WO2015001960A1 - ターボ圧縮機の放風制御弁開閉装置 - Google Patents
ターボ圧縮機の放風制御弁開閉装置 Download PDFInfo
- Publication number
- WO2015001960A1 WO2015001960A1 PCT/JP2014/066170 JP2014066170W WO2015001960A1 WO 2015001960 A1 WO2015001960 A1 WO 2015001960A1 JP 2014066170 W JP2014066170 W JP 2014066170W WO 2015001960 A1 WO2015001960 A1 WO 2015001960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control valve
- discharge control
- turbo compressor
- line
- air discharge
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0215—Arrangements therefor, e.g. bleed or by-pass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/023—Details or means for fluid extraction
Definitions
- the present invention relates to a ventilating control valve opening / closing device for a turbo compressor.
- This application claims priority based on Japanese Patent Application No. 2013-142048 for which it applied to Japan on July 5, 2013, and uses the content here.
- a turbo compressor that supplies compressed gas to a plant or the like can be switched between a load operation and a no-load operation.
- the load operation is an operation in which the discharge gas of the turbo compressor is supplied to the plant or the like in response to a request from the plant or the like.
- the no-load operation is an operation in which when the discharge gas supply to the plant or the like is not necessary, the intake amount of the turbo compressor is reduced and the small amount of the discharge gas is discharged to the atmosphere via the discharge control valve. It is.
- Patent Document 1 discloses a method for operating a control valve of a turbo compressor for switching operation between the load operation and the no-load operation.
- the air discharge control valve of the turbo compressor is switched from closed to open, and the intake control valve of the turbo compressor is switched from open to closed.
- the air discharge control valve of the turbo compressor is switched from open to closed, and the intake control valve of the turbo compressor is switched from closed to open.
- Patent Document 1 when the turbo compressor is switched from the load operation to the no-load operation, surging may occur if the opening speed of the air discharge control valve is slow. For this reason, it is common to use a pneumatic control valve that can be opened and closed quickly and has a short opening and closing time. Examples of the pneumatic air discharge control valve that operates by supplying the working gas include a piston valve and a diaphragm valve.
- surging is performed by shifting the opening / closing timing of the inlet guide vane for adjusting the suction capacity of the turbo compressor and the opening / closing timing of the air discharge control valve when switching between the load operation and no-load operation of the turbo compressor. Is prevented.
- Patent Document 3 in a turbo compressor including a discharge flow rate detector, a discharge pressure detector, and a discharge control valve of a turbo compressor, the opening degree of the discharge control valve is controlled based on a signal from the discharge flow rate detector.
- the method for controlling the discharge pressure of the turbo compressor for controlling the opening of the inlet guide vane and the discharge control valve so that the discharge pressure becomes a predetermined value based on the signal from the discharge pressure detector, As the value of the discharge pressure, a value obtained by performing a predetermined correction on the reference discharge pressure is used.
- the discharge pressure is controlled by the inlet guide vane until the surging limit air volume, and the discharge pressure is controlled by the inlet guide vane and the air discharge control valve from the surging limit air volume to the predetermined set air volume.
- the discharge pressure drops to the specified value when the discharge control valve is fully open and the inlet guide vane is fully closed, and when the discharge pressure drops to the specified value, the discharge guide valve is fully closed again and the inlet guide vane is opened.
- the turbo compressor is controlled in combination with the load state.
- the air discharge control valve of the turbo compressor is an air moving type
- the following situation is assumed. If the plant is not operated due to a long holiday, etc., the mother pipe pressure of the plant may become zero. In this state, when trying to start the turbo compressor, the working gas for operating the air discharge control valve cannot be supplied from the plant, and the turbo compressor cannot be switched from the no-load operation to the load operation. For this reason, conventionally, a user who has introduced a turbo compressor prepares an additional sub-compressor to use the turbo compressor as a load operation, and supplies a working gas for starting the main turbo compressor. It was necessary to supply the ventilating control valve.
- the present invention has been made in view of the above circumstances, and a turbo compressor capable of closing an air-driven air discharge control valve without preparing a sub compressor at the time of starting the main turbo compressor
- An object of the present invention is to provide a ventilating control valve switching device.
- a pneumatic discharge control valve that operates by supplying a working gas, a supply line that supplies discharge gas from a turbo compressor via a check valve, and the above supply line.
- An air discharge control valve opening / closing device for a turbo compressor comprising: an air discharge control valve operating line that branches from upstream of the check valve and supplies a part of the discharge gas as the working gas to the air discharge control valve It is.
- the discharge control valve operation line is provided upstream of the check valve in the supply line for supplying the discharge gas of the turbo compressor to the supply target of the discharge gas.
- the air discharge control valve can be closed by transmitting to the air discharge control valve via the air discharge control valve operating line.
- the supply line branches from the downstream side of the check valve, and supplies a part of the discharge gas to the discharge control valve as the working gas.
- a second ventilating control valve operating line is provided.
- a second air discharge control valve operating line is provided downstream of the check valve in the supply line. Therefore, when the mother pipe pressure to be supplied with the discharge gas downstream from the check valve remains, a part of the discharge gas in the mother pipe is supplied as the working gas to the discharge control valve, The air discharge control valve can be closed. That is, in the second aspect of the present invention, the internal pressure downstream of the check valve in the supply line is utilized, and the internal pressure is transmitted to the air discharge control valve via the second air discharge control valve operating line. The air discharge control valve can be closed, and the supply path of the working gas can be changed depending on the state of the mother pipe pressure to be supplied with the discharge gas.
- a closing valve that closes the air discharge control valve operating line is connected downstream of the stop valve in the air discharge control valve operating line.
- a preliminary working gas supply line for supplying the working gas via a check valve is provided downstream of the closing valve provided in the ventilating control valve working line.
- the preliminary operating gas connected downstream is closed in the state where the air discharge control valve operating line is closed by the stop valve and the backflow of the working gas to the upstream is prevented.
- the air discharge control valve can be closed by introducing the working gas from the supply line to the air discharge control valve operation line via the check valve.
- the supply line includes a second stop valve that closes the downstream side of the check valve.
- a second closing valve is provided downstream of the check valve in the supply line. Therefore, the internal pressure upstream of the check valve in the supply line can be quickly increased. That is, when the turbo compressor is in a no-load operation, the air discharge control valve is in an open state, and the flow resistance of the discharge gas in the air discharge control valve and the check valve of the supply line The internal pressure upstream of the check valve in the supply line increases. Therefore, in the fourth aspect of the present invention, the internal pressure of the supply line upstream of the check valve is closed by closing one of the discharge gas passages passing through the check valve by the second stop valve. Can be raised promptly.
- the air discharge control valve operating line is more than the branch point until the air discharge control valve is closed when the turbo compressor is started.
- An electric control valve that restricts the flow path of the downstream line is provided.
- the electric control valve is provided downstream of the branch point of the ventilating control valve operating line. Therefore, the air discharge control valve can be quickly closed when the turbo compressor is started.
- the increase in internal pressure due to the flow path resistance of the line is controlled by narrowing the line downstream from the branch point of the discharge control valve operation line. And the air discharge control valve can be quickly closed. Since the electric control valve can adjust the throttle amount, it is possible to control the increase in internal pressure when the turbo compressor is started up, and the fully-open state after the turbo compressor is started up, thereby supplying the discharge gas. It is possible not to disturb.
- an air discharge control valve opening / closing device for a turbo compressor that can close an air-operated air discharge control valve without preparing a sub compressor when the main turbo compressor is started. It is done.
- FIG. 1 is a system diagram of a turbo compressor provided with a ventilating control valve opening / closing device according to a first embodiment of the present invention. It is a block diagram of the ventilation control valve in 1st Embodiment of this invention. It is a systematic diagram of the turbo compressor provided with the ventilation control valve opening / closing apparatus in 2nd Embodiment of this invention. It is a systematic diagram of the turbo compressor provided with the ventilation control valve opening / closing apparatus in 3rd Embodiment of this invention. It is a systematic diagram of the turbo compressor provided with the ventilation control valve opening / closing apparatus in 4th Embodiment of this invention. It is a systematic diagram of the turbo compressor provided with the ventilation control valve opening / closing apparatus in 5th Embodiment of this invention.
- FIG. 1 is a system diagram of a turbo compressor 1 provided with an air discharge control valve opening / closing device 50 according to the first embodiment of the present invention.
- FIG. 2 is a configuration diagram of the air discharge control valve 31 in the first embodiment of the present invention.
- a turbo compressor 1 shown in FIG. 1 includes a compressor impeller inside, and compresses the sucked gas by the rotation of the compressor impeller.
- a suction line 10 is connected upstream of the turbo compressor 1.
- the suction line 10 is a flow path through which gas sucked from the atmosphere flows.
- the suction line 10 is provided with a suction filter 11.
- the suction filter 11 removes dust and dirt contained in the atmosphere.
- the gas that has passed through the suction filter 11 is input to the turbo compressor 1 via the suction control valve 12.
- the suction control valve 12 is provided in the suction line 10 and controls the amount of gas sucked in the turbo compressor 1.
- the suction control valve 12 is an electric control valve that includes an electric driver 12a including a motor and does not require working gas.
- a supply line 20 is connected downstream of the turbo compressor 1.
- the supply line 20 is a flow path through which the discharge gas from the turbo compressor 1 flows.
- the supply line 20 is provided with a check valve 21.
- the check valve 21 prevents the backflow of the discharge gas from the supply target (such as a plant to which the discharge gas from the turbo compressor 1 is supplied).
- the discharge gas of the turbo compressor 1 is supplied to the plant through the supply line 20 and the check valve 21.
- the check valve 21 has a predetermined flow path resistance.
- the discharge line 30 is connected to the supply line 20.
- the discharge line 30 is a line branched from the upstream side of the check valve 21 in the supply line 20 and is a flow path through which the discharge gas from the turbo compressor 1 flows during no-load operation.
- the discharge line 30 is provided with a discharge control valve 31.
- the air discharge control valve 31 operates according to the opening / closing operation of the suction control valve 12 (detailed operation will be described later).
- a silencer 32 is provided in the air discharge line 30 downstream of the air discharge control valve 31.
- the air discharge control valve 31 is open, and the discharge gas of the turbo compressor 1 passes through the air discharge line 30 and is supplied to the silencer 32 via the air discharge control valve 31 and is discharged into the atmosphere. Noise generated when the air is vented is reduced by the silencer 32.
- the air discharge control valve 31 is a pneumatic control valve that operates by supplying a working gas, and has a predetermined flow path resistance.
- the air discharge control valve 31 has a pneumatic drive 31a, and has a configuration as shown in FIG. 2, for example.
- the air discharge control valve 31 of the present embodiment is a pneumatic piston valve.
- the ventilating control valve 31 has a valve body 43 attached to the lower end of a stem 42 connected to the piston 41 and operates by the pressure of the working gas and the bias of the spring 44.
- the valve body 43 is moved up and down, and the air discharge line 30 passing through the inside of the valve body 40 is opened and closed.
- a supply port 46 through which working gas is supplied is formed in the piston casing 45 surrounding the piston 41.
- the air discharge control valve opening / closing device 50 that operates the air discharge control valve 31 having the above-described configuration will be described.
- the air discharge control valve opening / closing device 50 includes an air discharge control valve operating line 51 and a three-way electromagnetic valve 52.
- the discharge control valve operation line 51 is a line branched from the upstream side of the check valve 21 in the supply line 20, and is a flow path through which the discharge gas from the turbo compressor 1 flows.
- the branch point 51 a of the air discharge control valve operation line 51 is provided upstream of the branch point 30 a of the air discharge line 30.
- a three-way solenoid valve 52 is provided in the discharge control valve operation line 51.
- the three-way solenoid valve 52 operates according to the opening / closing operation of the suction control valve 12 (detailed operation will be described later).
- the end of this air discharge control valve operating line 51 is connected to the supply port 46 shown in FIG.
- the discharge gas of the turbo compressor 1 is supplied to the pneumatic actuator 31a through the air discharge control valve operating line 51 and the three-way electromagnetic valve 52. That is, a part of the discharge gas of the turbo compressor 1 is supplied to the air discharge control valve 31 as the working gas.
- the suction control valve 12 is closed, the air discharge control valve 31 is opened, and the three-way solenoid valve 52 is de-energized.
- the discharge control valve operation line 51 is closed and the discharge gas of the turbo compressor 1 is not supplied to the discharge control valve 31.
- the discharge gas in the air drive 31a is discharge
- the ventilating control valve operating line 51 branches from the upstream of the check valve 21 in the supply line 20. Therefore, when the internal pressure upstream of the check valve 21 in the supply line 20 increases, the internal pressure in the discharge control valve operation line 51 increases, and the discharge gas having a predetermined pressure is supplied as a working gas to the pneumatic actuator 31a. As a result, when the air discharge control valve 31 is closed, the internal pressure of the supply line 20 connected downstream of the turbo compressor 1 is further increased, and the operation is switched to a load operation in which the discharge gas can be supplied to the supply target via the check valve 21. .
- the above-described embodiment is the air discharge control valve opening / closing device 50 of the turbo compressor 1 having the air driven air discharge control valve 31 that operates by supplying the working gas.
- a supply line 20 for supplying discharge gas via a valve 21 an air discharge control valve operating line 51 that branches from upstream of the check valve 21 and supplies a part of the discharge gas to the air discharge control valve 31 as working gas.
- the discharge control valve 31 can be driven using the discharge gas produced by the turbo compressor 1, and when the turbo compressor 1 is started up, the pneumatic release valve can be used without preparing a sub compressor.
- the wind control valve 31 can be closed and switched to load operation.
- FIG. 3 is a system diagram of the turbo compressor 1 provided with the ventilating control valve opening / closing device 50 according to the second embodiment of the present invention. As shown in FIG. 3, the second embodiment is different from the above-described embodiment in that an air discharge control valve opening / closing device 50 includes a second air discharge control valve operation line 53.
- the second air discharge control valve operation line 53 is a line branched from the downstream side of the check valve 21 in the supply line 20, and is a flow path through which the discharge gas supplied to the supply target circulates.
- the end of the second air discharge control valve operation line 53 is connected to an air discharge control valve operation line 51 (hereinafter sometimes referred to as the first air discharge control valve operation line 51).
- a check valve 54 is provided in the second air discharge control valve operating line 53.
- the check valve 54 prevents the backflow of the discharge gas from the first air discharge control valve operation line 51.
- a check valve 55 is also provided in the first air discharge control valve operating line 51.
- the check valve 55 prevents the backflow of the discharge gas from the second air discharge control valve operation line 53.
- the second air discharge control valve operation line 53 is connected upstream of the three-way electromagnetic valve 52 and downstream of the check valve 55 in the first air discharge control valve operation line 51.
- the air discharge control valve opening / closing device 50 of the second embodiment having the above-described configuration, the internal pressure downstream of the check valve 21 of the supply line 20 is used, and the internal pressure is passed through the second air discharge control valve operating line 53. Then, the air discharge control valve 31 can be closed by closing the air discharge control valve 31. Therefore, in the second embodiment, the second air discharge control valve operation line 53 is provided downstream of the check valve 21 in the supply line 20. Therefore, when the mother pipe pressure to be supplied downstream from the check valve 21 remains, a part of the discharge gas in the mother pipe is supplied to the air discharge control valve 31 as the working gas, and the air discharge control valve 31 is Can be closed.
- the second air discharge control valve branches from the downstream side of the check valve 21 in the supply line 20 and supplies a part of the discharge gas to the air discharge control valve 31 as the working gas. It has an operating line 53. Therefore, the working gas supply path of the discharge control valve 31 is changed to the first discharge control valve operation line 51 or the second discharge control valve operation line 53 depending on the state of the supply pipe pressure. Can do. If the supply target mother pipe pressure remains, the air discharge control valve 31 can be quickly closed via the second air discharge control valve operation line 53, so that the turbo compressor 1 can be switched to the load operation. Get faster.
- FIG. 4 is a system diagram of the turbo compressor 1 provided with the ventilating control valve opening / closing device 50 according to the third embodiment of the present invention. As shown in FIG. 4, the third embodiment differs from the above embodiment in that the ventilating control valve opening / closing device 50 includes a preliminary working gas supply line 56.
- a closing valve 57 is provided in the ventilating control valve operating line 51 of the third embodiment. Since this shut-off valve 57 is for emergency use, a manual on-off valve that does not require working gas or electricity is preferable.
- the preliminary working gas supply line 56 is connected downstream of the closing valve 57 and upstream of the three-way electromagnetic valve 52 in the discharge control valve operating line 51.
- a check valve 58 is provided in the preliminary working gas supply line 56. The check valve 58 prevents the backflow of the discharge gas from the discharge control valve operation line 51.
- the ventilating control valve operating line 51 is closed by the closing valve 57, and the downstream of the working gas is prevented downstream thereof.
- the air discharge control valve 31 can be closed by introducing the operation gas from the connected preliminary operation gas supply line 56 to the air discharge control valve operation line 51 through the check valve 58. Therefore, in the third embodiment, by providing the preliminary working gas supply line 56 downstream of the closing valve 57 provided in the air discharge control valve operation line 51, the air discharge control valve 31 has fallen in an emergency that does not close for some reason. Even in this case, the air discharge control valve 31 can be quickly closed by connecting the nitrogen cylinder or the like to the preliminary working gas supply line 56 and temporarily pressurizing the user.
- the closing valve 57 that closes the discharge control valve operation line 51 is connected to the downstream side of the closing valve 57 in the discharge control valve operation line 51, and the check valve 58 is connected to the check valve 58.
- FIG. 5 is a system diagram of the turbo compressor 1 provided with the ventilating control valve opening / closing device 50 according to the fourth embodiment of the present invention. As shown in FIG. 5, the fourth embodiment differs from the above embodiment in that the air discharge control valve opening / closing device 50 includes a second closing valve 59.
- the second stop valve 59 is provided downstream of the check valve 21 in the supply line 20. Since the opening / closing speed is not required for the second closing valve 59, the second closing valve 59 is preferably an electric or manual opening / closing valve.
- the check valve 21 of the supply line 20 is provided by providing the second stop valve 59 downstream of the check valve 21 of the supply line 20.
- the upstream internal pressure can be quickly increased. That is, as described above, when the turbo compressor 1 is in a no-load operation, the air discharge control valve 31 is in an open state, and the discharge gas in the air discharge control valve 31 and the check valve 21 of the supply line 20 is discharged. Due to the flow path resistance, the internal pressure upstream of the check valve 21 of the supply line 20 increases. Therefore, in the fourth embodiment, the internal pressure of the supply line 20 upstream from the check valve 21 is quickly increased by closing one of the discharge gas passages passing through the check valve 21 by the second stop valve 59. be able to.
- the supply line 20 has the second stop valve 59 that closes the downstream side of the check valve 21. Therefore, when the turbo compressor 1 is started, the pressure of the working gas supplied to the air discharge control valve 31 via the air discharge control valve operation line 51 can be easily increased, so that the turbo compressor 1 can be switched to a load operation. Get faster.
- FIG. 6 is a system diagram of the turbo compressor 1 provided with the ventilating control valve opening / closing device 50 according to the fifth embodiment of the present invention. As shown in FIG. 6, the fifth embodiment differs from the above-described embodiment in that an air discharge control valve opening / closing device 50 includes an electric control valve 60.
- the electric control valve 60 restricts the flow path of the line downstream from the branch point 51a of the discharge control valve operation line 51.
- the electric control valve 60 is provided in the supply line 20 downstream of the branch point 51 a of the air discharge control valve operating line 51 and upstream of the branch point 30 a of the air discharge line 30.
- the electric control valve 60 has an electric driver 60a and is not completely closed in the closed state.
- the electric control valve 60 forms a flow path resistance by narrowing the flow path of the supply line 20 until the air discharge control valve 31 is closed when the turbo compressor 1 is started. Thus, the pressure of the working gas supplied to the air discharge control valve 31 is easily increased.
- the electric control valve 60 is gradually opened after the air discharge control valve 31 is closed, and is fully opened when the load operation is started.
- the electric control valve 60 operates so as not to become the flow path resistance of the supply line 20.
- the switching of the operation can be performed using, for example, a pressure sensor (not shown) provided in the air discharge control valve operation line 51.
- the increase in the internal pressure due to the flow path resistance is released by narrowing the line downstream of the branch point 51a of the air discharge control valve operating line 51. It is transmitted to the air discharge control valve 31 through the wind control valve operation line 51, and the air discharge control valve 31 can be closed. Therefore, in the fifth embodiment, by providing the electric control valve 60 downstream of the branch point 51a of the air discharge control valve operation line 51, the air discharge control valve 31 is more than in the above embodiment when the turbo compressor 1 is started. It can be closed quickly.
- the electric flow of the line downstream of the branch point 51a of the discharge control valve operation line 51 is restricted until the discharge control valve 31 is closed when the turbo compressor 1 is started.
- a control valve 60 is provided. Therefore, since the electric control valve 60 can adjust the throttle amount, it is possible to control the increase of the internal pressure when the turbo compressor 1 is started. Further, after the turbo compressor 1 is started, the electric control valve 60 is fully opened, so that supply of the discharge gas can be prevented. Moreover, since the internal pressure can be increased freely by providing the electric control valve 60, the selection range can be widened without the air discharge control valve 31 being limited to the low pressure specification.
- the suction control valve 12 may be a hydraulic type.
- the air discharge control valve 31 is a piston valve
- the air discharge control valve 31 may be, for example, a diaphragm valve.
- the configuration in which only one electric control valve is provided has been described.
- the configuration is provided in each of the supply line and the discharge line downstream from the branch point of the discharge line. May be.
- the preliminary working gas supply line of the third embodiment shown in FIG. 4 may be connected to the connection position of the second air discharge control valve working line of the second embodiment shown in FIG.
- a turbo compressor air discharge control valve opening / closing device capable of closing an air-operated air discharge control valve without preparing a sub compressor when the main turbo compressor is started. Is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
作動ガスの供給により作動する空動式の放風制御弁(31)と、ターボ圧縮機(1)から逆止弁(21)を介して吐出ガスを供給する供給ライン(20)と、上記供給ライン(20)において、逆止弁(21)よりも上流から分岐し、上記放風制御弁(31)に吐出ガスの一部を作動ガスとして供給する放風制御弁作動ライン(51)と、を備えるターボ圧縮機の放風制御弁開閉装置。
Description
本発明は、ターボ圧縮機の放風制御弁開閉装置に関する。
本願は、2013年7月5日に日本国に出願された特願2013-142048号に基づき優先権を主張し、その内容をここに援用する。
本願は、2013年7月5日に日本国に出願された特願2013-142048号に基づき優先権を主張し、その内容をここに援用する。
プラント等に圧縮したガスを供給するターボ圧縮機は、負荷運転と無負荷運転とに切り替えができる。負荷運転とは、プラント等の要求に応じプラント等にターボ圧縮機の吐出ガスを供給する運転である。また、無負荷運転とは、プラント等に吐出ガスの供給が必要のない場合に、ターボ圧縮機の吸入量を少なくし、その少量の吐出ガスを放風制御弁を介して大気放風する運転である。
特許文献1には、この負荷運転と無負荷運転とに運転を切り替えるためのターボ圧縮機の制御弁操作方法が開示されている。この操作方法では、ターボ圧縮機を負荷運転から無負荷運転に切り替える場合、ターボ圧縮機の放風制御弁を閉から開に、ターボ圧縮機の吸入制御弁を開から閉に切り替える。また、ターボ圧縮機を無負荷運転から負荷運転に切り替える場合、ターボ圧縮機の放風制御弁を開から閉に、ターボ圧縮機の吸入制御弁を閉から開に切り替える。
特許文献1に記載されているように、ターボ圧縮機を負荷運転から無負荷運転に切り替える場合、放風制御弁の開く速度が遅いとサージングが発生する可能性がある。このため、放風制御弁は、素早く開閉でき開閉時間の短い空動式の制御弁を使用することが一般的である。作動ガスの供給により作動する空動式の放風制御弁としては、例えばピストン弁やダイヤフラム弁等が挙げられる。
特許文献2では、ターボ圧縮機の負荷運転と無負荷運転の切り替え時において、ターボ圧縮機の吸込み容量を調整するインレットガイドベーンの開閉タイミングと、放風制御弁の開閉タイミングとをずらすことによりサージングの発生を防止している。
特許文献3では、ターボ圧縮機の吐出流量検出器、吐出圧力検出器、放風制御弁を備えるターボ圧縮機において、上記吐出流量検出器からの信号に基づき放風制御弁の開度を制御し、上記吐出圧力検出器からの信号に基づき吐出圧力が所定の値となるようにインレットガイドベーン及び上記放風制御弁の開度を制御するターボ圧縮機の吐出圧力の制御方法において、上記所定の吐出圧力の値として、基準となる吐出圧力に所定の補正を行った値を用いている。
特許文献4では、サージング限界風量まではインレットガイドベーンにより吐出圧力の制御を行い、サージング限界風量から所定の設定風量までは、インレットガイドベーンと放風制御弁による吐出圧力の制御を行い、所定の設定風量以下では、放風制御弁を全開としインレットガイドベーンを全閉とする無負荷状態と、吐出の圧力が規定値まで低下した時、再び放風制御弁を全閉としインレットガイドベーンを開く負荷状態との組合せによりターボ圧縮機の制御を行っている。
特許文献2では、ターボ圧縮機の負荷運転と無負荷運転の切り替え時において、ターボ圧縮機の吸込み容量を調整するインレットガイドベーンの開閉タイミングと、放風制御弁の開閉タイミングとをずらすことによりサージングの発生を防止している。
特許文献3では、ターボ圧縮機の吐出流量検出器、吐出圧力検出器、放風制御弁を備えるターボ圧縮機において、上記吐出流量検出器からの信号に基づき放風制御弁の開度を制御し、上記吐出圧力検出器からの信号に基づき吐出圧力が所定の値となるようにインレットガイドベーン及び上記放風制御弁の開度を制御するターボ圧縮機の吐出圧力の制御方法において、上記所定の吐出圧力の値として、基準となる吐出圧力に所定の補正を行った値を用いている。
特許文献4では、サージング限界風量まではインレットガイドベーンにより吐出圧力の制御を行い、サージング限界風量から所定の設定風量までは、インレットガイドベーンと放風制御弁による吐出圧力の制御を行い、所定の設定風量以下では、放風制御弁を全開としインレットガイドベーンを全閉とする無負荷状態と、吐出の圧力が規定値まで低下した時、再び放風制御弁を全閉としインレットガイドベーンを開く負荷状態との組合せによりターボ圧縮機の制御を行っている。
しかしながら、ターボ圧縮機の放風制御弁を空動式とした場合、次のような状況が想定される。
長期間の休業等によってプラントを稼働させない場合、プラントの母管圧がゼロとなる場合がある。この状態で、ターボ圧縮機を起動させようとした場合、放風制御弁を作動させるための作動ガスをプラントから供給できず、ターボ圧縮機を無負荷運転から負荷運転に切り替えることができない。
このため、従来では、ターボ圧縮機を導入したユーザが、そのターボ圧縮機を負荷運転とするために、追加でサブの圧縮機を用意し、メインのターボ圧縮機の起動のための作動ガスを放風制御弁に供給する必要があった。
長期間の休業等によってプラントを稼働させない場合、プラントの母管圧がゼロとなる場合がある。この状態で、ターボ圧縮機を起動させようとした場合、放風制御弁を作動させるための作動ガスをプラントから供給できず、ターボ圧縮機を無負荷運転から負荷運転に切り替えることができない。
このため、従来では、ターボ圧縮機を導入したユーザが、そのターボ圧縮機を負荷運転とするために、追加でサブの圧縮機を用意し、メインのターボ圧縮機の起動のための作動ガスを放風制御弁に供給する必要があった。
本発明は、上記事情に鑑みてなされたものであり、メインのターボ圧縮機の起動時に、サブの圧縮機を用意しなくても空動式の放風制御弁を閉じることができるターボ圧縮機の放風制御弁開閉装置の提供を目的とする。
本発明の第1の態様は、作動ガスの供給により作動する空動式の放風制御弁と、ターボ圧縮機から逆止弁を介して吐出ガスを供給する供給ラインと、上記供給ラインにおいて、上記逆止弁よりも上流から分岐し、上記放風制御弁に上記吐出ガスの一部を上記作動ガスとして供給する放風制御弁作動ラインと、を備えるターボ圧縮機の放風制御弁開閉装置である。
本発明の第1の態様では、吐出ガスの供給対象にターボ圧縮機の上記吐出ガスを供給する上記供給ラインにおいて上記逆止弁よりも上流に上記放風制御弁作動ラインを設ける。そのため、上記ターボ圧縮機の起動の際に作り出した上記吐出ガスの一部を作動ガスとして自身の上記放風制御弁に供給し、上記放風制御弁を閉じることができる。すなわち、本発明の第1の態様では、上記ターボ圧縮機を無負荷運転から負荷運転に切り替える際に上記供給ラインの上記逆止弁より上流の内圧の高まりを利用し、その内圧の高まりを上記放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を閉じることができる。
本発明の第1の態様では、吐出ガスの供給対象にターボ圧縮機の上記吐出ガスを供給する上記供給ラインにおいて上記逆止弁よりも上流に上記放風制御弁作動ラインを設ける。そのため、上記ターボ圧縮機の起動の際に作り出した上記吐出ガスの一部を作動ガスとして自身の上記放風制御弁に供給し、上記放風制御弁を閉じることができる。すなわち、本発明の第1の態様では、上記ターボ圧縮機を無負荷運転から負荷運転に切り替える際に上記供給ラインの上記逆止弁より上流の内圧の高まりを利用し、その内圧の高まりを上記放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を閉じることができる。
本発明の第2の態様は、上記第1の態様において、上記供給ラインが、上記逆止弁よりも下流から分岐し、上記放風制御弁に上記吐出ガスの一部を上記作動ガスとして供給する第2の放風制御弁作動ラインを備える。
本発明の第2の態様では、上記供給ラインの上記逆止弁よりも下流に第2の放風制御弁作動ラインを設ける。そのため、上記逆止弁よりも下流の吐出ガスの供給対象の母管圧が残っている場合、上記母管内の上記吐出ガスの一部を上記作動ガスとして上記放風制御弁に供給し、上記放風制御弁を閉じることができる。すなわち、本発明の第2の態様では、上記供給ラインの上記逆止弁より下流の内圧を利用し、その内圧を第2の放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を閉じることができ、吐出ガスの供給対象の上記母管圧の状態によって、上記作動ガスの供給経路を変更することができる。
本発明の第2の態様では、上記供給ラインの上記逆止弁よりも下流に第2の放風制御弁作動ラインを設ける。そのため、上記逆止弁よりも下流の吐出ガスの供給対象の母管圧が残っている場合、上記母管内の上記吐出ガスの一部を上記作動ガスとして上記放風制御弁に供給し、上記放風制御弁を閉じることができる。すなわち、本発明の第2の態様では、上記供給ラインの上記逆止弁より下流の内圧を利用し、その内圧を第2の放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を閉じることができ、吐出ガスの供給対象の上記母管圧の状態によって、上記作動ガスの供給経路を変更することができる。
本発明の第3の態様では、上記第1または第2の態様において、上記放風制御弁作動ラインを閉止する閉止弁と、上記放風制御弁作動ラインにおいて、上記閉止弁の下流に接続され、逆止弁を介して上記作動ガスを供給する予備作動ガス供給ラインと、を備える。
本発明の第3の態様では、上記放風制御弁作動ラインに設けた上記閉止弁の下流に上記予備作動ガス供給ラインを設ける。そのため、何らかの原因によって上記放風制御弁が閉まらない緊急時に陥った場合においても速やかに対応することができる。すなわち、本発明の第3の態様では、上記放風制御弁作動ラインを上記閉止弁によって閉じ、その上流への上記作動ガスの逆流を防止した状態で、その下流に接続された上記予備作動ガス供給ラインから上記逆止弁を介して上記作動ガスを上記放風制御弁作動ラインに導入することで、上記放風制御弁を閉じることができる。
本発明の第3の態様では、上記放風制御弁作動ラインに設けた上記閉止弁の下流に上記予備作動ガス供給ラインを設ける。そのため、何らかの原因によって上記放風制御弁が閉まらない緊急時に陥った場合においても速やかに対応することができる。すなわち、本発明の第3の態様では、上記放風制御弁作動ラインを上記閉止弁によって閉じ、その上流への上記作動ガスの逆流を防止した状態で、その下流に接続された上記予備作動ガス供給ラインから上記逆止弁を介して上記作動ガスを上記放風制御弁作動ラインに導入することで、上記放風制御弁を閉じることができる。
本発明の第4の態様は、上記第1から第3のいずれかの態様において、上記供給ラインが、上記逆止弁よりも下流を閉止する第2の閉止弁を備える。
本発明の第4の態様では、上記供給ラインの上記逆止弁よりも下流に第2の閉止弁を設ける。そのため、上記供給ラインの上記逆止弁より上流の内圧を速やかに上昇させることができる。すなわち、上記ターボ圧縮機が無負荷運転のときは、上記放風制御弁が開いた状態であり、上記放風制御弁と上記供給ラインの上記逆止弁における上記吐出ガスの流路抵抗により、上記供給ラインの上記逆止弁より上流の内圧が高まる。このため、本発明の第4の態様では、上記第2の閉止弁によって上記逆止弁を通る上記吐出ガスの抜け道の一つを閉じることで、上記供給ラインの上記逆止弁より上流の内圧を速やかに上昇させることができる。
本発明の第4の態様では、上記供給ラインの上記逆止弁よりも下流に第2の閉止弁を設ける。そのため、上記供給ラインの上記逆止弁より上流の内圧を速やかに上昇させることができる。すなわち、上記ターボ圧縮機が無負荷運転のときは、上記放風制御弁が開いた状態であり、上記放風制御弁と上記供給ラインの上記逆止弁における上記吐出ガスの流路抵抗により、上記供給ラインの上記逆止弁より上流の内圧が高まる。このため、本発明の第4の態様では、上記第2の閉止弁によって上記逆止弁を通る上記吐出ガスの抜け道の一つを閉じることで、上記供給ラインの上記逆止弁より上流の内圧を速やかに上昇させることができる。
本発明の第5の態様は、上記第1から第4のいずれかの態様において、上記ターボ圧縮機の起動時に上記放風制御弁が閉じるまで、上記放風制御弁作動ラインの分岐点よりも下流のラインの流路を絞る電動制御弁を備える。
本発明の第5の態様では、上記放風制御弁作動ラインの上記分岐点よりも下流に上記電動制御弁を設ける。そのため、上記ターボ圧縮機の起動時に上記放風制御弁を速やかに閉じることができる。すなわち、本発明の第5の態様では、上記放風制御弁作動ラインの分岐点よりも下流のラインを絞ることにより、上記ラインの流路抵抗による内圧の高まりを上記放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を速やかに閉じることができる。上記電動制御弁は、絞り量の調整ができるため、上記ターボ圧縮機の起動時には内圧の上昇をコントロールでき、また、上記ターボ圧縮機の起動後には全開状態となることで、上記吐出ガスの供給を妨げないことが可能となる。
本発明の第5の態様では、上記放風制御弁作動ラインの上記分岐点よりも下流に上記電動制御弁を設ける。そのため、上記ターボ圧縮機の起動時に上記放風制御弁を速やかに閉じることができる。すなわち、本発明の第5の態様では、上記放風制御弁作動ラインの分岐点よりも下流のラインを絞ることにより、上記ラインの流路抵抗による内圧の高まりを上記放風制御弁作動ラインを介して上記放風制御弁に伝えて、上記放風制御弁を速やかに閉じることができる。上記電動制御弁は、絞り量の調整ができるため、上記ターボ圧縮機の起動時には内圧の上昇をコントロールでき、また、上記ターボ圧縮機の起動後には全開状態となることで、上記吐出ガスの供給を妨げないことが可能となる。
本発明によれば、メインのターボ圧縮機の起動時に、サブの圧縮機を用意しなくても空動式の放風制御弁を閉じることができるターボ圧縮機の放風制御弁開閉装置が得られる。
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
図1は、本発明の第1実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。図2は、本発明の第1実施形態における放風制御弁31の構成図である。
図1に示すターボ圧縮機1は、内部にコンプレッサーインペラを備えており、コンプレッサーインペラの回転により吸入したガスを圧縮する。このターボ圧縮機1の上流には、吸入ライン10が接続されている。
図1は、本発明の第1実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。図2は、本発明の第1実施形態における放風制御弁31の構成図である。
図1に示すターボ圧縮機1は、内部にコンプレッサーインペラを備えており、コンプレッサーインペラの回転により吸入したガスを圧縮する。このターボ圧縮機1の上流には、吸入ライン10が接続されている。
吸入ライン10は、大気から吸入されたガスが流通する流路である。この吸入ライン10には、吸入フィルタ11が設けられている。吸入フィルタ11は、大気中に含まれる埃や塵等を取り除く。吸入フィルタ11を通過したガスは、吸入制御弁12を介してターボ圧縮機1に入力される。吸入制御弁12は、吸入ライン10に設けられており、ターボ圧縮機1のガスの吸入量を制御する。この吸入制御弁12は、モータ等を備える電動駆動器12aを有し、作動ガスを必要としない電動制御弁である。
ターボ圧縮機1の下流には、供給ライン20が接続されている。供給ライン20は、ターボ圧縮機1からの吐出ガスが流通する流路である。この供給ライン20には、逆止弁21が設けられている。逆止弁21は、供給対象(ターボ圧縮機1からの吐出ガスが供給されるプラント等)からの吐出ガスの逆流を防止する。ターボ圧縮機1の吐出ガスは、供給ライン20を通り逆止弁21を介してプラントに供給される。この逆止弁21は、所定の流路抵抗を有している。
供給ライン20には、放風ライン30が接続されている。放風ライン30は、供給ライン20において逆止弁21よりも上流から分岐したラインであり、無負荷運転時にターボ圧縮機1からの吐出ガスが流通する流路である。この放風ライン30には、放風制御弁31が設けられている。放風制御弁31は、吸入制御弁12の開閉動作に応じて動作する(詳しい動作は後述)。また、放風ライン30には、放風制御弁31の下流にサイレンサ32が設けられている。
無負荷運転時、放風制御弁31は開いており、ターボ圧縮機1の吐出ガスは、放風ライン30を通り放風制御弁31を介してサイレンサ32に供給され、大気放風される。大気放風の際に発生する騒音は、サイレンサ32によって低減される。
放風制御弁31は、作動ガスの供給により作動する空動制御弁であり、所定の流路抵抗を有している。この放風制御弁31は、空動駆動器31aを有し、例えば図2に示すような構成である。
放風制御弁31は、作動ガスの供給により作動する空動制御弁であり、所定の流路抵抗を有している。この放風制御弁31は、空動駆動器31aを有し、例えば図2に示すような構成である。
図2に示すように、本実施形態の放風制御弁31は、空動式のピストン弁である。放風制御弁31は、ピストン41に連設されたステム42の下端に弁体43が取り付けられ、作動ガスの圧力とスプリング44の付勢とによって動作する。作動ガスあるいはスプリング44によってピストン41が上下に動作すると、弁体43が上下に動作し、バルブ本体40の内部を通る放風ライン30が開閉される。ピストン41を囲うピストンケーシング45には、作動ガスが供給される供給口46が形成されている。
図1に戻り、次に、上記構成の放風制御弁31を動作させる放風制御弁開閉装置50について説明する。放風制御弁開閉装置50は、放風制御弁作動ライン51と、三方電磁弁52と、を有する。放風制御弁作動ライン51は、供給ライン20において逆止弁21よりも上流から分岐したラインであり、ターボ圧縮機1からの吐出ガスが流通する流路である。本実施形態では、放風制御弁作動ライン51の分岐点51aが、放風ライン30の分岐点30aよりも上流に設けられている。
放風制御弁作動ライン51には、三方電磁弁52が設けられている。三方電磁弁52は、吸入制御弁12の開閉動作に応じて動作する(詳しい動作は後述)。この放風制御弁作動ライン51の終端は、図2に示す供給口46に接続されている。このため、ターボ圧縮機1の吐出ガスは、放風制御弁作動ライン51を通り三方電磁弁52を介して空動駆動器31aに供給される。すなわち、放風制御弁31には、作動ガスとして、ターボ圧縮機1の吐出ガスの一部が供給される。
次に、上記構成の制御弁系によるターボ圧縮機1の運転切り替え動作(通常時)について説明する。
ターボ圧縮機1が負荷状態のときは、吸入制御弁12が開とされ、放風制御弁31が閉とされ、三方電磁弁52が励磁される。なお、三方電磁弁52が励磁されると、放風制御弁作動ライン51が開き、ターボ圧縮機1の吐出ガスが放風制御弁31に供給され、ピストン41を押し下げることで、放風制御弁31が閉じる。
ターボ圧縮機1が負荷状態のときは、吸入制御弁12が開とされ、放風制御弁31が閉とされ、三方電磁弁52が励磁される。なお、三方電磁弁52が励磁されると、放風制御弁作動ライン51が開き、ターボ圧縮機1の吐出ガスが放風制御弁31に供給され、ピストン41を押し下げることで、放風制御弁31が閉じる。
一方、ターボ圧縮機1が無負荷状態のときは、吸入制御弁12が閉とされ、放風制御弁31が開とされ、三方電磁弁52が非励磁となる。なお、三方電磁弁52が非励磁となると、放風制御弁作動ライン51が閉じ、ターボ圧縮機1の吐出ガスが放風制御弁31に供給されない。そして、空動駆動器31a内の吐出ガスが、三方電磁弁52を介して大気に放出され、スプリング44がピストン41を押し上げることで、放風制御弁31が開く。
続いて、上記構成の制御弁系によるターボ圧縮機1の運転切り替え動作(起動時)について説明する。
ターボ圧縮機1を起動し、吐出ガスの圧力が上記通常時と比べて十分でない状態で、無負荷運転から負荷運転に切り替える場合、先ず、吸入制御弁12を閉から開に切り替えると同時に三方電磁弁52も励磁する。ただし、切り替え直後は放風制御弁31を閉じるだけの供給圧力に達していないことから、放風制御弁31は開である。
ターボ圧縮機1を起動し、吐出ガスの圧力が上記通常時と比べて十分でない状態で、無負荷運転から負荷運転に切り替える場合、先ず、吸入制御弁12を閉から開に切り替えると同時に三方電磁弁52も励磁する。ただし、切り替え直後は放風制御弁31を閉じるだけの供給圧力に達していないことから、放風制御弁31は開である。
吸入制御弁12が開となると、ターボ圧縮機1に大量のガスが吸入される。そして、ターボ圧縮機1からの吐出ガスが、供給ライン20、放風ライン30に流通し始める。吐出ガスが流通し始めると、供給ライン20においては逆止弁21の流通過程での流路抵抗で、また、放風ライン30においては放風制御弁31の流通過程での流路抵抗で、ターボ圧縮機1の下流に接続されたラインの内圧が徐々に高くなる。
放風制御弁作動ライン51は、供給ライン20において、逆止弁21よりも上流から分岐している。したがって、供給ライン20の逆止弁21より上流の内圧が高まると、放風制御弁作動ライン51の内圧が高まり、空動駆動器31aに所定圧力の吐出ガスが作動ガスとして供給される。これにより、放風制御弁31が閉じると、ターボ圧縮機1の下流に接続された供給ライン20の内圧がさらに高まり、逆止弁21を介して供給対象に吐出ガスを供給できる負荷運転に切り替わる。
このように、上記構成の放風制御弁開閉装置50によれば、供給ライン20の逆止弁21より上流の内圧の高まりを利用し、その内圧の高まりを放風制御弁作動ライン51を介して放風制御弁31に伝えて、放風制御弁31を閉じることができる。したがって、本実施形態では、供給対象にターボ圧縮機1の吐出ガスを供給する供給ライン20において、逆止弁21よりも上流に放風制御弁作動ライン51を設ける。そのため、例え供給対象の母管圧が無い(=0MPaG)環境下であったとしても、ターボ圧縮機1の起動の際にターボ圧縮機1で作り出した吐出ガスの一部を、作動ガスとして自身の放風制御弁31に供給し、放風制御弁31を閉じることができる。
したがって、上述の本実施形態は、作動ガスの供給により作動する空動式の放風制御弁31を有するターボ圧縮機1の放風制御弁開閉装置50であって、ターボ圧縮機1から逆止弁21を介して吐出ガスを供給する供給ライン20において、逆止弁21よりも上流から分岐し、放風制御弁31に吐出ガスの一部を作動ガスとして供給する放風制御弁作動ライン51を有する。そのため、ターボ圧縮機1で作り出した吐出ガスを使用して放風制御弁31を駆動させることができ、ターボ圧縮機1の起動時に、サブの圧縮機を用意しなくても空動式の放風制御弁31を閉じて、負荷運転に切り替えることができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
図3は、本発明の第2実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。
図3に示すように、第2実施形態では、放風制御弁開閉装置50が、第2の放風制御弁作動ライン53を備えている点で上記実施形態と異なる。
図3に示すように、第2実施形態では、放風制御弁開閉装置50が、第2の放風制御弁作動ライン53を備えている点で上記実施形態と異なる。
第2の放風制御弁作動ライン53は、供給ライン20において、逆止弁21よりも下流から分岐したラインであり、供給対象に供給された吐出ガスが流通する流路である。第2の放風制御弁作動ライン53の終端は、放風制御弁作動ライン51(以下、第1の放風制御弁作動ライン51と称する場合がある)に接続されている。この第2の放風制御弁作動ライン53には、逆止弁54が設けられている。
逆止弁54は、第1の放風制御弁作動ライン51からの吐出ガスの逆流を防止する。また、第1の放風制御弁作動ライン51にも、逆止弁55が設けられている。逆止弁55は、第2の放風制御弁作動ライン53からの吐出ガスの逆流を防止する。第2の放風制御弁作動ライン53は、第1の放風制御弁作動ライン51において、三方電磁弁52よりも上流であって、逆止弁55よりも下流に接続されている。
上記構成の第2実施形態の放風制御弁開閉装置50によれば、供給ライン20の逆止弁21より下流の内圧を利用し、その内圧を第2の放風制御弁作動ライン53を介して放風制御弁31に伝えて、放風制御弁31を閉じることができる。したがって、第2実施形態では、供給ライン20の逆止弁21よりも下流に第2の放風制御弁作動ライン53を設ける。そのため、逆止弁21よりも下流の供給対象の母管圧が残っている場合、その母管内の吐出ガスの一部を作動ガスとして放風制御弁31に供給し、放風制御弁31を閉じることができる。
したがって、上述の第2実施形態は、供給ライン20において、逆止弁21よりも下流から分岐し、放風制御弁31に吐出ガスの一部を作動ガスとして供給する第2の放風制御弁作動ライン53を有する。そのため、供給対象の母管圧の状態によって、放風制御弁31の作動ガスの供給経路を、第1の放風制御弁作動ライン51若しくは第2の放風制御弁作動ライン53に変更することができる。供給対象の母管圧が残っていれば、第2の放風制御弁作動ライン53を介して速やかに放風制御弁31を閉じることができるので、ターボ圧縮機1の負荷運転への切り替えが早くなる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
次に、本発明の第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
図4は、本発明の第3実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。
図4に示すように、第3実施形態では、放風制御弁開閉装置50が、予備作動ガス供給ライン56を備えている点で上記実施形態と異なる。
図4に示すように、第3実施形態では、放風制御弁開閉装置50が、予備作動ガス供給ライン56を備えている点で上記実施形態と異なる。
第3実施形態の放風制御弁作動ライン51には、閉止弁57が設けられている。この閉止弁57は、緊急用であるので作動ガスや電気を必要としない手動の開閉弁が好ましい。予備作動ガス供給ライン56は、放風制御弁作動ライン51において、閉止弁57の下流であって、三方電磁弁52の上流に接続されている。予備作動ガス供給ライン56には、逆止弁58が設けられている。逆止弁58は、放風制御弁作動ライン51からの吐出ガスの逆流を防止する。
上記構成の第3実施形態の放風制御弁開閉装置50によれば、放風制御弁作動ライン51を閉止弁57によって閉じ、その上流への作動ガスの逆流を防止した状態で、その下流に接続された予備作動ガス供給ライン56から逆止弁58を介して作動ガスを放風制御弁作動ライン51に導入することで、放風制御弁31を閉じることができる。したがって、第3実施形態では、放風制御弁作動ライン51に設けた閉止弁57の下流に予備作動ガス供給ライン56を設けることによって、何らかの原因によって放風制御弁31が閉まらない緊急時に陥った場合においても、ユーザが窒素ボンベ等を予備作動ガス供給ライン56に接続し一時的に加圧することで、速やかに放風制御弁31を閉じることができる。
したがって、上述の第3実施形態によれば、放風制御弁作動ライン51を閉止する閉止弁57と、放風制御弁作動ライン51において、閉止弁57の下流に接続され、逆止弁58を介して作動ガスを供給する予備作動ガス供給ライン56を有する。そのため、例えば使用中の経年劣化により、放風制御弁31の空動駆動器31aの内部抵抗が大きくなることで、ターボ圧縮機1の起動時に低圧力で動作することが前提の放風制御弁31の動作が鈍くなった場合等、本機構が成り立たなくなるような緊急時にも対応することができる。
(第4実施形態)
次に、本発明の第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
次に、本発明の第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
図5は、本発明の第4実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。
図5に示すように、第4実施形態では、放風制御弁開閉装置50が、第2の閉止弁59を備えている点で上記実施形態と異なる。
図5に示すように、第4実施形態では、放風制御弁開閉装置50が、第2の閉止弁59を備えている点で上記実施形態と異なる。
第2の閉止弁59は、供給ライン20において、逆止弁21よりも下流に設けられている。第2の閉止弁59には、開閉速度が要求されないため、第2の閉止弁59は、電動若しくは手動の開閉弁であることが好ましい。
上記構成の第4実施形態の放風制御弁開閉装置50によれば、供給ライン20の逆止弁21よりも下流に第2の閉止弁59を設けることによって、供給ライン20の逆止弁21より上流の内圧を速やかに上昇させることができる。すなわち、上述したように、ターボ圧縮機1が無負荷運転のときは、放風制御弁31が開いた状態であり、その放風制御弁31と供給ライン20の逆止弁21における吐出ガスの流路抵抗により、供給ライン20の逆止弁21より上流の内圧が高まる。そのため、第4実施形態では、第2の閉止弁59によって逆止弁21を通る吐出ガスの抜け道の一つを閉じることで、供給ライン20の逆止弁21より上流の内圧を速やかに上昇させることができる。
したがって、上述の第4実施形態によれば、供給ライン20において、逆止弁21よりも下流を閉止する第2の閉止弁59を有する。そのため、ターボ圧縮機1の起動時に、放風制御弁作動ライン51を介して放風制御弁31に供給される作動ガスの圧力を高め易くなるため、ターボ圧縮機1の負荷運転への切り替えが早くなる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
次に、本発明の第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号又は名称を付し、その説明を簡略若しくは省略する。
図6は、本発明の第5実施形態における放風制御弁開閉装置50が設けられたターボ圧縮機1の系統図である。
図6に示すように、第5実施形態では、放風制御弁開閉装置50が、電動制御弁60を備えている点で上記実施形態と異なる。
図6に示すように、第5実施形態では、放風制御弁開閉装置50が、電動制御弁60を備えている点で上記実施形態と異なる。
電動制御弁60は、放風制御弁作動ライン51の分岐点51aよりも下流のラインの流路を絞る。この電動制御弁60は、供給ライン20において、放風制御弁作動ライン51の分岐点51aよりも下流であって、放風ライン30の分岐点30aよりも上流に設けられている。この電動制御弁60は、電動駆動器60aを有しており、閉状態においては完全に閉まらない。
電動制御弁60は、ターボ圧縮機1の起動時に、放風制御弁31が閉じるまでの間、供給ライン20の流路を絞ることによって流路抵抗を形成し、放風制御弁作動ライン51を介して放風制御弁31に供給される作動ガスの圧力を高め易くする。また、電動制御弁60は、放風制御弁31が閉じた後に徐々に開き、負荷運転に入ったら全開状態となり、供給ライン20の流路抵抗とならないように動作する。なお、この動作の切り替えは、例えば放風制御弁作動ライン51に設けた不図示の圧力センサ等を用いて行うことができる。
上記構成の第5実施形態の放風制御弁開閉装置50によれば、放風制御弁作動ライン51の分岐点51aよりも下流のラインを絞ることにより、その流路抵抗による内圧の高まりを放風制御弁作動ライン51を介して放風制御弁31に伝え、放風制御弁31を閉じることができる。したがって、第5実施形態では、放風制御弁作動ライン51の分岐点51aよりも下流に電動制御弁60を設けることによって、ターボ圧縮機1の起動時に上記実施形態よりも放風制御弁31を速やかに閉じることができる。
したがって、上述の第5実施形態によれば、ターボ圧縮機1の起動時に放風制御弁31が閉じるまで、放風制御弁作動ライン51の分岐点51aよりも下流のラインの流路を絞る電動制御弁60を有する。そのため、電動制御弁60は、絞り量の調整ができるため、ターボ圧縮機1の起動時には内圧の上昇をコントロールできる。また、ターボ圧縮機1の起動後には電動制御弁60が全開となることで、吐出ガスの供給を妨げないことが可能となる。また、電動制御弁60を設けることによって、内圧を自在に高めることができるため、放風制御弁31が低圧力の仕様に限定されることなく、その選定の幅を広げることができる。
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、吸入制御弁12が電動駆動式である構成について説明したが、作動ガスが無くても動く弁であれば良い。例えば、吸入制御弁12に油圧式を採用しても良い。
また、上記実施形態では、放風制御弁31がピストン弁である構成について説明したが、放風制御弁31は、例えばダイヤフラム弁であっても良い。
また、例えば、上記第5実施形態では、電動制御弁を一つだけ設ける構成について説明したが、例えば放風ラインの分岐点よりも下流において、供給ラインと放風ラインのそれぞれに設ける構成であっても良い。
また、第1実施形態~第5実施形態の各構成の組み合わせ及び置換は適宜可能である。例えば、図3に示す第2実施形態の第2の放風制御弁作動ラインの接続位置に、図4に示す第3実施形態の予備作動ガス供給ラインを接続しても良い。
本発明によれば、メインのターボ圧縮機の起動時に、サブの圧縮機を用意しなくても空動式の放風制御弁を閉じることができるターボ圧縮機の放風制御弁開閉装置を提供可能である。
1 ターボ圧縮機、20 供給ライン、21 逆止弁、30 放風ライン、31 放風制御弁、50 放風制御弁開閉装置、51 放風制御弁作動ライン、51a 分岐点、53 第2の放風制御弁作動ライン、56 予備作動ガス供給ライン、57 閉止弁、58 逆止弁、59 第2の閉止弁、60 電動制御弁
Claims (9)
- 作動ガスの供給により作動する空動式の放風制御弁と、
ターボ圧縮機から逆止弁を介して吐出ガスを供給する供給ラインと、
前記供給ラインにおいて、前記逆止弁よりも上流から分岐し、前記放風制御弁に前記吐出ガスの一部を前記作動ガスとして供給する放風制御弁作動ラインと、
を備えるターボ圧縮機の放風制御弁開閉装置。 - 前記供給ラインが、前記逆止弁よりも下流から分岐し、前記放風制御弁に前記吐出ガスの一部を前記作動ガスとして供給する第2の放風制御弁作動ラインを備える請求項1に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記放風制御弁作動ラインを閉止する閉止弁と、
前記放風制御弁作動ラインにおいて、前記閉止弁の下流に接続され、前記逆止弁を介して前記作動ガスを供給する予備作動ガス供給ラインと、
を備える請求項1または2に記載のターボ圧縮機の放風制御弁開閉装置。 - 前記供給ラインが、前記逆止弁よりも下流を閉止する第2の閉止弁を備える請求項1または2に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記供給ラインが、前記逆止弁よりも下流を閉止する第2の閉止弁を備える請求項3に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記ターボ圧縮機の起動時に前記放風制御弁が閉じるまで、前記放風制御弁作動ラインの分岐点よりも下流のラインの流路を絞る電動制御弁を備える請求項1または2に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記ターボ圧縮機の起動時に前記放風制御弁が閉じるまで、前記放風制御弁作動ラインの分岐点よりも下流のラインの流路を絞る電動制御弁を備える請求項3に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記ターボ圧縮機の起動時に前記放風制御弁が閉じるまで、前記放風制御弁作動ラインの分岐点よりも下流のラインの流路を絞る電動制御弁を備える請求項4に記載のターボ圧縮機の放風制御弁開閉装置。
- 前記ターボ圧縮機の起動時に前記放風制御弁が閉じるまで、前記放風制御弁作動ラインの分岐点よりも下流のラインの流路を絞る電動制御弁を備える請求項5に記載のターボ圧縮機の放風制御弁開閉装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157025464A KR101788233B1 (ko) | 2013-07-05 | 2014-06-18 | 터보 압축기의 블로우오프 제어 밸브 개폐 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-142048 | 2013-07-05 | ||
JP2013142048A JP2015014260A (ja) | 2013-07-05 | 2013-07-05 | ターボ圧縮機の放風制御弁開閉装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015001960A1 true WO2015001960A1 (ja) | 2015-01-08 |
Family
ID=52143538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066170 WO2015001960A1 (ja) | 2013-07-05 | 2014-06-18 | ターボ圧縮機の放風制御弁開閉装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015014260A (ja) |
KR (1) | KR101788233B1 (ja) |
WO (1) | WO2015001960A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102020203B1 (ko) | 2019-04-11 | 2019-09-10 | 주식회사 터보만이엔에스 | 터보 송풍기 설치용 블로우 오프 밸브 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364316U (ja) * | 1976-11-02 | 1978-05-30 | ||
JPS54126204U (ja) * | 1978-02-23 | 1979-09-03 | ||
JPS5567377U (ja) * | 1978-10-31 | 1980-05-09 | ||
JPH07260038A (ja) * | 1994-03-16 | 1995-10-13 | Natl Space Dev Agency Japan<Nasda> | ガス圧式弁駆動装置 |
JPH11107983A (ja) * | 1997-09-30 | 1999-04-20 | Nisshin Steel Co Ltd | ターボコンプレッサーのサージング防止方法および装置 |
-
2013
- 2013-07-05 JP JP2013142048A patent/JP2015014260A/ja active Pending
-
2014
- 2014-06-18 KR KR1020157025464A patent/KR101788233B1/ko active IP Right Grant
- 2014-06-18 WO PCT/JP2014/066170 patent/WO2015001960A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364316U (ja) * | 1976-11-02 | 1978-05-30 | ||
JPS54126204U (ja) * | 1978-02-23 | 1979-09-03 | ||
JPS5567377U (ja) * | 1978-10-31 | 1980-05-09 | ||
JPH07260038A (ja) * | 1994-03-16 | 1995-10-13 | Natl Space Dev Agency Japan<Nasda> | ガス圧式弁駆動装置 |
JPH11107983A (ja) * | 1997-09-30 | 1999-04-20 | Nisshin Steel Co Ltd | ターボコンプレッサーのサージング防止方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2015014260A (ja) | 2015-01-22 |
KR20150119925A (ko) | 2015-10-26 |
KR101788233B1 (ko) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5706681B2 (ja) | 多段圧縮機 | |
JP6058054B2 (ja) | 圧縮機の制御方法 | |
WO2008030760A3 (en) | Oil-free air compressor system with inlet throttle | |
JP2008057536A (ja) | 圧縮機内を通過するオイルを低減する空気供給システム | |
JP6082300B2 (ja) | 圧縮機の吸気部構造 | |
TWI734588B (zh) | 真空幫浦系統中的抽泵方法及真空幫浦系統 | |
CA2673764A1 (en) | Method for controlling a turbocompressor | |
WO2015001960A1 (ja) | ターボ圧縮機の放風制御弁開閉装置 | |
CN111868386B (zh) | 气体压缩机 | |
JP6215765B2 (ja) | 圧縮装置 | |
TW202043624A (zh) | 一種用於朝向無負載狀態控制壓縮機的方法 | |
CN113748268A (zh) | 压缩系统和控制压缩系统的方法 | |
WO2015141596A1 (ja) | 空気圧縮機 | |
KR20160078018A (ko) | 2단 터보 차저 시스템 및 2단 터보 차저 시스템의 제어방법 | |
JP6300624B2 (ja) | 圧縮装置 | |
JP2019183993A (ja) | ガス供給装置及びその停止制御方法 | |
CN112752663A (zh) | 用于使车辆的气动系统排气的方法、气动系统和车辆 | |
JP6618347B2 (ja) | エンジン駆動型圧縮機の始動制御方法及びエンジン駆動型圧縮機 | |
US20130098051A1 (en) | Auxiliary power unit bleed cleaning function | |
US11703128B2 (en) | Spring loaded sleeve valve with controlled closing force | |
JP5075521B2 (ja) | 圧縮機 | |
JP5046659B2 (ja) | 空気圧縮機 | |
CN203809758U (zh) | 多功能阀 | |
CA2789470C (en) | Auxiliary power unit bleed cleaning function | |
JP2001116009A (ja) | 吐出圧力切換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14820646 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157025464 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14820646 Country of ref document: EP Kind code of ref document: A1 |