WO2015008342A1 - Lithium ion secondary battery and battery control system - Google Patents
Lithium ion secondary battery and battery control system Download PDFInfo
- Publication number
- WO2015008342A1 WO2015008342A1 PCT/JP2013/069339 JP2013069339W WO2015008342A1 WO 2015008342 A1 WO2015008342 A1 WO 2015008342A1 JP 2013069339 W JP2013069339 W JP 2013069339W WO 2015008342 A1 WO2015008342 A1 WO 2015008342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- secondary battery
- ion secondary
- negative electrode
- positive electrode
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 86
- 239000004020 conductor Substances 0.000 claims abstract description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052802 copper Inorganic materials 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000010935 stainless steel Substances 0.000 claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- 229910002704 AlGaN Inorganic materials 0.000 claims description 12
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 10
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 11
- 150000002500 ions Chemical class 0.000 description 45
- 239000000203 mixture Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 239000008151 electrolyte solution Substances 0.000 description 12
- 239000011888 foil Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000004927 fusion Effects 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000007086 side reaction Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/81—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
- H10D62/815—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
- H10D62/8161—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
- H10D62/8162—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/50—PIN diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a non-aqueous secondary battery, and more particularly, to a high energy density lithium ion secondary battery and its battery module suitable for use in electric vehicles, power storage, power load leveling and the like.
- Lithium ion secondary batteries are widely used in electronic devices, electric vehicles, hybrid electric vehicles and the like as batteries capable of increasing energy density and output density. In addition, in recent years, it is also expected to be used for output stabilization and load leveling of wind power generation and solar power generation, which are attracting attention as clean energy with a small environmental load.
- metal oxides such as Lithium cobaltate (LiCoO 2) or lithium manganate (LiMn 2 O 4) is used which contains lithium as the positive electrode active material, a negative electrode using a carbon-based material It has been.
- a film is formed on the surface of the negative electrode due to a side reaction accompanying a negative electrode charging reaction at the first charge after the battery is manufactured. It is known that this film grows during storage in a relatively high temperature environment and as the negative electrode surface side reaction proceeds with charge / discharge cycles. Since this side reaction is accompanied by lithium ion detachment in the negative electrode, the lithium ion in the battery is reduced as the film is formed. As a result, the potential of the positive electrode or the negative electrode is shifted to the high potential side, causing deterioration of battery capacity, deterioration of battery characteristics such as an increase in resistance accompanying an increase in film thickness of the negative electrode surface film.
- Patent Document 1 discloses that “an ion supply source that elutes ions of the same type as those used for charging and discharging in the electrolyte inside the battery and a part of the surface of the negative electrode”.
- a technique is disclosed in which a mesh electrode that is in contact with a part of the surface of the positive electrode and a diode that is connected with the ion supply source and the mesh electrode and is arranged with the mesh electrode side having a positive polarity are disclosed.
- Patent Document 1 it becomes possible to “eliminate local potential distribution inside the cell due to side reaction during charge / discharge and suppress capacity deterioration”.
- Patent Document 1 there is no specific technical disclosure regarding a connection method between the battery electrode and the diode and between the diode and the ion supply source.
- the potential changes in the range of about 4.2 V to 2.7 V for the positive electrode and about 0 V to 1.0 V for the negative electrode due to a charge / discharge reaction.
- the lead wire connecting the positive electrode or the negative electrode and the diode has the same potential as the positive electrode or the negative electrode, it is necessary to use a substance that is chemically stable in the electrolytic solution even at that potential.
- the conducting wire connecting between the diode and the ion supply source has the same potential as the ion supply source, it is necessary to be a substance that is chemically stable in the electrolytic solution at that potential as well. For this reason, depending on the characteristics of the active material used for the positive and negative electrodes of the lithium ion secondary battery, the battery electrode and the diode, and the diode and the ion supply source must be connected with an appropriate configuration. Don't be.
- Patent Document 1 different substances are assumed with the positive electrode and the negative electrode as respective ion supply sources. This is because the potential range in the charge / discharge reaction differs greatly between the positive electrode and the negative electrode, and only one type of diode cannot cope with each potential range. For this reason, there has been a problem that the configuration becomes complicated, for example, if a discharge reaction of the positive electrode alone and a charge reaction of the negative electrode alone are performed in parallel in the same battery, a plurality of ion supply sources are required.
- the object of the present invention is to solve such a problem. That is, the present invention discloses a method of connecting a positive electrode and / or a negative electrode, a diode having an appropriate threshold voltage, and an ion source with an electrochemically stable configuration in a lithium ion secondary battery. .
- This provides a non-aqueous secondary battery and a battery module in which lithium ions lost due to side reactions are automatically replenished, and the positive electrode and the negative electrode are always kept in a preferable charged state.
- a lithium ion secondary battery according to the present invention is a lithium ion secondary battery having an electrode group in which a positive electrode and a negative electrode are wound through a separator, and a battery can that houses the electrode group.
- a lithium ion supply source is housed therein, the lithium ion supply source and the positive electrode are electrically connected via a positive electrode diode, the positive electrode diode and the positive electrode are connected by an aluminum conductor, and the positive electrode side
- the diode and the lithium ion supply source are connected by any one of a copper conductor, an iron conductor, a nickel conductor, or a stainless steel conductor.
- a diode having an appropriate band gap with the positive electrode and / or the negative electrode using a conductive wire that is stable against the electrolyte By connecting an ion supply source, it is possible to provide a long-life and highly reliable non-aqueous secondary battery and battery module in which the positive electrode and / or the negative electrode are maintained in a preferable charged state.
- FIG. 1 is a schematic view of a lithium ion secondary battery
- FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
- the lithium ion secondary battery 150 includes a battery 100, an electrode group 101, and a battery lid 102.
- the battery can 100 has a cylindrical shape and an opening at one end. Inside the battery can 100, an electrode group 101 is accommodated, an electrolyte is injected, and a battery lid 102 is disposed so as to close the opening of the battery can 100.
- the battery lid 102 seals the battery can 100 by caulking the open end of the battery can 100 via the gasket 103.
- the electrode group 101 is formed by winding the positive electrode 200 and the negative electrode 300 and the separator 350 alternately between the positive electrode 200 and the negative electrode 300 into a cylindrical shape.
- an ion supply source 401, a positive diode 402, and a negative diode 403 are arranged.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- the ion supply source 401 is disposed at the center of the electrode group 101.
- FIG. 3 is a diagram showing an outline of a part as a point of the present invention.
- One end of the ion supply source 401 is connected to the anode side of the positive electrode diode 402 through the copper conducting wire 502, and the other end of the ion supply source 401 is connected to the anode side of the negative electrode diode 403 through the copper conducting wire 502. .
- the cathode side of the positive electrode diode 402 is connected to the positive electrode 200 via the aluminum conductor 501
- the anode side of the negative electrode diode 403 is connected to the negative electrode 300 via the copper conductor 502.
- the positive electrode 200 has a structure in which the positive electrode material 202 is applied to both surfaces of the positive electrode foil 201, and the negative electrode 300 has a structure in which the negative electrode material 302 is applied to both surfaces of the negative electrode foil 301. Therefore, the aluminum conducting wire 501 is connected to the positive foil 201 and the copper conducting wire 502 is connected to the negative foil 301.
- the positive electrode 200 has a potential of about 4.2 V with respect to the ground in the electrolytic solution.
- the conducting wire connecting the positive electrode 200 and the positive electrode diode 402 also has a potential of about 4.2 V. Therefore, it is necessary to select a stable metal that does not dissolve and react with the electrolyte even at such a high potential.
- Aluminum is known as a metal that is stably present in the electrolyte solution of a lithium ion battery, as used as a current collector foil for a positive electrode.
- a copper conducting wire 502 for the connection between the positive electrode diode 402 and the ion supply source 401.
- the reason why copper is used between the lithium supply sources is that the potential between the diode and the ion supply source 401 is the same low potential as the ground, but copper is stable even at this potential.
- the aluminum conductor 501 cannot be used on the low potential side.
- lithium ions penetrate into the aluminum to form an alloy, which deteriorates mechanical strength and the like. It is to do.
- the copper conducting wire 502 is in a high potential state on the positive electrode side, unlike aluminum, a stable film is not formed on the surface, so that it elutes in the electrolytic solution. Therefore, as described above, by using the aluminum conductor 501 and the copper conductor 502 properly, it is possible to provide a stable lithium ion secondary battery according to each potential state.
- each component can be stably connected in a potential change range due to charge / discharge reactions of the positive electrode and the negative electrode.
- iron conductors, nickel conductors, and stainless steel conductors can be used for connection.
- the reason why iron, nickel, and stainless steel can be used in addition to the copper-copper wire 502 is the same as the reason why the copper conductor is used.
- the ion supply source 401 is disposed in the center of the battery group 101 in order to effectively use the gap generated in the electrode group 101.
- the ion supply source 401 is installed anywhere in the battery can 100. However, it goes without saying that the service life can be extended.
- LiCoO 2 is added as the positive electrode active material of the battery, 7 wt% of acetylene black is added as the conductive agent, and 5 wt% of polyvinylidene fluoride (PVDF) is added as the binder, and N-methyl-2-pyrrolidone is added thereto.
- PVDF polyvinylidene fluoride
- This positive electrode mixture slurry is applied and dried on both surfaces of a positive electrode foil 201 (see FIG. 3), which is an aluminum foil having a thickness of 25 ⁇ m, and then pressed and cut, so that the positive electrode material 202 (see FIG. 3) is formed on both surfaces of the positive electrode foil 201.
- the positive electrode 200 was obtained by binding.
- non-graphitizable carbon was used as the negative electrode active material
- 8 wt% of PVDF was added as a binder
- N-methyl-2-pyrrolidone was added thereto and mixed to prepare a slurry of the negative electrode mixture.
- the negative electrode mixture slurry is applied to both surfaces of a negative electrode foil 301 (see FIG. 3), which is a copper foil having a thickness of 10 ⁇ m, and pressed and cut to bind the negative electrode material 302 (see FIG. 3) to both surfaces of the negative electrode foil 301.
- a negative electrode 300 was formed.
- metallic lithium is used for the ion supply source 401.
- the positive electrode diode 402 has a characteristic that current passes only when the potential difference between the positive electrode 200 and the ion supply source 401 exceeds a specific value as a threshold value.
- the diode when the potential difference between the positive electrode 200 and the ion supply source 401 becomes 4.2 V or more, the diode operates again.
- the reason why the potential difference is 4.2 V is that 4.2 V is a general lithium battery. This is because it is the upper limit voltage of use. This is because a general electrolytic solution of a lithium battery decomposes and generates gas when it reaches around 4.5V. Assume that the discharge reaction of the positive electrode alone starts.
- a diode that operates with such a potential difference can be produced by the following method.
- FIG. 4 shows a detailed structure of the PN junction 420 of the positive electrode diode 402.
- a Si-doped n-type GaN buffer layer 408 (thickness 1000 nm, Si concentration: 1 ⁇ 10 18 cm ⁇ 3 ), Si-doped n-type AlGaN layer 410 (Al composition ratio) on a (0001) n-type GaN substrate 407 : 0.5, film thickness: 500 nm, Si concentration: 1 ⁇ 10 18 cm ⁇ 3 ), undoped AlGaN layer 425 (Al composition ratio: 0.3, film thickness: 100 nm), Mg-doped p-type AlGaN layer 411 (Al composition ratio: 0) .5, film thickness: 500 nm, Mg concentration: 2 ⁇ 10 19 cm ⁇ 3 ), Mg-doped p-type GaN layer 409 (film thickness: 500 nm, Mg concentration: 1.5 ⁇ 10 19 cm ⁇ 3
- a p-type electrode 404 is vapor-deposited, the back surface of the (0001) n-type GaN substrate 1 is polished, an n-type electrode 405 is vapor-deposited, and finally cleaved to form an element.
- the Mg-doped p-type AlGaN layer 411, the undoped AlGaN layer 425, and the Si-doped n-type AlGaN layer 410 are collectively referred to as a bonding layer 406.
- the operating voltage of the positive electrode diode 402 is 4.2 V.
- the diode The threshold voltage can be adjusted from the band gap of GaN to AlN, that is, in the range of 3.2V to 6.0V.
- GaN and AlN are both III / V group compound semiconductors, and the band gap of GaN is 3.2V and the band gap of AlN is 6.0V. Therefore, AlGaN can take an intermediate band gap between GaN and AlN.
- GaN and AlN have greatly different band gaps, but the number of crystal lattices is almost the same. Therefore, even if the composition ratio of Ga and Al is changed, the lattice constant is substantially constant and a good crystal can be produced.
- Al x Ga (1-x) N (0 ⁇ x ⁇ 1) (x takes a value from 0 to 1)
- the band gap can be changed by changing the relative composition ratio of Al or Ga.
- the negative electrode diode 403 has a characteristic that current passes only when the potential difference between the negative electrode 300 and the ion supply source 401 becomes a specific value or more as a threshold value.
- a specific value or more as a threshold value.
- the diode is activated and the charging reaction of the negative electrode alone starts.
- the reason why the potential difference is set to 0.75 V or more is based on the range in which the graphite negative electrode can be used stably.
- a diode that operates with such a potential difference can be produced by the following method.
- a Si-doped n-type InP buffer layer 414 (thickness 1000 nm, Si concentration: 1 ⁇ 10 18 cm ⁇ 3 ), Si-doped n-type InGaAsP layer 416 (In / Ga) is formed on a (100) n-type InP substrate 413.
- a p-type electrode 404 ′ is vapor-deposited, and after polishing the back surface of the (100) n-type InP substrate 1, an n-type electrode 405 ′ is vapor-deposited and finally cleaved to form an element.
- the Zn-doped p-type InGaAsP layer 417, the undoped InGaAsP layer 426, and the Si-doped n-type InGaAsP layer 416 are collectively referred to as a junction layer 406 ′.
- the operating voltage of the positive electrode diode 402 is 0.75 V, but the In / Ga composition ratio and As / P composition ratio of the n-type InGaAsP layer 416, the undoped InGaAsP layer 425, and the p-type InGaAsP layer 417 are appropriate.
- the band gap can be freely adjusted from InP to InGaAs, that is, in the range of 0.75V to 1.4V.
- the composition should be significantly different from the number of lattices on the substrate that serves as the foundation for crystal growth. I can't.
- InP is assumed as the substrate.
- the possible band gap range is 0.75 V (InGaAs) to 1.4 V (InP). Therefore, the negative electrode diode 403 having the above structure was used.
- FIG. 6 shows a mounting form of the positive electrode diode 402.
- the n-type electrode 405 of the PN junction 420 created by the above-described procedure is die-bonded on the low potential side wiring pattern 602 provided on the mounting substrate 600.
- ceramics such as alumina and aluminum nitride are suitable.
- the material of the low potential side wiring pattern 602 is preferably gold or platinum.
- a copper conducting wire 502 is connected to the low potential side wiring pattern 602.
- An ion supply source 401 is further connected to the tip of the copper conducting wire 502. With such a configuration, the n-type electrode 405 of the positive electrode diode 402 and the ion supply source 401 are electrically connected to be equipotential.
- the p-type electrode 404 of the positive electrode diode 402 is connected to the high potential side wiring pattern 601 by a wire bond 603.
- the material of the high potential side wiring pattern is also preferably gold or platinum.
- An aluminum conductor 501 is connected to the high potential side wiring pattern 601.
- a positive electrode 200 is further connected to the tip of the aluminum conducting wire 501. With such a configuration, the p-type electrode 404 of the positive electrode diode 402 and the positive electrode 200 are electrically connected to be equipotential.
- the mounting substrate 600, the positive electrode diode 402, and the wire bond 603 are sealed with a resin 604 so that they are not directly exposed to the electrolytic solution.
- the electrical connection between the positive electrode 200 and the positive electrode diode 402 and between the positive electrode diode 402 and the ion supply source 401 can be stably maintained even in the electrolytic solution. It becomes possible.
- the aluminum wiring 501 and the copper wiring 502 are connected to the positive electrode diode 402 via the mounting substrate 600 as in this configuration, so that the diode is damaged due to heat or pressure at the time of mounting compared to the case of direct connection.
- FIG. 7 shows a mounting form of the negative electrode diode 403.
- the PN junction 430 created by the above-described procedure is die-bonded on the low potential side wiring pattern 602 provided on the mounting substrate 600.
- ceramics such as alumina and aluminum nitride are suitable.
- the material of the low potential side wiring pattern 602 is preferably gold or platinum.
- a copper conducting wire 502 is connected to the low potential side wiring pattern 602.
- An ion supply source 401 is further connected to the tip of the copper conducting wire 502. With such a configuration, the n-type electrode 405 of the negative electrode diode 403 and the ion supply source 401 are electrically connected to be equipotential.
- the p-type electrode 404 of the negative electrode diode 403 is connected to the high potential side wiring pattern 601 by a wire bond 603.
- the material of the high potential side wiring pattern is also preferably gold or platinum.
- a copper conductor 502 is connected to the high potential side wiring pattern 601.
- a technique such as ultrasonic fusion, thermal fusion, caulking or embedding is suitable.
- a negative electrode 300 is further connected to the tip of the copper conducting wire 502. With such a configuration, the p-type electrode 404 and the negative electrode 300 of the negative electrode diode 403 are electrically connected to be equipotential.
- the mounting substrate 600, the negative electrode diode 403, and the wire bond 603 are sealed with a resin 604 so as not to be directly exposed to the electrolytic solution.
- the electrical connection between the negative electrode 300 and the negative electrode diode 403 and between the negative electrode diode 403 and the ion supply source 401 can be stably maintained even in the electrolyte. Is possible. Further, by connecting the two copper wirings 502 to the negative electrode diode 403 through the mounting substrate 600 as in this configuration, the diode is damaged due to heat and pressure during mounting, or a metal such as copper is contained in the diode. It is possible to prevent the occurrence of problems such as deterioration of electrical characteristics due to entering the vehicle.
- Fig. 8 shows the initial charge / discharge state of the cell.
- the battery cell used in the experiment is a cylindrical cell with an electric capacity of 1.0 Ah when charged / discharged in a cell battery operating potential in the range of 4.1 V to 2.7 V.
- the negative electrode 300 is designed so that the potential of the metallic lithium as the ion supply source 401 changes to about 0.1 V during charging and to about 0.7 V during discharging.
- a case where a battery is used in the range of 4.1 V to 2.7 V will be described.
- Lithium-ion batteries are cycled over a long period of time, so that side reactions on the surface of the negative electrode proceed, the amount of lithium that functions substantially decreases, the charge / discharge capacity decreases, and the positive electrode potential during operation, the negative electrode Deterioration is further promoted by shifting the potential to the higher potential side. That is, it can be considered that the charge / discharge state of FIG. 8A becomes a charge / discharge state as shown in FIG. 8B by a long-term cycle.
- the present embodiment alleviates this shift in the charge / discharge range, and the principle will be described below.
- the threshold value of the negative electrode diode 403 is set to 0.75 V, and the potential difference between the negative electrode 300 and the ion supply source 401 (lithium metal) becomes 0.75 V or more, so that the negative electrode 300 is changed to lithium metal.
- FIG. 9A simply shows the behavior.
- the negative electrode potential shifts to the high potential side due to the shift of the charge / discharge range due to deterioration, but by using the configuration of the present embodiment, when the potential of the negative electrode 300 exceeds 0.75 V during discharge, the negative electrode 300 Current flows in the direction of lithium metal and lithium is supplied to the negative electrode 300, so that the charge / discharge capacity is recovered and the operating potential of the negative electrode 300 is shifted to a lower potential side [(a) ⁇ (b)]. Moreover, the potential shift in the charge / discharge range can be alleviated. In addition, there is an advantage that overdischarge of the negative electrode can be prevented.
- threshold value of the negative electrode diode 403 used in the present embodiment is set to 0.75 V, it may be adjusted to a different threshold value depending on the intended use.
- the threshold value of the positive electrode diode 402 is set to 4.2 V, and the potential difference between the positive electrode 200 and the ion supply source 401 (lithium metal) becomes 4.2 V or more. A current flows in the direction of lithium metal, and the positive electrode 200 is discharged.
- FIG. 9B simply shows the behavior. That is, the positive electrode potential shifts to the high potential side due to a shift in the charge / discharge range due to deterioration.
- the positive electrode 200 when the potential of the positive electrode 200 exceeds 4.2 V during charging, the positive electrode 200 Current flows in the direction of lithium metal and lithium is supplied to the positive electrode 200, so that the charge / discharge capacity is recovered and the operating potential of the positive electrode 200 is shifted to a lower potential side [(c) ⁇ (d)]. Moreover, the potential shift in the charge / discharge range can be alleviated.
- the threshold value of the positive electrode diode 402 used in the present embodiment is set to 4.2 V, it may be adjusted to a different threshold value depending on the intended use.
- the copper conductor is used for the connection on the low potential side, but the same effect can be obtained by using nickel, iron, stainless steel or the like instead of copper.
- LiCoO2 lithium nickel oxide LiNiO 2 or lithium manganese oxide LiMn 2 O 4, it may use other active materials.
- non-graphitizable carbon is used as the negative electrode active material, but other carbon materials such as graphite may be used.
- carbon-based material a bell-lithium alloy, a silicon-lithium alloy, or the like may be used.
- the positive electrode and the negative electrode are both connected to the ion supply source via a diode, but only the positive electrode or only the negative electrode may be connected to the ion supply source via a diode.
- an InGaAs-based material on an InP substrate which is a compound semiconductor, is used for the negative electrode diode, but silicon, germanium, a silicon germanium compound, or the like can be used as a material that can accommodate the practical potential change range of the negative electrode. It may be used.
- the content is related to the cylindrical battery, but the applicable battery is not limited to the cylindrical battery, but can be applied to a square battery and a laminated cell battery with the same structure.
- FIG. 10 is a diagram showing a second embodiment.
- the drawing number used in 1st embodiment is used.
- This embodiment is different from the first embodiment in that the negative electrode 300 is connected to the negative electrode diode 403 via the aluminum conductor 501.
- Such a configuration is effective when the potential in the practical use range of the negative electrode 200 exceeds 1.5V.
- the negative electrode material having such potential change characteristics include lithium titanate (LTO).
- LTO lithium titanate
- the potential with respect to the lithium ion supply source 401 that is an ion supply source is also increased, and thus it is necessary to use an appropriate material for the negative electrode diode 403. .
- n-type GaAs buffer layer 420 thinness 1000 nm, Si concentration: 1 ⁇ 10 18 cm ⁇ 3
- Si-doped n-type AlGaAs layer 422 Al / Ga is formed on a (100) n-type GaAs substrate 419.
- a p-type electrode 504 is vapor-deposited, the back surface of the (100) n-type GaAs substrate 419 is polished, an n-type electrode 505 is vapor-deposited, and finally cleaved to form an element.
- the Zn-doped p-type AlGaAs layer 423, the undoped AlGaAs layer 427, and the Si-doped n-type AlGaAs layer 422 are collectively referred to as a bonding layer 506.
- the operating voltage of the positive electrode diode 403 is set to 2.0 V, it can be used even when the potential in the practical use range of the negative electrode 200 exceeds 1.5 V.
- the band gap from GaAs to AlAs that is, in the range of 1.4V to 2.1V. It can be adjusted freely.
- FIG. 12 is a diagram showing a third embodiment.
- the drawing number used in 1st embodiment is used.
- This embodiment is different from the first embodiment in that, as shown in FIG. 12, the positive diode 402 connected to the positive electrode 200 is not a single diode but a series diode 702 in which a plurality of diodes are connected in series. It is the point which has composition which has.
- silicon which is a typical diode, has a threshold voltage of about 0.6 V to 0.7 V, it cannot be applied to a single discharge of the positive electrode alone.
- the overall threshold value is 4.2V. If the positive electrode 200 and the ion supply source 401 are connected via this diode, when the potential of the positive electrode 200 with respect to the ion supply source 401 becomes 4.2 V or higher, the diode is activated and a discharge reaction of the positive electrode alone is caused. it can.
- the operating voltage is the sum of each diode, there is a problem that the operating potential of the diode cannot be precisely set as compared with the first embodiment. It is possible to automatically supply ions.
- the configuration for connecting the positive electrode diode 402 described in the present embodiment to the positive electrode 200 and the ion supply source 401 is omitted from the description of the first embodiment. Also, the description of the lithium ion supply flow of the lithium ion secondary battery having the configuration described in this embodiment is omitted from the description of the first embodiment.
- stages of silicon diodes are connected in series, but it is of course possible to connect several stages of diodes made of III-V group material that can be grown on an InP substrate or a GaAs substrate.
- FIG. 13 is a diagram showing a fourth embodiment.
- the drawing number used in 1st embodiment is used.
- This embodiment is different from the first embodiment in that, as shown in FIG. 13, the positive diode 402 and the negative diode 403 are arranged on the low potential side wiring pattern 602 provided on the same mounting substrate 600. It is a point that is die-bonded.
- a copper conductor 502 ′ is connected to the low potential side mounting pattern 602, and an ion supply source 401 is further connected to the copper conducting wire 502 ′.
- the p-type electrode 404 of the positive electrode diode 401 and the high potential side wiring pattern 601 are connected by a wire bond 603, and the high potential wiring pattern 601 is further connected to the positive electrode 200 via the aluminum wiring 501.
- the p-type electrode 404 ′ of the negative electrode diode 402 and the high potential side wiring pattern 601 ′ are connected by a wire bond 603 ′, and the high potential wiring pattern 601 ′ is further connected to the negative electrode 300 via the copper wiring 502. It is connected.
- ⁇ Fifth Embodiment 14 to 16 are views showing a fifth embodiment.
- This embodiment shows an example of a control system for controlling the battery shown in the first to fourth embodiments.
- FIG. 14 is a diagram showing a system configuration.
- the control system 30 includes a battery information acquisition unit 32 that acquires voltage information of each battery of the battery group 31 in which at least two cells of lithium ion secondary batteries are connected in series, and the battery information acquisition unit.
- the voltage variation determination unit 33 that determines the voltage variation of each lithium ion secondary battery 150 based on the information of 32, and the control signal transmission unit 35 when the voltage variation determination unit 33 determines that the operation of the voltage balancing function is necessary.
- a charging state control unit 34 for controlling the charging state of the battery group 31. Note that the criteria for determining the necessity of balancing vary depending on the application, the sensitivity of the voltage sensor, and which charge state is used as a reference.
- the controller 36 instructs the charge state of the battery group 31. This state of charge is set to be equal to or higher than the voltage value at which each lithium ion secondary battery operates the voltage balancing function.
- the voltage balancing function operates inside each battery, the positive electrode and the negative electrode shift to a predetermined charging state, and the charging state of each battery converges to a predetermined value.
- FIG. 15 is a diagram showing a processing flow in the control system 30.
- the process proceeds to step S101, and the current information acquisition unit 32 acquires information about the battery information (current information, voltage information, temperature information) of the battery group 31.
- the process proceeds to step S ⁇ b> 102, and the battery information acquired by the current information acquisition unit 32 is input to the voltage variation determination unit 33.
- the voltage variation determining unit 33 determines whether or not voltage variation leveling is required for the lithium ion secondary batteries constituting the battery group 31 based on the input battery information.
- step S104 the voltage balancing function (inside each battery is controlled so as to control each lithium ion secondary battery 150 to a predetermined charged state. (Not shown) is operated, the process proceeds to step S105, information on the state of charge is communicated to the host system, and the process is terminated.
- step S105 the charge state information is communicated to the host system, and the process is terminated.
- step S101 After giving an instruction to level the state of charge of each lithium ion secondary battery, it is determined in step S201 whether the state of charge of each lithium ion secondary battery has a predetermined value. Note that the voltage variation determination unit 33 performs the determination at this time. If the state of charge is a predetermined value in step S201, the process proceeds to step S105, the state of charge information is communicated to the host system, and the process ends. On the other hand, if the state of charge is not a predetermined value in step S201, the process proceeds to step S202, and the state of charge indicated by the state of charge control unit is increased by a predetermined value.
- the lithium ion secondary battery is controlled so as not to be overcharged. Then, it returns to step S101 and loops a processing flow. With this configuration, it is possible to reliably perform balancing to a predetermined charging state.
- the output of the entire battery module is limited, and among the plurality of batteries connected in series, If there is a battery that is not fully charged, this battery will be discharged earlier than other batteries. Therefore, the output reduction of the whole battery module can be suppressed by raising the state of charge by a predetermined value as described above.
- this predetermined value varies depending on the application and so on, but it cannot be said unconditionally.
- the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
- positive electrode 201 positive electrode foil 202 positive electrode material 300 negative electrode 301 negative electrode foil 302 negative electrode material 350 separator 401 ion supply source 402 positive electrode side diode 403 negative electrode side diode 501 aluminum conductor 502 copper conductor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水系二次電池に係り、特に、電気自動車、電力貯蔵、電力負荷平準化等に用いるのに好適な、高エネルギー密度リチウムイオン二次電池及びその電池モジュールに関する。 The present invention relates to a non-aqueous secondary battery, and more particularly, to a high energy density lithium ion secondary battery and its battery module suitable for use in electric vehicles, power storage, power load leveling and the like.
リチウムイオン二次電池は、高エネルギー密度化および高出力密度化が可能な電池として、電子機器、電気自動車、ハイブリッド電気自動車などに広く利用されている。また、近年、環境負荷の小さいクリーンエネルギーとして注目される風力発電や太陽光発電などの出力安定化、負荷平準化のための用途としても期待されている。 Lithium ion secondary batteries are widely used in electronic devices, electric vehicles, hybrid electric vehicles and the like as batteries capable of increasing energy density and output density. In addition, in recent years, it is also expected to be used for output stabilization and load leveling of wind power generation and solar power generation, which are attracting attention as clean energy with a small environmental load.
従来のリチウム二次電池では、正極活物質にリチウムを含有するコバルト酸リチウム(LiCoO2)やマンガン酸リチウム(LiMn2O4)などの金属酸化物が用いられ、負極には炭素系材料が用いられている。 In a conventional lithium secondary battery, metal oxides such as Lithium cobaltate (LiCoO 2) or lithium manganate (LiMn 2 O 4) is used which contains lithium as the positive electrode active material, a negative electrode using a carbon-based material It has been.
炭素系材料を負極活物質として用いるリチウムイオン二次電池では、電池製造後の初回充電時における負極充電反応に伴う副反応により、負極表面に皮膜が形成されることが知られている。この皮膜は、比較的高温環境下での保存時や、充放電サイクルに伴う負極表面副反応の進行に伴い成長することが知られている。この副反応は負極内のリチウムイオン脱離を伴うため、皮膜形成とともに電池内のリチウムイオンが減少してしまう。この結果、正極あるいは負極の電位が高電位側にシフトし、電池容量の劣化や、負極表面皮膜の膜厚増加に伴う抵抗上昇など電池特性の劣化など引き起こしていた。 In a lithium ion secondary battery using a carbon-based material as a negative electrode active material, it is known that a film is formed on the surface of the negative electrode due to a side reaction accompanying a negative electrode charging reaction at the first charge after the battery is manufactured. It is known that this film grows during storage in a relatively high temperature environment and as the negative electrode surface side reaction proceeds with charge / discharge cycles. Since this side reaction is accompanied by lithium ion detachment in the negative electrode, the lithium ion in the battery is reduced as the film is formed. As a result, the potential of the positive electrode or the negative electrode is shifted to the high potential side, causing deterioration of battery capacity, deterioration of battery characteristics such as an increase in resistance accompanying an increase in film thickness of the negative electrode surface film.
前記負極内のリチウムイオン脱離に起因した容量劣化を抑制するためには、正極単独での放電反応か、負極単体での充電反応を起こす必要がある。正極単体の放電反応、あるいは負極単体の充電反応を起こすためには、負極表面の副反応によって失われたリチウムイオンを、電池内部に新たに供給する必要がある。 In order to suppress capacity deterioration due to lithium ion desorption in the negative electrode, it is necessary to cause a discharge reaction with the positive electrode alone or a charge reaction with the single negative electrode. In order to cause a discharge reaction of the single positive electrode or a charge reaction of the single negative electrode, it is necessary to newly supply lithium ions lost due to the side reaction on the surface of the negative electrode into the battery.
このような課題を解決するための手段として、特許文献1には「電池内部の電解液中に充放電に使われるイオンと同種のイオンを溶出するイオン供給源と、負極の表面の一部にまたは正極の表面の一部に接しているメッシュ電極と、イオン供給源とメッシュ電極を接続してメッシュ電極側を+極性として配置されるダイオードを設け」る技術が開示されている。
As means for solving such a problem,
特許文献1に開示されている技術によれば、「充放電時の副反応によるセル内部の局所的な電位分布を解消し、容量劣化を抑制する」ことが可能になる。
According to the technology disclosed in
しかしながら、特許文献1においては、電池電極とダイオードの間、およびダイオードとイオン供給源との間の接続方法に関する具体的な技術的開示がない。実際のリチウムイオン二次電池の内部では、充放電反応により、正極は4.2V~2.7V、負極は0V~1.0V程度の範囲で電位変化することが知られている。この時、正極または負極とダイオード間を接続する導線は、正極または負極と同電位になるため、その電位においても電解液中で化学的に安定である物質を用いる必要がある。
However, in
また、ダイオードとイオン供給源との間を接続する導線は、イオン供給源と同じ電位になるため、同様にその電位において電解液中で化学的に安定な物質である必要がある。このため、リチウムイオン二次電池の正極、負極に用いる活物質の特性に応じて、電池電極とダイオードとの間、およびダイオードとイオン供給源との間は、それぞれ適切な構成により接続されなければならない。 Also, since the conducting wire connecting between the diode and the ion supply source has the same potential as the ion supply source, it is necessary to be a substance that is chemically stable in the electrolytic solution at that potential as well. For this reason, depending on the characteristics of the active material used for the positive and negative electrodes of the lithium ion secondary battery, the battery electrode and the diode, and the diode and the ion supply source must be connected with an appropriate configuration. Don't be.
また、特許文献1においては、正極、及び負極をそれぞれのイオン供給源として、異なる物質を想定している。これは、正極と負極では充放電反応における電位範囲が大きく異なり、一種類のダイオードだけでは、それぞれの電位範囲に対応できないためである。このため、同一の電池内部において、正極単独の放電反応と負極単独の充電反応を平行して行おうとすると複数のイオン供給源が必要になるなど、構成が複雑化してしまうという課題があった。
Further, in
本発明の目的は、このような課題を解決することである。すなわち、本発明はリチウムイオン二次電池内において、正極および/または負極と、適切なしきい値電圧を有するダイオード、およびイオン供給源とを、電気化学的に安定な構成により接続する手法を開示する。これにより、副反応により失われるリチウムイオンを自動的に補給し、正極、負極が常に好ましい充電状態に保持される非水系二次電池及び電池モジュールを提供する。 The object of the present invention is to solve such a problem. That is, the present invention discloses a method of connecting a positive electrode and / or a negative electrode, a diode having an appropriate threshold voltage, and an ion source with an electrochemically stable configuration in a lithium ion secondary battery. . This provides a non-aqueous secondary battery and a battery module in which lithium ions lost due to side reactions are automatically replenished, and the positive electrode and the negative electrode are always kept in a preferable charged state.
本発明にかかるリチウムイオン二次電池は、正極と負極とをセパレータを介して捲回した電極群と、前記電極群を収納する電池缶と、を有するリチウムイオン二次電池において、前記電池缶の中にはリチウムイオン供給源が収納され、前記リチウムイオン供給源と前記正極とは正極側ダイオードを介して電気的に接続され、前記正極側ダイオードと前記正極はアルミニウム導線で接続され、前記正極側ダイオードと前記リチウムイオン供給源は銅導線、鉄導線、ニッケル導線、またはステンレス導線のいずれかによって接続されることを特徴とする。 A lithium ion secondary battery according to the present invention is a lithium ion secondary battery having an electrode group in which a positive electrode and a negative electrode are wound through a separator, and a battery can that houses the electrode group. A lithium ion supply source is housed therein, the lithium ion supply source and the positive electrode are electrically connected via a positive electrode diode, the positive electrode diode and the positive electrode are connected by an aluminum conductor, and the positive electrode side The diode and the lithium ion supply source are connected by any one of a copper conductor, an iron conductor, a nickel conductor, or a stainless steel conductor.
本発明によれば、正極および/または負極の実用的な充放電範囲内における電位変化において、電解液に対して安定な導線を用いて、正極および/または負極と適切なバンドギャップを有するダイオードおよびイオン供給源を接続する事により、正極および/または負極が好ましい充電状態に保持された、長寿命かつ高信頼な非水系二次電池及び電池モジュールを提供することができる。 According to the present invention, in a potential change within a practical charge / discharge range of the positive electrode and / or the negative electrode, a diode having an appropriate band gap with the positive electrode and / or the negative electrode using a conductive wire that is stable against the electrolyte and By connecting an ion supply source, it is possible to provide a long-life and highly reliable non-aqueous secondary battery and battery module in which the positive electrode and / or the negative electrode are maintained in a preferable charged state.
上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
《第一の実施形態》
本実施例は、図3の構成に基づいている。図1に、リチウムイオン二次電池の概略図を、図2に、図1のA-A′の断面図を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
First embodiment
This embodiment is based on the configuration of FIG. FIG. 1 is a schematic view of a lithium ion secondary battery, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
まずは図1に基づいてリチウムイオン二次電池150の構造について説明する。リチウムイオン二次電池150は、電池間100、電極群101、電池蓋102から構成されている。電池缶100は円筒形状で一端に開口を有する構造となっている。電池缶100の内部には電極群101が収納されて電解液が注入され、電池缶100の開口を塞ぐように電池蓋102が配置されている。そして、電池蓋102はガスケット103を介して電池缶100の開口端をかしめることにより、電池缶100を密閉している。
First, the structure of the lithium ion
電極群101は、正極200と負極300、及びセパレータ350を正極200と負極300の間に交互に重ねて円筒形に捲回したものである。電極群101の中心部にはイオン供給源401、正極用ダイオード402、及び負極用ダイオード403が配置されている。
The
図2は、図1のA-A断面図である。このように電極群101を上面から見ると、イオン供給源401が電極群101の中央部に配置されているのがわかる。
FIG. 2 is a cross-sectional view taken along the line AA in FIG. Thus, when the
図3は、本発明のポイントとなる部分の概略を示した図である。イオン供給源401の一端は銅導線502を介して正極用ダイオード402のアノード側に接続され、イオン供給源401の他端は銅導線502を介して負極用ダイオード403のアノード側と接続されている。一方、正極用ダイオード402のカソード側はアルミニウム導線501を介して正極200に接続され、負極用ダイオード403のアノード側は銅導線502を介して負極300に接続される。
FIG. 3 is a diagram showing an outline of a part as a point of the present invention. One end of the
なお、正極200は正極箔201の両面に正極材202が塗布された構造になっており、負極300は負極箔301の両面に負極材302が塗布された構造になっている。そのため、アルミニウム導線501は正極箔201に接続され、銅導線502は負極箔301に接続された構造をとっている。
The
また、この時、正極200と正極用ダイオード402の接続には、アルミニウム導線501を用いるのが望ましい。正極200は、電解液中でグラウンドに対する電位が4.2V程度になる。このため、正極200と正極用ダイオード402間を接続する導線も同様に4.2V程度の電位になる。したがって、このような高電位でも電解液と反応して溶出しないような安定な金属を選択する必要がある。アルミニウムは、正極電極の集電箔としても用いられているように、リチウムイオン電池の電解液内で安定に存在する金属として知られている。アルミニウムが電解液内で高い電位になっても溶解せずに安定でいられるのは、もともとAl表面には酸化被膜が形成されているのに加え、電解液中での充電により、さらに強固なフッ化アルミニウムという被膜が形成されるためである。そのため、アルミニウム導線501を用いることにより、正極の充放電反応による電位変化範囲に対して、正極用ダイオード402との接続状態を安定に維持することができる。
At this time, it is desirable to use the
また、正極用ダイオード402とイオン供給源401間の接続には、銅導線502を用いるのが望ましい。リチウム供給源間に銅を使うのは、ダイオードとイオン供給源401の間は、グラウンドと同じ低電位になるが、銅であればこの電位でも安定なためである。
Also, it is desirable to use a copper conducting
一方、アルミニウム導線501を低電位側に使えないのは、アルミニウムをリチウム電池の電解液中で低電位状態にすると、アルミニウム内にリチウムイオンが侵入して合金を形成し、機械的強度などが劣化するためである。逆に、銅導線502を正極側の高電位状態にすると、アルミニウムとは異なり表面に安定な被膜が形成されないため、電解液中に溶出してしまう。従って、以上のように、アルミニウム導線501、銅導線502を使い分けることによって、それぞれの電位状態に応じて安定なリチウムイオン二次電池を提供することが可能となる。
On the other hand, the
なお上述した理由と同様の理由よりに、負極300と負極用ダイオード403の間、および負極用ダイオード403とイオン供給源401の間は銅導線502を用いて接続するのが望ましい。このような構成とすることにより、正極、負極それぞれの充放電反応による電位変化範囲において、各構成要素を安定に接続することが可能となる。
For the same reason as described above, it is desirable to connect the
また、銅導線以外にも、鉄導線、ニッケル導線、ステンレス導線で接続することも可能である。銅銅線502以外に鉄、ニッケル、ステンレスを用いることが可能な理由は、前述の銅導線を用いる理由と同じである。なお、電解液中での安定性に加え、加工性およびコストの点も考慮すると銅導線を用いるのが好ましい。
In addition to copper conductors, iron conductors, nickel conductors, and stainless steel conductors can be used for connection. The reason why iron, nickel, and stainless steel can be used in addition to the copper-
また、本実施形態では電極群101に生じる隙間を有効活用するためにイオン供給源401を電池群101の中心部に配置しているが、イオン供給源401は電池缶100の内部のどこに設置しても長寿命化が図れるのは言うまでもない。
In this embodiment, the
本実施形態では電池の正極活物質としてLiCoO2、導電剤としてアセチレンブラックを7wt%、結着剤としてポリフッ化ビニリデン(PVDF)を5wt%添加して、これにN-メチル-2-ピロリドンを加え混合して正極合剤のスラリーを調製した。 In this embodiment, LiCoO 2 is added as the positive electrode active material of the battery, 7 wt% of acetylene black is added as the conductive agent, and 5 wt% of polyvinylidene fluoride (PVDF) is added as the binder, and N-methyl-2-pyrrolidone is added thereto. The mixture was mixed to prepare a positive electrode mixture slurry.
この正極合剤スラリーを厚み25μmのアルミニウム箔である正極箔201(図3参照)の両面に塗布乾燥後、プレス,裁断することで、正極箔201の両面に正極材202(図3参照)を結着させ、正極200とした。
This positive electrode mixture slurry is applied and dried on both surfaces of a positive electrode foil 201 (see FIG. 3), which is an aluminum foil having a thickness of 25 μm, and then pressed and cut, so that the positive electrode material 202 (see FIG. 3) is formed on both surfaces of the
同様に負極活物質としては難黒鉛化炭素を使用し、結着剤としてPVDFを8wt%添加して、これにN-メチル-2-ピロリドンを加え混合して負極合剤のスラリーを調製した。 Similarly, non-graphitizable carbon was used as the negative electrode active material, 8 wt% of PVDF was added as a binder, and N-methyl-2-pyrrolidone was added thereto and mixed to prepare a slurry of the negative electrode mixture.
この負極合剤スラリーを厚み10μmの銅箔である負極箔301(図3参照)の両面に塗布し、プレス,裁断することで、負極箔301の両面に負極材302(図3参照)を結着させ、負極300とした。また本実施形態では、イオン供給源401に、金属リチウムを用いている。
The negative electrode mixture slurry is applied to both surfaces of a negative electrode foil 301 (see FIG. 3), which is a copper foil having a thickness of 10 μm, and pressed and cut to bind the negative electrode material 302 (see FIG. 3) to both surfaces of the
正極用ダイオード402は、正極200とイオン供給源401の電位差が、閾値として特定の値以上となった場合のみ電流が通過する特性を持つ。本実施形態においては、正極200とイオン供給源401との間の電位差が4.2V以上になるとダイオードが作動しなお、電位差を4.2Vとした理由は、4.2Vが一般的なリチウム電池の使用上限電圧であるためである。これは、リチウム電池の一般的な電解液が、4.5V付近になると分解しガスを発生することによる。正極単独の放電反応が始まるとする。このような電位差で作動するダイオードは次に述べるような手法により作成可能である。
The
図4に正極用ダイオード402のPN接合部420の詳細な構造を示す。有機金属気相成長法により、(0001)n型GaN基板407上にSiドープn型GaNバッファ層408(膜厚1000nm、Si濃度:1x1018cm-3)、Siドープn型AlGaN層410(Al組成比:0.5、膜厚:500nm、Si濃度:1x1018cm-3)、アンドープAlGaN層425(Al組成比:0.3、膜厚:100nm)、Mgドープp型AlGaN層411(Al組成比:0.5、膜厚:500nm、Mg濃度:2x1019cm-3)、Mgドープp型GaN層409(膜厚:500nm、Mg濃度:1.5x1019cm-3)、Mgドープp型GaNコンタクト層412(膜厚:50nm、Mg濃度:1.5x1020cm-3)を順次成長させる。続いてp型電極404を蒸着し、(0001)n型GaN基板1の裏面を研磨した後、n型電極405を蒸着し、最後に劈開して素子化する。なお、Mgドープp型AlGaN層411、アンドープAlGaN層425、及びSiドープn型AlGaN層410を併せて接合層406と呼ぶ。
FIG. 4 shows a detailed structure of the
本実施形態では、正極用ダイオード402の動作電圧を4.2Vとしたが、n型AlGaN層410、アンドープAlGaN層425、p型AlGaN層411のAl/Ga組成比を適切に変える事により、ダイオードの閾値電圧をGaNからAlNのバンドギャップまで、すなわち3.2Vから6.0Vの範囲で調整することができる。
In this embodiment, the operating voltage of the
具体的にはGaN、AlNはどちらもIII/V族系化合物半導体ででありGaNのバンドギャップは3.2V、AlNのバンドギャップは6.0Vである。そのため、AlGaNはGaNとAlNの中間的なバンドギャップをとることが可能である。一方でGaNとAlNはバンドギャップは大きく異なるが、結晶の格子状数がほぼ同じため、Ga、Alの組成比を変えても格子定数はほぼ一定で、良好な結晶を作成することができる。また、AlxGa(1-x)N(0<x<1) (xは0から1の値を取る)の場合には、AlGaNのバンドギャップはxに対してほぼ線形に変化する。そのため、例えばx=0.5なら、(32V×0.5)+(6.0V×0.5)=4.6Vとなる。このように、AlまたはGaの相対組成比を変えることで、バンドギャップを変えることが可能である。 Specifically, GaN and AlN are both III / V group compound semiconductors, and the band gap of GaN is 3.2V and the band gap of AlN is 6.0V. Therefore, AlGaN can take an intermediate band gap between GaN and AlN. On the other hand, GaN and AlN have greatly different band gaps, but the number of crystal lattices is almost the same. Therefore, even if the composition ratio of Ga and Al is changed, the lattice constant is substantially constant and a good crystal can be produced. In the case of Al x Ga (1-x) N (0 <x <1) (x takes a value from 0 to 1), the band gap of AlGaN changes almost linearly with respect to x. Therefore, for example, if x = 0.5, (32V × 0.5) + (6.0V × 0.5) = 4.6V. Thus, the band gap can be changed by changing the relative composition ratio of Al or Ga.
負極用ダイオード403は、負極300とイオン供給源401の電位差が、閾値として特定の値以上となった場合のみ電流が通過する特性を持つ。本実施例においては、正極300とイオン供給源401との間の電位差が0.75V以上になるとダイオードが作動し負極単独の充電反応が始まるとする。なお、電位差を0.75V以上とした理由は、黒鉛負極を安定に使用できる範囲に基づくものである。このような電位差で作動するダイオードは次に述べるような手法により作成可能である。
The
図5を用いて、負極用ダイオード403のPN接合部430の詳細な構造を説明する。有機金属気相成長法により、(100)n型InP基板413上にSiドープn型InPバッファ層414(膜厚1000nm、Si濃度:1x1018cm-3)、Siドープn型InGaAsP層416(In/Ga組成比:0.4/0.6、As/P組成費:0.4/0.6、膜厚:500nm、Si濃度:1x1018cm-3)、アンドープInGaAs層426(In/Ga組成比:0.5/0.5、膜厚:100nm)、Znドープp型InGaAsP層417(In/Ga組成比:0.4/0.6、As/P組成費:0.4/0.6、膜厚:500nm、Si濃度:1x1018cm-3)、Znドープp型InPバッファ層415(膜厚1000nm、Zn濃度:1x1018cm-3)、Znドープp型InGaAsコンタクト層418(膜厚:100nm、Zn濃度:2.0x1019cm-3)を順次成長させる。続いてp型電極404´を蒸着し、(100)n型InP基板1の裏面を研磨した後、n型電極405´を蒸着し、最後に劈開して素子化する。なお、Znドープp型InGaAsP層417、アンドープInGaAs層426、及びSiドープn型InGaAsP層416を併せて接合層406´と呼ぶ。
The detailed structure of the
本実施形態では、正極用ダイオード402の動作電圧を0.75Vとしたが、n型InGaAsP層416、アンドープInGaAsP層425、p型InGaAsP層417のIn/Ga組成比、As/P組成比を適切に変える事により、InPからInGaAsのバンドギャップまで、すなわち0.75Vから1.4Vの範囲で自由に調整することができる。
In this embodiment, the operating voltage of the
ダイオードとして正常に動作できるように、安定な結晶構造を得るためには、格子状数の制約があり、具体絵的には結晶成長の土台となる基板の格子状数と大きく異なる組成にすることはできない。本実施例の場合は、基板としてInPを想定している。このInP基板に対して格子状数を揃えて結晶を成長させた場合には、取りうるバンドギャップの範囲が0.75V(InGaAs)~1.4V(InP)となる。そのため、上記構造の負極用ダイオード403を用いた。
In order to obtain a stable crystal structure so that it can operate normally as a diode, there are restrictions on the number of lattices. Specifically, the composition should be significantly different from the number of lattices on the substrate that serves as the foundation for crystal growth. I can't. In this embodiment, InP is assumed as the substrate. When crystals are grown on the InP substrate with the same number of lattices, the possible band gap range is 0.75 V (InGaAs) to 1.4 V (InP). Therefore, the
なおInPにおいて、徐々にPをAsに置き換えてInAsに近づけると、バンドギャップは1.4Vから徐々に小さくなっていくが、同時に格子状数をInP基板に合わせるために、InをGaに置き換えて行く必要がある。。このため、バンドギャップを変えつつ、InP基板と格子状数を揃えるために、InPとInGaAsの中間の状態はInGaAsPという4元混晶を用いている。 In InP, when P is gradually replaced with As and then closer to InAs, the band gap gradually decreases from 1.4 V, but at the same time, In is replaced with Ga in order to match the lattice number to the InP substrate. I need to go. . For this reason, a quaternary mixed crystal of InGaAsP is used as an intermediate state between InP and InGaAs in order to align the number of lattices with the InP substrate while changing the band gap.
続いて、正極用ダイオード402、負極用ダイオード403をリチウムイオン二次電池150内部に導入する際の実装形態について述べる。
Subsequently, a mounting mode when the
図6に、正極用ダイオード402の実装形態を示す。前述の手順で作成したPN接合部420のn型電極405は、実装基板600上に設けられた低電位側配線パターン602の上にダイボンディングされている。実装基板600の材質としては、アルミナ、アルミナイトライドなどのセラミックが好適である。また、低電位側配線パターン602の材質には、金や白金などが好適である。低電位側配線パターン602には銅導線502が接続されている。低電位配線パターン602と銅導線502の接続には、超音波融着や熱融着、あるいはカシメや埋め込みなどの手法が考えられる。銅導線502の先にはさらにイオン供給源401が接続されている。このような構成により、正極用ダイオード402のn型電極405とイオン供給源401が電気的に接続され等電位になる。
FIG. 6 shows a mounting form of the
また、正極用ダイオード402のp型電極404は、ワイヤボンド603により高電位側配線パターン601に接続される。高電位側配線パターンの材質も、金や白金などが好適である。高電位側配線パターン601にはアルミニウム導線501が接続されている。高電位配線パターン601とアルミニウム導線501の接続にも、超音波融着や熱融着、あるいはカシメや埋め込みなどの手法が好適である。アルミニウム導線501の先にはさらに正極200が接続されている。このような構成により、正極用ダイオード402のp型電極404と正極200が電気的に接続され等電位になる。最後に実装基板600、正極用ダイオード402、ワイヤボンド603が直接電解液にさらされることのないように、樹脂604で封止する。
Further, the p-
以上のような構成にすることにより、電解液中においても、正極200と正極用ダイオード402間、および正極用ダイオード402とイオン供給源401との間の電気的な接続を安定に維持することが可能となる。また、本構成のようにアルミニウム配線501、銅配線502を、実装基板600を介して正極用ダイオード402と接続することにより、直接接続した場合に対して、実装時の熱や圧力によるダイオードの破損、銅などの金属がダイオード内に進入することによる電気特性の劣化などを防ぐことが可能となる。
With the above configuration, the electrical connection between the
続いて図7に、負極用ダイオード403の実装形態を示す。前述の手順で作成したPN接合部430は、実装基板600上に設けられた低電位側配線パターン602の上にダイボンディングされている。実装基板600の材質としては、アルミナやアルミナイトライドなどのセラミックが好適である。また、低電位側配線パターン602の材質には、金や白金などが好適である。低電位側配線パターン602には銅導線502が接続されている。低電位配線パターン602と銅導線502の接続には、超音波融着や熱融着、あるいはカシメや埋め込みなどの手法が考えられる。銅導線502の先にはさらにイオン供給源401が接続されている。このような構成により、負極用ダイオード403のn型電極405とイオン供給源401が電気的に接続され等電位になる。
Subsequently, FIG. 7 shows a mounting form of the
また、負極用ダイオード403のp型電極404は、ワイヤボンド603により高電位側配線パターン601に接続される。高電位側配線パターンの材質も、金や白金などが好適である。高電位側配線パターン601には銅導線502が接続されている。高電位配線パターン601と銅導線502の接続にも、超音波融着や熱融着、あるいはカシメや埋め込みなどの手法が好適である。銅導線502の先にはさらに負極300が接続されている。このような構成により、負極用ダイオード403のp型電極404と負極300が電気的に接続され等電位になる。最後に実装基板600、負極用ダイオード403、ワイヤボンド603が直接電解液にさらされることのないように、樹脂604で封止する。
Also, the p-
以上のような構成にすることにより、電解液中においても、負極300と負極用ダイオード403の間、および負極用ダイオード403とイオン供給源401との間の電気的な接続を安定に維持することが可能となる。また、本構成のように2本の銅配線502を、実装基板600を介して負極用ダイオード403と接続することにより、実装時の熱や圧力によるダイオードの破損や、銅などの金属がダイオード内に進入することによる電気特性の劣化といった問題の発生を防ぐことが可能となる。
With the above configuration, the electrical connection between the
続いて実際に、この電池セルを用いた場合の流れを説明する。 Next, the flow when this battery cell is actually used will be described.
セルの初期状態の充放電状態を図8に示す。本実施例において、実験に用いた電池セルは、セル電池の作動電位は4.1V~2.7Vの範囲で充放電した際の電気容量が1.0Ahの円筒型セルであり、通常使用範囲において負極300は、イオン供給源401である金属リチウムに対して充電時には約0.1V,放電時には約0.7Vまで電位変化するように設計してある。本実施例では、4.1V~2.7Vの範囲で電池を使用した場合において説明する。
Fig. 8 shows the initial charge / discharge state of the cell. In this example, the battery cell used in the experiment is a cylindrical cell with an electric capacity of 1.0 Ah when charged / discharged in a cell battery operating potential in the range of 4.1 V to 2.7 V. The
リチウムイオン電池は長期的にサイクルを繰り返すことで、負極表面の副反応が進行し、実質的に機能するリチウム量が減少することにより充放電容量が減少し、かつ、作動時の正極電位、負極電位がそれぞれ高電位側にシフトすることでさらに劣化が促進する。すなわち、図8(a)の充放電状態が、長期的なサイクルにより、図8(b)のような充放電状態になると考えることができる。本実施形態は、この充放電範囲のずれを緩和するものであり、以下でその原理を説明する。 Lithium-ion batteries are cycled over a long period of time, so that side reactions on the surface of the negative electrode proceed, the amount of lithium that functions substantially decreases, the charge / discharge capacity decreases, and the positive electrode potential during operation, the negative electrode Deterioration is further promoted by shifting the potential to the higher potential side. That is, it can be considered that the charge / discharge state of FIG. 8A becomes a charge / discharge state as shown in FIG. 8B by a long-term cycle. The present embodiment alleviates this shift in the charge / discharge range, and the principle will be described below.
本実施形態において、負極用ダイオード403の閾値を0.75Vと設定しており、負極300とイオン供給源401(リチウム金属)間の電位差が0.75V以上になることで、負極300からリチウム金属の方向へ電流が流れ、負極300が充電される仕組みとなっている。図9(a)は、その挙動を簡易的に示している。すなわち、劣化による充放電範囲のずれによって、負極電位が高電位側にシフトするが、本実施形態の構成を用いることで、放電時に負極300の電位が0.75Vを超えた際に、負極300からリチウム金属の方向へ電流が流れて負極300にリチウムが供給されるため、充放電容量が回復し、負極300の作動電位を低電位側へシフト[(a) ⇒ (b)]させることで、充放電範囲の電位ずれも緩和できる。また、負極の過放電を防止できるメリットもある。
In this embodiment, the threshold value of the
また、本実施形態で用いた負極用ダイオード403の閾値は0.75Vと設定したが、使用用途によって、異なる閾値に調整しても良い。
Further, although the threshold value of the
一方、本実施形態において、正極用ダイオード402の閾値を4.2Vと設定しており、正極200とイオン供給源401(リチウム金属)間の電位差が4.2V以上になることで、正極200からリチウム金属の方向へ電流が流れ、正極200が放電される仕組みとなっている。図9(b)は、その挙動を簡易的に示している。すなわち、劣化による充放電範囲のずれによって、正極電位が高電位側にシフトするが、本実施例の構成を用いることで、充電時に正極200の電位が4.2Vを超えた際に、正極200からリチウム金属の方向へ電流が流れて正極200にリチウムが供給されるため、充放電容量が回復し、正極200の作動電位を低電位側へシフト[(c) ⇒ (d)]させることで、充放電範囲の電位ずれも緩和できる。
On the other hand, in the present embodiment, the threshold value of the
また、本実施例で用いた正極用ダイオード402の閾値は4.2Vと設定したが、使用用途によって、異なる閾値に調整しても良い。
In addition, although the threshold value of the
本実施形態では、低電位側の接続に銅導線を用いたが、銅の代わりにニッケル、鉄、ステンレスなどを用いても同様の効果が得られる。 In this embodiment, the copper conductor is used for the connection on the low potential side, but the same effect can be obtained by using nickel, iron, stainless steel or the like instead of copper.
また、正極活物質にLiCoO2を用いているが、ニッケル酸リチウムLiNiO2やマンガン酸リチウムLiMn2O4など、他の活物質を用いてもよい。 Further, although using LiCoO2 as the positive electrode active material, lithium nickel oxide LiNiO 2 or lithium manganese oxide LiMn 2 O 4, it may use other active materials.
同様に、本実施形態において、負極活物質には難黒鉛化炭素を用いているが、黒鉛などの他の炭素材料を用いても良い。また、炭素系材料以外に、鈴とリチウムの合金、シリコンとリチウムの合金などを用いてもよい。 Similarly, in the present embodiment, non-graphitizable carbon is used as the negative electrode active material, but other carbon materials such as graphite may be used. In addition to the carbon-based material, a bell-lithium alloy, a silicon-lithium alloy, or the like may be used.
本実施形態では、正極、負極がともにダイオードを介してイオン供給源に接続される構成としたが、正極のみ、または負極のみがダイオードを介してイオン供給源に接続される構成でもよい。 In this embodiment, the positive electrode and the negative electrode are both connected to the ion supply source via a diode, but only the positive electrode or only the negative electrode may be connected to the ion supply source via a diode.
本実施形態では、負極用ダイオードに化合物半導体であるInP基板上のInGaAs系材料を用いたが、負極の実用的な電位変化範囲内に対応できる材料として、シリコン、ゲルマニウム、あるいはシリコンゲルマニウム化合物などを用いてもよい。
また、本実施例において、円筒型電池に関する内容だが、適用できる電池は円筒型電池に限らず、角型電池、ラミネートセル電池でも同様な構造で適用することが可能である。
In the present embodiment, an InGaAs-based material on an InP substrate, which is a compound semiconductor, is used for the negative electrode diode, but silicon, germanium, a silicon germanium compound, or the like can be used as a material that can accommodate the practical potential change range of the negative electrode. It may be used.
In the present embodiment, the content is related to the cylindrical battery, but the applicable battery is not limited to the cylindrical battery, but can be applied to a square battery and a laminated cell battery with the same structure.
《第二の実施形態》
図10は第二の実施形態を示す図である。なお、本実施形態において第一の実施形態と同様の構成については第一の実施形態で用いた図面番号を用いている。本実施形態が第一の実施形態と異なる点は、負極300が負極用ダイオード403とアルミニウム導線501を介して接続されている点である。
<< Second Embodiment >>
FIG. 10 is a diagram showing a second embodiment. In addition, in this embodiment, about the structure similar to 1st embodiment, the drawing number used in 1st embodiment is used. This embodiment is different from the first embodiment in that the
このような構成は、負極200の実用的な使用範囲における電位が1.5Vを超える場合に有効である。このような電位変化特性を有する負極材としては、チタン酸リチウム(LTO)などがある。また、LTOのように比較的高電位な負極材を使用する場合は、イオン供給源であるリチウムイオン供給源401に対する電位も高くなるので、負極用ダイオード403にも適切な材料を用いる必要がある。
Such a configuration is effective when the potential in the practical use range of the
本実施形態においては、イオン供給源401に対して負極403の電位が2.0Vを超える場合にダイオードが動作して、負極単独の充電反応が始まるとする。このような電位差で動作するダイオードは、次のような手順で作成可能である。
In this embodiment, it is assumed that when the potential of the
図11を用いて、負極用ダイオード403の詳細な構造を説明する。有機金属気相成長法により、(100)n型GaAs基板419上にSiドープn型GaAsバッファ層420(膜厚1000nm、Si濃度:1x1018cm-3)、Siドープn型AlGaAs層422(Al/Ga組成比:0.8/0.3、膜厚:500nm、Si濃度:1x1018cm-3)、アンドープAlGaAs層427(Al/Ga組成比:0.7/0.3、膜厚:100nm)、Znドープp型AlGaAs層423(Al/Ga組成比:0.8/0.2、膜厚:500nm、Zn濃度:1x1018cm-3)、Znドープp型GaAs層421(膜厚:1000nm、Zn濃度:1.0x1018cm-3)、Znドープp+型GaAsコンタクト層424(膜厚:100nm、Zn濃度:2.0x1019cm-3)を順次成長させる。続いてp型電極504を蒸着し、(100)n型GaAs基板419の裏面を研磨した後、n型電極505を蒸着し、最後に劈開して素子化する。なお、Znドープp型AlGaAs層423、アンドープAlGaAs層427、及びSiドープn型AlGaAs層422を併せて接合層506と呼ぶ。
The detailed structure of the
本実施形態では、正極用ダイオード403の動作電圧を2.0Vとしたため、負極200の実用的な使用範囲における電位が1.5Vを超える場合であったとしても使用可能となる。
In this embodiment, since the operating voltage of the
なお、n型AlGaAs層422、アンドープAlGaAs層427、p型AlGaAs層423のAl/Ga組成比を適切に変える事により、GaAsからAlAsのバンドギャップまで、すなわち1.4Vから2.1Vの範囲で自由に調整することができる。
By appropriately changing the Al / Ga composition ratio of the n-
上述の負極用ダイオード403を負極300およびイオン供給源401と接続する構成については、第一の実施形態の記述より記述を省略する。また、本実施例で記述する構成のリチウムイオン二次電池のリチウムイオン供給の流れについても、第一の実施形態の記述より省略する。
Description of the configuration in which the above-described
《第三の実施形態》
図12は第三の実施形態を示す図である。なお、本実施形態において第一の実施形態と同様の構成については第一の実施形態で用いた図面番号を用いている。本実施形態が第一の実施形態と異なる点は、図12に示すように、正極200に接続される正極用ダイオード402が、一つのダイオードではなく、複数のダイオードが直列接続された直列ダイオード702を有する構成になっている点である。
<< Third embodiment >>
FIG. 12 is a diagram showing a third embodiment. In addition, in this embodiment, about the structure similar to 1st embodiment, the drawing number used in 1st embodiment is used. This embodiment is different from the first embodiment in that, as shown in FIG. 12, the
代表的なダイオードであるシリコンは、しきい値電圧が0.6V~0.7V程度であるため、単体では正極を単独放電させる用途には適用できない。 Since silicon, which is a typical diode, has a threshold voltage of about 0.6 V to 0.7 V, it cannot be applied to a single discharge of the positive electrode alone.
しかしながら、図12に示すように、例えば、しきい値電圧0.7Vのシリコンダイオードを6段直列に接続すれば、全体のしきい値は4.2Vとなる。このダイオードを介して正極200とイオン供給源401を接続すれば、正極200のイオン供給源401に対する電位が4.2V以上になった場合、ダイオードが作動し、正極単独の放電反応を起こすことができる。
However, as shown in FIG. 12, for example, if six stages of silicon diodes having a threshold voltage of 0.7V are connected in series, the overall threshold value is 4.2V. If the
動作電圧が一つ一つのダイオードの和になるため、第一の実施形態と比較してダイオードの動作電位を精密に設定できないという難点はあるが、安価なシリコンダイオードで本発明が目的とするリチウムイオンの自動供給することが可能である。 Since the operating voltage is the sum of each diode, there is a problem that the operating potential of the diode cannot be precisely set as compared with the first embodiment. It is possible to automatically supply ions.
本実施形態で記述する正極用ダイオード402を、正極200およびイオン供給源401と接続する構成については、第一の実施形態の記述より省略する。また、本実施形態で記述する構成のリチウムイオン二次電池のリチウムイオン供給の流れについても、第一の実施形態の記述より記載を省略する。
The configuration for connecting the
本実施例では、シリコンダイオードを数段直列接続するとしたが、InP基板、あるいはGaAs基板上に成長可能なIII-V族系材料よりなるダイオードを数段直列接続しても、もちろんよい。 In this embodiment, several stages of silicon diodes are connected in series, but it is of course possible to connect several stages of diodes made of III-V group material that can be grown on an InP substrate or a GaAs substrate.
《第四の実施形態》
図13は第四の実施形態を示す図である。なお、本実施形態において第一の実施形態と同様の構成については第一の実施形態で用いた図面番号を用いている。本実施形態が第一の実施形態と異なる点は、図13に示すように、正極用ダイオード402と負極用ダイオード403が、同一の実装基板600上に設けられた低電位側配線パターン602上にダイボンディングされている点である。低電位側実装パターン602には、銅導線502’が接続され、さらにその先にはイオン供給源401が接続されている。
<< Fourth Embodiment >>
FIG. 13 is a diagram showing a fourth embodiment. In addition, in this embodiment, about the structure similar to 1st embodiment, the drawing number used in 1st embodiment is used. This embodiment is different from the first embodiment in that, as shown in FIG. 13, the
正極用ダイオード401のp型電極404と、高電位側配線パターン601はワイヤボンド603で接続されており、高電位配線パターン601はさらに、アルミニウム配線501を介して正極200と接続されている。
The p-
また、負極用ダイオード402のp型電極404’と、高電位側配線パターン601’はワイヤボンド603’で接続されており、高電位配線パターン601’はさらに、銅配線502を介して負極300と接続されている。
Further, the p-
このような構成にすることで、正極の単独放電、負極の単独充電を平行して行うために必要な配線数、部品点数を減らすことができる。本実施例を用いたリチウムイオン供給とそれによる正極、負極の充放電範囲の適正化の流れについては、第一の実施形態の記述より、記述を省略する。 With this configuration, it is possible to reduce the number of wirings and the number of parts required for performing single discharge of the positive electrode and single charge of the negative electrode in parallel. Description of the flow of lithium ion supply and the optimization of the charge and discharge ranges of the positive electrode and the negative electrode using this example will be omitted from the description of the first embodiment.
《第五の実施形態》
図14から図16は第五の実施形態を示す図である。本実施形態は、第一の実施形態から第四の実施形態に示す電池を制御する制御システムの例を示すものである。
<< Fifth Embodiment >>
14 to 16 are views showing a fifth embodiment. This embodiment shows an example of a control system for controlling the battery shown in the first to fourth embodiments.
図14はシステム構成を示す図である。本実施形態に係る制御システム30は、少なくとも2セル以上のリチウムイオン二次電池が直列に接続された電池群31の各電池の電圧情報を取得する電池情報取得部32と、当該電池情報取得部32の情報に基づいて各リチウムイオン二次電池150の電圧ばらつきを判定する電圧ばらつき判定部33と、電圧ばらつき判定部33によって電圧バランシング機能の作動が必要と判定された場合に制御信号送信部35を通して電池群31の充電状態を制御する充電状態制御部34を有している。なお、バランシング要と判断する判断基準はアプリケーションや、電圧センサの感度、どの充電状態を基準にするかなどで変わってが、具体的な例として基準値に対して2~3%くらいのずれが発生した場合にバランシング要と判断する。つまり、基準電圧から50mV程度のずれがある場合、バランシング要と判断する。この充電状態制御部34の情報に基づいてコントローラ36は電池群31の充電状態を指示する。この充電状態は各リチウムイオン二次電池が電圧バランシング機能を作動させる電圧値以上に設定される。
FIG. 14 is a diagram showing a system configuration. The control system 30 according to the present embodiment includes a battery
上述した充電状態に制御された電池群31は、各電池内部で電圧バランシング機能が作動し、正極および負極が所定の充電状態に移行し、各電池の充電状態が所定の値に収束する。 In the battery group 31 controlled to the above-described charging state, the voltage balancing function operates inside each battery, the positive electrode and the negative electrode shift to a predetermined charging state, and the charging state of each battery converges to a predetermined value.
図15は、制御システム30内部での処理フローを示す図である。まず、制御がスタートすると、ステップS101に進み電流情報取得部32で情報を電池群31の電池情報(電流情報、電圧情報、温度情報)を取得する。続いて、ステップS102に進み、電流情報取得部32で取得された電池情報が電圧ばらつき判定部33に入力される。そして、ステップS103では、電圧ばらつき判定部33が入力された電池情報に基づいて電池群31を構成するリチウムイオン二次電池に対して電圧ばらつきの平準化が必要か否かを判定する。ここで電圧ばらつきの平準化が必要であると判断された場合には、ステップS104に進み、各リチウムイオン二次電池150を所定の充電状態に制御するように、各電池内部で電圧バランシング機能(不図示)を作動させてステップS105に進み、充電状態の情報を上位システムへ通信して処理を終了する。一方、ステップS103で電圧ばらつきの平準化の必要がないと判断された場合には、ステップS105に進み、充電状態の情報を上位システムへ通信して処理を終了する。このような処理によって、各リチウムイオン二次電池の充電状態を所定の値に収束させる。
FIG. 15 is a diagram showing a processing flow in the control system 30. First, when the control starts, the process proceeds to step S101, and the current
一方で、電池温度のばらつきなどに起因して、一部の電池で劣化が加速進行した場合など、各電池の充電状態が所定の値に収束しない場合が考えられる。 On the other hand, there may be a case where the state of charge of each battery does not converge to a predetermined value, for example, when deterioration of some batteries has accelerated due to variations in battery temperature.
そのような場合に備えて、他の処理フローとして図16に示すようにループを設ける制御が考えられる。基本的には図15で示した処理フローと同様なので、異なる点を説明する。図15に示した処理フローと異なる点は、ステップS201とステップS202である。ステップS104で各リチウムイオン二次電池の充電状態を平準化させる指示を行った後、各リチウムイオン二次電池の充電状態が所定の値になっているかをステップS201で判定する。なお、このとき判定を行っているのは電圧ばらつき判定部33である。ステップS201で充電状態が所定の値になっているならば、ステップS105に進み、充電状態の情報を上位システムへ通信して処理を終了する。一方で、ステップS201で充電状態が所定の値になっていなかった場合にはステップS202に進み、充電状態制御部が指示する充電状態を所定の値だけ上昇させる。
In preparation for such a case, control for providing a loop as shown in FIG. 16 may be considered as another processing flow. Since the processing flow is basically the same as that shown in FIG. 15, the differences will be described. The difference from the processing flow shown in FIG. 15 is step S201 and step S202. In step S104, after giving an instruction to level the state of charge of each lithium ion secondary battery, it is determined in step S201 whether the state of charge of each lithium ion secondary battery has a predetermined value. Note that the voltage
この際、リチウムイオン二次電池が過充電状態にならないような制御をすることは自明である。その後、ステップS101に戻り、処理フローをループさせる。このように構成することによって、確実に所定の充電状態までバランシングを行うことが可能となる。 At this time, it is obvious that the lithium ion secondary battery is controlled so as not to be overcharged. Then, it returns to step S101 and loops a processing flow. With this configuration, it is possible to reliably perform balancing to a predetermined charging state.
一部の電池であっても、充電状態が所定の値に収束しない状況を放置しておくと、電池モジュール全体の出力が制限されてしまい、直列に接続されている複数の電池の中で、一つでも充電が不十分な電池があると、この電池が他の電池に比べて早く放電が終了してしまう。そのため、上述したように充電状態を所定値だけ上昇させることによって電池モジュール全体の出力低下を抑制することが出来る。 Even if some batteries are left in a state where the state of charge does not converge to a predetermined value, the output of the entire battery module is limited, and among the plurality of batteries connected in series, If there is a battery that is not fully charged, this battery will be discharged earlier than other batteries. Therefore, the output reduction of the whole battery module can be suppressed by raising the state of charge by a predetermined value as described above.
なおこの所定値は、アプリケーションなどによって変わるため一概には言えないが、例えば周りの正常な電池と同等の充電状態にまで上げることが好ましい。 It should be noted that this predetermined value varies depending on the application and so on, but it cannot be said unconditionally.
処理が終了したら、終了のシグナルと併せて、例えばループ回数などを表示部37により上位システムまたはユーザーを通知するとなお好ましい。
When the processing is completed, it is more preferable to notify the host system or the user by the
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
200 正極
201 正極箔
202 正極材
300 負極
301 負極箔
302 負極材
350 セパレータ
401 イオン供給源
402 正極側ダイオード
403 負極側ダイオード
501 アルミニウム導線
502 銅導線
200
Claims (12)
前記電極群を収納する電池缶と、を有するリチウムイオン二次電池において、
前記電池缶の中にはリチウムイオン供給源が収納され、
前記リチウムイオン供給源と前記正極とは正極側ダイオードを介して電気的に接続され、
前記正極側ダイオードと前記正極はアルミニウム導線で接続され、
前記正極側ダイオードと前記リチウムイオン供給源は銅導線、鉄導線、ニッケル導線、またはステンレス導線のいずれかによって接続されることを特徴とするリチウムイオン二次電池。 An electrode group in which a positive electrode and a negative electrode are wound through a separator;
In a lithium ion secondary battery having a battery can containing the electrode group,
The battery can contains a lithium ion supply source,
The lithium ion supply source and the positive electrode are electrically connected via a positive diode,
The positive diode and the positive electrode are connected by an aluminum conductor,
The lithium ion secondary battery, wherein the positive electrode side diode and the lithium ion supply source are connected by any one of a copper conductor, an iron conductor, a nickel conductor, or a stainless steel conductor.
前記正極側ダイオードは、少なくともAlGaN層を有していることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1,
The lithium ion secondary battery, wherein the positive electrode side diode has at least an AlGaN layer.
前記リチウムイオン供給源と前記正極とは負極側ダイオードを介して電気的に接続され、
前記負極側ダイオードと前記負極、及び前記負極側ダイオードと前記リチウムイオン供給源はそれぞれ銅導線、鉄導線、ニッケル導線、またはステンレス導線のいずれかによって接続されることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 2,
The lithium ion supply source and the positive electrode are electrically connected via a negative electrode diode,
The lithium ion secondary battery, wherein the negative electrode side diode and the negative electrode, and the negative electrode side diode and the lithium ion supply source are connected by any one of a copper conductor, an iron conductor, a nickel conductor, or a stainless steel conductor, respectively. .
前記負極側ダイオードは、少なくともInGaAs層を有していることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 3,
The lithium ion secondary battery, wherein the negative electrode side diode has at least an InGaAs layer.
前記正極側ダイオードと前記負極側ダイオードはそれぞれ樹脂によって被覆されていることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 4,
The positive electrode side diode and the negative electrode side diode are each coated with a resin.
前記正極側ダイオード及び前記負極側ダイオードは同一の基盤上に設けられていることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 5,
The lithium ion secondary battery, wherein the positive electrode side diode and the negative electrode side diode are provided on the same substrate.
前記リチウムイオン供給源と前記正極とは負極側ダイオードを介して電気的に接続され、
前記負極側ダイオードと前記負極はアルミニウム導線で接続され、
前記負極側ダイオードと前記リチウムイオン供給源は銅導線、鉄導線、ニッケル導線、またはステンレス導線のいずれかによって接続されることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 2,
The lithium ion supply source and the positive electrode are electrically connected via a negative electrode diode,
The negative electrode side diode and the negative electrode are connected by an aluminum conductor,
The lithium ion secondary battery, wherein the negative electrode side diode and the lithium ion supply source are connected by any one of a copper conductor, an iron conductor, a nickel conductor, or a stainless steel conductor.
前記負極側ダイオードは、少なくともAlGaAs層を有していることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 7,
The lithium ion secondary battery, wherein the negative electrode side diode has at least an AlGaAs layer.
前記負極にはチタン酸リチウムを用いたことを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 8,
A lithium ion secondary battery using lithium titanate for the negative electrode.
前記正極側ダイオードと前記負極側ダイオードはそれぞれ樹脂によって被覆されていることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 9,
The positive electrode side diode and the negative electrode side diode are each coated with a resin.
前記正極側ダイオード及び前記負極側ダイオードは同一の基盤上に設けられていることを特徴とするリチウムイオン二次電池。 The lithium ion secondary battery according to claim 10,
The lithium ion secondary battery, wherein the positive electrode side diode and the negative electrode side diode are provided on the same substrate.
前記リチウムイオン二次電池を制御する制御システムを有する電池制御システムにおいて、
前記制御システムは、前記リチウムイオン二次電池の電池情報を取得する電池情報取得部と、前記電池情報取得部で取得された情報に基づいて各リチウムイオン二次電池の電圧ばらつきを判定する電圧ばらつき判定部を有し、
前記電圧ばらつき判定部の判定にもとづいて各リチウムイオン二次電池のバランシングを行うことを特徴とする電池制御システム。 The lithium ion secondary battery according to any one of claims 1 to 11,
In a battery control system having a control system for controlling the lithium ion secondary battery,
The control system includes a battery information acquisition unit that acquires battery information of the lithium ion secondary battery, and a voltage variation that determines a voltage variation of each lithium ion secondary battery based on the information acquired by the battery information acquisition unit. Having a determination unit,
A battery control system that balances each lithium ion secondary battery based on the determination of the voltage variation determination unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069339 WO2015008342A1 (en) | 2013-07-17 | 2013-07-17 | Lithium ion secondary battery and battery control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069339 WO2015008342A1 (en) | 2013-07-17 | 2013-07-17 | Lithium ion secondary battery and battery control system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008342A1 true WO2015008342A1 (en) | 2015-01-22 |
Family
ID=52345838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069339 WO2015008342A1 (en) | 2013-07-17 | 2013-07-17 | Lithium ion secondary battery and battery control system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015008342A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016178849A (en) * | 2015-03-23 | 2016-10-06 | アクソンデータマシン株式会社 | Power supply unit |
JP2021086662A (en) * | 2019-11-25 | 2021-06-03 | イビデン株式会社 | Lithium ion secondary battery, current control circuit, and capacity-recovering method of lithium ion secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286129A (en) * | 2004-03-30 | 2005-10-13 | Sumitomo Chemical Co Ltd | Compound semiconductor substrate having pn junction |
JP2011103178A (en) * | 2009-11-10 | 2011-05-26 | Hitachi Ltd | Nonaqueous secondary battery and battery module |
JP2011165372A (en) * | 2010-02-05 | 2011-08-25 | Nippon Telegr & Teleph Corp <Ntt> | Negative electrode material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery |
JP2012099666A (en) * | 2010-11-02 | 2012-05-24 | Fujitsu Ltd | Compound semiconductor device and method of manufacturing the same |
JP2013033913A (en) * | 2011-06-28 | 2013-02-14 | Hitachi Cable Ltd | Gallium nitride rectifying device |
-
2013
- 2013-07-17 WO PCT/JP2013/069339 patent/WO2015008342A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286129A (en) * | 2004-03-30 | 2005-10-13 | Sumitomo Chemical Co Ltd | Compound semiconductor substrate having pn junction |
JP2011103178A (en) * | 2009-11-10 | 2011-05-26 | Hitachi Ltd | Nonaqueous secondary battery and battery module |
JP2011165372A (en) * | 2010-02-05 | 2011-08-25 | Nippon Telegr & Teleph Corp <Ntt> | Negative electrode material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery |
JP2012099666A (en) * | 2010-11-02 | 2012-05-24 | Fujitsu Ltd | Compound semiconductor device and method of manufacturing the same |
JP2013033913A (en) * | 2011-06-28 | 2013-02-14 | Hitachi Cable Ltd | Gallium nitride rectifying device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016178849A (en) * | 2015-03-23 | 2016-10-06 | アクソンデータマシン株式会社 | Power supply unit |
JP2021086662A (en) * | 2019-11-25 | 2021-06-03 | イビデン株式会社 | Lithium ion secondary battery, current control circuit, and capacity-recovering method of lithium ion secondary battery |
JP7377080B2 (en) | 2019-11-25 | 2023-11-09 | イビデン株式会社 | Lithium ion secondary battery, current control circuit, and lithium ion secondary battery capacity recovery method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4461114B2 (en) | Battery assembly system, battery assembly charging method and rechargeable vacuum cleaner | |
US20180309169A1 (en) | Electrolyte system for silicon-containing electrodes | |
KR101454831B1 (en) | Apparatus of Estimating Power of Secondary Battery including Blended Cathode Material and Method thereof | |
TWI641200B (en) | Secondary battery module | |
JP4818491B2 (en) | Non-aqueous electrolyte secondary battery charging method and battery pack | |
CN102754271B (en) | Charging method | |
WO2011114641A1 (en) | Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having same | |
CN105745774A (en) | Non-aqueous electrolyte secondary battery | |
US20130189591A1 (en) | Lithium-Ion Battery | |
KR102441469B1 (en) | Battery charging method and battery charging device | |
KR20120030159A (en) | Lithium-ion secondary-battery charging method and charging system | |
JP4305111B2 (en) | Battery pack and electric vehicle | |
JP5411813B2 (en) | Nonaqueous electrolyte secondary battery and battery system having the same | |
JPWO2014010312A1 (en) | Charge control method and charge control device for secondary battery | |
US9385398B2 (en) | Method for manufacturing lithium secondary battery | |
JP2008198593A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method | |
CN111247446A (en) | Estimation device, estimation method, and computer program | |
WO2015008342A1 (en) | Lithium ion secondary battery and battery control system | |
US10826132B2 (en) | Long-life rechargeable ion batteries having ion reservoirs | |
CN116235313A (en) | Charging method and charging system for secondary battery | |
JP2013197052A (en) | Lithium ion power storage device | |
US20250087751A1 (en) | Electrolyte compositions | |
US20220123279A1 (en) | Self-lithiating battery cells and methods for pre-lithiating the same | |
JP2012094395A (en) | Secondary battery | |
US12034166B2 (en) | Lithium secondary battery and method of fabricating anode for lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13889424 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13889424 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |