[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015001895A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2015001895A1
WO2015001895A1 PCT/JP2014/064712 JP2014064712W WO2015001895A1 WO 2015001895 A1 WO2015001895 A1 WO 2015001895A1 JP 2014064712 W JP2014064712 W JP 2014064712W WO 2015001895 A1 WO2015001895 A1 WO 2015001895A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
thermoplastic resin
parts
resin
Prior art date
Application number
PCT/JP2014/064712
Other languages
English (en)
French (fr)
Inventor
敏樹 門田
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014086191A external-priority patent/JP5782547B2/ja
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201480037960.3A priority Critical patent/CN105358625B/zh
Publication of WO2015001895A1 publication Critical patent/WO2015001895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin composition, and more particularly, to a polycarbonate / ABS resin alloy composition which is excellent in flame retardancy, impact resistance and appearance, and also excellent in impact strength at high temperature molding.
  • Polycarbonate resin is a resin excellent in heat resistance, mechanical properties, and electrical characteristics, and is widely used in, for example, automotive materials, electrical / electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields.
  • the flame-retardant polycarbonate / styrene resin alloy composition is suitable as a member for electric / electronic devices such as computers, notebook computers, various portable terminals, printers, copying machines, and OA / information devices. in use.
  • polycarbonate / styrene resin alloy compositions flame-retarded with phosphorus flame retardants are extremely excellent in moldability due to the plasticizing effect of phosphorus flame retardants. It is a general composition (see, for example, Patent Documents 1 to 4).
  • ribs or self-tapping bosses are provided to increase the strength of the molded product.
  • a streaky appearance defect occurs in the part after passing the ribs and bosses from the gate, There is also a problem that merchandise value is significantly impaired.
  • the present invention was devised in view of the above problems of the prior art, and provides a thermoplastic resin composition that is excellent in flame retardancy, impact resistance and appearance, and also excellent in impact strength during high temperature molding. For the purpose.
  • thermoplastic resin composition comprising a polycarbonate resin and a styrene resin contains an ABS resin having a specific dispersed particle diameter
  • a specific amount of a flame retardant and a fluoropolymer and a specific amount of a graft copolymer having a specific dispersed particle size By containing a specific amount of a flame retardant and a fluoropolymer and a specific amount of a graft copolymer having a specific dispersed particle size, the flame retardant and impact resistance are balanced, and ribs and bosses are further provided.
  • the present invention provides the following thermoplastic resin composition and molded article thereof.
  • R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group, p, q, r and s are each 0 or 1, k is an integer of 0 to 5, and X 1 represents an arylene group.
  • thermoplastic resin composition according to any one of the above [1] to [4], wherein the proportion of the diene rubber polymer component (b3) having a particle size of 1000 nm or more is 2% or less.
  • thermoplastic resin as described in any one of [1] to [5] above, wherein the mass ratio ((B) / (E)) of the ABS resin (B) to the graft copolymer (E) is 4 to 25.
  • Resin composition [7] The heat according to any one of [1] to [6], wherein a mass ratio ((E) / (F)) of the graft copolymer (E) to talc (F) is 1.4 to 5.
  • Plastic resin composition is 1.4 to 5.
  • the molded article according to [10] which is a housing of at least one OA device selected from a printer, a copier, a projector, a modem, and a router.
  • a polycarbonate / ABS resin alloy composition excellent in flame retardancy, impact resistance and appearance, and also excellent in impact strength at high temperature molding, and a molded article comprising the same.
  • FIG. 1 is a top view of a flat plate-shaped body used for appearance evaluation of Examples.
  • the thermoplastic resin composition of the present invention comprises polycarbonate resin (A) 60 to 90% by mass, aromatic vinyl monomer component (b1) 40 to 80% by mass, vinyl cyanide monomer component (b2) 10 to 5-20 parts by mass of ABS resin (B) comprising 30% by mass, diene rubbery polymer component (b3) 10-30% by mass and other monomer component (b4) 0-30% by mass, and the above formula
  • the base resin composed of 5 to 20% by mass of the phosphate ester compound (C) represented by (1)
  • 0.01 to 1 part by mass of fluoropolymer (D), 1 to 3.5 parts by mass of graft copolymer (E) obtained by graft polymerization of aromatic vinyl compound and / or (meth) acrylic acid ester compound to diene rubber Contains,
  • the number average particle size of the diene rubbery polymer component (b3) in the ABS resin (B) is 100 to 350 nm, and the number average particle size of the graft copolymer
  • Polycarbonate resin (A) There is no restriction
  • the polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the formula: — [— O—X—O—C ( ⁇ O) —] —.
  • X is generally a hydrocarbon group, but for imparting various properties, X introduced with a hetero atom or a hetero bond may be used.
  • the polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • polycarbonate resin (A) the polycarbonate resin formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Alternatively, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used.
  • the polycarbonate resin (A) may be linear or branched. Furthermore, the polycarbonate resin (A) may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.
  • Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene
  • Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl
  • 2,2′-dihydroxy-1,1′-binaphthyl 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;
  • 2,2-bis (4-hydroxyphenyl) propane ie, bisphenol A
  • 1,1-bis (4-hydroxyphenyl) propane 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene, Bis (4-hydroxyphenyl) methane, Bis (4-hydroxyphenyl)
  • 1,1-bis (4-hydroxyphenyl) cyclopentane 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-tert-butyl-cyclohexan
  • Cardostructure-containing bisphenols such as 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene;
  • Dihydroxy diaryl sulfides such as 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide;
  • Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;
  • Dihydroxydiaryl sulfones such as 4,4'-dihydroxydiphenylsulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone;
  • bis (hydroxyaryl) alkanes are preferred, and bis (4-hydroxyphenyl) alkanes are preferred, and 2,2-bis (4-hydroxyphenyl) propane (ie, in terms of impact resistance and heat resistance) Bisphenol A) is preferred.
  • 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • Examples of monomers used as raw materials for aliphatic polycarbonate resins include ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1, 3-diol, 2-methyl-2-propylpropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol Alkanediols such as
  • Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;
  • 1,2-epoxyethane ie ethylene oxide
  • 1,2-epoxypropane ie propylene oxide
  • 1,2-epoxycyclopentane 1,2-epoxycyclohexane
  • 1,4-epoxycyclohexane 1,4-epoxycyclohexane
  • 1-methyl -1,2-epoxycyclohexane 2,3-epoxynorbornane
  • cyclic ethers such as 1,3-epoxypropane; and the like.
  • carbonyl halides, carbonate esters and the like are used as examples of carbonate precursors.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene; haloformates such as a bischloroformate of a dihydroxy compound and a monochloroformate of a dihydroxy compound.
  • carbonate ester examples include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
  • the manufacturing method of polycarbonate resin (A) is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Hereinafter, a particularly preferable one of these methods will be specifically described.
  • a polycarbonate resin is produced by the interfacial polymerization method.
  • a dihydroxy compound and a carbonate precursor preferably phosgene
  • an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher.
  • Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done.
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • alkali compound may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but it is usually used at 5 to 10% by mass in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like.
  • 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight regulator examples include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable.
  • 1 type may be used for carbonic acid diester, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin can be obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound. Is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously in consideration of the stability of the polycarbonate resin and the thermoplastic resin composition.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • a catalyst deactivator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to aromatic polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the molecular weight of the polycarbonate resin (A) is arbitrary and may be appropriately selected and determined, but the viscosity average molecular weight [Mv] converted from the solution viscosity is usually 10,000 or more. , Preferably 16,000 or more, more preferably 17,000 or more, and usually 40,000 or less, preferably 30,000 or less, more preferably 24,000 or less.
  • the viscosity average molecular weight equal to or higher than the lower limit of the above range, the mechanical strength of the thermoplastic resin composition of the present invention can be further improved, which is more preferable when used for applications requiring high mechanical strength. .
  • the viscosity average molecular weight not more than the upper limit of the above range, it is possible to suppress and improve the fluidity drop of the thermoplastic resin composition of the present invention, and to improve the molding processability and to facilitate the molding process.
  • Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following equation by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the polycarbonate resin (A) is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of the thermoplastic resin composition of this invention can be improved more.
  • the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the thermoplastic resin composition of this invention can be improved more.
  • the unit of the terminal hydroxyl group concentration represents the mass of the terminal hydroxyl group with respect to the mass of the polycarbonate resin in ppm.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin (A) is not limited to an embodiment including only one type of polycarbonate resin, and includes an embodiment including a plurality of types of polycarbonate resins having different monomer compositions and molecular weights. It may be used in the sense) or may be used in combination with an alloy (mixture) of a polycarbonate resin and another thermoplastic resin.
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the polycarbonate resin (A) may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
  • the polycarbonate resin (A) may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
  • used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets.
  • non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
  • the recycled polycarbonate resin is preferably 80% by mass or less, more preferably 50% by mass or less, among the polycarbonate resins contained in the thermoplastic resin composition of the present invention.
  • Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
  • ABS resin (B) The ABS resin (B) contained in the thermoplastic resin composition of the present invention comprises an aromatic vinyl monomer component (b1) of 40 to 80% by mass, a vinyl cyanide monomer component (b2) of 10 to 30% by mass, This is an ABS resin (B) comprising 10 to 30% by mass of the diene rubbery polymer component (b3) and 0 to 30% by mass of the other monomer component (b4).
  • styrene As the aromatic vinyl monomer component (b1) in the ABS resin (B), styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butyl Styrene, vinyl naphthalene, methoxy styrene, monobromo styrene, dibromo styrene, fluoro styrene, tribromo styrene and the like can be mentioned, and styrene is particularly preferable.
  • the ratio of the aromatic vinyl monomer component (b1) in the ABS resin (B) is in the range of 40 to 80% by mass, preferably 45% by mass or more, more preferably in 100% by mass of the ABS resin (B). Is 50% by mass or more, more preferably 55% by mass or more, preferably 75% by mass or less, more preferably 70% by mass or less, and further preferably 65% by mass or less.
  • Examples of the vinyl cyanide monomer component (b2) in the ABS resin (B) include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable.
  • the proportion of the vinyl cyanide monomer component (b2) in the ABS resin (B) is in the range of 10 to 30% by mass, preferably 12% by mass or more, more preferably 100% by mass of the ABS resin (B). Is 14% by mass or more, more preferably 15% by mass or more, preferably 28% by mass or less, more preferably 26% by mass or less, and further preferably 25% by mass or less.
  • the diene rubbery polymer component (b3) of the ABS resin (B) for example, rubber components such as polybutadiene, polyisoprene, styrene-butadiene copolymer are used, and the diene rubbery polymer component (b3).
  • the ratio in the ABS resin (B) is in the range of 10 to 30% by mass, preferably 13% by mass or more, more preferably 14% by mass or more, and still more preferably 15% in 100% by mass of the ABS resin (B). It is at least mass%, preferably at most 28 mass%, more preferably at most 26 mass%.
  • the other monomer component (b4) may be a copolymer of other monomer component (b4) copolymerizable therewith.
  • examples of other copolymerizable vinyl monomers include maleimide, N-methylmaleimide, N- Maleimide monomers such as cyclohexylmaleimide and N-phenylmaleimide, acrylamide monomers such as acrylamide and N-methylacrylamide, unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride, and unsaturated acids such as acrylic acid and methacrylic acid Glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methoxypolyethylene glycol methacrylate, and the like.
  • the proportion of the other monomer component (b4) in the ABS resin (B) is in the range of 0 to 30% by mass, preferably 20% by mass or less, more preferably 100% by mass of the ABS resin (B).
  • ABS resin (B) are preferably acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene-styrene- ⁇ -methylstyrene copolymer, acrylonitrile-butadiene-styrene-N-phenylmaleimide copolymer, and the like. Illustrated.
  • the ABS resin (B) contained in the thermoplastic resin composition of the present invention is characterized in that the number average particle size of the diene rubbery polymer component (b3) in the ABS resin (B) is 100 to 350 nm. And thus, it has been found that the thermoplastic resin composition of the present invention is excellent in impact resistance and solves the above-mentioned problem that a streaky appearance defect occurs in the portion after passing through the rib or boss from the gate. .
  • the number average particle diameter of the diene rubber polymer component (b3) in the ABS resin (B) is measured by a scanning electron microscope (SEM).
  • thermoplastic resin composition (pellet) of the present invention is 300 from an image observed at an applied voltage of 2.0 kV and a magnification of 10,000 using a scanning electron microscope “SU8020” manufactured by Hitachi High-Technology Corporation. It is defined as the number average particle size of the individual particles.
  • the number average particle diameter of the diene rubbery polymer component (b3) in the ABS resin (B) is preferably 130 to 280 nm. Further, in the ABS resin (B), the proportion of the diene rubbery polymer component (b3) having a particle size of 1000 nm or more is preferably 2% or less.
  • the ABS resin is usually produced by a method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and any method can be used.
  • such ABS resin (B) can be appropriately selected from commercially available ones.
  • the ABS resin is not limited to an embodiment including only one type of ABS resin, and may include, for example, an embodiment including a combination of a plurality of types of ABS resins having different monomer compositions and molecular weights. You may combine other resin, such as resin. When combining in this way, what was obtained by melt-kneading in advance may be used when producing the thermoplastic resin composition of the present invention, or may be used collectively when producing the resin composition of the present invention.
  • the ABS resin in the resulting thermoplastic resin composition contains 40 to 80% by mass of the aromatic vinyl monomer component (b1) and 10 to 30 vinyl cyanide monomer component (b2). It is sufficient to satisfy the ranges of mass%, diene rubbery polymer component (b3) 10 to 30 mass%, and other monomer component (b4) 0 to 30 mass%.
  • thermoplastic resin composition of the present invention contains a phosphate ester compound (C) represented by the following formula (1).
  • R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group.
  • P, q, r and s are each 0 or 1
  • k is an integer of 0 to 5
  • X 1 represents an arylene group.
  • the phosphate ester compound represented by the above formula (1) may be a mixture of compounds having different numbers of k.
  • k is a value of the mixture.
  • Average value. k is usually an integer of 0 to 5, and in the case of a mixture of compounds having different k numbers, the average k number is preferably 0.5 to 2, more preferably 0.6 to 1.5, and even more preferably Is in the range of 0.8 to 1.2, particularly preferably 0.95 to 1.15.
  • X 1 represents a divalent arylene group such as resorcinol, hydroquinone, bisphenol A, 2,2′-dihydroxybiphenyl, 2,3′-dihydroxybiphenyl, 2,4′-dihydroxybiphenyl, 3,3 ′.
  • dihydroxybiphenyl 3,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1, Divalent derivatives derived from dihydroxy compounds such as 6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene It is a group. Of these, divalent groups derived from resorcinol, bisphenol A, and 3,3′-dihydroxybiphenyl are particularly preferable.
  • p, q, r and s in the formula (1) each represent 0 or 1, and preferably 1 in particular.
  • R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group.
  • aryl groups include phenyl group, cresyl group, xylyl group, isopropylphenyl group, butylphenyl group, tert-butylphenyl group, di-tert-butylphenyl group, p-cumylphenyl group, and the like.
  • Group, cresyl group and xylyl group are more preferred.
  • the acid value of the phosphate ester compound represented by the formula (1) is preferably 0.2 mgKOH / g or less, more preferably 0.15 mgKOH / g or less, still more preferably 0.1 mgKOH / g or less, Especially preferably, it is 0.05 mgKOH / g or less.
  • the lower limit of the acid value can be substantially zero.
  • the content of the half ester is more preferably 1.1 parts by mass or less, and still more preferably 0.9 parts by mass or less.
  • the content ratio of the polycarbonate resin (A), the ABS resin (B), and the phosphate ester compound (C) is the polycarbonate resin (A), the ABS resin (B), and the phosphate ester compound.
  • the polycarbonate resin (A) is 60 to 90 mass%
  • the ABS resin (B) is 5 to 20 mass parts
  • the phosphoric ester compound (C) is 5 to 20 mass%.
  • the preferred content ratio of the polycarbonate resin (A) is 63% by mass or more, more preferably 65% by mass or more, 85% by mass or less, more preferably 80% by mass or less, and the ABS resin (B) is preferably 8% by mass. It is at least 10 mass%, more preferably at least 10 mass%, preferably at most 19 mass%, more preferably at most 18 mass%.
  • the content of the phosphate ester compound (C) is 5 to 20% by mass, preferably 8% by mass or more, more preferably 10% by mass or more, preferably 19% by mass or less, more preferably It is 18 mass% or less, More preferably, it is 17 mass% or less.
  • the content of the phosphate ester compound (C) is less than 5% by mass, the flame retardancy is insufficient, and when it exceeds 20% by mass, the heat resistance and mechanical properties are significantly decreased.
  • thermoplastic resin composition of the present invention comprises 0.01 to 1 mass of fluoropolymer (D) with respect to a total of 100 mass parts of polycarbonate resin (A), ABS resin (B) and phosphoric ester compound (C). Contains.
  • One type of fluoropolymer (D) may be used, or two or more types may be used in any combination and in any ratio.
  • Examples of the fluoropolymer (D) include a fluoroolefin resin.
  • the fluoroolefin resin is usually a polymer or copolymer containing a fluoroethylene structure. Specific examples include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, and the like. Of these, tetrafluoroethylene resin and the like are preferable.
  • Examples of the fluoroethylene resin include a fluoroethylene resin having a fibril forming ability.
  • fluoroethylene resin having a fibril forming ability examples include “Teflon (registered trademark) 6J”, “Teflon (registered trademark) 640J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd. ”,“ Polyflon FA500B ”,“ Polyflon FA500H ”and the like.
  • examples of commercially available aqueous dispersions of fluoroethylene resin include “Teflon (registered trademark) 31-JR” manufactured by Mitsui DuPont Fluoro Chemical Co., “Fluon D-210C” manufactured by Daikin Industries, Ltd.
  • a fluoroethylene polymer having a multilayer structure obtained by polymerizing vinyl monomers can also be used.
  • fluoroethylene polymer examples include polystyrene-fluoroethylene composites, polystyrene-acrylonitrile-fluoroethylene. Examples include composites, polymethyl methacrylate-fluoroethylene composites, polybutyl methacrylate-fluoroethylene composites, etc. Specific examples include “Metablene A-3800” manufactured by Mitsubishi Rayon Co., Ltd. and “Blendex” manufactured by GE Specialty Chemical Co., Ltd. 449 "and the like.
  • 1 type may contain the dripping inhibitor and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the fluoropolymer (D) in the present invention preferably has a standard specific gravity value of 2.15 to 2.22.
  • the standard specific gravity value is preferably 2.155 to 2.215, more preferably 2.16 to 2.1, particularly preferably 2.16 to 2.20, and 2.165. Most preferred is ⁇ 2.19.
  • the standard specific gravity (also referred to as SSG) is a value measured by a water displacement method using a sample molded according to ASTM D4895.
  • the average particle size of the fluoropolymer (D) in the present invention is not particularly limited, but is preferably 300 to 1,000 ⁇ m. If the average particle size is less than 300 ⁇ m, the drip resistance of the thermoplastic resin composition of the present invention may be reduced, and if it exceeds 1,000 ⁇ m, the fluoropolymer tends to aggregate, In such a case, the appearance defect such as white spot foreign matter may be caused, which is not preferable. From such a viewpoint, the average particle size of the fluoropolymer is more preferably 350 to 800 ⁇ m, still more preferably 380 to 750 ⁇ m, and particularly preferably 400 to 700 ⁇ m.
  • the content of the fluoropolymer (D) is 0.01 parts by mass or more with respect to a total of 100 parts by mass of the polycarbonate resin (A), the ABS resin (B), and the phosphate ester compound (C).
  • the content of the fluoropolymer (D) is less than 0.01 parts by mass of the above range, the flame retardancy effect due to the anti-dripping agent becomes insufficient, and when the content exceeds 1 part by mass, the thermoplastic resin Deterioration in appearance and mechanical strength of the molded product obtained by molding the composition are likely to occur.
  • the thermoplastic resin composition of the present invention contains a graft copolymer (E) obtained by graft polymerization of an aromatic vinyl compound and / or a (meth) acrylic acid ester compound to a diene rubber.
  • diene rubber constituting the graft copolymer (E) examples include polybutadiene rubber, polyisoprene rubber, butadiene-acrylic composite rubber, and styrene-butadiene rubber. These may be used alone or in admixture of two or more. Among these, polybutadiene rubber and styrene-butadiene rubber are preferable from the viewpoint of mechanical properties and surface appearance.
  • the diene rubber is graft polymerized with an aromatic vinyl compound and / or a (meth) acrylic ester compound.
  • the (meth) acrylic acid ester compound to be graft-polymerized include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, (meth )
  • Preferable examples include phenyl acrylate.
  • a (meth) acrylic acid ester compound may be used individually by 1 type, or may mix and use 2 or more types.
  • the aromatic vinyl compound to be graft-polymerized is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring, but preferably does not have a substituent such as a functional group.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, etc. Is mentioned.
  • Aromatic vinyl compounds can be used alone or in combination of two or more, and (meth) acrylic acid ester compounds can also be used in combination.
  • graft copolymerizable monomers other than aromatic vinyl compounds and (meth) acrylic acid ester compounds can also be used in combination.
  • monomers include vinyl cyanide compounds, (Meth) acrylic acid compounds, epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) acrylate; maleimide compounds such as maleimide, N-methylmaleimide, N-phenylmaleimide; maleic acid, phthalic acid, itaconic acid, etc.
  • ⁇ , ⁇ -unsaturated carboxylic acid compounds and anhydrides thereof eg, maleic anhydride.
  • These monomer components may be used alone or in combination of two or more.
  • the graft copolymer (E) is different from the ABS resin (B) described above.
  • the graft copolymer (E) obtained by graft polymerizing an aromatic vinyl compound and / or a (meth) acrylic acid ester compound to a diene rubber is a core / shell type graft copolymer in terms of impact resistance and surface appearance.
  • the type is preferred.
  • a core / shell type graft copolymer comprising a shell layer formed by graft copolymerization of an aromatic vinyl compound and / or a (meth) acrylic acid ester compound around a diene rubber as a core layer is provided.
  • the rubber component is preferably contained in an amount of 40% by mass or more, more preferably 60% by mass or more.
  • what contains 10 mass% or more of an aromatic vinyl compound and (meth) acrylic acid is preferable.
  • these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer.
  • MBS methyl methacrylate-butadiene-styrene copolymer
  • MABS methyl methacrylate-acrylonitrile-butadiene-styrene copolymer
  • MB polymer
  • a methyl methacrylate-acrylic / butadiene rubber copolymer examples thereof include a polymer (MB), a methyl methacrylate-acrylic / butadiene rubber copolymer, and a methyl methacrylate-acrylic / butadiene rubber-styrene copolymer.
  • Such rubbery polymers may be used alone or in combination of two or more.
  • Examples of the method for producing a graft copolymer (E) obtained by graft polymerization of an aromatic vinyl compound and / or a (meth) acrylic acid ester compound to a diene rubber include bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Any of the manufacturing methods may be used.
  • the copolymerization method may be single-stage or multistage grafting, but multistage graft copolymerization is preferred.
  • the graft copolymer (E) contained in the thermoplastic resin composition of the present invention is characterized in that the number average particle diameter is 100 to 350 nm.
  • a thermoplastic resin composition containing such a graft copolymer having no number average particle diameter tends to cause streak-like appearance defects in the portion after passing through the ribs and bosses from the gate described above.
  • the number average particle diameter of the graft copolymer (E) is measured by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the thermoplastic resin composition (pellet) of the present invention is manufactured by Hitachi High-Technology Corporation.
  • the number average particle size of the graft copolymer (E) is preferably 130 to 280 nm, and more preferably 150 to 250 nm.
  • the graft copolymer (E) it is preferable to use a graft copolymer produced by reducing the particle diameter by emulsion polymerization.
  • a graft copolymer (E) can also be suitably selected from what is marketed, and can also be used.
  • the graft copolymer (E) is not limited to an embodiment including only one type, and may include, for example, a combination of a plurality of types of graft copolymers (E) having different monomer compositions and molecular weights. .
  • the content of the graft copolymer (E) is 1 to 3.5 parts by mass with respect to 100 parts by mass in total of the polycarbonate resin (A), the ABS resin (B) and the phosphate ester compound (C).
  • the content is preferably 1.5 parts by mass or more, more preferably 1.8 parts by mass or more, with respect to 100 parts by mass in total of the polycarbonate resin (A), the ABS resin (B) and the phosphate ester compound (C).
  • it is preferably 3.4 parts by mass or less, more preferably 3.3 parts by mass or less.
  • the mass ratio ((B) / (E)) of the ABS resin (B) to the graft copolymer (E) is preferably in the range of 4-25.
  • the mass ratio ((B) / (E)) is in such a range, the synergistic effect that the dispersibility of the ABS resin (B) and the graft copolymer (E) in the polycarbonate resin (A) is improved. And can improve impact resistance and appearance defects.
  • it can be realized by increasing only the graft copolymer (E), but the mass ratio ((B) / (E)) is out of this range and less than 4.
  • the mass ratio ((B) / (E)) is more preferably 4.5 or more, more preferably 20 or less, and still more preferably 15 or less.
  • the thermoplastic resin composition of the present invention preferably contains talc (F) having an average particle diameter of 5 to 15 ⁇ m.
  • talc (F) When the average particle size of talc (F) is less than 5 ⁇ m, the flame retardancy tends to deteriorate, and when the average particle size exceeds 15 ⁇ m, the impact resistance of the molded product tends to be lowered.
  • talc (F) can be selected from commercially available talc.
  • the average particle size of talc (F) is more preferably 6 ⁇ m or more, further preferably 7 ⁇ m or more, and particularly preferably 14 ⁇ m or less.
  • the average particle size of talc (F) refers to D 50 measured by particle size distribution by laser diffraction.
  • SALD-200V ER type laser diffraction particle size distribution measuring apparatus manufactured by Shimadzu Corporation.
  • the preferable content of talc (F) in the thermoplastic resin composition is 100 parts by mass in total of the polycarbonate resin (A), the ABS resin (B), and the phosphate ester compound (C). Is 0.5 to 3 parts by mass. When the content is less than 0.5 parts by mass, the flame retardancy tends to be insufficient, and when it exceeds 3 parts by mass, the impact resistance is likely to decrease.
  • the content of talc (F) is more preferably 0.6 parts by mass or more, more preferably 100 parts by mass in total of the polycarbonate resin (A), the ABS resin (B), and the phosphate ester compound (C). It is 0.7 mass part or more, More preferably, it is 2.5 mass parts or less, More preferably, it is 2 mass parts or less.
  • the mass ratio ((E) / (F)) of the graft copolymer (E) to talc (F) is preferably in the range of 1.4 to 5.
  • the mass ratio ((E) / (F)) is in such a range, the dispersibility of the ABS resin (B) and the graft copolymer (E) in the polycarbonate resin (A) can be improved, and impact resistance can be improved. Property and appearance defects can be improved.
  • the mass ratio of (B), (E) and (F) is set to a specific range, so that the polycarbonate resin (A )
  • the mass ratio ((E) / (F)) is larger than 5, the flame retardancy is remarkably lowered, and when it is smaller than 1.4, the impact resistance is liable to be remarkably lowered.
  • the mass ratio ((E) / (F)) is more preferably 1.45 or more, further preferably 1.5 or more, more preferably 4 or less, and still more preferably 3.5 or less.
  • the thermoplastic resin composition of the present invention preferably contains carbon black from the viewpoint of improving the high-quality feeling of the molded product.
  • carbon black there are no restrictions on the production method of carbon black to be used, the raw material species, etc., and any conventionally known ones such as oil furnace black, channel black, acetylene black, ketjen black and the like can be used. Among these, oil furnace black is preferable from the viewpoint of colorability and cost.
  • the average particle size of the carbon black to be used may be appropriately selected and determined, but is preferably 5 to 60 nm, more preferably 7 to 55 nm, and particularly preferably 10 to 50 nm. By setting the average particle diameter within the above range, the aggregation of carbon black is suppressed and the appearance tends to be improved.
  • the average particle diameter of carbon black can be obtained using a transmission electron microscope.
  • the nitrogen adsorption specific surface area of the carbon black used in the present invention is usually preferably less than 1000 m 2 / g, and more preferably 50 to 400 m 2 / g. By making the nitrogen adsorption specific surface area less than 1000 m 2 / g, the fluidity of the thermoplastic resin composition of the present invention and the appearance of the molded product tend to be improved, which is preferable.
  • the nitrogen adsorption specific surface area can be measured according to JIS K6217 (unit: m 2 / g).
  • the DBP absorption of carbon black is preferably less than 300 cm 3/100 g, is preferably Among them 30 ⁇ 200cm 3 / 100g.
  • the DBP absorption amount by less than 300 cm 3/100 g, preferably tends to increase the appearance of fluidity and a molded article of the thermoplastic resin composition of the present invention.
  • DBP absorption amount can be measured according to JIS K6217 (unit cm 3 / 100g).
  • the carbon black used in the present invention is not particularly limited in pH, but is usually 2 to 10, preferably 3 to 9, and more preferably 4 to 8.
  • the carbon black used in the present invention can be used alone or in combination of two or more. Furthermore, carbon black can be granulated using a binder, and can also be used in a masterbatch that is melt-kneaded at a high concentration in another resin. By using the melt-kneaded master batch, the handling property during extrusion and the dispersibility improvement in the resin composition can be achieved.
  • the resin include polystyrene resin, polycarbonate resin, acrylic resin, and the like.
  • the content of carbon black is preferably 0.0001 parts by mass or more, more preferably 0.0005 parts by mass or more, and still more preferably 0 with respect to 100 parts by mass in total of the polycarbonate resin (A) and the ABS resin (B). 0.001 part by mass or more, preferably 2 parts by mass or less, more preferably 1 part by mass or less.
  • the carbon black is less than the lower limit of the range, the appearance and jet blackness may be inferior, and when the carbon black content exceeds the upper limit of the range, the heat of the thermoplastic resin composition of the present invention. Stability may be reduced.
  • the thermoplastic resin composition of the present invention preferably contains a phosphorus stabilizer.
  • a phosphorus stabilizer Any known phosphorous stabilizer can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.
  • Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
  • organic phosphite compounds include, for example, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADEKA STAB HP-10” manufactured by ADEKA, “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ JP-360 ”,“ JP-3CP ”,“ Irgaphos 168 ”manufactured by BASF, and the like.
  • 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the phosphorus stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0, with respect to 100 parts by mass in total of the polycarbonate resin (A) and the ABS resin (B). 0.03 parts by mass or more, and usually 1 part by mass or less, preferably 0.7 parts by mass or less, more preferably 0.5 parts by mass or less. If the content of the phosphorus stabilizer is less than the lower limit of the range, the thermal stability effect may be insufficient, and if the content of the phosphorus stabilizer exceeds the upper limit of the range, the effect May stop and become economical.
  • thermoplastic resin composition of the present invention contains a phenol-based stabilizer.
  • a phenol type stabilizer a hindered phenol type antioxidant is mentioned, for example. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
  • phenolic antioxidants include “Irganox 1010”, “Irganox 1076” manufactured by BASF, “Adekastab AO-50”, “Adekastab AO-60” manufactured by ADEKA, and the like. Is mentioned.
  • 1 type may contain the phenol type stabilizer, and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the phenol-based stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, with respect to 100 parts by mass in total of the polycarbonate resin (A) and the ABS resin (B). Usually, it is 1 part by mass or less, preferably 0.5 part by mass or less.
  • the content of the phenol-based stabilizer is less than the lower limit of the range, the effect as the phenol-based stabilizer may be insufficient, and the content of the phenol-based stabilizer exceeds the upper limit of the range. If this is the case, the effect may reach its peak and not economical.
  • release agent It is also preferable to contain a release agent.
  • the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • the term “aliphatic” is used as a term including alicyclic compounds.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.
  • said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity.
  • said ester may be a pure substance, it may be a mixture of a plurality of compounds.
  • the aliphatic carboxylic acid and alcohol which combine to form one ester may be used alone or in combination of two or more in any combination and ratio.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized.
  • paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • the aliphatic hydrocarbon may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.
  • polysiloxane silicone oil examples include dimethyl silicone oil, methylphenyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
  • 1 type may contain the mold release agent mentioned above, and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 100 parts by mass with respect to a total of 100 parts by mass of the polycarbonate resin (A) and the ABS resin (B). 2 parts by mass or less, preferably 1 part by mass or less.
  • the content of the release agent is less than the lower limit of the range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the range, hydrolysis resistance And mold contamination during injection molding may occur.
  • thermoplastic resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired.
  • other components include resins other than the polycarbonate resin (A), the ABS resin (B) and the graft copolymer (E), various resin additives, and the like.
  • 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.
  • thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polystyrene resin, high impact polystyrene resin (HIPS), acrylonitrile-styrene copolymer ( AS resins), styrene resins such as acrylonitrile-styrene-acrylic rubber copolymers (ASA resins), acrylonitrile-ethylenepropylene rubber-styrene copolymers (AES resins); polyolefin resins such as polyethylene resins and polypropylene resins; polyamides Resin; Polyimide resin; Polyetherimide resin; Polyurethane resin; Polyphenylene ether resin; Polyphenylene sulfide resin; In addition, 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and ratios.
  • HIPS high impact polystyrene resin
  • AS resins acrylonitrile-st
  • the resin additive examples include an ultraviolet absorber, a dye / pigment, an antistatic agent, an antifogging agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent.
  • 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
  • UV absorbers include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic acid ester compounds, Examples include organic ultraviolet absorbers such as hindered amine compounds. In these, an organic ultraviolet absorber is preferable and a benzotriazole compound is more preferable. By selecting the organic ultraviolet absorber, the thermoplastic resin composition of the present invention has good transparency and mechanical properties.
  • benzotriazole compound examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole, 2,2'-methylenebis [4 (1,
  • Such a benzotriazole compound include “Seesorb 701”, “Seesorb 705”, “Seesorb 703”, “Seesorb 702”, “Seesorb 704”, and “Seesorb 709” manufactured by Sipro Kasei Co., Ltd. “Biosorb 520”, “Biosorb 582”, “Biosorb 580”, “Biosorb 583” manufactured by Yakuhin Chemical Co., Ltd. “Chemisorb 71”, “Chemisorb 72” manufactured by Chemipro Kasei Co., Ltd. “Siasorb UV5411” manufactured by Cytec Industries, Ltd.
  • benzophenone compound examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, and 2-hydroxy-4-n-octoxy.
  • benzophenone compounds include “Seesorb 100”, “Seesorb 101”, “Seesorb 101S”, “Seesorb 102”, and “Seesorb 102” manufactured by Cypro Kasei Co., Ltd. Seesorve 103 ", joint “Biosorb 100”, “Biosorb 110”, “Biosorb 130”, Chemipro Kasei “Chemsorb 10”, “Chemisorb 11”, “Chemisorb 11S”, “Chemsorb 12”, “Chemsorb 13”, “Chemisorb 111” BASF “Ubinur 400”, BASF “Ubinur M-40”, BASF “Ubinur MS-40", Cytec Industries “Thiasorb UV9”, “Thiasorb UV284", “Thiasorb UV531”, “ Siasorb UV24 “,” ADEKA STAB 1413 “,” ADEKA STAB LA-51 “manufactured by ADEKA, and the like.
  • salicylate compound examples include, for example, phenyl salicylate, 4-tert-butylphenyl salicylate and the like.
  • Specific examples of such salicylate compounds include, for example, “Seesorb 201” and “Seesorb” manufactured by Sipro Kasei Co., Ltd. 202 ”,“ Kemisorb 21 ”,“ Kemisorb 22 ”manufactured by Chemipro Kasei Co., Ltd., and the like.
  • cyanoacrylate compound examples include, for example, ethyl-2-cyano-3,3-diphenyl acrylate, 2-ethylhexyl-2-cyano-3,3-diphenyl acrylate, and the like.
  • easorb 501 manufactured by Sipro Kasei Co., Ltd.
  • Biosorb 910 manufactured by Kyodo Pharmaceutical Co., Ltd.
  • Ubisolator 300 manufactured by Daiichi Kasei Co., Ltd., “Ubinur N-35”, “Ubinur N- 539 "and the like.
  • triazine compound examples include a compound having a 1,3,5-triazine skeleton.
  • Specific examples of such a triazine compound include, for example, “LA-46” manufactured by ADEKA and “tinuvin” manufactured by BASF. 1577ED “,” Tinuvin 400 “,” Tinuvin 405 “,” Tinuvin 460 “,” Tinuvin 477-DW “,” Tinuvin 479 "and the like.
  • oxanilide compound examples include, for example, 2-ethoxy-2′-ethyl oxalinic acid bis-arinide and the like.
  • oxalinide compound examples include “Sanduboa” manufactured by Clariant Corporation. VSU "etc. are mentioned.
  • malonic acid ester compound 2- (alkylidene) malonic acid esters are preferable, and 2- (1-arylalkylidene) malonic acid esters are more preferable.
  • Specific examples of such a malonic ester compound include “PR-25” manufactured by Clariant, “B-CAP” manufactured by BASF, and the like.
  • the content of the ultraviolet absorber is usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more with respect to 100 parts by mass in total of the polycarbonate resin (A) and the ABS resin (B). 3 parts by mass or less, preferably 1 part by mass or less. If the content of the ultraviolet absorber is less than the lower limit of the range, the effect of improving the weather resistance may be insufficient, and if the content of the ultraviolet absorber exceeds the upper limit of the range, the mold Debogit etc. may occur and cause mold contamination. In addition, 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the dye / pigment examples include inorganic pigments, organic pigments, and organic dyes.
  • Inorganic pigments include, for example, sulfide pigments such as cadmium red and cadmium yellow; silicate pigments such as ultramarine blue; titanium oxide, zinc white, petal, chromium oxide, iron black, titanium yellow, zinc-iron brown , Titanium-cobalt green, cobalt green, cobalt blue, oxide-based pigments such as copper-chromium black, copper-iron-based black; chromic pigments such as yellow lead and molybdate orange; ferrocyan pigments such as bitumen Etc.
  • organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, iso Examples thereof include condensed polycyclic dyes such as indolinone and quinophthalone; anthraquinone, heterocyclic and methyl dyes.
  • titanium oxide, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
  • 1 type may contain the dye / pigment, and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the dye / pigment is usually 5 parts by mass or less, preferably 3 parts by mass or less, more preferably 2 parts by mass or less with respect to 100 parts by mass in total of the polycarbonate resin (A) and the ABS resin (B). If the content of the dye / pigment is too large, the impact resistance may not be sufficient.
  • thermoplastic resin composition There is no restriction
  • thermoplastic resin composition of the present invention is manufactured without mixing each component in advance or by mixing only a part of the components in advance and supplying the mixture to an extruder using a feeder and melt-kneading. You can also also, for example, by mixing a part of the components in advance and supplying the resulting mixture to an extruder and melt-kneading it as a master batch, this master batch is again mixed with the remaining components and melt-kneaded.
  • the thermoplastic resin composition of the present invention can also be produced.
  • the component that is difficult to disperse is dissolved or dispersed in a solvent such as water or an organic solvent in advance, and kneaded with the solution or the dispersion. It can also improve sex.
  • thermoplastic resin composition of the present invention is flame retardant according to the UL94 test at a thickness of 1.5 mm in the UL94 test (combustion test of plastic materials for equipment parts) defined by US Underwriters Laboratories (UL). However, it has a very high flame retardancy of preferably 5 VA or 5 VB.
  • thermoplastic resin composition of the present invention has a very high flame retardancy, preferably V-0, in the UL 94 test, with a UL94 test at a thickness of 1.2 mm.
  • the thermoplastic resin composition of the present invention has a flame retardancy of 5 VA or 5 VB at a thickness of 1.5 mm and a flame retardancy of V-0 at a thickness of 1.2 mm in the UL94 test. Is also preferable.
  • thermoplastic resin composition of the present invention is usually molded into an arbitrary shape and used as a molded body (resin composition molded body). There is no restriction
  • Examples of molded articles include parts such as electrical / electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, and lighting equipment. Among these, it is particularly suitable for use in housings of electric / electronic devices and OA devices, and is particularly suitable for housings such as printers, copiers, projectors, modems and routers.
  • the manufacturing method of a molded object is not specifically limited,
  • injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, rapid heating mold were used.
  • a molding method using a hot runner method can also be used.
  • the obtained molded article of the present invention is excellent in flame retardancy, impact resistance and appearance.
  • parts means “parts by mass” based on mass standards unless otherwise specified.
  • Injection molding was carried out under the conditions of 0 ° C. and a mold temperature of 60 ° C. to form a 240 ° C. molded ISO multipurpose test piece (4 mm) and a 240 ° C. molded ISO multipurpose test piece (3 mm). Further, injection molding was performed under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C., and a 260 ° C. molded ISO multipurpose test piece (3 mm) was molded.
  • the 94-5V test uses a 1.5 mm-thick UL test specimen (two types of rod and plate), the afterflame time of the rod-shaped test piece after 5 seconds of flame contact, drip properties, The method of evaluating flame retardance from the presence or absence of through-holes in a plate-shaped test piece, and the determination criteria are as shown in Table 2 below. Those not satisfying any criteria of 5VA and 5VB were expressed as NR. In Tables 4 to 5, “1.5 mm UL flame retardancy” is described.
  • the afterflame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away.
  • the cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece.
  • “1.2 mm UL flame retardancy” is used.
  • FIG. 1 is a top view (viewed from the design surface on the front side) showing the shape of a flat molded body formed for appearance evaluation.
  • the flat molded body is a rectangular flat plate having a length of 200 mm, a width of 150 mm, and a thickness of 2 mm. Molding is performed by injecting resin from the gate 1 provided at the right end of the flat molded body.
  • ribs 2 On the back side of the flat molded body, ribs 2 having a length of 30 mm, a thickness of 1.1 mm, and a height of 5 mm in the resin flow direction are located at the positions shown in FIG. 1 (the unit of numerical values is mm).
  • Three ribs 2 'having a length of 100 mm, a thickness of 1.1 mm, and a height of 5 mm are provided on the back surface side of the flat plate-shaped body in a direction perpendicular to the resin flow direction. .
  • the pellets obtained by the above production method were dried at 80 ° C. for 5 hours, and then injection molded under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 40 ° C. using an EC160 type injection molding machine manufactured by Toshiba Machine.
  • the flat molded body is molded, passes through the rib 2 'perpendicular to the resin flow direction, and further passes through the three ribs 2 provided in the flow direction (the design surface of the three flow direction ribs 2 in FIG. 1). Observe visually the number of streaky appearance defects that occurred on the left side), and the number of streaky appearance defects of 0 to 3 is “pass” and 4 or more are “fail”. evaluated.
  • thermoplastic resin compositions of Examples contained in the range achieve 1.5 mm UL flame retardancy of 5 VB, 1.2 mm UL flame retardancy of V-0, excellent impact resistance, and high impact resistance retention. In the appearance evaluation, it can be seen that there are few streaky appearance defects. On the other hand, Table 5 reveals the following.
  • Comparative Example 1 has poor impact resistance because the content of the graft copolymer (E) is small, and Comparative Example 2 in which the content of the graft copolymer (E) exceeds the specified amount has poor flame retardancy. The appearance is also getting worse. Further, Comparative Example 3 in which the number average particle diameter of the graft copolymer (E) is large is poor in flame retardancy and appearance, and the diene rubbery polymer component (b3) in the ABS resin (B). In Comparative Example 4 having a large number average particle diameter, the 1.5 mm UL flame retardancy cannot achieve 5 VB, and the appearance deteriorates. Therefore, from the above Examples and Comparative Examples, it was confirmed that the effects of excellent flame retardancy, impact resistance and appearance were obtained for the first time by the configuration of the present invention.
  • Injection molding was carried out under the conditions of 0 ° C. and a mold temperature of 60 ° C. to form a 240 ° C. molded ISO multipurpose test piece (4 mm) and a 240 ° C. molded ISO multipurpose test piece (3 mm). Further, injection molding was performed under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C., and a 260 ° C. molded ISO multipurpose test piece (3 mm) was molded.
  • thermoplastic resin compositions of Examples 5 to 15 contained within the specified range achieve 1.5 mm UL flame retardancy of 5 VB, 1.2 mm UL flame retardance of V-0, excellent impact resistance, and impact resistance.
  • the retention rate is also high, and the appearance evaluation shows that the occurrence of streaky appearance defects is small.
  • Comparative Example 5 is a comparative example in which the number average particle size of the diene rubbery polymer component (b3) in the ABS resin (B) is large and the appearance is poor, and the number average particle size of the graft copolymer (E) is large.
  • Example 6 the flame retardancy is poor and the appearance is also poor.
  • the comparative example 7 with little content of a graft copolymer (E) has bad impact resistance, and the external appearance is deteriorated with the comparative example 8 with too much content.
  • Reference Example 1 In Reference Example 1 in which the content of talc (F) is small, the 1.5 mmUL flame retardancy is 5 VB, but the 1.2 mmUL flame retardancy is V-1, and the flame retardance is slightly deteriorated.
  • Reference Example 2 has low impact resistance due to a large content of talc (F), and Reference Examples 3 to 4 containing small talc particle sizes have a 1.2 mm UL flame retardancy of V-1.
  • Reference Example 5 In Reference Example 5 in which the flammability is reduced and the particle size of talc is large, the impact resistance is reduced.
  • thermoplastic resin composition of the present invention is a polycarbonate / ABS resin alloy that is excellent in flame retardancy, impact resistance and appearance, and also excellent in impact strength during high temperature molding, its industrial utility is high. There is something.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/ABS樹脂アロイを提供する。 ポリカーボネート樹脂(A)60~90質量%と、芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%からなるABS樹脂(B)5~20質量部、並びに式(1)で示されるリン酸エステル化合物(C)5~20質量%からなる基体樹脂100質量部に対して、 フルオロポリマー(D)0.01~1質量部、ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合したグラフト共重合体(E)1~3.5質量部を含有し、 ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が100~350nmであり、かつグラフト共重合体(E)の数平均粒径が100~350nmであることを特徴とする熱可塑性樹脂組成物。

Description

熱可塑性樹脂組成物
 本発明は、熱可塑性樹脂組成物に関し、詳しくは難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/ABS樹脂アロイ組成物に関する。
 ポリカーボネート樹脂は、耐熱性、機械的物性、電気的特性に優れた樹脂であり、例えば自動車材料、電気・電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。特に、難燃化されたポリカーボネート/スチレン系樹脂のアロイ組成物は、コンピューター、ノートブック型パソコン、各種携帯端末、プリンター、複写機等の電気・電子機器やOA・情報機器等の部材として好適に使用されている。
 なかでもリン系難燃剤によって難燃化されたポリカーボネート/スチレン系樹脂アロイ組成物は、リン系難燃剤の可塑化効果により成形性に非常に優れるため、薄肉、大型成形品を得るためには最も一般的な組成物である(例えば特許文献1~4参照)。
 近年の薄肉、大型成形品を得るためには、より高い成形性を得るために、加工温度を上げなくてはならず、また滞留時間が延びる傾向にあるため、上述のようなポリカーボネート/スチレン系樹脂アロイでは、高い衝撃強度を維持することができないという課題を有している。
 また、一般的な電気・電子機器筐体では、成形品の強度を高めるために、リブが設けられていたり、セルフタップ用のボスが設けられている。このような、リブやボスが設けられた成形品を上述のようなポリカーボネート/スチレン系樹脂アロイで成形しようとするとゲートからリブやボスを通過した後の部分に筋状の外観不良が発生し、商品価値を著しく損なってしまうという課題も有している。
特許第3638806号公報 特許第4080851号公報 特許第3655979号公報 特許第4157271号公報
 本発明は、上記従来技術の問題点に鑑みて創案されたもので、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れる熱可塑性樹脂組成物を提供することを目的とする。
 本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂とスチレン系樹脂とからなる熱可塑性樹脂組成物が、特定の分散粒径をもつABS樹脂を含有し、またリン系難燃剤とフルオロポリマーとを特定量含有し、さらに特定の分散粒径をもつグラフト共重合体を特定量含有することにより、難燃性、耐衝撃性のバランスに優れ、さらにはリブやボスが設けられた成形品を成形する場合にも良好な外観が得られ、高温条件で成形した場合にも、衝撃強度の低下が小さいことを見出し、本発明を完成させるに至った。
 本発明は、以下の熱可塑性樹脂組成物およびその成形体を提供する。
[1]ポリカーボネート樹脂(A)60~90質量%と、
 芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%からなるABS樹脂(B)5~20質量%、並びに
 下記式(1)で示されるリン酸エステル化合物(C)5~20質量%からなる基体樹脂100質量部に対して、
 フルオロポリマー(D)0.01~1質量部、ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合したグラフト共重合体(E)1~3.5質量部を含有し、
 ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が100~350nmであり、かつグラフト共重合体(E)の数平均粒径が100~350nmであることを特徴とする熱可塑性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、R、R、R及びRは、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示し、p、q、r及びsは、それぞれ0または1であり、kは0から5の整数であり、Xはアリーレン基を示す。)
[2]さらに、平均粒径が5~15μmのタルク(F)を、前記基体樹脂100質量部に対し、0.5~3質量部含有する上記[1]に記載の熱可塑性樹脂組成物。
[3]ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が130~280nmである上記[1]又は[2]に記載の熱可塑性樹脂組成物。
[4]グラフト共重合体(E)の数平均粒径が130~280nmである上記[1]~[3]の何れかに記載の熱可塑性樹脂組成物。
[5]粒径1000nm以上のジエン系ゴム質重合体成分(b3)の割合が2%以下である上記[1]~[4]の何れかに記載の熱可塑性樹脂組成物。
[6]グラフト共重合体(E)に対するABS樹脂(B)の質量比((B)/(E))が4~25である上記[1]~[5]の何れかに記載の熱可塑性樹脂組成物。
[7]タルク(F)に対するグラフト共重合体(E)の質量比((E)/(F))が1.4~5である上記[1]~[6]の何れかに記載の熱可塑性樹脂組成物。
[8]1.5mm厚におけるUL94による難燃性が5VAまたは5VBである上記[1]~[7]の何れかに記載の熱可塑性樹脂組成物。
[9]1.2mm厚におけるUL94による難燃性がV-0である上記[1]~[8]の何れかに記載の熱可塑性樹脂組成物。
[10]上記[1]~[9]の何れかに記載の熱可塑性樹脂組成物を成形してなる成形体。
[11]プリンター、複写機、プロジェクター、モデム及びルーターから選ばれる少なくとも1種のOA機器の筐体である上記[10]に記載の成形体。
 本発明によれば、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/ABS樹脂アロイ組成物、それからなる成形体を提供する。
図1は、実施例の外観評価に使用した平板状成形体の上面図である。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。
 なお、本明細書において、「~」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。また、「部」とは、特に断りのない限り、質量基準に基づく質量部を表す。
[概要]
 本発明の熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)60~90質量%と、芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%からなるABS樹脂(B)5~20質量部、並びに前記式(1)で示されるリン酸エステル化合物(C)5~20質量%からなる基体樹脂100質量部に対して、
 フルオロポリマー(D)0.01~1質量部、ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合したグラフト共重合体(E)1~3.5質量部を含有し、
 ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が100~350nmであり、かつグラフト共重合体(E)の数平均粒径が100~350nmであることを特徴とする。
 また、本発明の熱可塑性樹脂組成物は、平均粒径が5~15μmのタルク(F)を、上記基体樹脂100質量部に対して、0.5~3質量部含有することも好ましい。
[ポリカーボネート樹脂(A)]
 本発明の熱可塑性樹脂組成物に用いるポリカーボネート樹脂(A)の種類に制限はない。また、ポリカーボネート樹脂(A)は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
 ポリカーボネート樹脂は、式:-[-O-X-O-C(=O)-]-で示される炭酸結合を有する基本構造の重合体である。式中、Xは、一般には炭化水素基であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
 ポリカーボネート樹脂(A)の具体的な種類に制限は無いが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート樹脂が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしても良い。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いても良い。
 またポリカーボネート樹脂(A)は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート樹脂(A)は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
 ポリカーボネート樹脂(A)の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例としては、
1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’-ジヒドロキシ-1,1’-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1-ビス(4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、
1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、
1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、
ビス(4-ヒドロキシフェニル)メタン、
ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4-ヒドロキシフェニル)フェニルメタン、
ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、
ビス(4-ヒドロキシフェニル)ジフェニルメタン、
ビス(4-ヒドロキシフェニル)ナフチルメタン、
1,1-ビス(4-ヒドロキシフェニル)エタン、
1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、
1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、
1,1-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ペンタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
1,1-ビス(4-ヒドロキシフェニル)オクタン、
2,2-ビス(4-ヒドロキシフェニル)オクタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
4,4-ビス(4-ヒドロキシフェニル)ヘプタン、
2,2-ビス(4-ヒドロキシフェニル)ノナン、
1,1-ビス(4-ヒドロキシフェニル)デカン、
1,1-ビス(4-ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、
1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;等が挙げられる。
 これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、エタン-1,2-ジオール、プロパン-1,2-ジオール、プロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、2-メチル-2-プロピルプロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール、ヘキサン-1,6-ジオール、デカン-1,10-ジオール等のアルカンジオール類;
 シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、1,4-シクロヘキサンジメタノール、4-(2-ヒドロキシエチル)シクロヘキサノール、2,2,4,4-テトラメチル-シクロブタン-1,3-ジオール等のシクロアルカンジオール類;
 エチレングリコール、2,2’-オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;
 1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、2,3-ビス(ヒドロキシメチル)ナフタレン、1,6-ビス(ヒドロキシエトキシ)ナフタレン、4,4’-ビフェニルジメタノール、4,4’-ビフェニルジエタノール、1,4-ビス(2-ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2-ヒドロキシエチル)エーテル、ビスフェノールSビス(2-ヒドロキシエチル)エーテル等のアラルキルジオール類;
 1,2-エポキシエタン(即ち、エチレンオキシド)、1,2-エポキシプロパン(即ち、プロピレンオキシド)、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、2,3-エポキシノルボルナン、1,3-エポキシプロパン等の環状エーテル類;等が挙げられる。
 ポリカーボネート樹脂(A)の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
・ポリカーボネート樹脂(A)の製造方法
 ポリカーボネート樹脂(A)の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。以下、これらの方法のうち特に好適なものについて具体的に説明する。
・・界面重合法
 まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
 ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 アルカリ水溶液中のアルカリ化合物の濃度に制限は無いが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-ヒドロキシ安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、熱可塑性樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
 なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
・・溶融エステル交換法
 次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
 ジヒドロキシ化合物は、前述の通りである。
 一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
 また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
 溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂及び熱可塑性樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いても良い。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、芳香族ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
・ポリカーボネート樹脂(A)に関するその他の事項
 ポリカーボネート樹脂(A)の分子量は任意であり、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、通常10,000以上、好ましくは16,000以上、より好ましくは17,000以上であり、また、通常40,000以下、好ましくは30,000以下、より好ましくは24,000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより本発明の熱可塑性樹脂組成物の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を前記範囲の上限値以下とすることにより本発明の熱可塑性樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
 なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83、から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000003
 ポリカーボネート樹脂(A)の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明の熱可塑性樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明の熱可塑性樹脂組成物の機械的特性をより向上させることができる。
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 ポリカーボネート樹脂(A)は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂(A)は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
 さらにポリカーボネート樹脂(A)は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。
 ただし、再生されたポリカーボネート樹脂は、本発明の熱可塑性樹脂組成物に含まれるポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
[ABS樹脂(B)]
 本発明の熱可塑性樹脂組成物が含有するABS樹脂(B)は、芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%からなるABS樹脂(B)である。
 ABS樹脂(B)における芳香族ビニル単量体成分(b1)としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等が挙げられ、特にスチレンが好ましい。
 芳香族ビニル単量体成分(b1)のABS樹脂(B)中の割合は、ABS樹脂(B)100質量%中、40~80質量%の範囲であり、好ましくは45質量%以上、より好ましくは50質量%以上、さらに好ましくは55質量%以上であり、好ましくは75質量%以下、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。
 ABS樹脂(B)におけるシアン化ビニル単量体成分(b2)としては、アクリロニトリル、メタクリロニトリル等が挙げられ、特にアクリロニトリルが好ましい。
 シアン化ビニル単量体成分(b2)のABS樹脂(B)中の割合は、ABS樹脂(B)100質量%中、10~30質量%の範囲であり、好ましくは12質量%以上、より好ましくは14質量%以上、さらに好ましくは15質量%以上であり、好ましくは28質量%以下、より好ましくは26質量%以下、さらに好ましくは25質量%以下である。
 ABS樹脂(B)のジエン系ゴム質重合体成分(b3)としては、例えば、ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体等のゴム成分が用いられ、ジエン系ゴム質重合体成分(b3)のABS樹脂(B)中の割合は、ABS樹脂(B)100質量%中、10~30質量%の範囲であり、好ましくは13質量%以上、より好ましくは14質量%以上、さらに好ましくは15質量%以上であり、好ましくは28質量%以下、より好ましくは26質量%以下である。
 さらに、これらと共重合可能なその他の単量体成分(b4)を共重合したものでも良く、この場合、共重合可能な他のビニルモノマーとしては、例えば、マレイミド、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー、アクリルアミド、N-メチルアクリルアミド等のアクリルアミド系モノマー、無水マレイン酸、無水イタコン酸等の不飽和酸無水物、アクリル酸、メタクリル酸等の不飽和酸、アクリル酸グリシジル、メタクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、メトキシポリエチレングリコールメタクリレート等が挙げられる。
 その他の単量体成分(b4)のABS樹脂(B)中の割合は、ABS樹脂(B)100質量%中、0~30質量%の範囲であり、好ましくは20質量%以下、より好ましくは10質量%以下である。
 ABS樹脂(B)の具体例としては、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン-α-メチルスチレン共重合体、アクリロニトリル-ブタジエン-スチレン-N-フェニルマレイミド共重合体等が好ましく例示される。
 本発明の熱可塑性樹脂組成物が含有するABS樹脂(B)は、ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が100~350nmであることを特徴とする。かくして、本発明の熱可塑性樹脂組成物は、耐衝撃性に優れ、前述したゲートからリブやボスを通過した後の部分に筋状の外観不良が発生する問題が解消することが見出された。
 ここで、ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径は、走査電子顕微鏡(SEM)により測定される。具体的には、本発明の熱可塑性樹脂組成物(ペレット)を株式会社日立ハイテクノロジー製走査電子顕微鏡「SU8020」を用い、印加電圧2.0kV、倍率10,000倍で観察される画像から300個の粒子の数平均粒径として定義される。
 ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径は、130~280nmであるものが好ましい。さらに、ABS樹脂(B)は、粒径1000nm以上のジエン系ゴム質重合体成分(b3)の割合が2%以下であることが好ましい。
 ABS樹脂は、通常、塊状重合、溶液重合、懸濁重合及び乳化重合等の方法で製造され、いずれの方法によるものでも使用可能である。本発明においては、乳化重合によりジエン系ゴム質重合体成分(b3)の粒径を細かくして製造されたABS樹脂を使用することが好ましい。
 なお、このようなABS樹脂(B)は、市販されているものの中から、適宜選択して使用することも可能である。
 本発明において、ABS樹脂は、ABS樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のABS樹脂を組み合わせて含む態様でもよく、また、ABS樹脂とAS樹脂等の他の樹脂を組み合わせてもよい。
 このように組み合わせる場合は、事前に溶融混練して得られたものを本発明の熱可塑性樹脂組成物の製造時に用いてもよく、一括で本発明の樹脂組成物製造時に用いても良い。
 上述のように組み合わせる場合は、得られる熱可塑性樹脂組成物中のABS樹脂が、芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%の範囲を満たせばよい。
[リン酸エステル化合物(C)]
 本発明の熱可塑性樹脂組成物は、下記式(1)で表されるリン酸エステル化合物(C)を含有する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R、R、R及びRは、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示し、p、q、r及びsは、それぞれ0または1であり、kは0から5の整数であり、Xはアリーレン基を示す。)
 上記式(1)で表されるリン酸エステル化合物は、kが異なる数を有する化合物の混合物であってもよく、かかるkが異なる縮合リン酸エステルの混合物の場合は、kはそれらの混合物の平均値となる。kは、通常0~5の整数であり、異なるk数を有する化合物の混合物の場合は、平均のk数は好ましくは0.5~2、より好ましくは0.6~1.5、さらに好ましくは0.8~1.2、特に好ましくは0.95~1.15の範囲である。
 また、Xは、二価のアリーレン基を示し、例えばレゾルシノール、ハイドロキノン、ビスフェノールA、2,2’-ジヒドロキシビフェニル、2,3’-ジヒドロキシビフェニル、2,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシ化合物から誘導される二価の基である。これらのうち、特に、レゾルシノール、ビスフェノールA、3,3’-ジヒドロキシビフェニルから誘導される二価の基が好ましい。
 また、式(1)におけるp、q、rおよびsは、それぞれ0または1を表し、なかでも1であることが好ましい。
 また、R、R、R及びRは、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示す。このようなアリール基としては、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、p-クミルフェニル基等が挙げられるが、フェニル基、クレジル基、キシリル基がより好ましい。
 式(1)で表されるリン酸エステル化合物の具体例としては、
 トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、クレジルジフェニルホスフェート(CDP)、2-エチルヘキシルジフェニルホスフェート(EHDP)、tert-ブチルフェニルジフェニルホスフェート、ビス-(tert-ブチルフェニル)フェニルホスフェート、トリス-(tert-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等の芳香族リン酸エステル類;
 レゾルシノールビス-ジフェニルホスフェート(RDP)、レゾルシノールビス-ジキシレニルホスフェート(RDX)、ビスフェノールAビス-ジフェニルホスフェート(BDP)、ビフェニルビス-ジフェニルホスフェート等の縮合リン酸エステル類;
等が挙げられる。
 式(1)で表されるリン酸エステル化合物の酸価は、0.2mgKOH/g以下が好ましく、より好ましくは0.15mgKOH/g以下であり、さらに好ましくは0.1mgKOH/g以下であり、特に好ましくは0.05mgKOH/g以下である。かかる酸価の下限は実質的に0とすることも可能である。一方、ハーフエステルの含有量は1.1質量部以下がより好ましく、0.9質量部以下がさらに好ましい。酸価が0.2mgKOH/gを超える場合やハーフエステル含有量が1.5mgを超える場合は、本発明の熱可塑性樹脂組成物の熱安定性や耐加水分解性の低下を招き易い。
[ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の含有割合]
 本発明の熱可塑性樹脂組成物において、ポリカーボネート樹脂(A)、ABS樹脂(B)、リン酸エステル化合物(C)の含有割合は、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量%基準で、ポリカーボネート樹脂(A)が60~90質量%、ABS樹脂(B)が5~20質量部、リン酸エステル化合物(C)は5~20質量%である。
 ポリカーボネート樹脂(A)が上記範囲を超えてABS樹脂(B)が少な過ぎると、熱可塑性樹脂組成物の成形加工性が低下し、ポリカーボネート樹脂(A)が60質量%より少なくABS樹脂(B)が多過ぎると、熱可塑性樹脂組成物の機械的強度、耐熱性、難燃性等が劣ることとなる。
 好ましい含有割合は、ポリカーボネート樹脂(A)が63質量%以上、より好ましくは65質量%以上であり、85質量%以下、より好ましくは80質量%以下であり、ABS樹脂(B)は好ましくは8質量%以上、より好ましくは10質量%以上であり、好ましくは19質量%以下、より好ましくは18質量%以下である。
 リン酸エステル化合物(C)の含有量は5~20質量%であり、好ましくは8質量%以上であり、より好ましくは10質量%以上であり、好ましくは19質量%以下であり、より好ましくは18量%以下、さらに好ましくは17質量%以下である。リン酸エステル化合物(C)の含有量が5質量%を下回る場合は、難燃性が不十分であり、20質量%を超えると著しい耐熱性の低下や、機械物性の低下を引き起こす。
[フルオロポリマー(D)]
 本発明の熱可塑性樹脂組成物は、フルオロポリマー(D)を、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、0.01~1質量部含有する。フルオロポリマー(D)は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
 フルオロポリマー(D)としては、例えば、フルオロオレフィン樹脂が挙げられる。フルオロオレフィン樹脂は、通常フルオロエチレン構造を含む重合体あるいは共重合体である。具体例としてはジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂、テトラフルオロエチレン/パーフルアルキルビニルエーテル共重合樹脂等が挙げられる。なかでも好ましくはテトラフルオロエチレン樹脂等が挙げられる。このフルオロエチレン樹脂としては、フィブリル形成能を有するフルオロエチレン樹脂が挙げられる。
 フィブリル形成能を有するフルオロエチレン樹脂としては、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)6J」、「テフロン(登録商標)640J」、ダイキン工業社製「ポリフロンF201L」、「ポリフロンF103」、「ポリフロンFA500B」、「ポリフロンFA500H」などが挙げられる。さらに、フルオロエチレン樹脂の水性分散液の市販品として、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)31-JR」、ダイキン工業社製「フルオンD-210C」等が挙げられる。さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も使用することができ、このようなフルオロエチレン重合体としては、ポリスチレン-フルオロエチレン複合体、ポリスチレン-アクリロニトリル-フルオロエチレン複合体、ポリメタクリル酸メチル-フルオロエチレン複合体、ポリメタクリル酸ブチル-フルオロエチレン複合体等が挙げられ、具体例としては三菱レイヨン社製「メタブレンA-3800」、GEスペシャリティケミカル社製「ブレンデックス449」等が挙げられる。なお、滴下防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 本発明におけるフルオロポリマー(D)は、標準比重の値が、2.15~2.22のものを使用することが好ましい。標準比重が、2.15を下回る場合は、成形品外観が低下する傾向にあるため好ましくない。また標準比重が2.22を超える場合は、耐ドリップ性が低下する傾向にあるため好ましくない。標準比重の値は、2.155~2.215であることが好ましく、2.16~2.1であることがさらに好ましく、2.16~2.20であることが特に好ましく、2.165~2.19であることが最も好ましい。なお、標準比重(SSGともいう。)は、ASTM D4895に準拠して成形されたサンプルを用い、水置換法により測定する値である。
 また、本発明におけるフルオロポリマー(D)の平均粒径は、特に制限はないが、300~1,000μmであることが好ましい。平均粒径が300μmを下回る場合は、本発明の熱可塑性樹脂組成物の耐ドリップ性が低下する可能性があり、また1,000μmを超える場合は、フルオロポリマーが凝集しやすくなり、成形体とした場合に白点異物等の外観不良を引き起こす可能性があるため好ましくない。このような観点より、フルオロポリマーの平均粒径は、350~800μmであることがより好ましく、380~750μmであることがさらに好ましく、400~700μmであることが特に好ましい。
 フルオロポリマー(D)の含有量は、前述したように、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、0.01質量部以上であり、好ましくは0.03質量部以上、より好ましくは0.05質量部以上、特に好ましくは0.1質量部以上であり、また、1質量部以下であり、好ましくは0.8質量部以下、より好ましくは0.7質量部以下である。フルオロポリマー(D)の含有量が前記範囲の0.01質量部未満の場合は、滴下防止剤による難燃性の効果が不十分となり、含有量が1質量部を超える場合は、熱可塑性樹脂組成物を成形した成形品の外観不良や機械的強度の低下が生じやすい。
[グラフト共重合体(E)]
 本発明の熱可塑性樹脂組成物は、ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合したグラフト共重合体(E)を含有する。
 グラフト共重合体(E)を構成するジエン系ゴムの具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ブタジエン-アクリル複合ゴム、スチレン-ブタジエンゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。
 これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、スチレン-ブタジエンゴムが好ましい。
 ジエン系ゴムには芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合する。
 グラフト重合する(メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル等を好ましく挙げることができる。
 (メタ)アクリル酸エステル化合物は、1種を単独で用いてもよく、または2種以上を混合して用いてもよい。
 グラフト重合する芳香族ビニル化合物としては、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されないが、官能基等の置換基を有さないものが好ましい。芳香族ビニル化合物の例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらのうち、スチレン及びα-メチルスチレンが好ましく、スチレンが特に好ましい。
 芳香族ビニル化合物は、単独であるいは2つ以上を組み合わせて用いることができ、また、(メタ)アクリル酸エステル化合物を併用することもできる。
 さらに、芳香族ビニル化合物や(メタ)アクリル酸エステル化合物以外の他のグラフト共重合可能な単量体を併用することもでき、そのような単量体の具体例としては、シアン化ビニル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。
 なお、グラフト共重合体(E)は、前述のABS樹脂(B)とは異なるものが使用される。
 ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合させてなるグラフト共重合体(E)は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもジエン系ゴムをコア層とし、その周囲に芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。
 このようなコア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、芳香族ビニル化合物及び(メタ)アクリル酸は、10質量%以上含有するものが好ましい。
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS)、メチルメタクリレート-ブタジエン共重合体(MB)、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体等が挙げられる。このようなゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。
 ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合させてなるグラフト共重合体(E)の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよい。
 共重合の方式は一段グラフトでも多段グラフトであってもよいが、多段グラフト共重合が好ましい。
 本発明の熱可塑性樹脂組成物が含有するグラフト共重合体(E)は、数平均粒径が100~350nmであることを特徴とする。このような数平均粒径を有さないグラフト共重合体を含有する熱可塑性樹脂組成物は、前述したゲートからリブやボスを通過した後の部分に筋状の外観不良が発生しやすくなる。
 ここで、グラフト共重合体(E)の数平均粒径は、走査電子顕微鏡(SEM)により測定され、具体的には、本発明の熱可塑性樹脂組成物(ペレット)を株式会社日立ハイテクノロジー製走査電子顕微鏡「SU8020」を用い、印加電圧2.0kV、倍率10,000倍で観察される画像から300個の粒子の数平均粒径として定義される。
 グラフト共重合体(E)の数平均粒径は、130~280nmであることが好ましく、150~250nmがさらに好ましい。
 グラフト共重合体(E)は、乳化重合により粒径を細かくして製造されたグラフト共重合体を使用することが好ましい。
 なお、このようなグラフト共重合体(E)は、市販されているものの中から、適宜選択して使用することも可能である。
 本発明において、グラフト共重合体(E)は、1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のグラフト共重合体(E)を組み合わせて含む態様でもよい。
 ポリカーボネート樹脂及びABS樹脂に、リン酸エステル化合物(C)及びフルオロポリマー(D)と、さらにグラフト共重合体(E)を、それぞれ本発明に規定の量で含有することにより、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/ABS樹脂アロイが可能となる。
 グラフト共重合体(E)の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、1~3.5質量部である。含有量が1質量部を下回ると、耐衝撃性向上効果が不十分となり、3.5質量部を超える場合は、熱可塑性樹脂組成物を成形した成形品の外観不良や耐熱性、難燃性の低下が生じる。含有量は、好ましくは、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、1.5質量部以上、より好ましくは1.8質量部以上であり、また、好ましくは3.4質量部以下、より好ましくは3.3質量部以下である。
 グラフト共重合体(E)に対するABS樹脂(B)の質量比((B)/(E))は4~25の範囲にあることが好ましい。質量比((B)/(E))がこのような範囲にあることで、ABS樹脂(B)及びグラフト共重合体(E)のポリカーボネート樹脂(A)への分散性が向上するという相乗効果があり、耐衝撃性や外観不良を改善することができる。例えば、耐衝撃性の向上を考えた場合、グラフト共重合体(E)のみを増やすことでも実現はできるが、質量比((B)/(E))がこの範囲を外れ4未満となるような場合は、グラフト共重合体(E)の増加量に対する耐衝撃性の向上効果が小さくなり、その反面、外観不良、耐熱性・難燃性の低下など望ましくない現象が増加する。また質量比((B)/(E))が25より大きい場合でも、同様に耐衝撃性の十分な向上が期待できない。質量比((B)/(E))は、より好ましくは4.5以上であり、20以下がより好ましく、さらに好ましくは15以下である。
[タルク(F)]
 本発明の熱可塑性樹脂組成物は、平均粒径が5~15μmのタルク(F)を含有することも好ましい。タルク(F)の平均粒径が5μm未満であると難燃性が悪くなりやすく、平均粒径が15μmを超えると成形品の耐衝撃性が低下しやすい。このようなタルク(F)としては、市販されているタルクから選択して使用可能である。タルク(F)の平均粒径は、6μm以上であることがより好ましく、7μm以上であることがさらに好ましく、14μm以下であることが特に好ましい。
 ここでタルク(F)の平均粒径は、レーザー回折による粒度分布測定されたD50をいう。このような測定ができる装置としては、島津製作所社製「SALD-200V ER」型レーザー回折式粒度分布測定装置等が挙げられる。
 タルク(F)を含有する場合、熱可塑性樹脂組成物中のタルク(F)の好ましい含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、0.5~3質量部である。含有量が0.5質量部を下回ると難燃性が不十分となりやすく、3質量部を超える場合は耐衝撃性の低下が生じやすい。
 タルク(F)の含有量は、より好ましくは、ポリカーボネート樹脂(A)とABS樹脂(B)とリン酸エステル化合物(C)の合計100質量部に対し、0.6質量部以上、さらに好ましくは0.7質量部以上であり、また、より好ましくは2.5質量部以下、さらに好ましくは2質量部以下である。
 タルク(F)を含有する場合、タルク(F)に対するグラフト共重合体(E)の質量比((E)/(F))は1.4~5の範囲にあることが好ましい。質量比((E)/(F))がこのような範囲にあることで、ABS樹脂(B)及びグラフト共重合体(E)のポリカーボネート樹脂(A)への分散性が向上でき、耐衝撃性や外観不良を改善することができる。すなわち上記したグラフト共重合体(E)に対するABS樹脂(B)の質量比と併せて、(B)、(E)及び(F)の質量比率を特定の範囲にすることで、ポリカーボネート樹脂(A)中の各成分の分散状態を適切にコントロールできることを見出し、耐衝撃性と外観不良の改善、難燃性の向上という、従来では同時に向上させることが困難であった特性を、同時に向上させることが可能となった。質量比((E)/(F))が5よりも大きいと難燃性の低下が著しく、1.4より小さいと耐衝撃性の低下が著しくなりやすい。質量比((E)/(F))は、より好ましくは1.45以上であり、さらに好ましくは1.5以上であり、4以下がより好ましく、さらに好ましくは3.5以下である。
[カーボンブラック]
 本発明の熱可塑性樹脂組成物は、カーボンブラックを含有することが成形品の高級感の向上効果の点で好ましい。使用するカーボンブラックの製造方法、原料種等に制限はなく、従来公知の任意のもの、例えばオイルファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等のいずれをも使用することができる。これらの中でも、着色性とコストの点から、オイルファーネスブラックが好ましい。
 用いるカーボンブラックの平均粒子径は適宜選択して決定すればよいが、中でも5~60nmが好ましく、更には7~55nm、特に10~50nmであることが好ましい。平均粒子径を前記範囲とすることで、カーボンブラックの凝集を抑制し、外観が向上する傾向にある。なお、カーボンブラックの平均粒子径は、透過型電子顕微鏡を用い求めることができる。
 本発明で用いるカーボンブラックの窒素吸着比表面積は、通常1000m/g未満が好ましく、なかでも50~400m/gであることが好ましい。窒素吸着比表面積を1000m/g未満にすることで、本発明の熱可塑性樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。なお、窒素吸着比表面積は、JIS K6217に準拠して測定することができる(単位はm/g)。
 またカーボンブラックのDBP吸収量は、300cm/100g未満であることが好ましく、なかでも30~200cm/100gであることが好ましい。DBP吸収量を300cm/100g未満にすることで、本発明の熱可塑性樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。
 なお、DBP吸収量はJIS K6217に準拠して測定することができる(単位はcm/100g)。また本発明で使用するカーボンブラックは、そのpHについても特に制限はないが、通常、2~10であり、3~9であることが好ましく、4~8であることがさらに好ましい。
 本発明で用いるカーボンブラックは、単独でまたは2種以上併用して使用することができる。更にカーボンブラックは、バインダーを用いて顆粒化することも可能であり、他の樹脂中に高濃度で溶融混練したマスターバッチでの使用も可能である。溶融混練したマスターバッチを使用することによって、押出時のハンドリング性改良、樹脂組成物中への分散性改良が達成できる。上記樹脂としては、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂等が挙げられる。
 カーボンブラックの含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、好ましくは0.0001質量部以上、より好ましくは0.0005質量部以上、さらに好ましくは0.001質量部以上であり、また、好ましくは2質量部以下、より好ましくは1質量部以下である。カーボンブラックが前記範囲の下限値未満の場合は、外観や漆黒性に劣る可能性があり、カーボンブラックの含有量が前記範囲の上限値を超える場合は、本発明の熱可塑性樹脂組成物の熱安定性が低下する可能性がある。
[リン系安定剤]
 本発明の熱可塑性樹脂組成物は、リン系安定剤を含有することが好ましい。リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
 このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
 なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 リン系安定剤の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量以下、より好ましくは0.5質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
[フェノール系安定剤]
 本発明の熱可塑性樹脂組成物は、フェノール系安定剤を含有することも好ましい。フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
 なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量が前記範囲の下限値未満の場合は、フェノール系安定剤としての効果が不十分となる可能性があり、フェノール系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
[離型剤]
 また、離型剤を含有することも好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが好ましく挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
 また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。
 なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
 ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
 なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 離型剤の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
[その他の成分]
 本発明の熱可塑性樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂(A)、ABS樹脂(B)及びグラフト共重合体(E)以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・その他の樹脂
 その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)などのスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂等が挙げられる。
 なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・樹脂添加剤
 樹脂添加剤としては、例えば、紫外線吸収剤、染顔料、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 以下、本発明の熱可塑性樹脂組成物に好適な添加剤の例について具体的に説明する。
・・紫外線吸収剤
 紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では有機紫外線吸収剤が好ましく、ベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、本発明の熱可塑性樹脂組成物の透明性や機械物性が良好なものになる。
 ベンゾトリアゾール化合物の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、なかでも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。
 このようなベンゾトリアゾール化合物としては、具体的には例えば、シプロ化成社製「シーソーブ701」、「シーソーブ705」、「シーソーブ703」、「シーソーブ702」、「シーソーブ704」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ582」、「バイオソーブ580」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、ADEKA社製「LA-32」、「LA-38」、「LA-36」、「LA-34」、「LA-31」、BASF社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。
 ベンゾフェノン化合物の具体例としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-n-ドデシロキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられ、このようなベンゾフェノン化合物としては、具体的には例えば、シプロ化成社製「シーソーブ100」、「シーソーブ101」、「シーソーブ101S」、「シーソーブ102」、「シーソーブ103」、共同薬品社製「バイオソーブ100」、「バイオソーブ110」、「バイオソーブ130」、ケミプロ化成社製「ケミソーブ10」、「ケミソーブ11」、「ケミソーブ11S」、「ケミソーブ12」、「ケミソーブ13」、「ケミソーブ111」、BASF社製「ユビヌル400」、BASF社製「ユビヌルM-40」、BASF社製「ユビヌルMS-40」、サイテックインダストリーズ社製「サイアソーブUV9」、「サイアソーブUV284」、「サイアソーブUV531」、「サイアソーブUV24」、ADEKA社製「アデカスタブ1413」、「アデカスタブLA-51」等が挙げられる。
 サリシレート化合物の具体例としては、例えば、フェニルサリシレート、4-tert-ブチルフェニルサリシレート等が挙げられ、このようなサリシレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ201」、「シーソーブ202」、ケミプロ化成社製「ケミソーブ21」、「ケミソーブ22」等が挙げられる。
 シアノアクリレート化合物の具体例としては、例えば、エチル-2-シアノ-3,3-ジフェニルアクリレート、2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート等が挙げられ、このようなシアノアクリレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ501」、共同薬品社製「バイオソーブ910」、第一化成社製「ユビソレーター300」、BASF社製「ユビヌルN-35」、「ユビヌルN-539」等が挙げられる。
 トリアジン化合物としては、例えば1,3,5-トリアジン骨格を有する化合物等が挙げられ、このようなトリアジン化合物としては、具体的には例えば、ADEKA社製「LA-46」、BASF社製「チヌビン1577ED」、「チヌビン400」、「チヌビン405」、「チヌビン460」、「チヌビン477-DW」、「チヌビン479」等が挙げられる。
 オギザニリド化合物の具体例としては、例えば、2-エトキシ-2’-エチルオキザリニックアシッドビスアリニド等が挙げられ、このようなオキザリニド化合物としては、具体的には例えば、クラリアント社製「サンデュボアVSU」等が挙げられる。
 マロン酸エステル化合物としては、2-(アルキリデン)マロン酸エステル類が好ましく、2-(1-アリールアルキリデン)マロン酸エステル類がより好ましい。このようなマロン酸エステル化合物としては、具体的には例えば、クラリアント社製「PR-25」、BASF社製「B-CAP」等が挙げられる。
 紫外線吸収剤の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、通常0.01質量部以上、好ましくは0.1質量部以上であり、また、通常3質量部以下、好ましくは1質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・・染顔料
 染顔料としては、例えば、無機顔料、有機顔料、有機染料などが挙げられる。
 無機顔料としては、例えば、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛-鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅-クロム系ブラック、銅-鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料などが挙げられる。
 有機顔料および有機染料としては、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。
 これらの中では、熱安定性の点から、酸化チタン、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。
 なお、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 染顔料の含有量は、ポリカーボネート樹脂(A)とABS樹脂(B)の合計100質量部に対して、通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。染顔料の含有量が多すぎると耐衝撃性が十分でなくなる可能性がある。
[熱可塑性樹脂組成物の製造方法]
 本発明の熱可塑性樹脂組成物を製造する製造方法には制限はなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。
 具体例を挙げると、ポリカーボネート樹脂(A)、ABS樹脂(B)、リン酸エステル化合物(C)、フルオロポリマー(D)及びグラフト共重合体(E)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
 また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明の熱可塑性樹脂組成物を製造することもできる。
 また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明の熱可塑性樹脂組成物を製造することもできる。
 また、例えば、分散し難い成分を混合する際には、その分散し難い成分を予め水や有機溶剤等の溶媒に溶解又は分散させ、その溶液又は分散液と混練するようにすることで、分散性を高めることもできる。
 本発明の熱可塑性樹脂組成物は、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)において、1.5mm厚さにおけるUL94試験による難燃性が、好ましくは5VAまたは5VBという極めて高い難燃性を有する。
 また、本発明の熱可塑性樹脂組成物は、UL94試験において、1.2mm厚さにおけるUL94試験による難燃性が、好ましくはV-0という極めて高い難燃性を有する。
 さらに、本発明の熱可塑性樹脂組成物は、UL94試験において、1.5mm厚さにおける難燃性が5VAまたは5VBであって、かつ1.2mm厚さにおける難燃性がV-0であることも好ましい。
[成形体]
 本発明の熱可塑性樹脂組成物は、通常、任意の形状に成形して成形体(樹脂組成物成形体)として用いる。この成形体の形状、模様、色彩、寸法などに制限はなく、その成形体の用途に応じて任意に設定すればよい。
 成形体の例を挙げると、電気・電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、照明機器等の部品が挙げられる。これらの中でも、特に電気・電子機器やOA機器の筐体に用いて好適であり、プリンター、複写機、プロジェクター、モデム及びルーター等の筐体に特に好適である。
 成形体の製造方法は、特に限定されず、熱可塑性樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
 得られた本発明の成形体は、難燃性、耐衝撃性及び外観に優れる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において[部]とは、特に断らない限り質量基準に基づく「質量部」を表す。
(実施例1~4、比較例1~4)
[樹脂ペレット製造]
 表1に記した各成分のうちC成分以外を、表4~表5に記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製二軸押出機(TEX30α)に上流のフィーダーより供給し、さらにC成分をバレルの途中より供給しながら、回転数250rpm、吐出量45kg/時間、バレル温度260℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
Figure JPOXMLDOC01-appb-T000005
 なお、上記表1において、ABS樹脂(B)中のブタジエンゴム(b3)の数平均粒径、およびグラフト共重合体(E)の数平均粒径は、前述した方法で測定した。
[試験片の作製]
 上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製のSE100DU型射出成形機を用いて、シリンダー温度240℃、金型温度40℃の条件で射出成形し、長さ125mm、幅13mm、厚さ1.5mm及び1.2mmのUL試験用試験片を成形した。
 同様に上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製の射出成型機サイキャップM-2(型締め力75T)を用いて、シリンダー温度240℃、金型温度60℃の条件で射出成形し、240℃成形ISO多目的試験片(4mm)及び、240℃成形ISO多目的試験片(3mm)を成形した。
 またシリンダー温度260℃、金型温度60℃の条件で射出成形し、260℃成形ISO多目的試験片(3mm)を成形した。
[難燃性評価]
 各樹脂組成物の難燃性の評価は、上記で得られたUL試験用試験片(1.5mm厚及び1.2mm厚)を、温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)の94-5V規格、並びに94-V規格に準拠して行った。
 94-5V試験は、1.5mm厚のUL試験用試験片(棒状と板状の2種)を用いて、5秒間×5回接炎した後の棒状試験片の残炎時間、ドリップ性、板状試験片の貫通孔の有無から難燃性を評価する方法で、判定基準は以下の表2に従う。5VA、5VBのいずれの判定基準も満たさないものはNRと表記した。
 表4~5中、「1.5mmUL難燃性」と表記する。
Figure JPOXMLDOC01-appb-T000006
 また、94-V試験は、1.2mm厚のUL試験用試験片を用い、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V-0、V-1及びV-2の難燃性を有するためには、以下の表3に示す基準を満たすことが必要となる。
Figure JPOXMLDOC01-appb-T000007
 ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。なお、表4~5中、「1.2mmUL難燃性」と表記する。
[耐衝撃性]
 上述の方法で得られた240℃成形ISO多目的試験片(3mm)及び260℃成形ISO多目的試験片(3mm)を用い、ISO179に準拠してノッチ付シャルピー衝撃強度(単位:kJ/m)を測定し評価した。
 なお、表4~5中、それぞれ「240℃耐衝撃性」、「260℃耐衝撃性」と表記する。
 また「240℃耐衝撃性」の値を100としたときの、「260℃耐衝撃性」の割合(%)を、「耐衝撃性保持率」として求めた。この値が、大きい方が、高温成形でも物性低下が少なく、大型、薄型の成形品を成形する場合に、物性低下が小さく、設計しやすいことを意味し、好ましい。
[外観評価]
 図1は外観評価のために成形した平板状成形体の形状を示す上面図(表側の意匠面から見た図)である。平板状成形体は、長さ200mm×幅150mm×厚さ2mmの長方形状の平板である。成形は平板状成形体の右側端部に設けたゲート1から樹脂を注入して行う。平板状成形体の裏面側には、樹脂の流動方向に長さ30mm、厚さ1.1mmで高さ5mmのリブ2が、図1に示す位置(図中の数値の単位はmm)に、3つ互いに平行に設けられ、さらに樹脂流動方向に直交する方向に、長さ100mm、厚さ1.1mmで高さ5mmのリブ2’が平板状成形体の裏面側に1つ設けられている。
 上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、東芝機械社製のEC160型射出成形機を用いて、シリンダー温度260℃、金型温度40℃の条件で射出成形し、上記平板状成形体を成形し、樹脂の流動方向に直行するリブ2’を通過し、さらに流動方向に設けた3つのリブ2通過後の意匠面(図1の3つの流動方向リブ2の左側部)に発生した筋状の外観不良の数を目視で観察し、筋状外観不良の数が、0~3個のものを「合格」とし、4個以上のものを「不合格」と評価した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 上記表4より、本発明で規定するポリカーボネート樹脂(A)、ABS樹脂(B)、リン酸エステル化合物(C)、フルオロポリマー(D)及びグラフト共重合体(E)を、本発明で規定の範囲で含有する実施例の熱可塑性樹脂組成物は、1.5mmUL難燃性が5VB、1.2mmUL難燃性はV-0を達成し、耐衝撃性に優れ、耐衝撃性保持率も高く、外観評価では、筋状外観不良発生が少ないことが分かる。
 一方、表5からは以下のことが明らかとなる。比較例1は、グラフト共重合体(E)の含有量が少ないため耐衝撃性が悪く、グラフト共重合体(E)の含有量が規定の量を超える比較例2では、難燃性が悪く外観も悪くなっている。また、グラフト共重合体(E)の数平均粒径が大きい比較例3は、難燃性が悪くまた外観も悪くなり、ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が大きい比較例4では、1.5mmUL難燃性は5VBを達成できず、また外観が悪化する。
 したがって、上記の実施例及び比較例から、難燃性、耐衝撃性及び外観に優れるという効果は、本発明の構成によりはじめて得られるものであることが確認された。
(実施例5~15、比較例5~8、参考例1~5)
[樹脂ペレット製造]
 以下の表6に記した各成分のうちC成分以外を、表7~10に記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製二軸押出機(TEX30α)に上流のフィーダーより供給し、さらにC成分をバレルの途中より供給しながら、回転数250rpm、吐出量45kg/時間、バレル温度260℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
Figure JPOXMLDOC01-appb-T000010
 なお、上記表6において、ABS樹脂(B)中のブタジエンゴム(b3)の数平均粒径、およびグラフト共重合体(E)の数平均粒径は、前述した方法で測定した。
[試験片の作製]
 上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製のSE100DU型射出成形機を用いて、シリンダー温度240℃、金型温度40℃の条件で射出成形し、長さ125mm、幅13mm、厚さ1.5mm及び1.2mmのUL試験用試験片を成形した。
 同様に上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製の射出成型機サイキャップM-2(型締め力75T)を用いて、シリンダー温度240℃、金型温度60℃の条件で射出成形し、240℃成形ISO多目的試験片(4mm)及び、240℃成形ISO多目的試験片(3mm)を成形した。
 またシリンダー温度260℃、金型温度60℃の条件で射出成形し、260℃成形ISO多目的試験片(3mm)を成形した。
 難燃性、耐衝撃性及び外観の評価は、前記と同様の方法で行った。
 結果を以下の表7以下に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 上記表7~8より、本発明で規定するポリカーボネート樹脂(A)、ABS樹脂(B)、リン酸エステル化合物(C)、フルオロポリマー(D)及びグラフト共重合体(E)を、本発明で規定の範囲で含有する実施例5~15の熱可塑性樹脂組成物は、1.5mmUL難燃性が5VB、1.2mmUL難燃性はV-0を達成し、耐衝撃性に優れ、耐衝撃性保持率も高く、外観評価では、筋状外観不良発生が少ないことが分かる。
 一方、表9~10からは以下のことが明らかとなる。比較例5は、ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が大きいため外観が悪く、グラフト共重合体(E)の数平均粒径が大きい比較例6では、難燃性が悪く外観も悪くなっている。また、グラフト共重合体(E)の含有量が少ない比較例7は耐衝撃性が悪く、含有量が多すぎる比較例8では外観が悪化している。
 タルク(F)の含有量が少ない参考例1では、1.5mmUL難燃性は5VBであるが、1.2mmUL難燃性はV-1であり難燃性がやや悪化している。参考例2は、タルク(F)の含有量が大きいため耐衝撃性が低下し、タルクの粒径が小さいものを含有する参考例3~4は1.2mmUL難燃性がV-1と難燃性が低下し、タルクの粒径が大きい参考例5では、耐衝撃性が低下している。
 本発明の熱可塑性樹脂組成物は、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/ABS樹脂アロイであるので、その産業上の利用性は高いものがある。

Claims (11)

  1.  ポリカーボネート樹脂(A)60~90質量%と、芳香族ビニル単量体成分(b1)40~80質量%、シアン化ビニル単量体成分(b2)10~30質量%、ジエン系ゴム質重合体成分(b3)10~30質量%及びその他の単量体成分(b4)0~30質量%からなるABS樹脂(B)5~20質量部、並びに下記式(1)で示されるリン酸エステル化合物(C)5~20質量%からなる基体樹脂100質量部に対して、
     フルオロポリマー(D)0.01~1質量部、ジエン系ゴムに芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル化合物をグラフト重合したグラフト共重合体(E)1~3.5質量部を含有し、
     ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が100~350nmであり、かつグラフト共重合体(E)の数平均粒径が100~350nmであることを特徴とする熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、R及びRは、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示し、p、q、r及びsは、それぞれ0または1であり、kは0から5の整数であり、Xはアリーレン基を示す。)
  2.  さらに、平均粒径が5~15μmのタルク(F)を、前記基体樹脂100質量部に対し、0.5~3質量部含有する請求項1に記載の熱可塑性樹脂組成物。
  3.  ABS樹脂(B)中の、ジエン系ゴム質重合体成分(b3)の数平均粒径が130~280nmである請求項1または2に記載の熱可塑性樹脂組成物。
  4.  グラフト共重合体(E)の数平均粒径が130~280nmである請求項1~3のいずれかに記載の熱可塑性樹脂組成物。
  5.  粒径1000nm以上のジエン系ゴム質重合体成分(b3)の割合が2%以下である請求項1~4の何れか1項に記載の熱可塑性樹脂組成物。
  6.  グラフト共重合体(E)に対するABS樹脂(B)の質量比((B)/(E))が4~25である請求項1~5の何れか1項に記載の熱可塑性樹脂組成物。
  7.  タルク(F)に対するグラフト共重合体(E)の質量比((E)/(F))が1.4~5である請求項1~6の何れかに記載の熱可塑性樹脂組成物。
  8.  1.5mm厚におけるUL94による難燃性が5VAまたは5VBである請求項1~7の何れか1項に記載の熱可塑性樹脂組成物。
  9.  1.2mm厚におけるUL94による難燃性がV-0である請求項1~8の何れか1項に記載の熱可塑性樹脂組成物。
  10.  請求項1~9の何れか1項に記載の熱可塑性樹脂組成物を成形してなる成形体。
  11.  プリンター、複写機、プロジェクター、モデム及びルーターから選ばれる少なくとも1種のOA機器の筐体である請求項10に記載の成形体。
PCT/JP2014/064712 2013-07-03 2014-06-03 熱可塑性樹脂組成物 WO2015001895A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480037960.3A CN105358625B (zh) 2013-07-03 2014-06-03 热塑性树脂组合物

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013139537 2013-07-03
JP2013-139529 2013-07-03
JP2013139529 2013-07-03
JP2013-139537 2013-07-03
JP2014086191A JP5782547B2 (ja) 2013-07-03 2014-04-18 熱可塑性樹脂組成物
JP2014-086191 2014-04-18
JP2014-086186 2014-04-18
JP2014086186 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015001895A1 true WO2015001895A1 (ja) 2015-01-08

Family

ID=52143480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064712 WO2015001895A1 (ja) 2013-07-03 2014-06-03 熱可塑性樹脂組成物

Country Status (1)

Country Link
WO (1) WO2015001895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933792A (zh) * 2022-03-17 2022-08-23 上海金发科技发展有限公司 一种聚碳酸酯合金材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317110A (ja) * 2001-04-20 2002-10-31 Asahi Kasei Corp ポリカーボネート系着色難燃樹脂組成物およびその製法
JP2010138264A (ja) * 2008-12-11 2010-06-24 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物
JP2011057888A (ja) * 2009-09-11 2011-03-24 Mitsubishi Engineering Plastics Corp 電池パック用ポリカーボネート樹脂組成物及び電池パック
WO2012067108A1 (ja) * 2010-11-17 2012-05-24 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形体
JP2012172058A (ja) * 2011-02-22 2012-09-10 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び成形体
JP2012177047A (ja) * 2011-02-28 2012-09-13 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317110A (ja) * 2001-04-20 2002-10-31 Asahi Kasei Corp ポリカーボネート系着色難燃樹脂組成物およびその製法
JP2010138264A (ja) * 2008-12-11 2010-06-24 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物
JP2011057888A (ja) * 2009-09-11 2011-03-24 Mitsubishi Engineering Plastics Corp 電池パック用ポリカーボネート樹脂組成物及び電池パック
WO2012067108A1 (ja) * 2010-11-17 2012-05-24 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形体
JP2012172058A (ja) * 2011-02-22 2012-09-10 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び成形体
JP2012177047A (ja) * 2011-02-28 2012-09-13 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933792A (zh) * 2022-03-17 2022-08-23 上海金发科技发展有限公司 一种聚碳酸酯合金材料及其制备方法和应用
CN114933792B (zh) * 2022-03-17 2023-11-28 上海金发科技发展有限公司 一种聚碳酸酯合金材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5782547B2 (ja) 熱可塑性樹脂組成物
JP4700770B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP4990417B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP6147595B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
WO2013157345A1 (ja) ポリカーボネート樹脂組成物
JP5555588B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP5364637B2 (ja) 熱可塑性樹脂組成物及びそれを使用する成形品
JPWO2012067108A6 (ja) ポリカーボネート樹脂組成物及び成形体
JP5723223B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP5449443B2 (ja) ポリカーボネート樹脂組成物
JP5449458B2 (ja) ポリカーボネート樹脂組成物
JP5427767B2 (ja) 芳香族ポリカーボネート樹脂組成物、それからなる成形品および成形品の製造方法
JP2019059813A (ja) ポリカーボネート樹脂組成物
JP5785308B1 (ja) 熱可塑性樹脂組成物
JP5973333B2 (ja) ポリカーボネート樹脂組成物
JP6411173B2 (ja) ポリカーボネート樹脂組成物および成形品
JP5758649B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP2015227421A (ja) 熱可塑性樹脂組成物
JP5770487B2 (ja) ポリカーボネート樹脂組成物
JP5449442B2 (ja) ポリカーボネート樹脂組成物
JP2014055255A (ja) ガラス繊維強化ポリカーボネート樹脂組成物
WO2015001895A1 (ja) 熱可塑性樹脂組成物
JP5646791B1 (ja) ポリカーボネート樹脂組成物および成形品
JP6026129B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
JP2014227436A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037960.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819612

Country of ref document: EP

Kind code of ref document: A1