WO2015016072A1 - Ceramic composite material and production method for ceramic composite material - Google Patents
Ceramic composite material and production method for ceramic composite material Download PDFInfo
- Publication number
- WO2015016072A1 WO2015016072A1 PCT/JP2014/068946 JP2014068946W WO2015016072A1 WO 2015016072 A1 WO2015016072 A1 WO 2015016072A1 JP 2014068946 W JP2014068946 W JP 2014068946W WO 2015016072 A1 WO2015016072 A1 WO 2015016072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- composite material
- fiber
- matrix
- ceramic composite
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 207
- 239000002131 composite material Substances 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000835 fiber Substances 0.000 claims abstract description 126
- 239000011159 matrix material Substances 0.000 claims abstract description 91
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 40
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 29
- 239000002243 precursor Substances 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 19
- 238000005245 sintering Methods 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910010293 ceramic material Inorganic materials 0.000 claims description 11
- 238000010304 firing Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 150000002902 organometallic compounds Chemical group 0.000 claims description 7
- 239000007833 carbon precursor Substances 0.000 claims description 6
- 238000005470 impregnation Methods 0.000 claims description 6
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 3
- 238000009730 filament winding Methods 0.000 claims description 3
- 229910052863 mullite Inorganic materials 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 abstract description 15
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229920003257 polycarbosilane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/521—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/522—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/589—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/6325—Organic additives based on organo-metallic compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5228—Silica and alumina, including aluminosilicates, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5232—Silica or silicates other than aluminosilicates, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
Definitions
- the present invention relates to a ceramic composite material and a method for producing the ceramic composite material.
- Ceramic materials such as silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) are excellent in heat resistance, chemical stability, and mechanical properties. Therefore, these ceramic materials are being developed as materials used in harsh environments such as the nuclear field, aerospace field, and power generation field, and in general fields such as pump mechanical seals. Of these ceramic materials, SiC is a structural material that is promising in a wide range of fields because of its excellent properties.
- SiC itself is a brittle material
- SiC fiber / SiC composite material composed of a SiC fiber and a SiC matrix
- the crack propagates in the matrix and the crack may propagate to the SiC fiber.
- Patent Document 1 includes SiC fine powder and a sintering aid for a coated SiC fiber in which a coating layer containing at least one of carbon, boron nitride, and silicon carbide is formed on the surface of the SiC fiber. And a SiC fiber reinforced mold comprising a first step of obtaining a preform by impregnating a slurry containing no organosilicon polymer and a second step of pressure-sintering the preform.
- a method of manufacturing a SiC composite material is disclosed.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a high-strength ceramic composite material that does not include a coating layer and the like, and a method for producing the ceramic composite material.
- the ceramic composite material of the present invention is a ceramic composite material composed of ceramic fibers and a matrix, and is characterized by having substantially spherical bubbles in the matrix.
- the “substantially spherical shape” may be a spherical shape to the extent that each effect of the present invention is exhibited, and may be a complete spherical shape or a substantially spherical shape.
- the ceramic composite material of the present invention can be a high-strength ceramic composite material without including a coating layer or the like.
- the bubbles are surrounded by a shell made of ceramic.
- the propagation of cracks can be further prevented by the shell forming the bubbles.
- the shell may be made of the same ceramic material as the matrix, or may be made of a ceramic material different from the matrix.
- the diameter of the bubbles is preferably smaller than the diameter of the ceramic fiber.
- the diameter of the bubbles is small, the portion having a high elastic modulus of the matrix can be reduced, so that the propagation of cracks can be further prevented.
- a plurality of the ceramic fibers constitute a ceramic fiber bundle.
- the ceramic fibers are present in a bundle, it is difficult to form a space between the ceramic fibers, so that the abundance ratio of the ceramic fibers in the ceramic composite material can be increased, and a high-strength ceramic composite material can be obtained.
- the content of the bubbles in the matrix in the range of the diameter of the ceramic fiber from the surface of the ceramic fiber is preferably 10 to 50 vol%.
- a bubble content of 10-50 vol% in the above range means that bubbles are present in the vicinity of the ceramic fiber. In this case, since the surface of the ceramic fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is difficult to be attached to the surface of the ceramic fiber.
- the ceramic fiber is preferably at least one ceramic fiber selected from the group consisting of silicon carbide fiber, carbon fiber, alumina fiber, mullite fiber, and silica fiber. These ceramic fibers can increase the strength of the ceramic composite material.
- the matrix is preferably at least one matrix selected from the group consisting of graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. Ceramic materials constituting these matrices are excellent in characteristics such as heat resistance.
- the method for producing a ceramic composite material of the present invention comprises impregnating a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body, and a firing step of firing the impregnated body. It is characterized by including.
- bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described ceramic composite material of the present invention can be manufactured.
- the matrix precursor may be an organometallic compound, an organosilicon compound, or a carbon precursor. By firing these matrix precursors, a ceramic matrix can be formed.
- the matrix precursor may be composed of ceramic particles and a sintering aid.
- a ceramic matrix can be formed by sintering the ceramic particles using a sintering aid.
- the average particle diameter of the ceramic particles is preferably smaller than the average cell diameter of the hollow body.
- a plurality of the ceramic fibers constitute a ceramic fiber bundle.
- the fiber assembly is preferably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded body, and a filament winding molded body.
- the present invention it is possible to provide a high-strength ceramic composite material that does not include a coating layer and the like, and a method for producing the ceramic composite material.
- FIG. 1 (a) is a cross-sectional view schematically showing an example of the ceramic composite material of the present invention
- FIG. 1 (b) is a cross-sectional view taken along the line AA of the ceramic composite material shown in FIG. 1 (a). is there.
- FIG. 2 is an enlarged cross-sectional view of the ceramic composite material shown in FIG.
- FIG. 3 is a cross-sectional view schematically showing another example of the ceramic composite material of the present invention.
- the ceramic composite material of the present invention is a ceramic composite material composed of ceramic fibers and a matrix, and is characterized by having substantially spherical bubbles in the matrix.
- FIG. 1A is a cross-sectional view schematically showing an example of the ceramic composite material of the present invention
- FIG. 1B is a cross-sectional view of the ceramic composite material shown in FIG. is there.
- Fig.1 (a) is sectional drawing of the direction perpendicular
- FIG.1 (b) is sectional drawing of the direction parallel to the length direction of a ceramic fiber.
- a ceramic composite material 10 shown in FIGS. 1A and 1B is a ceramic composite material composed of ceramic fibers 11 and a matrix 12.
- the ceramic composite material 10 has bubbles 13 in the matrix 12.
- the ceramic fiber is not particularly limited, but from the viewpoint of increasing the strength of the ceramic composite material, a group consisting of silicon carbide fiber (SiC fiber), carbon fiber, alumina fiber, mullite fiber, and silica fiber. It is desirable to be at least one kind of ceramic fiber selected more, and it is more desirable to be a SiC fiber.
- the ceramic fiber is preferably a SiC fiber, and when used in a general field, the ceramic fiber is preferably a carbon fiber. .
- the ceramic fiber is a SiC fiber
- NGS advanced fiber Hi-Nicalon, Ube Industries Tyranno-SA, or the like can be used as the SiC fiber.
- the diameter of the ceramic fiber can be appropriately set according to the use of the ceramic composite material, but is preferably 5 to 25 ⁇ m.
- the diameter of the ceramic fiber is 5 ⁇ m or more, a sufficiently large diameter can be secured for the ceramic particles and the hollow body to be used, so that a high-strength ceramic composite material can be obtained.
- the diameter of the ceramic fiber is 25 ⁇ m or less, the elongation rate of the surface can be reduced even if the ceramic fiber is bent, so that it is difficult to break.
- the number of ceramic fibers constituting the ceramic fiber bundle is, for example, 50 to 2000.
- the diameter of the ceramic fiber can be measured by observing the cross section of the ceramic composite material with a scanning electron microscope (SEM).
- the matrix is not particularly limited as long as it is a matrix made of ceramic, but from the viewpoint of heat resistance and the like, from the group consisting of graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. Desirably, it is at least one selected matrix, and more desirably a silicon carbide matrix.
- the material of the ceramic constituting the matrix may be the same as or different from the material constituting the ceramic fiber, but is preferably the same from the viewpoint of corrosion resistance, heat resistance, and durability.
- a desirable combination of the ceramic fiber and the matrix is a combination in which the ceramic fiber is a SiC fiber and the matrix is a silicon carbide matrix.
- the ceramic composite material of the present invention has bubbles in the matrix, but the bubbles may be dispersed throughout the matrix or may be unevenly distributed in a part of the matrix.
- the elastic modulus of the matrix in contact with the ceramic fiber is lowered, and thus cracks generated in the matrix can be prevented from propagating to the ceramic fiber.
- the method for forming bubbles in the matrix is not particularly limited, but it is desirable that the bubbles are formed by mixing a hollow body into the slurry, as will be described later.
- the bubbles are surrounded by a shell made of ceramic. Since the shell made of ceramic is made of a material denser than the matrix structure, the propagation of cracks can be further prevented by the shell forming bubbles. Thus, in the ceramic composite material of the present invention, it is desirable that the bubbles are surrounded by the shell, but it is not necessary to be surrounded by the shell.
- the shell may be made of the same ceramic material as the matrix, or may be made of a ceramic material different from the matrix. From the viewpoint of safety, it is desirable to be made of a ceramic made of the same material as the matrix. When the shell is made of a ceramic material different from that of the matrix, it is desirable that the shell is made of the same material as the ceramic fiber from the viewpoint of corrosion resistance, heat resistance, and durability.
- the bubble diameter is smaller than the ceramic fiber diameter.
- the portion having a high elastic modulus of the matrix can be reduced, so that the propagation of cracks can be further prevented.
- the bubble diameter is desirably 2 to 20 ⁇ m.
- the diameter of the bubbles is 2 ⁇ m or more, bubbles that are sufficiently larger than the pores formed by the ceramic particles can be formed, so that the effect of preventing the progress of cracks can be increased.
- the diameter of the bubbles is 20 ⁇ m or less, it is possible to use a highly flexible ceramic fiber that does not break even when bent, and thus a high-strength ceramic composite material can be obtained.
- the bubble diameter indicates the diameter of a sphere (equivalent sphere) having the same volume as the bubble volume, and can be measured using a scanning electron microscope (SEM). Since it is a three-dimensional shape, the measurement is repeated using a focused ion beam (FIB) while gradually scraping to measure the bubble diameter.
- SEM scanning electron microscope
- the shape of the bubble is almost spherical.
- energy due to cracks generated by an external impact is dispersed to the surroundings, and the progress of the cracks can be prevented.
- the content of bubbles in the matrix is not particularly limited, but the content of bubbles in the matrix in the range of the distance from the surface of the ceramic fiber to the diameter of the ceramic fiber is desirably 10 to 50 vol%, and 20 to 30 vol%. Is more desirable.
- a bubble content of 10-50 vol% in the above range means that bubbles are present in the vicinity of the ceramic fiber. In this case, since the surface of the ceramic fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is difficult to be attached to the surface of the ceramic fiber.
- the bubble content is 10 vol% or more, the matrix has sufficient mechanical strength, so that strength as a composite material can be ensured.
- the bubble content is 50 vol% or less, the generated crack energy is easily dispersed to the surroundings and can be made difficult to break.
- the matrix has a higher mechanical strength, so that the strength as a composite material can be further ensured.
- the bubble content is 30 vol% or less, the energy of the generated crack is more easily dispersed to the surroundings, and can be further prevented from cracking.
- the bubble content is defined only for the matrix surrounding one ceramic fiber.
- FIG. 2 is an enlarged cross-sectional view of the ceramic composite material shown in FIG.
- the diameter of the ceramic fiber 11 is indicated by an arrow d. Therefore, the “range of the distance of the diameter of the ceramic fiber from the surface of the ceramic fiber” means a range at a distance d from the surface of the ceramic fiber 11.
- the porosity of the matrix is preferably 10 to 50%, more preferably 20 to 30%.
- FIG. 3 is a cross-sectional view schematically showing another example of the ceramic composite material of the present invention.
- an SiC layer 20 may be formed on the surface of the ceramic composite material 10 as shown in FIG.
- the SiC layer 20 is preferably a CVD-SiC layer formed by subjecting the ceramic composite material 10 to a CVD process.
- the ceramic composite material of the present invention described above can be produced by the method for producing a ceramic composite material of the present invention.
- the method for producing a ceramic composite material of the present invention comprises impregnating a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body, and a firing step of firing the impregnated body. It is characterized by including.
- a fiber assembly made of ceramic fibers is prepared.
- the fiber assembly can be obtained by a shaping process for imparting a shape to the ceramic fiber.
- the fiber assembly is desirably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded product, and a filament winding molded product.
- a fiber assembly can be formed by weaving a ceramic fiber bundle in which 50 to 2000 SiC fibers are bundled into a sheet shape.
- the prepared fiber aggregate is impregnated with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body (impregnation step).
- impregnation method examples include dipping, spraying, coating, coater, vacuum pressure impregnation and the like, and any method may be used.
- glass balloons As the hollow body contained in the slurry, glass balloons, shirasu balloons, silica balloons, carbon balloons and other inorganic balloons; resin balloons and other organic balloons; resins; and their reaction products can be used.
- the hollow body When the hollow body is made of ceramic, it remains in the same material depending on the combination with the matrix precursor to be used (for example, when the hollow body is a carbon balloon and the matrix precursor is phenol) and reacts. There are cases where the material changes and remains (for example, when the hollow body is a silica balloon and the matrix precursor is polycarbosilane).
- the hollow body when the hollow body is made of resin, it is carbonized to form a ceramic shell (for example, when the hollow body is a thermosetting resin balloon), or when it is thermally decomposed by firing and the shell disappears (for example, The hollow body is a balloon made of thermoplastic resin).
- the average cell diameter of the hollow body is preferably 2 to 20 ⁇ m, and more preferably 5 to 15 ⁇ m.
- the average cell diameter of the hollow body can be measured by measuring the particle diameter with a laser diffraction particle size measuring machine and reducing the film thickness of the hollow body.
- the content of the hollow body in the slurry is not particularly limited, but the solid content is preferably 20 to 65% by weight, more preferably 40 to 65% by weight.
- the matrix precursor contained in the slurry may be an organometallic compound, an organosilicon compound, or a carbon precursor, or may be composed of ceramic particles and a sintering aid.
- the matrix precursor is an organometallic compound, an organosilicon compound, or a carbon precursor
- a matrix made of ceramic can be formed by firing these matrix precursors.
- organometallic compound examples include organometallic compounds containing aluminum atoms such as olefin polymers formed from organoaluminum compounds.
- organosilicon compound examples include silicon polymers such as polycarbosilane, polyvinylsilane, and polymethylsilane.
- resin such as a phenol resin and a polyimide, etc. are mentioned, for example.
- the content of the matrix precursor in the slurry is not particularly limited, but is preferably 20 to 65% by weight in solid content. 40 to 65% by weight is more desirable.
- a ceramic matrix can be formed by sintering the ceramic particles using the sintering aid.
- the ceramic particles include ceramic particles such as graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. These may be one type or a combination of a plurality of types.
- the average particle size of the ceramic particles is preferably smaller than the average cell size of the hollow body.
- the average particle size of the ceramic particles is preferably 10 to 1000 nm, and more preferably 250 to 800 nm.
- the average particle diameter of the ceramic particles can be measured using a scanning electron microscope (SEM).
- the content of the ceramic particles in the slurry is not particularly limited, but is preferably 25 to 65% by weight, more preferably 45 to 65% by weight in terms of solid content.
- the ratio of ceramic particles to hollow bodies is preferably 2: 1 to 7: 1 by weight, and more preferably 2: 1 to 4: 1.
- the sintering aid examples include Al 2 O 3 , Y 2 O 3 , SiO 2 , and CaO. These may be one type or a combination of a plurality of types. Moreover, it is desirable that the sintering aid is in a powder form.
- the content of the sintering aid in the slurry is not particularly limited, but it is preferably 1 to 3% by weight and more preferably 1 to 2% by weight in terms of solid content.
- the slurry contains a dispersion medium (solvent).
- a dispersion medium water or an organic solvent can be used.
- the organic solvent include alcohol-based organic solvents such as ethanol and isopropanol; hydrocarbon-based organic solvents such as hexane, toluene and xylene.
- the impregnated body is fired (firing step).
- Examples of the method of firing the impregnated body include a method of pressure-sintering the impregnated body.
- the pressure sintering method is not particularly limited, and examples thereof include known methods such as a hot press (HP) method and a hot isostatic press (HIP) method.
- the sintering temperature can be appropriately set, but is preferably 1000 to 2000 ° C., more preferably 1200 to 1600 ° C.
- the pressure is preferably 1 to 30 MPa and more preferably 5 to 20 MPa.
- the calcination of the impregnated body may be performed in a non-oxidizing atmosphere, for example, in an inert gas atmosphere, a reducing atmosphere, a vacuum atmosphere, or the like.
- a non-oxidizing atmosphere for example, in an inert gas atmosphere, a reducing atmosphere, a vacuum atmosphere, or the like.
- inert gas atmosphere such as hydrogen, nitrogen, helium, and argon.
- the ceramic composite material of the present invention can be produced.
- the ceramic composite material of the present invention can be used in harsh environments such as the nuclear power field, aerospace field, and power generation field, and in general fields such as pump mechanical seals.
- the ceramic composite material of the present invention is preferably a nuclear structural member, and more preferably a light water reactor structural member.
- the ceramic composite material of the present invention is desirably a material for a pump mechanical seal.
- the ceramic composite material of the present invention even if a crack occurs in the matrix, the progress of the crack can be prevented by the bubbles present in the matrix, and the propagation of the crack to the ceramic fiber can be prevented. Furthermore, since it is not necessary to form a coating layer or the like for preventing the propagation of cracks, there is no problem that the choice of ceramic fibers and coating layers and the use of ceramic composite materials are limited. Thus, the ceramic composite material of the present invention can be a high-strength ceramic composite material without including a coating layer or the like.
- bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described ceramic composite material of the present invention can be manufactured.
- the ceramic composite material of the present invention it is an essential constituent element to have bubbles in the matrix.
- it is essential to impregnate a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body, obtain an impregnated body, and then fire the impregnated body.
- the configuration requirements are as follows.
- the various constituents detailed in the detailed description of the present invention for example, the ceramic fiber configuration, the matrix configuration, the bubble configuration, the hollow body configuration, the manufacturing condition of the ceramic composite material, etc. Desired effects can be obtained by appropriately combining them.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Ceramic Products (AREA)
Abstract
Provided is a high-strength ceramic composite material not including a coating layer, etc. The ceramic composite material comprises ceramic fiber and a matrix and is characterized by having substantially spherical bubbles in the matrix.
Description
本発明は、セラミック複合材料及びセラミック複合材料の製造方法に関する。
The present invention relates to a ceramic composite material and a method for producing the ceramic composite material.
炭化珪素(SiC)、窒化珪素(Si3N4)等のセラミック材料は、耐熱性、化学的安定性、機械的特性に優れている。そのため、これらのセラミック材料は、原子力分野、航空・宇宙分野、発電分野等の過酷な環境下や、ポンプメカニカルシール等の一般的な分野で使用される材料として開発が進められている。これらのセラミック材料のうち、SiCは、上記の特性に優れていることから、広範囲な分野において有望視されている構造材料である。
Ceramic materials such as silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) are excellent in heat resistance, chemical stability, and mechanical properties. Therefore, these ceramic materials are being developed as materials used in harsh environments such as the nuclear field, aerospace field, and power generation field, and in general fields such as pump mechanical seals. Of these ceramic materials, SiC is a structural material that is promising in a wide range of fields because of its excellent properties.
ただし、SiC自体は脆い材料であるため、SiC繊維とSiCマトリックスとからなるSiC繊維/SiC複合材料が提案されている。しかしながら、SiC繊維/SiC複合材料であっても、SiCマトリックスに亀裂が生じると、マトリックス中に亀裂が進展し、SiC繊維にまで亀裂が伝播することがあった。
However, since SiC itself is a brittle material, a SiC fiber / SiC composite material composed of a SiC fiber and a SiC matrix has been proposed. However, even in the SiC fiber / SiC composite material, when a crack occurs in the SiC matrix, the crack propagates in the matrix and the crack may propagate to the SiC fiber.
そこで、例えば、特許文献1には、SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る第1工程と、上記予備成形体を加圧焼結させる第2工程を含むことを特徴とするSiC繊維強化型SiC複合材料の製造方法が開示されている。
Therefore, for example, Patent Document 1 includes SiC fine powder and a sintering aid for a coated SiC fiber in which a coating layer containing at least one of carbon, boron nitride, and silicon carbide is formed on the surface of the SiC fiber. And a SiC fiber reinforced mold comprising a first step of obtaining a preform by impregnating a slurry containing no organosilicon polymer and a second step of pressure-sintering the preform. A method of manufacturing a SiC composite material is disclosed.
特許文献1に記載の方法により製造される複合材料では、SiC繊維表面に被覆層が形成されているため、SiCマトリックスに亀裂が生じても、その亀裂がSiC繊維まで伝播することを防止することができる。そのため、特許文献1に記載の方法により製造される複合材料は高強度であるとされている。
In the composite material manufactured by the method described in Patent Document 1, since the coating layer is formed on the surface of the SiC fiber, even if a crack occurs in the SiC matrix, the crack is prevented from propagating to the SiC fiber. Can do. Therefore, it is said that the composite material manufactured by the method described in Patent Document 1 has high strength.
しかしながら、SiC等のセラミック繊維の表面に被覆層を形成する形態のセラミック複合材料では、被覆層の成膜温度や熱膨張係数等を考慮する必要があり、セラミック繊維及び被覆層の選択肢が限定されてしまう。また、被覆層の材料として使用される炭素(熱分解炭素)や窒化ホウ素(熱分解窒化ホウ素:PBN)等は、高温で酸化されるため、セラミック複合材料の用途が限定されてしまう。このように、従来の製造方法によって得られるセラミック複合材料には、さらなる改善の余地があった。
However, in a ceramic composite material in which a coating layer is formed on the surface of a ceramic fiber such as SiC, it is necessary to consider the film forming temperature of the coating layer, the thermal expansion coefficient, etc., and the options for the ceramic fiber and the coating layer are limited. End up. In addition, carbon (pyrolytic carbon), boron nitride (pyrolytic boron nitride: PBN), and the like used as a material for the coating layer are oxidized at a high temperature, which limits the application of the ceramic composite material. Thus, the ceramic composite material obtained by the conventional manufacturing method has room for further improvement.
本発明は、上記の問題を解決するためになされたものであり、被覆層等を含まない高強度のセラミック複合材料及び該セラミック複合材料の製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a high-strength ceramic composite material that does not include a coating layer and the like, and a method for producing the ceramic composite material.
本発明のセラミック複合材料は、セラミック繊維とマトリックスとからなるセラミック複合材料であって、上記マトリックス中に略球形の気泡を有することを特徴とする。
The ceramic composite material of the present invention is a ceramic composite material composed of ceramic fibers and a matrix, and is characterized by having substantially spherical bubbles in the matrix.
マトリックス中に気泡が存在すると、マトリックスが低弾性となる。そのため、本発明のセラミック複合材料では、マトリックスに亀裂が生じても、マトリックス中に存在する気泡によって亀裂の進展を防止し、その亀裂がセラミック繊維にまで伝播することを防止することができる。
また、気泡が略球形であると、外部からの衝撃によって発生した亀裂によるエネルギーが周囲に分散され、亀裂の進展を防ぐことができる。
なお、「略球形」とは、本発明の各効果を奏する程度に球形であればよく、完全に球形であってもよいし、実質的に球形であってもよい。
さらに、亀裂の伝播を防止するための被覆層等を形成する必要がないため、セラミック繊維及び被覆層の選択肢やセラミック複合材料の用途が限定されるという問題が生じない。
このように、本発明のセラミック複合材料では、被覆層等を含まずに、高強度のセラミック複合材料とすることができる。 If bubbles are present in the matrix, the matrix becomes less elastic. Therefore, in the ceramic composite material of the present invention, even if cracks occur in the matrix, the progress of the cracks can be prevented by the bubbles present in the matrix, and the cracks can be prevented from propagating to the ceramic fibers.
Further, when the bubbles are substantially spherical, energy due to cracks generated by external impact is dispersed to the surroundings, and the progress of cracks can be prevented.
The “substantially spherical shape” may be a spherical shape to the extent that each effect of the present invention is exhibited, and may be a complete spherical shape or a substantially spherical shape.
Furthermore, since it is not necessary to form a coating layer or the like for preventing the propagation of cracks, there is no problem that the choice of ceramic fibers and coating layers and the use of ceramic composite materials are limited.
Thus, the ceramic composite material of the present invention can be a high-strength ceramic composite material without including a coating layer or the like.
また、気泡が略球形であると、外部からの衝撃によって発生した亀裂によるエネルギーが周囲に分散され、亀裂の進展を防ぐことができる。
なお、「略球形」とは、本発明の各効果を奏する程度に球形であればよく、完全に球形であってもよいし、実質的に球形であってもよい。
さらに、亀裂の伝播を防止するための被覆層等を形成する必要がないため、セラミック繊維及び被覆層の選択肢やセラミック複合材料の用途が限定されるという問題が生じない。
このように、本発明のセラミック複合材料では、被覆層等を含まずに、高強度のセラミック複合材料とすることができる。 If bubbles are present in the matrix, the matrix becomes less elastic. Therefore, in the ceramic composite material of the present invention, even if cracks occur in the matrix, the progress of the cracks can be prevented by the bubbles present in the matrix, and the cracks can be prevented from propagating to the ceramic fibers.
Further, when the bubbles are substantially spherical, energy due to cracks generated by external impact is dispersed to the surroundings, and the progress of cracks can be prevented.
The “substantially spherical shape” may be a spherical shape to the extent that each effect of the present invention is exhibited, and may be a complete spherical shape or a substantially spherical shape.
Furthermore, since it is not necessary to form a coating layer or the like for preventing the propagation of cracks, there is no problem that the choice of ceramic fibers and coating layers and the use of ceramic composite materials are limited.
Thus, the ceramic composite material of the present invention can be a high-strength ceramic composite material without including a coating layer or the like.
上記気泡は、セラミックからなる殻で囲まれていることが望ましい。気泡を形成する殻によって、亀裂の伝播をより防止することができる。
It is desirable that the bubbles are surrounded by a shell made of ceramic. The propagation of cracks can be further prevented by the shell forming the bubbles.
上記殻は、上記マトリックスと同一材質のセラミックからなっていてもよく、上記マトリックスと異なる材質のセラミックからなっていてもよい。
The shell may be made of the same ceramic material as the matrix, or may be made of a ceramic material different from the matrix.
上記気泡の直径は、上記セラミック繊維の直径より小さいことが望ましい。気泡の直径が小さいと、マトリックスの弾性率が高い部分を少なくすることができるため、亀裂の伝播をより防止することができる。
The diameter of the bubbles is preferably smaller than the diameter of the ceramic fiber. When the diameter of the bubbles is small, the portion having a high elastic modulus of the matrix can be reduced, so that the propagation of cracks can be further prevented.
上記セラミック繊維は、複数本がまとまってセラミック繊維束を構成していることが望ましい。セラミック繊維がまとまって束で存在すると、セラミック繊維間に空間ができにくいので、セラミック複合材料中のセラミック繊維の存在比率を高くすることができ、高強度のセラミック複合材料を得ることができる。
It is desirable that a plurality of the ceramic fibers constitute a ceramic fiber bundle. When the ceramic fibers are present in a bundle, it is difficult to form a space between the ceramic fibers, so that the abundance ratio of the ceramic fibers in the ceramic composite material can be increased, and a high-strength ceramic composite material can be obtained.
上記セラミック繊維の表面から上記セラミック繊維の直径の距離の範囲における上記マトリックス中の上記気泡の含有率は、10~50vol%であることが望ましい。上記の範囲における気泡の含有率が10~50vol%であることは、セラミック繊維の近傍に気泡が存在することを意味する。この場合、セラミック繊維の表面が低弾性のマトリックスで覆われるため、亀裂の起点となる傷がセラミック繊維の表面に付きにくくなる。
The content of the bubbles in the matrix in the range of the diameter of the ceramic fiber from the surface of the ceramic fiber is preferably 10 to 50 vol%. A bubble content of 10-50 vol% in the above range means that bubbles are present in the vicinity of the ceramic fiber. In this case, since the surface of the ceramic fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is difficult to be attached to the surface of the ceramic fiber.
上記セラミック繊維は、炭化珪素繊維、炭素繊維、アルミナ繊維、ムライト繊維、及び、シリカ繊維からなる群より選択される少なくとも一種のセラミック繊維であることが望ましい。これらのセラミック繊維によって、セラミック複合材料の強度を高めることができる。
The ceramic fiber is preferably at least one ceramic fiber selected from the group consisting of silicon carbide fiber, carbon fiber, alumina fiber, mullite fiber, and silica fiber. These ceramic fibers can increase the strength of the ceramic composite material.
上記マトリックスは、黒鉛、炭素、炭化珪素、アルミナ、窒化珪素、及び、窒化アルミニウムからなる群より選択される少なくとも一種のマトリックスであることが望ましい。これらのマトリックスを構成するセラミック材料は、耐熱性等の特性に優れている。
The matrix is preferably at least one matrix selected from the group consisting of graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. Ceramic materials constituting these matrices are excellent in characteristics such as heat resistance.
本発明のセラミック複合材料の製造方法は、セラミック繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、上記含浸体を焼成する焼成工程とを含むことを特徴とする。
The method for producing a ceramic composite material of the present invention comprises impregnating a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body, and a firing step of firing the impregnated body. It is characterized by including.
本発明のセラミック複合材料の製造方法では、スラリーに中空体を混入することによって、マトリックス中に気泡を形成することができる。その結果、上述した本発明のセラミック複合材料を製造することができる。
In the method for producing a ceramic composite material of the present invention, bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described ceramic composite material of the present invention can be manufactured.
上記マトリックス前駆体は、有機金属化合物、有機珪素化合物、又は、炭素前駆体であってもよい。これらのマトリックス前駆体を焼成することによって、セラミックからなるマトリックスを形成することができる。
The matrix precursor may be an organometallic compound, an organosilicon compound, or a carbon precursor. By firing these matrix precursors, a ceramic matrix can be formed.
また、上記マトリックス前駆体は、セラミック粒子と焼結助剤とからなっていてもよい。
焼結助剤を用いてセラミック粒子を焼結することによって、セラミックからなるマトリックスを形成することができる。 The matrix precursor may be composed of ceramic particles and a sintering aid.
A ceramic matrix can be formed by sintering the ceramic particles using a sintering aid.
焼結助剤を用いてセラミック粒子を焼結することによって、セラミックからなるマトリックスを形成することができる。 The matrix precursor may be composed of ceramic particles and a sintering aid.
A ceramic matrix can be formed by sintering the ceramic particles using a sintering aid.
上記セラミック粒子の平均粒子径は、上記中空体の平均気泡径より小さいことが望ましい。中空体の平均気泡径よりもセラミック粒子の平均粒子径を小さくすることで、マトリックス内部に発生する応力集中を小さくしつつ、弾性率の低いマトリックスを形成することができる。
The average particle diameter of the ceramic particles is preferably smaller than the average cell diameter of the hollow body. By making the average particle diameter of the ceramic particles smaller than the average cell diameter of the hollow body, it is possible to form a matrix having a low elastic modulus while reducing the concentration of stress generated inside the matrix.
上記セラミック繊維は、複数本がまとまってセラミック繊維束を構成していることが望ましい。
It is desirable that a plurality of the ceramic fibers constitute a ceramic fiber bundle.
上記繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体であることが望ましい。
The fiber assembly is preferably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded body, and a filament winding molded body.
本発明によれば、被覆層等を含まない高強度のセラミック複合材料及び該セラミック複合材料の製造方法を提供することができる。
According to the present invention, it is possible to provide a high-strength ceramic composite material that does not include a coating layer and the like, and a method for producing the ceramic composite material.
(発明の詳細な説明)
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 (Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 (Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
[セラミック複合材料]
まず、本発明のセラミック複合材料について説明する。
本発明のセラミック複合材料は、セラミック繊維とマトリックスとからなるセラミック複合材料であって、上記マトリックス中に略球形の気泡を有することを特徴とする。 [Ceramic composite materials]
First, the ceramic composite material of the present invention will be described.
The ceramic composite material of the present invention is a ceramic composite material composed of ceramic fibers and a matrix, and is characterized by having substantially spherical bubbles in the matrix.
まず、本発明のセラミック複合材料について説明する。
本発明のセラミック複合材料は、セラミック繊維とマトリックスとからなるセラミック複合材料であって、上記マトリックス中に略球形の気泡を有することを特徴とする。 [Ceramic composite materials]
First, the ceramic composite material of the present invention will be described.
The ceramic composite material of the present invention is a ceramic composite material composed of ceramic fibers and a matrix, and is characterized by having substantially spherical bubbles in the matrix.
図1(a)は、本発明のセラミック複合材料の一例を模式的に示す断面図であり、図1(b)は、図1(a)に示すセラミック複合材料のA-A線断面図である。
図1(a)は、セラミック繊維の長さ方向に垂直な方向の断面図であり、図1(b)は、セラミック繊維の長さ方向に平行な方向の断面図である。 FIG. 1A is a cross-sectional view schematically showing an example of the ceramic composite material of the present invention, and FIG. 1B is a cross-sectional view of the ceramic composite material shown in FIG. is there.
Fig.1 (a) is sectional drawing of the direction perpendicular | vertical to the length direction of a ceramic fiber, FIG.1 (b) is sectional drawing of the direction parallel to the length direction of a ceramic fiber.
図1(a)は、セラミック繊維の長さ方向に垂直な方向の断面図であり、図1(b)は、セラミック繊維の長さ方向に平行な方向の断面図である。 FIG. 1A is a cross-sectional view schematically showing an example of the ceramic composite material of the present invention, and FIG. 1B is a cross-sectional view of the ceramic composite material shown in FIG. is there.
Fig.1 (a) is sectional drawing of the direction perpendicular | vertical to the length direction of a ceramic fiber, FIG.1 (b) is sectional drawing of the direction parallel to the length direction of a ceramic fiber.
図1(a)及び図1(b)に示すセラミック複合材料10は、セラミック繊維11とマトリックス12とからなるセラミック複合材料である。セラミック複合材料10は、マトリックス12中に気泡13を有している。
A ceramic composite material 10 shown in FIGS. 1A and 1B is a ceramic composite material composed of ceramic fibers 11 and a matrix 12. The ceramic composite material 10 has bubbles 13 in the matrix 12.
本発明のセラミック複合材料において、セラミック繊維は特に限定されないが、セラミック複合材料の強度を高める観点から、炭化珪素繊維(SiC繊維)、炭素繊維、アルミナ繊維、ムライト繊維、及び、シリカ繊維からなる群より選択される少なくとも一種のセラミック繊維であることが望ましく、SiC繊維であることがより望ましい。
In the ceramic composite material of the present invention, the ceramic fiber is not particularly limited, but from the viewpoint of increasing the strength of the ceramic composite material, a group consisting of silicon carbide fiber (SiC fiber), carbon fiber, alumina fiber, mullite fiber, and silica fiber. It is desirable to be at least one kind of ceramic fiber selected more, and it is more desirable to be a SiC fiber.
本発明のセラミック複合材料を後述する原子力分野で使用する場合には、セラミック繊維はSiC繊維であることが望ましく、一般的な分野で使用する場合には、セラミック繊維は炭素繊維であることが望ましい。
When the ceramic composite material of the present invention is used in the nuclear field described later, the ceramic fiber is preferably a SiC fiber, and when used in a general field, the ceramic fiber is preferably a carbon fiber. .
例えば、セラミック繊維がSiC繊維である場合、SiC繊維としては、NGSアドバンストファイバー製Hi-Nicalon、宇部興産製Tyranno-SA等を使用することができる。
For example, when the ceramic fiber is a SiC fiber, NGS advanced fiber Hi-Nicalon, Ube Industries Tyranno-SA, or the like can be used as the SiC fiber.
セラミック繊維の直径は、セラミック複合材料の用途に応じて適宜設定できるが、5~25μmであることが望ましい。セラミック繊維の直径が5μm以上であると、使用するセラミック粒子及び中空体に対して充分に大きな直径を確保できるので、高強度のセラミック複合材料を得ることができる。セラミック繊維の直径が25μm以下であると、セラミック繊維が曲がっても表面の延び率を小さくすることができるので破断しにくくすることができる。セラミック繊維束を構成するセラミック繊維の本数は、例えば50~2000本である。
The diameter of the ceramic fiber can be appropriately set according to the use of the ceramic composite material, but is preferably 5 to 25 μm. When the diameter of the ceramic fiber is 5 μm or more, a sufficiently large diameter can be secured for the ceramic particles and the hollow body to be used, so that a high-strength ceramic composite material can be obtained. If the diameter of the ceramic fiber is 25 μm or less, the elongation rate of the surface can be reduced even if the ceramic fiber is bent, so that it is difficult to break. The number of ceramic fibers constituting the ceramic fiber bundle is, for example, 50 to 2000.
セラミック繊維の直径は、セラミック複合材料の断面を走査型電子顕微鏡(SEM)で観察することにより測定することができる。
The diameter of the ceramic fiber can be measured by observing the cross section of the ceramic composite material with a scanning electron microscope (SEM).
本発明のセラミック複合材料において、マトリックスは、セラミックからなるマトリックスであれば特に限定されないが、耐熱性等の観点から、黒鉛、炭素、炭化珪素、アルミナ、窒化珪素、及び、窒化アルミニウムからなる群より選択される少なくとも一種のマトリックスであることが望ましく、炭化珪素のマトリックスであることがより望ましい。
In the ceramic composite material of the present invention, the matrix is not particularly limited as long as it is a matrix made of ceramic, but from the viewpoint of heat resistance and the like, from the group consisting of graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. Desirably, it is at least one selected matrix, and more desirably a silicon carbide matrix.
マトリックスを構成するセラミックの材質は、セラミック繊維を構成する材質と同一であってもよく、異なっていてもよいが、耐食性や耐熱性、耐久性の観点から、同一であることが望ましい。
なお、セラミック繊維とマトリックスの望ましい組み合わせは、セラミック繊維がSiC繊維であり、マトリックスが炭化珪素のマトリックスである組み合わせである。 The material of the ceramic constituting the matrix may be the same as or different from the material constituting the ceramic fiber, but is preferably the same from the viewpoint of corrosion resistance, heat resistance, and durability.
A desirable combination of the ceramic fiber and the matrix is a combination in which the ceramic fiber is a SiC fiber and the matrix is a silicon carbide matrix.
なお、セラミック繊維とマトリックスの望ましい組み合わせは、セラミック繊維がSiC繊維であり、マトリックスが炭化珪素のマトリックスである組み合わせである。 The material of the ceramic constituting the matrix may be the same as or different from the material constituting the ceramic fiber, but is preferably the same from the viewpoint of corrosion resistance, heat resistance, and durability.
A desirable combination of the ceramic fiber and the matrix is a combination in which the ceramic fiber is a SiC fiber and the matrix is a silicon carbide matrix.
本発明のセラミック複合材料は、マトリックス中に気泡を有するものであるが、気泡は、マトリックス全体に分散していてもよく、マトリックスの一部に偏在していてもよい。特に、セラミック繊維の近傍に気泡が存在すると、セラミック繊維に接するマトリックスの弾性率が低くなるため、マトリックス中に生じた亀裂がセラミック繊維に伝播することを防止することができる。
The ceramic composite material of the present invention has bubbles in the matrix, but the bubbles may be dispersed throughout the matrix or may be unevenly distributed in a part of the matrix. In particular, if air bubbles are present in the vicinity of the ceramic fiber, the elastic modulus of the matrix in contact with the ceramic fiber is lowered, and thus cracks generated in the matrix can be prevented from propagating to the ceramic fiber.
マトリックス中に気泡を形成する方法は特に限定されないが、後述するように、スラリーに中空体を混入することによって気泡が形成されていることが望ましい。
The method for forming bubbles in the matrix is not particularly limited, but it is desirable that the bubbles are formed by mixing a hollow body into the slurry, as will be described later.
気泡は、セラミックからなる殻で囲まれていることが望ましい。セラミックからなる殻は、マトリックスの組織よりも緻密な材料で構成されるため、気泡を形成する殻によって、亀裂の伝播をより防止することができる。このように、本発明のセラミック複合材料においては、気泡が殻で囲まれていることが望ましいが、殻で囲まれていなくてもよい。
It is desirable that the bubbles are surrounded by a shell made of ceramic. Since the shell made of ceramic is made of a material denser than the matrix structure, the propagation of cracks can be further prevented by the shell forming bubbles. Thus, in the ceramic composite material of the present invention, it is desirable that the bubbles are surrounded by the shell, but it is not necessary to be surrounded by the shell.
気泡がセラミックからなる殻で囲まれている場合、上記殻は、マトリックスと同一材質のセラミックからなっていてもよく、マトリックスと異なる材質のセラミックからなっていてもよいが、耐食性や耐熱性、耐久性の観点から、マトリックスと同一材質のセラミックからなることが望ましい。また、上記殻がマトリックスと異なる材質のセラミックからなる場合には、耐食性や耐熱性、耐久性の観点から、セラミック繊維と同一材質のセラミックからなることが望ましい。
If the bubbles are surrounded by a ceramic shell, the shell may be made of the same ceramic material as the matrix, or may be made of a ceramic material different from the matrix. From the viewpoint of safety, it is desirable to be made of a ceramic made of the same material as the matrix. When the shell is made of a ceramic material different from that of the matrix, it is desirable that the shell is made of the same material as the ceramic fiber from the viewpoint of corrosion resistance, heat resistance, and durability.
気泡の直径は、セラミック繊維の直径より小さいことが望ましい。気泡の直径が小さいと、マトリックスの弾性率が高い部分を少なくすることができるため、亀裂の伝播をより防止することができる。
It is desirable that the bubble diameter is smaller than the ceramic fiber diameter. When the diameter of the bubbles is small, the portion having a high elastic modulus of the matrix can be reduced, so that the propagation of cracks can be further prevented.
具体的には、気泡の直径は、2~20μmであることが望ましい。気泡の直径が2μm以上であると、セラミック粒子の形成する気孔より充分に大きな気泡を形成することができるので、亀裂の進展を防ぐ効果を大きくすることができる。気泡の直径が20μm以下であると、曲げても折れにくい屈曲性の高いセラミック繊維を使用することができるので、高強度のセラミック複合材料を得ることができる。
Specifically, the bubble diameter is desirably 2 to 20 μm. When the diameter of the bubbles is 2 μm or more, bubbles that are sufficiently larger than the pores formed by the ceramic particles can be formed, so that the effect of preventing the progress of cracks can be increased. When the diameter of the bubbles is 20 μm or less, it is possible to use a highly flexible ceramic fiber that does not break even when bent, and thus a high-strength ceramic composite material can be obtained.
なお、気泡の直径は、気泡の体積と体積が同一の球(相当球)の直径を示し、走査型電子顕微鏡(SEM)を用いて測定することができる。立体的な形状であるので、集束イオンビーム(FIB)を用いて、少しずつ削りながら測定を繰り返し、気泡径を計測する。
The bubble diameter indicates the diameter of a sphere (equivalent sphere) having the same volume as the bubble volume, and can be measured using a scanning electron microscope (SEM). Since it is a three-dimensional shape, the measurement is repeated using a focused ion beam (FIB) while gradually scraping to measure the bubble diameter.
気泡の形状は、略球形である。気泡が略球形であると、外部からの衝撃によって発生した亀裂によるエネルギーが周囲に分散され、亀裂の進展を防ぐことができる。
The shape of the bubble is almost spherical. When the bubbles are substantially spherical, energy due to cracks generated by an external impact is dispersed to the surroundings, and the progress of the cracks can be prevented.
マトリックス中の気泡の含有率は特に限定されないが、セラミック繊維の表面からセラミック繊維の直径の距離の範囲におけるマトリックス中の気泡の含有率が、10~50vol%であることが望ましく、20~30vol%であることがより望ましい。上記の範囲における気泡の含有率が10~50vol%であることは、セラミック繊維の近傍に気泡が存在することを意味する。この場合、セラミック繊維の表面が低弾性のマトリックスで覆われるため、亀裂の起点となる傷がセラミック繊維の表面に付きにくくなる。気泡の含有率が10vol%以上であると、マトリックスに充分な機械強度があるので、複合材料としての強度を確保することができる。気泡の含有率が50vol%以下であると、発生した亀裂のエネルギーが周囲に分散されやすく、割れにくくすることができる。また、気泡の含有率が20vol%以上であると、マトリックスにより大きな機械強度があるので、複合材料としての強度をさらに確保することができる。気泡の含有率が30vol%以下であると、発生した亀裂のエネルギーがより周囲に分散されやすく、さらに割れにくくすることができる。
なお、セラミック繊維が、複数本まとまってセラミック繊維束を構成している場合には、1本のセラミック繊維を囲むマトリックスのみについて気泡の含有率を定義する。 The content of bubbles in the matrix is not particularly limited, but the content of bubbles in the matrix in the range of the distance from the surface of the ceramic fiber to the diameter of the ceramic fiber is desirably 10 to 50 vol%, and 20 to 30 vol%. Is more desirable. A bubble content of 10-50 vol% in the above range means that bubbles are present in the vicinity of the ceramic fiber. In this case, since the surface of the ceramic fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is difficult to be attached to the surface of the ceramic fiber. When the bubble content is 10 vol% or more, the matrix has sufficient mechanical strength, so that strength as a composite material can be ensured. When the bubble content is 50 vol% or less, the generated crack energy is easily dispersed to the surroundings and can be made difficult to break. In addition, when the bubble content is 20 vol% or more, the matrix has a higher mechanical strength, so that the strength as a composite material can be further ensured. When the bubble content is 30 vol% or less, the energy of the generated crack is more easily dispersed to the surroundings, and can be further prevented from cracking.
When a plurality of ceramic fibers constitute a ceramic fiber bundle, the bubble content is defined only for the matrix surrounding one ceramic fiber.
なお、セラミック繊維が、複数本まとまってセラミック繊維束を構成している場合には、1本のセラミック繊維を囲むマトリックスのみについて気泡の含有率を定義する。 The content of bubbles in the matrix is not particularly limited, but the content of bubbles in the matrix in the range of the distance from the surface of the ceramic fiber to the diameter of the ceramic fiber is desirably 10 to 50 vol%, and 20 to 30 vol%. Is more desirable. A bubble content of 10-50 vol% in the above range means that bubbles are present in the vicinity of the ceramic fiber. In this case, since the surface of the ceramic fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is difficult to be attached to the surface of the ceramic fiber. When the bubble content is 10 vol% or more, the matrix has sufficient mechanical strength, so that strength as a composite material can be ensured. When the bubble content is 50 vol% or less, the generated crack energy is easily dispersed to the surroundings and can be made difficult to break. In addition, when the bubble content is 20 vol% or more, the matrix has a higher mechanical strength, so that the strength as a composite material can be further ensured. When the bubble content is 30 vol% or less, the energy of the generated crack is more easily dispersed to the surroundings, and can be further prevented from cracking.
When a plurality of ceramic fibers constitute a ceramic fiber bundle, the bubble content is defined only for the matrix surrounding one ceramic fiber.
図2は、図1(b)に示したセラミック複合材料の拡大断面図である。
図2中、セラミック繊維11の直径を矢印dで示している。したがって、「セラミック繊維の表面からセラミック繊維の直径の距離の範囲」とは、セラミック繊維11の表面から距離dにある範囲を意味する。 FIG. 2 is an enlarged cross-sectional view of the ceramic composite material shown in FIG.
In FIG. 2, the diameter of theceramic fiber 11 is indicated by an arrow d. Therefore, the “range of the distance of the diameter of the ceramic fiber from the surface of the ceramic fiber” means a range at a distance d from the surface of the ceramic fiber 11.
図2中、セラミック繊維11の直径を矢印dで示している。したがって、「セラミック繊維の表面からセラミック繊維の直径の距離の範囲」とは、セラミック繊維11の表面から距離dにある範囲を意味する。 FIG. 2 is an enlarged cross-sectional view of the ceramic composite material shown in FIG.
In FIG. 2, the diameter of the
本発明のセラミック複合材料において、マトリックスの気孔率は、10~50%であることが望ましく、20~30%であることがより望ましい。
In the ceramic composite material of the present invention, the porosity of the matrix is preferably 10 to 50%, more preferably 20 to 30%.
図3は、本発明のセラミック複合材料の別の一例を模式的に示す断面図である。
本発明のセラミック複合材料においては、図3に示すように、セラミック複合材料10の表面にSiC層20が形成されていてもよい。SiC層20は、セラミック複合材料10にCVD処理を施すことにより形成されたCVD-SiC層であることが望ましい。 FIG. 3 is a cross-sectional view schematically showing another example of the ceramic composite material of the present invention.
In the ceramic composite material of the present invention, anSiC layer 20 may be formed on the surface of the ceramic composite material 10 as shown in FIG. The SiC layer 20 is preferably a CVD-SiC layer formed by subjecting the ceramic composite material 10 to a CVD process.
本発明のセラミック複合材料においては、図3に示すように、セラミック複合材料10の表面にSiC層20が形成されていてもよい。SiC層20は、セラミック複合材料10にCVD処理を施すことにより形成されたCVD-SiC層であることが望ましい。 FIG. 3 is a cross-sectional view schematically showing another example of the ceramic composite material of the present invention.
In the ceramic composite material of the present invention, an
[セラミック複合材料の製造方法]
上述した本発明のセラミック複合材料は、本発明のセラミック複合材料の製造方法により製造することができる。
本発明のセラミック複合材料の製造方法は、セラミック繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、上記含浸体を焼成する焼成工程とを含むことを特徴とする。 [Method of manufacturing ceramic composite material]
The ceramic composite material of the present invention described above can be produced by the method for producing a ceramic composite material of the present invention.
The method for producing a ceramic composite material of the present invention comprises impregnating a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body, and a firing step of firing the impregnated body. It is characterized by including.
上述した本発明のセラミック複合材料は、本発明のセラミック複合材料の製造方法により製造することができる。
本発明のセラミック複合材料の製造方法は、セラミック繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、上記含浸体を焼成する焼成工程とを含むことを特徴とする。 [Method of manufacturing ceramic composite material]
The ceramic composite material of the present invention described above can be produced by the method for producing a ceramic composite material of the present invention.
The method for producing a ceramic composite material of the present invention comprises impregnating a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body, and a firing step of firing the impregnated body. It is characterized by including.
まず、セラミック繊維からなる繊維集合体を準備する。
繊維集合体は、セラミック繊維に形状を付与する賦形工程によって得ることができる。具体的には、繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体であることが望ましい。 First, a fiber assembly made of ceramic fibers is prepared.
The fiber assembly can be obtained by a shaping process for imparting a shape to the ceramic fiber. Specifically, the fiber assembly is desirably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded product, and a filament winding molded product.
繊維集合体は、セラミック繊維に形状を付与する賦形工程によって得ることができる。具体的には、繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体であることが望ましい。 First, a fiber assembly made of ceramic fibers is prepared.
The fiber assembly can be obtained by a shaping process for imparting a shape to the ceramic fiber. Specifically, the fiber assembly is desirably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded product, and a filament winding molded product.
セラミック繊維の種類等については、[セラミック複合材料]で説明したとおりであるので、その詳細な説明を省略する。
Since the types of ceramic fibers and the like are as described in [Ceramic composite material], detailed description thereof is omitted.
例えば、SiC繊維を50~2000本束ねたセラミック繊維束を織布してシート状にしたものを繊維集合体とすることができる。
For example, a fiber assembly can be formed by weaving a ceramic fiber bundle in which 50 to 2000 SiC fibers are bundled into a sheet shape.
次に、準備した繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る(含浸工程)。
Next, the prepared fiber aggregate is impregnated with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body (impregnation step).
含浸の方法としては、ディップ、吹き付け、塗布、コーター、真空加圧含浸等の方法が挙げられるが、いずれの方法であってもよい。
Examples of the impregnation method include dipping, spraying, coating, coater, vacuum pressure impregnation and the like, and any method may be used.
スラリーに含まれる中空体としては、ガラスバルーン、シラスバルーン、シリカバルーン、カーボンバルーン等の無機バルーン;樹脂バルーン等の有機バルーン;樹脂;及びこれらの反応物を用いることができる。
As the hollow body contained in the slurry, glass balloons, shirasu balloons, silica balloons, carbon balloons and other inorganic balloons; resin balloons and other organic balloons; resins; and their reaction products can be used.
中空体がセラミックからなる場合には、用いるマトリックス前駆体との組み合わせによって、そのままの材質で残留する場合(例えば、中空体がカーボンバルーンであり、マトリックス前駆体がフェノールである場合)、反応して他の材質に変化して残留する場合(例えば、中空体がシリカバルーンであり、マトリックス前駆体がポリカルボシランである場合)がある。
また、中空体が樹脂からなる場合には、炭化してセラミックの殻を形成する場合(例えば、中空体が熱硬化性樹脂バルーンである場合)、焼成によって熱分解し、殻がなくなる場合(例えば、中空体が熱可塑性樹脂のバルーンである場合)がある。 When the hollow body is made of ceramic, it remains in the same material depending on the combination with the matrix precursor to be used (for example, when the hollow body is a carbon balloon and the matrix precursor is phenol) and reacts. There are cases where the material changes and remains (for example, when the hollow body is a silica balloon and the matrix precursor is polycarbosilane).
In addition, when the hollow body is made of resin, it is carbonized to form a ceramic shell (for example, when the hollow body is a thermosetting resin balloon), or when it is thermally decomposed by firing and the shell disappears (for example, The hollow body is a balloon made of thermoplastic resin).
また、中空体が樹脂からなる場合には、炭化してセラミックの殻を形成する場合(例えば、中空体が熱硬化性樹脂バルーンである場合)、焼成によって熱分解し、殻がなくなる場合(例えば、中空体が熱可塑性樹脂のバルーンである場合)がある。 When the hollow body is made of ceramic, it remains in the same material depending on the combination with the matrix precursor to be used (for example, when the hollow body is a carbon balloon and the matrix precursor is phenol) and reacts. There are cases where the material changes and remains (for example, when the hollow body is a silica balloon and the matrix precursor is polycarbosilane).
In addition, when the hollow body is made of resin, it is carbonized to form a ceramic shell (for example, when the hollow body is a thermosetting resin balloon), or when it is thermally decomposed by firing and the shell disappears (for example, The hollow body is a balloon made of thermoplastic resin).
中空体の平均気泡径は、2~20μmであることが望ましく、5~15μmであることがより望ましい。
なお、中空体の平均気泡径は、レーザー回折式粒度測定機で粒子径を測定し、中空体の膜厚を減ずることで測定することができる。 The average cell diameter of the hollow body is preferably 2 to 20 μm, and more preferably 5 to 15 μm.
The average cell diameter of the hollow body can be measured by measuring the particle diameter with a laser diffraction particle size measuring machine and reducing the film thickness of the hollow body.
なお、中空体の平均気泡径は、レーザー回折式粒度測定機で粒子径を測定し、中空体の膜厚を減ずることで測定することができる。 The average cell diameter of the hollow body is preferably 2 to 20 μm, and more preferably 5 to 15 μm.
The average cell diameter of the hollow body can be measured by measuring the particle diameter with a laser diffraction particle size measuring machine and reducing the film thickness of the hollow body.
スラリー中の中空体の含有量は特に限定されないが、固形分量で20~65重量%であることが望ましく、40~65重量%であることがより望ましい。
The content of the hollow body in the slurry is not particularly limited, but the solid content is preferably 20 to 65% by weight, more preferably 40 to 65% by weight.
スラリーに含まれるマトリックス前駆体は、有機金属化合物、有機珪素化合物、又は、炭素前駆体であってもよいし、セラミック粒子と焼結助剤とからなっていてもよい。
The matrix precursor contained in the slurry may be an organometallic compound, an organosilicon compound, or a carbon precursor, or may be composed of ceramic particles and a sintering aid.
マトリックス前駆体が、有機金属化合物、有機珪素化合物、又は、炭素前駆体である場合、これらのマトリックス前駆体を焼成することによって、セラミックからなるマトリックスを形成することができる。
When the matrix precursor is an organometallic compound, an organosilicon compound, or a carbon precursor, a matrix made of ceramic can be formed by firing these matrix precursors.
有機金属化合物としては、例えば、有機アルミニウム化合物から形成されるオレフィン類重合体等のアルミニウム原子を含有する有機金属化合物等が挙げられる。有機珪素化合物としては、例えば、ポリカルボシラン、ポリビニルシラン、ポリメチルシラン等のケイ素系ポリマーが挙げられる。炭素前駆体としては、例えば、フェノール樹脂、ポリイミド等の樹脂等が挙げられる。
Examples of the organometallic compound include organometallic compounds containing aluminum atoms such as olefin polymers formed from organoaluminum compounds. Examples of the organosilicon compound include silicon polymers such as polycarbosilane, polyvinylsilane, and polymethylsilane. As a carbon precursor, resin, such as a phenol resin and a polyimide, etc. are mentioned, for example.
マトリックス前駆体が、有機金属化合物、有機珪素化合物、又は、炭素前駆体である場合、スラリー中のマトリックス前駆体の含有量は特に限定されないが、固形分量で20~65重量%であることが望ましく、40~65重量%であることがより望ましい。
When the matrix precursor is an organometallic compound, an organosilicon compound, or a carbon precursor, the content of the matrix precursor in the slurry is not particularly limited, but is preferably 20 to 65% by weight in solid content. 40 to 65% by weight is more desirable.
マトリックス前駆体が、セラミック粒子と焼結助剤とからなる場合、焼結助剤を用いてセラミック粒子を焼結することによって、セラミックからなるマトリックスを形成することができる。
When the matrix precursor is composed of ceramic particles and a sintering aid, a ceramic matrix can be formed by sintering the ceramic particles using the sintering aid.
セラミック粒子としては、例えば、黒鉛、炭素、炭化珪素、アルミナ、窒化珪素、窒化アルミニウム等のセラミック粒子が挙げられる。これらは1種類であってもよいし、複数種類を組み合わせてもよい。
Examples of the ceramic particles include ceramic particles such as graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride. These may be one type or a combination of a plurality of types.
セラミック粒子の平均粒子径は、中空体の平均気泡径より小さいことが望ましい。中空体の平均気泡径よりもセラミック粒子の平均粒子径を小さくすることで、マトリックス内部に発生する応力集中を小さくしつつ、弾性率の低いマトリックスを形成することができる。
The average particle size of the ceramic particles is preferably smaller than the average cell size of the hollow body. By making the average particle diameter of the ceramic particles smaller than the average cell diameter of the hollow body, it is possible to form a matrix having a low elastic modulus while reducing the concentration of stress generated inside the matrix.
具体的には、セラミック粒子の平均粒子径は、10~1000nmであることが望ましく、250~800nmであることがより望ましい。
なお、セラミック粒子の平均粒子径は、走査型電子顕微鏡(SEM)を用いて測定することができる。 Specifically, the average particle size of the ceramic particles is preferably 10 to 1000 nm, and more preferably 250 to 800 nm.
The average particle diameter of the ceramic particles can be measured using a scanning electron microscope (SEM).
なお、セラミック粒子の平均粒子径は、走査型電子顕微鏡(SEM)を用いて測定することができる。 Specifically, the average particle size of the ceramic particles is preferably 10 to 1000 nm, and more preferably 250 to 800 nm.
The average particle diameter of the ceramic particles can be measured using a scanning electron microscope (SEM).
スラリー中のセラミック粒子の含有量は特に限定されないが、固形分量で25~65重量%であることが望ましく、45~65重量%であることがより望ましい。
特に、セラミック粒子及び中空体の比率(セラミック粒子:中空体)が、重量比で2:1~7:1であることが望ましく、2:1~4:1であることがより望ましい。 The content of the ceramic particles in the slurry is not particularly limited, but is preferably 25 to 65% by weight, more preferably 45 to 65% by weight in terms of solid content.
In particular, the ratio of ceramic particles to hollow bodies (ceramic particles: hollow bodies) is preferably 2: 1 to 7: 1 by weight, and more preferably 2: 1 to 4: 1.
特に、セラミック粒子及び中空体の比率(セラミック粒子:中空体)が、重量比で2:1~7:1であることが望ましく、2:1~4:1であることがより望ましい。 The content of the ceramic particles in the slurry is not particularly limited, but is preferably 25 to 65% by weight, more preferably 45 to 65% by weight in terms of solid content.
In particular, the ratio of ceramic particles to hollow bodies (ceramic particles: hollow bodies) is preferably 2: 1 to 7: 1 by weight, and more preferably 2: 1 to 4: 1.
焼結助剤としては、例えば、Al2O3、Y2O3、SiO2、CaO等が挙げられる。
これらは1種類であってもよいし、複数種類を組み合わせてもよい。また、焼結助剤は、粉末状であることが望ましい。 Examples of the sintering aid include Al 2 O 3 , Y 2 O 3 , SiO 2 , and CaO.
These may be one type or a combination of a plurality of types. Moreover, it is desirable that the sintering aid is in a powder form.
これらは1種類であってもよいし、複数種類を組み合わせてもよい。また、焼結助剤は、粉末状であることが望ましい。 Examples of the sintering aid include Al 2 O 3 , Y 2 O 3 , SiO 2 , and CaO.
These may be one type or a combination of a plurality of types. Moreover, it is desirable that the sintering aid is in a powder form.
スラリー中の焼結助剤の含有量は特に限定されないが、固形分量で1~3重量%であることが望ましく、1~2重量%であることがより望ましい。
The content of the sintering aid in the slurry is not particularly limited, but it is preferably 1 to 3% by weight and more preferably 1 to 2% by weight in terms of solid content.
スラリーには分散媒(溶媒)が含まれる。分散媒としては、水又は有機溶媒を用いることができる。有機溶媒としては、例えば、エタノール、イソプロパノール等のアルコール系有機溶媒;ヘキサン、トルエン、キシレン等の炭化水素系有機溶媒等が挙げられる。
The slurry contains a dispersion medium (solvent). As the dispersion medium, water or an organic solvent can be used. Examples of the organic solvent include alcohol-based organic solvents such as ethanol and isopropanol; hydrocarbon-based organic solvents such as hexane, toluene and xylene.
なお、得られた含浸体を必要に応じて乾燥してもよい。
In addition, you may dry the obtained impregnated body as needed.
また、セラミック繊維の近傍に気泡を多く形成する場合には、中空体の含有率の異なるスラリーを準備し、繊維集合体に含有率の高いスラリーを含浸した後、含有率の低いスラリーを含浸すればよい。
When many bubbles are formed in the vicinity of the ceramic fiber, prepare slurries with different hollow body contents, impregnate the fiber aggregate with a high content slurry, and impregnate the low content slurry. That's fine.
続いて、含浸体を焼成する(焼成工程)。
Subsequently, the impregnated body is fired (firing step).
含浸体を焼成する方法としては、例えば、含浸体を加圧焼結する方法等が挙げられる。
加圧焼結の方法としては特に限定されず、ホットプレス(HP)法、熱間等方圧プレス(HIP)法等の公知の方法が挙げられる。 Examples of the method of firing the impregnated body include a method of pressure-sintering the impregnated body.
The pressure sintering method is not particularly limited, and examples thereof include known methods such as a hot press (HP) method and a hot isostatic press (HIP) method.
加圧焼結の方法としては特に限定されず、ホットプレス(HP)法、熱間等方圧プレス(HIP)法等の公知の方法が挙げられる。 Examples of the method of firing the impregnated body include a method of pressure-sintering the impregnated body.
The pressure sintering method is not particularly limited, and examples thereof include known methods such as a hot press (HP) method and a hot isostatic press (HIP) method.
焼結温度は、適宜設定することができるが、1000~2000℃であることが望ましく、1200~1600℃であることがより望ましい。また、圧力は、1~30MPaであることが望ましく、5~20MPaであることがより望ましい。
The sintering temperature can be appropriately set, but is preferably 1000 to 2000 ° C., more preferably 1200 to 1600 ° C. The pressure is preferably 1 to 30 MPa and more preferably 5 to 20 MPa.
含浸体の焼成は、非酸化性雰囲気下で行えばよく、例えば、不活性ガス雰囲気下、還元性雰囲気下、真空雰囲気下等で行うことができる。これらのなかでは、水素、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うことが望ましい。
The calcination of the impregnated body may be performed in a non-oxidizing atmosphere, for example, in an inert gas atmosphere, a reducing atmosphere, a vacuum atmosphere, or the like. In these, it is desirable to carry out in inert gas atmosphere, such as hydrogen, nitrogen, helium, and argon.
以上の工程を経ることにより、本発明のセラミック複合材料を製造することができる。
Through the above steps, the ceramic composite material of the present invention can be produced.
本発明のセラミック複合材料は、原子力分野、航空・宇宙分野、発電分野等の過酷な環境下や、ポンプメカニカルシール等の一般的な分野で使用することができる。
原子力分野で使用する場合、本発明のセラミック複合材料は、原子力用構造部材であることが望ましく、軽水炉用構造部材であることがより望ましい。
また、一般的な分野で使用する場合、本発明のセラミック複合材料は、ポンプメカニカルシール用材料であることが望ましい。 The ceramic composite material of the present invention can be used in harsh environments such as the nuclear power field, aerospace field, and power generation field, and in general fields such as pump mechanical seals.
When used in the nuclear field, the ceramic composite material of the present invention is preferably a nuclear structural member, and more preferably a light water reactor structural member.
In addition, when used in a general field, the ceramic composite material of the present invention is desirably a material for a pump mechanical seal.
原子力分野で使用する場合、本発明のセラミック複合材料は、原子力用構造部材であることが望ましく、軽水炉用構造部材であることがより望ましい。
また、一般的な分野で使用する場合、本発明のセラミック複合材料は、ポンプメカニカルシール用材料であることが望ましい。 The ceramic composite material of the present invention can be used in harsh environments such as the nuclear power field, aerospace field, and power generation field, and in general fields such as pump mechanical seals.
When used in the nuclear field, the ceramic composite material of the present invention is preferably a nuclear structural member, and more preferably a light water reactor structural member.
In addition, when used in a general field, the ceramic composite material of the present invention is desirably a material for a pump mechanical seal.
以下、本発明のセラミック複合材料及びセラミック複合材料の製造方法の作用効果について説明する。
Hereinafter, the effects of the ceramic composite material and the method for producing the ceramic composite material of the present invention will be described.
本発明のセラミック複合材料では、マトリックスに亀裂が生じても、マトリックス中に存在する気泡によって亀裂の進展を防止し、その亀裂がセラミック繊維にまで伝播することを防止することができる。さらに、亀裂の伝播を防止するための被覆層等を形成する必要がないため、セラミック繊維及び被覆層の選択肢やセラミック複合材料の用途が限定されるという問題が生じない。このように、本発明のセラミック複合材料では、被覆層等を含まずに、高強度のセラミック複合材料とすることができる。
In the ceramic composite material of the present invention, even if a crack occurs in the matrix, the progress of the crack can be prevented by the bubbles present in the matrix, and the propagation of the crack to the ceramic fiber can be prevented. Furthermore, since it is not necessary to form a coating layer or the like for preventing the propagation of cracks, there is no problem that the choice of ceramic fibers and coating layers and the use of ceramic composite materials are limited. Thus, the ceramic composite material of the present invention can be a high-strength ceramic composite material without including a coating layer or the like.
本発明のセラミック複合材料の製造方法では、スラリーに中空体を混入することによって、マトリックス中に気泡を形成することができる。その結果、上述した本発明のセラミック複合材料を製造することができる。
In the method for producing a ceramic composite material of the present invention, bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described ceramic composite material of the present invention can be manufactured.
本発明のセラミック複合材料は、マトリックス中に気泡を有することを必須の構成要件としている。本発明のセラミック複合材料の製造方法は、セラミック繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得た後、上記含浸体を焼成することを必須の構成要件としている。
係る必須の構成要件に、本発明の詳細な説明で詳述した種々の構成(例えば、セラミック繊維の構成、マトリックスの構成、気泡の構成、中空体の構成、セラミック複合材料の製造条件等)を適宜組み合わせることにより所望の効果を得ることができる。 In the ceramic composite material of the present invention, it is an essential constituent element to have bubbles in the matrix. In the method for producing a ceramic composite material of the present invention, it is essential to impregnate a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body, obtain an impregnated body, and then fire the impregnated body. The configuration requirements are as follows.
The various constituents detailed in the detailed description of the present invention (for example, the ceramic fiber configuration, the matrix configuration, the bubble configuration, the hollow body configuration, the manufacturing condition of the ceramic composite material, etc.) Desired effects can be obtained by appropriately combining them.
係る必須の構成要件に、本発明の詳細な説明で詳述した種々の構成(例えば、セラミック繊維の構成、マトリックスの構成、気泡の構成、中空体の構成、セラミック複合材料の製造条件等)を適宜組み合わせることにより所望の効果を得ることができる。 In the ceramic composite material of the present invention, it is an essential constituent element to have bubbles in the matrix. In the method for producing a ceramic composite material of the present invention, it is essential to impregnate a fiber aggregate made of ceramic fibers with a slurry containing a matrix precursor and a hollow body, obtain an impregnated body, and then fire the impregnated body. The configuration requirements are as follows.
The various constituents detailed in the detailed description of the present invention (for example, the ceramic fiber configuration, the matrix configuration, the bubble configuration, the hollow body configuration, the manufacturing condition of the ceramic composite material, etc.) Desired effects can be obtained by appropriately combining them.
10 セラミック複合材料
11 セラミック繊維
12 マトリックス
13 気泡
20 SiC層 DESCRIPTION OFSYMBOLS 10 Ceramic composite material 11 Ceramic fiber 12 Matrix 13 Bubble 20 SiC layer
11 セラミック繊維
12 マトリックス
13 気泡
20 SiC層 DESCRIPTION OF
Claims (15)
- セラミック繊維とマトリックスとからなるセラミック複合材料であって、前記マトリックス中に略球形の気泡を有することを特徴とするセラミック複合材料。 A ceramic composite material comprising ceramic fibers and a matrix, the ceramic composite material having substantially spherical bubbles in the matrix.
- 前記気泡は、セラミックからなる殻で囲まれている請求項1に記載のセラミック複合材料。 The ceramic composite material according to claim 1, wherein the bubbles are surrounded by a shell made of ceramic.
- 前記殻は、前記マトリックスと同一材質のセラミックからなる請求項2に記載のセラミック複合材料。 The ceramic composite material according to claim 2, wherein the shell is made of the same ceramic material as the matrix.
- 前記殻は、前記マトリックスと異なる材質のセラミックからなる請求項2に記載のセラミック複合材料。 The ceramic composite material according to claim 2, wherein the shell is made of a ceramic material different from that of the matrix.
- 前記気泡の直径は、前記セラミック繊維の直径より小さい請求項1~4のいずれかに記載のセラミック複合材料。 The ceramic composite material according to any one of claims 1 to 4, wherein a diameter of the bubble is smaller than a diameter of the ceramic fiber.
- 前記セラミック繊維は、複数本がまとまってセラミック繊維束を構成している請求項1~5のいずれかに記載のセラミック複合材料。 The ceramic composite material according to any one of claims 1 to 5, wherein a plurality of the ceramic fibers constitute a ceramic fiber bundle.
- 前記セラミック繊維の表面から前記セラミック繊維の直径の距離の範囲における前記マトリックス中の前記気泡の含有率は、10~50vol%である請求項1~6のいずれかに記載のセラミック複合材料。 The ceramic composite material according to any one of claims 1 to 6, wherein a content ratio of the bubbles in the matrix in a range of a diameter distance of the ceramic fiber from a surface of the ceramic fiber is 10 to 50 vol%.
- 前記セラミック繊維は、炭化珪素繊維、炭素繊維、アルミナ繊維、ムライト繊維、及び、シリカ繊維からなる群より選択される少なくとも一種のセラミック繊維である請求項1~7のいずれかに記載のセラミック複合材料。 The ceramic composite material according to any one of claims 1 to 7, wherein the ceramic fiber is at least one ceramic fiber selected from the group consisting of silicon carbide fiber, carbon fiber, alumina fiber, mullite fiber, and silica fiber. .
- 前記マトリックスは、黒鉛、炭素、炭化珪素、アルミナ、窒化珪素、及び、窒化アルミニウムからなる群より選択される少なくとも一種のマトリックスである請求項1~8のいずれかに記載のセラミック複合材料。 The ceramic composite material according to any one of claims 1 to 8, wherein the matrix is at least one matrix selected from the group consisting of graphite, carbon, silicon carbide, alumina, silicon nitride, and aluminum nitride.
- セラミック繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、前記含浸体を焼成する焼成工程とを含むことを特徴とするセラミック複合材料の製造方法。 A ceramic composite material comprising: an impregnation step of impregnating a fiber assembly comprising ceramic fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnation body; and a firing step of firing the impregnation body. Manufacturing method.
- 前記マトリックス前駆体は、有機金属化合物、有機珪素化合物、又は、炭素前駆体である請求項10に記載のセラミック複合材料の製造方法。 The method for producing a ceramic composite material according to claim 10, wherein the matrix precursor is an organometallic compound, an organosilicon compound, or a carbon precursor.
- 前記マトリックス前駆体は、セラミック粒子と焼結助剤とからなる請求項10に記載のセラミック複合材料の製造方法。 The method for producing a ceramic composite material according to claim 10, wherein the matrix precursor includes ceramic particles and a sintering aid.
- 前記セラミック粒子の平均粒子径は、前記中空体の平均気泡径より小さい請求項12に記載のセラミック複合材料の製造方法。 The method for producing a ceramic composite material according to claim 12, wherein an average particle diameter of the ceramic particles is smaller than an average cell diameter of the hollow body.
- 前記セラミック繊維は、複数本がまとまってセラミック繊維束を構成している請求項10~13のいずれかに記載のセラミック複合材料の製造方法。 The method for producing a ceramic composite material according to any one of claims 10 to 13, wherein a plurality of the ceramic fibers constitute a ceramic fiber bundle.
- 前記繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体である請求項10~14のいずれかに記載のセラミック複合材料の製造方法。 The fiber aggregate is at least one fiber aggregate selected from the group consisting of a woven fabric, a mat, a braided (braided) molded body, and a filament winding molded body. Of manufacturing ceramic composite material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-159939 | 2013-07-31 | ||
JP2013159939A JP2015030632A (en) | 2013-07-31 | 2013-07-31 | Ceramic composite material and method for producing ceramic composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016072A1 true WO2015016072A1 (en) | 2015-02-05 |
Family
ID=52431612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068946 WO2015016072A1 (en) | 2013-07-31 | 2014-07-16 | Ceramic composite material and production method for ceramic composite material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015030632A (en) |
WO (1) | WO2015016072A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116670096A (en) * | 2020-12-25 | 2023-08-29 | 东曹株式会社 | Ceramic matrix composite and method of making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7088653B2 (en) * | 2017-10-16 | 2022-06-21 | イビデン株式会社 | Method for manufacturing fiber reinforced AlN composite material, heat dissipation substrate, fiber reinforced AlN composite material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297267A (en) * | 1987-05-29 | 1988-12-05 | Shinagawa Refract Co Ltd | Zirconia composite refractory |
JPH04124073A (en) * | 1990-09-12 | 1992-04-24 | Shinagawa Refract Co Ltd | Zirconia-based complex refractory and heat-insulating material |
JP2000185979A (en) * | 1998-12-21 | 2000-07-04 | Tokai Carbon Co Ltd | Production of porous molded article of silicon carbide |
WO2012063923A1 (en) * | 2010-11-11 | 2012-05-18 | 国立大学法人京都大学 | Sic ceramic material and sic ceramic structure, and production method for same |
-
2013
- 2013-07-31 JP JP2013159939A patent/JP2015030632A/en active Pending
-
2014
- 2014-07-16 WO PCT/JP2014/068946 patent/WO2015016072A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297267A (en) * | 1987-05-29 | 1988-12-05 | Shinagawa Refract Co Ltd | Zirconia composite refractory |
JPH04124073A (en) * | 1990-09-12 | 1992-04-24 | Shinagawa Refract Co Ltd | Zirconia-based complex refractory and heat-insulating material |
JP2000185979A (en) * | 1998-12-21 | 2000-07-04 | Tokai Carbon Co Ltd | Production of porous molded article of silicon carbide |
WO2012063923A1 (en) * | 2010-11-11 | 2012-05-18 | 国立大学法人京都大学 | Sic ceramic material and sic ceramic structure, and production method for same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116670096A (en) * | 2020-12-25 | 2023-08-29 | 东曹株式会社 | Ceramic matrix composite and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
JP2015030632A (en) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6155439B2 (en) | Manufacturing method of parts made of CMC material | |
KR100624094B1 (en) | The method of producing carbon fiber reinforced ceramic matrix composites | |
US7001544B2 (en) | Method for manufacturing carbon-carbon composites | |
US20110124253A1 (en) | Cnt-infused fibers in carbon-carbon composites | |
CN110256082B (en) | Method for preparing single crystal silicon carbide nanofiber/silicon carbide ceramic matrix composite material by reaction sintering | |
EP2210868B1 (en) | Composite material | |
CN112543749A (en) | Method for producing a part made of CMC | |
JPH05508885A (en) | Method for manufacturing reinforced composite material and filament material for use in this method | |
WO2002098819A1 (en) | Method for producing sic fiber-reinforced sic composite material | |
JP6301261B2 (en) | CMC material parts | |
JP3034084B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
JPH05339056A (en) | Oxidation-resistant member composed of carbon-carbon composite having sic doped matrix and production thereof | |
JP2003252694A (en) | SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL | |
WO2015016072A1 (en) | Ceramic composite material and production method for ceramic composite material | |
JP6122728B2 (en) | SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material | |
KR101623914B1 (en) | Method for fabrication of high density SiCf/SiC composites with homogeneous microstructure | |
JP5769519B2 (en) | Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same | |
JP2019172503A (en) | PRODUCTION PROCESS FOR SiC FIBER REINFORCED SiC COMPOSITE MATERIAL | |
CN114230347A (en) | Preparation method and product of continuous fiber reinforced ZrC/SiC composite part | |
JP7085388B2 (en) | Method for manufacturing SiC fiber reinforced SiC composite material | |
JP2017088418A (en) | Method for producing SiC fiber-reinforced SiC composite material | |
JP4616442B2 (en) | Carbonaceous material having oxidation-resistant protective layer and method for producing the same | |
KR102471198B1 (en) | Method for manufacturing silicon carbide fiber-reinforced ceramic composite using popping process | |
KR102057304B1 (en) | Carbon material comprising carbide coating layer | |
JPH0274671A (en) | Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831265 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14831265 Country of ref document: EP Kind code of ref document: A1 |