WO2015002419A1 - Centrifugal spinning apparatus - Google Patents
Centrifugal spinning apparatus Download PDFInfo
- Publication number
- WO2015002419A1 WO2015002419A1 PCT/KR2014/005817 KR2014005817W WO2015002419A1 WO 2015002419 A1 WO2015002419 A1 WO 2015002419A1 KR 2014005817 W KR2014005817 W KR 2014005817W WO 2015002419 A1 WO2015002419 A1 WO 2015002419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spinning
- centrifugal
- nozzle
- collector
- rotating body
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/18—Formation of filaments, threads, or the like by means of rotating spinnerets
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/02—Spinnerettes
Definitions
- the present invention relates to a centrifugal spinning device, and more particularly, the end length of the opposite side in the axial rotation direction of the nozzle tube is formed longer than the end length of the axial rotation direction, so that the fiber can be made fine, and the diameter of the fiber is uniform. It relates to a centrifugal spinning device that can improve the castle.
- the spinning process of the fiber refers to a process of continuously pushing the polymer fluid through the thin holes and converting them into long thin fibers.
- the spinning process is performed by passing a hot polymer fluid past a thinner hole called a spinneret (hereinafter referred to as a 'spinning nozzle'), and then cooling and solidifying it by pulling it around a winding part. Is done.
- a spinneret hereinafter referred to as a 'spinning nozzle'
- Representative spinning processes include melt spinning, solution spinning (wet spinning, dry spinning), centrifugal spinning, and the like.
- Melt spinning is a method in which a polymer chip is placed in a raw material storage of a spinning machine, melted in a high temperature extruder, extruded fiber through a spinning nozzle, solidified by cold cooling air, and then stretched by a winding unit.
- Solution spinning dissolves the raw polymer in a solvent in a reservoir, passes it through a heat exchanger, and adjusts the molecular weight or viscosity to pass through a spinning nozzle and then passes a cold coagulating solution (wet spinning).
- a cold coagulating solution wet spinning
- it is a method of rapidly evaporating (dry spinning) with hot gas to be wound around the windings into fibers.
- Centrifugal spinning is a method for producing fibers by spinning a resin by a centrifugal spinning process.
- centrifugal spinning device is a rotating plate 1, a drive shaft 2, a resin supply line 3, wings 7, and 8, for supplying dry air. It comprises a shaft (4, 5), spinning nozzle (9) and overflow hole (6).
- the fibers are emitted to the nozzle 9 opened in the centrifugal force direction by the centrifugal force.
- An object of the present invention for solving the problems according to the prior art is that the end length of the opposite side of the axial rotation direction of the nozzle tube is formed longer than the end length of the axial rotation direction side can achieve a finer fiber, the diameter of the fiber It is to provide a centrifugal spin that can increase the uniformity.
- Centrifugal spinning device of the present invention for solving the above technical problem, comprising a centrifugal rotating body for spinning through the spinning nozzle spinning liquid contained in the inner receiving space by the centrifugal force generated as the shaft rotates to produce a fiber
- the spinning nozzle comprises a nozzle hole formed to communicate the outer surface of the receiving space and the centrifugal rotor and a nozzle tube communicating with the nozzle hole extending outward, the nozzle tube is An end length opposite the axial rotation direction is formed longer than the end length on the axial rotation direction.
- the centrifugal rotating body is formed in a disk-shaped or cylindrical with an upper opening to form the accommodation space, and the shaft may be provided vertically upward in the center of the bottom surface of the accommodation space.
- a plurality of concave grooves are formed on an outer circumferential surface of the centrifugal rotor, and the nozzle hole may be formed to communicate the concave groove with the accommodation space.
- the end of the nozzle tube may be formed to protrude more than the outer peripheral surface of the centrifugal rotor.
- the spinning nozzle may be formed to be inclined in a direction opposite to the axis rotation direction with respect to the radial direction of the virtual circle around the axis.
- the spinning nozzle may be formed in a straight shape.
- the spinning nozzle may be formed including a curved portion.
- the outer side of the centrifugal rotor is provided with a collector for collecting the fiber yarn spun through the spinning nozzle, the collector is formed in a cylindrical shape with at least a lower opening, the lower side of the collector is collected in the collector It may be provided with a conveyor for transporting the falling fiber yarn to the stabilization furnace.
- hot air supply means for supplying hot air to the inner space of the collector may be provided.
- the present invention as described above has an advantage that the end length of the nozzle tube opposite to the axial rotation direction is formed longer than the axial rotation direction side edge length, which is advantageous in miniaturization of the fiber.
- the spinning nozzle for producing the fiber is formed to be inclined with respect to the centrifugal force direction, the fiber can be made fine, and the diameter uniformity of the fiber can be improved.
- the spinning nozzle is composed of a nozzle hole and a nozzle tube, because the nozzle tube is formed in the concave groove formed on the outer circumferential surface of the centrifugal rotor to prevent the cooling of the nozzle tube by centrifugal rotation to harden the spinning liquid in the nozzle tube There is an advantage that can be prevented.
- the end of the nozzle tube is formed so as to project than the outer peripheral surface of the centrifugal rotor has the advantage that the spinning liquid can be smoothly and effectively radiated.
- the hot air supply means for supplying hot air to the inner space of the collector can be prevented from curing the spinning liquid in the nozzle tube.
- 1 is a schematic view showing a conventional centrifugal spin value.
- FIG. 2 is a block diagram showing a schematic configuration of a centrifugal spinning apparatus according to an embodiment of the present invention.
- Figure 3 is a perspective view showing a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing a linear spinning nozzle formed in the centrifugal rotating body constituting the centrifugal spinning device according to an embodiment of the present invention.
- FIG. 5 is a cross-sectional view of a spinning nozzle having a curved shape formed in a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention.
- FIG. 6 is a cross-sectional view showing a spinning nozzle formed on the centrifugal rotor in the same direction as the centrifugal force direction.
- the terms are used only for the purpose of distinguishing one component from another.
- the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
- FIG. 2 is a block diagram showing a schematic configuration of a centrifugal spinning apparatus according to an embodiment of the present invention.
- the centrifugal spinning device of the present embodiment includes a spinning solution supply part 100, a centrifugal rotor 200, a collector 300, a conveyor 400, and a stabilization furnace 500, and the centrifugal rotor 200 Fibers are produced by spinning the spinning solution using centrifugal force generated as the shaft rotates.
- the spinning solution supply unit 100 is a part for supplying spinning solution to the receiving space (S) of the centrifugal rotor (200).
- the centrifugal rotating body 200 is a portion that allows the spinning liquid contained in the accommodation space S to be radiated through the spinning nozzle 202 by the centrifugal force generated as the rotating shaft 210 rotates.
- the collector 300 is installed to surround the outer circumference of the centrifugal rotor 200 and is a portion for collecting the fiber yarn spun from the centrifugal rotor 200.
- the conveyor 400 is provided at the lower side of the collector 300 to move the cylindrical fiber product made of the fiber yarn collected by the collector 300 to the stabilization furnace 500.
- the spinning solution supply unit 100 is a part for supplying spinning solution to the accommodation space (S) of the centrifugal rotor (200).
- the spinning solution supply unit 100 can be applied by adopting a variety of known supply means if the spinning solution can be continuously supplied to the inner receiving space (S) of the centrifugal rotor 200 constantly.
- the spinning solution supply unit 100 may be configured to supply the spinning solution to the interior of the centrifugal rotor 200 in a drop manner.
- the spinning solution supply unit 100 may include a hopper 110, an extruder 120, an injector 130, a heating heater 140, a control valve 150.
- the hopper 110 is formed in a cylindrical shape of the ordinary light narrowing to facilitate the injection of the molten spinning liquid.
- the spinning solution introduced into the hopper 110 is supplied to one side of the extruder 120.
- One side of the extruder 120 is configured such that the hopper 110 is in communication.
- the other side of the extruder 120 is configured to communicate with the injector 130.
- the spinning solution supplied through the hopper 110 provided at one side of the extruder 120 is extruded by an extrusion screw (not shown) provided in the extruder 120 and supplied to the injector 130.
- an extrusion screw (not shown) provided in the extruder 120 and supplied to the injector 130. Can be.
- a heating heater 140 is provided on the outer circumferential surface of the extruder 120.
- the heating heater 140 heats the entire surface of the extruder 120 so that the spinning solution passing through the extruder 120 does not solidify.
- the spinning solution supplied to the injector 130 is supplied to the receiving space S of the centrifugal rotor 200 located below the injector 130.
- control valve 150 may be provided for controlling the supply amount of the spinning solution supplied from the injector 130 to the centrifugal rotor 200.
- the supply amount of the spinning liquid supplied from the injector 130 to the accommodation space S of the centrifugal rotor 200 can be kept constant.
- the spinning solution supply unit 100 has been exemplified in the case of including a hopper 110, an extruder 120, an injector 130, a heating heater 140, a control valve 150, among the components Some may be omitted or may be configured to further add a separate component.
- the spinning solution supply unit 100 may be configured to be provided with a supply pipe for supplying the spinning solution in the rotary shaft 210 of the centrifugal rotor 200 in addition to the drop method as described above, as in the prior art, The spinning solution may be directly supplied to the inside of the centrifugal rotor 200 through the supply pipe.
- spinning solution supply unit 100 As described above, it is possible to constantly supply a predetermined amount of spinning solution into the inner receiving space (S) of the centrifugal rotor (200).
- the centrifugal rotor 200 is a portion for spinning the spinning liquid contained in the receiving space (S) therein through the spinning nozzle 202 by the centrifugal force generated as the rotating shaft 210 rotates to generate a fiber yarn to be.
- FIG. 3 is a perspective view illustrating a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention.
- the spinning nozzle 202 is an outer circumferential surface of the centrifugal rotating body 200.
- a plurality may be arranged along the 200a at equal intervals.
- a plurality of concave grooves h are formed in the outer circumferential surface 200a of the centrifugal rotor 200, and the spinning nozzle 202 is the concave groove h.
- the nozzle tube 202b is formed so that the end length opposite the axial rotation direction is longer than the end length of the axial rotation direction.
- the length of one end is formed in a shape cut in a diagonal direction longer than the length of the other end, the end length of the opposite side of the rotation direction of the rotation axis 210, the rotation direction of the rotation axis 210 It is formed by cutting longer than the side end length.
- the flow of air generated when the centrifugal rotor 200 rotates flows from an end portion of the rotation shaft 210 to a side opposite to the rotation direction of the rotation shaft 210.
- the spinning of the spinning liquid radiated through the nozzle tube 202b may be accelerated to make the fiber finer.
- the end surface area of the nozzle tube 202b is gradually cut so that the end length of the opposite side in the rotational direction of the rotational shaft 210 is longer than the end length of the rotational side of the rotational shaft 210. It is an oval shape that becomes smaller.
- the spinning liquid immediately before being spun at the end of the nozzle tube 202b can be spun through the narrow portion of the ellipse to achieve the finer fiber.
- the end of the nozzle tube (202b) is preferably formed to protrude more than the outer peripheral surface (200a) of the centrifugal rotor (200).
- the fiber can be made fine.
- the centrifugal rotating body 200 may be formed in a disc shape or a cylindrical shape with an upper portion opened, and the spinning liquid may be supplied to the inside of the accommodation space S through the opened upper portion.
- the rotating shaft 210 is fixedly provided so as to extend vertically upward from the center of the bottom surface of the accommodation space S of the centrifugal rotor 200. As the rotating shaft 210 rotates, the centrifugal rotating body 200 rotates so that the spinning liquid contained in the accommodation space S may be radiated through the spinning nozzle 202.
- the centrifugal rotor 200 may be rotated by a rotation driver for rotating the rotary shaft 210.
- the rotation driving unit for example, as shown in Figure 2, a fixed pulley 220 is fixed to the concentric shaft concentrically with the rotation shaft 210, a rotation motor 230 for generating a rotation driving force, the fixed pulley ( 220 and the drive shaft of the rotary motor 230 may be configured to include a drive belt 240 for transmitting the driving force of the rotary motor 230 to the fixed pulley 220.
- the rotary drive unit can rotate the rotary shaft 210 can be applied to select a variety of known rotary drive means of course.
- the rotation driving unit may be configured to transfer the driving force of the drive shaft of the rotary motor 230 for generating a rotation driving force is coupled coaxially with the rotation shaft 210 through a coupling.
- the spinning nozzle 202 in the direction opposite to the rotation direction of the rotation axis 210 with respect to the radial direction (X, the centrifugal force direction) of the virtual circle around the rotation axis 210. It may be formed to be inclined.
- the spinning nozzle 202 is formed in a straight shape, it may be formed in a straight shape so that the nozzle hole 202a and the nozzle tube 202b has the same inclination.
- FIG. 8 is a cross-sectional view of the spinning nozzle formed in the centrifugal rotor in the same direction as the centrifugal force direction. As shown in FIG. 8, when the spinning nozzle 202 is formed to face the same direction as the centrifugal force direction, the centrifugal rotor is formed. It is difficult for the spinning liquid radiated at the end of the spinning nozzle 202 to be smoothly spun by air resistance during the rotation of the 200.
- the spinning nozzle 202 of the present embodiment is formed in the direction in which the spinning nozzle 202 is inclined with respect to the centrifugal force direction.
- the spinning liquid radiated at the end of 202 can be smoothly spun.
- the spinning of the spinning liquid radiated through the nozzle tube 202b may be accelerated to make the fiber finer.
- the nozzle tube (202b) since most of the nozzle tube (202b) is formed in the concave groove (h) formed in the outer peripheral surface (200a) of the centrifugal rotor 200, the nozzle tube (202b) by the flow of air during centrifugal rotation By preventing the cooling of the spinning liquid can be prevented.
- the spinning nozzle 202 is formed in a straight shape, as shown in Figure 7, the spinning nozzle 202 may be formed including a curved portion.
- the nozzle hole 202a may be formed in a straight line shape, and the nozzle tube 202b may be formed in a curved shape.
- the nozzle tube 202b may be formed around the rotating shaft 210. It may be formed in a curved shape to be inclined in the opposite direction of the rotation direction of the rotation axis 210 with respect to the radial direction (centrifugal force direction) of the virtual circle.
- both the nozzle hole 202a and the nozzle tube 202b may be formed in a curved shape.
- the end of the curved nozzle tube 202b is preferably formed to protrude more than the outer peripheral surface (200a) of the centrifugal rotor (200).
- the spinning nozzle 202 is composed of a nozzle hole 202a and a nozzle tube 202b is illustrated, the spinning nozzle 202 is the nozzle hole (without the nozzle tube 202b) ( Of course, it may be composed of only 202a).
- the collector 300 is a portion for collecting the fiber yarn spun through the spinning nozzle 202 of the centrifugal rotor 200, the collector 300 is at the outer surface of the centrifugal rotor 200 Is spaced apart a predetermined distance is formed to surround the outer peripheral portion of the centrifugal rotor (200).
- the collector 300 may be formed in a cylindrical shape having at least a lower portion thereof, and may be configured in a form in which an upper portion is opened or a upper portion is closed as necessary.
- the collector 300 may be provided with hot air supply means 310 for supplying hot air to the inner space (S1, the space in which the spinning liquid is made) of the collector 300.
- the hot air supply means 310 may increase the inner space temperature of the collector 300 by supplying hot air to the inner space of the collector 300, through which the radiation provided in the centrifugal rotor 200 Cooling of the nozzle 202 may be prevented to prevent hardening of the spinning liquid in the spinning nozzle 202.
- the temperature of the inner space S1 of the collector 300 controlled by the hot air supply means 310 is maintained at an appropriate temperature that is radiated from the centrifugal rotor 200 and does not interfere with the production of cylindrical fiber products. desirable.
- the collector 300 and the centrifugal rotor 200 may be further provided with a voltage applying means (not shown) in order to more smoothly radiate the spinning liquid other than the centrifugal force.
- the collector 300 and the centrifugal rotor 200 are formed of an electrically conductive material, a positive voltage is applied to the centrifugal rotor 200, and a negative voltage is applied to the collector 300.
- Voltage applying means may be provided.
- the spinning solution contained in the receiving space S of the centrifugal rotor 200 is charged with + ions, and the spinning solution charged with + ions is transferred toward the collector 300 applied with the ⁇ voltage. Therefore, more efficient radiation can be achieved by centrifugal force and electrostatic force.
- the fiber yarn radiated from the centrifugal rotor 200 through the collector 300 as described above may be collected on the inner surface of the collector 300 to form a cylindrical fiber product.
- the conveyor 400 is provided at the lower side of the collector 300 to transport the cylindrical fiber products falling after being collected on the inner surface of the collector 300 to the stabilization furnace 500.
- the fiber yarn spun from the centrifugal rotor 200 is collected on the inner surface of the collector 300, the cylindrical fiber product formed by being collected on the inner surface of the collector 300 is gradually collected by the collector 300 It is pushed downward along the inner surface of.
- Cylindrical fiber products pushed downward along the inner surface of the collector 300 fall to the upper portion of the conveyor 400 through the opened lower portion of the collector 300.
- the cylindrical fiber product dropped to the upper portion of the conveyor 400 is transferred to the stabilization furnace 500 for stabilizing the product is to be stabilized.
- the cylindrical fiber products collected and collected by the collector 300 can be transferred to the stabilization furnace 500 as it is to be stabilized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
The present invention relates to a centrifugal spinning apparatus having nozzle tubes in which the length of the end part thereof on the opposite side to the rotational direction of the shaft is longer than the length of the end part thereof on the side of the rotational direction of the shaft, thereby attaining extra-fineness of the fiber and raising the diameter uniformity thereof. To that end, a centrifugal spinning apparatus for producing fiber according to the present invention comprises a centrifugal rotating body for spinning, through spinning nozzles, a spinning solution in an accommodating space in the interior of centrifugal rotating body by means of the centrifugal force generated by the rotation of the shaft, each spinning nozzle comprising: a nozzle hole in communication with the accommodating space and the outer surface of the centrifugal rotating body; and a nozzle tube in communication with the nozzle hole and extending to the outside, wherein the length of the end part of the nozzle tube on the opposite side to the rotational direction of the shaft is longer than the the length of the end part on the side of the rotational direction of the shaft.
Description
본 발명은 원심방사장치에 관한 것으로서, 더욱 상세하게는, 노즐관의 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성됨에 따라 섬유의 극세화를 이룰 수 있고, 섬유의 직경 균일성을 높일 수 있는 원심방사장치에 관한 것이다. The present invention relates to a centrifugal spinning device, and more particularly, the end length of the opposite side in the axial rotation direction of the nozzle tube is formed longer than the end length of the axial rotation direction, so that the fiber can be made fine, and the diameter of the fiber is uniform. It relates to a centrifugal spinning device that can improve the castle.
섬유의 방사공정(spinning process)이란, 고분자 유체를 가는 구멍을 통해 계속적으로 밀어내어 길고 가는 섬유로 전환시키는 공정을 의미한다. The spinning process of the fiber refers to a process of continuously pushing the polymer fluid through the thin holes and converting them into long thin fibers.
일반적으로 방사공정은 뜨거운 고분자 유체가 스피너렛(spinneret)이라는 가는 구멍이 있는 부위(이하, '방사 노즐'이라고 통칭함)를 지나서 나온 후, 냉각부를 지나 식어 고화하면, 이를 권취부에서 당겨 감음으로서 이루어진다. In general, the spinning process is performed by passing a hot polymer fluid past a thinner hole called a spinneret (hereinafter referred to as a 'spinning nozzle'), and then cooling and solidifying it by pulling it around a winding part. Is done.
한편, 방사공정으로서 대표적인 것은 용융방사, 용액방사(습식방사, 건식방사), 원심방사 등이 있다. Representative spinning processes include melt spinning, solution spinning (wet spinning, dry spinning), centrifugal spinning, and the like.
용융방사란 고분자칩을 방사기의 원료 저장고에 넣고 고온의 압출기에서 녹인 후 방사 노즐을 통해 섬유를 압출시킨 후, 차가운 냉각공기(QUENCHING SYSTEM)에 의해 고화시킨 후, 권취부에 의해 연신하는 방법이다. Melt spinning is a method in which a polymer chip is placed in a raw material storage of a spinning machine, melted in a high temperature extruder, extruded fiber through a spinning nozzle, solidified by cold cooling air, and then stretched by a winding unit.
용액방사(습식방사, 건식방사)는 저장고에서 원료고분자를 용매에 녹인 후, 이를 열교환기 등을 통과시켜 분자량이나 점도를 조절하여 방사 노즐을 통과시킨 후 차가운 응고액을 통과시키거나(습식방사) 또는 고온가스로 빨리 증발시켜(건식방사) 권취부에서 감겨 섬유가 되게 하는 방법이다. Solution spinning (wet spinning, dry spinning) dissolves the raw polymer in a solvent in a reservoir, passes it through a heat exchanger, and adjusts the molecular weight or viscosity to pass through a spinning nozzle and then passes a cold coagulating solution (wet spinning). Alternatively, it is a method of rapidly evaporating (dry spinning) with hot gas to be wound around the windings into fibers.
원심방사는 원심식 방사공정에 의해 수지를 방사시킴으로서 섬유를 제조하는 방법이다. Centrifugal spinning is a method for producing fibers by spinning a resin by a centrifugal spinning process.
도 1은 종래의 원심방사장치를 도시한 개략도로서, 상기 원심방사장치는 회전플레이트(1), 구동 샤프트(2), 수지공급라인(3), 날개부(7, 8), 건조공기공급용 샤프트(4, 5), 방사 노즐(9) 및 오버플로우 홀(6)을 포함하여 구성된다. 1 is a schematic view showing a conventional centrifugal spinning device, wherein the centrifugal spinning device is a rotating plate 1, a drive shaft 2, a resin supply line 3, wings 7, and 8, for supplying dry air. It comprises a shaft (4, 5), spinning nozzle (9) and overflow hole (6).
상기 종래의 원심방사장치에서는 회전 플레이트(1) 내의 수지공급라인(3)에 수지를 공급한 후, 장치를 구동시키면 원심력에 의하여 원심력 방향으로 개방된 노즐(9)로 섬유가 방사되어 나오게 된다. In the conventional centrifugal spinning device, after supplying the resin to the resin supply line 3 in the rotating plate 1 and driving the device, the fibers are emitted to the nozzle 9 opened in the centrifugal force direction by the centrifugal force.
그러나, 상기한 원심방사장치에서는 원료가 원심력 방향으로 개방된 노즐(9)을 통해 방사되므로, 섬유의 극세화가 어려운 문제점이 있었다. However, in the above-described centrifugal spinning device, since the raw material is spun through the nozzle 9 opened in the centrifugal force direction, there is a problem that it is difficult to make the fiber fine.
[참고 선행기술문헌] 등록특허 제10-289250호(2001.02.16)[Reference Prior Art Document] Registered Patent No. 10-289250 (2001.02.16)
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 노즐관의 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성됨에 따라 섬유의 극세화를 이룰 수 있고, 섬유의 직경 균일성을 높일 수 있는 원심방사장치를 제공함에 있다. An object of the present invention for solving the problems according to the prior art is that the end length of the opposite side of the axial rotation direction of the nozzle tube is formed longer than the end length of the axial rotation direction side can achieve a finer fiber, the diameter of the fiber It is to provide a centrifugal spin that can increase the uniformity.
상기 기술적 과제를 해결하기 위한 본 발명의 원심방사장치는, 축 회전함에 따라 발생하는 원심력에 의해 내부의 수용공간에 수용된 방사액을 방사 노즐을 통해 방사하는 원심회전체를 포함하여 구성되어 섬유를 제조하기 위한 원심방사장치로서, 상기 방사 노즐은 상기 수용공간과 상기 원심회전체의 외표면을 연통하도록 형성된 노즐공 및 상기 노즐공과 연통되어 외측으로 연장된 노즐관을 포함하여 구성되며, 상기 노즐관은 상기 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성된다. Centrifugal spinning device of the present invention for solving the above technical problem, comprising a centrifugal rotating body for spinning through the spinning nozzle spinning liquid contained in the inner receiving space by the centrifugal force generated as the shaft rotates to produce a fiber A centrifugal spinning apparatus for the above, wherein the spinning nozzle comprises a nozzle hole formed to communicate the outer surface of the receiving space and the centrifugal rotor and a nozzle tube communicating with the nozzle hole extending outward, the nozzle tube is An end length opposite the axial rotation direction is formed longer than the end length on the axial rotation direction.
바람직하게, 상기 원심회전체는 상부가 개구된 원반형 또는 원통형으로 형성되어 상기 수용공간이 형성되며, 상기 수용공간의 저면 중심부에 상기 축이 수직 상방으로 구비될 수 있다. Preferably, the centrifugal rotating body is formed in a disk-shaped or cylindrical with an upper opening to form the accommodation space, and the shaft may be provided vertically upward in the center of the bottom surface of the accommodation space.
바람직하게, 상기 원심회전체의 외주면에는 복수의 오목홈이 형성되며, 상기 노즐공은 상기 오목홈과 상기 수용공간을 연통하도록 형성될 수 있다. Preferably, a plurality of concave grooves are formed on an outer circumferential surface of the centrifugal rotor, and the nozzle hole may be formed to communicate the concave groove with the accommodation space.
바람직하게, 상기 노즐관의 단부는 상기 원심회전체의 외주면보다 돌출되도록 형성될 수 있다. Preferably, the end of the nozzle tube may be formed to protrude more than the outer peripheral surface of the centrifugal rotor.
바람직하게, 상기 방사 노즐은 상기 축을 중심으로 하는 가상 원의 반지름 방향에 대해 상기 축 회전 방향의 반대방향으로 경사지게 형성될 수 있다. Preferably, the spinning nozzle may be formed to be inclined in a direction opposite to the axis rotation direction with respect to the radial direction of the virtual circle around the axis.
바람직하게, 상기 방사 노즐은 직선형상으로 형성될 수 있다. Preferably, the spinning nozzle may be formed in a straight shape.
바람직하게, 상기 방사 노즐은 만곡부를 포함하여 형성될 수 있다. Preferably, the spinning nozzle may be formed including a curved portion.
바람직하게, 상기 원심회전체의 외측에는 상기 방사 노즐을 통해 방사된 섬유사를 포집하기 위한 콜렉터가 구비되되, 상기 콜렉터는 적어도 하부가 개구된 원통형으로 형성되고, 상기 콜렉터의 하측에는 상기 콜렉터에 포집되어 낙하되는 섬유사를 안정화로로 운반하는 컨베이어가 구비될 수 있다. Preferably, the outer side of the centrifugal rotor is provided with a collector for collecting the fiber yarn spun through the spinning nozzle, the collector is formed in a cylindrical shape with at least a lower opening, the lower side of the collector is collected in the collector It may be provided with a conveyor for transporting the falling fiber yarn to the stabilization furnace.
바람직하게, 상기 콜렉터의 내측 공간으로 열풍을 공급하는 열풍공급수단이 구비될 수 있다. Preferably, hot air supply means for supplying hot air to the inner space of the collector may be provided.
상술한 바와 같은 본 발명은, 노즐관의 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성됨에 따라 섬유의 극세화에 유리하다는 이점이 있다. The present invention as described above has an advantage that the end length of the nozzle tube opposite to the axial rotation direction is formed longer than the axial rotation direction side edge length, which is advantageous in miniaturization of the fiber.
또한, 섬유를 제조하기 위한 방사 노즐이 원심력 방향에 대해 경사지게 형성됨에 따라 섬유의 극세화를 이룰 수 있고, 섬유의 직경 균일성을 높일 수 있다는 이점이 있다. In addition, since the spinning nozzle for producing the fiber is formed to be inclined with respect to the centrifugal force direction, the fiber can be made fine, and the diameter uniformity of the fiber can be improved.
또한, 방사 노즐이 노즐공과 노즐관으로 구성되되, 상기 노즐관이 원심회전체의 외주면에 형성된 오목홈 내에 형성되기 때문에 원심회전에 의한 노즐관의 냉각이 방지되어 노즐관 내에서 방사액이 경화되는 것을 방지할 수 있다는 이점이 있다. In addition, the spinning nozzle is composed of a nozzle hole and a nozzle tube, because the nozzle tube is formed in the concave groove formed on the outer circumferential surface of the centrifugal rotor to prevent the cooling of the nozzle tube by centrifugal rotation to harden the spinning liquid in the nozzle tube There is an advantage that can be prevented.
또한, 노즐관의 단부가 원심회전체의 외주면보다 돌출되도록 형성됨에 따라 방사액이 원활하고 효과적으로 방사될 수 있다는 이점이 있다. In addition, the end of the nozzle tube is formed so as to project than the outer peripheral surface of the centrifugal rotor has the advantage that the spinning liquid can be smoothly and effectively radiated.
또한, 원심회전체의 외측에 구비된 콜렉터에서 낙하되는 섬유사를 컨베이어를 이용하여 그대로 안정화로로 이송할 수 있다는 이점이 있다. In addition, there is an advantage that the fiber yarn falling from the collector provided on the outside of the centrifugal rotor can be transferred to the stabilization furnace as it is by using a conveyor.
또한, 콜렉터의 내측 공간으로 열풍을 공급하는 열풍공급수단이 구비되어 노즐관 내에서 방사액이 경화되는 것을 방지할 수 있다는 이점이 있다. In addition, there is an advantage that the hot air supply means for supplying hot air to the inner space of the collector can be prevented from curing the spinning liquid in the nozzle tube.
도 1은 종래의 원심방사장치를 도시한 개략도이다. 1 is a schematic view showing a conventional centrifugal spin value.
도 2는 본 발명의 일실시예에 따른 원심방사장치의 개략적인 구성을 도시한 구성도이다. 2 is a block diagram showing a schematic configuration of a centrifugal spinning apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 원심방사장치를 구성하는 원심회전체를 도시한 사시도이다. Figure 3 is a perspective view showing a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 원심방사장치를 구성하는 원심회전체에 형성된 직선 형상의 방사 노즐을 도시한 단면도이다. 4 is a cross-sectional view showing a linear spinning nozzle formed in the centrifugal rotating body constituting the centrifugal spinning device according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 원심방사장치를 구성하는 원심회전체에 형성된 만곡된 형상의 방사 노즐을 도시한 단면도이다. FIG. 5 is a cross-sectional view of a spinning nozzle having a curved shape formed in a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention.
도 6은 원심회전체에 원심력 방향과 동일한 방향으로 형성된 방사 노즐을 도시한 단면도이다. 6 is a cross-sectional view showing a spinning nozzle formed on the centrifugal rotor in the same direction as the centrifugal force direction.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안된다.The present invention can be embodied in many other forms without departing from the spirit or main features thereof. Therefore, the embodiments of the present invention are merely examples in all respects and should not be interpreted limitedly.
제1, 제2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성요소로 명명될 수 있다. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprise", "comprise", "have", and the like are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification. Or other features or numbers, steps, operations, components, parts or combinations thereof in any way should not be excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals regardless of the reference numerals and redundant description thereof will be omitted.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 2는 본 발명의 일실시예에 따른 원심방사장치의 개략적인 구성을 도시한 구성도이다. 2 is a block diagram showing a schematic configuration of a centrifugal spinning apparatus according to an embodiment of the present invention.
본 실시예의 원심방사장치는, 방사액 공급부(100), 원심회전체(200), 콜렉터(300), 컨베이어(400), 안정화로(500)를 포함하여 구성되며, 상기 원심회전체(200)가 축 회전함에 따라 발생하는 원심력을 이용하여 방사액을 방사하여 섬유를 제조한다. The centrifugal spinning device of the present embodiment includes a spinning solution supply part 100, a centrifugal rotor 200, a collector 300, a conveyor 400, and a stabilization furnace 500, and the centrifugal rotor 200 Fibers are produced by spinning the spinning solution using centrifugal force generated as the shaft rotates.
상기 방사액 공급부(100)는 상기 원심회전체(200)의 수용공간(S)에 방사액을 공급하기 위한 부분이다. The spinning solution supply unit 100 is a part for supplying spinning solution to the receiving space (S) of the centrifugal rotor (200).
상기 원심회전체(200)는 회전축(210)이 회전함에 따라 발생하는 원심력에 의해 내부의 수용공간(S)에 수용된 방사액이 방사 노즐(202)을 통해 방사되도록 하는 부분이다. The centrifugal rotating body 200 is a portion that allows the spinning liquid contained in the accommodation space S to be radiated through the spinning nozzle 202 by the centrifugal force generated as the rotating shaft 210 rotates.
상기 콜렉터(300)는 상기 원심회전체(200)의 외주부를 감싸도록 설치되어 상기 원심회전체(200)에서 방사된 섬유사를 포집하기 위한 부분이다. The collector 300 is installed to surround the outer circumference of the centrifugal rotor 200 and is a portion for collecting the fiber yarn spun from the centrifugal rotor 200.
상기 컨베이어(400)는 상기 콜렉터(300)의 하측에 구비되어 상기 콜렉터(300)에서 포집된 섬유사로 이뤄진 원통형의 섬유제품을 안정화로(500)로 이동시키기 위한 부분이다. The conveyor 400 is provided at the lower side of the collector 300 to move the cylindrical fiber product made of the fiber yarn collected by the collector 300 to the stabilization furnace 500.
이하에서는, 상술한 각 구성요소에 대하여 구체적으로 설명하도록 한다. Hereinafter, each component described above will be described in detail.
먼저, 상기 방사액 공급부(100)에 대하여 설명하도록 한다. First, the spinning solution supply unit 100 will be described.
상기 방사액 공급부(100)는, 상기 원심회전체(200)의 수용공간(S)에 방사액을 공급하기 위한 부분이다. The spinning solution supply unit 100 is a part for supplying spinning solution to the accommodation space (S) of the centrifugal rotor (200).
상기 방사액 공급부(100)는 상기 원심회전체(200)의 내부 수용공간(S)으로 방사액을 일정하게 지속적으로 공급할 수 있다면, 다양한 공지의 공급수단을 채택하여 적용할 수 있다. The spinning solution supply unit 100 can be applied by adopting a variety of known supply means if the spinning solution can be continuously supplied to the inner receiving space (S) of the centrifugal rotor 200 constantly.
예를 들어, 상기 방사액 공급부(100)는, 도 2에 도시된 바와 같이, 상기 원심회전체(200)의 내부로 방사액을 드롭 방식으로 공급하도록 구성될 수 있다. For example, the spinning solution supply unit 100, as shown in Figure 2, may be configured to supply the spinning solution to the interior of the centrifugal rotor 200 in a drop manner.
구체적으로, 상기 방사액 공급부(100)는, 호퍼(110), 압출기(120), 투입기(130), 가열히터(140), 조절밸브(150)를 포함하여 구성될 수 있다. Specifically, the spinning solution supply unit 100 may include a hopper 110, an extruder 120, an injector 130, a heating heater 140, a control valve 150.
상기 호퍼(110)는 용융된 방사액의 투입이 용이하도록 상광하협의 통 형상으로 형성된다. 상기 호퍼(110)로 투입된 방사액은 상기 압출기(120)의 일측으로 공급된다. The hopper 110 is formed in a cylindrical shape of the ordinary light narrowing to facilitate the injection of the molten spinning liquid. The spinning solution introduced into the hopper 110 is supplied to one side of the extruder 120.
상기 압출기(120)의 일측은 상기 호퍼(110)가 연통되도록 구성된다. 상기 압출기(120)의 타측은 상기 투입기(130)와 연통되도록 구성된다. One side of the extruder 120 is configured such that the hopper 110 is in communication. The other side of the extruder 120 is configured to communicate with the injector 130.
따라서, 상기 압출기(120)의 일측에 구비된 호퍼(110)를 통해 공급된 방사액은 상기 압출기(120)의 내부에 구비된 압출스크류(미도시)에 의해 압출되어 상기 투입기(130)로 공급될 수 있다. Therefore, the spinning solution supplied through the hopper 110 provided at one side of the extruder 120 is extruded by an extrusion screw (not shown) provided in the extruder 120 and supplied to the injector 130. Can be.
한편, 상기 압출기(120)의 외주면에는 가열히터(140)가 구비된다. 상기 가열히터(140)는 상기 압출기(120)를 통과하는 방사액이 응고되지 않도록 압출기(120)의 표면을 전체적으로 가열한다. On the other hand, a heating heater 140 is provided on the outer circumferential surface of the extruder 120. The heating heater 140 heats the entire surface of the extruder 120 so that the spinning solution passing through the extruder 120 does not solidify.
상기 투입기(130)로 공급된 방사액은 상기 투입기(130)의 하부에 위치된 원심회전체(200)의 수용공간(S)으로 공급된다. The spinning solution supplied to the injector 130 is supplied to the receiving space S of the centrifugal rotor 200 located below the injector 130.
이때, 상기 투입기(130)에서 원심회전체(200)로 공급되는 방사액의 공급량 조절을 위해 조절밸브(150)가 구비될 수 있다. At this time, the control valve 150 may be provided for controlling the supply amount of the spinning solution supplied from the injector 130 to the centrifugal rotor 200.
따라서, 상기 투입기(130)에서 상기 원심회전체(200)의 수용공간(S)으로 공급되는 방사액의 공급량을 일정하게 유지할 수 있다. Therefore, the supply amount of the spinning liquid supplied from the injector 130 to the accommodation space S of the centrifugal rotor 200 can be kept constant.
한편, 상기 방사액 공급부(100)가 호퍼(110), 압출기(120), 투입기(130), 가열히터(140), 조절밸브(150)를 포함하여 구성된 경우에 대해 예시하였으나, 상기 구성요소 중 일부가 생략되거나 별도의 구성요소가 더욱 추가되도록 구성될 수도 있다. On the other hand, the spinning solution supply unit 100 has been exemplified in the case of including a hopper 110, an extruder 120, an injector 130, a heating heater 140, a control valve 150, among the components Some may be omitted or may be configured to further add a separate component.
한편, 상기 방사액 공급부(100)는 상술한 바와 같은 드롭 방식 이외에, 종래와 같이 상기 원심회전체(200)의 회전축(210) 내부에 방사액을 공급하기 위한 공급관이 구비되도록 구성될 수 있으며, 상기 공급관을 통해 상기 원심회전체(200)의 내부로 방사액을 직접 공급할 수 있다. On the other hand, the spinning solution supply unit 100 may be configured to be provided with a supply pipe for supplying the spinning solution in the rotary shaft 210 of the centrifugal rotor 200 in addition to the drop method as described above, as in the prior art, The spinning solution may be directly supplied to the inside of the centrifugal rotor 200 through the supply pipe.
상술한 바와 같은 방사액 공급부(100)를 통해 상기 원심회전체(200)의 내부 수용공간(S)으로 일정량의 방사액을 일정하게 지속적으로 공급할 수 있다. Through the spinning solution supply unit 100 as described above, it is possible to constantly supply a predetermined amount of spinning solution into the inner receiving space (S) of the centrifugal rotor (200).
다음으로, 상기 원심회전체(200)에 대하여 설명하도록 한다. Next, the centrifugal rotor 200 will be described.
상기 원심회전체(200)는, 회전축(210)이 회전함에 따라 발생하는 원심력에 의해 내부의 수용공간(S)에 수용된 방사액을 방사 노즐(202)을 통해 방사하여 섬유사를 생성하기 위한 부분이다. The centrifugal rotor 200 is a portion for spinning the spinning liquid contained in the receiving space (S) therein through the spinning nozzle 202 by the centrifugal force generated as the rotating shaft 210 rotates to generate a fiber yarn to be.
도 3은 본 발명의 일실시예에 따른 원심방사장치를 구성하는 원심회전체를 도시한 사시도로서, 도 3에 도시된 바와 같이, 상기 방사 노즐(202)은 상기 원심회전체(200)의 외주면(200a)을 따라 복수개가 등간격으로 배치될 수 있다. 3 is a perspective view illustrating a centrifugal rotating body constituting a centrifugal spinning device according to an embodiment of the present invention. As shown in FIG. 3, the spinning nozzle 202 is an outer circumferential surface of the centrifugal rotating body 200. A plurality may be arranged along the 200a at equal intervals.
한편, 도 3 및 도 4에 도시된 바와 같이, 상기 원심회전체(200)의 외주면(200a)에는 복수의 오목홈(h)이 형성되며, 상기 방사 노즐(202)은 상기 오목홈(h)과 상기 수용공간(S)을 연통하는 노즐공(202a) 및 상기 노즐공(202a)과 연통되어 외측으로 연장된 노즐관(202b)을 포함하여 구성될 수 있다. Meanwhile, as shown in FIGS. 3 and 4, a plurality of concave grooves h are formed in the outer circumferential surface 200a of the centrifugal rotor 200, and the spinning nozzle 202 is the concave groove h. And a nozzle hole 202a communicating with the accommodation space S and a nozzle tube 202b extending outwardly in communication with the nozzle hole 202a.
이때, 상기 노즐관(202b)은 상기 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성된다. At this time, the nozzle tube 202b is formed so that the end length opposite the axial rotation direction is longer than the end length of the axial rotation direction.
즉, 도 4에 도시된 바와 같이, 일측 단부의 길이가 타측 단부의 길이보다 길도록 사선 방향으로 절단된 형태로 형성되되, 상기 회전축(210) 회전 방향의 반대측 단부 길이가 회전축(210) 회전 방향 측 단부 길이보다 길도록 절단되어 형성되는 것이다. That is, as shown in Figure 4, the length of one end is formed in a shape cut in a diagonal direction longer than the length of the other end, the end length of the opposite side of the rotation direction of the rotation axis 210, the rotation direction of the rotation axis 210 It is formed by cutting longer than the side end length.
상기 원심회전체(200)의 회전시 발생하는 공기의 흐름은 회전축(210) 회전 방향 측 단부에서 회전축(210) 회전 방향의 반대측 단부로 흐르게 된다. The flow of air generated when the centrifugal rotor 200 rotates flows from an end portion of the rotation shaft 210 to a side opposite to the rotation direction of the rotation shaft 210.
이때, 상술한 바와 같이 노즐관(202b)의 단부가 사선방향으로 절단형성되면, 노즐관(202b)의 단부에서 방사되기 직전의 방사액이 공기의 흐름에 의해 회전축(210) 회전 방향 측 단부에서 회전축(210) 회전 방향의 반대측 단부로 흐르도록 유도되는 효과가 발생한다. At this time, when the end of the nozzle tube 202b is formed to be cut in an oblique direction as described above, the spinning liquid immediately before being radiated from the end of the nozzle tube 202b at the end of the rotational direction of the rotation shaft 210 by the flow of air An effect is induced that flows to the opposite end of the rotational axis 210 in the rotational direction.
따라서, 상기 노즐관(202b)을 통해 방사되는 방사액의 방사가 가속화되어 섬유의 극세화가 이뤄질 수 있다. Therefore, the spinning of the spinning liquid radiated through the nozzle tube 202b may be accelerated to make the fiber finer.
또한, 상기 회전축(210) 회전 방향의 반대측 단부 길이가 회전축(210) 회전 방향 측 단부 길이보다 길도록 절단된 형상은, 도 5에 도시된 바와 같이, 상기 노즐관(202b)의 단부 표면적이 점차 작아지는 타원 형상이다. In addition, as shown in FIG. 5, the end surface area of the nozzle tube 202b is gradually cut so that the end length of the opposite side in the rotational direction of the rotational shaft 210 is longer than the end length of the rotational side of the rotational shaft 210. It is an oval shape that becomes smaller.
따라서, 상기 노즐관(202b)의 단부에서 방사되기 직전의 방사액이 타원의 폭이 좁은 부분을 통해 방사되어 섬유의 극세화가 이뤄질 수 있다. Therefore, the spinning liquid immediately before being spun at the end of the nozzle tube 202b can be spun through the narrow portion of the ellipse to achieve the finer fiber.
이때, 상기 노즐관(202b)의 단부는 상기 원심회전체(200)의 외주면(200a)보다 돌출되도록 형성되는 것이 바람직하다. At this time, the end of the nozzle tube (202b) is preferably formed to protrude more than the outer peripheral surface (200a) of the centrifugal rotor (200).
이는, 상기 원심회전체(200)의 회전시 상기 원심회전체(200)의 외주면(200a)을 따라 흐르는 공기의 흐름에 의해 상기 노즐관(202b)의 단부에서의 방사액 방사가 원활하게 이뤄지도록 하기 위함이다. This is so that the spinning of the spinning liquid at the end of the nozzle tube 202b by the flow of air flowing along the outer circumferential surface 200a of the centrifugal rotor 200 when the centrifugal rotor 200 rotates. To do this.
상술한 바와 같은 형상으로 방사 노즐(202)이 형성됨에 따라 섬유의 극세화가 이뤄질 수 있다. As the spinning nozzle 202 is formed in the shape as described above, the fiber can be made fine.
상기 원심회전체(200)는 상부가 개구된 원반형 또는 원통형으로 형성될 수 있으며, 개구된 상부를 통해 수용공간(S)의 내부로 방사액이 공급되어 수용될 수 있다. The centrifugal rotating body 200 may be formed in a disc shape or a cylindrical shape with an upper portion opened, and the spinning liquid may be supplied to the inside of the accommodation space S through the opened upper portion.
상기 회전축(210)은 상기 원심회전체(200)의 수용공간(S)의 저면 중심부에서 수직 상방을 향하여 연장되도록 고정구비된다. 상기 회전축(210)이 회전함에 따라 상기 원심회전체(200)가 회전하여 수용공간(S)에 수용된 방사액이 상기 방사 노즐(202)을 통해 방사될 수 있다. The rotating shaft 210 is fixedly provided so as to extend vertically upward from the center of the bottom surface of the accommodation space S of the centrifugal rotor 200. As the rotating shaft 210 rotates, the centrifugal rotating body 200 rotates so that the spinning liquid contained in the accommodation space S may be radiated through the spinning nozzle 202.
상기 원심회전체(200)는 상기 회전축(210)을 회전시키기 위한 회전구동부에 의해 회전될 수 있다. The centrifugal rotor 200 may be rotated by a rotation driver for rotating the rotary shaft 210.
상기 회전구동부는, 예를 들어, 도 2에 도시된 바와 같이, 상기 회전축(210)과 동심축상으로 고정결합된 고정풀리(220), 회전구동력을 발생하는 회전모터(230), 상기 고정풀리(220)와 상기 회전모터(230)의 구동축을 연결하여 상기 회전모터(230)의 구동력을 상기 고정풀리(220)에 전달하는 구동벨트(240)를 포함하여 구성될 수 있다. The rotation driving unit, for example, as shown in Figure 2, a fixed pulley 220 is fixed to the concentric shaft concentrically with the rotation shaft 210, a rotation motor 230 for generating a rotation driving force, the fixed pulley ( 220 and the drive shaft of the rotary motor 230 may be configured to include a drive belt 240 for transmitting the driving force of the rotary motor 230 to the fixed pulley 220.
한편, 상기 회전구동부는 상기 회전축(210)을 회전시킬 수만 있다면 다양한 공지의 회전구동수단을 선택하여 적용할 수 있음은 물론이다. On the other hand, if the rotary drive unit can rotate the rotary shaft 210 can be applied to select a variety of known rotary drive means of course.
예를 들어, 상기 회전구동부는 회전구동력을 발생하는 회전모터(230)의 구동축이 커플링을 통해 상기 회전축(210)과 동축상으로 연결되어 회전구동력을 전달하도록 구성될 수 있다. For example, the rotation driving unit may be configured to transfer the driving force of the drive shaft of the rotary motor 230 for generating a rotation driving force is coupled coaxially with the rotation shaft 210 through a coupling.
한편, 도 6에 도시된 바와 같이, 상기 방사 노즐(202)은 상기 회전축(210)을 중심으로 하는 가상 원의 반지름 방향(X, 원심력 방향)에 대해 상기 회전축(210) 회전 방향의 반대방향으로 경사지게 형성될 수 있다. On the other hand, as shown in Figure 6, the spinning nozzle 202 in the direction opposite to the rotation direction of the rotation axis 210 with respect to the radial direction (X, the centrifugal force direction) of the virtual circle around the rotation axis 210. It may be formed to be inclined.
즉, 상기 방사 노즐(202)이 직선형상으로 형성되되, 상기 노즐공(202a)과 상기 노즐관(202b)이 동일한 경사도를 갖도록 직선형상으로 형성될 수 있다. That is, the spinning nozzle 202 is formed in a straight shape, it may be formed in a straight shape so that the nozzle hole 202a and the nozzle tube 202b has the same inclination.
도 8은 원심회전체에 원심력 방향과 동일한 방향으로 형성된 방사 노즐을 도시한 단면도로서, 도 8에 도시된 바와 같이, 방사 노즐(202)이 원심력 방향과 동일한 방향을 향하도록 형성된 경우에는 원심회전체(200)의 회전 시 방사 노즐(202)의 단부에서 방사되는 방사액이 공기저항에 의해 원활하게 방사되기가 어렵다. FIG. 8 is a cross-sectional view of the spinning nozzle formed in the centrifugal rotor in the same direction as the centrifugal force direction. As shown in FIG. 8, when the spinning nozzle 202 is formed to face the same direction as the centrifugal force direction, the centrifugal rotor is formed. It is difficult for the spinning liquid radiated at the end of the spinning nozzle 202 to be smoothly spun by air resistance during the rotation of the 200.
즉, 방사 노즐(202)의 단면 전체에 걸쳐 수직방향으로의 공기저항이 발생하기 때문에 방사액의 원활한 방사가 이뤄지지 못해 섬유의 극세화가 어려운 것이다. That is, since the air resistance in the vertical direction is generated over the entire cross section of the spinning nozzle 202, it is difficult to achieve fine spinning of the fibers because smooth spinning of the spinning liquid is not achieved.
본 실시예의 방사 노즐(202)은, 도 6에 도시된 바와 같이, 방사 노즐(202)의 형성 방향이 원심력 방향에 대해 경사진 방향으로 형성되기 때문에 원심회전체(200)의 회전 시 방사 노즐(202)의 단부에서 방사되는 방사액이 원활하게 방사될 수 있다. As shown in FIG. 6, the spinning nozzle 202 of the present embodiment is formed in the direction in which the spinning nozzle 202 is inclined with respect to the centrifugal force direction. The spinning liquid radiated at the end of 202 can be smoothly spun.
이는, 방사 노즐(202)에서 방사되는 방사액의 방사방향이 공기저항에 대해 수직방향이 아닌 사선방향을 향하기 때문에 노즐관(202b)의 단부에서 방사되기 직전의 방사액이 공기의 흐름에 의해 방사가 유도되는 효과로 인해 방사액의 방사가 가속화되기 때문이다. This is because the spinning direction of the spinning liquid radiated from the spinning nozzle 202 is directed to an oblique direction rather than perpendicular to the air resistance, so that the spinning liquid just before spinning at the end of the nozzle tube 202b is radiated by the flow of air. This is because the spinning of the spinning liquid is accelerated due to the induced effect.
따라서, 상기 노즐관(202b)을 통해 방사되는 방사액의 방사가 가속화되어 섬유의 극세화가 이뤄질 수 있다. Therefore, the spinning of the spinning liquid radiated through the nozzle tube 202b may be accelerated to make the fiber finer.
한편, 상기 노즐관(202b)의 대부분이 상기 원심회전체(200)의 외주면(200a)에 형성된 오목홈(h) 내에 위치하도록 형성되므로, 원심회전 시 공기의 흐름에 의한 상기 노즐관(202b)의 냉각을 방지하여 방사액의 경화를 방지할 수 있다. On the other hand, since most of the nozzle tube (202b) is formed in the concave groove (h) formed in the outer peripheral surface (200a) of the centrifugal rotor 200, the nozzle tube (202b) by the flow of air during centrifugal rotation By preventing the cooling of the spinning liquid can be prevented.
구체적으로, 상기 원심회전체(200)의 회전 시, 상기 원심회전체(200)의 외주면(200a)에는 공기흐름에 의한 냉각효과가 발생하게 되는데, 공기흐름이 상대적으로 적어 냉각효과가 적은 오목홈(h)의 내측에 상기 노즐관(202b)의 대부분이 위치하도록 형성됨에 따라 노즐관(202b) 내부의 방사액 경화가 방지되는 것이다. Specifically, when the centrifugal rotor 200 is rotated, a cooling effect is generated on the outer circumferential surface 200a of the centrifugal rotor 200 due to air flow. As the majority of the nozzle tube 202b is formed inside (h), curing of the spinning solution inside the nozzle tube 202b is prevented.
한편, 상기에서, 상기 방사 노즐(202)이 직선형상으로 형성된 경우에 대해 예시하였지만, 도 7에 도시된 바와 같이, 상기 방사 노즐(202)은 만곡부를 포함하여 형성될 수 있다. On the other hand, in the above, the case of the spinning nozzle 202 is formed in a straight shape, as shown in Figure 7, the spinning nozzle 202 may be formed including a curved portion.
즉, 상기 노즐공(202a)은 직선형태로 형성되고, 상기 노즐관(202b)이 만곡된 형태로 형성될 수 있으며, 구체적으로, 상기 노즐관(202b)은 상기 회전축(210)을 중심으로 하는 가상 원의 반지름 방향(원심력 방향)에 대해 상기 회전축(210)의 회전 방향의 반대방향으로 경사지도록 만곡된 형태로 형성될 수 있다. That is, the nozzle hole 202a may be formed in a straight line shape, and the nozzle tube 202b may be formed in a curved shape. Specifically, the nozzle tube 202b may be formed around the rotating shaft 210. It may be formed in a curved shape to be inclined in the opposite direction of the rotation direction of the rotation axis 210 with respect to the radial direction (centrifugal force direction) of the virtual circle.
또한, 상기 노즐공(202a)과 상기 노즐관(202b)이 모두 만곡된 형태로 형성될 수도 있음은 물론이다. In addition, both the nozzle hole 202a and the nozzle tube 202b may be formed in a curved shape.
이때, 상기 만곡형성된 노즐관(202b)의 단부는 상기 원심회전체(200)의 외주면(200a)보다 돌출되도록 형성되는 것이 바람직하다. At this time, the end of the curved nozzle tube 202b is preferably formed to protrude more than the outer peripheral surface (200a) of the centrifugal rotor (200).
한편, 상기에서는, 상기 방사 노즐(202)이 노즐공(202a)과 노즐관(202b)으로 구성된 경우에 대해 예시하였지만, 상기 방사 노즐(202)은 상기 노즐관(202b)이 없이 상기 노즐공(202a)만으로 구성될 수도 있음은 물론이다. On the other hand, in the above, the case where the spinning nozzle 202 is composed of a nozzle hole 202a and a nozzle tube 202b is illustrated, the spinning nozzle 202 is the nozzle hole (without the nozzle tube 202b) ( Of course, it may be composed of only 202a).
상술한 바와 같은 원심회전체(200)를 통해 수용공간(S) 내부의 방사액을 방사함에 따라 섬유의 극세화를 유도할 수 있게 된다. By spinning the spinning solution inside the accommodation space (S) through the centrifugal rotor 200 as described above it is possible to induce the miniaturization of the fiber.
다음으로, 상기 콜렉터(300)에 대하여 설명하도록 한다. Next, the collector 300 will be described.
상기 콜렉터(300)는, 상기 원심회전체(200)의 방사 노즐(202)을 통해 방사된 섬유사를 포집하기 위한 부분으로서, 상기 콜렉터(300)는 상기 원심회전체(200)의 외표면에서 소정 거리 이격되어 상기 원심회전체(200)의 외주부를 감싸도록 형성된다. The collector 300 is a portion for collecting the fiber yarn spun through the spinning nozzle 202 of the centrifugal rotor 200, the collector 300 is at the outer surface of the centrifugal rotor 200 Is spaced apart a predetermined distance is formed to surround the outer peripheral portion of the centrifugal rotor (200).
구체적으로, 상기 콜렉터(300)는 적어도 하부가 개구된 원통형으로 형성될 수 있으며, 필요에 따라 상부가 개방된 형태 또는 상부가 폐쇄된 형태로 구성될 수 있다. Specifically, the collector 300 may be formed in a cylindrical shape having at least a lower portion thereof, and may be configured in a form in which an upper portion is opened or a upper portion is closed as necessary.
한편, 상기 콜렉터(300)는 상기 콜렉터(300)의 내측 공간(S1, 방사액의 방사가 이뤄지는 공간)으로 열풍을 공급하는 열풍공급수단(310)이 구비될 수 있다. On the other hand, the collector 300 may be provided with hot air supply means 310 for supplying hot air to the inner space (S1, the space in which the spinning liquid is made) of the collector 300.
상기 열풍공급수단(310)은 상기 콜렉터(300)의 내측 공간으로 열풍을 공급함에 따라 상기 콜렉터(300)의 내측 공간 온도를 높일 수 있으며, 이를 통해 상기 원심회전체(200)에 구비된 상기 방사 노즐(202)의 냉각을 방지하여 상기 방사 노즐(202) 내에서 방사액을 경화되는 것을 방지할 수 있다. The hot air supply means 310 may increase the inner space temperature of the collector 300 by supplying hot air to the inner space of the collector 300, through which the radiation provided in the centrifugal rotor 200 Cooling of the nozzle 202 may be prevented to prevent hardening of the spinning liquid in the spinning nozzle 202.
상기 열풍공급수단(310)에 의해 조절되는 상기 콜렉터(300)의 내측 공간(S1) 온도는, 상기 원심회전체(200)에서 방사되어 원통형의 섬유제품 생성을 방해하지 않는 적절한 온도로 유지되는 것이 바람직하다. The temperature of the inner space S1 of the collector 300 controlled by the hot air supply means 310 is maintained at an appropriate temperature that is radiated from the centrifugal rotor 200 and does not interfere with the production of cylindrical fiber products. desirable.
한편, 상기 콜렉터(300)와 상기 원심회전체(200)에는 원심력 이외의 방사액의 방사를 더욱 원활하게 하기 위해 전압인가수단(미도시)이 더욱 구비될 수도 있다. On the other hand, the collector 300 and the centrifugal rotor 200 may be further provided with a voltage applying means (not shown) in order to more smoothly radiate the spinning liquid other than the centrifugal force.
예를 들어, 상기 콜렉터(300)와 상기 원심회전체(200)를 전기가 통하는 재질로 형성하고, 상기 원심회전체(200)에 + 전압을 인가하고, 상기 콜렉터(300)에 - 전압을 인가하는 전압인가수단이 구비될 수 있다. For example, the collector 300 and the centrifugal rotor 200 are formed of an electrically conductive material, a positive voltage is applied to the centrifugal rotor 200, and a negative voltage is applied to the collector 300. Voltage applying means may be provided.
따라서, 상기 원심회전체(200)의 수용공간(S)에 수용된 방사액이 + 이온으로 하전된 상태이고, 이렇게 + 이온으로 하전된 방사액이 상기 - 전압으로 인가된 콜렉터(300)를 향해 이송하게 되므로, 원심력과 정전기력에 의해 더욱 효율적인 방사가 이뤄질 수 있게 된다. Accordingly, the spinning solution contained in the receiving space S of the centrifugal rotor 200 is charged with + ions, and the spinning solution charged with + ions is transferred toward the collector 300 applied with the − voltage. Therefore, more efficient radiation can be achieved by centrifugal force and electrostatic force.
상술한 바와 같은 콜렉터(300)를 통해 상기 원심회전체(200)에서 방사된 섬유사가 콜렉터(300)의 내측 표면에 포집되어 원통형의 섬유제품을 형성할 수 있다. The fiber yarn radiated from the centrifugal rotor 200 through the collector 300 as described above may be collected on the inner surface of the collector 300 to form a cylindrical fiber product.
다음으로, 상기 컨베이어(400)에 대하여 설명하도록 한다. Next, the conveyor 400 will be described.
상기 컨베이어(400)는, 상기 콜렉터(300)의 하측에 구비되어 상기 콜렉터(300)의 내측 표면에 포집된 후 낙하되는 원통형의 섬유제품을 안정화로(500)로 운반하는 부분이다. The conveyor 400 is provided at the lower side of the collector 300 to transport the cylindrical fiber products falling after being collected on the inner surface of the collector 300 to the stabilization furnace 500.
상기 원심회전체(200)에서 방사된 섬유사는 상기 콜렉터(300)의 내측 표면에 포집되며, 상기 콜렉터(300)의 내측 표면에 포집되어 형성된 원통형의 섬유제품은 자중에 의해 점차적으로 콜렉터(300)의 내측 표면을 따라 하측으로 밀리게 된다. The fiber yarn spun from the centrifugal rotor 200 is collected on the inner surface of the collector 300, the cylindrical fiber product formed by being collected on the inner surface of the collector 300 is gradually collected by the collector 300 It is pushed downward along the inner surface of.
상기 콜렉터(300)의 내측 표면을 따라 하측으로 밀려 내려온 원통형의 섬유제품은 상기 콜렉터(300)의 개구된 하부를 통해 상기 컨베이어(400)의 상부로 낙하하게 된다. Cylindrical fiber products pushed downward along the inner surface of the collector 300 fall to the upper portion of the conveyor 400 through the opened lower portion of the collector 300.
상기 컨베이어(400)의 상부로 낙하된 원통형의 섬유제품은 제품을 안정화시키기 위한 안정화로(500)로 이송되어 안정화처리가 이뤄지게 된다. The cylindrical fiber product dropped to the upper portion of the conveyor 400 is transferred to the stabilization furnace 500 for stabilizing the product is to be stabilized.
상술한 바와 같은 컨베이어(400)를 통해 상기 콜렉터(300)에서 포집되어 형성된 원통형의 섬유제품을 그대로 안정화로(500)로 이송하여 안정화 처리할 수 있게 된다. Through the conveyor 400 as described above, the cylindrical fiber products collected and collected by the collector 300 can be transferred to the stabilization furnace 500 as it is to be stabilized.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.Although the present invention has been described with reference to the accompanying drawings, it will be apparent to those skilled in the art that many different and obvious modifications are possible without departing from the scope of the invention from this description. Therefore, the scope of the invention should be construed by the claims described to include many such variations.
Claims (9)
- 축 회전함에 따라 발생하는 원심력에 의해 내부의 수용공간에 수용된 방사액을 방사 노즐을 통해 방사하는 원심회전체를 포함하여 구성되어 섬유를 제조하기 위한 원심방사장치로서, A centrifugal spinning apparatus for manufacturing a fiber comprising a centrifugal rotating body for spinning through the spinning nozzle the spinning liquid contained in the inner receiving space by the centrifugal force generated by the rotation of the shaft,상기 방사 노즐은 상기 수용공간과 상기 원심회전체의 외표면을 연통하도록 형성된 노즐공 및 상기 노즐공과 연통되어 외측으로 연장된 노즐관을 포함하여 구성되며, 상기 노즐관은 상기 축 회전 방향의 반대측 단부 길이가 축 회전 방향 측 단부 길이보다 길게 형성된 것을 특징으로 하는 원심방사장치. The spinning nozzle includes a nozzle hole formed to communicate the outer surface of the accommodation space and the centrifugal rotor and a nozzle tube extending outwardly in communication with the nozzle hole, wherein the nozzle tube is an end opposite to the axial rotation direction. A centrifugal spinning device characterized in that the length is formed longer than the end length of the axial rotation direction.
- 제1항에 있어서, The method of claim 1,상기 원심회전체는 상부가 개구된 원반형 또는 원통형으로 형성되어 상기 수용공간이 형성되며, 상기 수용공간의 저면 중심부에 상기 축이 수직 상방으로 구비된 것을 특징으로 하는 원심방사장치. The centrifugal rotating body is formed in a disk-shaped or cylindrical with an upper opening to form the accommodation space, the centrifugal spinning apparatus, characterized in that the axis is provided vertically upward in the center of the bottom surface of the accommodation space.
- 제2항에 있어서, The method of claim 2,상기 원심회전체의 외주면에는 복수의 오목홈이 형성되며, 상기 노즐공은 상기 오목홈과 상기 수용공간을 연통하도록 형성된 것을 특징으로 하는 원심방사장치. A plurality of concave grooves are formed on the outer circumferential surface of the centrifugal rotor, the nozzle hole is a centrifugal spinning device, characterized in that formed to communicate with the concave groove and the receiving space.
- 제3항에 있어서, The method of claim 3,상기 노즐관의 단부는 상기 원심회전체의 외주면보다 돌출되도록 형성된 것을 특징으로 하는 원심방사장치. An end portion of the nozzle tube is formed so as to project than the outer peripheral surface of the centrifugal rotating body centrifugal spinning apparatus.
- 제1항에 있어서, The method of claim 1,상기 방사 노즐은 상기 축을 중심으로 하는 가상 원의 반지름 방향에 대해 상기 축 회전 방향의 반대방향으로 경사지게 형성된 것을 특징으로 하는 원심방사장치. And the spinning nozzle is inclined in a direction opposite to the axis rotation direction with respect to the radial direction of the virtual circle about the axis.
- 제5항에 있어서, The method of claim 5,상기 방사 노즐은 직선형상으로 형성된 것을 특징으로 하는 원심방사장치. The spinning nozzle is a centrifugal spinning apparatus, characterized in that formed in a straight shape.
- 제5항에 있어서, The method of claim 5,상기 방사 노즐은 만곡부를 포함하여 형성된 것을 특징으로 하는 원심방사장치. The spinning nozzle is a centrifugal spinning apparatus characterized in that it comprises a curved portion.
- 제1항에 있어서, The method of claim 1,상기 원심회전체의 외측에는 상기 방사 노즐을 통해 방사된 섬유사를 포집하기 위한 콜렉터가 구비되되, 상기 콜렉터는 적어도 하부가 개구된 원통형으로 형성되고, 상기 콜렉터의 하측에는 상기 콜렉터에 포집되어 낙하되는 섬유사를 안정화로로 운반하는 컨베이어가 구비된 것을 특징으로 하는 원심방사장치. The outer side of the centrifugal rotor is provided with a collector for collecting the fiber yarn spun through the spinning nozzle, the collector is formed in a cylindrical shape with at least a lower opening, the lower side of the collector is collected by the collector to fall Centrifugal spinning device characterized in that the conveyor is provided for transporting the fiber yarn to the stabilization furnace.
- 제8항에 있어서, The method of claim 8,상기 콜렉터의 내측 공간으로 열풍을 공급하는 열풍공급수단이 구비된 것을 특징으로 하는 원심방사장치. Centrifugal spinning device characterized in that the hot air supply means for supplying hot air to the inner space of the collector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0078363 | 2013-07-04 | ||
KR1020130078363A KR101503765B1 (en) | 2013-07-04 | 2013-07-04 | Apparatus for centrifugal spinning |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015002419A1 true WO2015002419A1 (en) | 2015-01-08 |
Family
ID=52143955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/005817 WO2015002419A1 (en) | 2013-07-04 | 2014-06-30 | Centrifugal spinning apparatus |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101503765B1 (en) |
WO (1) | WO2015002419A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109913962A (en) * | 2019-03-08 | 2019-06-21 | 德清欧康无机材料科技有限公司 | Colloid at silk equipment swaying wire equipment |
CN110318102A (en) * | 2019-05-28 | 2019-10-11 | 武汉纺织大学 | A kind of centrifugal spinning nozzle system generating multifilament |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101983678B1 (en) * | 2018-06-28 | 2019-09-03 | (주)엔오엔그리드 | Nanofiber radiator |
KR102232444B1 (en) * | 2020-11-15 | 2021-03-26 | (주)인암 | Automatic weaving device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288667A (en) * | 2000-03-31 | 2001-10-19 | Polymer Processing Res Inst | Spirally accumulated nonwoven fabric of centrifugally spun filament, method of producing the spirally accumulated fabric, latitudinally paralleled filament nonwoven fabric, and method of producing the latitudinally paralleled fabric |
JP3309089B2 (en) * | 1990-08-03 | 2002-07-29 | アベシア・リミテッド | Centrifugal spinning device |
JP2010180490A (en) * | 2009-02-04 | 2010-08-19 | Panasonic Corp | Apparatus for producing nanofiber |
WO2012109210A2 (en) * | 2011-02-07 | 2012-08-16 | Fibrerio Technology Corporation | Apparatuses and methods for the simultaneous production of microfibers and nanofibers |
-
2013
- 2013-07-04 KR KR1020130078363A patent/KR101503765B1/en active IP Right Grant
-
2014
- 2014-06-30 WO PCT/KR2014/005817 patent/WO2015002419A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3309089B2 (en) * | 1990-08-03 | 2002-07-29 | アベシア・リミテッド | Centrifugal spinning device |
JP2001288667A (en) * | 2000-03-31 | 2001-10-19 | Polymer Processing Res Inst | Spirally accumulated nonwoven fabric of centrifugally spun filament, method of producing the spirally accumulated fabric, latitudinally paralleled filament nonwoven fabric, and method of producing the latitudinally paralleled fabric |
JP2010180490A (en) * | 2009-02-04 | 2010-08-19 | Panasonic Corp | Apparatus for producing nanofiber |
WO2012109210A2 (en) * | 2011-02-07 | 2012-08-16 | Fibrerio Technology Corporation | Apparatuses and methods for the simultaneous production of microfibers and nanofibers |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109913962A (en) * | 2019-03-08 | 2019-06-21 | 德清欧康无机材料科技有限公司 | Colloid at silk equipment swaying wire equipment |
CN110318102A (en) * | 2019-05-28 | 2019-10-11 | 武汉纺织大学 | A kind of centrifugal spinning nozzle system generating multifilament |
Also Published As
Publication number | Publication date |
---|---|
KR101503765B1 (en) | 2015-03-19 |
KR20150005756A (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015002418A1 (en) | Centrifugal spinning apparatus | |
WO2015002419A1 (en) | Centrifugal spinning apparatus | |
WO2019124663A1 (en) | Melt-electrospinning device for mass production of nanofibers, and solvent-free melt-electrospinning method | |
WO2022075679A1 (en) | Pipe manufacturing apparatus and method using extrusion molding pipe | |
WO2014204055A1 (en) | Continuous solid-state polymerisation device and method | |
WO2014171625A1 (en) | Electrospinning apparatus | |
WO2015065070A1 (en) | Separation membrane coating device for battery | |
KR102064555B1 (en) | Manufacturing method and Manufacturing Device pipe opticcable for Telecommunications | |
WO2012077867A1 (en) | Nanofiber manufacturing device | |
WO2021256756A1 (en) | Nozzle device for fdm-type 3d printer | |
WO2012077871A1 (en) | Nanofiber manufaturing device and air supply device therefor | |
WO2019059560A1 (en) | High-strength polyethylene terephthalate fiber and manufacturing method therefor | |
WO2017010627A1 (en) | Gas turbine including cooling system provided with cool-air supply path detouring to outer casing | |
WO2022065736A1 (en) | Apparatus for continuously growing ingot | |
WO2019190141A1 (en) | Spinning pack for manufacturing high strength yarn, and yarn manufacturing apparatus and method | |
CN107245764A (en) | It is a kind of to centrifuge the device that differential method of electrostatic spinning prepares nanofiber | |
WO2012077864A1 (en) | Field emission device and nanofiber manufacturing device | |
WO2018074819A1 (en) | Electrospinning device | |
WO2021172753A1 (en) | Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same | |
WO2015005539A1 (en) | Continuous solid-state polymerization device and method | |
WO2017082533A1 (en) | Crucible coating apparatus | |
CN207435591U (en) | A kind of device for centrifuging differential method of electrostatic spinning and preparing nanofiber | |
WO2015186907A1 (en) | Coating and curing apparatus, coating and curing method, and near-infrared heating apparatus for same | |
WO2022244912A1 (en) | Yarn hot-air heat treatment device | |
WO2016099064A1 (en) | Film drying device and film manufacturing system including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14820235 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14820235 Country of ref document: EP Kind code of ref document: A1 |