[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015005221A1 - 光半導体封止用シリコーン組成物及び光半導体装置 - Google Patents

光半導体封止用シリコーン組成物及び光半導体装置 Download PDF

Info

Publication number
WO2015005221A1
WO2015005221A1 PCT/JP2014/067806 JP2014067806W WO2015005221A1 WO 2015005221 A1 WO2015005221 A1 WO 2015005221A1 JP 2014067806 W JP2014067806 W JP 2014067806W WO 2015005221 A1 WO2015005221 A1 WO 2015005221A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
silicone composition
cured product
component
group
Prior art date
Application number
PCT/JP2014/067806
Other languages
English (en)
French (fr)
Inventor
達也 大竹
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to JP2014532158A priority Critical patent/JPWO2015005221A1/ja
Publication of WO2015005221A1 publication Critical patent/WO2015005221A1/ja

Links

Images

Classifications

    • H01L33/56
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/14Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to an optical semiconductor sealing silicone composition for sealing an optical semiconductor element such as an LED (light emitting diode), and an optical semiconductor device using the same.
  • An LED lamp known as an optical semiconductor device has a light emitting diode (LED) as an optical semiconductor element, and is made of a transparent resin in which phosphors are dispersed inside an LED die-bonded to a supporting base material. It is the structure sealed with the sealing material.
  • a sealing material for sealing the LED an epoxy resin-based composition has been widely used.
  • epoxy resin-based encapsulants are prone to cracking and yellowing due to increased heat generation and shorter wavelength of light due to recent miniaturization of semiconductor packages and higher brightness of LEDs, resulting in lower reliability. Was invited.
  • a silicone (polyorganosiloxane) composition is used as a sealing material because it has excellent heat resistance.
  • the addition reaction curable silicone composition is cured in a short time by heating, so that it has good productivity and is suitable as an LED sealing material. (For example, refer to Patent Documents 1 and 2).
  • the present invention has been made to address such problems, and provides a silicone composition for encapsulating an optical semiconductor that suppresses deformation of a cured product due to heat, and a highly reliable optical semiconductor device using the same. There is.
  • the present inventors have improved the reactivity by setting the number of Si—H groups in the component used as the crosslinking agent to a specific ratio, thereby allowing deformation of the cured product. It has been found that a silicone composition for encapsulating an optical semiconductor capable of suppressing the above and a highly reliable optical semiconductor device using the same are obtained, and the present invention has been made.
  • the optical semiconductor device of the present invention is characterized in that an optical semiconductor element is sealed with a cured product of the above-described silicone composition for sealing an optical semiconductor of the present invention.
  • the present invention it is possible to provide a silicone composition for sealing an optical semiconductor in which deformation of the cured product due to heat is suppressed, and a highly reliable optical semiconductor device using the same.
  • FIG. 1 is a cross-sectional view schematically showing an optical semiconductor device of an embodiment. It is a figure which shows schematically the optical semiconductor device of an Example. It is a figure which shows the surface measurement result of the hardened
  • FIG. It is a figure which shows the surface measurement result of the hardened
  • each abbreviation shows the following siloxy units.
  • M [(CH 3 ) 3 SiO 1/2 ]
  • M Vi [(CH 3 ) 2 (CH 2 ⁇ CH) SiO 1/2 ]
  • M H [(CH 3 ) 2 HSiO 1/2 ]
  • D [(CH 3 ) 2 SiO 2/2 ]
  • D Vi [(CH 3 ) (CH 2 ⁇ CH) SiO 2/2 ]
  • D H [(CH 3) HSiO 2/2]
  • the silicone composition of the embodiment is (A) a polyorganosiloxane having a viscosity at 25 ° C. of 0.1 to 1000 Pa ⁇ s and having two or more alkenyl groups bonded to silicon atoms in one molecule, (B) 1 The specific amount of the linear polyorganohydrogensiloxane having at least two hydrogen atoms bonded to silicon atoms in the molecule and represented by the unit formula (B), and (C) the catalyst amount of the platinum-based catalyst. contains. Hereinafter, each of these components will be described.
  • the component (A) is a base polymer, and has two or more alkenyl groups bonded to silicon atoms in one molecule for sufficiently curing the resulting composition.
  • the molecular structure may be linear, cyclic or branched, but is preferably linear from the viewpoint of the rubber properties of the cured product.
  • (A) component may be used individually by 1 type, and may combine 2 or more types.
  • polyorganosiloxane of component (A) for example, a polyorganosiloxane having a structure in which only an alkenyl group and a monovalent organic group other than an alkenyl group are bonded to a silicon atom (however, two alkenyl groups bonded to a silicon atom are included) Have the above).
  • alkenyl group bonded to the silicon atom examples include a vinyl group, an allyl group, a butenyl group, a petenyl group, and a hexenyl group, and a vinyl group is preferable.
  • This alkenyl group may be bonded to a silicon atom at the end of the molecular chain, may be bonded to a silicon atom in the middle of the molecular chain, or may be bonded to both.
  • the alkenyl group is preferably bonded to at least the silicon atoms at the molecular chain terminals, particularly the silicon atoms at both molecular chain terminals, from the viewpoint of the curing speed of the resulting composition and the physical properties after curing.
  • the plurality of alkenyl groups may be the same or different, but are preferably the same from the viewpoint of easy synthesis.
  • monovalent organic groups bonded to silicon atoms other than alkenyl groups include substituted or unsubstituted monovalent hydrocarbon groups having no aliphatic unsaturated carbon bond.
  • the monovalent organic group include an alkyl group such as a methyl group, an ethyl group, and a propyl group, a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, an aryl group such as a phenyl group, a tolyl group, and a xylyl group, and hydrogens thereof.
  • halogenated hydrocarbon groups in which atoms are partially substituted with chlorine atoms, fluorine atoms, and the like.
  • the monovalent organic group has preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
  • the monovalent organic group is preferably an alkyl group or an aryl group, more preferably a methyl group or a phenyl group.
  • a plurality of monovalent organic groups bonded to silicon atoms other than alkenyl groups are usually present in the molecule.
  • the plurality of monovalent organic groups may be the same or different. In terms of easy synthesis, these monovalent organic groups are preferably the same, but different groups may be introduced into some of them depending on the physical properties required for the resulting cured silicone.
  • each R 1 independently represents an alkenyl group or a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated group, and at least two of R 1 are alkenyl groups.
  • the average degree of polymerization represented by s + 2 is 50 to 2000.
  • R 1 is an alkenyl group
  • specific examples of R 1 include the various alkenyl groups described above, and the positions in the molecular chain are also as described above.
  • the preferred embodiment when R 1 is an alkenyl group is also as described above.
  • R 1 is a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated group
  • the various substituted or unsubstituted monovalent hydrocarbon groups specifically described above as R 1 are The positions in the molecular chain are also as described above.
  • a preferred embodiment in which R 1 is the monovalent hydrocarbon group is also as described above.
  • a component may consist of 1 type (s) or 2 or more types of the linear polyorganosiloxane shown by general formula (A).
  • at least one of the linear polyorganosiloxanes represented by the general formula (A) is at least a silicon atom at the molecular chain terminal, particularly an alkenyl group on the silicon atom at both molecular chain terminals, particularly Is preferably bonded with a vinyl group.
  • the linear polyorganosiloxane represented by the general formula (A) is composed of two types, as a preferable combination, a linear polyorganism in which an alkenyl group, particularly a vinyl group is bonded only to silicon atoms at both ends of the molecular chain.
  • the polyorganosiloxane of the component (A) represented by the unit formula (A) is specifically a unit formula (A1): M Vi D p M Vi (wherein p is an integer of 50 to 2000).
  • the viscosity of component (A) at 25 ° C. is 0.1 to 1000 Pa ⁇ s, preferably 0.5 to 100 Pa ⁇ s.
  • the viscosity is less than 0.1 Pa ⁇ s, the mechanical strength after curing tends to decrease.
  • it exceeds 1000 Pa ⁇ s the workability of the obtained composition tends to be lowered.
  • the component (B) is a cross-linking agent and has at least two hydrogen atoms bonded to silicon atoms, that is, hydrosilyl groups (Si—H groups) in one molecule, and the unit formula (B): [R 2 3 SiO 1 / 2 ] a [R 2 2 SiO 2/2 ] b [R 2 HSiO 2/2 ] c [R 2 2 HSiO 1/2 ] d is a linear polyorganohydrogensiloxane represented by d .
  • R 2 is a substituted or unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated carbon bond, and may be the same or different.
  • R 2 is, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group, a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, an aryl group such as a phenyl group, a tolyl group, or a xylyl group, or a hydrogen atom thereof.
  • R 2 preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • R 2 is preferably an alkyl group, and more preferably a methyl group from the viewpoint of ease of synthesis and cost.
  • a, b, c and d are integers of 0 or more, and each is contained in one molecule of the component (B), [R 2 3 SiO 1/2 ] unit, [R 2 2 SiO 2 / 2 ] units, [R 2 HSiO 2/2 ] units, and [R 2 2 HSiO 1/2 ] units.
  • a + b + c + d represents a [R 2 3 SiO 1/2 ] unit, a [R 2 2 SiO 2/2 ] unit, a [R 2 HSiO 2/2 ] unit and a [R 2 ] contained in the component (B).
  • 2 HSiO 1/2 ] units hereinafter also referred to as “total number of units”
  • c + d is the total number of units having Si—H groups in the component (B) ([R 2 HSiO 2 / 2 ] units and [R 2 2 HSiO 1/2 ] units, hereinafter referred to as “the number of Si—H group-containing units”).
  • (c + d) / (a + b + c + d) represents the ratio of the number of Si—H group-containing units to the total number of units contained in the component (B).
  • a value obtained by multiplying (c + d) / (a + b + c + d) by 100 in the same manner as (c + d) / (a + b + c + d) is defined as “percentage of Si—H group units (%)”.
  • a + b + c + d is an integer of 5 to 80, and is a number satisfying 0.05 ⁇ (c + d) / (a + b + c + d) ⁇ 0.70.
  • a + b + c + d is preferably an integer of 10 to 60, and preferably 0.07 ⁇ (c + d) / (a + b + c + d) ⁇ 0.60. If a + b + c + d is less than 5, it tends to volatilize and is unsuitable for electronic components.
  • the amount of Si—H groups in the molecule of the (B) component linear polyorganohydrogensiloxane is preferably 1.00 to 12.00 mmol / g, preferably 1.00 to 9.00 mmol. / G is more preferable.
  • the blending amount of the component (B) is the number of hydrogen atoms bonded to the silicon atom of the component (B) (hereinafter referred to as “H / alkenyl”) with respect to one alkenyl group bonded to the silicon atom of the component (A). ) Is from 0.8 to 2.0, preferably from 1.0 to 1.6. By blending the component (B) in such an amount, the amount of Si—H groups remaining in the cured product can be suppressed, and the physical properties of the cured product can be stabilized. If H / alkenyl is less than 0.8, sufficient crosslinking cannot be obtained. On the other hand, if it exceeds 2.0, a large amount of unreacted Si—H groups remain in the cured product, resulting in unstable physical properties of the cured product. It is easy to become.
  • the component (B) is blended with the component (A) in an amount that becomes specific H / alkenyl.
  • the amount of —H group can be suppressed.
  • the hydrogen atom bonded to the silicon atom in the component (B) is appropriately dispersed in the molecule with the values of a, b, c and d described above, so that the reactivity of the component (B) As a result, the amount of Si—H groups remaining unreacted in the cured product is further suppressed, so that it is considered that deformation of the cured product due to heat is suppressed.
  • the silicone composition for optical semiconductor encapsulation of the present invention when the optical semiconductor is encapsulated using the same, a cured product that is very little deformed by heat even when the optical semiconductor is used for a long time is used. Obtainable.
  • Component (C) is a catalyst that promotes the addition reaction (hydrosilylation reaction) between the alkenyl group contained in component (A) and the Si—H group in component (B).
  • a well-known platinum-based catalyst used for hydrosilylation reaction can be used.
  • platinum black, secondary platinum chloride, chloroplatinic acid, a monohydric alcohol solution of chloroplatinic acid, a platinum complex having olefins or vinylsiloxane as a ligand, platinum bisacetoacetate, and the like can be given.
  • the compounding amount of the component may be an amount necessary for curing, and can be appropriately adjusted according to a desired curing rate.
  • the platinum amount is in the range of 0.1 to 1000 ppm with respect to the total amount of the composition obtained, and preferably in the range of 0.5 to 500 ppm from the viewpoint of transparency of the cured product and cost.
  • the silicone composition for encapsulating an optical semiconductor of the present invention comprises the components (A) to (C) as basic components, and optionally other components such as (D) a reaction inhibitor, (E ) Reinforcing fine powder fillers, non-reinforcing fine powder fillers, dyes, pigments, flame retardant imparting agents, adhesion imparting agents, heat resistance improvers, oxidation resistance deterioration agents, wavelength adjusting agents, solvents, etc. You may add in the range which does not impair the objective of this invention.
  • the component (D) reaction inhibitor contains the alkenyl group (A) and the Si—H group (B) without reducing the catalytic activity during storage of the component (C) hydrosilylation reaction catalyst. It suppresses the addition reaction of and improves the storage stability of the addition-curable silicone composition.
  • reaction inhibitor (D) examples include phosphorus-containing compounds such as triphenylphosphine; nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole; two or more sulfur-containing compounds, acetylene compounds, and alkenyl groups.
  • phosphorus-containing compounds such as triphenylphosphine
  • nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole
  • sulfur-containing compounds acetylene compounds
  • alkenyl groups examples include phosphorus-containing compounds such as triphenylphosphine; nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole; two or more sulfur-containing compounds, acetylene compounds, and alkenyl groups.
  • the blending amount of the reaction inhibitor (D) is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (A) from the viewpoints of storage stability and reactivity. is there.
  • Component (E) Reinforcing fine powder filler is required for a cross-linked polyorganosiloxane obtained by imparting appropriate fluidity and thixotropy to the composition before cross-linking and obtained by cross-linking. Has the effect of imparting high mechanical strength.
  • the fine powder filler (E) preferably has a specific surface area (hereinafter referred to as a BET specific surface area) of 50 m 2 / g or more, more preferably 50 to 600 m 2 / g. 100 to 400 m 2 / g is particularly preferable.
  • Examples of the fine powder filler (E) include fumed silica, calcined silica, silica aerogel, precipitated silica, fumed titanium oxide, and those whose surfaces have been hydrophobized with polyorganosiloxanes or hexamethyldisilazane. It is done. Preference is given to fumed silica whose surface is hydrophobized with hexamethyldisilazane.
  • the surface treatment amount is preferably such that the amount of carbon on the silica surface is 2.0% by mass or more, more preferably 3.0% by mass or more.
  • the upper limit of the carbon amount is not particularly limited, but is usually 20% by mass or less, preferably 12% by mass or less, and particularly 8% by mass or less.
  • the content of the component (E) in the composition of the present invention is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint that the viscosity of the composition can be appropriately controlled. More preferred is 5 to 4 parts by mass. If the content of the component (E) is in the above range, the viscosity of the composition will be moderate, the workability during molding will be kept good, and the properties such as mechanical strength and hardness of the resulting silicone cured product will also be Well kept.
  • each component is not particularly limited, and the basic components (A) to (C) and the optional components described above are well-known kneaded. Examples thereof include a kneading method using a machine.
  • the two liquids may be stored separately and used at the time of use. In this case, a mixture of a part of the component (A) and the component (C) is used as the liquid (I).
  • the mixture of the remaining component (A), component (B) and other optional components can be used as the solution (II), and the solution (I) and the solution (II) can be mixed. .
  • the silicone composition for sealing an optical semiconductor of the present invention is in a liquid state, and the viscosity at 25 ° C. is preferably 0.1 to 1000 Pa ⁇ s, more preferably 0.5 to 100 Pa ⁇ s.
  • the viscosity exceeds 1000 Pa ⁇ s, for example, when potting an LED, the dispenser is likely to be clogged.
  • it is less than 0.1 Pa ⁇ s, dripping tends to occur when potting.
  • Examples of the method for curing the silicone composition for encapsulating an optical semiconductor of the present invention include a method of molding the composition and then allowing it to stand at room temperature, and a method of heating at 50 to 200 ° C. In order to cure the composition quickly, a heating method is preferred. In the case of heating, the heating time can be appropriately adjusted according to the heating temperature.
  • the cured product is in the form of a transparent hard rubber or flexible resin, and has a characteristic that deformation due to light emission or heat generation of the semiconductor element is extremely small. Therefore, the cured product is suitable as a sealing material for an LED lamp including a light emitting element.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an optical semiconductor device, showing an LED lamp.
  • the optical semiconductor device 1 includes a semiconductor element (LED) 2, a support base 3 made of a conductive metal such as aluminum, a lead electrode 5, a bonding wire 6, and an optical semiconductor sealing silicone composition.
  • the cured product 4 is provided.
  • the semiconductor element 2 is sealed with a cured product 4 of a silicone composition for optical semiconductor sealing.
  • the optical semiconductor device 1 is manufactured as follows, for example. First, a semiconductor element (LED) 2 is die-bonded to an aluminum support base 3 having a lead electrode 5, and the semiconductor element 2 and the lead electrode 5 are connected by a bonding wire 6.
  • LED semiconductor element
  • the cured product 4 is formed by heating and curing at 150 ° C. for 1 hour, for example.
  • the optical semiconductor device 1 thus obtained is excellent in reliability such as light extraction and phosphor dispersibility because the deformation of the cured product 4 when used for a long time is extremely small.
  • LED as an example of the semiconductor element 2, it can apply also to a phototransistor, a photodiode, CCD, a solar cell module, EPROM, a photocoupler etc. other than this, for example.
  • the amount of deformation was measured as follows, and the physical properties were evaluated.
  • the physical property in an Example and a comparative example is the value measured in 25 degreeC.
  • An LED lamp 1 similar to that shown in FIG. 1 was produced as follows using the silicone compositions obtained in Examples and Comparative Examples.
  • the silicone compositions prepared in Examples and Comparative Examples were filled into syringes, respectively, and an aluminum 5050 type LED package (manufactured by Sayo Seiki Seisakusho Co., Ltd., LED chip 2 (B4545ECI0 manufactured by Genelite))
  • the LED package was mounted on the lead electrode 5 and potted on the LED chip 2 and the lead electrode 5 connected by the bonding wire 6 to seal the LED package. This was cured at 80 ° C. for 1 hour and then at 150 ° C.
  • an LED chip is arranged in the vicinity between the 2000 ⁇ m spot L1 and the 2400 ⁇ m spot L2 from the horizontal end of the LED package.
  • FIG. 2 is a schematic configuration diagram of the LED lamp 1 for explaining a method of measuring the rate of change in height.
  • the bonding wire 6 is not shown in FIG.
  • the surface of the cured product 4 was subjected to a non-contact depth measuring device HISOMET I (trade name, manufactured by Union Optics Co., Ltd.) before and after the 500-hour lighting test of the LED lamp 1 described below. ) And measured as follows.
  • the cured product 4 before the 500-hour lighting test of the LED lamp 1 is referred to as an initial cured product 4.
  • the cured product 4 after the 500-hour lighting test is referred to as a 500-hour post-cured product 4.
  • the depth s from the upper edge of the LED package to the surface of the initial cured product 4 is set every 400 ⁇ m from the horizontal end L0 so as to pass through the center of the LED chip.
  • the average value s av of the depths s1 and s2 of the surface of the initial cured product 4 at the 2000 ⁇ m point L1 and the 2400 ⁇ m point L2 was determined.
  • the average value S av -the average value s av was defined as the height H of the initial cured product 4 above the LED chip.
  • s and S were set to + values in the depth direction with the upper end of the package being 0 ⁇ m.
  • the initial cured product 4 height H is determined based on the depths s1 and s2 of the cured product 4 surface at the points L1 and L2 obtained above and the depths S1 and S2 up to the LED chip surface.
  • a current of 350 mA was passed through the LED lamp 1 in an atmosphere of 85 ° C. for 500 hours to perform a lighting test, and the cured product 4 was changed to a cured product 4 after 500 hours. Thereafter, the depth s ′ from the upper end of the LED package to the surface of the cured material 4 after 500 hours is measured for the cured product 4 after 500 hours at the same temperature as that of the initial stage at room temperature.
  • the average value s ′ av of the depths s1 ′ and s2 ′ from the upper edge of the LED package to the surface of the cured product 4 at the point L2 was determined.
  • an average value S av - was defined as the average value s 'calculates av 500 hours after the cured product 4 height H of the LED chip top'.
  • the cured product 4 height H ′ after 500 hours is determined from the depths s1 ′ and s2 ′ of the surface of the cured product 4 at the points L1 and L2 obtained above and the depths S1 and S2 to the LED chip surface, respectively.
  • the height change rate was calculated by the following formula (1), and those with 50% or less were regarded as non-defective products.
  • Height change rate (%) (500 hours post-cured product 4 height H′ ⁇ initial cured product 4 height H) / (initial cured product 4 height H) ⁇ 100 (1)
  • Example 1 (A-1) Linear polydimethylsiloxane containing both terminal vinyl groups represented by the unit formula (A1) (viscosity 3 Pa ⁇ s at 25 ° C.) 87.26 parts by mass, (A-2) the unit formula (A3 ) Linear polydimethylsiloxane containing both side chain vinyl groups (viscosity at 25 ° C.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 141 ⁇ m
  • the cured product 4 height H ′ after 500 hours was 151 ⁇ m
  • the rate of change in height was 7%.
  • the displacement of the surface depth of the cured product 4 of the LED lamp 1 measured by the non-contact depth measuring device in Example 1 is shown with the horizontal position of the LED lamp 1 as the horizontal axis and the depth of the cured product 4 as the vertical axis. 3 shows. In FIG. 3, white circles indicate the surface of the initial cured product 4, and black squares indicate the surface of the cured product 4 after the 500-hour lighting test.
  • Example 2 In Example 1, (B-1) is replaced with (B-2) linear polydimethylhydrogensiloxane represented by the unit formula: MD H 12 D 28 M (Si—H group content: 4.15 mmol / g, total number of units) 42, Si—H unit percentage of 28.6%)
  • a silicone composition was obtained in the same manner as in Example 1 except that the composition was changed to 4.31 parts by mass. H / Vi in this silicone composition is 1.4.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 119 ⁇ m
  • the cured product 4 height H ′ after 500 hours was 128 ⁇ m
  • the rate of change in height was 8%.
  • Example 3 In Example 1, (B-1) is replaced with (B-3) linear polydimethylhydrogensiloxane represented by the unit formula: M H D H 3 D 47 MH (Si—H group content 1.2 mmol / g, A silicone composition was obtained in the same manner as in Example 1 except that the total number of units was 52 and the Si—H group unit percentage was 9.6%). H / Vi in this silicone composition is 1.4. Using the obtained silicone composition, an LED lamp 1 was produced as described above, and its physical properties were evaluated. The initial cured product 4 height H was 120 ⁇ m, the cured product 4 height H ′ after 500 hours was 127 ⁇ m, and the rate of change in height was 6%.
  • Example 4 In Example 1, (B-1) is replaced with (B-4) linear polydimethylhydrogensiloxane represented by unit formula: MD H 23 D 16 M (Si—H group amount: 8.70 mmol / g, total number of units) 41, Si—H group unit percentage 56.1%)
  • a silicone composition was obtained in the same manner as in Example 1 except that the composition was changed to 2.06 parts by mass. H / Vi in this silicone composition is 1.4.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 101 ⁇ m
  • the cured product 4 height H ′ after 500 hours was 118 ⁇ m
  • the rate of change in height was 17%.
  • Example 5 In Example 1, (B-1) is replaced with (B-5) linear polydimethylhydrogensiloxane represented by the unit formula: M H D H 12 D 28 MH (Si—H group amount 5.56 mmol / g, A silicone composition was obtained in the same manner as in Example 1 except that the total number of units was 42 and the percentage of Si—H group units was 33.3%. H / Vi in this silicone composition is 1.4. Using the obtained silicone composition, an LED lamp 1 was produced as described above, and its physical properties were evaluated. The initial cured product 4 height H was 116 ⁇ m, the cured product 4 height H ′ after 500 hours was 140 ⁇ m, and the rate of change in height was 21%.
  • Example 6 In Example 4, a silicone composition was obtained in the same manner as in Example 4 except that no filler was added. Using the obtained silicone composition, an LED lamp 1 was produced as described above, and its physical properties were evaluated. H / Vi in this silicone composition is 1.4. The initial cured product 4 height H was 125 ⁇ m, the cured product 4 height H ′ after 500 hours was 133 ⁇ m, and the rate of change in height was 6%.
  • a silicone composition was obtained in the same manner as in Example 4 as the same composition as in Example 4. Using the obtained silicone composition, an LED lamp 1 was produced as described above, and its physical properties were evaluated. The initial cured product 4 height H was 120 ⁇ m, the cured product 4 height H ′ after 500 hours was 127 ⁇ m, and the rate of change in height was 6%.
  • a silicone composition was obtained in the same manner as in Example 4 as the same composition as in Example 4. Using the obtained silicone composition, an LED lamp 1 was produced as described above, and its physical properties were evaluated. The initial cured product 4 height H was 130 ⁇ m, and after 500 hours the cured product 4 height H ′ was 148 ⁇ m, and the rate of change in height was 14%.
  • Example 1 is a hydrogen siloxane outside the range of component (B) (hereinafter referred to as “component (B) ′”) (B-6) unit formula: MD H 6 D 95 M
  • component (B) ′ component (B-6) unit formula: MD H 6 D 95 M
  • the linear polydimethylhydrogensiloxane represented Si—H group amount 0.78 mmol / g, total unit number 103, Si—H group unit percentage 5.8%
  • H / Vi in this silicone composition is 1.4.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 115 ⁇ m
  • the cured product 4 height H ′ after 500 hours was 175 ⁇ m
  • the rate of change in height was 52%.
  • Example 2 is a component (B) ′ (B-7) Linear polydimethylhydrogensiloxane represented by unit formula: MD H 50 M (Si—H group content 16.60 mmol / g, total number of units 52, Si—H group unit percentage 96.2%)
  • MD H 50 M Si—H group content 16.60 mmol / g, total number of units 52, Si—H group unit percentage 96.2%)
  • H / Vi in this silicone composition is 1.4.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 134 ⁇ m, and after 500 hours the cured product 4 height H ′ was 220 ⁇ m, and the height change rate was 64%.
  • (B-1) is a linear polydimethylhydrogensiloxane represented by (B-8) MD H 8 M which is the component (B) ′ (Si—H group content 13.80 mmol / g, total
  • a silicone composition was obtained in the same manner as in Example 1, except that the number of units was 10 and the percentage of Si—H group units was 80%. H / Vi in this silicone composition is 1.4.
  • an LED lamp 1 was produced as described above, and its physical properties were evaluated.
  • the initial cured product 4 height H was 88 ⁇ m, and after 500 hours the cured product 4 height H ′ was 197 ⁇ m, and the rate of change in height was 124%.
  • the displacement of the surface depth of the cured product 4 of the LED lamp 1 measured with a non-contact depth measuring machine in Comparative Example 3 is shown with the horizontal position of the LED lamp 1 as the horizontal axis and the depth of the cured product 4 as the vertical axis. 4 shows.
  • white circles indicate the surface of the initial cured product 4
  • black squares indicate the surface of the cured product 4 after the 500-hour lighting test.
  • Tables 1 and 2 below show the blending ratios and height change rates of the components in Examples 1 to 8 and Comparative Examples 1 to 3.
  • the total number of units (value of a + b + c + d) in component (B) in Examples 1 to 6 and Comparative Examples 1 to 3, and the percentage of Si—H group units relative to the total number of units ((c + d) / (a + b + c + d) ⁇ 100 [%]) is shown in FIG. 5 with the total number of units on the vertical axis and the percentage of Si—H group units on the horizontal axis.
  • the total number of units (value of a + b + c + d) in the component (B) in the silicone compositions prepared in Example 7 and Example 8, and the percentage of Si—H group units relative to the total number of units ((c + d) / (a + b + c + d) ) ⁇ 100 [%]) is the same as that in the fourth embodiment.
  • the LED lamp 1 of each example using the components (A), (B), and (C) of the present invention is a cured product 4 after a 500-hour lighting test.
  • the deformation is extremely small. Therefore, the silicone composition for sealing an optical semiconductor of the present invention is suitable as a sealing material for an optical semiconductor element of an LED lamp, for example.
  • SYMBOLS 1 LED lamp, 2 ... Semiconductor element, 3 ... Support base material, 4 ... Hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

 硬化物の変形を抑制した光半導体封止用シリコーン組成物及びそれを用いた高信頼性の光半導体装置を提供する。(A)1分子中にケイ素原子に結合したアルケニル基を2個以上有するポリオルガノシロキサン、(B)1分子中にケイ素原子に結合した水素原子を少なくとも2個有し、単位式:[R SiO1/2][R SiO2/2][RHSiO2/2][R HSiO1/2](式中、Rは脂肪族不飽和炭素結合を有しない、同一の又は異なる、置換又は非置換の1価炭化水素基であり、a,b,c,dは0以上の整数であり、a+d=2、a+b+c+dは5~80の整数、かつ、0.05≦(c+d)/(a+b+c+d)≦0.70を満足する数。)で表される直鎖状ポリオルガノハイドロジェンシロキサン及び(C)白金系触媒を含有する光半導体封止用シリコーン組成物。

Description

光半導体封止用シリコーン組成物及び光半導体装置
 本発明は、例えばLED(発光ダイオード)などの光半導体素子を封止する光半導体封止用シリコーン組成物及びそれを用いた光半導体装置に関する。
 光半導体装置として知られるLEDランプは、光半導体素子として発光ダイオード(LED:Light Emitting Diode)を有し、支持基材にダイボンドされたLEDを、内部に蛍光体を分散させた透明な樹脂からなる封止材で封止した構成である。このLEDを封止する封止材としては、従来からエポキシ樹脂ベースの組成物が汎用されていた。
 しかし、エポキシ樹脂ベースの封止材では、近年の半導体パッケージの小型化やLEDの高輝度化にともなう発熱量の増大や光の短波長化によってクラッキングや黄変が発生しやすく、信頼性の低下を招いていた。
 そこで、優れた耐熱性を有する点から、封止材としてシリコーン(ポリオルガノシロキサン)組成物が使用されている。特に、付加反応硬化型のシリコーン組成物は、加熱により短時間で硬化するため生産性がよく、LEDの封止材として適している。(例えば、特許文献1,2参照)。
 しかしながら、従来のシリコーン組成物を封止材として用いたLEDランプでは、点灯使用中、特に高温下で点灯使用を続けた場合に封止材に変形が生じ、表面状態の変化による光取り出し性の低下や蛍光体の分散度の変化による色調の変化を引き起こしやすいという問題があった。
特開2002-338833号公報 特開2004-292714号公報
 本発明は、このような課題に対処するためになされたもので、硬化物の熱による変形を抑制した光半導体封止用シリコーン組成物及びそれを用いた高信頼性の光半導体装置を提供することにある。
 本発明者らは、上記した課題を解決するために鋭意検討した結果、架橋剤として用いられる成分中のSi-H基の数を特定の割合として反応性を向上させることによって、硬化物の変形を抑制することのできる光半導体封止用シリコーン組成物及びこれを用いた高信頼性の光半導体装置が得られることを見出し、本発明をなすに至った。
 本発明の光半導体封止用シリコーン組成物は、
 (A)25℃における粘度が0.1~1000Pa・sであり、1分子中にケイ素原子に結合したアルケニル基を2個以上有するポリオルガノシロキサン、
 (B)1分子中にケイ素原子に結合した水素原子を少なくとも2個有し、単位式(B):[R SiO1/2][R SiO2/2][RHSiO2/2][R HSiO1/2]
(式中、Rは脂肪族不飽和炭素結合を有しない、同一の又は異なる、置換又は非置換の1価炭化水素基であり、a,b,c,dは0以上の整数であり、a+d=2、a+b+c+dは5~80の整数、かつ、0.05≦(c+d)/(a+b+c+d)≦0.70を満足する数。)で表される直鎖状ポリオルガノハイドロジェンシロキサンの(A)成分のケイ素原子に結合したアルケニル基1個に対して(B)のケイ素原子に結合した水素原子の個数が0.8~2.0個となる量、及び
 (C)白金系触媒の触媒量
を含有することを特徴とする。
 本発明の光半導体装置は、上記本発明の光半導体封止用シリコーン組成物の硬化物によって光半導体素子が封止されていることを特徴とする。
 本発明によれば硬化物の熱による変形を抑制した光半導体封止用シリコーン組成物及びそれを用いた高信頼性の光半導体装置を提供することができる。
実施形態の光半導体装置を概略的に示す断面図である。 実施例の光半導体装置を概略的に示す図である。 実施例1のLEDランプの硬化物の表面測定結果を示す図である。 比較例3のLEDランプの硬化物の表面測定結果を示す図である。 実施例及び比較例に用いた(B)成分における全単位数と、全単位数に対するSi-H基単位数百分率を示すグラフである。
 以下、本発明の光半導体封止用シリコーン組成物の実施の形態について説明する。なお、本明細書において、各略号は以下のシロキシ単位を示す。
 M:[(CHSiO1/2]
 MVi:[(CH(CH=CH)SiO1/2]
 M:[(CHHSiO1/2]
 D:[(CHSiO2/2]
 DVi:[(CH)(CH=CH)SiO2/2]
 D:[(CH)HSiO2/2]
 実施形態のシリコーン組成物は、(A)25℃における粘度が0.1~1000Pa・sであり、1分子中にケイ素原子に結合したアルケニル基を2個以上有するポリオルガノシロキサン、(B)1分子中にケイ素原子に結合した水素原子を少なくとも2個有し、上記単位式(B)で表される直鎖状ポリオルガノハイドロジェンシロキサンの上記特定量及び(C)白金系触媒の触媒量を含有する。以下、これらの各成分について説明する。
[(A)成分]
 (A)成分はベースポリマーであり、得られる組成物を十分に硬化させる上で、1分子中にケイ素原子に結合したアルケニル基を2個以上有する。その分子構造は、直鎖状、環状、分岐鎖状のいずれでもよいが、硬化物のゴム物性の点から、直鎖状が好ましい。また、(A)成分は1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 (A)成分のポリオルガノシロキサンとしては、例えば、ケイ素原子にアルケニル基と、アルケニル基以外の1価有機基のみが結合した構造のポリオルガノシロキサン(ただし、ケイ素原子に結合したアルケニル基を2個以上有する)が挙げられる。
 ケイ素原子に結合したアルケニル基としては、例えばビニル基、アリル基、ブテニル基、ペテニル基、ヘキセニル基などが例示され、好ましくはビニル基である。このアルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。アルケニル基は、得られる組成物の硬化速度、硬化後の物性の点から、少なくとも分子鎖末端のケイ素原子、特に、分子鎖両末端のケイ素原子に結合していることが好ましい。
 (A)成分のポリオルガノシロキサンにおいて、複数のアルケニル基は、同一であっても異なってもよいが、合成が容易である点で、同一であることが好ましい。
 また、アルケニル基以外のケイ素原子に結合する1価有機基として、具体的には、脂肪族不飽和炭素結合を有しない、置換又は非置換の1価炭化水素基が挙げられる。上記1価有機基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基などが挙げられる。上記1価有機基の炭素原子数は、1~12個が好ましく、1~8個がより好ましい。上記1価有機基は、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 (A)成分のポリオルガノシロキサンにおいて、アルケニル基以外のケイ素原子に結合する1価有機基は、通常分子内に複数個存在する。該複数の1価有機基は、同一であっても異なってもよい。合成が容易である点では、これらの1価有機基は同一であることが好ましいが、得られるシリコーン硬化物に求められる物性に応じて、その一部に異なる基が導入されてもよい。
 上記(A)成分における直鎖状ポリオルガノシロキサンとしては、例えば、下記一般式(A)で示されるポリオルガノシロキサンが挙げられる。
 [R SiO1/2][R SiO2/2[R SiO1/2]  …(A)
(ただし、式(A)中、Rはそれぞれ独立にアルケニル基または、脂肪族不飽和基を含まない置換又は非置換の1価炭化水素基を示し、Rの少なくとも2個はアルケニル基であり、s+2で示される平均重合度は50~2000である。)
 Rがアルケニル基である場合、該Rとして具体的には、上に説明した各種アルケニル基が挙げられ、分子鎖における位置についても上に説明したとおりである。Rがアルケニル基である場合の好ましい態様も上記のとおりである。
 Rが脂肪族不飽和基を含まない置換又は非置換の1価炭化水素基である場合、該Rとして具体的には上に説明した種々の置換又は非置換の1価炭化水素基が挙げられ、分子鎖における位置についても上に説明したとおりである。Rが上記1価炭化水素基である場合の好ましい態様も上記のとおりである。
 (A)成分は、一般式(A)で示される直鎖状ポリオルガノシロキサンの1種または2種以上からなってもよい。いずれの場合であっても、一般式(A)で示される直鎖状ポリオルガノシロキサンのすくなくとも1種は、少なくとも分子鎖末端のケイ素原子、特に、分子鎖両末端のケイ素原子にアルケニル基、特にはビニル基が結合していることが好ましい。一般式(A)で示される直鎖状ポリオルガノシロキサンが2種からなる場合、好ましい組み合わせとして、分子鎖両末端のケイ素原子にのみアルケニル基、特にはビニル基が結合している直鎖状ポリオルガノシロキサンと、分子鎖両末端のケイ素原子と分子鎖途中のケイ素原子にアルケニル基、特にはビニル基が結合している直鎖状ポリオルガノシロキサンの組み合わせが挙げられる。
 上記単位式(A)で示される(A)成分のポリオルガノシロキサンとして、具体的には、単位式(A1):MViVi(式中、pは50~2000の整数である。)で示される両末端ビニル基含有ポリジメチルシロキサン、単位式(A2):MDVi Vi(式中、j,kはそれぞれ独立して0以上の整数であり、j+kは好ましくは50~2000である。)で示される片末端・側鎖ビニル基含有ポリジメチルシロキサン及び単位式(A3):MViVi Vi(式中、m,nはそれぞれ独立して0以上の整数であり、m+nは好ましくは50~2000である。)で示される両末端・側鎖ビニル基含有ポリジメチルシロキサンから選ばれる少なくとも1種を好適に用いることができる。単位式(A1)で示されるポリオルガノシロキサン及び単位式(A3)で示されるポリオルガノシロキサンを組み合わせて用いることが好ましい。
 (A)成分の25℃における粘度は、0.1~1000Pa・sであり、好ましくは0.5~100Pa・sである。粘度が0.1Pa・s未満であると、硬化後の機械的強度が低下しやすい。一方、1000Pa・sを超えると、得られる組成物の作業性が低下しやすい。
[(B)成分]
 (B)成分は架橋剤であり、1分子中にケイ素原子に結合した水素原子、すなわちヒドロシリル基(Si-H基)を少なくとも2個有し、単位式(B):[R SiO1/2][R SiO2/2][RHSiO2/2][R HSiO1/2]で表される直鎖状ポリオルガノハイドロジェンシロキサンである。
 式(B)中、Rは脂肪族不飽和炭素結合を有しない、置換又は非置換の1価炭化水素基であり、それぞれ同一であっても異なっていてもよい。Rとしては、例えばメチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基等が挙げられる。Rの炭素原子数は1~12個が好ましく、1~8個がより好ましい。Rは、好ましくはアルキル基であり、合成のし易さ、コストの点から、より好ましくはメチル基である。
 式(B)中、a,b,c,dは0以上の整数であり、それぞれ(B)成分1分子中に含まれる、[R SiO1/2]単位、[R SiO2/2]単位、[RHSiO2/2]単位、[R HSiO1/2]単位の数を示す。(B)成分は直鎖状であり、a+d=2である。
 式(B)中、a+b+c+dは(B)成分に含まれる[R SiO1/2]単位、[R SiO2/2]単位、[RHSiO2/2]単位及び[R HSiO1/2]単位の総数(以下、「全単位数」ということもある)であり、c+dは(B)成分中のSi-H基を有する単位の合計数([RHSiO2/2]単位及び[R HSiO1/2]単位の合計数、以下、「Si-H基含有単位数」ということもある)である。したがって、(c+d)/(a+b+c+d)は、(B)成分中に含まれる全単位数に対するSi-H基含有単位数の割合を示す。なお、本明細書においては、必要に応じて、(c+d)/(a+b+c+d)と同様に(c+d)/(a+b+c+d)に100を乗じた値を「Si-H基単位数百分率(%)」として、(B)成分の分子構造の指標に用いる。
 式(B)成分中、a+b+c+dは5~80の整数であり、かつ0.05≦(c+d)/(a+b+c+d)≦0.70を満足する数である。a+b+c+dは10~60の整数であることが好ましく、0.07≦(c+d)/(a+b+c+d)≦0.60であることが好ましい。a+b+c+dが5未満であると、揮発し易くなり電子部品には不適である。一方、80を超えると分子中のSi-H基の反応性が悪くなり、未反応のSi-H基が大量に残存するおそれがある。また、(c+d)/(a+b+c+d)が0.05未満であると、十分な架橋が得られないおそれがあり、0.70を超えると、未反応のSi-H基が残存し易く、変形抑制効果に劣ることがある。
 このような、(B)成分の直鎖状ポリオルガノハイドロジェンシロキサンが分子内に有するSi-H基の量としては、1.00~12.00mmol/gが好ましく、1.00~9.00mmol/gがより好ましい。
 (B)成分の配合量は、(A)成分のケイ素原子に結合したアルケニル基1個に対して(B)成分のケイ素原子に結合した水素原子の個数(以下、「H/アルケニル」という。)が0.8~2.0となる量、好ましくは1.0~1.6となる量である。(B)成分をこのような量で配合することで、硬化物中に残存するSi-H基量を抑え、硬化物の物性を安定させることができる。H/アルケニルが0.8未満では十分な架橋が得られず、一方、2.0を超えると、硬化物中に未反応のSi-H基が大量に残存し、硬化物の物性が不安定になりやすい。
 本発明の光半導体封止用シリコーン組成物は、(B)成分が、上記(A)成分に対して、特定のH/アルケニルとなる量で配合されるため、硬化後に未反応で残存するSi-H基量を抑えることができる。さらに、この(B)成分中のケイ素原子に結合した水素原子が上記したa,b,c,dの値でその分子内に適度に分散して存在することで、(B)成分の反応性が高くなっており、これにより硬化物中に未反応で残存するSi-H基量がより抑えられることから、硬化物の熱による変形が抑制されると考えられる。そのため、本発明の光半導体封止用シリコーン組成物によれば、これを用いて光半導体を封止した場合に、該光半導体を長時間点灯使用しても熱による変形の極めて少ない硬化物を得ることができる。
[(C)成分]
 (C)成分は、(A)成分に含まれるアルケニル基と(B)成分中のSi-H基との付加反応(ヒドロシリル化反応)を促進する触媒である。(C)成分としては、ヒドロシリル化反応に用いられる周知の白金系触媒を使用することができる。例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸の1価アルコール溶液、オレフィン類やビニルシロキサンを配位子として有する白金錯体、白金ビスアセトアセテート等が挙げられる。
 (C)成分の配合量は、硬化に必要な量であればよく、所望の硬化速度などに応じて適宜調整することができる。通常、得られる組成物の合計量に対し、白金量で0.1~1000ppmの範囲、好ましくは硬化物の透明性、コストの点から、0.5~500ppmの範囲である。
[その他任意成分]
 本発明の光半導体封止用シリコーン組成物は、上記(A)~(C)の各成分を基本成分とし、これらに必要に応じて、その他任意成分、例えば(D)反応抑制剤、(E)補強性の微粉末充填剤、非補強性の微粉末充填剤、染料、顔料、難燃性付与剤、接着性付与剤、耐熱性向上剤、耐酸化劣化剤、波長調整剤、溶剤等を本発明の目的を損なわない範囲で添加してもよい。
 (D)成分の反応抑制剤は、(C)成分のヒドロシリル化反応触媒の保存中における触媒活性を低下させることなく、かつ(A)成分のアルケニル基と(B)成分のSi-H基との付加反応を抑制し、付加硬化型シリコーン組成物の保存安定性を高める働きをする。
 反応抑制剤(D)としては、例えば、トリフェニルホスフィンなどのリン含有化合物;トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の窒素含有化合物;硫黄含有化合物、アセチレン系化合物、アルケニル基を2個以上含む化合物、ハイドロパーオキシ化合物、マレイン酸誘導体、アセチレンアルコール等が挙げられ、加熱時に優れた反応性を示すため、マレイン酸ジアリル等のマレイン酸誘導体、2-フェニル-3-ブチン-2-オール等のアセチレンアルコールが好ましい。
 反応抑制剤(D)の配合量は保存性と反応性の観点から、(A)成分100質量部に対し、好ましくは0.001~5質量部、より好ましくは0.01~1質量部である。
 (E)成分の補強性の微粉末充填剤は、架橋前の組成物に適度の流動性、チクソ性を与え、かつ架橋して得られるポリオルガノシロキサンの架橋体に、その用途に応じて要求される高い機械的強度を付与する作用を有する。
 微粉末充填剤(E)は、上記機能を果たすために、BET法による比表面積(以下、BET比表面積という。)が、50m/g以上のものが好ましく、50~600m/gがより好ましく、100~400m/gが特に好ましい。
 微粉末充填剤(E)としては、煙霧質シリカ、焼成シリカ、シリカエアロゲル、沈殿シリカ、煙霧質酸化チタン、及びこれらの表面をポリオルガノシロキサン類やヘキサメチルジシラザンなどで疎水化したものが挙げられる。好ましくはヘキサメチルジシラザンで表面を疎水化した煙霧質シリカである。
 表面を疎水化処理することで、親水性表面を有することに起因する増粘、顕著な可塑化戻りなどの問題を回避できる。表面処理量は、シリカ表面のカーボン量を2.0質量%以上、より好ましくは3.0質量%以上とする量であることが好ましい。カーボン量の上限は特に制限されないが、通常20質量%以下、好ましくは12質量%以下、特に8質量%以下である。
 本発明の組成物における(E)成分の含有量は、組成物の粘度を適正に制御できる点から、(A)成分の100質量部に対して、0.1~10質量部が好ましく、0.5~4質量部がより好ましい。(E)成分の含有量が上記範囲にあれば、組成物の粘度は適度なものとなり成形時の作業性が良好に保たれ、さらに得られるシリコーン硬化物の機械的強度や硬度等の特性も十分に保たれる。
 本発明の光半導体封止用シリコーン組成物の製造方法としては、各成分の添加順序は特に限定されるものではなく、(A)~(C)の基本成分と上述した任意成分を周知の混練機で混練する方法等が挙げられる。また、2液に分けて保存し、使用時にこの2液を混合して用いてもよく、この場合には、(A)成分の一部と(C)成分を混合したものを(I)液とし、残りの(A)成分、(B)成分及びその他任意成分(例えば反応抑制剤など)を混合したものを(II)液とし、(I)液と(II)液を混合することもできる。
 本発明の光半導体封止用シリコーン組成物は液状であり、25℃における粘度は、好ましくは0.1~1000Pa・s、より好ましくは0.5~100Pa・sである。粘度が1000Pa・sを超えると、例えばLEDにポッティングする際にディスペンサーの目詰まりを生じやすい。一方、0.1Pa・s未満であると、ポッティングする際に液ダレを起しやすい。
 本発明の光半導体封止用シリコーン組成物の硬化方法は、該組成物を成形した後、室温で放置する方法や、50~200℃で加熱する方法が挙げられる。該組成物を迅速に硬化させる上で、加熱する方法が好ましい。加熱する場合、加熱時間は、加熱温度に応じて適宜調整することができる。硬化物は、透明な硬質のゴム状もしくは可撓性を有するレジン状であり、半導体素子の発光や発熱による変形が極めて小さいという特性を備えている。そのため、硬化物は、発光素子を備えるLEDランプの封止材として好適である。
 次に、本発明の光半導体封止用シリコーン組成物の硬化物を封止材として適用した光半導体装置の一例について図面を参照して説明する。図1は、光半導体装置の構成を模式的に示す断面図であり、LEDランプを示している。
 光半導体装置1は、半導体素子(LED)2と、アルミニウム等の導電性の金属から構成された支持基材3と、リード電極5と、ボンディングワイヤ6と、光半導体封止用シリコーン組成物の硬化物4とを備えている。半導体素子2は、光半導体封止用シリコーン組成物の硬化物4で封止されている。
 この光半導体装置1は、例えば次のようにして作製される。まず、リード電極5を有するアルミニウムの支持基材3に半導体素子(LED)2をダイボンドし、半導体素子2とリード電極5とをボンディングワイヤ6で接続する。
 次に、半導体素子2に上述した光半導体封止用シリコーン組成物をポッティングした後、例えば150℃で1時間加熱して硬化させ、硬化物4を形成する。
 このようにして得られる光半導体装置1は、長時間点灯使用時の硬化物4の変形が極めて小さいため、光取り出し性や蛍光体の分散性等の信頼性に優れている。
 なお、半導体素子2の一例としてLEDを用いて説明したが、これ以外に、例えばフォトトランジスタ、フォトダイオード、CCD、太陽電池モジュール、EPROM、フォトカプラなどにも適用することができる。
 次に、本発明を実施例により詳細に説明する。本発明は以下の実施例に限定されるものではない。
 実施例及び比較例で得られた光半導体用硬化性シリコーン組成物について、以下のようにして変形量を測定し、その物性を評価した。なお、実施例及び比較例における物性は、25℃において測定した値である。
[変形量(高さ変化率)の測定]
 図1で示したのと同様のLEDランプ1を、実施例及び比較例で得られたシリコーン組成物を用いて次のようにして作製した。実施例及び比較例で作製したシリコーン組成物をそれぞれシリンジに充填し、アルミニウム製5050型LEDパッケージ((株)佐用精機製作所製、LEDチップ2(Genelite製B4545ECI0)を支持基材3上の銀のリード電極5の上に実装し、LEDチップ2とリード電極5をボンディングワイヤ6で接続したもの)にポッティングしてLEDパッケージを封止した。これを80℃で1時間、次いで150℃で5時間の条件で硬化させ、実施例及び比較例のシリコーン組成物の硬化物4で封止されたLEDランプ1を得た。このLEDランプ1は、LEDパッケージの水平方向の端部から2000μm地点L1及び2400μm地点L2との間付近にLEDチップが配置されている。
 図2は、高さ変化率の測定方法を説明するためのLEDランプ1の概略構成図である。ただし、図2においてはボンディングワイヤ6の図示を省略した。上記したように作製したLEDランプ1について、硬化物4の表面を、以下に説明するLEDランプ1の500時間点灯試験前後において、非接触深度測定機HISOMET I(商品名、ユニオン光学(株)製)を用いて次のように測定した。LEDランプ1の500時間点灯試験前の硬化物4を初期硬化物4という。500時間点灯試験後の硬化物4を500時間後硬化物4という。
 初期硬化物4について、図2に示すようにLEDチップの中心部を通過するように水平方向の端部L0から400μmごとにLEDパッケージ上縁部から初期硬化物4の表面までの深さsを測定し、2000μm地点L1及び2400μm地点L2における初期硬化物4表面の深さs1,s2の平均値savを求めた。
 また、LEDパッケージ水平方向の端部から2000μm地点L1及び2400μm地点L2におけるパッケージ上端部からLEDチップ表面までの深さS1,S2を測定し、その平均値Savを求めた。平均値Sav-平均値savをLEDチップ上部の初期硬化物4高さHとした。ここで、s,Sはパッケージ上端を0μmとし、深さ方向に+の値とした。
 なお、初期硬化物4高さHは、上記で得られる地点L1及びL2における硬化物4表面の深さs1,s2とLEDチップ表面までの深さS1,S2とから、それぞれの地点でのLEDチップ上部の硬化物4高さH1(=S1-s1),H2(=S2-s2)を算出し、その平均値を求める方法により求めてもよい。
 上記LEDランプ1に85℃雰囲気下で350mAの電流を500時間流し、点灯試験を行い、硬化物4を500時間後硬化物4とした。その後、500時間後硬化物4について、常温にて初期と同じ方法でLEDパッケージ上端部から500時間後硬化物4の表面までの深さs’を測定し、上記と同様に2000μm地点L1と2400μm地点L2における、LEDパッケージ上縁部から硬化物4表面までの深さs1’、s2’の平均値s’avを求めた。上記で求めた平均値Savを用いて、平均値Sav-平均値s’avを算出しLEDチップ上部の500時間後硬化物4高さH’とした。
 なお、500時間後硬化物4高さH’は、上記で得られる地点L1及びL2における硬化物4表面の深さs1’、s2’とLEDチップ表面までの深さS1,S2とから、それぞれの地点でのLEDチップ上部の硬化物4高さH1’(=S1-s1’),H2’(=S2-s2’)を算出し、その平均値を求める方法により求めてもよい。
 上記で得られた初期硬化物4高さH及び500時間後硬化物4高さH’を用いて下記式(1)により高さ変化率を算出し、50%以下のものを良品とした。
 高さ変化率(%)=(500時間後硬化物4高さH’-初期硬化物4高さH)/(初期硬化物4高さH)×100    …(1)
 実施例及び比較例のシリコーン組成物は次のようにして作製した。
[実施例1]
 (A-1)上記単位式(A1)で示される両末端ビニル基含有直鎖状ポリジメチルシロキサン(25℃における粘度3Pa・s)87.26質量部、(A-2)上記単位式(A3)で示される両末端側鎖ビニル基含有直鎖状ポリジメチルシロキサン(25℃における粘度5Pa・s)8.09質量部、(B-1)単位式:M で表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量5.19mmol/g、全単位数12、Si-H基単位数百分率41.7%)3.45質量部、補強性の微粉末充填剤(E)としてヘキサメチルジシラザンで表面処理したAEROSIL300(商品名、EVONIK社製、BET比表面積:300m/g)1.18質量部及び反応抑制剤(D)としてマレイン酸ジアリル0.015質量部を混合した。その後(C)テトラメチルテトラビニルシクロテトラシロキサンを配位子として有する白金錯体の白金1.8質量%ビニルシロキサン溶液0.015質量部(白金量で2.7ppm)を添加してさらに混合し、これを脱泡してシリコーン組成物を得た。このシリコーン組成物の(A―1)及び(A-2)中のケイ素原子に結合したビニル基1個に対する(B)成分中のケイ素原子に結合した水素原子数(H/Vi)は1.4である。
 得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは141μm、500時間後硬化物4高さH’は151μmであり、高さ変化率は7%であった。
 また、実施例1において非接触深度測定機で測定したLEDランプ1の硬化物4の表面深さの変位をLEDランプ1の水平位置を横軸、硬化物4の深さを縦軸として、図3に示す。図3において、白丸は初期硬化物4表面、黒四角は500時間点灯試験後の硬化物4表面を示す。
[実施例2]
 実施例1において(B-1)を(B-2)単位式:MD 1228Mで表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量4.15mmol/g、全単位数42、Si-H単位数百分率28.6%)4.31質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは119μm、500時間後硬化物4高さH’は128μmであり、高さ変化率は8%であった。
[実施例3]
 実施例1において(B-1)を(B-3)単位式:M 47で表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量1.2mmol/g、全単位数52、Si-H基単位数百分率9.6%)14.92質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは120μm、500時間後硬化物4高さH’は127μmであり、高さ変化率は6%であった。
[実施例4]
 実施例1において(B-1)を(B-4)単位式:MD 2316Mで表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量8.70mmol/g、全単位数41、Si-H基単位数百分率56.1%)2.06質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは101μm、500時間後硬化物4高さH’は118μmであり、高さ変化率は17%であった。
[実施例5]
 実施例1において(B-1)を(B-5)単位式:M 1228で表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量5.56mmol/g、全単位数42、Si-H基単位数百分率33.3%)3.22質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは116μm、500時間後硬化物4高さH’は140μmであり、高さ変化率は21%であった。
[実施例6]
 実施例4において、充填剤を配合しない他は実施例4と同様の組成として、実施例4と同様にシリコーン組成物を得た。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。このシリコーン組成物におけるH/Viは1.4である。初期硬化物4高さHは125μm、500時間後硬化物4高さH’は133μmであり、高さ変化率は6%であった。
[実施例7]
 実施例4において、(A-1)の配合量を88.84質量部、(B-4)の配合量を1.62質量部に変えて、H/Vi=1.1とした他は実施例4と同様の組成として、実施例4と同様にシリコーン組成物を得た。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは120μm、500時間後硬化物4高さH’は127μmであり、高さ変化率は6%であった。
[実施例8]
 実施例4において、(A-1)の配合量を88.84質量部、(B-4)の配合量を2.95質量部に変えて、H/Vi=2.0とした他は実施例4と同様の組成として、実施例4と同様にシリコーン組成物を得た。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは130μm、500時間後硬化物4高さH’は148μmであり、高さ変化率は14%であった。
[比較例1]
 実施例1において(B-1)を(B)成分の範囲外のハイドロジェンシロキサン(以下、「(B)’成分」という)である(B-6)単位式:MD 95Mで表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量0.78mmol/g、全単位数103、Si-H基単位数百分率5.8%)22.96質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは115μm、500時間後硬化物4高さH’は175μmであり、高さ変化率は52%であった。
[比較例2]
 実施例1において(B-1)を(B)’成分である(B-7)単位式:MD 50Mで表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量16.60mmol/g、全単位数52、Si-H基単位数百分率96.2%)1.08質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは134μm、500時間後硬化物4高さH’は220μmであり、高さ変化率は64%であった。
[比較例3]
 実施例1において(B-1)を(B)’成分である(B-8)MD Mで表わされる直鎖状ポリジメチルハイドロジェンシロキサン(Si-H基量13.80mmol/g、全単位数10、Si-H基単位数百分率80%)1.3質量部に変更した他は実施例1と同様の組成として実施例1と同様にシリコーン組成物を得た。このシリコーン組成物におけるH/Viは1.4である。得られたシリコーン組成物を用いて上記したようにLEDランプ1を作製し、その物性を評価した。初期硬化物4高さHは88μm、500時間後硬化物4高さH’は197μmであり、高さ変化率は124%であった。
 また、比較例3において非接触深度測定機で測定したLEDランプ1の硬化物4の表面深さの変位をLEDランプ1の水平位置を横軸、硬化物4の深さを縦軸として、図4に示す。図4において、白丸は初期硬化物4表面、黒四角は500時間点灯試験後の硬化物4表面を示す。
 図3、図4に示されるように、実施例1のLEDランプ1では500時間後の硬化物4の変形が極めて小さい一方で、比較例3のLEDランプ1では、500時間後の硬化物4はLEDチップ上面部分を中心に大きく膨張していることが分かる。
 実施例1~8及び比較例1~3における各成分の配合割合及び高さ変化率を以下の表1、表2に示す。高さ変化率を求める際に用いた、LEDチップ深さS1,S2の平均値Sav、初期硬化物4における2000μm地点L1と2400μm地点L2における初期硬化物4表面の深さs1,s2の平均値sav、初期硬化物高さH、500時間後硬化物4における2000μm地点L1と2400μm地点L2における500時間後硬化物4表面の深さs1’,s2’の平均値s’av、及び500時間後硬化物高さH’を高さ変化率とともに表3に示す。
 また、実施例1~6及び比較例1~3における(B)成分中の全単位数(a+b+c+dの値)と、全単位数に対するSi-H基単位数百分率((c+d)/(a+b+c+d)×100[%])を、全単位数を縦軸、Si-H基単位数百分率を横軸として図5に示す。なお、実施例7及び実施例8で作製したシリコーン組成物における(B)成分中の全単位数(a+b+c+dの値)と、全単位数に対するSi-H基単位数百分率((c+d)/(a+b+c+d)×100[%])の関係は、実施例4におけるそれと同じである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1、表2及び図5から明らかなように、本発明の(A)、(B)、(C)成分を用いた各実施例のLEDランプ1は、500時間点灯試験後の硬化物4の変形が極めて小さい。したがって、本発明の光半導体封止用シリコーン組成物は例えばLEDランプの光半導体素子の封止材として好適である。
 1…LEDランプ、2…半導体素子、3…支持基材、4…硬化物(封止材)、5…リード電極、6…ボンディングワイヤ、L0…LEDパッケージ端部、L1…2000μm地点、L2…2400μm地点、s1,s2…硬化物表面深さ、S1,S2…LEDチップ表面までの深さ、H1,H2…LEDチップ上面硬化物高さ。

Claims (7)

  1.  (A)25℃における粘度が0.1~1000Pa・sであり、1分子中にケイ素原子に結合したアルケニル基を2個以上有するポリオルガノシロキサン、
     (B)1分子中にケイ素原子に結合した水素原子を少なくとも2個有し、単位式(B):[R SiO1/2][R SiO2/2][RHSiO2/2][R HSiO1/2]
    (式中、Rは脂肪族不飽和炭素結合を有しない、同一の又は異なる、置換又は非置換の1価炭化水素基であり、a,b,c,dは0以上の整数であり、a+d=2、a+b+c+dは5~80の整数、かつ、0.05≦(c+d)/(a+b+c+d)≦0.70を満足する数。)で表される直鎖状ポリオルガノハイドロジェンシロキサンの(A)成分のケイ素原子に結合したアルケニル基1個に対して(B)のケイ素原子に結合した水素原子の個数が0.8~2.0個となる量、及び
     (C)白金系触媒の触媒量
    を含有することを特徴とする光半導体封止用シリコーン組成物。
  2.  前記単位式(B)におけるa+b+c+dは10~60の整数である請求項1に記載の光半導体封止用シリコーン組成物。
  3.  前記単位式(B)における(c+d)/(a+b+c+d)は、0.07≦(c+d)/(a+b+c+d)≦0.60の範囲にある請求項1または2に記載の光半導体封止用シリコーン組成物。
  4.  前記(B)成分の直鎖状ポリオルガノハイドロジェンシロキサンが分子内に有するケイ素原子に結合した水素原子の量は、ヒドロシリル基(Si-H基)の量として、1.00~12.00mmol/gである請求項1~3のいずれか1項に記載の光半導体封止用シリコーン組成物。
  5.  さらに(D)反応抑制剤を、(A)成分100質量部に対して0.001~5質量部含む請求項1~4のいずれか1項に記載の光半導体封止用シリコーン組成物。
  6.  さらに(E)補強性の微粉末充填剤を、(A)成分100質量部に対して0.1~10質量部含む請求項1~5のいずれか1項に記載の光半導体封止用シリコーン組成物。
  7.  請求項1~6のいずれか1項に記載の光半導体封止用シリコーン組成物の硬化物によって光半導体素子が封止されていることを特徴とする光半導体装置。
PCT/JP2014/067806 2013-07-08 2014-07-03 光半導体封止用シリコーン組成物及び光半導体装置 WO2015005221A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532158A JPWO2015005221A1 (ja) 2013-07-08 2014-07-03 光半導体封止用シリコーン組成物及び光半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142750 2013-07-08
JP2013-142750 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005221A1 true WO2015005221A1 (ja) 2015-01-15

Family

ID=52279906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067806 WO2015005221A1 (ja) 2013-07-08 2014-07-03 光半導体封止用シリコーン組成物及び光半導体装置

Country Status (3)

Country Link
JP (1) JPWO2015005221A1 (ja)
TW (1) TW201510090A (ja)
WO (1) WO2015005221A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728037A (zh) * 2018-05-11 2018-11-02 广州市联中电子科技有限公司 一种增加led灯模组光亮度的粘合剂及其制造方法
JP2022085603A (ja) * 2020-11-27 2022-06-08 信越化学工業株式会社 ミラブル型シリコーンゴム組成物及びシリコーンゴム硬化物

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335857A (ja) * 2005-06-01 2006-12-14 Ge Toshiba Silicones Co Ltd 透明な硬化物を与えるポリオルガノシロキサン組成物
JP2007039483A (ja) * 2005-08-01 2007-02-15 Ge Toshiba Silicones Co Ltd 硬化性ポリオルガノシロキサン組成物
JP2007154036A (ja) * 2005-12-05 2007-06-21 Momentive Performance Materials Japan Kk 低タック性を有する電気・電子部品被覆用硬化性組成物
JP2008019385A (ja) * 2006-07-14 2008-01-31 Shin Etsu Chem Co Ltd 硬化性シリコーンゴム組成物及びその硬化物
JP2008150437A (ja) * 2006-12-14 2008-07-03 Momentive Performance Materials Japan Kk 光半導体封止用シリコーンゴム組成物および光半導体装置
JP2008545553A (ja) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション 小さい形状を成型していくプロセスおよびシリコーンカプセル化剤組成物
JP2009513021A (ja) * 2005-10-24 2009-03-26 スリーエム イノベイティブ プロパティズ カンパニー 成形された封入材を有する発光デバイスの製造方法
JP2009120437A (ja) * 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
JP2009185120A (ja) * 2008-02-04 2009-08-20 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2009215434A (ja) * 2008-03-11 2009-09-24 Shin Etsu Chem Co Ltd シリコーン樹脂組成物及び発光半導体装置
JP2010508377A (ja) * 2006-08-28 2010-03-18 ダウ・コーニング・コーポレイション 光学部品およびシリコーン組成物および光学部品の成型方法
JP2010121117A (ja) * 2008-10-24 2010-06-03 Shin-Etsu Chemical Co Ltd 可視光遮光性シリコーンゴム組成物及びその硬化物並びに光半導体装置
JP2010248413A (ja) * 2009-04-17 2010-11-04 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン樹脂組成物及び光半導体装置
JP2010248411A (ja) * 2009-04-17 2010-11-04 Shin-Etsu Chemical Co Ltd 表面処理蛍光体含有硬化性シリコーン樹脂組成物及び発光装置
JP2011144360A (ja) * 2009-12-15 2011-07-28 Shin-Etsu Chemical Co Ltd 光半導体素子封止用樹脂組成物及び当該組成物で封止した光半導体装置
WO2011152150A1 (ja) * 2010-06-03 2011-12-08 信越化学工業株式会社 シリコーンゴムにより密封された照明部材及びその製造方法
JP2012041496A (ja) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
JP2013116997A (ja) * 2011-12-05 2013-06-13 Kyocera Chemical Corp 透明樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675067B1 (ko) * 2010-06-08 2016-11-11 삼성디스플레이 주식회사 실리콘 조성물 및 이를 포함하는 유기 발광 소자

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545553A (ja) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション 小さい形状を成型していくプロセスおよびシリコーンカプセル化剤組成物
JP2006335857A (ja) * 2005-06-01 2006-12-14 Ge Toshiba Silicones Co Ltd 透明な硬化物を与えるポリオルガノシロキサン組成物
JP2007039483A (ja) * 2005-08-01 2007-02-15 Ge Toshiba Silicones Co Ltd 硬化性ポリオルガノシロキサン組成物
JP2009513021A (ja) * 2005-10-24 2009-03-26 スリーエム イノベイティブ プロパティズ カンパニー 成形された封入材を有する発光デバイスの製造方法
JP2007154036A (ja) * 2005-12-05 2007-06-21 Momentive Performance Materials Japan Kk 低タック性を有する電気・電子部品被覆用硬化性組成物
JP2008019385A (ja) * 2006-07-14 2008-01-31 Shin Etsu Chem Co Ltd 硬化性シリコーンゴム組成物及びその硬化物
JP2010508377A (ja) * 2006-08-28 2010-03-18 ダウ・コーニング・コーポレイション 光学部品およびシリコーン組成物および光学部品の成型方法
JP2008150437A (ja) * 2006-12-14 2008-07-03 Momentive Performance Materials Japan Kk 光半導体封止用シリコーンゴム組成物および光半導体装置
JP2009120437A (ja) * 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
JP2009185120A (ja) * 2008-02-04 2009-08-20 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2009215434A (ja) * 2008-03-11 2009-09-24 Shin Etsu Chem Co Ltd シリコーン樹脂組成物及び発光半導体装置
JP2010121117A (ja) * 2008-10-24 2010-06-03 Shin-Etsu Chemical Co Ltd 可視光遮光性シリコーンゴム組成物及びその硬化物並びに光半導体装置
JP2010248413A (ja) * 2009-04-17 2010-11-04 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン樹脂組成物及び光半導体装置
JP2010248411A (ja) * 2009-04-17 2010-11-04 Shin-Etsu Chemical Co Ltd 表面処理蛍光体含有硬化性シリコーン樹脂組成物及び発光装置
JP2011144360A (ja) * 2009-12-15 2011-07-28 Shin-Etsu Chemical Co Ltd 光半導体素子封止用樹脂組成物及び当該組成物で封止した光半導体装置
WO2011152150A1 (ja) * 2010-06-03 2011-12-08 信越化学工業株式会社 シリコーンゴムにより密封された照明部材及びその製造方法
JP2012041496A (ja) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
JP2013116997A (ja) * 2011-12-05 2013-06-13 Kyocera Chemical Corp 透明樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728037A (zh) * 2018-05-11 2018-11-02 广州市联中电子科技有限公司 一种增加led灯模组光亮度的粘合剂及其制造方法
JP2022085603A (ja) * 2020-11-27 2022-06-08 信越化学工業株式会社 ミラブル型シリコーンゴム組成物及びシリコーンゴム硬化物

Also Published As

Publication number Publication date
TW201510090A (zh) 2015-03-16
JPWO2015005221A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
EP2508569B1 (en) Silicone resin composition and optical semiconductor device using the composition
JP5534977B2 (ja) 硬化性オルガノポリシロキサン組成物および光半導体装置
KR101722123B1 (ko) 경화성 오가노폴리실록산 조성물 및 광반도체 장치
CN103173020B (zh) 高可靠性可固化硅酮树脂组合物及使用该组合物的光半导体器件
JP5524424B1 (ja) 光半導体素子封止用シリコーン組成物および光半導体装置
JP6884458B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP2008222828A (ja) 凸レンズ形成用シリコーンゴム組成物及びそれを用いた光半導体装置
EP3662006B1 (en) Curable organopolysiloxane composition and optical semiconductor device
US11634580B2 (en) Curable white silicone formulation, a reflective material for optical semiconductor module, and optical semiconductor device
WO2015005221A1 (ja) 光半導体封止用シリコーン組成物及び光半導体装置
KR20110018840A (ko) 광반도체 장치
JP6546004B2 (ja) 光半導体封止用硬化性組成物及びこれを用いた光半導体装置
JP2022104216A (ja) 硬化性シリコーン組成物、封止材、及び光半導体装置
KR102703006B1 (ko) 부가경화형 실록산 조성물
JP7360910B2 (ja) 硬化性組成物及び該組成物を封止剤として用いた半導体装置。
US12110412B2 (en) Curable silicone composition, encapsulant and optical semiconductor device
US11939472B2 (en) Curable silicone composition, encapsulant and optical semiconductor device
US11780968B2 (en) Hotmelt silicone composition, encapsulant, hotmelt adhesive and optical semiconductor devise
JP2019163425A (ja) 硬化性組成物及び該組成物を封止剤として用いた光半導体装置。
JP2023034815A (ja) 硬化性シリコーン組成物、封止材、及び光半導体装置
JP2009084478A (ja) 光半導体封止用組成物及びこれを用いた光半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014532158

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823041

Country of ref document: EP

Kind code of ref document: A1