[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015008908A1 - 질소함유 다환고리 화합물 및 이를 이용한 유기발광소자 - Google Patents

질소함유 다환고리 화합물 및 이를 이용한 유기발광소자 Download PDF

Info

Publication number
WO2015008908A1
WO2015008908A1 PCT/KR2013/011152 KR2013011152W WO2015008908A1 WO 2015008908 A1 WO2015008908 A1 WO 2015008908A1 KR 2013011152 W KR2013011152 W KR 2013011152W WO 2015008908 A1 WO2015008908 A1 WO 2015008908A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
substituted
unsubstituted
monocyclic
Prior art date
Application number
PCT/KR2013/011152
Other languages
English (en)
French (fr)
Inventor
이현주
김기용
오형선
음성진
이주동
노영석
Original Assignee
희성소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성소재(주) filed Critical 희성소재(주)
Priority to JP2016527904A priority Critical patent/JP6211189B2/ja
Priority to CN201380078324.0A priority patent/CN105408333B/zh
Publication of WO2015008908A1 publication Critical patent/WO2015008908A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a novel nitrogen-containing polycyclic compound and an organic light emitting device comprising the same.
  • the electroluminescent device is a kind of self-luminous display device, and has an advantage of having a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from two electrodes are combined in the organic thin film to form a pair, then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers as necessary.
  • the material of the organic thin film may have a light emitting function as necessary.
  • a compound which may itself constitute a light emitting layer may be used, or a compound which may serve as a host or a dopant of a host-dopant-based light emitting layer may be used.
  • a compound capable of performing a role such as hole injection, hole transport, electron blocking, hole blocking, electron transport or electron injection may be used.
  • the present invention provides a novel nitrogen-containing polycyclic compound and an organic light emitting device comprising the same.
  • the present invention provides a compound of formula
  • R 1 is C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl; Or C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted nitrogen-containing heteroaryl;
  • R 2 is C 1 to C 60 straight or branched chain substituted or unsubstituted alkyl; Or C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl;
  • R 3 to R 7 are the same as or different from each other, and each independently hydrogen; C 1 to C 60 straight or branched chain substituted or unsubstituted alkyl; C 2 Through C 60 A straight or branched chain substituted or unsubstituted alkenyl; C 2 to C 60 straight or branched substituted or unsubstituted alkynyl; C 3 to C 60 monocyclic or polycyclic substituted or unsubstituted cycloalkyl; C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl; And substituted or unsubstituted C 10 to C 60 spiro groups.
  • the present invention provides an organic light emitting device comprising an anode, a cathode and at least one organic material layer provided between the anode and the cathode, one or more layers of the organic material layer comprises a compound of the formula (1). .
  • the compound described in this specification can be used as an organic material layer material of an organic light emitting element.
  • the compound may serve as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material in the organic light emitting device.
  • the compound may be usefully used as a material for the hole transport layer and / or the electron transport layer of the organic light emitting device.
  • the compound may be used as a light emitting material.
  • the compound can be used as a phosphorescent host material.
  • 1 to 3 illustrate the stacking order of electrodes and organic material layers of organic light emitting diodes according to exemplary embodiments of the present invention.
  • FIG. 16 shows a UV measurement graph of compound 16.
  • FIG. 17 shows a PL measurement graph for 263 nm of Compound 16.
  • FIG. 20 shows a LTPL ( ⁇ 78 ° C.) measurement graph of compound 49.
  • 21 shows the UV measurement graph of compound 49.
  • FIG. 22 shows a PL measurement graph for 261 nm of Compound 49.
  • FIG. 23 is a graph of LTPL ( ⁇ 78 ° C.) measurement of compound 50.
  • FIG. 25 shows a PL measurement graph for 264 nm of Compound 50.
  • FIG. 26 is a graph of LTPL ( ⁇ 78 ° C.) measurement of compound 89.
  • FIG. 28 is a PL measurement graph for 259 nm of Compound 89.
  • FIG. 28 is a PL measurement graph for 259 nm of Compound 89.
  • FIG. 31 shows a PL measurement graph for 331 nm of Compound 90.
  • the compound of Formula 1 may be used as the organic material layer material of the organic light emitting device by the structural features of the core structure and the substituents, in particular the substituents of R 1 and R 2 as described above.
  • the compound having the above structure has a property suitable for the electron transport of the organic light emitting device.
  • alkyl includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkyl may be 1 to 60, specifically 1 to 40, more specifically 1 to 20.
  • alkenyl includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • Alkenyl may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, more specifically 2 to 20 carbon atoms.
  • alkynyl includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • Alkynyl may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, more specifically 2 to 20 carbon atoms.
  • cycloalkyl includes monocyclic or polycyclic having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which cycloalkyl is directly connected or condensed with another ring group.
  • the other ring group may be cycloalkyl, but may also be other types of ring groups such as heterocycloalkyl, aryl, heteroaryl, and the like.
  • the cycloalkyl may have 3 to 60 carbon atoms, specifically 3 to 40 carbon atoms, more specifically 5 to 20 carbon atoms.
  • aryl includes monocyclic or polycyclic having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • polycyclic means a group in which aryl is directly connected or condensed with another ring group.
  • the other ring group may be aryl, but may also be other types of ring groups such as cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the aryl may have 6 to 60 carbon atoms, specifically 6 to 40 carbon atoms, more specifically 6 to 20 carbon atoms.
  • aryl examples include phenyl, biphenyl, triphenyl, naphthyl, anthryl, chrysenyl, phenanthrenyl, peryllenyl, fluoranthenyl, triphenylenyl, penalenyl, pyrenyl, tetrasenyl, pentacenyl, Fluorenyl, indenyl, acenaphthylenyl, and the like, and condensed rings thereof, but are not limited thereto.
  • the nitrogen-containing heteroaryl includes N as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • heteroaryl which is not specifically mentioned, includes S, O, or N as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which heteroaryl is directly connected or condensed with another ring group.
  • the other ring group may be heteroaryl, but may also be other types of ring groups such as cycloalkyl, heterocycloalkyl, aryl, and the like.
  • the heteroaryl may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, more specifically 3 to 20 carbon atoms.
  • Specific examples of heteroaryl include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, fura Zanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, tetrazolyl, pyranyl, thiopyranyl, diazinyl, oxazinyl, thiazinyl, dioxynyl, triazinyl, tetrazinyl, quinolyl, isoqui Nolyl, quinazolinyl, isoquinazolinyl, acridinyl, phenantrid
  • the spiro group includes a spiro structure, and may have 15 to 60 carbon atoms.
  • the spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro bonded to a fluorene group.
  • the spiro group includes a group of the following structural formula.
  • substituted or unsubstituted is C 1 to C 60 linear or branched alkyl; C 2 Through C 60 Straight or branched alkenyl; C 2 to C 60 straight or branched alkynyl; C 3 to C 60 monocyclic or polycyclic cycloalkyl; C 2 to C 60 monocyclic or polycyclic heterocycloalkyl; C 6 Through C 60 Monocyclic or polycyclic aryl; C 2 Through C 60 Monocyclic or polycyclic heteroaryl; C 2 to C 60 monocyclic or polycyclic heterocycloalkyl; C 10 to C 60 spiro groups; And amines unsubstituted or substituted with C 1 to C 20 alkyl, C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl, or C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroaryl.
  • R 1 includes a nitrogen-containing heteroaryl.
  • Including nitrogen-containing heteroaryl means that R 1 is substituted or unsubstituted nitrogen-containing heteroaryl or aryl substituted with substituted or unsubstituted nitrogen-containing heteroaryl.
  • aryl includes groups in which two or more aromatic groups are linked.
  • R 1 includes a monocyclic nitrogen-containing heteroaryl.
  • Including monocyclic nitrogen-containing heteroaryl means that R 1 is substituted or unsubstituted monocyclic nitrogen-containing heteroaryl or aryl substituted with substituted or unsubstituted monocyclic nitrogen-containing heteroaryl.
  • the nitrogen-containing heteroaryl may include 1 to 3 nitrogens.
  • the nitrogen-containing heteroaryl may be a pyridine group, pyrimidine group, triazine group, quinoline group, or isoquinoline group.
  • the monocyclic nitrogen-containing heteroaryl may include 1 to 3 nitrogens.
  • the nitrogen-containing heteroaryl is unsubstituted or substituted with additional substituents. If the of the nitrogen-containing substituted heteroaryl, and optionally substituted with C 6 to C 60 aryl or C 2 to C 60 heteroaryl, substituted or unsubstituted C 6 to C 60 aryl.
  • R 1 in Formula 1 includes a monocyclic nitrogen-containing heteroaryl, and the monocyclic nitrogen-containing heteroaryl may be a pyridine group, a pyrimidine group, or a triazine group.
  • R 1 in Formula 1 is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group; Or an aryl group substituted with one or two or more of a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, and a substituted or unsubstituted triazine group.
  • R 1 in Formula 1 is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group; Or a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, and a substituted or unsubstituted triazine group.
  • Chemical Formula 1 may be represented by the following Chemical Formula 2.
  • L is C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted arylene
  • Het is C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted nitrogen-containing heteroaryl
  • n is an integer from 0 to 2
  • p is 1 or 2
  • R 2 to R 7 are the same as defined in Chemical Formula 1.
  • n 0, n is 1 or 2
  • L is phenylene
  • Het is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group.
  • Het is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group, the substituent when Het is substituted Is C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl.
  • Het is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group
  • the substituent when Het is substituted is a substituted or unsubstituted C 6 to C 60 monocyclic or polycyclic aryl a heteroaryl group of C 6 to C 60 aryl or C 2 to C 60 a.
  • Het is a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, or a substituted or unsubstituted triazine group
  • the substituent when Het is substituted Is phenyl, biphenyl, terphenyl, naphthyl or phenanthrenyl, which may in turn be substituted with a phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, pyridine group, pyrimidine group or triazine group.
  • Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • R 8 is C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl; Or C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted nitrogen-containing heteroaryl, m is an integer from 0 to 9.
  • R 2 to R 7 are the same as defined in Formula 1,
  • L and n are as defined in formula (2).
  • n 0, n is 1 or 2, L is phenylene.
  • m is 1 or 2
  • R 8 is aryl or nitrogen-containing heteroaryl having 1 to 3 rings.
  • R 8 is phenyl, naphthyl, phenanthrenyl, terphenyl, pyridine group, bipyridine group, pyrimidine group, bipyrimidine group , Triazine group, tritriazine group, quinolyl, isoquinolyl or phenanthridyl group.
  • Formula 1 may be represented by the following formula (4).
  • X 1 and X 2 are C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aromatic hydrocarbon rings; Or a C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted aromatic hetero ring,
  • R 2 to R 7 are the same as defined in Formula 1,
  • L and n are as defined in formula (2).
  • n 0, n is 1 or 2, and L is phenylene.
  • Y 1 to Y 6 are each CRR ', NR, S or O,
  • Z 1 to Z 3 are each S or O
  • R and R ' are the same as or different from each other, and each hydrogen; C 1 to C 60 straight or branched chain substituted or unsubstituted alkyl; Or C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl.
  • R 2 is a C 1 to C 20 straight or branched chain substituted or unsubstituted alkyl; Or C 6 to C 20 monocyclic or polycyclic substituted or unsubstituted aryl.
  • R 2 is methyl, phenyl, or naphthyl.
  • R 3 To R 7 They are each independently hydrogen; C 1 to C 60 straight or branched chain substituted or unsubstituted alkyl; Or C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl.
  • R 3 To R 7 Is hydrogen.
  • the compound of Formula 1 may be selected from the following compounds.
  • the compounds described above may be prepared based on the preparation examples described below. Based on the following preparations, those skilled in the art can add or exclude substituents as necessary. In addition, the position and type of a substituent can be selected differently. In addition, based on techniques known in the art, it is possible to change starting materials, reactants, reaction conditions and the like.
  • the organic light emitting device comprises the compound of Formula 1 described above.
  • the organic light emitting device according to the present invention includes one or more organic material layers provided between the anode, the cathode and the anode and the cathode, one or more of the organic material layer comprises a compound of formula (1).
  • FIG. 1 to 3 illustrate the stacking order of electrodes and organic material layers of organic light emitting diodes according to exemplary embodiments of the present invention.
  • these drawings are not intended to limit the scope of the present invention, the structure of the organic light emitting device known in the art can be applied to the present invention.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • the present invention is not limited thereto, and as shown in FIG. 2, an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting diode according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, an electron transport layer 304, and an electron injection layer 305.
  • the scope of the present invention is not limited by such a laminated structure, and other layers except for the light emitting layer may be omitted, and other functional layers may be added as needed.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that the compound of Formula 1 is included in at least one layer of the organic material layer.
  • the compound of Formula 1 may constitute one or more layers of the organic material layer of the organic light emitting device alone. However, if necessary, the organic material layer may be mixed with other materials.
  • the compound of Formula 1 may be used as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material and the like in the organic light emitting device.
  • the compound of Formula 1 may be used as a hole transport layer material and / or electron transport layer material of the organic light emitting device.
  • the organic material layer including the compound of Formula 1 may be an electron transport layer of the organic light emitting device.
  • the compound of Formula 1 may be used as a light emitting material of an organic light emitting device.
  • the organic material layer including the compound of Formula 1 may be a light emitting layer of the organic light emitting device.
  • the compound of Formula 1 may be used as a phosphorescent host material.
  • the compound of Formula 1 is used together with a light emitting dopant.
  • the light emitting dopant material those known in the art may be used.
  • phosphorescent dopant materials represented by LL'MX, LL'L''M, LMXX ', L 2 MX, and L 3 M can be used, but the scope of the present invention is not limited to these examples.
  • L, L ', L ", X and X' are bidentate ligands different from each other, and M is a metal which forms an 8-sided complex.
  • M may be iridium, platinum, osmium or the like.
  • L is an anionic bidentate ligand coordinated to M by sp 2 carbon and hetero atom, and X may function to trap electrons or holes.
  • Non-limiting examples of L include 2- (1-naphthyl) benzoxazole, (2-phenylbenzooxazole), (2-phenylbenzothiazole), (2-phenylbenzothiazole), (7,8 -Benzoquinoline), (thienylpyridin), phenylpyridine, benzothienylpyridin, 3-methoxy-2-phenylpyridine, thienylpyridin, tolylpyridine and the like.
  • Non-limiting examples of X include acetylacetonate (acac), hexafluoroacetylacetonate, salicylidene, picolinate, 8-hydroxyquinolinate, and the like.
  • anode material materials having a relatively large work function may be used, and a transparent conductive oxide, a metal, or a conductive polymer may be used.
  • the cathode material materials having a relatively low work function may be used, and a metal, a metal oxide, or a conductive polymer may be used.
  • hole injection material a well-known hole injection material may be used, for example, phthalocyanine compounds such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or described in Advanced Material, 6, p.677 (1994).
  • Starburst-type amine derivatives such as TCTA, m-MTDATA, m-MTDAPB, polyaniline / dodecylbenzenesulfonic acid (polyaniline / dodecylbenzenesulfonic acid) or PEDOT / PSS (Poly (3, 4-ethylenedioxythiophene) / Poly (4-styrenesulfonate): poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate)), Pani / CSA (Polyaniline / Camphor sulfonic acid: polyaniline / camphorsulfonic acid) or PANI / PSS (Polyaniline / Poly (4-styrene-sulfonate): polyaniline / poly (4-styrenesulfonate)) and the like can be used.
  • Polyaniline / dodecylbenzenesulfonic acid polyaniline / dode
  • pyrazoline derivatives arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low molecular or polymer materials may be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinomethane and derivatives thereof, and fluorenone Derivatives, diphenyl dicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like can be used, as well as high molecular weight materials as well as high molecular materials.
  • LiF is representatively used in the art, but the present invention is not limited thereto.
  • a red, green or blue light emitting material may be used, and if necessary, two or more light emitting materials may be mixed.
  • a fluorescent material can be used as a light emitting material, it can also be used as a phosphorescent material.
  • a material which combines holes and electrons injected from the anode and the cathode, respectively, to emit light may be used, but materials in which both the host material and the dopant material are involved in light emission may be used.
  • the organic light emitting device according to the present invention may further include a hole blocking layer and / or an electron blocking layer. These materials can use those known in the art.
  • the organic light emitting device includes a light emitting layer including the compound of Formula 1, and further comprises a hole blocking layer provided between the light emitting layer and the cathode.
  • the light emitting layer may further include a light emitting dopant.
  • Electrolyte solution 3.3 g of tetrabutylammonium tetrafluoroborate was precisely weighed and placed in a 100 ml volumetric flask, and methylene chloride was added to make 100 ml.
  • Standard solution Approximately 1 mg of NPB was precisely weighed, placed in a 10 ml volumetric flask, and the electrolyte was added to make 10 ml.
  • Sample solution About 1 mg of the compound was accurately weighed and placed in a 10 ml volumetric flask, and the electrolyte solution was added to 10 ml before being used as a sample solution.
  • the y axis represents current (unit: A), and the x axis represents potential (unit: V).
  • T1 values of Compound 49, Compound 50, Compound 89 and Compound 90 are shown in Table 13 below.
  • Figure 16 shows a UV measurement graph of the compound 16.
  • FIG. 17 shows a PL measurement graph for 263 nm of Compound 16.
  • FIG. 20 shows a LTPL ( ⁇ 78 ° C.) measurement graph of compound 49.
  • 21 shows the UV measurement graph of compound 49.
  • FIG. 22 shows a PL measurement graph for 261 nm of Compound 49.
  • FIG. 23 is a graph of LTPL ( ⁇ 78 ° C.) measurement of compound 50.
  • FIG. 25 shows a PL measurement graph for 264 nm of Compound 50.
  • FIG. 26 is a graph of LTPL ( ⁇ 78 ° C.) measurement of compound 89.
  • FIG. 28 is a PL measurement graph for 259 nm of Compound 89.
  • FIG. 28 is a PL measurement graph for 259 nm of Compound 89.
  • FIG. 31 shows a PL measurement graph for 331 nm of Compound 90.
  • the y-axis in FIGS. 16 to 31 are intensity, respectively, and the x-axis is wavelength (unit: nm).
  • the transparent electrode ITO thin film obtained from the glass for OLED was subjected to ultrasonic washing using trichloroethylene, acetone, ethanol and distilled water in sequence, and used after washing in isopropyl alcohol.
  • an ITO substrate is placed in the substrate folder of the vacuum deposition equipment, and evacuated until the vacuum degree in the vacuum deposition equipment reaches 10 -7 torr, and then the following 4,4 ', 4 "-tris (N, N- (2-naphthyl) -phenylamino) triphenyl amine (4,4 ', 4 "-tris (N, N- (2-naphthyl) -phenylamino) triphenyl amine: 2-TNATA) was vapor deposited on the ITO substrate. A hole injection layer having a thickness of 600 ⁇ m was deposited on the substrate.
  • NPB N, N'-bis ( ⁇ -naphthyl)-N, N'-diphenyl-4,4'-diamine
  • a light emitting layer was deposited thereon as follows.
  • the following host (? -AND) was put as a light emitting material in one cell in the vacuum deposition equipment, and the dopant BD1 was put in the other cell.
  • the following tris (8-hydroxyquinoline) aluminum (III) (Alq 3 ) was deposited to a thickness of 200 GPa as an electron transport layer.
  • lithium fluoride LiF
  • Al cathode was deposited to a thickness of 1200 ⁇ to manufacture an OLED.
  • An OLED was manufactured in the same manner as in the comparative example, except that the compound prepared in Compounds 1 to 38 was used instead of the tris (8-hydroxyquinoline) aluminum (III) (Alq 3 ) of the comparative example as the electron transport layer material.
  • the driving voltage (Op.V) and the power efficiency (cd / A) of the OLED device manufactured as described above are described in Table 14 below until the efficiency drops to 50% at 1,000 cd / m 2 .
  • the transparent electrode ITO thin film obtained from the glass for OLED was subjected to ultrasonic cleaning using trichloroethylene, acetone, ethanol, and distilled water in sequence, and then stored in isopropanol and used.
  • the ITO substrate is installed in the substrate folder of the vacuum deposition equipment, and the following 2-TNATA (4,4 ', 4 "-tris (N, N- (2-naphthyl) -phenylamino) triphenyl is placed in a cell in the vacuum deposition equipment. amine).
  • NPB N, N'-bis ( ⁇ -naphthyl) -N, N'-diphenyl-4,4'-diamine
  • the phosphorescent green light emitting material having the following structure was deposited on the light emitting layer.
  • CBP 4,4'-bis (carbazol-9-yl) biphenyl
  • Ir (ppy) 3 green light emitting dopant material
  • Tris (2-phenylpyridine) iridium (III)) was 10% vacuum deposited relative to the host material.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Alq 3 8-hydroxy-quinolinato aluminum
  • lithium fluoride LiF
  • Al cathode was deposited to a thickness of 1000 ⁇ to produce an OLED.
  • a device was fabricated using the same materials as in Comparative Example 2 except for using the materials shown in Table 15 as the green light emitting layer instead of CBP.
  • the driving voltage (Op.V) and the power efficiency (cd / A) of the OLED device manufactured as described above are shown in Table 15 below until the efficiency drops to 50% at 1,000 cd / m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 질소함유 다환고리 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.

Description

질소함유 다환고리 화합물 및 이를 이용한 유기발광소자
본 발명은 신규한 질소함유 다환고리 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기발광소자는 2개의 전극 사이에 유기박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기발광소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기박막의 재료로서, 정공주입, 정공수송, 전자저지, 정공저지, 전자수송 또는 전자주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기발광소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기박막의 재료의 개발이 지속적으로 요구되고 있다.
본 발명은 신규한 질소함유 다환고리 화합물 및 이를 포함하는 유기발광소자를 제공한다.
본 발명은 하기 화학식 1의 화합물을 제공한다:
화학식 1
Figure PCTKR2013011152-appb-C000001
상기 화학식 1에 있어서,
R1은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소함유 헤테로아릴이고;
R2는 C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이며;
R3 내지 R7은 서로 같거나 상이하고, 각각 독립적으로 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 및 치환 또는 비치환된 C10 내지 C60의 스피로기로 이루어진 군으로부터 선택된다.
또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기발광소자로서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물을 포함하는 유기발광소자를 제공한다.
본 명세서에 기재된 화합물은 유기발광소자의 유기물층 재료로서 사용할 수 있다. 상기 화합물은 유기발광소자에서 정공주입재료, 정공수송재료, 발광재료, 전자수송재료, 전자주입재료 등의 역할을 할 수 있다. 특히, 상기 화합물이 유기발광소자의 정공수송층 및/또는 전자수송층의 재료로서 유용하게 사용될 수 있다. 또한, 상기 화합물은 발광재료로 사용될 수 있다. 예컨대, 상기 화합물은 인광 발광 호스트 재료로서 사용될 수 있다.
도 1 내지 3은 본 발명의 실시상태들에 따른 유기발광소자의 전극과 유기물층의 적층순서를 예시한 것이다.
도 4 및 도 5는 화합물 16의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 6 및 도 7은 화합물 26의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 8 및 도 9는 화합물 49의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 10 및 도 11은 화합물 50의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 12 및 도 13은 화합물 89의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 14 및 도 15는 화합물 90의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 16은 화합물 16의 UV 측정 그래프를 나타낸 것이다.
도 17은 화합물 16의 263㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 18은 화합물 26의 UV 측정 그래프를 나타낸 것이다.
도 19는 화합물 26의 327㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 20은 화합물 49의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 21은 화합물 49의 UV 측정 그래프를 나타낸 것이다.
도 22는 화합물 49의 261㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 23은 화합물 50의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 24는 화합물 50의 UV 측정 그래프를 나타낸 것이다.
도 25는 화합물 50의 264㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 26은 화합물 89의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 27은 화합물 89의 UV 측정 그래프를 나타낸 것이다.
도 28은 화합물 89의 259㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 29는 화합물 90의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 30은 화합물 90의 UV 측정 그래프를 나타낸 것이다.
도 31은 화합물 90의 331㎚에 대한 PL 측정 그래프를 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 명세서에 기재된 화합물은 상기 화학식 1로 표시될 수 있다. 구체적으로, 상기 화학식 1의 화합물은 상기와 같은 코어 구조 및 치환기, 특히 R1 및 R2의 치환기의 구조적 특징에 의하여 유기발광소자의 유기물층 재료로 사용될 수 있다. 특히, 상기와 같은 구조의 화합물은 유기발광소자의 전자수송을 하기에 적합한 특성을 갖는다.
본 명세서에 있어서, 알킬은 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알킬의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다.
본 명세서에 있어서, 알케닐은 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알케닐의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알키닐은 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알키닐의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 시클로알킬은 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬, 아릴, 헤테로아릴 등일 수도 있다. 시클로알킬의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다.
본 명세서에 있어서, 아릴은 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬, 헤테로시클로알킬, 헤테로아릴 등일 수도 있다. 아릴의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 20일 수 있다. 아릴의 구체적인 예로는 페닐, 바이페닐, 트리페닐, 나프틸, 안트릴, 크라이세닐, 페난트레닐, 페릴레닐, 플루오란테닐, 트리페닐레닐, 페날레닐, 파이레닐, 테트라세닐, 펜타세닐, 플루오레닐, 인데닐, 아세나프틸레닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 질소함유 헤테로아릴은 헤테로원자로서 N을 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 본 명세서에 있어서, 특별한 언급이 없는 헤테로아릴은 헤테로원자로서 S, O 또는 N을 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로아릴이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬, 헤테로시클로알킬, 아릴 등일 수도 있다. 헤테로아릴의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다. 헤테로아릴의 구체적인 예로는 피리딜, 피롤릴, 피리미딜, 피리다지닐, 푸라닐, 티에닐, 이미다졸릴, 피라졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 이소티아졸릴, 트리아졸릴, 푸라자닐, 옥사디아졸릴, 티아디아졸릴, 디티아졸릴, 테트라졸릴, 파이라닐, 티오파이라닐, 디아지닐, 옥사지닐, 티아지닐, 디옥시닐, 트리아지닐, 테트라지닐, 퀴놀릴, 이소퀴놀릴, 퀴나졸리닐, 이소퀴나졸리닐, 아크리디닐, 페난트리디닐, 이미다조피리디닐, 디아자나프탈레닐, 트리아자인덴, 인돌릴, 벤조티아졸릴, 벤즈옥사졸릴, 벤조이미다졸릴, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴, 벤조카바졸릴, 페나지닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 스피로기는 스피로 구조를 포함하는 기로서, 탄소수 15 내지 60일 수 있다. 예컨대, 스피로기는 플루오렌기에 2,3-디하이드로-1H-인덴기 또는 시클로헥산기가 스피로 결합된 구조를 포함할 수 있다. 구체적으로, 스피로기는 하기 구조식의 기를 포함한다.
Figure PCTKR2013011152-appb-I000001
본 명세서에 있어서, "치환 또는 비치환"이란 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐; C3 내지 C60의 단환 또는 다환의 시클로알킬; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 아릴; C2 내지 C60의 단환 또는 다환의 헤테로아릴; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬; C10 내지 C60의 스피로기; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환된 것을 의미한다. 상기 추가의 치환기들은 추가로 더 치환될 수도 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R1이 질소함유 헤테로아릴을 포함한다. 질소함유 헤테로아릴을 포함한다는 것은 R1이 치환 또는 비치환된 질소함유 헤테로아릴이거나, 치환 또는 비치환된 질소함유 헤테로아릴로 치환된 아릴인 것을 의미한다. 여기서 아릴은 2 이상의 방향족기가 연결된기를 포함한다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R1이 단환의 질소함유 헤테로아릴을 포함한다. 단환의 질소함유 헤테로아릴을 포함한다는 것은 R1이 치환 또는 비치환된 단환의 질소함유 헤테로아릴이거나, 치환 또는 비치환된 단환의 질소함유 헤테로아릴로 치환된 아릴인 것을 의미한다.
상기 질소함유 헤테로아릴은 질소를 1 내지 3개 포함할 수 있다. 상기 질소 함유 헤테로아릴은 피리딘기, 피리미딘기, 트리아진기, 퀴놀린기, 또는 이소퀴놀린기일 수 있다.
상기 단환의 질소함유 헤테로아릴은 질소를 1 내지 3개 포함할 수 있다.
상기 질소함유 헤테로아릴은 추가의 치환기로 치환 또는 비치환된다. 상기 질소함유 헤테로아릴이 치환되는 경우, C6 내지 C60 아릴 또는 C2 내지 C60 헤테로아릴로 치환 또는 비치환된 C6 내지 C60 아릴로 치환될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R1이 단환의 질소함유 헤테로아릴을 포함하고, 상기 단환의 질소함유 헤테로아릴은 피리딘기, 피리미딘기, 또는 트리아진기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R1이 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이거나; 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 및 치환 또는 비치환된 트리아진기 중 1 또는 2 이상으로 치환된 아릴기이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R1이 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이거나; 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 및 치환 또는 비치환된 트리아진기 중 1 또는 2 이상으로 치환된 페닐기이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2013011152-appb-I000002
상기 화학식 2에 있어서,
L은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌이고
Het는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소 함유 헤테로아릴이며,
n은 0 내지 2의 정수이고, p는 1 또는 2이며,
R2 내지 R7는 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 화학식 2에 있어서, n이 0이거나, n이 1 또는 2이고, L은 페닐렌이다.
본 발명의 일 실시상태에 따르면, 화학식 2에 있어서, Het는 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이다.
본 발명의 일 실시상태에 따르면, 화학식 2에 있어서, Het는 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이며, Het가 치환되는 경우 그 치환기는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이다.
본 발명의 일 실시상태에 따르면, 화학식 2에 있어서, Het는 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이며, Het가 치환되는 경우 그 치환기는 C6 내지 C60의 아릴 또는 C2 내지 C60의 헤테로아릴로 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 아릴이다.
본 발명의 일 실시상태에 따르면, 화학식 2에 있어서, Het는 치환 또는 비치환된 피리딘기, 치환 또는 비치환된 피리미딘기, 또는 치환 또는 비치환된 트리아진기이며, Het가 치환되는 경우 그 치환기는 페닐, 바이페닐, 터페닐, 나프틸 또는 페난트레닐이며, 이는 다시 페닐, 바이페닐, 터페닐, 나프틸, 페난트레닐, 피리딘기, 피리미딘기 또는 트리아진기로 치환될 수 있다.
본 발명의 또 하나의 실시상태에 따르면, 상기 화학식 1은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
Figure PCTKR2013011152-appb-I000003
상기 화학식 3에 있어서,
R8은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소 함유 헤테로아릴이고, m은 0 내지 9의 정수이다.
R2 내지 R7은 화학식 1에서 정의한 바와 같으며,
L 및 n은 화학식 2에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 화학식 3에 있어서, n이 0이거나, n이 1 또는 2이고, L은 페닐렌이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3에서 m은 1 또는 2이고, R8은 1 내지 3개의 고리를 갖는 아릴 또는 질소함유 헤테로아릴이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3에서 m은 1 또는 2이고, R8은 페닐, 나프틸, 페난트레닐, 터페닐, 피리딘기, 바이피리딘기, 피리미딘기, 바이피리미딘기, 트리아진기, 바이트리아진기, 퀴놀릴, 이소퀴놀릴 또는 페난트리딜기이다.
본 발명의 또 하나의 실시상태에 따르면, 상기 화학식 1은 하기 화학식 4로 표시될 수 있다.
[화학식 4]
Figure PCTKR2013011152-appb-I000004
상기 화학식 4에 있어서,
X1 및 X2는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 방향족 탄화수소 고리; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 방향족 헤테로 고리이고,
R2 내지 R7은 화학식 1에서 정의한 바와 같으며,
L 및 n은 화학식 2에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 화학식 4에 있어서, n이 0이거나, n이 1 또는 2이고, L은 페닐렌이다.
본 발명의 일 실시상태에 따르면, 화학식 4에 있어서,
Figure PCTKR2013011152-appb-I000005
는 하기 구조를 포함한다.
Figure PCTKR2013011152-appb-I000006
상기 구조식들에 있어서, Y1 내지 Y6는 각각 CRR', NR, S 또는 O이고,
Z1 내지 Z3은 각각 S 또는 O이며,
R 및 R'는 서로 같거나 상이하고, 각각 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R2는 C1 내지 C20의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C20의 단환 또는 다환의 치환 또는 비치환된 아릴이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R2는 메틸, 페닐, 또는 나프틸이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R3 내지 R7은 각각 독립적으로 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 중 R3 내지 R7은 수소이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 화합물은 하기 화합물들 중에서 선택될 수 있다.
Figure PCTKR2013011152-appb-I000007
Figure PCTKR2013011152-appb-I000008
Figure PCTKR2013011152-appb-I000009
Figure PCTKR2013011152-appb-I000010
Figure PCTKR2013011152-appb-I000011
Figure PCTKR2013011152-appb-I000012
Figure PCTKR2013011152-appb-I000013
Figure PCTKR2013011152-appb-I000014
Figure PCTKR2013011152-appb-I000015
Figure PCTKR2013011152-appb-I000016
Figure PCTKR2013011152-appb-I000017
Figure PCTKR2013011152-appb-I000018
Figure PCTKR2013011152-appb-I000019
Figure PCTKR2013011152-appb-I000020
Figure PCTKR2013011152-appb-I000021
Figure PCTKR2013011152-appb-I000022
Figure PCTKR2013011152-appb-I000023
Figure PCTKR2013011152-appb-I000024
전술한 화합물들은 후술하는 제조예를 기초로 제조될 수 있다. 하기 제조예를 기초로, 당업자는 필요에 따라, 치환기를 추가하거나 제외할 수 있다. 또한, 치환기의 위치나 종류를 다르게 선택할 수 있다. 또한, 당기술분야에 알려져 있는 기술을 기초로, 출발물질, 반응물질, 반응 조건 등을 변경할 수 있다.
본 발명의 또 하나의 실시상태는 전술한 화학식 1의 화합물을 포함하는 유기발광소자를 제공한다. 구체적으로, 본 발명에 따른 유기발광소자는 양극, 음극 및 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 화학식 1의 화합물을 포함한다.
도 1 내지 3에 본 발명의 실시상태들에 따른 유기발광소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 발명의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기발광소자의 구조가 본 발명에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기발광소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기발광소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기발광소자는 정공주입층(301), 정공수송층(302), 발광층(303), 전자수송층(304) 및 전자주입층(305)를 포함한다. 그러나, 이와 같은 적층구조에 의하여 본 발명의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 발명에 따른 유기발광소자는 유기물층 중 1층 이상에 상기 화학식 1의 화합물을 포함하는 것을 제외하고는 당기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 화학식 1의 화합물은 단독으로 유기발광소자의 유기물층 중 1층 이상을 구성할 수 있다. 그러나, 필요에 따라 다른 물질과 혼합하여 유기물층을 구성할 수도 있다.
상기 화학식 1의 화합물은 유기발광소자에서 정공주입재료, 정공수송재료, 발광재료, 전자수송재료, 전자주입재료 등으로 사용될 수 있다.
일 실시상태에 따르면, 상기 화학식 1의 화합물은 유기발광소자의 정공수송층 재료 및/또는 전자수송층 재료로서 사용될 수 있다. 일 구체예로서, 상기 화학식 1의 화합물을 포함하는 유기물층은 유기발광소자의 전자수송층일 수 있다.
또 하나의 실시상태에 따르면, 상기 화학식 1의 화합물은 유기발광소자의 발광재료로서 사용될 수 있다. 일 구체예로서, 상기 화학식 1의 화합물을 포함하는 유기물층은 유기발광소자의 발광층일 수 있다.
상기 화학식 1의 화합물은 인광 발광 호스트 재료로서 사용될 수 있다. 이 경우, 상기 화학식 1의 화합물은 발광 도펀트와 함께 사용된다. 상기 발광 도펀트 재료로는 당기술분야에 알려져 있는 것들을 사용할 수 있다.
예컨대, LL'MX, LL'L''M, LMXX', L2MX 및 L3M로 표시되는 인광 도펀트 재료를 사용할 수 있으나, 이들 예에 의하여 본 발명의 범위가 한정되는 것은 아니다.
여기서, L, L', L", X 및 X'는 서로 상이한 2좌 배위자이고, M은 8 면상 착체를 형성하는 금속이다.
M은 이리듐, 백금, 오스뮴 등이 될 수 있다.
L은 sp2 탄소 및 헤테로 원자에 의하여 M에 배위되는 음이온성 2좌 배위자이고, X는 전자 또는 정공을 트랩하는 기능을 할 수 있다. L의 비한정적인 예로는 2-(1-나프틸)벤조옥사졸, (2-페닐벤조옥사졸), (2-페닐벤조티아졸), (2-페닐벤조티아졸), (7,8-벤조퀴놀린), (티에닐피리진), 페닐피리딘, 벤조티에닐피리진, 3-메톡시-2-페닐피리딘, 티에닐피리진, 톨릴피리딘 등이 있다. X의 비한정적인 예로는 아세틸아세토네이트(acac), 헥사플루오로아세틸아세토네이트, 살리실리덴, 피콜리네이트, 8-히드록시퀴놀리네이트 등이 있다.
더욱 구체적인 예를 하기에 표시하나, 이들 예로만 한정되는 것은 아니다.
Figure PCTKR2013011152-appb-I000025
본 발명에 따른 유기발광소자에 있어서, 상기 화학식 1의 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 발명의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다.
정공주입재료로는 공지된 정공주입재료를 이용할 수도 있는데, 예를 들면, 미국특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 TCTA, m-MTDATA, m-MTDAPB, 용해성이 있는 전도성 고분자인 Pani/DBSA(Polyaniline/Dodecylbenzenesulfonic acid: 폴리아닐린/도데실벤젠술폰산) 또는 PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate):폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)), Pani/CSA(Polyaniline/Camphor sulfonic acid:폴리아닐린/캠퍼술폰산) 또는 PANI/PSS(Polyaniline/Poly(4-styrene-sulfonate):폴리아닐린/폴리(4-스티렌술포네이트)) 등을 사용할 수 있다.
정공수송재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자수송재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자주입재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 발명이 이에 한정되는 것은 아니다.
발광재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우 2 이상의 발광재료를 혼합하여 사용할 수 있다. 또한, 발광재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수 도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
본 발명에 따른 유기발광소자는 정공저지층 및/또는 전자저지층을 추가로 포함할 수 있다. 이들의 재료는 당 기술분야에 알려져 있는 것들을 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기발광소자는 상기 화학식 1의 화합물을 포함하는 발광층을 포함하고, 상기 발광층과 상기 음극 사이에 구비된 정공저지층을 더 포함한다. 이 때, 상기 발광층은 발광 도펀트를 더 포함할 수 있다.
[부호의 설명]
100: 기판
200: 양극
300: 유기물층
301: 정공주입층
302: 정공수송층
303: 발광층
304: 전자수송층
305: 전자주입층
400: 음극
이하에서, 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 이들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하기 위한 것은 아니다.
합성실험예 1) 하기 표 1의 치환기를 갖는 화합물의 제조
Figure PCTKR2013011152-appb-I000026
화합물 1-1의 제조
메틸 2-브로모벤조에이트 20g(93m㏖, 1eq.)을 THF 180㎖에 녹인 후, NaH 7.44g을 넣고 30분 교반하였다. 교반 후, 아세토페논 11.17g (93m㏖, 1eq.)을 천천히 적가하였다. 상온에서 2시간 교반하고, 100℃에서 16시간 가열하였다. 반응이 완결되면 실온으로 온도를 내린 후, 에틸아세테이트와 1N HCl, NaHCO3 수용액, H2O 순차적으로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 1-1를 25.6g (90%)을 얻었다.
화합물 1-2의 제조
화합물 1-1 25.6g(84m㏖, 1eq.)를 DMF 160㎖에 녹인 후, H2NNH2·H2O 6㎖ (92.4m㏖, 1.1eq.)를 넣고 상온에서 6시간 교반하였다. 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 1-2를 20g(79%)을 얻었다.
화합물 1-3의 제조
화합물 1-2 20g(66m㏖, 1eq.)를 DMF 240㎖에 녹인 후, CuI 1.25g(6.6m㏖, 0.1eq.), 4-브로모벤즈알데하이드 14.8g(80.4m㏖, 1.2eq.)을 넣고 30분 교반하였다. 교반 후 NH3·H2O 66㎖를 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 1-3을 15g(56%)을 얻었다.
화합물 1-4의 제조
화합물 1-3 15g(37m㏖, 1eq.)를 DMF 60㎖에 녹인 후, CuI 1.25g(6.6m㏖, 0.1eq.)를 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 1-4을 10g(80%)을 얻었다.
화합물 S-1의 제조
S-2(1eq.)을 1,4-디옥산 300㎖에 녹인 후 2,2,3,3,7,7,8,8-옥타메틸-1,4,6,9-테트라옥사-5l4-보라스피로[4.4]노난(2eq.), PdCl2(dppf)(0.05eq.), KOAc (3eq.)을 넣고 80℃에서 24시간 교반하였다. 반응이 종결되면 디클로로메탄과 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S-1을 얻었다.
화합물 P1의 제조
화합물 1-4(1eq.)를 톨루엔/에탄올/H2O=5:1:1의 비율에 녹인 후, Pd(PPh3)4 (0.05eq.), K2CO3(3eq.), 화합물 S-1(1.3eq.)을 넣고 4시간 가열하였다. 반응이 종결되면 디클로로메탄과 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 목적화합물 P1을 얻었다.
표 1
Figure PCTKR2013011152-appb-T000001
합성실험예 2) 하기 표 2의 치환기를 갖는 화합물의 제조
Figure PCTKR2013011152-appb-I000027
화합물 1-1의 제조
합성실험예 1에서의 화합물 1-1과 동일한 방법으로 제조
화합물 1-2의 제조
합성실험예 1에서의 화합물 1-2 과 동일한 방법으로 제조
화합물 S-3의 제조
S-4(1eq.)을 THF에 녹인 후, 온도를 -78℃로 내린 후 n-BuLi을 넣고 1시간 교반하였다. 1시간 교반 후 DMF(5eq.)를 넣고 24시간 교반하였다. 반응이 종결되면 디클로로메탄과 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S-3를 얻었다.
화합물 2-3의 제조
화합물 1-2 20g(66m㏖, 1eq.)를 DMF 240㎖에 녹인 후, CuI 1.25g(6.6m㏖, 0.1eq.), 화합물 S-3(1.2eq.)을 넣고 30분 교반하였다. 교반 후 NH3·H2O 66㎖를 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 2-3을 얻었다.
화합물 P2의 제조
화합물 2-3(1eq.)을 DMF 60㎖에 녹인 후, CuI(0.1eq.) 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 목적화합물 P2를 얻었다.
표 2
Figure PCTKR2013011152-appb-T000002
Figure PCTKR2013011152-appb-I000028
합성실험예 3) 하기 표 3의 치환기를 갖는 화합물의 제조
Figure PCTKR2013011152-appb-I000029
화합물 3-1의 제조
메틸 2-브로모벤조에이트 20g(93m㏖, 1eq.)을 THF 180㎖에 녹인 후, NaH 7.44g을 넣고 30분 교반하였다. 교반 후 아세톤 5.4g(93m㏖, 1eq.)을 천천히 적가하였다. 상온에서 2시간 교반하고, 100℃에서 16시간 가열하였다. 반응이 완결되면 실온으로 온도를 내린 후, 에틸아세테이트와 1N HCl, NaHCO3 수용액, H2O를 순차적으로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 3-1을 22g(98%)을 얻었다.
화합물 3-2의 제조
화합물 3-1 22g(91m㏖, 1eq.)를 DMF 180㎖에 녹인 후, H2NNH2·H2O 12㎖ (100.1m㏖, 1.1eq.)를 넣고 상온에서 6시간 교반하였다. 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 3-2를 19g(88%)을 얻었다.
화합물 3-3의 제조
화합물 3-2 19g(80m㏖, 1eq.)를 DMF 160㎖에 녹인 후, CuI 1.5g(8m㏖, 0.1eq.), 4-브로모벤즈알데하이드 17.7g(96m㏖, 1.2eq.)을 넣고 30분 교반하였다. 교반 후 NH3·H2O 80㎖를 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 3-3을 20g(73%)을 얻었다.
화합물 3-4의 제조
화합물 3-3 20g(59m㏖, 1eq.)를 DMF 120㎖에 녹인 후, CuI 1.14g(6m㏖, 0.1 eq.)을 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 에틸아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 화합물 3-4를 17g (85%)을 얻었다.
화합물 S-5의 제조
S-6(1eq.)을 1,4-디옥산 300㎖에 녹인 후 2,2,3,3,7,7,8,8-옥타메틸-1,4,6,9-테트라옥사-5l4-보라스피로[4.4]노난(2 eq.), PdCl2(dppf)(0.05eq.), KOAc (3eq.)을 넣고 80℃에서 24시간 교반하였다. 반응이 종결되면 디클로로메탄과 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S-5을 얻었다.
화합물 P3의 제조
화합물 3-4(1eq.)를 톨루엔/에탄올/H2O=5:1:1의 비율에 녹인 후, Pd(PPh3)4 (0.05eq.), K2CO3(3eq.), 화합물 S-5(1.3eq.)을 넣고 4시간 가열하였다. 반응이 종결되면 디클로로메탄과 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 목적화합물 P3을 얻었다.
표 3
Figure PCTKR2013011152-appb-T000003
Figure PCTKR2013011152-appb-I000030
합성실험예 4) 하기 표 4의 치환기를 갖는 화합물의 제조
Figure PCTKR2013011152-appb-I000031
화합물 S-7의 제조
합성실험예 2의 S-4 대신 S-8을 이용한 것을 제외하고는 합성실험예 2의 화합물 S-3와 동일한 방법으로 제조
화합물 4-3의 제조
합성실험예 2의 화합물 2-2 대신 화합물 3-2를 이용한 것을 제외하고는 합성실험예 2의 화합물 2-3과 동일한 방법으로 제조
화합물 P4의 제조
합성실험예 2의 화합물 2-3 대신 화합물 4-3을 이용한 것을 제외하고는 합성실험예 2의 화합물 P2와 동일한 방법으로 제조
표 4
Figure PCTKR2013011152-appb-T000004
합성실험예 5) 화합물 49의 제조
Figure PCTKR2013011152-appb-I000032
화합물 49-1 의 제조
원 네크 r.b.f(One neck r.b.f)에 (9,9-디메틸-9H-플루오렌-2-일)보론산(25.9g, 108m㏖), 1-브로모-2-니트로벤젠(20g, 99m㏖), Pd(PPh3)4(5.7g, 4.95m㏖), K2CO3(27.3g, 198m㏖), THF(250㎖)/H2O(50㎖)의 혼합물을 110℃에서 24시간 환류하였다. 물층을 제거한 후 유기층을 MgSO4로 건조하였다. 농축 후 컬럼크로마토그래피(SiO2, 헥산:디클로로메탄 = 2:1)로 분리하여 노란색 고체 화합물 49-1을 수득하였다(21 g, 61%).
화합물 49-2 의 제조
질소 하에서 원 네크 r.b.f에 상기 화합물 49-1(20g, 63.4m㏖), PPh3(49.8g, 190m㏖), 1,2-디클로로벤젠(300㎖)의 혼합물을 180℃에서 1시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄 = 3:1)로 분리하여 흰색 고체 화합물 49-2(6.6g, 36 %), 화합물 74-1 (7.5g, 41%)을 얻었다.
화합물 49 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 49-2(4.8g, 16.9m㏖), 합성실험예의 화합물 1-4(6.4g, 16m㏖), Cu(1g, 16.9m㏖), 18-크라운-6-에테르(550mg, 1.69m㏖), K2CO3(7g, 50.7m㏖), o-DCB (130㎖)의 혼합물을 180℃에서 60시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄 = 2:1)로 분리하여 흰색 고체 화합물 49를 얻었다(3.8g, 37%).
합성실험예 6) 화합물 50의 제조
Figure PCTKR2013011152-appb-I000033
화합물 50-1의 제조
원 네크 r.b.f에 2-브로모-9,9-디페닐-9H-플루오렌(40g, 100.67m㏖), 디보론(51.1g, 201.34m㏖), PdCl2(dppf)(2.2g, 3.02m㏖), KOAc (29.6g, 302.01m㏖), DMF (400㎖)의 혼합물을 리플럭스하였다. MC추출하고 MgSO4로 건조 후 DMF를 진공 회전증발농축기(vaccum rotarvapor)로 제거하였다. 농축물을 컬럼 크로마토그래피(SiO2, 헥산:디클로로메탄 = 1:1)로 분리하여 흰색 고체 화합물 50-1을 얻었다(41g, 91%).
화합물 50-2의 제조
원 네크 r.b.f에 화합물 50-1(41g, 92.26m㏖), 1-브로모-2-나이트로벤젠(18.6g, 92.26m㏖), Pd(PPh3)4(10.6g, 9.2m㏖), K2CO3(26.6g, 192.5m㏖), THF(500㎖)/H2O(100㎖)의 혼합물을 110℃에서 24시간 환류하였다. 물층을 제거한 후 유기층을 MgSO4로 건조하였다. 농축 후 컬럼 크로마토그래피(SiO2, 헥산:디클로로메탄 = 1:1)로 분리하여 노란색 고체 화합물 50-2를 얻었다(26.3 g, 65%).
화합물 50-3의 제조
질소하에서 원 네크 r.b.f에 화합물 50-2(26.3g, 59.8m㏖), PPh3(47g, 179.4m㏖), 1,2-디클로로벤젠(300㎖)의 혼합물을 180℃에서 18시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼 크로마토그래피(SiO2, 헥산:디클로로메탄 = 3:1)로 분리하여 흰색 고체 화합물 50-3을 얻었다(9g, 37%).
화합물 50의 제조
질소하에서 원 네크 r.b.f에 화합물 50-3(5.1g, 12.5m㏖), 화합물 1-4(5g, 12.5m㏖), Pd(OAc)2(280mg, 1.25m㏖) K3PO4(5.3g, 25mmol), P(t-Bu)3(6㎖, 3.75m㏖), 톨루엔/H2O(120㎖/30㎖)의 혼합물을 110℃에서 24시간 환류하였다. 반응물을 MC로 추출한 후 MgSO4로 건조한 뒤 농축하였다. 농축물을 MC/MeOH로 정제하고, ACN으로 고온 필터한 후, MC에 녹여 과량의 헥산에 떨어뜨려 생긴 결정을 필터하여 화합물 50을 얻었다(6.7g, 73%).
합성실험예 7) 화합물 59의 제조
Figure PCTKR2013011152-appb-I000034
화합물 59-1 의 제조
질소 하에서 원 네크 r.b.f에 2-브로모-9,9-디메틸-9H-플루오렌(15g, 54.91m㏖), 벤조[b]-티오펜-2-일트리부틸스타난(thiophen-2-yltributylstannane, 34.8g, 82.3m㏖), Pd(PPh3)4, 톨루엔(350㎖)의 혼합물을 110℃에서 12시간 환류시켰다. 농축 후 실리카겔 필터한 뒤 CH2Cl2 /MeOH로 침전을 잡은 화합물을 EtOH로 고온 필터하여 불투명한 흰색 고체 화합물 59-1을 얻었다(15.7g, 87%).
화합물 59-2 의 제조
질소 하에서 원 네크 r.b.f에 상기 화합물 59-1(15.7g, 48m㏖), AcOH(260㎖) 용액, HNO3(6㎖, 143m㏖), AcOH(260㎖)의 혼합물을 천천히 가한 뒤, 60℃로 가열하여 30분 동안 교반하였다. 상온으로 식힌 후 필터한 후 증류수(500㎖)로 씻어주었다. 얻어진 물질을 진공오븐에서 50℃로 12시간 건조 후 노란색 고체 화합물 59-2를 얻었다(16.1g, 90%).
화합물 59-3 의 제조
질소 하에서 원 네크 r.b.f에 상기 화합물 59-2(16.1g, 43m㏖), PPh3 (33.8g, 129m㏖), 1,2-디클로로벤젠(250㎖)의 혼합물을 200℃에서 18시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=2:1)로 분리하여 옅은 고등색 고체 화합물 59-3을 얻었다(3.0g, 20%).
화합물 59 의 제조
질소 충전하에서 원 네크 r.b.f 에 상기 화합물 59-3(2g, 5.85m㏖), 상기 합성실험예 1의 화합물 1-4(2.59g, 6.45m㏖), Cu(374mg, 5.85m㏖), 18-크라운-6-에테르(191mg, 0.58m㏖), K2CO3(1.6g, 11.78m㏖), o-DCB(25㎖)의 혼합물을 180℃에서 60시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=3:1)로 분리하여 고체 화합물 59를 얻었다(2.8g, 72%).
합성실험예 8) 화합물 64의 제조
Figure PCTKR2013011152-appb-I000035
화합물 64-1 의 제조
9,9-디메틸-9H-플루오렌-2-일 보론산(25.95g, 109m㏖), 3-브로모티아-나프텐 (3-bromothia-naphthene, 10㎖, 72.5m㏖), Pd(PPh3)4(4.189g, 3.625m㏖), K2CO3 (30.06g, 217.5m㏖), 톨루엔(200㎖), 에탄올(40㎖), H2O(40㎖)의 혼합물을 환류시켰다. 리플럭스 온도에서 4시간 동안 교반한 뒤 용매를 농축한 후, MC로 추출하였다. 고체를 메탄올로 세척하여 여과하였다. 흰색 고체 화합물 64-1을 얻었다(30g, 87%).
화합물 64-2 의 제조
질소 하에서 원 네크 r.b.f에 상기 화합물 64-1(21.3g, 65.3m㏖), AcOH (1,260㎖) 용액, HNO3(5.9㎖, 130m㏖), AcOH(12㎖)의 혼합물을 천천히 가한 뒤 60℃로 가열하여 30분 교반하였다. 상온으로 식힌 후 필터한 후 증류수(400㎖)로 씻어주었다. 얻어진 물질을 진공오븐에서 50℃로 12시간 건조 후 밝은 노란색 고체 화합물 64-2를 얻었다(21.0g, 95%).
화합물 64-3 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 64-2(29.5g, 79.4m㏖), PPh3 (54.8g, 198.5m㏖), 1,2-디클로로벤젠(450㎖)의 혼합물을 180℃에서 4시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피 (SiO2, 헥산:디클로로메탄 = 4:1)로 분리하여 노란색 고체 화합물 64-3을 얻었다(15g, 55%).
화합물 64 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 64-3(4g, 11.7m㏖), 상기 합성실험예 1의 화합물 1-4(5.18g, 12.9m㏖), Cu(748mg, 11.7m㏖), 18-크라운-6-에테르(383mg, 1.17m㏖), K2CO3(3.2g, 23.56m㏖), o-DCB(50㎖)의 혼합물을 180℃에서 60시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=3:1)로 분리하여 고체화합물 64을 얻었다(5.2, 67%).
합성실험예 9) 화합물 70의 제조
Figure PCTKR2013011152-appb-I000036
화합물 70-1 의 제조
원 네크 r.b.f에 디벤조[b,d]티오펜-4-일보론산(23g, 107.9m㏖), 3-브로모벤조[b]티오펜(27g, 118.7m㏖), K2CO3(10g, 10.8m㏖), H2O(90㎖), 1,4-디옥산 (360㎖) 용액을 110 ℃ 에서 12시간 환류하였다. 농축 후 CH2Cl2(3×300㎖), 증류수 (150㎖)로 추출하고 실리카겔 필터하였다. 농축 후 MeOH(400㎖)로 1시간 교반한 뒤 CH2Cl2/MeOH로 침전을 잡아서 필터하여 갈색빛 고체 화합물 70-1을 얻었다(26.5g, 77%).
화합물 70-2 의 제조
질소 하에서 원 네크 r.b.f에 상기 화합물 70-1(26g, 82.1m㏖), AcOH(400㎖) 용액, HNO3(10㎖, 246.4m㏖), AcOH(400㎖) 용액을 천천히 가한 뒤 60℃로 가열하여 30분 교반하였다. 상온으로 식힌 후 필터한 후 증류수(800㎖)로 씻어주었다. 얻어진 고체 화합물을 CH2Cl2(200㎖)에 녹이고 물층을 제거한 뒤 유기층을 감압 농축하였다. 농축물을 흡착한 뒤 컬럼크로마토크래피 (SiO2, 헥산:디클로로메탄=3:1)로 분리하여 노란색 고체 화합물 70-2를 얻었다(19.6g, 66%).
화합물 70-3 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 70-2(17.9g, 49.6m㏖), PPh3 (38.7g, 148.4m㏖), 1,2-디클로로벤젠(500㎖)의 혼합물을 180℃에서 12시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 CH2Cl2/MeOH 침전을 잡아 필터한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=2:1)로 분리하여 불투명한 흰색 고체 화합물 70-3을 얻었다(10g, 61%).
화합물 70 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 70-3(10g, 30.35m㏖), 상기 합성실험예 1의 화합물 1-4(13.34g, 33.38m㏖), Cu(1.9mg, 30.35m㏖), 18-크라운-6-에테르(987mg, 3.03m㏖), K2CO3(8.3g, 60.7m㏖), o-DCB(100㎖)의 혼합물을 180℃에서 60시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=3:1)로 분리하여 고체 화합물 70를 얻었다(13.6g, 69%).
합성실험예 10) 화합물 73의 제조
Figure PCTKR2013011152-appb-I000037
화합물 73-1 의 제조
질소 충전하에서 원 네크 r.b.f에 1,2-디사이클로헥사논(30.0g, 1.0eq), 페닐하이드라진 하이드로클로라이드(77.37g, 2.0eq), 에탄올(1,000㎖)의 혼합물에 황산(1.4㎖, 0.1eq)를 서서히 적가한 뒤 60℃에서 4시간 동안 교반하였다. 실온으로 식힌 용액을 필터하여 황갈색 고체 73-1을 얻었다(69g, 93%).
화합물 73-2 의 제조
원 네크 r.b.f에 상기 화합물 73-1(68.9g, 1.0eq), 아세트산(700㎖), 트리플루오로아세트산(46.5㎖, 2.4eq)를 넣고 100℃에서 15시간 동안 교반하였다. 실온으로 식힌 용액을 아세트산과 헥산으로 세척하고 필터하여 아이 보리색 고체 73-2를 얻었다(27.3g, 42%).
화합물 73-3 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 73-2(2.1g, 1.0eq), 아이도벤젠(2.5g, 1.5eq), Cu(0.312g, 0.6eq), 18-크라운-6-에테르(0.433g, 0.2eq), K2CO3(3.397g, 3.0eq), 1,2-디클로로벤젠(20㎖)의 혼합물을 리플럭스 온도에서 16시간 동안 교반하였다. 실온으로 식힌 용액을 MC/H2O로 추출하여 농축하고 컬럼크로마토크래피(SiO2, 헥산:에틸 아세테이트=10:1)로 분리하여 흰색 고체 화합물 73-3를 얻었다(1.76g, 64%).
화합물 73 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 73-3(1.7g, 5.11m㏖), 상기 합성실험예 1의 화합물 1-4(2g, 5.11m㏖), Cu(324mg, 5.11m㏖), 18-크라운-6-에테르(166mg, 0.51m㏖), K2CO3(1.4g, 0.22m㏖), o-DCB(10㎖)의 혼합물을 180℃에서 60시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=2:1)로 분리하여 고체 화합물 73 얻었다. (1.1g, 33%)
합성실험예 11) 화합물 74의 제조
Figure PCTKR2013011152-appb-I000038
원 네크 r.b.f에 상기 화합물 74-1(1g, 3.53m㏖), 상기 합성실험예 1의 화합물 1-4(1.2g, 3.53m㏖), Pd(OAc)2(80mg, 0.353m㏖), K3PO4(1.4g, 7.06m㏖), P(t-Bu)3(1.5㎖, 1m㏖), o-DCB(10㎖)의 혼합물을 100℃에서 24시간 환류하였다. MC로 추출하고, MgSO4로 건조한 후 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=2:1)로 분리하여 고체 화합물 74를 얻었다(1.35g, 64%).
합성실험예 12) 화합물 79의 제조
Figure PCTKR2013011152-appb-I000039
화합물 79-1 의 제조
원 네크 r.b.f에 디벤조[b,d]푸란-2-일보론산(20g, 94.33m㏖), 1-브로모-2-니트로벤젠(19g, 94.33m㏖), K2CO3(26g, 188m㏖), H2O(45㎖), 1,4-디옥산(300㎖) 용액을 110℃에서 12시간 환류하였다. 농축 후 CH2Cl2(3×200㎖), 증류수(120㎖)로 추출하고 실리카겔 필터하였다. 농축 후 컬럼크로마토크래피(SiO2, 헥산: 디클로로메탄 = 8:1)로 분리하여 아이보리 고체 화합물 79-1을 얻었다(18.2g, 67%).
화합물 79-2 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 79-1(19g, 65.6m㏖), PPh3 (51.6g, 197m㏖), 1,2-디클로로벤젠(400㎖)의 혼합물을 180℃에서 12시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 CH2Cl2/MeOH로 침전을 잡아 필터한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=2:1)로 분리하여 흰색 고체 화합물 79-2를 얻었다. (6.7g, 39%)
화합물 79 의 제조
질소 충전하에서 원 네크 r.b.f에 상기 화합물 79-2(6.7g, 26m㏖), 상기 합성실험예 1의 화합물 1-4(10.4g, 26m㏖), Cu(1.6g, 26m㏖), 18-크라운-6-에테르(847mg, 2.6m㏖), K2CO3(7.1g, 52m㏖), o-DCB(100㎖)의 혼합물을 180℃에서 48시간 환류하였다. 1,2-디클로로벤젠을 증류하여 제거한 뒤 컬럼크로마토크래피(SiO2, 헥산:디클로로메탄=3:1)로 분리하여 흰색 고체 화합물 79를 얻었다(7.2g, 48%).
합성실험예 13) 화합물 89의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 49의 제조와 동일한 방법으로 합성하였다.
합성실험예 14) 화합물 90의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 50의 제조와 동일한 방법으로 합성하였다.
합성실험예 15) 화합물 99의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 60의 제조와 동일한 방법으로 합성하였다.
합성실험예 16) 화합물 104의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 64의 제조와 동일한 방법으로 합성하였다.
합성실험예 17) 화합물 110의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 70의 제조와 동일한 방법으로 합성하였다.
합성실험예 18) 화합물 113의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물 73의 제조와 동일한 방법으로 합성하였다.
합성실험예 19) 화합물 119의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 합성실험예 3의 화합물 3-4를 이용한 것을 제외하고는 화합물79의 제조와 동일한 방법으로 합성하였다.
합성실험예 20) 화합물 129의 제조
화합물 S9 의 제조
Figure PCTKR2013011152-appb-I000040
화합물 S9-1 의 제조
메틸 2-브로모벤조에이트 20g(93m㏖, 1eq.)을 THF 180㎖에 녹인 후, NaH 7.44g을 넣고 30분 교반하였다. 교반 후, 아세토페논 11.17g(93m㏖, 1eq.)을 천천히 적가하였다. 상온에서 2시간 교반하였고, 100℃에서 16시간 가열하였다. 반응이 완결되면 실온으로 온도를 내린 후, 에틸 아세테이트와 1N HCl, NaHCO3 수용액, H2O를 순차적으로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S9-1을 25.6g(90%)을 얻었다.
화합물 S9-2 의 제조
상기 화합물 S9-1 25.6g(84m㏖, 1eq.)를 DMF 160㎖에 녹인 후, H2NNH2·H2O 6㎖(92.4m㏖, 1.1eq.)를 넣고 상온에서 6시간 교반하였다. 반응이 종결되면 에틸 아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S9-2를 20g(79%)을 얻었다.
화합물 S9-3 의 제조
상기 화합물 S9-2 20g(66m㏖, 1 eq.)를 DMF 240㎖에 녹인 후, CuI 1.25g (6.6m㏖, 0.1eq.), 4-브로모벤즈알데하이드 14.8g(80.4m㏖, 1.2eq.)을 넣고 30분 교반하였다. 교반 후 NH3·H2O 66㎖를 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 에틸 아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S9-3을 15g(56%)을 얻었다.
화합물 S9 의 제조
화합물 S9-3 15g(37m㏖, 1eq.)를 DMF 60㎖에 녹인 후, CuI 1.25g(6.6m㏖, 0.1eq.) 넣고 100℃에서 24시간 교반하였다. 반응이 종결되면 에틸 아세테이트와 H2O로 추출하였다. 추출 후 컬럼크로마토크래피로 분리 정제하여 S9를 10g(80%)을 얻었다.
화합물 129 의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 화합물 S9를 이용한 것을 제외하고는 화합물 49의 제조와 동일한 방법으로 합성하였다.
합성실험예 21) 화합물 139의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 화합물 S9를 이용한 것을 제외하고는 화합물 59의 제조와 동일한 방법으로 합성하였다.
합성실험예 22) 화합물 144의 제조
상기 합성실험예 1의 화합물 1-4 대신 상기 화합물 S9를 이용한 것을 제외하고는 화합물 64의 제조와 동일한 방법으로 합성하였다.
상기 합성실험예와 같은 방법으로 화합물을 제조하고, 그 합성확인결과를 표 5에 나타내었다.
표 5
화합물No. 1H NMR Found Calculated
1 7.41(m, 1H), 7.51(m, 4H), 8.05(d, 2H), 8.05(s, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 1H) 7.00(m, 1H), 8.50(d, 1H), 8.50(d, 1H), 7.00(m, 1H), 7.26(d, 1H) 628.24 628.72
2 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H) 574.22 574.69
3 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 7.56(s, 2H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H) 674.25 674.81
4 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 8.44(d, 1H), 8.00(d, 1H), 8.60(s, 1H), 7.52(d, 4H), 7.51(m, 4H), 7.41(m, 2H) 474.18 474.57
5 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H) 574.22 574.69
6 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 7.56(s, 2H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H) 674.25 674.69
7 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 2H), 7.00(m, 2H), 8.50(d, 2H) 630.23 630.72
8 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H) 576.21 576.66
9 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 7.56(s, 2H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H) 676.24 676.78
10 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 2H), 7.00(m, 2H), 8.50(d, 2H) 629.23 629.73
11 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H) 575.21 575.67
12 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H) 675.24 675.79
13 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) 7.75(s, 2H), 8.20(s, 4H), 830(d, 8H), 7.54(m, 8H), 7.47(m, 4H) 779.30 779.95
14 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H) .48(s, 2H), 7.70(s, 1H), 8.20(s, 4H), 8.38(d, 4H), 7.95(d, 4H), 8.00(d, 8H), 7.59(m, 8H) 979.37 980.19
15 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.57(d, 1H), 7.48(d, 2H), 8.20(s, 4H), 7.82(d, 8H), 7.88(m, 8H), 8.93(d, 8H), 8.12(d, 4H), 8.44(d, 4H) 1179.43 1180.43
16 8.54-8.52(d ,2H), 8.12-8.05(m, 8H), 8.01-7.96(m, 5H), 7.89-7.87(d, 1H), 7.75-7.73 (d, 5H), 7.67-7.61 (m, 8H), 7.44-7.38(m, 4H), 7.33(d, 2H) 749.282 749.92
17 7.41(m, 1H), 7.51(m, 6H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 2H), 7.00(m, 2H), 8.50(d, 2H) 680.24 680.78
18 7.41(m, 1H), 7.51(m, 2H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H), 7.51(d, 4H) 652.24 652.76
19 7.41(m, 1H), 7.51(m, 6H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H), 752.27 752.88
20 7.41(m, 1H), 7.51(m, 4H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 2H), 7.00(m, 2H), 8.50(d, 2H), 8.23(s, 1H) 705.26 705.83
21 7.41(m, 1H), 7.51(m, 6H), 8.05(d, 2H), 6.53(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H) 651.24 651.77
22 7.41(m, 1H), 7.51(m, 4H), 8.05(d, 2H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H) 751.27 751.89
23 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.75(s, 2H), 8.20(s, 4H), 830(d, 8H), 7.54(m, 8H), 7.47(m, 4H) 717.29 717.88
24 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.48(s, 2H), 7.70(s, 1H), 8.20(s, 4H), 8.38(d, 4H), 7.95(d, 4H), 8.00(d, 8H), 7.59(m, 8H) 917.35 918.12
25 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.57(d, 1H), 7.48(d, 2H), 8.20(s, 4H), 7.82(d, 8H), 7.88(m, 8H), 8.93(d, 8H), 8.12(d, 4H), 8.44(d, 4H) 1117.41 1118.36
26 8.39-8.36(d, 2H), 8.26-8.21(m, 3H), 8.17-8.13(m, 4H), 8.08-8.07(d, 2H), 7.99(s, 1H), 7.89-7.87(d, 2H), 7.80-7.78(d, (1H), 7.75-7.61(m, 12H), 7.45-7.42(m, 2H), 7.21(s, 1H), 2.44(s,3H) 687.27 687.85
27 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 6H), 7.00(m, 2H), 8.50(d, 2H) 644.24 644.74
28 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H), 7.51(d, 4H) 590.22 590.69
29 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H), 7.51(d, 4H) 690.25 690.81
30 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 4H), 7.00(m, 2H), 8.50(d, 2H), 8.23(s, 1H) 643.25 643.75
31 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H), 7.51(d, 4H), 8.23(s,1H) 589.23 589.70
32 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H), 7.51(d, 4H), 8.23(s, 1H) 689.26 689.82
33 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.56(s, 2H), 8.84(d, 8H), 7.26(d, 2H), 7.51(m, 6H), 7.00(m, 2H), 8.50(d, 2H) 642.25 642.77
34 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H), 7.51(d, 4H) 588.23 588.71
35 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.56(s, 2H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H), 688.26 688.83
36 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 8.44(d, 1H), 8.00(d, 1H), 8.60(s, 1H), 7.52(d, 4H), 7.51(m, 4H), 7.41(m, 2H) 488.20 488.59
37 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 6.86(s, 2H), 8.85(s, 2H), 8.00(d, 4H), 7.59(m, 4H), 7.95(d, 2H), 8.38(d, 2H), 7.51(d, 4H) 575.22 575.69
38 2.30(s, 3H), 6.06(s, 1H), 7.84(d, 1H), 7.58(m, 1H), 7.83(m, 1H), 8.16(d, 1H), 7.56(s, 1H), 8.44(s, 2H), 8.12(d, 4H), 7.82(m, 4H), 7.88(m,4H), 8.93(d, 4H), 7,51(d, 4H) 688.26 688.83
49 8.9(2H, d), 8.20~8.08(6H, m), 7.90~7.85(3H, m), 7.79~7.69(2H, m), 7.65(1H, t), 7.59~7.41(7H, m), 7.37~7.28(3H, m), 1.72(6H, s) 602.73 602.25
50 8.9(2H, d), 8.19~8.01(6H, m), 7.88(3H, m), 7.8(1H, d), 7.74(1H, t), 7.65(1H, t), 7.58~7.19(20H, m) 726.86 726.28
59 8.85(1H, s), 8.16~7.98(6H, m), 7.84~7.79(4H, q), 7.68~7.41(11H, m), 7.24(1H, td), 6.53(1H, s), 1.72(6H, s) 658.81 658.22
64 8.85(1H, s), 8.45(1H, m), 8.16~7.98(5H, m), 7.84~7.79(4H, q), 7.68~7.41(11H, m), 7.24(1H, t), 6.53(1H, s), 1.72(6H, s) 658.81 658.22
70 8.45(2H, m), 8.16(1H, d), 8.05~7.98(5H, m), 7.79~7.84(4H, q), 7.58~7.41 (8H, m), 6.53 (1H, s) 648.80 648.14
73 8.55(1H, dd), 8.45(1H, m), 8.16(1H, d), 8.05~7.94(6H, m), 7.84~7.79(4H, q), 7.68(2H, d), 7.58~7.25(13H, m), 6.53(1H, s) 707.84 707.21
74 8.55(1H, d), 8.16~7.94(6H, m), 7.79~7.84(4H, q), 7.71~7.33 (12H, m), 6.53 (1H, s), 1.72 (6H, s) 602.73 602.25
79 8.16~8.05(4H, m), 7.89~7.79(5H, m), 7.68~7.29(14H, m), 6.53(1H, s) 576.64 576.20
89 8.74(2H, d), 8.18(2H, d), 8.5(2H, d), 7.89~7.82(3H, m), 7.79(1H, d), 7.69(1H, t), 7.62~7.32(2H, m), 7.49~7.26(5H, m), 6.91(1H, s), 1.72(6H, s) 540.66 540.23
90 8.78 (2H, d), 8.09~8.0 (4H, m), 7.89 (1H, s), 7.85~7.78 (3H, m), 7.68 (1H, t), 7.6 (1H, t), 7.52 (1H, d), 7.45~7.18 (15H, m), 6.92 (1H, s), 2.7 (3H, s) 664.79 664.20
99 8.85(1H, s), 8.16~7.98(4H, m), 7.84~7.79(4H, q), 7.68~7.44(8H, m), 7.24(1H, td), 6.06(1H, s), 2.30 (3H, s), 1.72(6H, s) 596.74 596.20
104 8.85(1H, s), 8.45(1H, m), 8.16~8.09(2H, dd), 7.98(1H, m), 7.68~7.44(8H, m), 7.24(1H, t), 6.06(1H, s), 2.30(3H, s), 1.72(6H, s) 596.74 596.20
110 8.45(2H, m), 8.16(1H, d), 8.05~7.98(3H, m), 7.79~7.83(4H, q), 7.68(2H, d), 7.58~7.50(5H, m), 7.33(1H, d), 6.06(1H, s), 2.30(3H, s) 586.73 586.13
113 8.55(2H, d), 8.16~8.12(2H, m), 7.94(2H, d), 7.84~7.79(4H, q), 7.68~7.45(9H, m), 7.33~7.25(4H, set), 6.06(1H, s), 2.30(3H, s) 589.69 589.23
119 8.16~8.12 (2H, m), 7.89~7.79 (5H, m), 7.68~749 (7H, m), 7.42~7.29 (4H, m), 6.06 (1H, s), 2.30 (3H, s) 514.58 576.18
129 8.85(1H, s), 8.34(1H, s), 8.16~8.09(3H, m), 8.00~7.79(8H, m), 7.68~7.50(10H, m), 7.29~7.24(2H, set) 652.78 652.26
139 8.85(1H, s), 8.34(1H, s), 8.16~7.79(12H, m), 7.68~7.44(10H, m), 7.24(1H, td), 6.55(1H, s), 1.72(6H, s) 708.87 708.23
144 8.85(1H, s), 8.45(1H, m), 8.34(1H, s), 8.16~8.09 (2H, dd), 8.00~7.79(8H, m), 6.53(1H, s), 1.72(6H, s) 708.87 708.23
시험예 1:
화합물 16, 화합물 26, 화합물 49, 화합물 50, 화합물 89 및 화합물 90의 호모(HOMO), 루모(LUMO), 밴드갭(BAND GAP)을 CV 측정기기(제조사: princeton appied research, 모델명: Parstat2273)를 이용하여 하기 방법으로 측정하였고, 결과를 하기 표 7 내지 표 12에 나타내었다.
1. 전해질액, 표준액, 검액의 제조
1)전해질액: 테트라부틸암모늄 테트라플루오로보레이트(Tetrabutylammonium tetrafluoroborate) 3.3g을 정밀히 달아 100㎖ 용량플라스크에 넣고, 메틸렌 클로라이드(methylene chloride)를 넣어 100㎖로 하여 제조하였다.
2) 표준액: NPB 약 1mg을 정밀히 달아 10㎖ 용량플라스크에 넣고, 전해질액을 넣어 10㎖로 한 후 표준액으로 사용하였다.
3) 검액: 화합물을 시료로 하여 약 1mg을 정밀히 달아 10㎖ 용량플라스크에 넣고, 전해질액을 넣어 10㎖로 한 후 검액으로 사용하였다.
2. 분석 조건
표 6
파라미터(Parameter) Value
레퍼런스 전극 타입(Reference Electrode type) Ag.AgCl / NaCl (sat'd)
초기 전위(Initial Potential, E0) 0.00 Volts
정점 전위(Vertex Potential, E1) 1.5~2.5 Volts
최종 전위(Final Potential, E2) 0.00 Volts
스캔 속도(Scan rate) 50~100 Volts
3. CV 측정방법
1) NPB과 전해질액을 사용하여 6㎖의 표준액을 제조하였다.
2) 작업전극, 기준전극, 보조전극을 설치하였다.
3) 약 30 초 정도 질소 버블링을 시행한 후 측정을 시작하였다.
4) 측정이 끝나면 MC, 아세톤을 이용하여 깨끗하게 씻은 후, 측정할 화합물의 검액 제조하여 상술한 바와 같은 방법으로 측정하였다.
4. 계산식
호모 = -5.5-(Eox(측정 대상 화합물) - Eox (NPB))eV
밴드갭 (호모-루모)= 1240/UV 흡수한계(UV absorption edge)
표 7
호모 = -5.5-(Eox(화합물 16)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 (434㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.77eV
화합물 16 1.21eV -5.94eV 2.86eV -3.08eV
표 8
호모 = -5.5-(Eox(화합물 26)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 433㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.77eV
화합물 26 1.27eV -6eV 2.86eV -3.14eV
표 9
호모 = -5.5-(Eox(화합물 49)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 (399㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.75eV
화합물 49 1.26eV -6.01eV 3.11eV -2.90eV
표 10
호모 = -5.5-(Eox(화합물 50)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 (399㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.73eV
화합물 50 1.30eV -6.07eV 3.11eV -2.96eV
표 11
호모 = -5.5-(Eox(화합물 89)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 (395㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.72eV
화합물 89 1.25eV -6.03eV 3.14eV -2.89eV
표 12
호모 = -5.5-(Eox(화합물 90)-Eox(NPB))(eV)
밴드갭 = 1240/ UV 흡수한계 (394㎚)(eV)
Eox 호모 밴드갭 루모
NPB 0.71eV
화합물 90 1.29eV -6.08eV 3.15eV -2.93eV
도 4 및 도 5는 화합물 16의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 6 및 도 7은 화합물 26의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 8 및 도 9는 화합물 49의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 10 및 도 11은 화합물 50의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 12 및 도 13은 화합물 89의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 14 및 도 15는 화합물 90의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 4 내지 15에서, y축은 전류(current, 단위: A), x축은 전위(Potential, 단위: V)를 나타낸다.
한편, 화합물 49, 화합물 50, 화합물 89 및 화합물 90의 T1값을 하기 표 13에 나타내었다. T1 값은 저온 PL nmax 값을 통하여 도출된다. 구체적으로, T1 값은 장비 HITACHI-F7000, 온도 -196℃(77K), 희석액 2-메틸 테트라하이드로퓨란, 계산식 [T1(eV) = 1240/ PL 최단 피크 파장(nm)]에 의하여 얻었다.
표 13
화합물 49 화합물 50 화합물 89 화합물 90
T1 2.60eV 2.59eV 2.60eV 2.60eV
한편, 도 16은 화합물 16의 UV 측정 그래프를 나타낸 것이다.
도 17은 화합물 16의 263㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 18은 화합물 26의 UV 측정 그래프를 나타낸 것이다.
도 19는 화합물 26의 327㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 20은 화합물 49의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 21은 화합물 49의 UV 측정 그래프를 나타낸 것이다.
도 22는 화합물 49의 261㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 23은 화합물 50의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 24는 화합물 50의 UV 측정 그래프를 나타낸 것이다.
도 25는 화합물 50의 264㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 26은 화합물 89의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 27은 화합물 89의 UV 측정 그래프를 나타낸 것이다.
도 28은 화합물 89의 259㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 29는 화합물 90의 LTPL(-78℃) 측정 그래프를 나타낸 것이다.
도 30은 화합물 90의 UV 측정 그래프를 나타낸 것이다.
도 31은 화합물 90의 331㎚에 대한 PL 측정 그래프를 나타낸 것이다.
도 16 내지 도 31의 y축은 각각 강도(intensity)이고, x축은 파장(단위: ㎚)이다.
비교예 1 : OLED 소자 제작
우선, OLED용 글래스(삼성-코닝사 제조)로부터 얻어진 투명전극 ITO 박막을, 트리클로로에틸렌, 아세톤, 에탄올, 증류수를 순차적으로 사용하여 초음파 세척을 실시하고, 이소프로필알코올에 세척 후 사용하였다.
다음으로, 진공 증착 장비의 기판 폴더에 ITO 기판을 설치하고, 진공 증착 장비 내의 진공도가 10-7 torr에 도달할 때까지 배기시킨 후, 하기 4,4',4"-트리스(N,N-(2-나프틸)-페닐아미노)트리페닐 아민(4,4',4"-tris(N,N-(2-naphthyl)-phenylamino)triphenyl amine: 2-TNATA)를 기상 증착시켜 ITO 기판 상에 600Å 두께의 정공 주입층을 증착하였다.
Figure PCTKR2013011152-appb-I000041
이어서, 진공 증착 장비 내의 다른 셀에 하기 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB)을 넣고, 셀에 전류를 인가하여 증발시켜 정공주입층 위에 250Å 두께의 정공수송층을 증착하였다.
Figure PCTKR2013011152-appb-I000042
상기 정공주입층, 정공수송층을 형성시킨 후, 그 위에 발광층을 다음과 같이 증착시켰다. 진공 증착 장비 내의 한쪽 셀에 발광 재료로 하기 호스트(α-AND)를 넣고, 다른 셀에는 하기 도펀트(BD1)를 넣었다.
Figure PCTKR2013011152-appb-I000043
이어서, 두 셀을 같이 가열, 상기 도펀트의 증착속도 비율을 5 중량%(호스트:도펀트= 95:5)로 증착함으로써 상기 정공 전달층 위에 200Å 두께로 발광층을 증착하였다. 이어서, 전자수송층으로서 하기 트리스(8-히드록시퀴놀린)알루미늄(Ⅲ)(Alq3)를 200Å 두께로 증착하였다.
Figure PCTKR2013011152-appb-I000044
그 후, 전자주입층으로 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하였다. 그리고, Al 음극을 1200Å 두께로 증착하여 OLED를 제작하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
실시예 1: OLED 소자 제작
전자수송층 재료로서 비교예의 트리스(8-히드록시퀴놀린)알루미늄(Ⅲ)(Alq3) 대신 화합물 1 내지 38에서 제조된 화합물을 이용한 것을 제외하고는 비교예와 같은 방식으로 OLED를 제작하였다.
시험예 2: OLED의 특성 평가
전술한 바와 같이 제작한 OLED소자의 구동전압(Op.V), 전력효율(cd/A)을 1,000cd/m2 에서, 효율이 50%까지 떨어질 때까지의 시간을 하기 표 14에 기재하였다.
표 14
화합물 No. Op.V Cd/A T50
1 4.46 4.8 430
2 4.44 5.0 440
3 4.46 4.8 450
4 4.48 4.7 430
5 4.46 4.8 440
6 4.46 4.7 440
7 4.39 5.0 450
8 4.35 5.3 480
9 4.39 5.1 460
10 4.42 5.0 450
11 4.43 4.9 440
12 4.43 5.0 440
13 1.45 5.0 440
14 4.43 5.0 450
15 4.44 5.1 440
16 4.21 5.6 550
17 4.30 5.3 500
18 4.29 5.5 520
19 4.30 5.4 500
20 4.40 4.9 440
21 4.39 5.0 450
22 4.40 5.0 440
26 4.31 5.6 540
27 4.38 5.1 480
28 4.30 5.3 500
29 4.35 5.3 480
30 4.43 4.9 430
31 4.40 4.9 440
32 4.41 4.9 440
33 4.43 5.0 450
34 4.42 5.0 450
35 4.43 5.1 440
36 4.47 5.0 450
37 4.43 5.0 450
38 4.45 5.0 440
비교예 1(Alq3) 6.73 4.3 350
비교예 2 : OLED 소자 제작
OLED용 글래스(삼성-코닝사 제조)로부터 얻어진 투명전극 ITO 박막을, 트리클로로에틸렌, 아세톤, 에탄올, 증류수를 순차적으로 사용하여 초음파 세척을 실시한 후, 이소프로판올에 넣어 보관한 후 사용하였다.
다음으로, 진공 증착 장비의 기판 폴더에 ITO 기판을 설치하고, 진공 증착 장비 내의 셀에 하기 2-TNATA(4,4',4"-tris(N,N-(2-naphthyl)-phenylamino)triphenyl amine)을 넣었다.
Figure PCTKR2013011152-appb-I000045
이어서, 챔버 내의 진공도가 10-6torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 2-TNATA를 증발시켜 ITO 기판 상에 600Å 두께의 정공주입층을 증착하였다. 진공 증착 장비 내의 다른 셀에 하기 NPB(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine)을 넣고, 셀에 전류를 인가하여 증발시켜 정공주입층 위에 300Å 두께의 정공수송층을 증착하였다.
Figure PCTKR2013011152-appb-I000046
이와 같이 정공주입층 및 정공수송층을 형성시킨 후, 그 위에 발광층을 다음과 같은 구조의 인광 녹색 발광재료를 증착시켰다. 진공 증착 장비 내의 한쪽 셀에 녹색 발광 호스트 재료인 CBP(4,4'-bis(carbazol-9-yl)biphenyl)를 350Å 두께로 진공 증착시키고 이와 함께 녹색 발광 도판트 재료인 Ir(ppy)3(Tris(2-phenylpyridine)iridium(Ⅲ))를 호스트 재료 대비 10% 진공 증착시켰다.
Figure PCTKR2013011152-appb-I000047
Figure PCTKR2013011152-appb-I000048
이어서, 정공저지층으로 하기와 같은 정공저지층 재료인 BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)를 50Å 두께로 증착을 하고, 전자수송층으로서 하기 Alq3(Tris(8-hydroxy-quinolinato)aluminium)를 200Å 두께로 증착하였다.
Figure PCTKR2013011152-appb-I000049
Figure PCTKR2013011152-appb-I000050
그 후, 전자주입층으로 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하였다. 그리고, Al 음극을 1000Å의 두께로 증착하여 OLED를 제작하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
[실시예 2]
녹색발광층 재료로서 CBP를 대신하여 하기 표 15의 재료들을 사용한 것 외에 나머지 재료는 비교예 2와 동일하게 사용하여 소자를 제작하였다.
시험예 3: OLED의 특성 평가
전술한 바와 같이 제작한 OLED소자의 구동전압(Op.V), 전력효율(cd/A)을 1,000cd/m2 에서, 효율이 50%까지 떨어질 때까지의 시간을 하기 표 15에 기재하였다.
표 15
화합물 No. Op.V Cd/A T50
49 4.65 42.3 410
50 4.63 43.1 400
59 4.69 45.2 400
64 4.68 44.9 410
70 4.58 44.2 420
73 4.62 43.1 380
74 4.64 42.2 410
79 4.62 44.3 370
89 4.59 42.2 380
90 4.60 42.8 370
99 4.61 43.2 380
104 4.62 43.3 380
110 4.59 43.1 400
113 4.61 43.0 370
119 4.58 42.7 350
129 4.65 42.4 430
139 4.64 44.1 430
144 4.65 44.3 430
비교예 2(CBP) 6.71 35.3 260

Claims (18)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure PCTKR2013011152-appb-I000051
    상기 화학식 1에 있어서,
    R1은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소함유 헤테로아릴이고;
    R2는 C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이며;
    R3 내지 R7은 서로 같거나 상이하고, 각각 독립적으로 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 및 치환 또는 비치환된 C10 내지 C60의 스피로기로 이루어진 군으로부터 선택된다.
  2. 청구항 1에 있어서, 상기 화학식 1 중 R1이 질소함유 헤테로아릴을 포함하는 것인 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1 중 R1이 치환 또는 비치환된 질소함유 헤테로아릴이거나, 치환 또는 비치환된 단환의 질소함유 헤테로아릴로 치환된 아릴인 것인 화합물.
  4. 청구항 1에 있어서, 상기 화학식 1 중 R1이 단환의 질소함유 헤테로아릴을 포함하고, 상기 단환의 질소함유 헤테로아릴은 피리딘기, 피리미딘기, 또는 트리아진기인 것인 화합물.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2로 표시되는 것인 화합물:
    [화학식 2]
    Figure PCTKR2013011152-appb-I000052
    상기 화학식 2에 있어서,
    L은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌이고
    Het는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소 함유 헤테로아릴이며,
    n은 0 내지 2의 정수이고, p는 1 또는 2이며,
    R2 내지 R7는 화학식 1에서 정의한 바와 같다.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 3으로 표시되는 것인 화합물:
    [화학식 3]
    Figure PCTKR2013011152-appb-I000053
    상기 화학식 3에 있어서,
    R8은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 질소 함유 헤테로아릴이고, m은 0 내지 9의 정수이다.
    L은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌이고
    n은 0 내지 2의 정수이고,
    R2 내지 R7은 화학식 1에서 정의한 바와 같다.
  7. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 4로 표시되는 것인 화합물:
    [화학식 4]
    Figure PCTKR2013011152-appb-I000054
    상기 화학식 4에 있어서,
    X1 및 X2는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 방향족 탄화수소 고리; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 방향족 헤테로 고리이고,
    L은 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌이고
    n은 0 내지 2의 정수이고,
    R2 내지 R7은 화학식 1에서 정의한 같다.
  8. 청구항 7에 있어서,
    Figure PCTKR2013011152-appb-I000055
    는 하기 구조식들 중에서 선택되는 것인 화합물:
    Figure PCTKR2013011152-appb-I000056
    상기 구조식들에 있어서, Y1 내지 Y6는 각각 CRR', NR, S 또는 O이고,
    Z1 내지 Z3은 각각 S 또는 O이며,
    R 및 R'는 서로 같거나 상이하고, 각각 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴이다.
  9. 청구항 1에 있어서, 상기 화학식 1 중 R2는 C1 내지 C20의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C20의 단환 또는 다환의 치환 또는 비치환된 아릴인 것인 화합물.
  10. 청구항 1에 있어서, 상기 화학식 1 중 R3 내지 R7은 각각 독립적으로 수소; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; 또는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴인 것인 화합물.
  11. 청구항 1에 있어서, 상기 화학식 1 중 R3 내지 R7은 수소인 것인 화합물.
  12. 청구항 1에 있어서, 상기 화학식 1의 화합물은 하기 화합물들 중에서 선택되는 것인 화합물:
    Figure PCTKR2013011152-appb-I000057
    Figure PCTKR2013011152-appb-I000058
    Figure PCTKR2013011152-appb-I000059
    Figure PCTKR2013011152-appb-I000060
    Figure PCTKR2013011152-appb-I000061
    Figure PCTKR2013011152-appb-I000062
    Figure PCTKR2013011152-appb-I000063
    Figure PCTKR2013011152-appb-I000064
    Figure PCTKR2013011152-appb-I000065
    Figure PCTKR2013011152-appb-I000066
    Figure PCTKR2013011152-appb-I000067
    Figure PCTKR2013011152-appb-I000068
    Figure PCTKR2013011152-appb-I000069
    Figure PCTKR2013011152-appb-I000070
    Figure PCTKR2013011152-appb-I000071
    Figure PCTKR2013011152-appb-I000072
    Figure PCTKR2013011152-appb-I000073
    Figure PCTKR2013011152-appb-I000074
  13. 양극, 음극 및 상기 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상이 청구항 1 내지 12 중 어느 하나의 항에 따른 화학식 1의 화합물을 포함하는 유기발광소자.
  14. 청구항 13에 있어서, 상기 화학식 1의 화합물을 포함하는 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1층 이상인 것인 유기발광소자.
  15. 청구항 13에 있어서, 상기 화학식 1의 화합물을 포함하는 유기물층은 전자수송층인 것인 유기발광소자.
  16. 청구항 13에 있어서, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층인 것인 유기발광소자.
  17. 청구항 16에 있어서, 상기 발광층은 발광 도펀트를 더 포함하는 것인 유기발광소자.
  18. 청구항 16에 있어서, 상기 발광층과 상기 음극 사이에 구비된 정공저지층을 더 포함하는 유기발광소자.
PCT/KR2013/011152 2013-07-17 2013-12-04 질소함유 다환고리 화합물 및 이를 이용한 유기발광소자 WO2015008908A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016527904A JP6211189B2 (ja) 2013-07-17 2013-12-04 窒素含有多環式化合物およびそれを用いた有機発光素子
CN201380078324.0A CN105408333B (zh) 2013-07-17 2013-12-04 含氮多环化合物和使用其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0084433 2013-07-17
KR20130084433 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008908A1 true WO2015008908A1 (ko) 2015-01-22

Family

ID=52346334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011152 WO2015008908A1 (ko) 2013-07-17 2013-12-04 질소함유 다환고리 화합물 및 이를 이용한 유기발광소자

Country Status (5)

Country Link
JP (1) JP6211189B2 (ko)
KR (1) KR20150010548A (ko)
CN (1) CN105408333B (ko)
TW (1) TWI512080B (ko)
WO (1) WO2015008908A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104610267A (zh) * 2015-02-09 2015-05-13 江西师范大学 无催化条件下高效的合成6-烷基吡唑并[1,5-c]喹唑啉骨架化合物的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155738B1 (ko) * 2013-10-11 2020-09-15 삼성디스플레이 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR102253449B1 (ko) * 2013-10-11 2021-05-20 삼성디스플레이 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR102414653B1 (ko) 2017-09-29 2022-06-30 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102617944B1 (ko) * 2017-11-15 2023-12-26 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257137A1 (en) * 2008-09-10 2011-10-20 Kalypsys, Inc. Heterocyclic inhibitors of histamine receptors for the treatment of disease
CN103130810A (zh) * 2013-03-11 2013-06-05 河南师范大学 一种吡唑并[1,5-c]喹唑啉类化合物的合成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917610A (en) * 1972-06-30 1975-11-04 Chinoin Gyogyszer Es Vegyeszet Amino-imidazo and amino-pyrazolo-isoquinolines and process for the preparation thereof
US4128644A (en) * 1977-07-29 1978-12-05 E. R. Squibb & Sons, Inc. Pyrazolo(1,5-c)quinazoline derivatives and related compounds
US4198412A (en) * 1978-12-13 1980-04-15 E. R. Squibb & Sons, Inc. Pyrazolo [1,5-C] quinazoline derivatives and their use in treating allergic conditions
KR100864364B1 (ko) * 2005-12-13 2008-10-17 주식회사 엘지화학 신규한 이미다조퀴나졸린 유도체, 이의 제조방법 및 이를이용한 유기전기소자
US9461253B2 (en) * 2008-12-10 2016-10-04 Udc Ireland Limited Organic electroluminescence device and luminescence apparatus
KR101306531B1 (ko) * 2009-01-12 2013-09-09 주식회사 엘지화학 새로운 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
KR20110008784A (ko) * 2009-07-21 2011-01-27 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101127579B1 (ko) * 2009-08-28 2012-03-23 삼성모바일디스플레이주식회사 헤테로아릴아민 화합물 및 이를 이용한 유기 발광 소자
DE102010048074A1 (de) * 2010-10-09 2012-04-12 Merck Patent Gmbh Materialien für elektronische Vorrichtungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257137A1 (en) * 2008-09-10 2011-10-20 Kalypsys, Inc. Heterocyclic inhibitors of histamine receptors for the treatment of disease
CN103130810A (zh) * 2013-03-11 2013-06-05 河南师范大学 一种吡唑并[1,5-c]喹唑啉类化合物的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO, S. ET AL.: "Synthesis of Pyraxolo[1,5-c]quinazoline Derivatives through Copper- Catalyzed Tandem Reaction of 5-(2-Bromoaryl)-1H-pyrazoles with Carbonyl Compounds and Aqueous Ammonia", J. ORGANIC CHEMISTRY, vol. 78, 13 March 2013 (2013-03-13), pages 3262 - 3270 *
LIU, Q. ET AL.: "General and efficient copper-catalyzed aerobic oxidative synthesis of N-fusec heterocycles using amino acids as the nitrogen source", RSC ADVANCES, vol. 3, 1 July 2013 (2013-07-01), pages 15636 - 15644 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104610267A (zh) * 2015-02-09 2015-05-13 江西师范大学 无催化条件下高效的合成6-烷基吡唑并[1,5-c]喹唑啉骨架化合物的方法
CN104610267B (zh) * 2015-02-09 2020-03-20 江西师范大学 无催化条件下高效的合成6-烷基吡唑并[1,5-c]喹唑啉骨架化合物的方法

Also Published As

Publication number Publication date
TWI512080B (zh) 2015-12-11
CN105408333B (zh) 2018-10-16
JP2016527235A (ja) 2016-09-08
TW201504390A (zh) 2015-02-01
CN105408333A (zh) 2016-03-16
KR20150010548A (ko) 2015-01-28
JP6211189B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2015199489A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2020067657A1 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2018038401A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015199512A1 (ko) 다환 화합물 및 이를 이용한 유기발광소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2019225938A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017179809A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020050619A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2016068633A2 (ko) 함질소 다환 화합물 및 이를 이용한 유기발광소자
WO2018093107A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015034140A1 (ko) 피라졸 함유 다환고리 화합물 및 이를 이용한 유기발광소자
WO2014112728A1 (ko) 피라졸계 화합물 및 이를 이용한 유기발광소자
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020153758A1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2014142488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038464A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016068640A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기발광소자
WO2015111864A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2023282676A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078324.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889594

Country of ref document: EP

Kind code of ref document: A1