[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015009055A1 - Porous separator and manufacturing method therefor - Google Patents

Porous separator and manufacturing method therefor Download PDF

Info

Publication number
WO2015009055A1
WO2015009055A1 PCT/KR2014/006439 KR2014006439W WO2015009055A1 WO 2015009055 A1 WO2015009055 A1 WO 2015009055A1 KR 2014006439 W KR2014006439 W KR 2014006439W WO 2015009055 A1 WO2015009055 A1 WO 2015009055A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
porous
molecular weight
thickness
mol
Prior art date
Application number
PCT/KR2014/006439
Other languages
French (fr)
Korean (ko)
Inventor
이상호
김기욱
이정승
장정수
정준호
조재현
홍대현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2015009055A1 publication Critical patent/WO2015009055A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous membrane and a method of manufacturing the same.
  • a separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
  • Japanese Patent Laid-Open No. 2-94356 proposes a polymer resin microporous membrane for a lithium battery separator having good assembly processability and low electrical resistance, but the separator has insufficient strength due to its excessive surface pore size. There is.
  • the present invention aims to provide a porous membrane having improved characteristics such as cell permeability, such as cycle characteristics, battery life, and electrolyte productivity, as well as permeability and mechanical strength of the separator.
  • the present invention seeks to provide a separator having satisfactory tensile strength in high-speed winding of battery production, which is carried out for the purpose of cost reduction.
  • the present invention is to provide a porous membrane with a small change in membrane thickness change and air permeability change rate when the separator is pressed, a fast absorption rate of the electrolyte, mechanical properties such as strength, and improved air permeability.
  • the sheet by melt-kneading and extruding a composition comprising a polymer resin and a plasticizer to form a cooled solidified sheet, and biaxially stretched the solidified sheet, the sheet at a temperature T 1 in the longitudinal direction After drawing, the film is drawn at a temperature T 2 in the width direction, wherein T 1 and T 2 are T 2 -T 1 ⁇ 20 ° C., and a method of manufacturing a porous separator is provided, which includes extracting a plasticizer from the drawn sheet. .
  • the porosity (P%) of the porous separator is 40% to 70%
  • the air permeability (S sec / 100cc) of the porous separator is 100 sec / 100cc to 300 sec / 100cc
  • a porous separator is provided in which P and S satisfy 3000 ⁇ S ⁇ P ⁇ 7500.
  • the thickness before heat compression of the porous membrane (T 1 ) and the compression thickness change rate of the formula (T 2 ) of the thickness (T 2 ) after heating and compressing the separator at 90 ° C. under 2.2 MPa pressure for 5 minutes ( A porous separator having a T) of 20% or less is provided.
  • T [T 1 -T 2 ] / T 1 ⁇ 100
  • the present invention provides a separator having a large pore and a small pore together, the change in membrane thickness and air permeability when the membrane is pressurized is small, the absorption rate of the electrolyte is fast, excellent mechanical properties, permeability and heat shrinkage characteristics.
  • Method for producing a porous separator forming a solidified sheet with a composition comprising a polymer resin and a plasticizer, biaxially stretched the solidified sheet, and then extracting a plasticizer from the stretched sheet Include.
  • forming the solidified sheet specifically includes melt kneading and extruding a composition containing a polymer resin and a plasticizer to form a cooled solidified sheet.
  • the composition may be used in combination with other resins (eg, polyamide (PA), polyvinylidene fluoride (PVDF), polycarbonate (PC), polysulfone (Polysulfone, PSF)). , Etc.), inorganic particles, and the like.
  • the polyolefin resin may be contained, for example, 50% by weight or more.
  • one or two or more selected from the group consisting of ultra high molecular weight polyethylene, high molecular weight polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene, and polyethylene-propylene copolymer as polyolefin resin can be used.
  • the copolymer of polyolefin and other resin can be used.
  • the viscosity average molecular weight (Mv) of the high density polyethylene may be 1 ⁇ 10 5 g / mol to 9 ⁇ 10 5 g / mol, for example, 3 ⁇ 10 5 g / mol to 6 ⁇ 10 5 g / mol have.
  • the viscosity average molecular weight of the ultrahigh molecular weight polyethylene may be 9 ⁇ 10 5 g / mol or more, specifically 9 ⁇ 10 5 g / mol to 5 ⁇ 10 6 g / mol.
  • the high density polyethylene may be used alone or the ultra high molecular weight polyethylene may be used alone, or both the high density polyethylene and the ultra high molecular weight polyethylene may be used.
  • the ultra high molecular weight polyethylene may be used in an amount of 30 wt% or less based on the weight of the polymer resin, and for example, a viscosity average molecular weight of 1 ⁇ 10 5 g / mol to 9 ⁇ 10 5 g / mol
  • a polymer resin containing 70 wt% or more of phosphorus high density polyethylene and 30 wt% or less of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 9 ⁇ 10 5 g / mol or more can be used.
  • the polymer resin is advantageous because it can prepare a high strength separator.
  • the polymer resin may be included in an amount of 10% to 80% by weight, specifically 20% to 70% by weight, based on the total weight of the composition including the polymer resin and the plasticizer.
  • the plasticizer may be an organic compound that forms a single phase with the polymer resin at an extrusion temperature.
  • plasticizers usable in embodiments of the invention include aliphatic or cyclic hydrocarbons such as liquid paraffin (or paraffin oil) such as nonane, decane, decalin, liquid paraffin (LP), paraffin wax; Phthalic acid esters such as dibutyl phthalate and dioctyl phthalate; Fatty acids having 10 to 20 carbon atoms, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; C10-C20 fatty acid alcohols, such as a palmitic alcohol, a stearic acid alcohol, and an oleic acid alcohol, etc.
  • plasticizers can be used liquid paraffin. Liquid paraffin is harmless to the human body, has high boiling point and low volatile components, making it suitable for use as a plasticizer in the wet process.
  • the plasticizer may be included in an amount of 30 wt% to 90 wt%, and specifically 40 wt% to 90 wt%, based on the total weight of the composition including the polymer resin and the plasticizer.
  • Melting and kneading the composition containing the polymer resin and the plasticizer in this embodiment may be a method known to those skilled in the art, it may be to melt kneading the polymer resin and the plasticizer at a temperature of 150 °C to 250 °C.
  • the melt-kneaded composition may be injected into a twin screw extruder to extrude at 150 ° C to 250 ° C.
  • the extruded polymer resin is then cooled using a casting roll of 20 ° C. to 80 ° C. or forcedly cooled by cold air injected from an air knife to crystallize the film to form a solidified sheet.
  • the temperature of the cool air injected from the air knife may be -20 °C to 40 °C.
  • the biaxially oriented comprises Specifically stretched at a temperature T 2 in the transverse direction after stretching the sheet at a temperature T 1 in the longitudinal direction.
  • T 1 and T 2 may be T 2 -T 1 ⁇ 20 ° C.
  • T 1 and T 2 may be T 2 -T 1 ⁇ 20 ° C.
  • the separation membrane of this embodiment contains both the first pores and the second pores as described above, so that the change in membrane thickness and air permeability at the time of pressurization of the microporous membrane is small, the absorption rate of the electrolyte is fast, and the mechanical properties, permeability and heat shrinkage characteristics are excellent.
  • the longitudinal stretching temperature (T 1) may be 80 °C to 110 °C. Specifically, the longitudinal stretching temperature T 1 may be 85 ° C. to 105 ° C., for example, 90 ° C. to 100 ° C.
  • the widthwise stretching temperature T 2 may be 20 ° C. or more higher than the longitudinal stretching temperature T 1 . Therefore, the widthwise stretching temperature T 2 may be 100 ° C. to 140 ° C., specifically 105 ° C. to 135 ° C., for example, 110 ° C. to 130 ° C.
  • the draw ratios in the longitudinal direction and the width direction may be 5 to 10 times each independently. Specifically, the draw ratio may be 6 times to 9 times in the longitudinal direction, and 6 times to 9 times in the width direction.
  • the draw ratios in the width direction and the longitudinal direction may be the same or different.
  • the plasticizer may be extracted after the biaxial stretching.
  • the plasticizer extraction may be performed using an organic solvent, and in particular, the longitudinally stretched and widthwise stretched separators may be immersed in an organic solvent in the plasticizer extracting apparatus to extract a plasticizer.
  • the organic solvent used for the plasticizer extraction is not particularly limited, and any solvent may be used as long as it can extract the plasticizer.
  • Non-limiting examples of the organic solvent may be methyl ethyl ketone, methylene chloride, hexane, etc., which has high extraction efficiency and easy drying, and methylene chloride may be used as the organic solvent when liquid paraffin is used as a plasticizer.
  • the manufacturing method according to another embodiment of the present invention may further include heat setting after the plasticizer extraction.
  • the heat setting is to reduce the shrinkage of the final film by removing the residual stress of the film, it is possible to adjust the heat shrinkage, permeability, etc. of the film according to the temperature and the fixed ratio when performing the heat setting.
  • the heat setting includes stretching at a draw ratio of 1 to 2 times in the width direction and relaxing at 80% to 100% with respect to the stretched width direction length.
  • the heat setting may be performed at 100 ° C to 150 ° C, for example, may be performed at 125 ° C to 145 ° C. It is effective in removing residual stress of the film in the above range, and can improve physical properties.
  • the present invention provides a porous separator prepared by the method of manufacturing a porous separator according to the embodiments.
  • the compressive thickness change rate (T) expressed by Equation 1 may be 20% or less, for example, 15% or less.
  • T [T 1 -T 2 ] / T 1 ⁇ 100
  • T 1 represents the thickness before heat compression of the separator
  • T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.
  • the porous separator according to the embodiments of the present invention is the difference between the air permeability (P 2 ) and the heat compression electric permeability (P 1 ) after heating and compressing the separator for 5 minutes at 90 °C under 2.2 MPa pressure 400 sec / 100cc It may be: More specifically, the difference in air permeability after and before the heat compression may be 300 sec / 100 cc or less. Within this range, the air permeability to the pressure due to the expansion of the battery when the battery is charged, the cycle characteristics of the battery can be improved. In the porous separator according to the embodiments of the present invention, an electrolyte absorption amount when the separator is immersed in an electrolyte solution at 18 ° C.
  • Separation membrane according to embodiments of the present invention can be improved by the absorption rate of the electrolyte by including pores of different pore size.
  • the porous membrane according to the embodiments of the present invention has a porosity ( P %) of 40 to 70%, air permeability ( S sec / 100cc) of 100 sec / 100cc to 300 sec / 100cc, the P and S
  • the product may be 3000 ⁇ S ⁇ P ⁇ 7500, specifically 3000 ⁇ S ⁇ P ⁇ 7000.
  • pores having different pore sizes have lower air permeability values than conventional separators having the same porosity. This can be improved.
  • the porous separator according to the embodiments of the present invention may have an average thickness of 7 ⁇ m to 20 ⁇ m and a variation in thickness may be less than 4% of the average thickness.
  • the porous separator according to the embodiments of the present invention may have an average puncture strength of 300 gf or more, and specifically 400 gf or more.
  • the porous membrane according to the embodiment of the present invention may have a longitudinal average tensile strength of 1600 kgf / cm 2 or more and a width average tensile strength of 1800 kgf / cm 2 or more, the longitudinal average tensile strength is specifically 1700 kgf / cm 2 or more.
  • Porous separator according to the embodiments of the present invention by cutting the prepared membrane into a size of 50 ⁇ 50 mm and put in an oven at 120 °C shrinkage for 1 hour, after that by measuring the size of the shrinked separator to reflect the reduced size
  • the longitudinal shrinkage may be 5% or less
  • the widthwise shrinkage may be 3% or less
  • the longitudinal shrinkage may be 4% or less
  • the widthwise shrinkage may be 2% or less.
  • it may include a coating layer formed on one or both sides of the separator or porous separator prepared by the above-described manufacturing method.
  • the coating layer may be formed of a coating composition, the coating composition may include an organic binder with a solvent, and may further include inorganic particles.
  • polyvinylidene fluoride (PVdF) homopolymer polyvinylidene fluoride-hexaxafluoropropylene copolymer (PVDF-HFP), polymethyl methacrylate ( polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate , Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan ( pullulan), carboxyl methyl cell It may be used alone or as a mixture thereof selected from the group consisting of butadiene copolymers (acrylonitrilestyrene-butadiene copolymer) - Lawrence's (carboxyl methyl cellulose), and s
  • Molecular weight, content, etc. of the organic binder can be appropriately adjusted by the choice of those skilled in the art, non-limiting example, when using a PVdF-based binder, the adhesion between the coating layer and the separator can be enhanced, thereby improving the heat shrinkage rate By providing a separator having improved electrolyte impregnation, there is an advantage in that a battery in which electrical output can be efficiently produced can be produced.
  • the inorganic particles used in the present invention are not particularly limited and may be inorganic particles commonly used in the art.
  • Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types.
  • Al 2 O 3 (alumina) can be used as the inorganic particles used in the present invention.
  • the size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 nm to 2,000 nm, for example, 100 nm to 500 nm.
  • the inorganic particles in the size range it is possible to prevent the dispersibility and coating processability of the inorganic particles in the coating liquid to be lowered and the thickness of the coating layer is appropriately adjusted to prevent the reduction of mechanical properties and increase of electrical resistance. Can be.
  • the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery.
  • the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent.
  • the appropriate solvent is not particularly limited and may be a solvent commonly used in the art.
  • Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
  • Inorganic particles in the coating layer may be included in 70% to 95% by weight, specifically 75% to 95% by weight, more specifically 80% to 95% by weight based on the total weight of the coating layer.
  • the inorganic particles are contained within the above range, the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the separator is coated using the inorganic particles, heat shrinkage of the separator may be effectively suppressed.
  • Non-limiting examples of the solvent usable in this example include dimethyl formamide, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate, or N-methylpyrrolidone. (N-methylpyrrolydone) etc. are mentioned.
  • the content of the solvent may be 20 wt% to 99 wt%, specifically 50 wt% to 95 wt%, and more specifically 70 wt% to 95 wt%, based on the weight of the coating composition.
  • the coating agent may be easily prepared, and the drying process of the coating layer may be performed smoothly.
  • Method for producing a coating separator according to the present example is an organic binder; Inorganic particles; And forming a coating composition comprising a solvent, and forming a coating layer with the coating composition on one or both surfaces of the separator described in another example of the present invention.
  • the electrochemical cell according to the embodiment of the present invention also includes a porous separator, a positive electrode, a negative electrode and an electrolyte prepared according to the above-described embodiments.
  • the type of electrochemical cell is not particularly limited and may be a battery of a kind known in the art.
  • it may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the method for manufacturing the electrochemical cell of the present embodiment is not particularly limited, and a method commonly used in the art may be used.
  • a non-limiting example of a method of manufacturing the electrochemical cell is as follows: A separator comprising a separator according to embodiments of the present invention or a coating layer according to other embodiments of the present invention is disposed between the cathode and the cathode of the cell. After positioning, the battery may be manufactured by filling the electrolyte therein.
  • the electrode constituting the electrochemical cell of the present invention can be produced in a form in which the electrode active material is bound to the electrode current collector by a method commonly used in the technical field of the present invention.
  • the cathode active material is not particularly limited, and a cathode active material commonly used in the technical field of the present invention may be used.
  • the positive electrode includes a positive electrode active material capable of reversibly inserting and detaching lithium ions, and the positive electrode active material may be at least one selected from cobalt, manganese, nickel, and a composite metal oxide with lithium. .
  • the solid solution ratio between the metals may be various, and in addition to these metals, Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, An element selected from the group consisting of Fe, Sr, V, and rare earth elements may be further included.
  • the anode may be, for example, a composite metal oxide of a metal selected from the group consisting of lithium and Co, Ni, Mn, Al, Si, Ti, and Fe, and specifically, lithium cobalt oxide (LCO.) For example LiCoO 2 ), lithium nickel manganese cobalt oxide, NCM.
  • the negative electrode includes a negative electrode active material capable of inserting and desorbing lithium ions, and the negative electrode active material includes crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) and combustion of a carbon composite.
  • Organic polymer compounds, carbon fibers, tin oxide compounds, lithium metal or alloys of lithium and other elements can be used.
  • amorphous carbons include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1,500 ° C or lower, and mesophase pitch-based carbon fibers (MPCF).
  • the crystalline carbon includes a graphite material, and specific examples thereof include natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.
  • the negative electrode may include, for example, crystalline or amorphous carbon.
  • the positive electrode or the negative electrode may be prepared by dispersing a binder, a conductive material, and, if necessary, a thickener in a solvent in addition to an electrode active material to prepare an electrode slurry composition, and applying the slurry composition to an electrode current collector.
  • the binder, the conductive material and the thickener may be used as commonly used in the art.
  • the binder polyvinylidene-fluoride (PVdF), styrene-butadiene rubber (SBR), and the like, carbon black as a conductive material, and carbonate methyl cellulose as a thickener (Carbonate methyl cellulose, CMC) can be used.
  • the electrode current collector used in the present embodiment is not particularly limited, and an electrode current collector commonly used in the art may be used.
  • Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof.
  • Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, a copper alloy or a combination thereof.
  • the positive electrode current collector and the negative electrode current collector may be in the form of a foil or a mesh.
  • the electrolyte solution used in the present embodiment is not particularly limited and may be used an electrochemical cell electrolyte solution commonly used in the technical field of the present invention.
  • the electrolyte solution may be one in which a salt having a structure such as A + B ⁇ is dissolved or dissociated in an organic solvent.
  • a + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof.
  • Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dimethylformamide (Dimethylformamide, DMF), Dipropyl carbonate (DPC), Dimethyl sulfoxide (DMSO), Acetonitrile, Dimethoxyethane, Diethoxyethane, Tetrahydrofuran ( Tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC) or gamma-butyrolactone (-Butyrolactone, GBL) Can be mentioned. These may be used alone or in combination of two or more thereof.
  • HDPE high-density polyethylene
  • UHMWPE ultra high molecular weight polyethylene
  • UHMWPE Ultra High molecular weight polyethylene
  • UHMWPE Ultra High molecular weight polyethylene
  • 30 wt% of Chemical Co., Ltd. was supplied to a twin screw extruder, and the liquid paraffin (Far East Emulsification) was injected into the twin screw extruder in an amount such that the weight ratio of the polyethylene to the polyethylene 30 to the liquid paraffin 70 was extruded.
  • the gel phase obtained through the T-die was used to form a sheet using a cooling roll.
  • the sheet was stretched in the longitudinal direction (Machine Direction, MD) at 90 ° C. and in the transverse direction (TD) at 110 ° C. (stretch ratio: 7 ⁇ 7).
  • the stretched sheet was immersed in methylene chloride (Samsung Fine Chemicals) and a water-methylene chloride zone (Water-MC zone) in which a water layer was formed on top of the methylene chloride to extract liquid paraffin, and then moved to a drying roll to dry.
  • methylene chloride Sudsung Fine Chemicals
  • Water-MC zone water-methylene chloride zone
  • the dried sheet was heat-set in the transverse direction in the secondary stretching (lateral stretching ratio: 1.0 ⁇ 1.4 ⁇ 1.2, stretching temperature 128 ° C.) to prepare a porous separator having a thickness of 12 m.
  • Example 1 a separation membrane was manufactured in the same manner as in Example 1, except that the widthwise stretching temperature was 120 ° C and the longitudinal stretching temperature was 90 ° C.
  • Example 1 a separation membrane was manufactured in the same manner as in Example 1, except that the widthwise stretching temperature was 120 ° C and the longitudinal stretching temperature was 100 ° C.
  • Example 3 the separator was manufactured in the same manner as in Example 3, except that polyethylene 27 was used to form liquid paraffin 73.
  • Example 1 a separation membrane was manufactured in the same manner as in Example 1, except that the longitudinal stretching temperature was 100 ° C and the widthwise stretching temperature was 110 ° C.
  • Example 1 a separation membrane was manufactured in the same manner as in Example 1, except that the longitudinal stretching temperature was 110 ° C and the widthwise stretching temperature was 120 ° C.
  • PE polyethylene (Prime polymer)
  • Porosity (%) (volume-mass / sample density) / volume 100
  • Density of sample density of polyethylene
  • Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each, and then the average value was calculated to obtain air permeability.
  • Each of the separators prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points in width (MD) 50 mm ⁇ length (TD) 50 mm, and then using GATO Tech G5 equipment. The sample was placed on a 10 cm hole and the punching force was measured while pressing with a 1 mm probe. The puncture strength of each sample was measured three times, and then the average value was calculated.
  • Each of the separators prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points in the form of a rectangle 10 mm x 50 mm TD, and then each sample was prepared. It was mounted on a UTM (tension tester) and bitten to have a measurement length of 20 mm, and then the sample was pulled to measure average tensile strength in the MD direction and the TD direction.
  • UTM tension tester
  • Each of the separators prepared in Examples and Comparative Examples was prepared with 10 samples cut at 10 different points with a width of 50 mm and a length of 50 mm of TD. The samples were left in an oven at 105 ° C. for 1 hour, and then the average thermal shrinkage was calculated by measuring the shrinkage in the MD and TD directions of each sample.
  • microporous membrane was immersed for 1 hour in an electrolyte solution (electrolyte: LiBF 4 , electrolyte concentration: 1mo1 / L, solvent: propylene carbonate) in which each of the separators prepared in Examples and Comparative Examples was kept at 18 ° C., and the mass was increased.
  • electrolyte solution electrolyte: LiBF 4 , electrolyte concentration: 1mo1 / L, solvent: propylene carbonate
  • T [T 1 -T 2] / T 1 ⁇ 100
  • T 1 represents the thickness before heat compression of the separator
  • T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a method for manufacturing a porous separator, a porous separator manufactured by the manufacturing method, and an electrochemical cell comprising the separator, the manufacturing method comprising: melt-mixing and extruding a composition comprising a polymer resin and a plasticizer, thereby forming a sheet solidified by cooling; drawing the solidified sheet in the length direction at a temperature of T1 and thereafter drawing the sheet in the width direction at a temperature of T2; and extracting the plasticizer from the drawn sheet, wherein T2-T1 ≥ 20 °C.

Description

다공성 분리막 및 이의 제조 방법Porous Membrane and Method for Manufacturing the Same
본 발명은 다공성 분리막 및 이의 제조 방법에 관한 것이다.The present invention relates to a porous membrane and a method of manufacturing the same.
전기 화학 전지용 분리막 (separator)은 전지 내에서 양극과 음극을 서로 격리시키면서 이온 전도도를 지속적으로 유지시켜 주어 전지의 충전과 방전이 가능하게 하는 중간막을 의미한다.A separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
최근 전자 기기의 휴대성을 높이기 위한 전기 화학 전지의 경량화 및 소형화 추세와 더불어, 전기 자동차 등에의 사용을 위한 고출력 대용량 전지를 필요로 하는 경향이 있다. 이에, 전기 화학 전지용 분리막의 경우 그 두께를 얇게 하고 중량을 가볍게 하는 것이 요구되면서도 그와 동시에 고용량 전지의 생산을 위하여 열에 의한 형태 안정성이 우수할 것이 요구된다. 또한, 분리막에 있어서 투과성, 기계적 강도, 열수축율, 셧다운 특성, 멜트다운 특성 등이 요구된다.In recent years, along with the trend of lightening and miniaturization of electrochemical cells for increasing the portability of electronic devices, there is a tendency to require high output large capacity batteries for use in electric vehicles. Accordingly, in the case of the separator for an electrochemical cell, it is required to reduce the thickness and light weight, and at the same time, it is required to have excellent form stability by heat for the production of a high capacity battery. In addition, in the separation membrane, permeability, mechanical strength, heat shrinkage rate, shutdown characteristics, meltdown characteristics, and the like are required.
분리막의 물성을 개선하는 방법으로서, 원료 조성, 연신 조건, 열처리 조건 등을 최적화하는 것이 제안되어 왔다. 예를 들면 일본 특개 평 2-94356호에는 양호한 조립 가공성과 낮은 전기 저항을 가지는 리튬 전지 분리막용 고분자 수지 미다공막을 제안하고 있으나, 상기 분리막은 표면 공경(孔徑)이 지나치게 크므로 강도가 불충분하다는 문제가 있다.As a method of improving the physical properties of the separator, optimization of raw material composition, stretching conditions, heat treatment conditions, and the like have been proposed. For example, Japanese Patent Laid-Open No. 2-94356 proposes a polymer resin microporous membrane for a lithium battery separator having good assembly processability and low electrical resistance, but the separator has insufficient strength due to its excessive surface pore size. There is.
본 발명은 분리막의 투과성이나 기계적 강도뿐만 아니라, 사이클 특성 등의 전지 수명과 관련된 특성, 전해액 주입성 등의 전지 생산성과 관련된 특성이 개선된 다공성 분리막을 제공하고자 한다.The present invention aims to provide a porous membrane having improved characteristics such as cell permeability, such as cycle characteristics, battery life, and electrolyte productivity, as well as permeability and mechanical strength of the separator.
또한, 본 발명은 원가절감의 목적으로 행해지는 전지 생산의 고속권취에 있어서 만족할만한 인장 강도를 갖는 분리막을 제공하고자 한다.In addition, the present invention seeks to provide a separator having satisfactory tensile strength in high-speed winding of battery production, which is carried out for the purpose of cost reduction.
또한, 본 발명은 분리막의 가압시 막 두께 변화율 및 투기도 변화율이 작고, 전해액의 흡수 속도가 빠르며 강도 등의 기계적 특성, 투기도가 개선된 다공성 분리막을 제공하고자 한다.In addition, the present invention is to provide a porous membrane with a small change in membrane thickness change and air permeability change rate when the separator is pressed, a fast absorption rate of the electrolyte, mechanical properties such as strength, and improved air permeability.
본 발명의 일 예에 따르면, 고분자 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 냉각 고형화된 시트를 형성하고, 상기 고형화된 시트를 2축연신하되, 상기 시트를 길이방향으로 T1 온도에서 연신 후 폭방향으로 T2 온도에서 연신하고, 여기서, T1 및 T2는 T2-T1 ≥ 20 ℃ 이며, 상기 연신된 시트에서 가소제를 추출하는 것을 포함하는 다공성 분리막의 제조 방법이 제공된다. According to one embodiment of the present invention, by melt-kneading and extruding a composition comprising a polymer resin and a plasticizer to form a cooled solidified sheet, and biaxially stretched the solidified sheet, the sheet at a temperature T 1 in the longitudinal direction After drawing, the film is drawn at a temperature T 2 in the width direction, wherein T 1 and T 2 are T 2 -T 1 ≧ 20 ° C., and a method of manufacturing a porous separator is provided, which includes extracting a plasticizer from the drawn sheet. .
본 발명의 다른 일 예에 따르면, 다공성 분리막의 기공율(P %)이 40 % 내지 70 %이고, 상기 다공성 분리막의 투기도(S sec/100cc)가 100 sec/100cc 내지 300 sec/100cc이며, 상기 P와 S가 3000 ≤ S × P ≤ 7500를 만족하는, 다공성 분리막이 제공된다. According to another embodiment of the present invention, the porosity (P%) of the porous separator is 40% to 70%, the air permeability (S sec / 100cc) of the porous separator is 100 sec / 100cc to 300 sec / 100cc, A porous separator is provided in which P and S satisfy 3000 ≦ S × P ≦ 7500.
본 발명의 또 다른 일 예에 따르면, 다공성 분리막의 가열 압축 전 두께(T1)와 상기 분리막을 2.2 MPa 압력하에서 90 ℃에서 5분간 가열 압축 후 두께(T2)의 식 1의 압축 두께 변화율(T)이 20% 이하인 다공성 분리막이 제공된다.According to another embodiment of the present invention, the thickness before heat compression of the porous membrane (T 1 ) and the compression thickness change rate of the formula (T 2 ) of the thickness (T 2 ) after heating and compressing the separator at 90 ° C. under 2.2 MPa pressure for 5 minutes ( A porous separator having a T) of 20% or less is provided.
[식 1][Equation 1]
T = [T1-T2]/T1 × 100 T = [T 1 -T 2 ] / T 1 × 100
본 발명은 큰 크기의 포어와 작은 크기의 포어를 함께 보유하는 분리막을 제공하여 분리막의 가압시 막 두께 변화 및 투기도 변화가 작고 전해액의 흡수 속도가 빠르며 기계적 특성, 투과성 및 열수축 특성이 우수하다.The present invention provides a separator having a large pore and a small pore together, the change in membrane thickness and air permeability when the membrane is pressurized is small, the absorption rate of the electrolyte is fast, excellent mechanical properties, permeability and heat shrinkage characteristics.
본 발명의 일 예에 따른 다공성 분리막의 제조 방법은, 고분자 수지 및 가소제를 포함하는 조성물로 고형화된 시트를 형성하고, 상기 고형화된 시트를 2축연신한 뒤, 상기 연신된 시트에서 가소제를 추출하는 것을 포함한다. Method for producing a porous separator according to an embodiment of the present invention, forming a solidified sheet with a composition comprising a polymer resin and a plasticizer, biaxially stretched the solidified sheet, and then extracting a plasticizer from the stretched sheet Include.
우선, 상기 고형화된 시트를 형성하는 것은, 구체적으로 고분자 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 냉각 고형화된 시트를 형성하는 것을 포함한다. First, forming the solidified sheet specifically includes melt kneading and extruding a composition containing a polymer resin and a plasticizer to form a cooled solidified sheet.
상기 조성물은 폴리올레핀계 수지 외에 이와 병용 가능한 다른 수지(예; 폴리아마이드(Polyamide, PA), 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVdF), 폴리카보네이트(Polycarbonate, PC), 폴리설폰(Polysulfone, PSF), 등), 무기입자 등을 포함할 수 있다. 이 때, 폴리올레핀계 수지는 예를 들어, 50 중량% 이상 함유될 수 있다. In addition to the polyolefin resin, the composition may be used in combination with other resins (eg, polyamide (PA), polyvinylidene fluoride (PVDF), polycarbonate (PC), polysulfone (Polysulfone, PSF)). , Etc.), inorganic particles, and the like. At this time, the polyolefin resin may be contained, for example, 50% by weight or more.
구체적으로, 폴리올레핀계 수지로 초고분자량 폴리에틸렌, 고분자량 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 폴리프로필렌, 고결정성폴리프로필렌 및 폴리에틸렌-프로필렌 공중합체로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 또한, 폴리올레핀과 기타 수지(비올레핀계 수지)와의 공중합체를 사용할 수 있다. Specifically, one or two or more selected from the group consisting of ultra high molecular weight polyethylene, high molecular weight polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene, and polyethylene-propylene copolymer as polyolefin resin Can be used. Moreover, the copolymer of polyolefin and other resin (non-olefin resin) can be used.
상기 고밀도 폴리에틸렌의 점도 평균 분자량(Mv)은 1×105 g/mol 내지 9×105 g/mol일 수 있고, 예를 들어 3×105 g/mol 내지 6×105 g/mol일 수 있다. 상기 초고분자량 폴리에틸렌의 점도 평균 분자량은 9×105 g/mol이상, 구체적으로 9×105 g/mol 내지 5×106 g/mol일 수 있다. 예를 들어, 상기 고밀도 폴리에틸렌을 단독으로 사용하거나 상기 초고분자량 폴리에틸렌을 단독으로 사용하거나, 상기 고밀도 폴리에틸렌과 상기 초고분자량 폴리에틸렌을 모두 사용할 수 있다. The viscosity average molecular weight (Mv) of the high density polyethylene may be 1 × 10 5 g / mol to 9 × 10 5 g / mol, for example, 3 × 10 5 g / mol to 6 × 10 5 g / mol have. The viscosity average molecular weight of the ultrahigh molecular weight polyethylene may be 9 × 10 5 g / mol or more, specifically 9 × 10 5 g / mol to 5 × 10 6 g / mol. For example, the high density polyethylene may be used alone or the ultra high molecular weight polyethylene may be used alone, or both the high density polyethylene and the ultra high molecular weight polyethylene may be used.
보다 구체적으로는, 상기 고분자 수지의 중량을 기준으로 상기 초고분자량 폴리에틸렌을 30 중량% 이하로 사용할 수 있으며, 예를 들어, 점도 평균 분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌을 70 중량% 이상 및 점도 평균 분자량이 9×105 g/mol 이상인 초고분자량 폴리에틸렌을 30 중량% 이하로 포함하는 고분자 수지를 사용할 수 있다. 상기 고분자 수지는 고강도 분리막을 제조할 수 있어 유리하다. 또한, 상기 고분자 수지를 2종 이상 포함하는 경우, 헨셀 믹서, 밤바리 믹서 및 프렌터리 믹서로 이루어진 군에서 선택된 1종 이상을 이용하여 혼합하는 것이 좋다. More specifically, the ultra high molecular weight polyethylene may be used in an amount of 30 wt% or less based on the weight of the polymer resin, and for example, a viscosity average molecular weight of 1 × 10 5 g / mol to 9 × 10 5 g / mol A polymer resin containing 70 wt% or more of phosphorus high density polyethylene and 30 wt% or less of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 9 × 10 5 g / mol or more can be used. The polymer resin is advantageous because it can prepare a high strength separator. In addition, in the case of containing two or more kinds of the polymer resin, it is preferable to mix using at least one selected from the group consisting of Henschel mixer, Bambari mixer and French mixer.
상기 고분자 수지는 고분자 수지 및 가소제를 포함하는 조성물 총 중량에 대하여 10 중량% 내지 80 중량% 포함될 수 있고, 구체적으로 20 중량% 내지 70 중량% 포함될 수 있다.The polymer resin may be included in an amount of 10% to 80% by weight, specifically 20% to 70% by weight, based on the total weight of the composition including the polymer resin and the plasticizer.
상기 가소제는 압출 온도에서 상기 고분자 수지와 단일상을 형성하는 유기 화합물일 수 있다. 본 발명의 실시예들에서 사용가능한 가소제의 예로는 노난, 데칸, 데칼린, 액체 파라핀(Liquid paraffin, LP) 등의 유동 파라핀(또는 파라핀 오일), 파라핀 왁스 등의 지방족 또는 시클릭 탄화수소; 디부틸 프탈레이트, 디옥틸 프탈레이트 등의 프탈산 에스테르; 팔미트산, 스테아린산, 올레산, 리놀레산, 리놀렌산 등의 탄소수 10 내지 20의 지방산류; 팔미트산 알코올, 스테아린산 알코올, 올레산 알코올 등의 탄소수 10 내지 20의 지방산 알코올류 등을 들 수 있다. 이들을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 상기 가소제 중 유동 파라핀을 사용할 수 있다. 유동 파라핀은 인체에 무해하며 비점이 높고 휘발성 성분이 적어 습식법에서 가소제로 사용되기에 적합하다. 가소제는 고분자 수지 및 가소제를 포함하는 조성물 총 중량에 대하여 30 중량% 내지 90 중량% 포함될 수 있고, 구체적으로 40 중량% 내지 90 중량% 포함될 수 있다. 본 실시예에서 고분자 수지 및 가소제를 포함하는 조성물을 용융혼련하는 것은 당업자에게 알려진 방법을 사용할 수 있으며, 150 ℃ 내지 250 ℃의 온도에서 고분자 수지와 가소제를 용융혼련하는 것일 수 있다. 상기 용융혼련된 조성물을 이축 압출기에 주입하여 150 ℃ 내지 250 ℃ 에서 압출할 수 있다. 이후 압출된 고분자 수지를 20 ℃ 내지 80 ℃의 캐스팅롤(casting roll)을 이용하여 냉각하거나 에어나이프에서 분사되는 차가운 공기에 의해 강제적으로 냉각하여 막을 결정화시켜 고형화된 시트를 형성한다. 상기 에어나이프에서 분사되는 차가운 공기의 온도는 -20 ℃ 내지 40 ℃일 수 있다. The plasticizer may be an organic compound that forms a single phase with the polymer resin at an extrusion temperature. Examples of plasticizers usable in embodiments of the invention include aliphatic or cyclic hydrocarbons such as liquid paraffin (or paraffin oil) such as nonane, decane, decalin, liquid paraffin (LP), paraffin wax; Phthalic acid esters such as dibutyl phthalate and dioctyl phthalate; Fatty acids having 10 to 20 carbon atoms, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; C10-C20 fatty acid alcohols, such as a palmitic alcohol, a stearic acid alcohol, and an oleic acid alcohol, etc. are mentioned. These can be used individually or in mixture of 2 or more types. Among the plasticizers can be used liquid paraffin. Liquid paraffin is harmless to the human body, has high boiling point and low volatile components, making it suitable for use as a plasticizer in the wet process. The plasticizer may be included in an amount of 30 wt% to 90 wt%, and specifically 40 wt% to 90 wt%, based on the total weight of the composition including the polymer resin and the plasticizer. Melting and kneading the composition containing the polymer resin and the plasticizer in this embodiment may be a method known to those skilled in the art, it may be to melt kneading the polymer resin and the plasticizer at a temperature of 150 ℃ to 250 ℃. The melt-kneaded composition may be injected into a twin screw extruder to extrude at 150 ° C to 250 ° C. The extruded polymer resin is then cooled using a casting roll of 20 ° C. to 80 ° C. or forcedly cooled by cold air injected from an air knife to crystallize the film to form a solidified sheet. The temperature of the cool air injected from the air knife may be -20 ℃ to 40 ℃.
이어서, 상기 2축 연신하는 것은, 구체적으로 상기 시트를 길이방향으로 T1 온도에서 연신 후 폭방향으로 T2 온도에서 연신하는 것을 포함한다. 여기서, T1 및 T2는 T2-T1 ≥ 20 ℃ 일 수 있다. 상기 2축 연신에 있어서, 길이방향 연신 온도(T1)를 폭방향 연신 온도(T2)보다 20 ℃ 이상 저하시키면, 낮은 연신 온도로 인해 부위별로 길이방향 연신 길이에 편차가 생길 수 있고, 이후 폭방향 연신하면 평균 공경이 상이한 2종 이상의 기공을 분리막에 형성시킬 수 있다. Then, it is said that the biaxially oriented, comprises Specifically stretched at a temperature T 2 in the transverse direction after stretching the sheet at a temperature T 1 in the longitudinal direction. Here, T 1 and T 2 may be T 2 -T 1 ≥ 20 ° C. In the biaxial stretching, when the longitudinal stretching temperature (T 1 ) is lowered by 20 ° C or more than the widthwise stretching temperature (T 2 ), a deviation may occur in the longitudinal stretching length for each part due to the low stretching temperature. By stretching in the width direction, two or more kinds of pores having different average pore sizes can be formed in the separation membrane.
구체적으로, 평균 공경(pore size)이 100 nm 이하인 제1 기공과 평균 공경이 100 nm를 초과하는 제2 기공을 포함하는 2 종이상의 기공을 함께 보유한 분리막의 제조가 가능하다. 상기 제1 기공은 열수축율, 강도, 전해액 보지율, 안전성 등의 면에서 유리하며, 상기 제2 기공은 전해액 젖음성, 전지 용량 면에서 유리하다. 본 실시예의 분리막은 상기와 같이 제1 기공과 제2 기공을 모두 함유함으로써 미다공막 가압시의 막 두께 변화 및 투기도 변화가 작고, 전해액의 흡수 속도가 빠르며, 기계적 특성, 투과성 및 열수축 특성이 우수하다. 상기 길이방향 연신 온도(T1)는 80 ℃ 내지 110 ℃일 수 있다. 구체적으로 길이방향 연신 온도(T1)는 85 ℃ 내지 105 ℃일 수 있으며, 예를 들어, 90 ℃ 내지 100 ℃일 수 있다. Specifically, it is possible to prepare a separator having two paper-like pores including first pores having an average pore size of 100 nm or less and second pores having an average pore size of more than 100 nm. The first pore is advantageous in terms of heat shrinkage rate, strength, electrolyte retention rate, and safety, and the second pore is advantageous in terms of electrolyte wettability and battery capacity. The separation membrane of this embodiment contains both the first pores and the second pores as described above, so that the change in membrane thickness and air permeability at the time of pressurization of the microporous membrane is small, the absorption rate of the electrolyte is fast, and the mechanical properties, permeability and heat shrinkage characteristics are excellent. Do. The longitudinal stretching temperature (T 1) may be 80 ℃ to 110 ℃. Specifically, the longitudinal stretching temperature T 1 may be 85 ° C. to 105 ° C., for example, 90 ° C. to 100 ° C.
폭방향 연신 온도(T2)는 상기 길이방향 연신 온도(T1)보다 20 ℃ 이상 높을 수 있다. 따라서, 폭방향 연신 온도(T2)는 100 ℃ 내지 140 ℃, 구체적으로 105 ℃ 내지 135 ℃일 수 있으며, 예를 들어, 110 ℃ 내지 130 ℃일 수 있다.The widthwise stretching temperature T 2 may be 20 ° C. or more higher than the longitudinal stretching temperature T 1 . Therefore, the widthwise stretching temperature T 2 may be 100 ° C. to 140 ° C., specifically 105 ° C. to 135 ° C., for example, 110 ° C. to 130 ° C.
상기 길이방향 및 폭방향의 연신 배율은 각각 독립적으로 5 배 내지 10배일 수 있다. 구체적으로 상기 연신 배율은 길이방향이 6배 내지 9배, 폭방향이 6배 내지 9배일 수 있다. 상기 폭방향 및 길이방향의 연신 배율은 동일하거나 상이할 수 있다.The draw ratios in the longitudinal direction and the width direction may be 5 to 10 times each independently. Specifically, the draw ratio may be 6 times to 9 times in the longitudinal direction, and 6 times to 9 times in the width direction. The draw ratios in the width direction and the longitudinal direction may be the same or different.
상기 2축연신 후 가소제를 추출할 수 있다. 상기 가소제 추출은 유기 용매를 이용해 수행될 수 있으며, 구체적으로 길이방향 연신 및 폭방향 연신된 분리막을 가소제 추출 장치 내의 유기 용매에 침지하여 가소제를 추출하는 방식으로 진행할 수 있다. 가소제 추출에 사용되는 유기 용매는 특별히 제한되지 아니하며 가소제를 추출해 낼 수 있는 용제라면 어느 것이라도 사용이 가능하다. 상기 유기 용매의 비제한적인 예로는 추출 효율이 높고 건조가 용이한 메틸에틸케톤, 메틸렌 클로라이드, 헥산 등을 사용할 수 있으며, 가소제로서 유동 파라핀을 사용한 경우에는 유기 용매로 메틸렌 클로라이드를 사용할 수 있다. The plasticizer may be extracted after the biaxial stretching. The plasticizer extraction may be performed using an organic solvent, and in particular, the longitudinally stretched and widthwise stretched separators may be immersed in an organic solvent in the plasticizer extracting apparatus to extract a plasticizer. The organic solvent used for the plasticizer extraction is not particularly limited, and any solvent may be used as long as it can extract the plasticizer. Non-limiting examples of the organic solvent may be methyl ethyl ketone, methylene chloride, hexane, etc., which has high extraction efficiency and easy drying, and methylene chloride may be used as the organic solvent when liquid paraffin is used as a plasticizer.
가소제를 추출하는 공정에서 사용하는 유기 용매는 휘발성이 높고 유독한 것이 대부분이므로, 필요하다면 유기 용매의 휘발을 억제하기 위해 물을 사용할 수 있다.Since the organic solvent used in the plasticizer extraction process is mostly volatile and toxic, water may be used to suppress volatilization of the organic solvent if necessary.
본 발명의 다른 실시예에 따른 제조 방법은 상기 가소제 추출 후 열고정하는 것을 추가로 포함할 수 있다. 열고정은 필름의 잔류 응력을 제거하여 최종 필름의 수축률을 감소시키기 위한 것으로서 열고정 수행 시의 온도와 고정 비율에 따라 필름의 열수축율, 투과도 등을 조절할 수 있다. 구체적으로, 상기 열고정하는 것은 폭방향으로 연신 배율 1배 내지 2배로 연신하고 연신된 폭방향 길이에 대해 80 % 내지 100 %로 이완시키는 것을 포함한다. 상기 열고정은 100 ℃ 내지 150℃ 에서 수행될 수 있으며, 예를 들어 125 ℃ 내지 145 ℃ 에서 수행될 수 있다. 상기 범위에서 필름의 잔류 응력 제거에 효과적이며, 물성을 향상시킬 수 있다. The manufacturing method according to another embodiment of the present invention may further include heat setting after the plasticizer extraction. The heat setting is to reduce the shrinkage of the final film by removing the residual stress of the film, it is possible to adjust the heat shrinkage, permeability, etc. of the film according to the temperature and the fixed ratio when performing the heat setting. Specifically, the heat setting includes stretching at a draw ratio of 1 to 2 times in the width direction and relaxing at 80% to 100% with respect to the stretched width direction length. The heat setting may be performed at 100 ° C to 150 ° C, for example, may be performed at 125 ° C to 145 ° C. It is effective in removing residual stress of the film in the above range, and can improve physical properties.
본 발명은 상기 실시예들에 따른 다공성 분리막의 제조방법으로 제조된 다공성 분리막을 제공한다. The present invention provides a porous separator prepared by the method of manufacturing a porous separator according to the embodiments.
본 발명의 실시예들에 따른 다공성 분리막은 하기 식 1로 표현되는 압축 두께 변화율(T)이 20% 이하, 예를 들어, 15% 이하일 수 있다. In the porous separator according to the embodiments of the present invention, the compressive thickness change rate (T) expressed by Equation 1 may be 20% or less, for example, 15% or less.
[식 1][Equation 1]
T = [T1-T2]/T1 × 100 T = [T 1 -T 2 ] / T 1 × 100
상기 식 1에서, T1 은 당해 분리막의 가열 압축 전 두께를 나타내고, T2 는 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후 두께를 나타낸다. In Equation 1, T 1 represents the thickness before heat compression of the separator, and T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.
상술한 압축 전 후 두께 변화율을 만족하면 전극의 충전시 팽창에 의해 분리막이 압박받을 때 막 두께 변화로 인한 전지의 사이클 특성 악화를 방지할 수 있다. When the thickness change rate before and after compression is satisfied, it is possible to prevent deterioration of the cycle characteristics of the battery due to the change in the film thickness when the separator is pressed by the expansion during charging of the electrode.
또한, 본 발명의 실시예들에 따른 다공성 분리막은 상기 분리막을 2.2 MPa 압력하에서 90 ℃에서 5분간 가열 압축 후 투기도(P2)와 가열 압축 전 투기도(P1)와 차가 400 sec/100cc 이하일 수 있다. 보다 구체적으로 상기 가열 압축 후와 전의 투기도 차는 300 sec/100cc 이하일 수 있다. 상기 범위이면 전지 충전시 전지 팽창에 의한 압박에 대한 투기도 저항성이 커서 전지의 사이클 특성이 개선될 수 있다. 본 발명의 실시예들에 따른 다공성 분리막은 상기 분리막을 18℃의 전해액에 60분간 침지했을 때의 전해액 흡수량이 분리막 1g 당 400mg 이상일 수 있고, 구체적으로 분리막 1g 당 500mg 이상일 수 있다. 본 발명의 실시예들에 따른 분리막은 상이한 포어 사이즈의 기공들을 포함함으로써 전해액의 흡수 속도가 개선될 수 있다.In addition, the porous separator according to the embodiments of the present invention is the difference between the air permeability (P 2 ) and the heat compression electric permeability (P 1 ) after heating and compressing the separator for 5 minutes at 90 ℃ under 2.2 MPa pressure 400 sec / 100cc It may be: More specifically, the difference in air permeability after and before the heat compression may be 300 sec / 100 cc or less. Within this range, the air permeability to the pressure due to the expansion of the battery when the battery is charged, the cycle characteristics of the battery can be improved. In the porous separator according to the embodiments of the present invention, an electrolyte absorption amount when the separator is immersed in an electrolyte solution at 18 ° C. for 60 minutes may be 400 mg or more per 1 g of the separator, and specifically, 500 mg or more per 1 g of the separator. Separation membrane according to embodiments of the present invention can be improved by the absorption rate of the electrolyte by including pores of different pore size.
또한, 본 발명의 실시예들에 따른 다공성 분리막은 기공율(P %)이 40 내지 70%이고, 투기도(S sec/100cc)가 100 sec/100cc 내지 300 sec/100cc이며, 상기 P와 S의 곱이 3000 ≤ S × P ≤ 7500일 수 있고, 구체적으로 3000 ≤ S × P ≤ 7000일 수 있다.In addition, the porous membrane according to the embodiments of the present invention has a porosity ( P %) of 40 to 70%, air permeability ( S sec / 100cc) of 100 sec / 100cc to 300 sec / 100cc, the P and S The product may be 3000 ≦ S × P ≦ 7500, specifically 3000 ≦ S × P ≦ 7000.
P와 S가 상술한 범위를 만족하면 상이한 포어 크기를 갖는 기공을 가져 동일한 기공율을 갖는 종래 분리막에 비해 투기도 값이 저하되며 가열 압축 후 분리막의 투기도 변화 및 막 두께 변화가 작아 전지의 사이클 특성이 개선될 수 있다.When P and S satisfy the above-mentioned ranges, pores having different pore sizes have lower air permeability values than conventional separators having the same porosity. This can be improved.
본 발명의 실시예들에 따른 다공성 분리막은 평균 두께가 7 ㎛ 내지 20 ㎛이고 두께의 편차는 상기 평균 두께의 4% 미만일 수 있다. The porous separator according to the embodiments of the present invention may have an average thickness of 7 μm to 20 μm and a variation in thickness may be less than 4% of the average thickness.
본 발명의 실시예들에 따른 다공성 분리막은 평균 찌름 강도가 300 gf 이상일 수 있으며, 구체적으로 400 gf 이상일 수 있다. The porous separator according to the embodiments of the present invention may have an average puncture strength of 300 gf or more, and specifically 400 gf or more.
본 발명의 실시예에 따른 다공성 분리막은 길이방향 평균 인장 강도가 1600 kgf/cm2 이상이고 폭방향 평균 인장 강도가 1800 kgf/cm2 이상일 수 있으며, 상기 길이방향 평균 인장 강도는 구체적으로 1700 kgf/cm2 이상일 수 있다.The porous membrane according to the embodiment of the present invention may have a longitudinal average tensile strength of 1600 kgf / cm 2 or more and a width average tensile strength of 1800 kgf / cm 2 or more, the longitudinal average tensile strength is specifically 1700 kgf / cm 2 or more.
본 발명의 실시예들에 따른 다공성 분리막은 제조된 분리막을 50×50 mm의 크기로 잘라 120 ℃ 오븐에 넣은 후 1 시간을 수축시키고, 그 후 수축된 분리막의 크기를 측정하여 줄어든 크기를 반영하여 수축율을 측정시, 길이방향의 수축율이 5 % 이하이고, 폭방향 수축율이 3 %이하일 수 있으며, 보다 구체적으로 길이방향 수축율이 4 %이하이고 폭방향 수축율이 2 % 이하일 수 있다.Porous separator according to the embodiments of the present invention by cutting the prepared membrane into a size of 50 × 50 mm and put in an oven at 120 ℃ shrinkage for 1 hour, after that by measuring the size of the shrinked separator to reflect the reduced size When measuring the shrinkage rate, the longitudinal shrinkage may be 5% or less, the widthwise shrinkage may be 3% or less, and more specifically, the longitudinal shrinkage may be 4% or less and the widthwise shrinkage may be 2% or less.
본 발명의 또 다른 일 예에 따르면, 언급한 예의 제조방법으로 제조된 분리막 또는 다공성 분리막의 일면 혹은 양면에 형성된 코팅층을 포함할 수 있다.According to another example of the present invention, it may include a coating layer formed on one or both sides of the separator or porous separator prepared by the above-described manufacturing method.
코팅층은 코팅제 조성물로 형성될 수 있으며, 코팅제 조성물은 용매와 함께 유기 바인더를 포함할 수 있고, 추가적으로 무기입자를 포함할 수 있다.The coating layer may be formed of a coating composition, the coating composition may include an organic binder with a solvent, and may further include inorganic particles.
구체적으로, 유기 바인더로 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머(Polyvinylidene fluoride-Hexafluoropropylene copolymer, PVdF-HFP), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 및 아크릴로니트릴스티렌-부타디엔 공중합체(acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물을 사용할 수 있다.Specifically, as the organic binder, polyvinylidene fluoride (PVdF) homopolymer, polyvinylidene fluoride-hexaxafluoropropylene copolymer (PVDF-HFP), polymethyl methacrylate ( polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate , Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan ( pullulan), carboxyl methyl cell It may be used alone or as a mixture thereof selected from the group consisting of butadiene copolymers (acrylonitrilestyrene-butadiene copolymer) - Lawrence's (carboxyl methyl cellulose), and styrene acrylonitrile.
유기 바인더의 분자량, 함량 등은 당업자의 선택에 의해 적절하게 조절될 수 있으며, 비제한적인 예로, PVdF계 바인더를 사용하는 경우, 코팅층과 분리막 사이의 접착력이 강화되어, 열수축률을 개선할 수 있으며, 전해질 함침성이 향상된 분리막을 제공하여, 전기 출력이 효율적으로 일어나는 전지를 생산할 수 있는 이점이 있다.Molecular weight, content, etc. of the organic binder can be appropriately adjusted by the choice of those skilled in the art, non-limiting example, when using a PVdF-based binder, the adhesion between the coating layer and the separator can be enhanced, thereby improving the heat shrinkage rate By providing a separator having improved electrolyte impregnation, there is an advantage in that a battery in which electrical output can be efficiently produced can be produced.
본 발명에서 사용되는 무기 입자는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 무기 입자를 사용할 수 있다. 본 발명에서 사용 가능한 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 본 발명에서 사용되는 무기 입자로는 예를 들어, Al2O3(알루미나)를 사용할 수 있다.The inorganic particles used in the present invention are not particularly limited and may be inorganic particles commonly used in the art. Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types. As the inorganic particles used in the present invention, for example, Al 2 O 3 (alumina) can be used.
본 발명에서 사용되는 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 1 nm 내지 2,000 nm일 수 있고, 예를 들어, 100 nm 내지 500 nm일 수 있다. 상기 크기 범위의 무기 입자를 사용하는 경우, 코팅액 내에서의 무기 입자의 분산성 및 코팅 공정성이 저하되는 것을 방지할 수 있고 코팅층의 두께가 적절히 조절되어 기계적 물성의 저하 및 전기적 저항의 증가를 방지할 수 있다. 또한, 분리막에 생성되는 기공의 크기가 적절히 조절되어 전지의 충방전 시 내부 단락이 일어날 확률을 낮출 수 있는 이점이 있다. The size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 nm to 2,000 nm, for example, 100 nm to 500 nm. In the case of using the inorganic particles in the size range, it is possible to prevent the dispersibility and coating processability of the inorganic particles in the coating liquid to be lowered and the thickness of the coating layer is appropriately adjusted to prevent the reduction of mechanical properties and increase of electrical resistance. Can be. In addition, the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery.
코팅제 조성물의 제조에 있어서 상기 무기 입자는 이를 적절한 용매에 분산시킨 무기 분산액 형태로 이용될 수 있다. 상기 적절한 용매는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 용매를 사용할 수 있다. 상기 무기 입자를 분산시키는 적절한 용매로서 예를 들어, 아세톤을 사용할 수 있다. In preparing the coating composition, the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent. The appropriate solvent is not particularly limited and may be a solvent commonly used in the art. Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
코팅층 내에서 무기입자는 코팅층 전체 중량을 기준으로 70 중량% 내지 95 중량%, 구체적으로 75 중량% 내지 95중량%, 보다 구체적으로 80 중량% 내지 95 중량%로 포함될 수 있다. 상기 범위 내로 무기 입자를 함유하는 경우, 무기 입자의 방열 특성이 충분히 발휘될 수 있으며 이를 이용하여 분리막을 코팅할 경우 분리막의 열수축을 효과적으로 억제할 수 있다.Inorganic particles in the coating layer may be included in 70% to 95% by weight, specifically 75% to 95% by weight, more specifically 80% to 95% by weight based on the total weight of the coating layer. When the inorganic particles are contained within the above range, the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the separator is coated using the inorganic particles, heat shrinkage of the separator may be effectively suppressed.
본 예에서 사용 가능한 상기 용매의 비제한적인 예로는 디메틸포름아미드(Dimethyl formamide), 디메틸설폭사이드(Dimethyl sulfoxide), 디메틸아세트아미드(Dimethyl acetamide), 디메틸카보네이트(Dimethyl carbonate) 또는 N-메틸피롤리돈(N-methylpyrrolydone) 등을 들 수 있다. Non-limiting examples of the solvent usable in this example include dimethyl formamide, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate, or N-methylpyrrolidone. (N-methylpyrrolydone) etc. are mentioned.
코팅제 조성물의 중량을 기준으로 용매의 함량은 20 중량% 내지 99 중량%일 수 있고, 구체적으로 50 중량% 내지 95 중량%일 수 있으며, 보다 구체적으로 70 중량% 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 코팅제의 제조가 용이해지며 코팅층의 건조 공정이 원활히 수행될 수 있다.The content of the solvent may be 20 wt% to 99 wt%, specifically 50 wt% to 95 wt%, and more specifically 70 wt% to 95 wt%, based on the weight of the coating composition. When the solvent is contained in the above range, the coating agent may be easily prepared, and the drying process of the coating layer may be performed smoothly.
본 예에 따른 코팅 분리막을 제조하는 방법은 유기 바인더; 무기 입자; 및 용매를 포함하는 코팅제 조성물을 형성하고, 본 발명의 다른 예에 기재된 분리막의 일면 또는 양면에 상기 코팅제 조성물로 코팅층을 형성하는 것을 포함한다.Method for producing a coating separator according to the present example is an organic binder; Inorganic particles; And forming a coating composition comprising a solvent, and forming a coating layer with the coating composition on one or both surfaces of the separator described in another example of the present invention.
분리막에 코팅층을 형성하는 방법에는 제한이 없으며, 당업자의 선택에 따라 적절한 방법으로 수행될 수 있다.There is no limitation on the method of forming the coating layer on the separator, and may be performed by an appropriate method according to the choice of those skilled in the art.
이하, 본 발명의 일 실시예에 따른 전기 화학 전지를 설명한다. 본 발명의 실시예에 따른 전기 화학 전지는 또한 상술한 실시예들에 따라 제조된 다공성 분리막, 양극, 음극 및 전해질을 포함한다. 전기 화학 전지의 종류는 특별히 제한되지 않으며, 본 발명의 기술 분야에서 알려진 종류의 전지일 수 있다. 예를 들어, 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.Hereinafter, an electrochemical cell according to an embodiment of the present invention will be described. The electrochemical cell according to the embodiment of the present invention also includes a porous separator, a positive electrode, a negative electrode and an electrolyte prepared according to the above-described embodiments. The type of electrochemical cell is not particularly limited and may be a battery of a kind known in the art. For example, it may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
본 실시예의 전기 화학 전지를 제조하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 상기 전기 화학 전지를 제조하는 방법의 비제한적인 예는 다음과 같다: 본 발명의 실시예들에 따른 분리막 또는 본 발명의 다른 실시예들에 따른 코팅층을 포함하는 분리막을 전지의 양극과 음극 사이에 위치시킨 후, 이에 전해액을 채우는 방식으로 전지를 제조할 수 있다. 본 발명의 전기 화학 전지를 구성하는 전극은, 본 발명의 기술 분야에서 통상적으로 사용하는 방법에 의해 전극 활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 본 발명에서 사용되는 상기 전극 활물질 중 양극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 양극 활물질을 사용할 수 있다. 구체적으로, 상기 양극은 리튬 이온을 가역적으로 삽입 및 탈리할 수 있는 양극 활물질을 포함하며, 이러한 양극 활물질로는 코발트, 망간, 니켈에서 선택되는 최소한 1종 및 리튬과의 복합 금속 산화물인 것일 수 있다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 이들 금속 외에 Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되는 원소가 더 포함될 수 있다. 상기 양극은 예를 들어, 리튬과 Co, Ni, Mn, Al, Si, Ti 및 Fe로 이루어진 군에서 선택되는 금속의 복합 금속 산화물일 수 있으며, 구체적으로 리튬 코발트 옥사이드 (lithium cobalt oxide, LCO. 예를 들어 LiCoO2), 리튬 니켈 코발트 망간 옥사이드 (lithium nickel manganese cobalt oxide, NCM. 예를 들어 Li[Ni(x)Co(y)Mn(z)]O2), 리튬 망간 옥사이드 (Lithium manganese oxide, LMO. 예를 들어 LiMn2O4, LiMnO2), 리튬 아이언 포스페이트 (Lithium Iron phosphate, LFP. 예를 들어 LiFePO4), 리튬 니켈 옥사이드 (LNO, 예를 들어 LiNiO2) 등을 사용할 수 있다. 상기 음극은 리튬 이온을 삽입 및 탈리할 수 있는 음극 활물질을 포함하며, 이러한 음극 활물질로는 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질 (열적으로 분해된 탄소, 코크, 흑연), 연소된 유기 중합체 화합물, 탄소 섬유, 산화 주석 화합물, 리튬 금속 또는 리튬과 다른 원소의 합금을 사용할 수 있다. 예를 들면 비결정질 탄소로는 하드 카본, 코크스, 1,500 ℃이하에서 소성한 메조카본 마이크로 비드 (mesocarbon microbead, MCMB), 메조페이스피치계 탄소섬유 (mesophase pitch-based carbon fiber, MPCF)등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연 흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다. 상기 음극은 예를 들어, 결정질 또는 비정질의 탄소를 포함할 수 있다. The method for manufacturing the electrochemical cell of the present embodiment is not particularly limited, and a method commonly used in the art may be used. A non-limiting example of a method of manufacturing the electrochemical cell is as follows: A separator comprising a separator according to embodiments of the present invention or a coating layer according to other embodiments of the present invention is disposed between the cathode and the cathode of the cell. After positioning, the battery may be manufactured by filling the electrolyte therein. The electrode constituting the electrochemical cell of the present invention can be produced in a form in which the electrode active material is bound to the electrode current collector by a method commonly used in the technical field of the present invention. Among the electrode active materials used in the present invention, the cathode active material is not particularly limited, and a cathode active material commonly used in the technical field of the present invention may be used. Specifically, the positive electrode includes a positive electrode active material capable of reversibly inserting and detaching lithium ions, and the positive electrode active material may be at least one selected from cobalt, manganese, nickel, and a composite metal oxide with lithium. . The solid solution ratio between the metals may be various, and in addition to these metals, Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, An element selected from the group consisting of Fe, Sr, V, and rare earth elements may be further included. The anode may be, for example, a composite metal oxide of a metal selected from the group consisting of lithium and Co, Ni, Mn, Al, Si, Ti, and Fe, and specifically, lithium cobalt oxide (LCO.) For example LiCoO 2 ), lithium nickel manganese cobalt oxide, NCM. For example Li [Ni (x) Co (y) Mn (z)] O 2 ), lithium manganese oxide (Lithium manganese oxide, LMO, for example LiMn 2 O 4 , LiMnO 2 ), lithium iron phosphate (LFP. For example LiFePO 4 ), lithium nickel oxide (LNO, for example LiNiO 2 ) and the like can be used. The negative electrode includes a negative electrode active material capable of inserting and desorbing lithium ions, and the negative electrode active material includes crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) and combustion of a carbon composite. Organic polymer compounds, carbon fibers, tin oxide compounds, lithium metal or alloys of lithium and other elements can be used. For example, amorphous carbons include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1,500 ° C or lower, and mesophase pitch-based carbon fibers (MPCF). The crystalline carbon includes a graphite material, and specific examples thereof include natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like. The negative electrode may include, for example, crystalline or amorphous carbon.
상기 양극 또는 음극은 전극 활물질 외에 결합제 및 도전재, 필요한 경우 증점제를 용매에 분산시켜 전극 슬러리 조성물을 제조하고, 이 슬러리 조성물을 전극 집전체에 도포하여 제조될 수 있다. 상기 결합제, 도전재 및 증점제는 본 발명의 기술분야에서 통상적으로 사용하는 것을 사용할 수 있다. 예를 들어, 결합제로서, 폴리비닐리덴-플루오라이드(Polyvinylidene-fluoride, PVdF), 스타이렌-부타디엔 고무(styrene-butadiene rubber, SBR) 등이 있고, 도전재로서, 카본 블랙, 증점제로서 카보네이트 메틸 셀룰로오스(Carbonate methyl cellulose, CMC)를 사용할 수 있다.The positive electrode or the negative electrode may be prepared by dispersing a binder, a conductive material, and, if necessary, a thickener in a solvent in addition to an electrode active material to prepare an electrode slurry composition, and applying the slurry composition to an electrode current collector. The binder, the conductive material and the thickener may be used as commonly used in the art. For example, as the binder, polyvinylidene-fluoride (PVdF), styrene-butadiene rubber (SBR), and the like, carbon black as a conductive material, and carbonate methyl cellulose as a thickener (Carbonate methyl cellulose, CMC) can be used.
본 실시예에서 사용되는 상기 전극 전류 집전체는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전극 전류 집전체를 사용할 수 있다. 상기 전극 전류 집전체 중 양극 전류 집전체 소재의 비제한적인 예로는, 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다. 상기 전극 전류 집전체 중 음극 전류 집전체 소재의 비제한적인 예로는, 구리, 금, 니켈, 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다. The electrode current collector used in the present embodiment is not particularly limited, and an electrode current collector commonly used in the art may be used. Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof. Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, a copper alloy or a combination thereof.
또한, 상기 양극 집전체 및 음극 집전체의 형태로는 포일이나 메시 형태를 들 수 있다.The positive electrode current collector and the negative electrode current collector may be in the form of a foil or a mesh.
본 실시예에서 사용되는 전해액은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전기 화학 전지용 전해액을 사용할 수 있다. 상기 전해액은 A+ B-와 같은 구조의 염이, 유기 용매에 용해 또는 해리된 것일 수 있다. 상기 A+의 비제한적인 예로는, Li+, Na+ 또는 K+와 같은 알칼리 금속 양이온, 또는 이들의 조합으로 이루어진 양이온을 들 수 있다. 상기 B-의 비제한적인 예로는, PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N (CF3SO2)2 - 또는 C (CF2SO2)3 -와 같은 음이온, 또는 이들의 조합으로 이루어진 음이온을 들 수 있다.The electrolyte solution used in the present embodiment is not particularly limited and may be used an electrochemical cell electrolyte solution commonly used in the technical field of the present invention. The electrolyte solution may be one in which a salt having a structure such as A + B is dissolved or dissociated in an organic solvent. Non-limiting examples of A + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof. The B - Non-limiting examples of the, PF 6 -, BF 4 - , Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 - or C (CF 2 SO 2) 3 - anions, such as, or may be an anion consisting of a combination thereof.
상기 유기 용매의 비제한적인 예로는, 프로필렌 카보네이트 (Propylene carbonate, PC), 에틸렌 카보네이트 (Ethylene carbonate, EC), 디에틸카보네이트 (Diethyl carbonate, DEC), 디메틸카보네이트 (Dimethyl carbonate, DMC), 디메틸포름아마이드 (Dimethylformamide, DMF), 디프로필카보네이트 (Dipropyl carbonate, DPC), 디메틸설폭사이드(Dimethyl sulfoxide, DMSO), 아세토니트릴 (Acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 테트라하이드로푸란 (Tetrahydrofuran, THF), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트 (Ethyl methyl carbonate, EMC) 또는 감마-부티롤락톤 ( -Butyrolactone, GBL) 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다. Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dimethylformamide (Dimethylformamide, DMF), Dipropyl carbonate (DPC), Dimethyl sulfoxide (DMSO), Acetonitrile, Dimethoxyethane, Diethoxyethane, Tetrahydrofuran ( Tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC) or gamma-butyrolactone (-Butyrolactone, GBL) Can be mentioned. These may be used alone or in combination of two or more thereof.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in more detail by describing Examples, Comparative Examples, and Experimental Examples. However, the following Examples, Comparative Examples and Experimental Examples are merely examples of the present invention and should not be construed as being limited thereto.
실시예 Example
실시예 1: 다공성 분리막의 제조Example 1 Preparation of Porous Membranes
점도 평균 분자량이 350,000 g/mol인 고밀도 폴리에틸렌 (High-density polyethylene, HDPE; Mitsui chemical 사 제품) 70 중량% 및 점도 평균 분자량이 1,000,000 g/mol인 초고분자량 폴리에틸렌 (Ultra High Molecular Weight Polyethylene, UHMWPE; Mitsui chemical 사 제품) 30중량%를 이축 압출기에 공급한 다음, 유동 파라핀 (극동 유화)을 상기 폴리에틸렌과의 중량비가 폴리에틸렌 30 대 유동 파라핀 70이 되는 양으로 상기 이축 압출기에 주입하여 압출하였다.70% by weight of high-density polyethylene (HDPE; manufactured by Mitsui Chemical) with a viscosity average molecular weight of 350,000 g / mol and ultra high molecular weight polyethylene (UHMWPE; UHMWPE; Mitsui with a viscosity average molecular weight of 1,000,000 g / mol); 30 wt% of Chemical Co., Ltd. was supplied to a twin screw extruder, and the liquid paraffin (Far East Emulsification) was injected into the twin screw extruder in an amount such that the weight ratio of the polyethylene to the polyethylene 30 to the liquid paraffin 70 was extruded.
상기 압출 후 T-다이를 통해 얻어진 겔상을 냉각롤을 이용하여 시트를 형성하였다. 상기 시트에 대해 90℃에서 길이 방향 (Machine Direction, MD) 연신 및 110℃에서 폭 방향 (Transverse Direction, TD) 연신(연신배율: 7×7)을 행하였다.After the extrusion, the gel phase obtained through the T-die was used to form a sheet using a cooling roll. The sheet was stretched in the longitudinal direction (Machine Direction, MD) at 90 ° C. and in the transverse direction (TD) at 110 ° C. (stretch ratio: 7 × 7).
상기 연신된 시트를 메틸렌 클로라이드 (삼성 정밀 화학) 및 상기 메틸렌 클로라이드의 상부에 물층이 형성된 물-메틸렌 클로라이드 존 (Water-MC zone)에 침지하여 유동 파라핀을 추출한 후 건조롤로 이동시켜 건조하였다.The stretched sheet was immersed in methylene chloride (Samsung Fine Chemicals) and a water-methylene chloride zone (Water-MC zone) in which a water layer was formed on top of the methylene chloride to extract liquid paraffin, and then moved to a drying roll to dry.
그 다음, 상기 건조된 시트를 횡 방향으로 2차 연신(횡연신비: 1.0 →1.4→1.2, 연신 온도 128℃)의 열고정을 실시하여 두께 12 m의 다공성 분리막을 제조하였다.Then, the dried sheet was heat-set in the transverse direction in the secondary stretching (lateral stretching ratio: 1.0 → 1.4 → 1.2, stretching temperature 128 ° C.) to prepare a porous separator having a thickness of 12 m.
실시예 2: 다공성 분리막의 제조Example 2 Preparation of Porous Membrane
상기 실시예 1에 있어서, 상기 폭방향 연신 온도를 120℃로 하고, 길이 방향 연신 온도를 90℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.In Example 1, a separation membrane was manufactured in the same manner as in Example 1, except that the widthwise stretching temperature was 120 ° C and the longitudinal stretching temperature was 90 ° C.
실시예 3: 다공성 분리막의 제조Example 3 Preparation of Porous Membrane
상기 실시예 1에 있어서, 상기 폭방향 연신 온도를 120℃로 하고, 길이 방향 연신 온도를 100℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.In Example 1, a separation membrane was manufactured in the same manner as in Example 1, except that the widthwise stretching temperature was 120 ° C and the longitudinal stretching temperature was 100 ° C.
실시예 4: 다공성 분리막의 제조Example 4 Preparation of Porous Membrane
상기 실시예 3에 있어서, 폴리에틸렌 27 대 유동 파라핀 73가 되는 양으로 한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 분리막을 제조하였다.In Example 3, the separator was manufactured in the same manner as in Example 3, except that polyethylene 27 was used to form liquid paraffin 73.
비교예 1: 다공성 분리막의 제조Comparative Example 1: Preparation of Porous Membrane
상기 실시예 1에 있어서, 상기 길이방향 연신 온도를 100℃로 하고, 폭 방향 연신 온도를 110℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.In Example 1, a separation membrane was manufactured in the same manner as in Example 1, except that the longitudinal stretching temperature was 100 ° C and the widthwise stretching temperature was 110 ° C.
비교예 2: 다공성 분리막의 제조Comparative Example 2: Preparation of Porous Membrane
상기 실시예 1에 있어서, 상기 길이방향 연신 온도를 110℃로 하고, 폭 방향 연신 온도를 120℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.In Example 1, a separation membrane was manufactured in the same manner as in Example 1, except that the longitudinal stretching temperature was 110 ° C and the widthwise stretching temperature was 120 ° C.
상기 실시예 1 내지 4 및 비교예 1 내지 2에 따른 각 분리막의 조성 및 각 분리막의 제조 조건을 하기 표 1에 나타낸다.The composition of each separator according to Examples 1 to 4 and Comparative Examples 1 and 2 and the preparation conditions of each separator are shown in Table 1 below.
표 1
실시예1 실시예2 실시예3 실시예 4 비교예1 비교예2
원료 HDPE 70(wt%) 70(wt%) 70(wt%) 70(wt%) 70(wt%) 70(wt%)
UHMWPE 30(wt%) 30(wt%) 30(wt%) 30(wt%) 30(wt%) 30(wt%)
LP 점도@40℃ 68cSt 68cSt 68cSt 68cSt 68cSt 68cSt
PE/LP 30/70 30/70 30/70 27/73 30/70 30/70
연신 연신방법 축차 축차 축차 축차 축차 축차
연신배율 7 ×7 7 ×7 7 ×7 7 ×7 7 ×7 7 ×7
종연신온도 90℃ 90℃ 100℃ 100℃ 100℃ 110℃
횡연신온도 110℃ 120℃ 120℃ 120℃ 110℃ 120℃
열고정 횡연신비 1.0→1.4→1.2 1.0→1.4→1.2 1.0→1.4→1.2 1.0→1.4→→1.2 1.0→1.4→→1.2 1.0→1.4→1.2
온도 128℃ 128℃ 128℃ 128℃ 128℃ 128℃
Table 1
Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2
Raw material HDPE 70 (wt%) 70 (wt%) 70 (wt%) 70 (wt%) 70 (wt%) 70 (wt%)
UHMWPE 30 (wt%) 30 (wt%) 30 (wt%) 30 (wt%) 30 (wt%) 30 (wt%)
LP viscosity @ 40 ℃ 68cSt 68cSt 68cSt 68cSt 68cSt 68cSt
PE / LP 30/70 30/70 30/70 27/73 30/70 30/70
Stretch Drawing method rotor rotor rotor rotor rotor rotor
Draw ratio 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7
Longitudinal drawing temperature 90 ℃ 90 ℃ 100 ℃ 100 ℃ 100 ℃ 110 ℃
Lateral stretching temperature 110 ℃ 120 ℃ 120 ℃ 120 ℃ 110 ℃ 120 ℃
Heat setting Lateral draw ratio 1.0 → 1.4 → 1.2 1.0 → 1.4 → 1.2 1.0 → 1.4 → 1.2 1.0 → 1.4 →→ 1.2 1.0 → 1.4 →→ 1.2 1.0 → 1.4 → 1.2
Temperature 128 ℃ 128 ℃ 128 ℃ 128 ℃ 128 ℃ 128 ℃
HDPE 고밀도고분자 수지 (Mitsui chemical): Mv35만HDPE High Density Polymer Resin (Mitsui chemical): Mv35 only
UHMWPE 초고분자량 폴리에틸렌 (Mitsui chemical): Mv100만UHMWPE Ultra High Molecular Weight Polyethylene (Mitsui chemical): Mv1 million
PE 폴리에틸렌 (Prime polymer)PE polyethylene (Prime polymer)
LP: Liquid Paraffin (극동유화), Methylene Chloride (삼성정밀화학)LP: Liquid Paraffin, Methylene Chloride, Samsung Fine Chemicals
실험예 Experimental Example
상기 실시예 1 내지 4 및 비교예 1 내지 2에서 제조된 분리막에 대해 아래에 개시된 측정 방법으로 기공율, 투기도, 찌름강도, 인장강도, 수축율, 전해액 흡수량, 가열 압축 후 막 두께 변화 및 투기도를 측정하고 그 결과를 표 2에 나타내었다.For the separators prepared in Examples 1 to 4 and Comparative Examples 1 to 2, the porosity, air permeability, sticking strength, tensile strength, shrinkage, electrolyte absorption amount, film thickness change and heat permeability after heat compression were measured. It measured and the result is shown in Table 2.
표 2
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
두께(㎛) 12 12 12 12 12 12
기공율(%) 42.3 42.0 42.2 51.2 41.6 43.0
투기도(sec/100cc) 158 152 155 100 230 200
찌름강도(gf) 485 488 480 450 488 479
인장강도(kgf/cm2) MD 1,801 1,795 1,788 1,714 1,799 1,849
TD 2,200 2,155 2,167 1,833 2,252 2,198
수축율(105℃,1 hr) MD 3.0 3.0 3.0 2.5 2.5 3.0
TD 0.0 0.0 0.0 0.5 0.0 0.0
샘플 질량당 전해액 흡수량(mg/g) 567.7 545.9 545.8 779.7 218.3 327.5
가열 압축 후 막 두께 변화율(%) 14 15 15 18 21 21
가열 압축 후 투기도(sec/100cc) 350 376 422 309 664 633
TABLE 2
Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2
Thickness (㎛) 12 12 12 12 12 12
Porosity (%) 42.3 42.0 42.2 51.2 41.6 43.0
Air permeability (sec / 100cc) 158 152 155 100 230 200
Sting strength (gf) 485 488 480 450 488 479
Tensile strength (kgf / cm 2 ) MD 1,801 1,795 1,788 1,714 1,799 1,849
TD 2,200 2,155 2,167 1,833 2,252 2,198
Shrinkage (105 ℃, 1 hr) MD 3.0 3.0 3.0 2.5 2.5 3.0
TD 0.0 0.0 0.0 0.5 0.0 0.0
Electrolyte uptake per sample mass (mg / g) 567.7 545.9 545.8 779.7 218.3 327.5
% Change in film thickness after heat compression 14 15 15 18 21 21
Air compression after heat compression (sec / 100cc) 350 376 422 309 664 633
1. 기공율1. Porosity
상기 실시예 및 비교예들에서 제조된 각 분리막의 10㎝ × 10㎝의 시료를 절취하여 그의 부피(㎤)와 질량(g)을 구하고, 상기 부피 및 질량과, 분리막의 밀도(g/㎤)으로부터 다음식을 이용하여 기공율을 계산하였다.Samples of 10 cm × 10 cm of each separator prepared in Examples and Comparative Examples were cut out to obtain their volume (cm 3) and mass (g), and the volume and mass and density of membrane (g / cm 3) The porosity was calculated from the following equation.
기공율(%)=(부피-질량/시료의 밀도)/부피 100Porosity (%) = (volume-mass / sample density) / volume 100
시료의 밀도= 폴리에틸렌의 밀도Density of sample = density of polyethylene
2. 투기도2. Speculation
상기 실시예 및 비교예들에서 제조된 분리막 각각을 지름이 1 인치 (inch) 인 원이 들어갈 수 있는 크기로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, 통기도 측정 장치 (아사히 세이코 사)를 사용하여 상기 각 시료에서 공기 100cc가 통과하는 시간을 측정하였다. 상기 시간을 각각 다섯 차례씩 측정한 다음 평균값을 계산하여 이를 투기도로 하였다.Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each, and then the average value was calculated to obtain air permeability.
3. 찌름강도 3. Sticking strength
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 50 mm × 세로(TD) 50 mm로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, GATO 테크 G5 장비를 이용하여 10 cm 구멍 위에 시료를 올려 놓은 후 1 mm 탐침으로 누르면서 뚫어지는 힘을 측정하였다. 상기 각 시료의 찌름 강도를 각각 세 차례씩 측정한 다음 평균값을 계산하였다.Each of the separators prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points in width (MD) 50 mm × length (TD) 50 mm, and then using GATO Tech G5 equipment. The sample was placed on a 10 cm hole and the punching force was measured while pressing with a 1 mm probe. The puncture strength of each sample was measured three times, and then the average value was calculated.
4. 인장강도4. Tensile Strength
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 10 mm × 세로(TD) 50 mm의 직사각형 형태로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, 상기 각 시료를 UTM (인장시험기)에 장착하여 측정 길이가 20 mm가 되도록 물린 후 상기 시료를 당겨 MD 방향 및 TD 방향의 평균 인장 강도를 측정하였다.Each of the separators prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points in the form of a rectangle 10 mm x 50 mm TD, and then each sample was prepared. It was mounted on a UTM (tension tester) and bitten to have a measurement length of 20 mm, and then the sample was pulled to measure average tensile strength in the MD direction and the TD direction.
5. 수축율5. Shrinkage
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 50 mm × 세로(TD) 50 mm로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작하였다. 상기 각 시료를 105℃의 오븐에서 1 시간 동안 방치한 다음, 각 시료의 MD 방향 및 TD 방향의 수축 정도를 측정하여 평균 열수축률을 계산하였다. Each of the separators prepared in Examples and Comparative Examples was prepared with 10 samples cut at 10 different points with a width of 50 mm and a length of 50 mm of TD. The samples were left in an oven at 105 ° C. for 1 hour, and then the average thermal shrinkage was calculated by measuring the shrinkage in the MD and TD directions of each sample.
6. 전해액 흡수량6. Electrolyte Absorption
상기 실시예 및 비교예들에서 제조된 분리막 각각을 18℃로 보온한 전해액(전해질: LiBF4, 전해질 농도: 1mo1/L, 용매: 프로필렌카보네이트)에 미다공막을 1시간 동안 침지하고, 질량의 증가를 조사하여 샘플 질량당 흡수량[막 질량의 증가량(g)/흡수 전의 막 질량(g)]을 산출하였다.The microporous membrane was immersed for 1 hour in an electrolyte solution (electrolyte: LiBF 4 , electrolyte concentration: 1mo1 / L, solvent: propylene carbonate) in which each of the separators prepared in Examples and Comparative Examples was kept at 18 ° C., and the mass was increased. Was investigated to calculate the amount of absorption per sample mass [increase in membrane mass (g) / mass of mass before absorption (g)].
7. 가열 압축 후 막 두께 변화율 및 투기도7. Film thickness change rate and air permeability after heat compression
상기 실시예 및 비교예들에서 제조된 분리막 각각을, 평활면을 가진 한 쌍의 프레스판 사이에 협지시키고, 이를 프레스기에 의해 2.2MPa(22kgf/cm2)의 압력하에서, 90℃에서 5분간 가열 압축하고 막 두께를 Mitutoyo제 Litematic 두께측정기(Model:VL-50)를 이용하여 측정하였다. 하기 식 1의 압축 두께 변화율(T)을 산출하였다.Each of the separators prepared in Examples and Comparative Examples was sandwiched between a pair of press plates having a smooth surface and heated by a press machine at 90 ° C. for 5 minutes under a pressure of 2.2 MPa (22 kgf / cm 2 ). It was compressed and the film thickness was measured using a Litematic thickness meter (Model: VL-50) manufactured by Mitutoyo. The compression thickness change rate (T) of the following formula 1 was calculated.
[식 1][Equation 1]
T = [T1-T2]/T1 × 100 T = [T 1 -T 2] / T 1 × 100
상기 식 1에서, T1 은 당해 분리막의 가열 압축 전 두께를 나타내고, T2 는 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후 두께를 나타낸다. In Equation 1, T 1 represents the thickness before heat compression of the separator, and T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.
또한, 상기 조건에서 가열 압축된 분리막에 대해 상기 투기도 항목에 기재된 것과 같은 방법으로 투기도를 측정하였다.In addition, the air permeability was measured in the same manner as described in the air permeability of the separation membrane heat-compressed under the above conditions.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (18)

  1. 고분자 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 냉각 고형화된 시트를 형성하고,Melt kneading and extruding a composition comprising a polymer resin and a plasticizer to form a cooled solidified sheet,
    상기 고형화된 시트를 길이방향으로 T1 온도에서 연신 후 폭방향으로 T2 온도에서 연신하고, The solidified sheet is stretched at a temperature T 1 in the longitudinal direction and then stretched at a temperature T 2 in the width direction,
    상기 연신된 시트에서 가소제를 추출하는 것을 포함하되,Extracting a plasticizer from the stretched sheet,
    T2-T1 ≥ 20 ℃인, 다공성 분리막의 제조 방법.T 2 -T 1 ≥ 20 ℃ a method of producing a porous separator.
  2. 제1항에 있어서, 상기 T1은 80℃ 내지 110℃인, 제조 방법.The method according to claim 1, wherein the T 1 is 80 ℃ to 110 ℃.
  3. 제1항에 있어서, 상기 길이방향의 연신 배율이 5배 내지 10배이고, 상기 폭방향의 연신 배율이 5배 내지 10배인, 제조 방법.The manufacturing method of Claim 1 whose draw ratio of the said longitudinal direction is 5 times-10 times, and the draw ratio of the said width direction is 5 times-10 times.
  4. 제3항에 있어서, 상기 길이방향 및 상기 폭방향의 연신 배율이 각각 6 배 내지 9 배이고, 상기 길이방향의 연신 배율과 상기 폭방향의 연신 배율이 동일한, 제조 방법.The manufacturing method of Claim 3 whose draw ratio of the said longitudinal direction and the said width direction is 6 times-9 times, respectively, and the draw ratio of the said longitudinal direction and the draw ratio of the said width direction are the same.
  5. 제1항에 있어서, 상기 고분자 수지가, 점도 평균 분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌 및 점도 평균 분자량이 9×105 g/mol 이상인 초고분자량 폴리에틸렌으로 이루어진 군에서 선택된 단독 또는 이들의 혼합물인, 제조 방법. The method of claim 1, wherein the polymer resin, the viscosity average molecular weight of a 1 × 10 5 g / mol to about 9 × 10 5 g / mol of high density polyethylene and ultra high molecular weight polyethylene having a viscosity-average molecular weight of not less than 9 × 10 5 g / mol It is a single or a mixture thereof selected from the group consisting of.
  6. 제5항에 있어서, 상기 초고분자량 폴리에틸렌이 상기 고분자 수지의 중량을 기준으로 30 중량% 이하로 포함되는, 제조 방법. The method of claim 5, wherein the ultra high molecular weight polyethylene is included in an amount of 30 wt% or less based on the weight of the polymer resin.
  7. 제1항 내지 제6항 중 어느 하나의 항에 있어서, 상기 가소제 추출 후 열고정하는 것을 추가로 포함하는, 제조 방법.The manufacturing method according to any one of claims 1 to 6, further comprising heat setting after the plasticizer extraction.
  8. 제7항에 있어서, 상기 열고정하는 것이 폭방향으로 연신 배율 1배 내지 2배로 연신하고 상기 연신된 폭방향 길이에 대해 80% 내지 100%로 이완시키는 것을 포함하는, 제조 방법.8. The method according to claim 7, wherein the heat setting comprises stretching at a draw ratio of 1 to 2 times in the width direction and relaxing at 80% to 100% with respect to the stretched width direction length.
  9. 제1항 내지 제6항 중 어느 하나의 항에 있어서, 상기 다공성 분리막는 하기 식 1의 압축 두께 변화율(T)이 20% 이하인, 제조 방법.The method according to any one of claims 1 to 6, wherein the porous separator has a compression thickness change rate (T) of 20% or less.
    [식 1][Equation 1]
    T = [T1-T2]/T1 × 100 T = [T 1 -T 2 ] / T 1 × 100
    상기 식 1에서, T1 은 당해 분리막의 가열 압축 전 두께를 나타내고, T2 는 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후 두께를 나타낸다. In Equation 1, T 1 represents the thickness before heat compression of the separator, and T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.
  10. 기공율(P %)이 40 내지 70%이고,Porosity (P%) is 40 to 70%,
    투기도(S sec/100cc)가 100 sec/100cc 내지 300 sec/100cc이며,Air permeability (S sec / 100cc) is 100 sec / 100cc to 300 sec / 100cc,
    상기 P와 S가 3000 ≤ S × P ≤8500를 만족하는, 다공성 분리막. Wherein P and S satisfies 3000 ≦ S × P ≦ 8500, porous separator.
  11. 제10항에 있어서, 상기 다공성 분리막은 하기 식 1의 압축 두께 변화율(T)이 20% 이하인, 다공성 분리막.The porous membrane of claim 10, wherein the porous membrane has a compressive thickness change rate (T) of 20% or less.
    [식 1][Equation 1]
    T = [T1-T2]/T1 × 100 T = [T 1 -T 2 ] / T 1 × 100
    상기 식 1에서, T1 은 당해 분리막의 가열 압축 전 두께를 나타내고, T2 는 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후 두께를 나타낸다. In Equation 1, T 1 represents the thickness before heat compression of the separator, and T 2 represents the thickness after heat compression of the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure.
  12. 하기 식 1의 다공성 분리막의 가열 압축 전 두께(T1)와 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후 두께(T2)의 하기 식 1의 압축 두께 변화율(T)이 20% 이하인, 다공성 분리막.The thickness before heat compression of the porous separator of Formula 1 (T 1 ) and the compression thickness change rate (T) of the following formula 1 of the thickness (T 2 ) of the thickness (T 2 ) after heating and compressing the separator at 90 ° C. for 5 minutes at 2.2 MPa pressure is 20%. Less than, porous separator.
    [식 1][Equation 1]
    T = [T1-T2]/T1 × 100 T = [T 1 -T 2 ] / T 1 × 100
  13. 제10항 또는 제12항에 있어서, 상기 분리막을 18℃의 전해액에 60분간 침지했을 때의 전해액 흡수량이 분리막 1g 당 400mg 이상인, 다공성 분리막.The porous separator according to claim 10 or 12, wherein an electrolyte absorption amount when the separator is immersed in an electrolyte at 18 ° C. for 60 minutes is 400 mg or more per gram of the separator.
  14. 제10항 또는 제12항에 있어서, 상기 분리막을 2.2 MPa 압력하에서 90℃에서 5분간 가열 압축 후의 투기도(P2)와 가열 압축 전 투기도(P1)와 차가 400 sec/100cc 이하인, 다공성 분리막.The porous membrane according to claim 10 or 12, wherein the separator has a difference between air permeability (P 2 ) and heat compression pre-air permeability (P 1 ) after heating and compression at 90 ° C. for 5 minutes at 2.2 MPa pressure of 400 sec / 100 cc or less. Separator.
  15. 제10항 또는 제12항에 있어서, 상기 고분자 수지가, 점도 평균 분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌, 및 점도 평균 분자량이 9×105 g/mol 이상인 초고분자량 폴리에틸렌으로 이루어진 군에서 선택된 단독 또는 이들의 혼합물인, 다공성 분리막. The high-density polyethylene according to claim 10 or 12, wherein the polymer resin has a viscosity average molecular weight of 1 × 10 5 g / mol to 9 × 10 5 g / mol, and a viscosity average molecular weight of 9 × 10 5 g / mol. Porous separation membrane which is selected from the group consisting of ultra-high molecular weight polyethylene or more or a mixture thereof.
  16. 제15항에 있어서, 상기 초고분자량 폴리에틸렌이 고분자 수지의 중량을 기준으로 30 중량% 이하로 포함되는, 다공성 분리막.The porous membrane of claim 15, wherein the ultra high molecular weight polyethylene is included in an amount of 30 wt% or less based on the weight of the polymer resin.
  17. 제10항 또는 제12항에 따른 다공성 분리막을 포함하는 전기 화학 전지.An electrochemical cell comprising the porous separator according to claim 10.
  18. 제17항에 있어서, 상기 전기 화학 전지는 리튬 이차 전지인 전기 화학 전지.18. The electrochemical cell of claim 17, wherein said electrochemical cell is a lithium secondary battery.
PCT/KR2014/006439 2013-07-17 2014-07-16 Porous separator and manufacturing method therefor WO2015009055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0084311 2013-07-17
KR1020130084311A KR101627738B1 (en) 2013-07-17 2013-07-17 Porous polymeric separator and a method for preparing the same

Publications (1)

Publication Number Publication Date
WO2015009055A1 true WO2015009055A1 (en) 2015-01-22

Family

ID=52346436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006439 WO2015009055A1 (en) 2013-07-17 2014-07-16 Porous separator and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101627738B1 (en)
WO (1) WO2015009055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488740A (en) * 2021-06-23 2021-10-08 苏州捷力新能源材料有限公司 Lithium battery diaphragm and preparation method thereof
CN114649636A (en) * 2022-01-06 2022-06-21 李鑫 Dry-process pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107119A1 (en) 2017-11-28 2019-06-06 旭化成株式会社 Separator for power storage device and method for producing same, and power storage device and method for producing same
KR102045548B1 (en) * 2018-05-11 2019-11-18 더블유스코프코리아 주식회사 Manufacturing method of a porous separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348965B2 (en) * 1994-03-31 2002-11-20 三井化学株式会社 Microporous biaxially stretched film comprising a composition of high molecular weight polyethylene and high molecular weight polypropylene, its production method and its use
JP2003217554A (en) * 2002-01-24 2003-07-31 Asahi Kasei Corp Polyolefin micro porous membrane for battery separator
JP2007070609A (en) * 2005-08-11 2007-03-22 Asahi Kasei Chemicals Corp Method for production of polyolefin microporous film
JP2013032545A (en) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd Polyethylene microporous membrane and battery separator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794179B2 (en) 1988-09-30 1998-09-03 旭化成工業株式会社 Polyethylene microporous membrane and lithium battery separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348965B2 (en) * 1994-03-31 2002-11-20 三井化学株式会社 Microporous biaxially stretched film comprising a composition of high molecular weight polyethylene and high molecular weight polypropylene, its production method and its use
JP2003217554A (en) * 2002-01-24 2003-07-31 Asahi Kasei Corp Polyolefin micro porous membrane for battery separator
JP2013032545A (en) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd Polyethylene microporous membrane and battery separator
JP2007070609A (en) * 2005-08-11 2007-03-22 Asahi Kasei Chemicals Corp Method for production of polyolefin microporous film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488740A (en) * 2021-06-23 2021-10-08 苏州捷力新能源材料有限公司 Lithium battery diaphragm and preparation method thereof
CN114649636A (en) * 2022-01-06 2022-06-21 李鑫 Dry-process pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm
CN114649636B (en) * 2022-01-06 2023-08-18 北京沐昱新能源科技有限公司 Dry pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm

Also Published As

Publication number Publication date
KR20150009856A (en) 2015-01-27
KR101627738B1 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
US9825269B2 (en) Porous polyolefin separator and method for manufacturing the same
WO2014119941A1 (en) Method for manufacturing separation film and the separation film, and battery using same
US20110300430A1 (en) Separator for battery, and non-aqueous lithium battery
WO2012150813A2 (en) Electrode having multi-layered electrode active material layer and secondary battery including same
WO2017043728A1 (en) Method for producing porous film, porous film produced thereby, and separator or electrochemical cell comprising same
WO2014088151A1 (en) Porous separation film for secondary battery including cellulose fiber and silica, and method for manufacturing same
WO2017188537A1 (en) Separator comprising porous adhesive layer, and lithium secondary battery using same
WO2016003094A1 (en) Porous polyolefin-based separation membrane and preparation method therefor
WO2018003979A1 (en) Separator and power storage device
WO2013081228A1 (en) Porous separator for a secondary battery including cellulose nanofibers and method for manufacturing same
WO2014133371A1 (en) Separation membrane having high tensile strength, manufacturing method therefor, and secondary battery comprising same
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2014208926A1 (en) Separator comprising coating layer, and battery using same separator
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2015009055A1 (en) Porous separator and manufacturing method therefor
WO2015065116A1 (en) Organic-inorganic complex porous membrane, separator comprising same, and electrode structure body
KR20170016904A (en) Separator containing coating layer and battery using the separator
WO2019059619A2 (en) Method for designing electrode for lithium secondary battery and method for manufacturing electrode for lithium secondary battery including same
JP2012128979A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2011124177A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012129116A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2020050559A1 (en) Secondary battery separator having no separator substrate
KR20150106802A (en) Porous polyolefin separator and a method for preparing the same
JP2011134563A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2017065398A1 (en) Microporous membrane containing pore-forming particles, a method for producing same, and an electrochemical cell using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826068

Country of ref document: EP

Kind code of ref document: A1