切りでスピンドライすることにより、38nmラインアンドスペース(1L/1S)のレジストパターンを形成した。
<評価>
上記形成したレジストパターンについて、下記方法に従って測定することにより、各感放射線性樹脂組成物の評価を行った。評価結果を下記表4に示す。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4100」)を用いた。
上記形成したレジストパターンについて、下記方法に従って測定することにより、各感放射線性樹脂組成物の評価を行った。評価結果を下記表4に示す。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4100」)を用いた。
[感度]
上記レジストパターンの形成において、38nmラインアンドスペース(1L/1S)のレジストパターンを形成する露光量を最適露光量(Eop)として求め、これを感度(mJ/cm2)とした。感度は、30mJ/cm2以下の場合は「良好」と、30mJ/cm2を超える場合は「不良」と評価できる。
上記レジストパターンの形成において、38nmラインアンドスペース(1L/1S)のレジストパターンを形成する露光量を最適露光量(Eop)として求め、これを感度(mJ/cm2)とした。感度は、30mJ/cm2以下の場合は「良好」と、30mJ/cm2を超える場合は「不良」と評価できる。
[LWR性能]
上記で求めたEopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど、ラインのがたつきが小さく良好である。LWR性能は、2.5nm以下の場合は「良好」と、2.5を超える場合は「不良」と評価できる。
上記で求めたEopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど、ラインのがたつきが小さく良好である。LWR性能は、2.5nm以下の場合は「良好」と、2.5を超える場合は「不良」と評価できる。
[CDU性能]
上記で求めたEopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。400nmの範囲で線幅を20点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能(nm)とした。CDU性能は、その値が小さいほど、長周期での線幅のばらつきが小さく良好である。CDU性能は、1.5nm以下の場合は「良好」と、2.0を超える場合は「不良」と評価できる。
上記で求めたEopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。400nmの範囲で線幅を20点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能(nm)とした。CDU性能は、その値が小さいほど、長周期での線幅のばらつきが小さく良好である。CDU性能は、1.5nm以下の場合は「良好」と、2.0を超える場合は「不良」と評価できる。
[EL性能]
感放射線性樹脂組成物のEL性能は、下記方法で測定される10%EL、Bridge限界及びCollapse限界の各値により評価した。
感放射線性樹脂組成物のEL性能は、下記方法で測定される10%EL、Bridge限界及びCollapse限界の各値により評価した。
(10%EL)
38nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを用いた場合に解像されるレジストパターンの寸法が、マスクの設計寸法の±10%以内となる場合の露光量の範囲の上記Eopに対する割合を10%EL(%)とした。10%ELは、その値が大きいほど、露光量変化に対するパターニング性能の変化量が小さく良好である。10%ELは18%以上の場合は「良好」と、18%未満の場合は「不良」と評価できる。
38nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを用いた場合に解像されるレジストパターンの寸法が、マスクの設計寸法の±10%以内となる場合の露光量の範囲の上記Eopに対する割合を10%EL(%)とした。10%ELは、その値が大きいほど、露光量変化に対するパターニング性能の変化量が小さく良好である。10%ELは18%以上の場合は「良好」と、18%未満の場合は「不良」と評価できる。
(Bridge限界)
上記レジストパターンの形成において、上記Eopから露光量を小さくしていく場合に、ブリッジが発生する最小のパターン幅(Bridge限界)(nm)を求め、この値をBridge限界の指標とした。Bridge限界の値が大きいほど、ブリッジ欠陥が発生し難く良好である。Bridge限界は、50nm以上の場合は「良好」と、50nm未満の場合は「不良」と評価できる。
上記レジストパターンの形成において、上記Eopから露光量を小さくしていく場合に、ブリッジが発生する最小のパターン幅(Bridge限界)(nm)を求め、この値をBridge限界の指標とした。Bridge限界の値が大きいほど、ブリッジ欠陥が発生し難く良好である。Bridge限界は、50nm以上の場合は「良好」と、50nm未満の場合は「不良」と評価できる。
(Collapse限界)
上記レジストパターンの形成において、上記Eopから露光量を大きくしていく場合に、パターン倒れが発生する最小のパターン幅(Collapse限界)(nm)を求め、この値をCollapse限界の指標とした。Collapse限界の値が小さいほど、レジストパターンの倒れが発生し難く良好である。Collapse限界は、28nm以下の場合は「良好」と、28nmを超える場合は「不良」と評価できる。
上記レジストパターンの形成において、上記Eopから露光量を大きくしていく場合に、パターン倒れが発生する最小のパターン幅(Collapse限界)(nm)を求め、この値をCollapse限界の指標とした。Collapse限界の値が小さいほど、レジストパターンの倒れが発生し難く良好である。Collapse限界は、28nm以下の場合は「良好」と、28nmを超える場合は「不良」と評価できる。
[欠陥抑制性]
下層反射防止膜形成用組成物(日産化学工業社の「ARC66」)により下層反射防止膜を形成した12インチシリコンウェハ上に、感放射線性樹脂組成物により塗膜を形成し、120℃で50秒間SBを行い、膜厚110nmのレジスト膜を形成した。次に、このレジスト膜についてArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、NA=1.3、ratio=0.800、Dipoleの条件により、ターゲットサイズが幅40nmのラインアンドスペース(1L/1S)形成用のマスクパターンを介して露光した。露光後、95℃で50秒間PEBを行った。その後、現像装置(東京エレクトロン社の「クリーントラック ACT12」)のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により10秒間現像し、15秒間純水によりリンスし、2,000rpmで液振り切り乾燥して、ポジ型のレジストパターンを形成した。このとき、幅38nmの1L/1Sを形成する露光量を最適露光量とした。この最適露光量にてウェハ全面に線幅38nmの1L/1Sを形成し、欠陥検査用ウェハとした。なお、測長には走査型電子顕微鏡(日立ハイテクノロジーズ社、CG-4000)を用いた。この欠陥検査用ウェハ上の欠陥数を、欠陥検査装置(KLA-Tencor社の「KLA2810」)を用いて測定した。そして、上記測定された欠陥をレジスト膜由来と判断されるものと外部由来の異物とに分類し、レジスト膜由来と判断されるものの数を算出した。欠陥抑制性は、このレジスト膜由来と判断される欠陥の数が少ないほど良好である。欠陥抑制性は、このレジスト膜由来を判断される欠陥の数が0.1個/cm2以下の場合は「良好」と、0.1個/cm2を超える場合は「不良」と評価できる。
下層反射防止膜形成用組成物(日産化学工業社の「ARC66」)により下層反射防止膜を形成した12インチシリコンウェハ上に、感放射線性樹脂組成物により塗膜を形成し、120℃で50秒間SBを行い、膜厚110nmのレジスト膜を形成した。次に、このレジスト膜についてArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、NA=1.3、ratio=0.800、Dipoleの条件により、ターゲットサイズが幅40nmのラインアンドスペース(1L/1S)形成用のマスクパターンを介して露光した。露光後、95℃で50秒間PEBを行った。その後、現像装置(東京エレクトロン社の「クリーントラック ACT12」)のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により10秒間現像し、15秒間純水によりリンスし、2,000rpmで液振り切り乾燥して、ポジ型のレジストパターンを形成した。このとき、幅38nmの1L/1Sを形成する露光量を最適露光量とした。この最適露光量にてウェハ全面に線幅38nmの1L/1Sを形成し、欠陥検査用ウェハとした。なお、測長には走査型電子顕微鏡(日立ハイテクノロジーズ社、CG-4000)を用いた。この欠陥検査用ウェハ上の欠陥数を、欠陥検査装置(KLA-Tencor社の「KLA2810」)を用いて測定した。そして、上記測定された欠陥をレジスト膜由来と判断されるものと外部由来の異物とに分類し、レジスト膜由来と判断されるものの数を算出した。欠陥抑制性は、このレジスト膜由来と判断される欠陥の数が少ないほど良好である。欠陥抑制性は、このレジスト膜由来を判断される欠陥の数が0.1個/cm2以下の場合は「良好」と、0.1個/cm2を超える場合は「不良」と評価できる。
表4の結果から明らかなように、実施例の感放射線性樹脂組成物によれば、優れたEL性能を発揮しつつ、LWR及びCDUが小さく、かつ欠陥が少ないレジストパターンを形成することができる。これに対し、比較例の感放射線性樹脂組成物では、LWR性能、CDU性能、EL性能及び欠陥抑制性の各性能は不十分であった。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたEL性能を発揮しつつ、LWR及びCDUが小さく、かつ欠陥の少ないレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いることができる。本発明の化合物は、当該重合体の単量体として好適に用いることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
Claims (9)
- 下記式(1)で表される第1構造単位を有する第1重合体、及び
感放射線性酸発生体
を含有する感放射線性樹脂組成物。
- 上記2価以上のヘテロ原子が酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群より選ばれる少なくとも1種である請求項1に記載の感放射線性樹脂組成物。
- 上記第1重合体とは異なる第2重合体をさらに含有し、この第2重合体が酸解離性基を含む構造単位を有する請求項1に記載の感放射線性樹脂組成物。
- 上記第2重合体が、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位をさらに有する請求項4に記載の感放射線性樹脂組成物。
- レジスト膜を形成する工程、
上記レジスト膜を液浸露光する工程、及び
上記液浸露光されたレジスト膜を現像する工程
を備え、
上記レジスト膜を、請求項1に記載の感放射線性樹脂組成物により形成するレジストパターン形成方法。 - 下記式(1)で表される構造単位を有する重合体。
- 下記式(i)で表される化合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015529490A JP6451630B2 (ja) | 2013-07-31 | 2014-07-09 | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
EP14832692.9A EP3029524A4 (en) | 2013-07-31 | 2014-07-09 | Radiation-sensitive resin composition, resist pattern formation method, polymer, and compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-159996 | 2013-07-31 | ||
JP2013159996 | 2013-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016027A1 true WO2015016027A1 (ja) | 2015-02-05 |
Family
ID=52431567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068367 WO2015016027A1 (ja) | 2013-07-31 | 2014-07-09 | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3029524A4 (ja) |
JP (1) | JP6451630B2 (ja) |
TW (1) | TW201512771A (ja) |
WO (1) | WO2015016027A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055868A (ja) * | 2013-09-13 | 2015-03-23 | Jsr株式会社 | 樹脂組成物及びレジストパターン形成方法 |
JP2015106089A (ja) * | 2013-11-29 | 2015-06-08 | 東京応化工業株式会社 | レジスト組成物、レジストパターン形成方法、高分子化合物及び化合物 |
WO2016125782A1 (ja) * | 2015-02-05 | 2016-08-11 | 三菱瓦斯化学株式会社 | 新規脂環式エステル化合物、(メタ)アクリル共重合体およびそれを含む機能性樹脂組成物 |
JP2018049090A (ja) * | 2016-09-20 | 2018-03-29 | 東京応化工業株式会社 | レジスト組成物及びレジストパターン形成方法 |
US20210141308A1 (en) * | 2019-11-11 | 2021-05-13 | Tokyo Ohka Kogyo Co., Ltd. | Resist composition and method of forming resist pattern |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6613615B2 (ja) | 2015-05-19 | 2019-12-04 | 信越化学工業株式会社 | 高分子化合物及び単量体並びにレジスト材料及びパターン形成方法 |
JP6782102B2 (ja) * | 2015-06-26 | 2020-11-11 | 住友化学株式会社 | レジスト組成物 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5993448A (ja) | 1982-09-30 | 1984-05-29 | ブリューワー・サイエンス・インコーポレイテッド | 反射防止コ−テイング |
JP2004004226A (ja) * | 2002-05-31 | 2004-01-08 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
JP2004302200A (ja) * | 2003-03-31 | 2004-10-28 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
WO2007116664A1 (ja) | 2006-03-31 | 2007-10-18 | Jsr Corporation | フッ素含有重合体及び精製方法並びに感放射線性樹脂組成物 |
JP2009134088A (ja) | 2007-11-30 | 2009-06-18 | Jsr Corp | 感放射線性樹脂組成物 |
JP2010032994A (ja) | 2008-02-06 | 2010-02-12 | Tokyo Ohka Kogyo Co Ltd | 液浸露光用レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素化合物 |
JP2010134410A (ja) * | 2008-11-10 | 2010-06-17 | Tokyo Ohka Kogyo Co Ltd | ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物 |
JP2010250074A (ja) * | 2009-04-15 | 2010-11-04 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法 |
JP2011033843A (ja) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法 |
JP2011118335A (ja) * | 2009-03-31 | 2011-06-16 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、並びに該組成物を用いたレジスト膜及びパターン形成方法 |
JP2012008500A (ja) * | 2010-06-28 | 2012-01-12 | Fujifilm Corp | パターン形成方法、化学増幅型レジスト組成物、及び、レジスト膜 |
JP2012063741A (ja) * | 2010-08-19 | 2012-03-29 | Jsr Corp | 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物 |
WO2012157433A1 (ja) * | 2011-05-18 | 2012-11-22 | Jsr株式会社 | ダブルパターン形成方法 |
JP2013061624A (ja) * | 2011-03-28 | 2013-04-04 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性膜及びパターン形成方法 |
WO2013047072A1 (ja) * | 2011-09-28 | 2013-04-04 | Jsr株式会社 | 液浸上層膜形成用組成物及びレジストパターン形成方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5564217B2 (ja) * | 2009-08-31 | 2014-07-30 | 富士フイルム株式会社 | 感活性光線性又は感放射線性樹脂組成物及びこれを用いたパターン形成方法 |
JP5775701B2 (ja) * | 2010-02-26 | 2015-09-09 | 富士フイルム株式会社 | パターン形成方法及びレジスト組成物 |
JP2011180393A (ja) * | 2010-03-01 | 2011-09-15 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、並びに、これを用いたレジスト膜及びパターン形成方法 |
JP5422447B2 (ja) * | 2010-03-09 | 2014-02-19 | 富士フイルム株式会社 | 感活性光線性又は感放射線性樹脂組成物、並びに、これを用いたレジスト膜及びパターン形成方法 |
US8603726B2 (en) * | 2010-09-29 | 2013-12-10 | Jsr Corporation | Radiation-sensitive resin composition, polymer and compound |
JP2012113302A (ja) * | 2010-11-15 | 2012-06-14 | Rohm & Haas Electronic Materials Llc | 塩基反応性成分を含む組成物およびフォトリソグラフィーのための方法 |
-
2014
- 2014-07-09 WO PCT/JP2014/068367 patent/WO2015016027A1/ja active Application Filing
- 2014-07-09 JP JP2015529490A patent/JP6451630B2/ja active Active
- 2014-07-09 EP EP14832692.9A patent/EP3029524A4/en active Pending
- 2014-07-17 TW TW103124462A patent/TW201512771A/zh unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0612452B2 (ja) | 1982-09-30 | 1994-02-16 | ブリュ−ワ−・サイエンス・インコ−ポレイテッド | 集積回路素子の製造方法 |
JPS5993448A (ja) | 1982-09-30 | 1984-05-29 | ブリューワー・サイエンス・インコーポレイテッド | 反射防止コ−テイング |
JP2004004226A (ja) * | 2002-05-31 | 2004-01-08 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
JP2004302200A (ja) * | 2003-03-31 | 2004-10-28 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
WO2007116664A1 (ja) | 2006-03-31 | 2007-10-18 | Jsr Corporation | フッ素含有重合体及び精製方法並びに感放射線性樹脂組成物 |
JP2009134088A (ja) | 2007-11-30 | 2009-06-18 | Jsr Corp | 感放射線性樹脂組成物 |
JP2010032994A (ja) | 2008-02-06 | 2010-02-12 | Tokyo Ohka Kogyo Co Ltd | 液浸露光用レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素化合物 |
JP2010134410A (ja) * | 2008-11-10 | 2010-06-17 | Tokyo Ohka Kogyo Co Ltd | ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物、化合物 |
JP2011118335A (ja) * | 2009-03-31 | 2011-06-16 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、並びに該組成物を用いたレジスト膜及びパターン形成方法 |
JP2010250074A (ja) * | 2009-04-15 | 2010-11-04 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法 |
JP2011033843A (ja) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法 |
JP2012008500A (ja) * | 2010-06-28 | 2012-01-12 | Fujifilm Corp | パターン形成方法、化学増幅型レジスト組成物、及び、レジスト膜 |
JP2012063741A (ja) * | 2010-08-19 | 2012-03-29 | Jsr Corp | 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物 |
JP2013061624A (ja) * | 2011-03-28 | 2013-04-04 | Fujifilm Corp | 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性膜及びパターン形成方法 |
WO2012157433A1 (ja) * | 2011-05-18 | 2012-11-22 | Jsr株式会社 | ダブルパターン形成方法 |
WO2013047072A1 (ja) * | 2011-09-28 | 2013-04-04 | Jsr株式会社 | 液浸上層膜形成用組成物及びレジストパターン形成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3029524A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055868A (ja) * | 2013-09-13 | 2015-03-23 | Jsr株式会社 | 樹脂組成物及びレジストパターン形成方法 |
JP2015106089A (ja) * | 2013-11-29 | 2015-06-08 | 東京応化工業株式会社 | レジスト組成物、レジストパターン形成方法、高分子化合物及び化合物 |
WO2016125782A1 (ja) * | 2015-02-05 | 2016-08-11 | 三菱瓦斯化学株式会社 | 新規脂環式エステル化合物、(メタ)アクリル共重合体およびそれを含む機能性樹脂組成物 |
JPWO2016125782A1 (ja) * | 2015-02-05 | 2017-11-16 | 三菱瓦斯化学株式会社 | 新規脂環式エステル化合物、(メタ)アクリル共重合体およびそれを含む機能性樹脂組成物 |
JP2018049090A (ja) * | 2016-09-20 | 2018-03-29 | 東京応化工業株式会社 | レジスト組成物及びレジストパターン形成方法 |
US10866514B2 (en) | 2016-09-20 | 2020-12-15 | Tokyo Ohka Kogyo Co., Ltd. | Resist composition and method of forming resist pattern |
US20210141308A1 (en) * | 2019-11-11 | 2021-05-13 | Tokyo Ohka Kogyo Co., Ltd. | Resist composition and method of forming resist pattern |
Also Published As
Publication number | Publication date |
---|---|
EP3029524A1 (en) | 2016-06-08 |
JPWO2015016027A1 (ja) | 2017-03-02 |
JP6451630B2 (ja) | 2019-01-16 |
EP3029524A4 (en) | 2017-08-23 |
TW201512771A (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6451630B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6264144B2 (ja) | 重合体、感放射線性樹脂組成物及びレジストパターン形成方法 | |
WO2014148241A1 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物の製造方法 | |
JP6455155B2 (ja) | レジスト組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6237182B2 (ja) | 樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP2017122780A (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6458455B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP2017181697A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6331359B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP2017156649A (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6606926B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び化合物 | |
JP2016170230A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6519672B2 (ja) | 樹脂組成物及びレジストパターン形成方法 | |
JP6273689B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体、化合物及びその製造方法 | |
JP6183268B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP2016071207A (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6131793B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP2018040911A (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP2017044874A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6304347B2 (ja) | 樹脂組成物及びレジストパターン形成方法 | |
JP6417830B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び重合体 | |
JP6451427B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6493386B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6398267B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6380617B2 (ja) | 樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832692 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529490 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014832692 Country of ref document: EP |