[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015002129A1 - 成膜マスク及び成膜マスクの製造方法 - Google Patents

成膜マスク及び成膜マスクの製造方法 Download PDF

Info

Publication number
WO2015002129A1
WO2015002129A1 PCT/JP2014/067332 JP2014067332W WO2015002129A1 WO 2015002129 A1 WO2015002129 A1 WO 2015002129A1 JP 2014067332 W JP2014067332 W JP 2014067332W WO 2015002129 A1 WO2015002129 A1 WO 2015002129A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
mask
opening
frame
Prior art date
Application number
PCT/JP2014/067332
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201480037834.8A priority Critical patent/CN105358732B/zh
Priority to KR1020157036977A priority patent/KR20160029032A/ko
Publication of WO2015002129A1 publication Critical patent/WO2015002129A1/ja
Priority to US14/980,683 priority patent/US10053767B2/en
Priority to US16/002,985 priority patent/US10301716B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a film forming mask provided with a plurality of opening patterns corresponding to a plurality of thin film patterns formed on a substrate, and in particular, a film forming mask and a film forming film capable of forming a high-definition thin film pattern with high positional accuracy.
  • the present invention relates to a mask manufacturing method.
  • This type of conventional film formation mask is a metal mask provided with a plurality of opening patterns penetrating corresponding to a plurality of thin film patterns formed on a substrate, and is a first resist pattern having a plurality of through openings. Is formed on the metal plate, and etching is performed through the through opening of the first resist pattern to form a plurality of through holes penetrating the metal plate, and then the first resist pattern is removed, A second resist pattern having a plurality of second through-openings each exposing a metal edge of a predetermined width around each of the open patterns on the metal plate, and the second through-openings of the second resist pattern Etching is performed through the mask main body portion around each of the plurality of through openings and a thickness greater than the thickness of the mask main body portion located around the mask main body portion. After forming the peripheral portion, it had become those produced by removing the second resist pattern (e.g., see Patent Document 1).
  • the applicant has a resin film in which a plurality of opening patterns having the same shape and dimensions as the thin film pattern corresponding to the plurality of thin film patterns formed on the substrate, and at least one of the plurality of opening patterns.
  • a composite mask having a structure in which a thin plate-like magnetic metal member formed with a through-hole having a size including an opening pattern is intimately proposed has been proposed.
  • the composite mask is formed by laser-processing an opening pattern on a thin resin film having a thickness of about 10 ⁇ m to 30 ⁇ m.
  • a high-definition opening pattern can be formed with high accuracy as described above.
  • the film-forming mask having an area has a feature that an opening pattern can be uniformly formed over the entire mask.
  • a magnetic metal member having a small thermal expansion coefficient such as Invar or Invar alloy and a member having a relatively large thermal expansion coefficient such as a resin film are brought into close contact with each other at room temperature or higher. Internal stress is generated in the film due to the difference in thermal expansion between the two members. Therefore, when a plurality of opening patterns are sequentially laser processed on such a film, the internal stress is partially released, and as a result, the position of the opening pattern may be shifted cumulatively. Therefore, there is a possibility that a high-definition thin film pattern cannot be formed with high positional accuracy.
  • an object of the present invention is to address such problems and provide a film formation mask and a method for manufacturing the film formation mask that can form a high-definition thin film pattern with high positional accuracy.
  • a film formation mask is a film formation mask provided with a plurality of opening patterns corresponding to a plurality of thin film patterns formed on a substrate.
  • the frame is formed in a frame shape with an opening having a size including the plurality of through holes of the metal mask. It is constructed by comprising a metal frame supporting the film and the metal mask by spot welding the portions and edge regions of the metal mask of the metal thin film on one end face.
  • a film forming mask manufacturing method comprising a plurality of opening patterns corresponding to a plurality of thin film patterns formed on a substrate.
  • a metal sheet having a first step of forming a frame-shaped metal thin film having an opening of a size including the plurality of opening patterns on one surface, and an outer dimension of a size that fits in the opening of the metal thin film;
  • a second step of forming a metal mask by providing a plurality of through holes of a size including at least one of the plurality of opening patterns; and an opening of a size including the plurality of through holes.
  • the film and the metal mask are not closely fixed, but are separated and independent from each other. Therefore, the film has an internal structure based on a difference in thermal expansion from the metal mask. There is no stress. Therefore, even when a plurality of aperture patterns are laser processed, the positional deviation of the aperture patterns can be suppressed and the aperture patterns can be formed with high positional accuracy. Therefore, a high-definition thin film pattern can be formed with high positional accuracy.
  • FIG. 4A and 4B are diagrams showing a second embodiment of a film formation mask according to the present invention, where FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along line TT in FIG. It is a figure explaining the manufacturing method of the film-forming mask by the said 2nd Embodiment, and is a top view which shows the first half part of the metal mask joining process to a metal frame. It is a figure explaining the manufacturing method of the film-forming mask by the said 2nd Embodiment, and is a top view which shows the second half part of the metal mask joining process to a metal frame.
  • FIG. 1A and 1B are diagrams showing a first embodiment of a film formation mask according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a sectional view taken along line SS of FIG.
  • This film formation mask is provided with a plurality of opening patterns corresponding to a plurality of thin film patterns formed on a substrate, and includes a resin film 1, a metal mask 2, and a metal frame 3. Configured.
  • the film 1 is formed by forming a plurality of opening patterns 4 penetrating in the same shape and dimensions as the thin film pattern corresponding to the plurality of thin film patterns formed on the substrate.
  • the film 1 has a thickness of about 10 ⁇ m to 30 ⁇ m.
  • It is a resin film that transmits visible light, such as polyimide or polyethylene terephthalate (PET).
  • the one surface 1a of the film 1 has a metal thin film (hereinafter referred to as “invar” or “invar alloy”) having an opening having a size including the plurality of opening patterns 4 and having a frame shape with a certain width. 5 ”(referred to as a“ frame-shaped metal thin film ”) is formed by plating to a thickness of about 30 ⁇ m to 50 ⁇ m.
  • a metal mask 2 is provided separately from the film 1 at a position corresponding to the inside (opening) of the frame-shaped metal thin film 5 on the one surface 1a side of the film 1.
  • the metal mask 2 supports the film 1 when the plurality of opening patterns 4 are formed by laser processing, and is attracted by a magnet installed on the back surface of the substrate during film formation, so that the film 1 is attached to the substrate surface.
  • an invar or an invar alloy having an outer dimension that fits within the frame of the frame-shaped metal thin film 5 and a thickness of about 30 ⁇ m to 50 ⁇ m, which is substantially the same as the frame-shaped metal thin film 5. It is formed of a metal sheet of a magnetic metal material such as.
  • the metal mask 2 is provided with a plurality of through holes 6 having a size including at least one of the plurality of opening patterns 4.
  • the metal mask 2 may be formed by arranging a plurality of elongated slit-shaped through holes, or, as shown in FIG. 1, for example, a plurality of through holes having a size including one opening pattern 4.
  • a plurality of through-hole rows in which the holes 6 are arranged in a row may be arranged in parallel at a predetermined arrangement pitch P.
  • the film 1 has an opening 7 that is positioned on the one surface 1a side of the film 1 and includes a plurality of through-holes 6 of the metal mask 2, and the outer shape is substantially the same as the outer shape of the frame-shaped metal thin film 5 of the film 1.
  • An equal-sized frame-shaped metal frame 3 is provided.
  • the metal frame 3 has one end surface 3a (see FIGS. 2 and 3), with the film 1 and the metal mask 2 stretched over the frame-shaped metal thin film 5 portion of the film 1 and the edge region of the metal mask 2. )
  • a magnetic metal material such as Invar or Invar alloy having a thickness of about 30 mm to 50 mm.
  • a film 1 is prepared in which a frame-shaped metal thin film 5 having an opening having a size including a plurality of opening patterns 4 is formed on one surface 1a. More specifically, the film 1 has a thickness of 10 ⁇ m to 30 ⁇ m, and is a resin film that is cut into a square shape and transmits visible light such as polyimide, and has a surface 1 a along the peripheral edge. A frame-shaped metal thin film 5 having a constant width is formed. At this time, the opening of the frame-shaped metal thin film 5 is set to a size capable of containing a plurality of opening patterns 4 to be formed in the film 1 later and accommodating the metal mask 2.
  • a seed layer made of a highly conductive metal film is formed on one surface 1a of the resin film 1 with a thickness of about 50 nm by a known film formation technique such as vapor deposition, sputtering, or electroless plating.
  • a known film formation technique such as vapor deposition, sputtering, or electroless plating.
  • the film 1 is polyimide
  • nickel or the like is preferably used as the seed layer. Since copper diffuses into polyimide, it is not preferable as a seed layer for polyimide.
  • the film 1 is PET, it is preferable to use copper or the like as a seed layer from the viewpoint of adhesion.
  • a metal thin film made of a magnetic metal material such as Invar or Invar alloy is formed on the seed layer outside the island pattern by a known plating technique to a thickness of 30 ⁇ m, for example. Thereafter, the island pattern is removed, and the seed layer located under the island pattern is removed by etching. Thereby, the frame-shaped metal thin film 5 is formed on the one surface 1 a of the film 1.
  • a metal mask 2 provided with a plurality of through holes 6 is prepared.
  • This metal mask 2 has an outer dimension large enough to fit within the frame of the frame-shaped metal thin film 5, and has a thickness of 30 ⁇ m, for example, a metal sheet made of a magnetic metal material such as Invar or Invar alloy, for example.
  • a plurality of through holes 6 having a size including at least one of the plurality of opening patterns 4 formed in 1 are provided.
  • the formation of the plurality of through holes 6 is performed as follows. That is, a photoresist is applied to one surface of the metal sheet with a certain thickness, and is exposed and developed using a photomask to form a resist mask having openings at positions corresponding to the plurality of through holes 6. Next, the metal sheet is etched using this resist mask, and the through hole 6 is formed in the portion of the metal sheet corresponding to the opening. Thereby, the metal mask 2 is formed.
  • a frame-shaped metal frame 3 is prepared.
  • the metal frame 3 is set to have a size that substantially matches the outer size of the frame-shaped metal thin film 5 of the film 1 and the opening 7 in the frame includes the plurality of through holes 6.
  • the opening 7 is formed by cutting, for example, a magnetic metal plate of invar or invar alloy having a thickness of 30 mm to 50 mm.
  • the manufacturing method of the first embodiment of the film forming mask according to the present invention will be described with reference to FIGS.
  • FIG. 2A the metal frame 3 is held in a state in which a peripheral portion of the metal mask 2 is gripped by the tension grip 8 and pulled to the side parallel to the surface of the metal mask 2 and a certain tension is applied.
  • the metal mask 2 is stretched over the one end surface 3a of the.
  • FIG. 5B the peripheral area of the metal mask 2 is irradiated with laser light L using, for example, a YAG laser, and the metal mask 2 is spotted on one end surface 3a of the metal frame 3. Weld. This spot welding may be performed at a plurality of locations.
  • FIG. 2C the peripheral edge portion of the metal mask 2 is cut out by a cutter so that the metal mask 2 fits within the frame of the frame-shaped metal thin film 5 formed on the film 1.
  • the film 1 has the one surface 1a side on which the frame-shaped metal thin film 5 is provided as the metal mask 2 side, and the peripheral portion is gripped by a plurality of tension grips 8 on the surface of the film 1. A certain tension is applied to the film 1 so that the film 1 does not stretch. In this state, the film 1 covers the metal mask 2 and is positioned above the metal frame 3.
  • FIG. 2B after the metal mask 2 supported by the metal frame 3 is adjusted to be positioned within the frame of the frame-shaped metal thin film 5 of the film 1, the frame shape of the film 1 is adjusted. The metal thin film 5 is in close contact with the one end surface 3 a of the metal frame 3. Subsequently, as shown in FIG.
  • the frame-shaped metal thin film 5 is irradiated with laser light, and the frame-shaped metal thin film 5 is spot-welded to one end surface 3 a of the metal frame 3.
  • This spot welding is preferably performed at a plurality of locations, similarly to the spot welding of the metal mask 2.
  • the film 1 remains under a certain tension. Thereafter, the film 1 is cut along the outer peripheral edge of the metal frame 3 as shown in FIG. Thereby, the film 1 is fixed and supported on the metal frame 3. In this case, the film 1 and the metal mask 2 are separated and independent from each other.
  • the metal frame 3 is placed on the XY stage of the laser processing apparatus with the film 1 as the upper side. Then, as shown in FIG. 4, a portion of the film 1 corresponding to the through hole 6 of the metal mask 2 is irradiated with a laser beam L of, for example, 400 nm or less shaped so that the irradiation area is equal to the area of the opening pattern 4. The film 1 is ablated and removed. Thereby, for example, one opening pattern 4 corresponding to one through hole 6 is formed through the film 1.
  • the portion of the film 1 corresponding to the through hole 6 of the metal mask 2 is irradiated with the laser beam L while the XY stage is moved stepwise in the XY direction at a predetermined pitch, and an opening pattern 4 is formed.
  • the film formation mask shown in FIG. 1 is completed.
  • the film 1 and the metal mask 2 are not closely fixed and are separate and independent from each other. There is no internal stress based on the difference in thermal expansion. Therefore, even when the plurality of opening patterns 4 are laser processed, the positional deviation of the opening patterns 4 can be suppressed and the opening patterns 4 can be formed with high positional accuracy.
  • the opening pattern 4 when the opening pattern 4 is formed on the film 1, the film 1 is supported by the metal mask 2 and therefore does not bend. Therefore, the opening pattern 4 can also be formed with high positional accuracy by the support effect of the metal mask 2.
  • the opening pattern 4 since a certain tension is applied to the film 1 so that the film 1 does not stretch, a slight internal stress due to this tension may exist. Therefore, when the opening pattern 4 is formed, the opening pattern 4 may be slightly positioned. However, since the tension is evenly applied to the sides parallel to the plane of the film 1, the internal stress of the film 1 is uniformly distributed in the plane of the film 1, and The direction of displacement and the amount of displacement can be easily predicted by confirming in advance through experiments or the like. Therefore, if the aperture pattern 4 is laser processed while adjusting the irradiation position of the laser beam L in anticipation of the above-described positional deviation, all the formed aperture patterns 4 are finally positioned at the correct positions.
  • FIG. 5A and 5B are diagrams showing a second embodiment of the film formation mask according to the present invention, in which FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along the line TT of FIG.
  • a different part from 1st Embodiment is demonstrated.
  • This 2nd Embodiment can respond
  • the width of the metal sheet serving as a base material is limited due to the problem of manufacturing equipment (currently, about 500 mm at the maximum), and the degree of freedom in selecting the width is smaller than that of the film 1 or the metal frame 3. Therefore, in the second embodiment, the metal mask 2 is configured by arranging a plurality of strip-shaped unit masks 9 having a maximum width of about 500 mm in parallel with the major axis.
  • the unit mask 9 is cut out from a band-shaped metal sheet having a width of, for example, 500 mm or less rolled up in a roll shape and having a thickness of 30 ⁇ m to 50 ⁇ m, and is formed into a strip shape having a predetermined length.
  • the formed metal sheet is formed by providing a plurality of through holes 6 in the same manner as in the first embodiment.
  • the metal frame 3 is installed at a predetermined position on the XY stage.
  • the metal frame 3 is installed at a predetermined position on the XY stage.
  • at least two orthogonal sides of the metal frame 3 are regulated and positioned by positioning pins provided on the XY stage.
  • the unit mask 9A is held in a state in which the edge in the long axis direction is gripped by the tension grip 8 and pulled in the same direction to give a certain tension. Is stretched around one end face 3a. Further, in this state, an alignment mark (not shown) formed in advance on the metal frame 3 and an alignment mark (not shown) formed in advance on the unit mask 9A are imaged by the alignment camera, and both marks form a fixed positional relationship. For example, the position of the unit mask 9 ⁇ / b> A is adjusted, and the unit mask 9 ⁇ / b> A is aligned with the metal frame 3. Thereafter, the laser beam L is irradiated to the edge region in the major axis direction (Y direction) of the unit mask 9A, and the unit mask 9A is spot welded to the one end surface 3a of the metal frame 3 and fixed.
  • the second unit mask 9B is positioned and attached to the one end surface 3a of the metal frame 3 in the same manner as the first unit mask 9A.
  • the joint between the first unit mask 9A and the second unit mask 9B is arranged with respect to the row of adjacent through holes 6.
  • a second unit mask 9B is attached so as to create a gap 10 in which at least one row of through holes 6 can exist while maintaining the pitch P.
  • the clearance gap 10 in which one row of through-holes (imaginary through-hole 6 ') can exist is shown.
  • the unit masks 9A and 9B are fixed by spot welding to the one end surface 3a of the metal frame 3 in this way, the unit masks 9A and 9B are arranged in the long axis direction (Y Both ends in the same direction are cut out by a cutter so that the length of the direction) fits within the frame of the frame-shaped metal thin film 5 provided on the film 1.
  • the film 1 is cut along the outer peripheral edge of the metal frame 3, and the outer shape of the film formation mask is adjusted.
  • Pattern 4 is formed.
  • the opening pattern 4 is formed in the gap 10 between the adjacent unit masks 9A and 9B corresponding to the virtual through-hole 6 '.
  • the rows of the opening patterns 4 arranged in a line in the Y direction are formed with the arrangement pitch P in the X direction.
  • the same effect as that of the first embodiment is obtained, and a film formation mask having a large area with one side length of 1 m or more is easy. Can be manufactured.
  • the film formation mask according to the present invention is not limited to a vapor deposition mask such as an organic EL layer of an organic EL display panel, but can be applied as a sputtering film formation mask such as a transparent electrode of a capacitive touch panel. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、貫通する複数の開口パターン4を形成すると共に、一面に複数の開口パターン4を内包する大きさの開口を有する枠状の金属薄膜5を設けた樹脂製のフィルム1と、フィルム1の一面1a側にて金属薄膜5の開口に対応した位置にフィルム1と分離独立して設けられ、複数の開口パターン4のうち少なくとも一つの開口パターン4を内包する大きさの複数の貫通孔6を設けたメタルマスク2と、フィルム1の一面1a側に位置し、メタルマスク2の複数の貫通孔6を内包する大きさの開口部7を設けて枠状に形成され、フィルム1及びメタルマスク2を張架した状態で、金属薄膜5の部分及びメタルマスク2の縁部領域を一端面3aにスポット溶接してフィルム1及びメタルマスク2を支持する金属フレーム3と、を備えて構成したものである。

Description

成膜マスク及び成膜マスクの製造方法
 本発明は、基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けた成膜マスクに関し、特に高精細な薄膜パターンを位置精度よく形成し得る成膜マスク及び成膜マスクの製造方法に係るものである。
 従来のこの種の成膜マスクは、基板上に成膜される複数の薄膜パターンに対応して貫通する複数の開口パターンを設けたメタルマスクであって、複数の貫通開口を有する第1レジストパターンを金属板上に形成し、上記第1レジストパターンの貫通開口を介してエッチング処理を行なって上記金属板に貫通する複数の貫通孔を形成した後、上記第1レジストパターンを除去し、上記複数の開口パターンの各々の周りの所定幅の金属縁部を各々が露出せしめる複数の第2貫通開口を有する第2レジストパターンを上記金属板上に形成し、上記第2レジストパターンの第2貫通開口を介してエッチング処理を行なって上記複数の貫通開口の各々の周りのマスク本体部と該マスク本体部の周囲に位置するマスク本体部の厚さより大なる厚さを有する周縁部とを形成した後、上記第2レジストパターンを除去して製造されるものとなっていた(例えば、特許文献1参照)。
特開2001-237072号公報
 しかし、このような従来の成膜マスクは、金属板をエッチング処理して該金属板に貫通する複数の開口パターンを形成しているので、高精細な開口パターンを精度よく形成することができなかった。特に、一辺の長さが数十cm以上の大面積の例えば有機EL表示パネル用の成膜マスクの場合、エッチングむらの発生及び等方エッチングによる開口面積の広がり等により、高精細な開口パターンをマスク全面に亘って均一に形成することができなかった。
 そこで、出願人は、基板に成膜される複数の薄膜パターンに対応して該薄膜パターンと形状寸法の同じ複数の開口パターンを形成した樹脂製のフィルムと、複数の開口パターンのうち少なくとも一つの開口パターンを内包する大きさの貫通孔を形成した薄板状の磁性金属部材とを密接させた構造の複合マスクを提案している。
 上記複合マスクは、厚みが10μm~30μm程度の薄い樹脂製フィルムに開口パターンをレーザ加工して形成するものであり、高精細な開口パターンを精度よく形成することができると共に、上述のような大面積の成膜マスクもマスク全面に亘って均一に開口パターンを形成することができるという特長を有している。
 しかしながら、上記複合マスクにおいては、例えばインバー又はインバー合金のような熱膨張係数の小さい磁性金属部材と樹脂製フィルムのような比較的熱膨張係数の大きい部材とを室温以上で密接させているため、フィルムには両部材間の熱膨張の差に起因して内部応力が発生する。したがって、このようなフィルムに複数の開口パターンを順繰りにレーザ加工して行くと、部分的に上記内部応力が解放され、その結果、開口パターンの位置が累積的にずれることがあった。したがって、高精細な薄膜パターンを位置精度よく形成することができないおそれがあった。
 そこで、本発明は、このような問題点に対処し、高精細な薄膜パターンを位置精度よく形成し得る成膜マスク及び成膜マスクの製造方法を提供することを目的とする。
 上記目的を達成するために、第1の発明による成膜マスクは、基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けた成膜マスクであって、貫通する前記複数の開口パターンを形成すると共に、一面に前記複数の開口パターンを内包する大きさの開口を有する枠状の金属薄膜を設けた樹脂製のフィルムと、前記フィルムの一面側にて前記金属薄膜の前記開口に対応した位置に前記フィルムと分離独立して設けられ、前記複数の開口パターンのうち少なくとも一つの開口パターンを内包する大きさの複数の貫通孔を設けたメタルマスクと、前記フィルムの一面側に位置し、前記メタルマスクの前記複数の貫通孔を内包する大きさの開口部を設けて枠状に形成され、前記フィルム及び前記メタルマスクを張架した状態で、前記金属薄膜の部分及び前記メタルマスクの縁部領域を一端面にスポット溶接して前記フィルム及び前記メタルマスクを支持する金属フレームと、を備えて構成したものである。
 また、第2の発明による成膜マスクの製造方法は、基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けた成膜マスクの製造方法であって、樹脂製フィルムの一面に前記複数の開口パターンを内包する大きさの開口を有する枠状の金属薄膜を成膜する第1ステップと、前記金属薄膜の開口内に収まる大きさの外形寸法を有するメタルシートに、前記複数の開口パターンのうち少なくとも一つの開口パターンを内包する大きさの複数の貫通孔を設けてメタルマスクを形成する第2ステップと、前記複数の貫通孔を内包する大きさの開口部を有する枠状の金属フレームに前記メタルマスクを張架した状態で、該メタルマスクの周縁領域を前記金属フレームの一端面にスポット溶接する第3ステップと、前記フィルムの一面側を前記メタルマスク側として該メタルマスクを覆い、前記金属フレームに張架した状態で、前記フィルムの前記金属薄膜の部分を前記金属フレームの一端面にスポット溶接する第4ステップと、前記メタルマスクの貫通孔内の前記フィルムの部分にレーザ光を照射して前記開口パターンを形成する第5ステップと、を含むものである。
 本発明によれば、フィルムとメタルマスクとは、前述の複合マスクと違って密着固定されたものではなく、互いに分離独立したものであるため、フィルムにはメタルマスクとの熱膨張差に基づく内部応力は存在しない。したがって、複数の開口パターンをレーザ加工した場合にも、開口パターンの位置ずれが抑えられて開口パターンを位置精度よく形成することができる。それ故、高精細な薄膜パターンを位置精度よく形成することができる。
本発明による成膜マスクの第1の実施形態を示す図であり、(a)は平面図、(b)は(a)のS-S線断面矢視図である。 上記第1の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのメタルマスク接合工程を示す断面図である。 上記第1の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのフィルム接合工程を示す断面図である。 上記第1の実施形態による成膜マスクの製造方法を説明する図であり、開口パターン形成工程を示す断面図である。 本発明による成膜マスクの第2の実施形態を示す図であり、(a)は平面図、(b)は(a)のT-T線断面矢視図である。 上記第2の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのメタルマスク接合工程の前半部を示す平面図である。 上記第2の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのメタルマスク接合工程の後半部を示す平面図である。 上記第2の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのフィルム接合工程の前半部を示す平面図である。 上記第2の実施形態による成膜マスクの製造方法を説明する図であり、金属フレームへのフィルム接合工程の後半部を示す平面図である。 上記第2の実施形態による成膜マスクの製造方法を示す図であり、開口パターン形成工程を示す要部拡大平面図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による成膜マスクの第1の実施形態を示す図であり、(a)は平面図、(b)は(a)のS-S線断面矢視図である。この成膜マスクは、基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けたもので、樹脂製のフィルム1と、メタルマスク2と、金属フレーム3と、を備えて構成されている。
 上記フィルム1は、基板上に成膜される複数の薄膜パターンに対応して該薄膜パターンと形状寸法の同じ貫通する複数の開口パターン4を形成したものであり、例えば厚みが10μm~30μm程度のポリイミド又はポリエチレンテレフタレート(PET)等の可視光を透過する樹脂製フィルムである。
 さらに、上記フィルム1の一面1aには、上記複数の開口パターン4を内包する大きさの開口を有し、一定幅の枠状を成した、例えばインバー又はインバー合金等からなる金属薄膜(以下「枠状金属薄膜」という)5がめっき等により30μm~50μm程度の厚みに成膜して設けられている。
 上記フィルム1の一面1a側にて上記枠状金属薄膜5の枠内(開口内)に対応した位置には、上記フィルム1と分離独立してメタルマスク2が設けられている。このメタルマスク2は、上記複数の開口パターン4をレーザ加工により形成する際に、上記フィルム1を下支えすると共に、成膜時には基板の裏面に設置された磁石により吸引されて上記フィルム1を基板面に密着させるためのもので、上記枠状金属薄膜5の枠内に収まる大きさの外形寸法を有し、厚みが上記枠状金属薄膜5と略同じ30μm~50μm程度の、例えばインバー又はインバー合金等の磁性金属材料のメタルシートで形成されている。そして、上記メタルマスク2には、上記複数の開口パターン4のうち少なくとも一つの開口パターン4を内包する大きさの複数の貫通孔6が設けられている。
 なお、上記メタルマスク2は、細長いスリット状の複数の貫通孔を並設したものであってもよく、又は図1に示すように、例えば一つの開口パターン4を内包する大きさの複数の貫通孔6を1列に並べた複数の貫通孔の列を予め定められた一定の配列ピッチPで並設したものであってもよい。
 上記フィルム1の一面1a側に位置させて、上記メタルマスク2の複数の貫通孔6を内包する大きさの開口部7を有し、外形が上記フィルム1の枠状金属薄膜5の外形に略等しい大きさの枠状の金属フレーム3が設けられている。この金属フレーム3は、上記フィルム1及びメタルマスク2を張架した状態で、上記フィルム1の枠状金属薄膜5の部分及びメタルマスク2の縁部領域を一端面3a(図2及び図3参照)にスポット溶接してフィルム1及びメタルマスク2を支持するもので、厚みが30mm~50mm程度の例えばインバー又はインバー合金等の磁性金属材料で形成されている。
 次に、このように構成された成膜マスクの製造方法について説明する。
 先ず、一面1aに複数の開口パターン4を内包する大きさの開口を有する枠状金属薄膜5を成膜したフィルム1を準備する。より詳細には、このフィルム1は、厚みが10μm~30μmであり、方形状に切り出された例えばポリイミド等の可視光を透過する樹脂製のフィルムであり、その一面1aに、周縁部に沿って一定幅の枠状金属薄膜5が形成されたものである。このとき、上記枠状金属薄膜5の開口は、後にフィルム1に形成される複数の開口パターン4を内包し得ると共に、メタルマスク2を収容し得る大きさに設定されている。
 ここで、上記枠状金属薄膜5の形成について詳細に説明する。
 先ず、樹脂製フィルム1の一面1aに良電導性の金属膜からなるシード層を蒸着、スパッタリング又は無電解めっき等の公知の成膜技術により50nm程度の厚みで形成する。この場合、フィルム1がポリイミドであるときには、シード層としてニッケル等を使用するのがよい。銅はポリイミド内に拡散するため、ポリイミドに対するシード層としては好ましくない。一方、フィルム1がPETの場合には、密着性の点からシード層として銅等を使用するのが好ましい。
 次いで、上記シード層上にフォトレジストを例えば30μmの厚みに塗布した後、フォトマスクを使用して露光現像し、上記枠状金属薄膜5の枠内(開口内)に対応した部分及び枠外に対応した部分に島パターンを形成する。
 続いて、上記島パターンの外側のシード層上に公知のめっき技術により例えばインバー又はインバー合金等の磁性金属材料からなる金属薄膜を例えば30μmの厚みに成膜する。その後、上記島パターンを除去すると共に、該島パターンの下部に位置するシード層をエッチングして除去する。これにより、フィルム1の一面1aに枠状金属薄膜5が形成される。
 また、複数の貫通孔6を設けたメタルマスク2が準備される。このメタルマスク2は、上記枠状金属薄膜5の枠内に収まる大きさの外形寸法を有し、例えば厚みが30μmの、例えばインバー又はインバー合金等の磁性金属材料から成るメタルシートに、上記フィルム1に形成される複数の開口パターン4のうち少なくとも一つの開口パターン4を内包する大きさの複数の貫通孔6を設けたものである。
 上記複数の貫通孔6の形成は、次のようにして行われる。即ち、メタルシートの一面にフォトレジストを一定厚みに塗布し、フォトマスクを使用して露光現像し、上記複数の貫通孔6に対応した位置にそれぞれ開口を有するレジストマスクを形成する。次いで、このレジストマスクを使用してメタルシートをエッチングし、上記開口に対応したメタルシートの部分に貫通孔6を形成する。これにより、上記メタルマスク2が形成される。
 さらに、枠状の金属フレーム3が準備される。この金属フレーム3は、外形寸法が上記フィルム1の枠状金属薄膜5の外形寸法に略一致し、枠内の開口部7が複数の貫通孔6を内包する大きさに設定されたものであり、厚みが30mm~50mmの例えばインバー又はインバー合金の磁性金属板を例えば切削加工して上記開口部7を形成したものである。
 以下、本発明による成膜マスクの第1の実施形態の製造方法を図2~図4を参照して説明する。
 先ず、図2(a)に示すように、メタルマスク2の周縁部をテンショングリップ8で掴んでメタルマスク2の面に平行な側方に引張って一定のテンションを架けた状態で、金属フレーム3の一端面3aにメタルマスク2を張架する。そして、この状態で、同図(b)に示すようにメタルマスク2の周縁領域に、例えばYAGレーザを使用してレーザ光Lを照射し、メタルマスク2を金属フレーム3の一端面3aにスポット溶接する。このスポット溶接は、複数個所で行うとよい。その後、同図(c)に示すように、メタルマスク2がフィルム1に形成される枠状金属薄膜5の枠内に収まるように、メタルマスク2の周縁部をカッターにより切除する。
 次に、図3(a)に示すように、フィルム1が枠状金属薄膜5を設けた一面1a側をメタルマスク2側として、周縁部を複数のテンショングリップ8により掴んでフィルム1の面に平行な側方に引張り、フィルム1に該フィルム1が伸びない程度の一定のテンションがかけられる。そして、その状態で、フィルム1は、メタルマスク2を覆って金属フレーム3の上方に位置づけられる。次に、同図(b)に示すように、金属フレーム3に支持されたメタルマスク2がフィルム1の枠状金属薄膜5の枠内に位置するように調整された後、フィルム1の枠状金属薄膜5が金属フレーム3の一端面3aに密着される。続いて、同図(c)に示すように、上記枠状金属薄膜5の部分にレーザ光が照射され、枠状金属薄膜5が金属フレーム3の一端面3aにスポット溶接される。このスポット溶接は、メタルマスク2のスポット溶接と同様に、複数個所で行うのがよい。なお、上記スポット溶接が終わるまでは、フィルム1には一定のテンションがかけられたままである。その後、同図(d)に示すように、フィルム1は、金属フレーム3の外周縁に沿ってカットされる。これにより、フィルム1が金属フレーム3に固定して支持される。この場合、フィルム1とメタルマスク2とは互いに分離独立している。
 次いで、上記金属フレーム3がレーザ加工装置のXYステージ上にフィルム1を上側として載置される。そして、図4に示すように、メタルマスク2の貫通孔6に対応したフィルム1の部分に、照射面積が開口パターン4の面積に等しくなるように整形された例えば400nm以下のレーザ光Lが照射され、フィルム1がアブレーションされて除去される。これにより、一つの貫通孔6に対応して例えば一つの開口パターン4がフィルム1を貫通して形成される。以後、XYステージを予め定められた所定ピッチでXY方向にステップ移動しながらメタルマスク2の貫通孔6に対応したフィルム1の部分にレーザ光Lが照射され、開口パターン4が形成される。こうして、図1に示す成膜マスクが完成する。
 本発明の成膜マスクによれば、フィルム1とメタルマスク2とは、前述の複合マスクと違って密着固定されたものではなく、互いに分離独立したものであるため、フィルム1にはメタルマスク2との熱膨張差に基づく内部応力は存在しない。したがって、複数の開口パターン4をレーザ加工した場合にも、開口パターン4の位置ずれが抑えられて開口パターン4を位置精度よく形成することができる。
 また、フィルム1に開口パターン4を形成する際に、フィルム1はメタルマスク2によって下支えされているため撓まない。したがって、このメタルマスク2の下支え効果によっても開口パターン4を位置精度よく形成することができる。
 なお、フィルム1には、フィルム1が伸びない程度の一定のテンションがかけられているため、このテンションに起因した僅かな内部応力は存在し得る。したがって、開口パターン4を形成した際に開口パターン4の若干の位置づれが生ずるおそれはある。しかしながら、上記テンションは、フィルム1の面内に平行な側方に均等にかけられているため、フィルム1の内部応力は、フィルム1の面内に一様に分布しており、上記開口パターン4の位置ずれの方向及び位置ずれ量は、予め実験等により確認して容易に予測することができる。したがって、上記位置ずれを見込んでレーザ光Lの照射位置を調整しながら開口パターン4をレーザ加工すれば、最終的に、形成された全ての開口パターン4が正しい位置に位置づけられることになる。
 図5は本発明による成膜マスクの第2の実施形態を示す図であり、(a)は平面図、(b)は(a)のT-T線断面矢視図である。ここでは、第1の実施形態と異なる部分について説明する。
 この第2の実施形態は、一辺の長さが1m以上の大面積の基板に対応し得るものであり、一辺の長さが1m以上の枠状金属薄膜付きフィルム1と、同じく一辺の長さが1m以上の外形寸法を有する金属フレーム3とを備えている。一方、メタルマスク2は、基材となるメタルシートの幅が製造設備の問題から制限され(現状、最大500mm程度)、幅の選択自由度がフィルム1や金属フレーム3に比べて小さい。したがって、第2の実施形態においては、メタルマスク2は、幅が最大500mm程度の短冊状の複数の単位マスク9を、その長軸に平行に並設して構成したものである。
 より詳細には、上記単位マスク9は、その長軸に沿って複数の貫通孔を1列に並べて設けた複数の貫通孔の列、又は上記長軸に沿って伸びたスリット状の複数の貫通孔を上記長軸に交差する方向に、図5(b)に示すように一定の配列ピッチPで形成したものである。そして、複数の上記単位マスク9は、隣接する単位マスク9間に、少なくとも一つの貫通孔の列又はスリット状の貫通孔が上記配列ピッチを維持して存在し得る隙間10を空けて並設され、金属フレーム3の一端面3aにスポット溶接されている。なお、図5においては、複数の貫通孔6を1列に並べたものを示し、上記隙間10には貫通孔6の列が一つ存在し得る場合を示している。
 このような成膜マスクは、次のようにして製造される。
 先ず、フィルム1は、ロール状に巻き上げられた幅が1m以上で、厚みが10μm~30μmのフィルムシートから切り出されて1辺の長さが1m以上の方形状に形成される。その後、第1の実施形態と同様にして、フィルム1の一面1aに枠状金属薄膜5が形成される。
 一方、上記単位マスク9は、ロール状に巻き上げられた、例えば500mm以下の幅を有し、厚みが30μm~50μmの帯状のメタルシートから切り出され、予め定められた所定長さの短冊状に形成されたメタルシートに第1の実施形態と同様にして複数の貫通孔6を設けて形成される。
 次に、金属フレーム3に対する上記単位マスク9の取り付け工程が実施される。
 先ず、図6(a)に示すように、金属フレーム3がXYステージ上の予め定められた所定位置に設置される。例えば、XYステージ上に設けられた位置決めピンにより金属フレーム3の少なくとも直交する2辺が規制されて位置決めされる。
 次いで、図6(b)に示すように、単位マスク9Aは、テンショングリップ8により長軸方向の縁部が掴まれて同方向に引張られて一定の張力が付与された状態で、金属フレーム3の一端面3aに張架される。さらに、その状態で、金属フレーム3に予め形成された図示省略のアライメントマークと単位マスク9Aに予め形成された図示省略のアライメントマークとがアライメントカメラにより撮像され、両マークが一定の位置関係を成すように例えば単位マスク9Aの位置が調整され、金属フレーム3に対して単位マスク9Aがアライメントされる。その後、単位マスク9Aの長軸方向(Y方向)の縁部領域にレーザ光Lが照射され、単位マスク9Aが金属フレーム3の一端面3aにスポット溶接されて固定される。
 続いて、図7(a)に示すように、2枚目の単位マスク9Bが上記1枚目の単位マスク9Aと同様にして金属フレーム3の一端面3aに位置決めして取り付けられる。この場合、同図(a)に示しているように、1枚目の単位マスク9Aと2枚目の単位マスク9Bとの間の繋ぎ目には、隣接する貫通孔6の列に対して配列ピッチPを維持して少なくとも1列の貫通孔6が存在し得る隙間10が生ずるように2枚目の単位マスク9Bが取り付けられる。なお、同図(a)においては、1列の貫通孔(仮想の貫通孔6′)が存在し得る隙間10を設けた場合を示す。
 このようにして金属フレーム3の一端面3aに複数の単位マスク9A,9Bがスポット溶接されて固定されると、単位マスク9A,9Bは、図7(b)に示すように長軸方向(Y方向)の長さがフィルム1に設けられた枠状金属薄膜5の枠内に収まる寸法となるように同方向の両端部がカッターにより切除される。
 次に、金属フレーム3に対するフィルム1の取り付け工程が実施される。
 先ず、図8(a)に示すように、XYステージ上に位置決め固定された金属フレーム3上にメタルマスク2を覆うようにしてフィルム1が載置される。さらに、同図(b)に示すように、フィルム1の周縁部をテンショングリップ8により掴んでフィルム1の面に平行な側方に引張り、フィルム1に一定のテンションが加えられる。そして、その状態で、例えば上方からフィルム1を透かしてメタルマスク2を観察しながら、メタルマスク2がフィルム1の枠状金属薄膜5の枠内に収まるようにフィルム1の位置調整がなされる。その後、枠状金属薄膜5の部分にレーザ光が照射されて枠状金属薄膜5が金属フレーム3の一端面3aにスポット溶接される。これにより、フィルム1が金属フレーム3に固定される。
 次いで、図9に示すように、金属フレーム3の外周縁に沿ってフィルム1が切断され、成膜マスクの外形が整えられる。
 その後、第1の実施形態と同様にして、XYステージをXY方向にステップ移動しながら、メタルマスク2の複数の貫通孔6に対応したフィルム1の部分にレーザ光Lが照射され、複数の開口パターン4が形成される。この場合、図10に拡大して示すように、隣接する単位マスク9A,9B間の隙間10の部分にも仮想の貫通孔6′に対応して開口パターン4が形成されるため、フィルム1には、例えばY方向に一列に並んだ開口パターン4の列がX方向に配列ピッチPで並んで形成される。
 このように、本発明による成膜マスクの第2の実施形態によれば、第1の実施形態と同様の効果を有すると共に、1辺の長さが1m以上の大面積の成膜マスクも容易に製造することができる。
 なお、本発明による成膜マスクは、例えば有機EL表示パネルの有機EL層等の蒸着用マスクに限られず、例えば静電容量式タッチパネルの透明電極等のスパッタリング成膜用マスクとしても適用することができる。
 1…フィルム
 2…メタルマスク
 3…金属フレーム
 4…開口パターン
 5…枠状金属薄膜
 6…貫通孔
 7…開口部
 9,9A,9B…単位マスク
 

Claims (8)

  1.  基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けた成膜マスクであって、
     貫通する前記複数の開口パターンを形成すると共に、一面に前記複数の開口パターンを内包する大きさの開口を有する枠状の金属薄膜を設けた樹脂製のフィルムと、
     前記フィルムの一面側にて前記金属薄膜の前記開口に対応した位置に前記フィルムと分離独立して設けられ、前記複数の開口パターンのうち少なくとも一つの開口パターンを内包する大きさの複数の貫通孔を設けたメタルマスクと、
     前記フィルムの一面側に位置し、前記メタルマスクの前記複数の貫通孔を内包する大きさの開口部を設けて枠状に形成され、前記フィルム及び前記メタルマスクを張架した状態で、前記金属薄膜の部分及び前記メタルマスクの縁部領域を一端面にスポット溶接して前記フィルム及び前記メタルマスクを支持する金属フレームと、
    を備えて構成したことを特徴とする成膜マスク。
  2.  前記メタルマスクは、短冊状の複数の単位マスクを、その長軸に平行に並設したものであることを特徴とする請求項1記載の成膜マスク。
  3.  前記単位マスクは、その長軸に沿って複数の貫通孔を1列に並べて設けた複数の貫通孔の列、又は前記長軸に沿って伸びたスリット状の複数の貫通孔を前記長軸に交差する方向に一定の配列ピッチで形成したものであり、
     前記複数の単位マスクは、隣接する前記単位マスク間に、少なくとも一つの前記貫通孔の列又は前記スリット状の貫通孔が前記配列ピッチを維持して存在し得る隙間を空けて並設されていることを特徴とする請求項2記載の成膜マスク。
  4.  隣接する前記単位マスク間の前記隙間に対応した前記フィルムの部分にも複数の前記開口パターンが形成されていることを特徴とする請求項3記載の成膜マスク。
  5.  基板上に成膜される複数の薄膜パターンに対応して複数の開口パターンを設けた成膜マスクの製造方法であって、
     樹脂製フィルムの一面に前記複数の開口パターンを内包する大きさの開口を有する枠状の金属薄膜を成膜する第1ステップと、
     前記金属薄膜の開口内に収まる大きさの外形寸法を有するメタルシートに、前記複数の開口パターンのうち少なくとも一つの開口パターンを内包する大きさの複数の貫通孔を設けてメタルマスクを形成する第2ステップと、
     前記複数の貫通孔を内包する大きさの開口部を有する枠状の金属フレームに前記メタルマスクを張架した状態で、該メタルマスクの周縁領域を前記金属フレームの一端面にスポット溶接する第3ステップと、
     前記フィルムの一面側を前記メタルマスク側として該メタルマスクを覆い、前記金属フレームに張架した状態で、前記フィルムの前記金属薄膜の部分を前記金属フレームの一端面にスポット溶接する第4ステップと、
     前記メタルマスクの貫通孔内の前記フィルムの部分にレーザ光を照射して前記開口パターンを形成する第5ステップと、
    を含むことを特徴とする成膜マスクの製造方法。
  6.  前記メタルマスクは、短冊状の複数の単位マスクを、その長軸に平行に並設したものであり、
     前記第3ステップにおいて、前記複数の単位マスクを夫々前記金属フレームに張架し、その長軸方向の両端縁部領域を前記金属フレームの一端面にスポット溶接する、
    ことを特徴とする請求項5記載の成膜マスクの製造方法。
  7.  前記単位マスクは、その長軸に沿って前記複数の貫通孔を1列に並べて設けた複数の貫通孔の列、又は前記長軸に沿って伸びたスリット状の複数の貫通孔を前記長軸に交差する方向に一定の配列ピッチで形成したものであり、
     前記第3ステップにおいて、隣接する前記単位マスク間に、少なくとも一つの前記貫通孔の列又は前記スリット状の貫通孔が前記配列ピッチを維持して存在し得る隙間を空け、前記複数の単位マスクを前記金属フレームの一端面にスポット溶接することを特徴とする請求項6記載の成膜マスクの製造方法。
  8.  隣接する前記単位マスク間の前記隙間に対応した前記フィルムの部分にも、前記第5ステップにおいてレーザ光が照射され、前記開口パターンが形成されることを特徴とする請求項7記載の成膜マスクの製造方法。
     
PCT/JP2014/067332 2013-07-02 2014-06-30 成膜マスク及び成膜マスクの製造方法 WO2015002129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480037834.8A CN105358732B (zh) 2013-07-02 2014-06-30 成膜掩模和成膜掩模的制造方法
KR1020157036977A KR20160029032A (ko) 2013-07-02 2014-06-30 성막 마스크 및 성막 마스크의 제조 방법
US14/980,683 US10053767B2 (en) 2013-07-02 2015-12-28 Deposition mask and method for producing deposition mask
US16/002,985 US10301716B2 (en) 2013-07-02 2018-06-07 Deposition mask and method for producing deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013138814A JP6078818B2 (ja) 2013-07-02 2013-07-02 成膜マスク及び成膜マスクの製造方法
JP2013-138814 2013-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,683 Continuation US10053767B2 (en) 2013-07-02 2015-12-28 Deposition mask and method for producing deposition mask

Publications (1)

Publication Number Publication Date
WO2015002129A1 true WO2015002129A1 (ja) 2015-01-08

Family

ID=52143704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067332 WO2015002129A1 (ja) 2013-07-02 2014-06-30 成膜マスク及び成膜マスクの製造方法

Country Status (6)

Country Link
US (2) US10053767B2 (ja)
JP (1) JP6078818B2 (ja)
KR (1) KR20160029032A (ja)
CN (1) CN105358732B (ja)
TW (1) TWI611031B (ja)
WO (1) WO2015002129A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168774A1 (ja) * 2016-03-28 2017-10-05 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法及び製造装置
CN107797376A (zh) * 2016-09-07 2018-03-13 上海和辉光电有限公司 一种掩膜版及其制作方法
CN108884555A (zh) * 2015-12-25 2018-11-23 鸿海精密工业股份有限公司 蒸镀掩模、蒸镀掩模的制造方法及有机半导体元件的制造方法
CN109328242A (zh) * 2016-06-28 2019-02-12 大日本印刷株式会社 蒸镀掩膜、有机半导体元件的制造方法以及有机el显示屏的制造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882375B (zh) * 2014-03-12 2016-03-09 京东方科技集团股份有限公司 一种掩膜板及其制作方法
KR102441557B1 (ko) 2015-04-28 2022-09-08 삼성디스플레이 주식회사 마스크 프레임 조립체, 그 제조 방법 및 표시 장치의 제조 방법
KR102352280B1 (ko) * 2015-04-28 2022-01-18 삼성디스플레이 주식회사 마스크 프레임 조립체 제조 장치 및 이를 이용한 마스크 프레임 조립체 제조 방법
JP6527408B2 (ja) * 2015-07-02 2019-06-05 株式会社ブイ・テクノロジー 成膜マスクの製造方法及びその製造装置
WO2017006821A1 (ja) * 2015-07-03 2017-01-12 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク準備体、有機半導体素子の製造方法、有機elディスプレイの製造方法、及び蒸着マスク
JP6563758B2 (ja) * 2015-09-25 2019-08-21 新東エスプレシジョン株式会社 メタルマスク製造方法
KR102586048B1 (ko) 2016-01-12 2023-10-10 삼성디스플레이 주식회사 마스크 조립체, 이의 제조방법 및 이를 포함한 표시 장치의 제조장치
WO2017138166A1 (ja) * 2016-02-10 2017-08-17 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP6359788B2 (ja) * 2016-03-10 2018-07-18 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスク用マスク部材、及び蒸着マスクの製造方法と有機el表示装置の製造方法
CN108779553B (zh) * 2016-03-23 2021-04-06 鸿海精密工业股份有限公司 蒸镀掩膜及其制造方法、有机半导体元件的制造方法
JP6341434B2 (ja) 2016-03-29 2018-06-13 株式会社ブイ・テクノロジー 成膜マスク、その製造方法及び成膜マスクのリペア方法
WO2017170172A1 (ja) * 2016-03-29 2017-10-05 株式会社ブイ・テクノロジー 成膜マスク、その製造方法及び成膜マスクのリペア方法
JP6709534B2 (ja) * 2016-04-06 2020-06-17 大日本印刷株式会社 蒸着マスク及び蒸着マスクの製造方法
CN105951040A (zh) * 2016-05-03 2016-09-21 上海天马有机发光显示技术有限公司 掩膜块、掩膜版及掩膜版的制造方法
CN109642310B (zh) * 2016-08-05 2022-09-20 凸版印刷株式会社 蒸镀用金属掩模、蒸镀用金属掩模的制造方法以及显示装置的制造方法
KR20180023139A (ko) * 2016-08-24 2018-03-07 삼성디스플레이 주식회사 증착용 마스크 어셈블리
CN106299152B (zh) * 2016-09-18 2019-01-22 深圳市华星光电技术有限公司 顶发射amoled顶电极光罩、顶发射amoled顶电极及顶发射amoled
CN106271167B (zh) * 2016-09-26 2019-03-29 京东方科技集团股份有限公司 一种金属掩膜板焊接贴合器件及其焊接方法
US10982316B2 (en) * 2016-09-30 2021-04-20 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, vapor deposition pattern forming method, method for producing organic semiconductor element, and method for producing organic EL display
KR102444139B1 (ko) * 2016-10-06 2022-09-15 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법, 유기 반도체 소자의 제조 방법 및 유기 el 디스플레이의 제조 방법
US10557191B2 (en) * 2017-01-31 2020-02-11 Sakai Display Products Corporation Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device
JP6904718B2 (ja) * 2017-02-10 2021-07-21 株式会社ジャパンディスプレイ 蒸着マスク、蒸着マスクの製造方法および蒸着マスクの製造装置
JP6878032B2 (ja) * 2017-02-10 2021-05-26 株式会社ジャパンディスプレイ 蒸着マスク固定装置
US10439138B2 (en) 2017-08-31 2019-10-08 Sakai Display Products Corporation Method for producing deposition mask
TWI648867B (zh) * 2018-01-16 2019-01-21 美屬薩摩亞商茂邦電子有限公司 Light guide plate with high aspect ratio light guide hole array and manufacturing method thereof
JP6658790B2 (ja) * 2018-04-19 2020-03-04 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、有機半導体素子の製造方法、有機elディスプレイの製造方法、及びパターンの形成方法
KR102342735B1 (ko) * 2018-07-10 2021-12-28 주식회사 오럼머티리얼 프레임 일체형 마스크의 제조 방법 및 마스크 지지에 사용되는 트레이
KR102342736B1 (ko) * 2018-07-10 2021-12-28 주식회사 오럼머티리얼 프레임 일체형 마스크의 제조 방법
CN112543817A (zh) * 2018-08-08 2021-03-23 堺显示器制品株式会社 蒸镀掩模、蒸镀掩模的制造方法以及有机半导体元件的制造方法
KR102704885B1 (ko) 2018-11-29 2024-09-11 삼성디스플레이 주식회사 마스크 조립체 및 이의 제조 방법
JP7149196B2 (ja) * 2019-02-01 2022-10-06 株式会社ジャパンディスプレイ 蒸着マスク
CN111534789A (zh) * 2019-02-07 2020-08-14 悟勞茂材料公司 缩减掩模单元片材部的变形量的方法、框架一体型掩模及其制造方法
CN110838565B (zh) * 2019-11-26 2022-07-29 京东方科技集团股份有限公司 金属掩模版、显示面板和显示装置
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
JP2021155763A (ja) * 2020-03-25 2021-10-07 株式会社ジャパンディスプレイ 蒸着マスクの製造方法
CN112376016B (zh) * 2020-11-24 2022-08-02 昆山工研院新型平板显示技术中心有限公司 蒸镀掩膜板组件及其制作方法
CN113684444B (zh) * 2021-08-06 2023-08-04 昆山国显光电有限公司 支撑条及张网方法
KR102371486B1 (ko) * 2021-10-08 2022-03-07 풍원정밀(주) 파인메탈 마스크

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2013083704A (ja) * 2011-10-06 2013-05-09 V Technology Co Ltd マスク及びそれに使用するマスク用部材
JP2013095992A (ja) * 2011-11-04 2013-05-20 V Technology Co Ltd 薄膜パターン形成方法及びマスク

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300664A (ja) * 1994-04-28 1995-11-14 Fujitsu Ltd メタルマスクの製造方法とその再生方法
JP2001237072A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法
KR100490534B1 (ko) * 2001-12-05 2005-05-17 삼성에스디아이 주식회사 유기 전자 발광 소자의 박막 증착용 마스크 프레임 조립체
KR100534580B1 (ko) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 표시장치용 증착 마스크 및 그의 제조방법
KR101629995B1 (ko) * 2009-04-03 2016-06-13 오스람 오엘이디 게엠베하 재료 증착 장치에서 기판을 홀딩하는 장치
KR101135544B1 (ko) * 2009-09-22 2012-04-17 삼성모바일디스플레이주식회사 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치
JP5899585B2 (ja) * 2011-11-04 2016-04-06 株式会社ブイ・テクノロジー マスクの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2013083704A (ja) * 2011-10-06 2013-05-09 V Technology Co Ltd マスク及びそれに使用するマスク用部材
JP2013095992A (ja) * 2011-11-04 2013-05-20 V Technology Co Ltd 薄膜パターン形成方法及びマスク

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884555A (zh) * 2015-12-25 2018-11-23 鸿海精密工业股份有限公司 蒸镀掩模、蒸镀掩模的制造方法及有机半导体元件的制造方法
US10858726B2 (en) 2015-12-25 2020-12-08 Hon Hai Precision Industry Co., Ltd. Vapor deposition mask, vapor deposition mask manufacturing method , and organic semiconductor element manufacturing method
CN108884555B (zh) * 2015-12-25 2021-02-09 鸿海精密工业股份有限公司 蒸镀掩模、蒸镀掩模的制造方法及有机半导体元件的制造方法
WO2017168774A1 (ja) * 2016-03-28 2017-10-05 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法及び製造装置
JPWO2017168774A1 (ja) * 2016-03-28 2018-11-01 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法及び製造装置
CN109328242A (zh) * 2016-06-28 2019-02-12 大日本印刷株式会社 蒸镀掩膜、有机半导体元件的制造方法以及有机el显示屏的制造方法
CN109328242B (zh) * 2016-06-28 2021-04-06 大日本印刷株式会社 蒸镀掩膜、有机半导体元件的制造方法以及有机el显示屏的制造方法
CN107797376A (zh) * 2016-09-07 2018-03-13 上海和辉光电有限公司 一种掩膜版及其制作方法

Also Published As

Publication number Publication date
JP2015010270A (ja) 2015-01-19
US20180282856A1 (en) 2018-10-04
US10301716B2 (en) 2019-05-28
JP6078818B2 (ja) 2017-02-15
KR20160029032A (ko) 2016-03-14
TWI611031B (zh) 2018-01-11
US20160115580A1 (en) 2016-04-28
TW201518522A (zh) 2015-05-16
US10053767B2 (en) 2018-08-21
CN105358732B (zh) 2017-12-19
CN105358732A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
JP6078818B2 (ja) 成膜マスク及び成膜マスクの製造方法
JP6510126B2 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
US10920311B2 (en) Deposition mask, method for manufacturing the same, and method for repairing the same
WO2015053250A1 (ja) 成膜マスク及びその製造方法
JP6078747B2 (ja) 蒸着マスクの製造方法及びレーザ加工装置
JP2013245392A (ja) 蒸着マスク及び蒸着マスクの製造方法
JP6142194B2 (ja) 蒸着マスクの製造方法及び蒸着マスク
WO2014168039A1 (ja) 成膜マスク
WO2014069049A1 (ja) 成膜マスク
JP5976527B2 (ja) 蒸着マスク及びその製造方法
JP2003100456A (ja) アラインメントデバイス及び有機材料の蒸着方法
JP6240960B2 (ja) 成膜マスクの製造方法及び成膜マスク
JP6163376B2 (ja) 成膜マスクの製造方法及び成膜マスク
JP6078746B2 (ja) 蒸着マスクの製造方法
JP2019173181A (ja) 基板付蒸着マスク
WO2017170172A1 (ja) 成膜マスク、その製造方法及び成膜マスクのリペア方法
JP2017066440A (ja) 基板付蒸着マスクの製造方法、蒸着マスクの製造方法および基板付蒸着マスク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037834.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819316

Country of ref document: EP

Kind code of ref document: A1