WO2015001849A1 - Electric-vehicle braking control device - Google Patents
Electric-vehicle braking control device Download PDFInfo
- Publication number
- WO2015001849A1 WO2015001849A1 PCT/JP2014/063014 JP2014063014W WO2015001849A1 WO 2015001849 A1 WO2015001849 A1 WO 2015001849A1 JP 2014063014 W JP2014063014 W JP 2014063014W WO 2015001849 A1 WO2015001849 A1 WO 2015001849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- motor
- braking
- current
- regenerative
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0076—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T1/00—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
- B60T1/02—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
- B60T1/10—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/58—Combined or convertible systems
- B60T13/585—Combined or convertible systems comprising friction brakes and retarders
- B60T13/586—Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/02—Brake-action initiating means for personal initiation
- B60T7/04—Brake-action initiating means for personal initiation foot actuated
- B60T7/042—Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/60—Regenerative braking
- B60T2270/604—Merging friction therewith; Adjusting their repartition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a braking control device for an electric vehicle that is regeneratively braked by a motor.
- a motor is mounted as a power source of the vehicle, and an inverter for controlling the electric power supplied to the motor is provided.
- the motor is the main power, and has a function of converting the kinetic energy of the vehicle during regenerative braking into electricity and regenerating it in the battery as well as driving the vehicle.
- the regenerative braking torque command for the front and rear wheel motors is calculated by the braking control unit provided in the controller of the vehicle, and this regenerative braking torque command is transmitted to the inverter control unit related to motor control.
- the electronically controlled friction brake calculates a command related to the friction braking torque by a brake controller in accordance with a command from the brake control unit, and controls the four-wheel electronically controlled friction brake to follow the command.
- regenerative cooperative control is performed in which the battery is regenerated by the motor and immediately before the vehicle finally stops, the friction braking by the electronically controlled friction brake is applied.
- (1) to (3) are known as error factors relating to the output torque of the motor.
- (1) In a permanent magnet type motor, the amount of magnetic flux decreases due to the temperature change of the magnet, and the torque decreases according to the characteristics of the magnet even when the same current is applied.
- (2) When a neodymium magnet is used, permanent demagnetization may occur at a high temperature. After that, the amount of magnetic flux decreases, and the torque decreases from the normal case even when the same current is applied.
- (3) There is an error or the like of the control current sensor provided in the inverter. There is a possibility that an error of about 10 to 20% may occur due to the overlap of the above three error factors.
- the driving / braking torque controlled by the motor is characterized by being 100 times more responsive than the engine vehicle torque. It is desired to automatically perform fine control according to the degree of friction of the road surface by utilizing this high responsiveness.
- the control device for the electric vehicle does not include means for detecting the actual torque of the motor related to regenerative braking. The reason is that an expensive torque sensor is required to measure the torque with respect to the mechanical output of the motor.
- Patent Document 1 the actual torque of the motor related to regenerative braking is not detected, and a function for compensating the actual torque according to an error factor of the motor or the like is not described.
- a braking control device for an electric vehicle according to the present invention will be described with reference numerals in the drawings of the embodiments.
- the braking control device for an electric vehicle according to claim 1 is controlled by an inverter control unit 10 that controls electric power supplied from a battery, and the inverter control unit, and applies driving torque to driving wheels during powering operation to perform regenerative operation.
- an inverter control unit 10 that controls electric power supplied from a battery
- the inverter control unit applies driving torque to driving wheels during powering operation to perform regenerative operation.
- driving torque to driving wheels during powering operation to perform regenerative operation.
- the inverter control unit 10 further includes torque estimation units 57, 58, 59, 60 for estimating the actual torque ⁇ 0 of the motor from regenerative power regenerated to the battery, and the brake control unit 9 provided to the motor. Feedback for feedback control of the regenerative braking torque output by the motor from the difference ⁇ between the instructed regenerative braking torque command value ⁇ ⁇ and the actual torque value ⁇ 0 estimated by the torque estimation units 57, 58, 59, 60. And a control unit 61.
- the above reference numerals are only examples provided for reference, and the present invention is not limited thereto.
- the actual torque of the motor is detected without using an expensive torque sensor, the difference between the detected actual torque and the torque command value is fed back to compensate for the actual torque, and fine automatic torque adjustment is performed. Can be possible.
- FIG. 1 is a block diagram showing a system configuration of an electric vehicle.
- the electric vehicle is an electric vehicle
- the shaft output torque of the motor 1 is transmitted to the left and right drive wheels 4A, 4B via the reduction gear 2 and the differential gear 3.
- the drive wheels 4A and 4B are provided with brakes 5A and 5B, respectively.
- the brakes 5A and 5B are electronically controlled friction brakes.
- the pedaling force is transmitted to the negative pressureless brake 7, and the torque of the motor built in the negative pressureless brake 7 is used together with the pedaling force.
- the applied force increases the hydraulic pressure for braking.
- the brake hydraulic pressure is distributed to the four wheels by an ESC (Electronic Stability Control) 8 having a lock prevention function, and the movable portions of the brakes 5A and 5B are driven by the hydraulic pressure to brake the drive wheels 4A and 4B. That is, a mechanical friction braking torque is applied.
- the depression amount of the brake pedal 6 by the driver is converted into a braking torque request signal relating to the braking force.
- This braking torque request signal is transmitted to the vehicle controller 9.
- the vehicle controller 9 divides the braking torque request signal into two types, that is, the regenerative braking torque request value by the motor 1 and the friction braking torque request value by the electronically controlled friction brake, and the regenerative braking torque request value, The friction braking command value is calculated and output.
- the friction braking command value is transmitted from the vehicle controller 9 to the negative pressureless brake 7 as a braking command signal 20.
- the regenerative braking torque request value is transmitted to the motor controller 14 as a braking request value signal 21.
- the motor controller 14 generates an IGBT drive pulse signal to drive the IGBT to regenerate the motor 1. Thereby, the motor 1 is regeneratively operated to obtain a regenerative braking force.
- the vehicle controller 9 also receives a power running torque command signal from the accelerator pedal 62, and calculates a power running torque command value based on the power running torque command signal and outputs it to the motor controller 14 during power running. As will be described later, the motor controller 14 generates an IGBT drive pulse signal to drive the motor 1 so as to drive the motor 1. As a result, the motor 1 is powered.
- the judgment function for sharing the braking torque into two types is not only performed by the vehicle controller 9 but also the control unit of the negative pressureless brake 7. (Not shown) may be performed, or may be performed by another controller mounted on the same vehicle. In either case, it functions as a braking control unit.
- the motor 1 is a permanent magnet type motor
- it is not necessarily limited to a permanent magnet type motor.
- the converter that controls the power running drive or the regenerative drive of the motor 1 is an inverter control unit 10, and a main circuit 11 is provided inside the inverter control unit 10.
- the main circuit 11 is configured by connecting six power devices IGBTs (Insulated Gate Bipolar Transistors) and diodes to a three-phase bridge circuit.
- the two high voltage terminals of the main circuit 11 are connected to the positive electrode and the negative electrode of the battery 12, and the inverter control unit 10 converts the voltage supplied from the battery 12 into an AC voltage and supplies it to the motor 1.
- a capacitor 13 is provided between the main circuit 11 and the battery 12, and the capacitor 13 functions as an energy buffer when the main circuit 11 supplies a transient current for a short time. That is, once the energy stored in the capacitor 13 is provided immediately, the battery 12 is discharged from the battery 12 to replenish the consumed energy.
- the above-described motor controller 14 is further provided inside the inverter controller 10. As described above, the motor controller 14 applies a gate drive pulse to the IGBT of the main circuit 11 so that the motor 1 outputs a desired torque based on the torque command value 21 input from the vehicle controller 9. It has a function.
- the motor controller 14 detects the rotor magnetic pole position detected by the magnetic pole position detector 15 provided in the motor 1, and drives and controls the IGBT according to the position detection signal.
- Each of the three-phase output lines from the inverter control unit 10 to the motor 1 is provided with a first current detector 16, and the three-phase current detection value is transferred from the first current detector 16 to the motor controller 14.
- the three-phase currents iu, iv, and iw are converted into two components of id and iqi in the motor controller 14 and used.
- the torque control of the motor 1 is a so-called vector control in which two components of the current id and iq are set to values according to a desired torque.
- the second current detector 17 is provided in the wiring connecting the battery 12 and the inverter control unit 10, and the output of the second current detector 17 is transmitted to the battery state monitoring device 18.
- the battery state monitoring device 18 detects not only the current information obtained from the second current detector 17 but also the voltage between the positive and negative electrodes of the battery 12, the temperature of the battery, etc., and the remaining capacity of the battery and the allowable charging current. Estimate the discharge current.
- the state monitoring device 18 of the battery 12 transmits the detected information to the vehicle controller 9, and this signal is represented by a battery state detection signal 22 in FIG.
- a third current detector 19 is provided in the wiring connecting the electrodes of the battery 12 and the capacitor 13, and the signal is taken into the motor controller 14. As will be described later, the motor controller 14 measures the voltage between the positive and negative electrodes of the capacitor 13 and multiplies the detected voltage by the DC current detected by the third current detector 19 to calculate the amount of power. Have. This arithmetic expression is an expression (1) described later.
- the motor controller 14 calculates the copper loss of the motor 1 from the current flowing through the motor 1. This arithmetic expression is an expression (2) described later.
- the motor controller 14 adds the copper loss to the previous electric energy calculation result, divides this addition result by the angular velocity of the motor 1 obtained by the magnetic pole position detector 15, and estimates the actual torque during braking of the motor 1. Also have.
- This arithmetic expression is an expression (3) described later.
- FIG. 2 the control executed by the motor controller 14 in the inverter control unit 10 is shown by a functional block diagram.
- the main circuit 11, the motor 1, the magnetic pole position detector 15, and the first current detector 16 are provided. The structure is shown.
- the motor controller 14 functionally includes a first current command calculation unit 51 that calculates the two-phase current commands id and iq during power running based on the power running torque command ⁇ ⁇ transmitted from the vehicle controller 9 during power running, A command of the second current command calculation unit 56 that calculates the two-phase current commands id and iq at the time of regeneration based on the braking torque command ⁇ ⁇ transmitted from the vehicle controller 9 at times, and a command of the first current command calculation unit 51 during powering operation And a switcher 52 that selects a command of the second current command calculation unit 56 during regenerative operation.
- the motor controller 14 also includes a three-phase two-phase converter 55 that converts the three-phase AC signals iu, iv, iw of the motor 1 detected by the first current detector 16 into two-phase current signals id, iq, and 3
- a comparator 53 is provided that takes a deviation between the id and iq current signals converted by the phase-to-phase converter 55 and the current command value selected by the switch 52.
- the current command deviation that is the output of the comparator 53 is input to the current control unit 54, and the current control unit 54 performs a vector operation to calculate a control current value and inputs the control current value to the PWM generation unit 50.
- the PWM generator 50 generates an IGBT drive pulse based on the input control current value and applies the drive pulse to the gate of the IGBT.
- the motor controller 14 further includes a regenerative power calculation unit 57, an actual torque calculation unit 60, a copper loss calculation unit 58, and an angular velocity calculation unit 59 as a torque estimation unit.
- the regenerative power calculator 57 uses the product of the detected amount V * of the voltage between the positive and negative electrodes of the capacitor 13 and the detected amount I * of the direct current detected by the third current detector 19 during regeneration. Is calculated from the equation (1).
- P V * ⁇ I * (1)
- Copper loss calculation unit 58, the motor current id which is the coordinate transformation, by multiplying the coil resistance R M of the motor 1 the two components of iq each squared sum seek copper loss Wc from equation (2).
- the actual torque calculation unit 60 calculates the motor angular velocity ⁇ calculated by the angular velocity calculation unit 59 to which the rotor magnetic pole position detection signal is input, the regenerative power amount P calculated by the regenerative power calculation unit 57, and the copper loss calculation unit 58.
- the actual torque estimated value ⁇ 0 is obtained from the equation (3) using the copper loss Wc.
- ⁇ 0 (P + Wc) / ⁇ (3)
- the motor controller 14 during powering operation will be described.
- the current command value of the first current command calculation unit 51 is selected by the switch 52 so that the actual torque feedback is not performed.
- the motor 1 is provided with the magnetic pole position detector 15 and the first current detector 16.
- the output of the magnetic pole position detector 15 is transmitted to a current control unit 54 that performs vector control.
- the output of the first current detector 16 is coordinate-converted from a three-phase current to a two-component current of id and iq by a three-phase to two-phase converter 55.
- the first current command calculation unit 51 receives the input of the drive torque command ⁇ ⁇ from the vehicle controller 9 and calculates and outputs the two-phase current command values id, iq corresponding to the drive torque command ⁇ ⁇ .
- the current command value is compared by the comparator 53 with the components of id detec and iq detec whose coordinates are converted by the three-phase / two-phase converter 55, and the current controller 54 controls the control current value according to the deviations ⁇ id and ⁇ iq. Is a vector operation.
- the PWM generator 50 generates a gate drive pulse for switch-controlling the IGBT of the main circuit 11.
- the motor controller 14 during regenerative operation will be described.
- the current command value of the second current command calculation unit 56 is selected by the switch 52 so that actual torque feedback is performed.
- the regenerative electric power calculating part 57 calculates the regenerative electric energy P from said (1) Formula.
- the copper loss calculation unit 58 calculates the copper loss Wc of the motor 1 from the above equation (2).
- the angular velocity calculation unit 59 obtains the angular velocity ⁇ of the motor 1 from the signal detected by the magnetic pole position detector 15.
- the actual torque calculation unit 60 obtains the actual torque estimated value ⁇ 0 from the above equation (3).
- the comparator 61 obtains a deviation ⁇ between the actual torque estimated value ⁇ 0 calculated by the actual torque calculation unit 60 during regenerative braking and the regenerative braking torque command ⁇ ⁇ calculated and output by the vehicle controller 9 during regenerative braking.
- the second current command calculation unit 56 calculates and outputs the two-phase current command values id and iq in consideration of the deviation ⁇ obtained from the comparator 61.
- the current command values id and iq calculated by the second current command calculation unit 56 and selected by the switch 52 are the id detec and iq detec components converted by the three-phase / two-phase conversion unit 55 and the comparator 53. The difference between the two is calculated.
- the current control unit 54 performs a vector operation on the control current value, and in accordance with the result, the PWM generation unit 50 generates a gate drive pulse for switch-controlling the IGBT.
- the actual torque value during regenerative braking is accurately controlled to the designed torque command value.
- the required braking torque value due to depression of the brake pedal is shared between the friction torque and the regenerative torque, the braking performance is improved.
- FIG. 6 is a characteristic diagram regarding the sharing of braking torque by the motor 1 and the electronically controlled friction brake.
- the vehicle decelerates due to running resistance, so the driver operates the accelerator to compensate for this, so it is rare for the motor 1 to maintain a constant torque state.
- the motor torque is finely controlled according to the engine output state.
- the braking control unit commands the braking torque by the motor 1 according to the braking operation by the driver, the vehicle speed decreases with time so that the deceleration acceleration is substantially constant.
- the torque controlled by the motor 1 during braking is the sum of the amount of power regenerated in the battery and the power loss consumed by the motor 1 and the inverter control unit 10.
- the power loss of the motor 1 is dominated by the copper loss of the coil, the iron loss of the stator and the rotor core, and the eddy current loss of the permanent magnet.
- the core iron loss and the permanent magnet eddy current loss increase as the motor 1 rotates more rapidly.
- FIG. 7 is a characteristic diagram showing changes in motor rotation speed and magnet temperature.
- FIG. 7 shows an example showing a behavior in which a permanent magnet rises in temperature due to eddy current loss. This example is a simulation result when the electric vehicle is continuously driven four times in the US06 mode which is a high-speed driving mode. It can be seen that the magnet temperature is 50 ° C. at the start of running, but the temperature rises to 110 ° C. when driven in four US06 modes.
- the motor 1 maintains the torque and the rotational speed decreases in proportion to the decrease in the vehicle speed. Therefore, these iron loss and eddy current loss are negligibly small compared to the copper loss. Iron loss and eddy current loss are nonlinear because the magnetic characteristics of the core and magnet are temperature-dependent, but copper loss is a motor if the temperature characteristics of the copper material that is the coil material is stored in advance. The inverter control unit 10 that detects the current can estimate it with high accuracy. As a result, the regenerative braking torque can be accurately detected by the equations (2) and (3). Note that the temperature of the motor 1 can be easily measured by the thermocouple of the stator and the coil, but the rotor core and the magnet attached thereto are rotating at a high speed, so it is easy to measure their temperatures. Not.
- the braking control device for an electric vehicle includes the inverter control unit 10.
- the inverter control unit 10 includes a motor control controller 14.
- the motor control controller 14 is configured to estimate the actual torque ⁇ 0 of the motor 1 from the regenerative electric power of the motor 1, and the braking control of the vehicle controller 9 and the like.
- Department comprises from difference ⁇ of the actual torque value tau 0 braking torque command value tau ⁇ and torque estimation unit instructs the motor 1 is estimated, and a feedback controller 61 for feedback control of the braking torque motor 1 outputs.
- the following operational effects can be achieved. (1) during braking, it is possible to drive the IGBT by deviation ⁇ between the torque command value tau ⁇ and the actual torque estimate tau 0 to finely control the motor regenerative operation. As a result, it is possible to prevent deterioration in the accuracy of the regenerative braking force according to the depression amount of the brake pedal due to the influence of temperature or the like.
- the estimated value ⁇ 0 of the actual torque according to the first embodiment is calculated by the above-described equation (3). That is, during the regenerative operation, the regenerative electric energy P to the battery 12 is calculated by using the product of the detected amount V * of the voltage between the positive and negative electrodes of the capacitor 13 and the detected amount I * of the direct current detected by the third current detector 19. Is calculated. Further, the copper loss Wc is calculated by the above-described equation (2) using id and iq obtained by three-phase to two-phase conversion of the motor three-phase currents iu, iv and iw measured by the first current detector 16. .
- the angular velocity ⁇ of the motor is calculated based on the detection signal of the magnetic pole position detector 15, and the estimated torque value ⁇ 0 during braking is calculated from the above equation (3) using the electric energy P, the copper loss Wc, and the angular velocity ⁇ . presume.
- the design according to the depression amount of the brake pedal 6 is designed. Regenerative braking torque can be obtained.
- a switch 52 is provided so that actual torque feedback control is not performed during power running. Since the motor torque during power running varies from time to time due to various factors, actual torque feedback control is performed only during regenerative braking operation, and there is no adverse effect during power running.
- the actual torque feedback control when the current command value of the second current command calculation unit 56 described above is selected is to detect the actual torque of the motor during braking in which the motor outputs a constant braking torque for several seconds. It is desirable to implement it.
- the vehicle controller 9 may be used as an example of calculating the regenerative power P, the copper loss Wc, and the angular velocity ⁇ by the motor controller 14 as the amount of change necessary for the estimation of the actual torque.
- the controller may be used.
- the situation in which a deviation occurs in the torque is the same not only in braking but also in powering. Therefore, in order to align the torque during power running with the command value, the correction amount (torque constant) calculated and stored from the actual torque estimated value ⁇ 0 during braking is also used during power running. Thereby, it is possible to eliminate the influence of temperature and the like on the motor torque during power running.
- the system configuration of the braking control apparatus of the second embodiment is obtained by adding a torque compensator 30 to the block diagram shown in FIG.
- the motor controller 14 in the inverter control unit 10 obtains a gain that is a ratio between the braking torque command value ⁇ ⁇ and the actual torque estimated value ⁇ 0 and rewrites the correction amount stored in the motor controller 14 based on the gain.
- the regenerative power P, the copper loss Wc, and the angular velocity ⁇ as the amount of change necessary for the estimation of the actual torque are calculated by the motor controller 14 according to the above formulas (1) to (3).
- the torque compensator 30 inputs a control command ⁇ ⁇ that is the same as the torque command value ( ⁇ ⁇ ) 21 of the braking torque instructed to the motor controller 14 by the vehicle controller 9 as the signal 31.
- a signal 32 is a bidirectional signal network between the torque compensator 30 and the inverter controller 10.
- the torque compensator 30 further receives the remaining capacity, allowable charging current, and discharging current of the battery 12 from the state monitoring device 18 as a signal 33.
- the signal 34 is a signal for outputting a determination result for switching from regenerative braking by the motor 1 to braking by an electronically controlled friction brake to the negative pressureless brake 7 or the ESC 85.
- FIG. 4 is a flowchart relating to motor torque correction.
- FIG. 5 is a flowchart regarding abnormality determination during braking.
- Steps S1 and S2 in FIG. 4 which are flowcharts relating to motor torque correction are processes executed by the torque compensator 30, and steps S3 to S9 in FIG. 4 are processes executed by the motor controller 14.
- the first input signal 31 is a control command value ⁇ ⁇ that is the same as the drive torque command value 21 instructed to the motor 1 by the vehicle controller 9 during power running.
- the second input signal 32 is a bidirectional network signal between the torque compensator 30 and the inverter controller 10 and exchanges various types of information. One of them is the estimated torque value ⁇ 0 calculated by the motor controller 14.
- the third input signal 33 is a signal representing the remaining capacity of the battery 12 and the allowable charge / discharge current from the state monitoring device 18 of the battery 12.
- the fourth input signal is a signal 35 indicating the depression angle of the brake pedal 6. Based on this signal, the torque compensator 30 calculates a depression amount and a depression speed of the brake pedal, and obtains a braking torque request value ⁇ d described later.
- the first output signal 32 is a bidirectional signal that exchanges various information with the inverter control unit 10. For example, the torque constant ⁇ transmitted from the motor controller 14 is included.
- the second output signal 34 is a determination signal for switching from regenerative braking to friction braking.
- the determination signal 34 is a signal for switching from regenerative braking by the motor 1 to braking by the electronically controlled friction brake in consideration of the braking torque command value 31, the estimated torque value 32, and the result of the state detection signal 33 of the battery 12. It is.
- This signal 34 is output to the negative pressure-less brake 7 or the controller of the ESC 8.
- step S1 when the brake pedal 6 is depressed and the driver instructs braking, in step S1, the torque compensator 30 inputs monitoring information regarding the remaining capacity of the battery 12 and the allowable charging / discharging current input from the state monitoring device 18. It is obtained as 33 and it is judged whether regeneration is possible.
- the allowable charging / discharging current is the maximum or minimum voltage that is allowed due to voltage fluctuations due to the internal resistance of the battery when the battery carries a charging current (during regeneration) or a discharging current (during powering). Represents the value under conditions that do not exceed the threshold. If it is determined that regeneration is possible, the electronically controlled friction brake is switched to the regeneration brake by the motor 1 in step S2. Then, the processing is transferred to the motor controller 14.
- step S3 it is considered that the rotation speed N of the motor 1 is less than the speed suitable for the actual torque detection, that is, the rotation speed N is less than N * , and the rotation speed N of the motor 1 is stopped. It is determined whether or not the lower limit speed, that is, the lower limit rotational speed N 0 is exceeded. In other words, in step S3, the motor rotation speed N is determined whether or not N 0 ⁇ N ⁇ N ⁇ . Within this range, actual torque estimation processing, which is a feature of the present embodiment, is entered.
- the permanent magnet type motor generates a counter electromotive force in proportion to the rotational speed.
- this counter electromotive force is much higher than the voltage of the battery 12, energy flows out from the motor 1 to the battery 12, so that normally, the flux weakening control is performed to reduce the counter electromotive force by the current component id.
- the process proceeds to step S4. In the speed range where the motor rotation speed N is N 0 ⁇ N ⁇ N * , the back electromotive force is also small, and the current component id may be zero. This control is performed in step S4.
- the torque ⁇ of the permanent magnet type motor can be expressed by equation (4).
- ⁇ Pn ⁇ a ⁇ iq ⁇ (Ld ⁇ Lq) id ⁇ iq ⁇ (4)
- Pn is the number of pole pairs of the motor 1
- ⁇ a is the amount of magnetic flux of the magnet and corresponds to a so-called torque constant.
- Ld and Lq are inductances of the motor 1 in the d-axis and q-axis directions, respectively.
- a permanent magnet type motor when the temperature of the magnet changes, the amount of magnetic flux ⁇ a decreases, and the torque decreases according to the characteristics of the magnet even when the same current is applied.
- a neodymium magnet When a neodymium magnet is used, permanent demagnetization may occur at a high temperature. Thereafter, the amount of magnetic flux ⁇ a is reduced, and the torque is reduced as compared with the normal case even when the same current is applied.
- step S4 when the current component id is set to zero, the right side of equation (1) is only the first term, which is expressed by equation (5).
- ⁇ ⁇ Pn ⁇ a ⁇ iq (5) That is, although the torque ⁇ can be expressed by Pn ⁇ a ⁇ iq, since ⁇ a changes depending on the temperature of the magnet, there is an error between the actual torque and the torque calculated by the equation (5), that is, the torque as the design value. appear.
- the id used in the equation (5) the id obtained by the three-phase to two-phase converter 55 for the three-phase currents iu, iv and iw detected by the first current detector 16 is used.
- step S5 the electric energy P which the motor 1 regenerates and returns to the battery is calculated from the following equation (6).
- P V DC ⁇ I B (6)
- V * the voltage between the positive and negative electrodes of the capacitor 13
- I * the detected amount of the direct current detected by the third current detector 19
- step S6 the copper loss calculation unit 58 calculates the copper loss Wc of the motor 1 from the expression (2) based on the detection amount of the first current detector 16.
- step S7 the angular velocity calculation unit 59 calculates the angular velocity ⁇ of the motor 1 from the signal from the magnetic pole position detector 15, and calculates the actual torque estimated value ⁇ 0 of the motor 1 by the following equation (7).
- ⁇ 0 (V DC ⁇ I B + Wc) / ⁇ (7)
- step S8 a torque constant ⁇ a is obtained from equation (8) derived from equations (5) and (7).
- ⁇ a ⁇ 0 / P n ⁇ iq (8)
- step S 9 the torque constant ⁇ a that is a parameter is updated and stored in the motor controller 14. If the determination in step S3 is yes, the processing from step S4 to step S9 is repeated for each predetermined sampling period, but when the torque constant ⁇ a is updated as a result of equation (8) at the first time, In subsequent repetitions, the torque constant ⁇ a remains unchanged as long as there is no fluctuation due to temperature, and there is no particular change.
- step S3 when the motor rotation speed becomes equal to or less than the predetermined value in the determination in step S3, the process proceeds to step S10, and the parameter update operation is completed.
- the processing described in the flowchart of FIG. 4 is performed at each braking. Even when the motor 1 is driven at times other than braking, the parameter ⁇ a updated in the process of FIG. 4 is used, so the actual torque of the motor calculated using the above equations (4) and (5) is accurate. Can maintain high results. If the accuracy of the actual torque can be compensated in this way, it becomes possible to finely and automatically adjust the torque according to the situation in the electric vehicle.
- FIG. 5 is a flowchart regarding abnormality determination during braking, and correction of the torque constant ⁇ a is performed according to the determination.
- the process shown in FIG. 5 is a process executed by the torque compensator 30 and is started when a pedaling force is generated from the brake pedal 6. In this figure, the following four types are dealt with regarding the braking torque.
- ⁇ d Regenerative torque request value based on the depression amount of the brake pedal 6 ⁇
- ⁇ Regenerative braking torque command value from the vehicle controller 9 to the motor 1 ⁇ 0: (7) torque estimated value estimated from the equation tau
- ⁇ AC motor torque control amount based on the command of the inverter control unit 10 where, tau ⁇ is detected by the first current detector 16 of the inverter control unit 10
- the torque control amount is calculated by the following equation (9) using iq calculated from the currents iu, iv, and iw.
- ⁇ * Pn ⁇ ⁇ a ⁇ iq (9)
- step S11 in FIG. 5 both the regenerative torque request value ⁇ d obtained from the amount of depression of the brake pedal 6 by the signal 35 and the braking torque command value ⁇ ⁇ input as the signal 31 from the vehicle controller 9 are allowed. Judgment is made within the error range.
- the cause for determining that the regenerative torque command value ⁇ d and the braking torque command value ⁇ ⁇ are different from each other beyond the error range may be, for example, an abnormality in the signal communication process. In this case, step S11 is denied.
- step S12 it is determined that the brake command is abnormal.
- step S13 it is determined whether the braking torque command value ⁇ ⁇ and the estimated torque value ⁇ 0 are within an allowable error range. If the braking torque command value tau ⁇ and torque estimate tau 0 is determined to be different than the error range, in step S14, the command based motor torque control amount of the inverter control unit 10, i.e. the motor torque command It is determined whether or not the value ⁇ * and the estimated torque value ⁇ 0 are within an allowable error range.
- step S15 the process of steps S3 to S9 in FIG. 4 described above is executed by the motor controller 14 to obtain the torque constant ⁇ a, which is stored in the motor controller 14 as a correction amount.
- step S14 If it is determined in step S14 that the motor torque command value ⁇ * based on the command of the inverter control unit 10 matches the torque estimate value ⁇ 0 of the regenerative braking torque estimated from the equation (3), the process proceeds to step S16. move on. That is, the step S14 is affirmative determination in step S13, in a situation where the braking torque command value tau ⁇ and torque estimate tau 0 are different beyond the error range, braking the motor 1 from the vehicle controller 9 This is a case where the motor is not driven according to the torque command value ⁇ ⁇ . This means that the battery cannot accept regenerative power due to the abnormality of the battery 12. This situation is determined in step S16, and the regeneration by the motor 1 is stopped in the next step S17.
- the torque compensator 30 outputs the switching signal 34 in order to stop the regenerative braking by the motor and switch to the braking by the electronically controlled friction brake.
- the switching signal 34 the negative pressure-less brake 7 is driven so as to perform braking only by the friction brake when the brake pedal 6 is depressed.
- step S18 it is determined whether the deceleration acceleration of the vehicle is appropriate. If No, it is determined that the electronic friction brake may be abnormal. In step S19, a flag indicating that the friction brake may be abnormal is set. If Yes in step S18, it is determined in step S20 that everything is normal, and then, for example, the process returns to step S13 and the abnormality determination operation is continued until the vehicle stops. According to the embodiment of FIG. 5, it becomes possible to determine a plurality of abnormal factors during braking, and the safety of the electric vehicle can be improved.
- a permanent magnet motor is used, and the inverter control unit 10 controls the torque of the motor 1 by vector control.
- the three-phase current is converted into two types of control, i.e., an id component (current component in the same direction as the magnetic flux) and an iq component (component orthogonal to id) based on the concept of the rotating coordinate system.
- the motor torque is obtained by adding the second value determined by the product of the id component and the iq component to the first value determined by the product of the torque constant ⁇ , the iq component and the number of poles.
- the inverter control unit 10 decelerates to less than a predetermined number of rotations N * during braking, the current component id in the same direction as the magnetic flux is included in the current command value for vector control of the torque of the motor 1. while reducing below a predetermined value, and while reducing the electric current component id, conduct current detection I B by the voltage detection V DC and third current detecting unit 19 by the voltage detection unit, the motor 1 is regenerated To estimate the torque to be applied.
- the inverter control unit 10 calculates the torque control amount ⁇ * of the motor 1 calculated by the equation (9) from the three-phase AC current values iu, iv, iw of the motor 1 detected by the current detection unit 16 and the vehicle controller 9. Then, the braking torque command value ⁇ ⁇ instructed to the inverter control unit 10 is compared with the estimated torque value ⁇ 0 estimated by the equation (7) to determine whether the regenerative power can be accepted.
- step S16 it is determined that such a phenomenon is a situation in which the battery 12 has difficulty in receiving charging power.
- step S17 the regenerative braking by the motor 1 is changed to the electronically controlled friction brake.
- the embodiment described above refers to the braking device for an electric vehicle, it can be applied to a hybrid vehicle and other systems, and is not limited to the configuration of the above embodiment. .
- the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
The present invention does not detect the actual torque of a motor when regeneratively braking, and does not compensate for the actual torque according to a source of motor error or the like. An electric-vehicle braking control device equipped with an inverter control unit for controlling the power supplied by the battery, a motor for controlling the torque for driving or braking a drive wheel by using the inverter control unit, and a braking control unit (9) for controlling the allotment of the braking torque from regenerated power regenerated in the battery by the motor when braking and the braking torque caused by electronically controlled friction brakes, the electric-vehicle braking control device being characterized in that the inverter control unit is equipped with: torque estimation units (57, 58, 59, 60) for estimating the actual torque of the motor from the regenerated power for regenerating the motor; and a feedback control unit for feeding back the braking torque to be outputted by the motor on the basis of the difference between a braking torque command value indicated to the motor by the braking control unit (9) and the actual torque value estimated by the torque estimation units (57, 58, 59, 60).
Description
本発明は、モータにより回生制動される電動車両の制動制御装置に関する。
The present invention relates to a braking control device for an electric vehicle that is regeneratively braked by a motor.
電気自動車あるいはハイブリッド自動車においては、車両の動力源としてモータを搭載しており、モータに供給する電力を制御するためのインバータを備えている。モータは主動力であり、車両の駆動のみならず、回生制動時に車両が持つ運動エネルギーを電気に変換し、バッテリに回生させる機能を有する。
In an electric vehicle or a hybrid vehicle, a motor is mounted as a power source of the vehicle, and an inverter for controlling the electric power supplied to the motor is provided. The motor is the main power, and has a function of converting the kinetic energy of the vehicle during regenerative braking into electricity and regenerating it in the battery as well as driving the vehicle.
制動時の制御指令に着目すると、車両のコントローラ内に備えた制動制御部で前後輪のモータに対する回生制動トルク指令が演算され、この回生制動トルク指令はモータ制御に関するインバータ制御部に伝えられ、最終的に前後輪のモータの回生制動トルクを制御する。また、電子制御式摩擦ブレーキは制動制御部からの指令に従い、ブレーキコントローラで摩擦制動トルクに関する指令を演算し、その指令に従うよう四輪の電子制御式摩擦ブレーキを制御する。制動時には、モータでバッテリに回生させる動作から始まり、最終的に車両が停止する直前で、電子制御式摩擦ブレーキによる摩擦制動を掛ける回生協調制御が行われる。
Paying attention to the control command at the time of braking, the regenerative braking torque command for the front and rear wheel motors is calculated by the braking control unit provided in the controller of the vehicle, and this regenerative braking torque command is transmitted to the inverter control unit related to motor control. Thus, the regenerative braking torque of the front and rear wheel motors is controlled. The electronically controlled friction brake calculates a command related to the friction braking torque by a brake controller in accordance with a command from the brake control unit, and controls the four-wheel electronically controlled friction brake to follow the command. At the time of braking, regenerative cooperative control is performed in which the battery is regenerated by the motor and immediately before the vehicle finally stops, the friction braking by the electronically controlled friction brake is applied.
一方、モータの出力トルクに関する誤差要因として次の(1)~(3)が知られている。
(1)永久磁石型モータにおいて、磁石が温度変化することで磁束量が低下し、同じ電流を通電しても磁石の特性に応じてトルクが減少する。
(2)ネオジウム磁石を用いる場合、高温で永久的な減磁に至る場合があり、それ以後は磁束量が低減して、同じ電流を流してもトルクは正常な場合より減少する。
(3)インバータに具備された制御用の電流センサが持つ誤差などがある。
上記3つの誤差要因の重なりで凡そ10~20%の誤差が生じる可能性がある。 On the other hand, the following (1) to (3) are known as error factors relating to the output torque of the motor.
(1) In a permanent magnet type motor, the amount of magnetic flux decreases due to the temperature change of the magnet, and the torque decreases according to the characteristics of the magnet even when the same current is applied.
(2) When a neodymium magnet is used, permanent demagnetization may occur at a high temperature. After that, the amount of magnetic flux decreases, and the torque decreases from the normal case even when the same current is applied.
(3) There is an error or the like of the control current sensor provided in the inverter.
There is a possibility that an error of about 10 to 20% may occur due to the overlap of the above three error factors.
(1)永久磁石型モータにおいて、磁石が温度変化することで磁束量が低下し、同じ電流を通電しても磁石の特性に応じてトルクが減少する。
(2)ネオジウム磁石を用いる場合、高温で永久的な減磁に至る場合があり、それ以後は磁束量が低減して、同じ電流を流してもトルクは正常な場合より減少する。
(3)インバータに具備された制御用の電流センサが持つ誤差などがある。
上記3つの誤差要因の重なりで凡そ10~20%の誤差が生じる可能性がある。 On the other hand, the following (1) to (3) are known as error factors relating to the output torque of the motor.
(1) In a permanent magnet type motor, the amount of magnetic flux decreases due to the temperature change of the magnet, and the torque decreases according to the characteristics of the magnet even when the same current is applied.
(2) When a neodymium magnet is used, permanent demagnetization may occur at a high temperature. After that, the amount of magnetic flux decreases, and the torque decreases from the normal case even when the same current is applied.
(3) There is an error or the like of the control current sensor provided in the inverter.
There is a possibility that an error of about 10 to 20% may occur due to the overlap of the above three error factors.
しかし、モータで制御される駆動・制動トルクは、エンジン車のトルクに比べて100倍の応答性を持つことが特長である。この高い応答性を利用して、路面の摩擦度に応じたきめ細かい制御を自動的に行うことが望まれている。
However, the driving / braking torque controlled by the motor is characterized by being 100 times more responsive than the engine vehicle torque. It is desired to automatically perform fine control according to the degree of friction of the road surface by utilizing this high responsiveness.
ここで、制動制御部で演算された回生制動トルク指令に対する精度に着目すると、電動車両の制御装置においては、回生制動に関わるモータの実トルクを検出する手段を備えていない。その理由は、モータの機械出力に関してトルクを計測する為には、高価なトルクセンサを必要とするためである。(特許文献1)
Here, focusing on the accuracy with respect to the regenerative braking torque command calculated by the braking control unit, the control device for the electric vehicle does not include means for detecting the actual torque of the motor related to regenerative braking. The reason is that an expensive torque sensor is required to measure the torque with respect to the mechanical output of the motor. (Patent Document 1)
特許文献1においては、回生制動に関わるモータの実トルクを検知しておらず、モータ等の誤差要因に応じて実トルクを補償する機能も記載されていない。
In Patent Document 1, the actual torque of the motor related to regenerative braking is not detected, and a function for compensating the actual torque according to an error factor of the motor or the like is not described.
実施形態の図面の参照符号を付して本発明による電動車両の制動制御装置を説明する。請求項1に記載の電動車両の制動制御装置は、バッテリから供給される電力を制御するインバータ制御部10と、前記インバータ制御部によって制御され、力行運転時には駆動輪に駆動トルクを与え、回生運転時には駆動輪に回生制動トルクを与えるモータと、制動時に、前記モータから前記バッテリに回生する回生電力による得られる前記回生制動トルクと、電子制御式摩擦ブレーキによる摩擦制動トルクの分担を制御する制動制御部9とを備える。また、前記インバータ制御部10は、更に、前記バッテリへ回生する回生電力から前記モータの実トルクτ0を推定するトルク推定部57,58,59,60と、前記制動制御部9が前記モータに指示した回生制動トルク指令値τ^と、前記トルク推定部57,58,59,60が推定した実トルク値τ0との差Δτから、前記モータが出力する前記回生制動トルクをフィードバック制御するフィードバック制御部61とを備えることを特徴とする。
以上の符号は参考に付した一例であり、これにより本発明が限定解釈されるものではない。 A braking control device for an electric vehicle according to the present invention will be described with reference numerals in the drawings of the embodiments. The braking control device for an electric vehicle according toclaim 1 is controlled by an inverter control unit 10 that controls electric power supplied from a battery, and the inverter control unit, and applies driving torque to driving wheels during powering operation to perform regenerative operation. Sometimes a motor that applies regenerative braking torque to the drive wheels, and braking control that controls the sharing of the regenerative braking torque obtained by the regenerative power regenerated from the motor to the battery during braking and the friction braking torque by the electronically controlled friction brake Part 9. Further, the inverter control unit 10 further includes torque estimation units 57, 58, 59, 60 for estimating the actual torque τ 0 of the motor from regenerative power regenerated to the battery, and the brake control unit 9 provided to the motor. Feedback for feedback control of the regenerative braking torque output by the motor from the difference Δτ between the instructed regenerative braking torque command value τ ^ and the actual torque value τ 0 estimated by the torque estimation units 57, 58, 59, 60. And a control unit 61.
The above reference numerals are only examples provided for reference, and the present invention is not limited thereto.
以上の符号は参考に付した一例であり、これにより本発明が限定解釈されるものではない。 A braking control device for an electric vehicle according to the present invention will be described with reference numerals in the drawings of the embodiments. The braking control device for an electric vehicle according to
The above reference numerals are only examples provided for reference, and the present invention is not limited thereto.
本発明によれば、モータの実トルクを高価なトルクセンサを用いることなく検出し、検出された実トルクとトルク指令値との差分をフィードバックして実トルクを補償し、きめ細かいトルクの自動調整を可能にすることができる。
According to the present invention, the actual torque of the motor is detected without using an expensive torque sensor, the difference between the detected actual torque and the torque command value is fed back to compensate for the actual torque, and fine automatic torque adjustment is performed. Can be possible.
(第1の実施の形態)
図1は、電動車両のシステム構成を示すブロック図である。この例では、電動車両は電気自動車であり、モータ1の軸出力トルクは、減速ギア2、ディファレンシャルギア3を介して左右の駆動輪4A、4Bに伝達される。駆動輪4A、4Bは、それぞれブレーキ5A、5Bを備えている。 (First embodiment)
FIG. 1 is a block diagram showing a system configuration of an electric vehicle. In this example, the electric vehicle is an electric vehicle, and the shaft output torque of themotor 1 is transmitted to the left and right drive wheels 4A, 4B via the reduction gear 2 and the differential gear 3. The drive wheels 4A and 4B are provided with brakes 5A and 5B, respectively.
図1は、電動車両のシステム構成を示すブロック図である。この例では、電動車両は電気自動車であり、モータ1の軸出力トルクは、減速ギア2、ディファレンシャルギア3を介して左右の駆動輪4A、4Bに伝達される。駆動輪4A、4Bは、それぞれブレーキ5A、5Bを備えている。 (First embodiment)
FIG. 1 is a block diagram showing a system configuration of an electric vehicle. In this example, the electric vehicle is an electric vehicle, and the shaft output torque of the
ブレーキ5A、5Bは、電子制御式摩擦ブレーキであり、運転者がブレーキペダル6を踏むと、その踏力は負圧レスブレーキ7に伝達され、踏力と共に負圧レスブレーキ7が内蔵するモータのトルクを加えた力によって、ブレーキ用の油圧を増す。ブレーキ用の油圧はロック防止機能を備えたESC(Electronic Stability Control)8で四輪に分配され、その油圧でブレーキ5A、5Bの可動部を駆動して駆動輪4A、4Bを制動する。すなわち、機械式摩擦制動トルクを与える。
The brakes 5A and 5B are electronically controlled friction brakes. When the driver steps on the brake pedal 6, the pedaling force is transmitted to the negative pressureless brake 7, and the torque of the motor built in the negative pressureless brake 7 is used together with the pedaling force. The applied force increases the hydraulic pressure for braking. The brake hydraulic pressure is distributed to the four wheels by an ESC (Electronic Stability Control) 8 having a lock prevention function, and the movable portions of the brakes 5A and 5B are driven by the hydraulic pressure to brake the drive wheels 4A and 4B. That is, a mechanical friction braking torque is applied.
また、運転者によるブレーキペダル6の踏み込み量はブレーキ力に関する制動トルク要求信号に変換される。この制動トルク要求信号は車両コントローラ9に伝えられる。車両コントローラ9は、後述するように、制動トルク要求信号をモータ1による回生制動トルク要求値と、電子制御式摩擦ブレーキによる摩擦制動トルク要求値の2種に分担させ、回生制動トルク要求値と、摩擦制動指令値を演算して出力する。摩擦制動指令値は、車両コントローラ9から制動指令信号20として負圧レスブレーキ7に伝達される。回生制動トルク要求値は、モータ制御コントローラ14に制動要求値信号21として伝達される。モータ制御コントローラ14は後述するように、モータ1を回生駆動すべくIGBT駆動パルス信号を生成してIGBTを駆動する。これにより、モータ1が回生運転されて回生制動力を得る。
Further, the depression amount of the brake pedal 6 by the driver is converted into a braking torque request signal relating to the braking force. This braking torque request signal is transmitted to the vehicle controller 9. As will be described later, the vehicle controller 9 divides the braking torque request signal into two types, that is, the regenerative braking torque request value by the motor 1 and the friction braking torque request value by the electronically controlled friction brake, and the regenerative braking torque request value, The friction braking command value is calculated and output. The friction braking command value is transmitted from the vehicle controller 9 to the negative pressureless brake 7 as a braking command signal 20. The regenerative braking torque request value is transmitted to the motor controller 14 as a braking request value signal 21. As will be described later, the motor controller 14 generates an IGBT drive pulse signal to drive the IGBT to regenerate the motor 1. Thereby, the motor 1 is regeneratively operated to obtain a regenerative braking force.
また、車両コントローラ9には、アクセルペダル62からの力行トルク指令信号も入力され、力行走行時は力行トルク指令信号に基づいて力行トルク指令値を演算してモータ制御コントローラ14に出力する。モータ制御コントローラ14は後述するように、モータ1を力行駆動すべくIGBT駆動パルス信号を生成してIGBTを駆動する。これにより、モータ1が力行運転される。
The vehicle controller 9 also receives a power running torque command signal from the accelerator pedal 62, and calculates a power running torque command value based on the power running torque command signal and outputs it to the motor controller 14 during power running. As will be described later, the motor controller 14 generates an IGBT drive pulse signal to drive the motor 1 so as to drive the motor 1. As a result, the motor 1 is powered.
尚、制動トルクをモータ1による回生制動トルクと、電子制御式摩擦ブレーキによる摩擦制動トルクの2種に分担する判断機能は、車両コントローラ9が果たす場合ばかりでなく、負圧レスブレーキ7の制御部(図示省略)で行っても良く、同じ車両に搭載された別のコントローラが果たしても良い。いずれの場合も制動制御部として機能する。
Note that the judgment function for sharing the braking torque into two types, that is, the regenerative braking torque by the motor 1 and the friction braking torque by the electronically controlled friction brake, is not only performed by the vehicle controller 9 but also the control unit of the negative pressureless brake 7. (Not shown) may be performed, or may be performed by another controller mounted on the same vehicle. In either case, it functions as a braking control unit.
この実施の形態では、モータ1は永久磁石型モータである場合について述べるが、必ずしも永久磁石型モータに限定するものではない。
In this embodiment, although the case where the motor 1 is a permanent magnet type motor is described, it is not necessarily limited to a permanent magnet type motor.
図1において、モータ1の力行駆動或いは回生駆動を制御する変換器がインバータ制御部10であり、インバータ制御部10の内部には、主回路11が設けられている。主回路11は、6個のパワーデバイスIGBT(Insulated Gate Bipolar Transistor)とダイオードを3相ブリッジ回路に接続して構成される。主回路11の2つの高電圧端子はバッテリ12の正極と負極に接続され、インバータ制御部10はバッテリ12から供給される電圧を交流電圧に変換してモータ1に供給する。
1, the converter that controls the power running drive or the regenerative drive of the motor 1 is an inverter control unit 10, and a main circuit 11 is provided inside the inverter control unit 10. The main circuit 11 is configured by connecting six power devices IGBTs (Insulated Gate Bipolar Transistors) and diodes to a three-phase bridge circuit. The two high voltage terminals of the main circuit 11 are connected to the positive electrode and the negative electrode of the battery 12, and the inverter control unit 10 converts the voltage supplied from the battery 12 into an AC voltage and supplies it to the motor 1.
尚、主回路11とバッテリ12の間にはコンデンサ13が設けられ、コンデンサ13は主回路11が短時間の過渡的な電流を供給する際に、エネルギーのバッファとして機能する。すなわち、一旦、コンデンサ13に蓄積したエネルギーを即座に提供し、その後、バッテリ12からコンデンサ13に放電して消費エネルギーを補充する。
A capacitor 13 is provided between the main circuit 11 and the battery 12, and the capacitor 13 functions as an energy buffer when the main circuit 11 supplies a transient current for a short time. That is, once the energy stored in the capacitor 13 is provided immediately, the battery 12 is discharged from the battery 12 to replenish the consumed energy.
インバータ制御部10の内部には、さらに、上述したモータ制御コントローラ14が設けられている。モータ制御コントローラ14は、上述したように、車両コントローラ9から入力されたトルク指令値21に基づいて、モータ1が所望するトルクを出力するように、主回路11のIGBTにゲート駆動パルスを印加する機能を有する。
The above-described motor controller 14 is further provided inside the inverter controller 10. As described above, the motor controller 14 applies a gate drive pulse to the IGBT of the main circuit 11 so that the motor 1 outputs a desired torque based on the torque command value 21 input from the vehicle controller 9. It has a function.
モータ制御コントローラ14は、モータ1に設けた磁極位置検出器15により検出されたロータ磁極位置を検出して、この位置検出信号に応じてIGBTを駆動制御する。インバータ制御部10からモータ1に至る3相の出力線の各々には、第1の電流検出器16が設けられ、3相の電流検出値は第1の電流検出器16からモータ制御コントローラ14に伝えられ、モータ制御コントローラ14において3相電流iu,iv,iwをid,iq の2成分に座標変換して使用する。モータ1のトルク制御は、電流id、 iq の2成分を所望するトルクに応じた値にする、いわゆるベクトル制御である。
The motor controller 14 detects the rotor magnetic pole position detected by the magnetic pole position detector 15 provided in the motor 1, and drives and controls the IGBT according to the position detection signal. Each of the three-phase output lines from the inverter control unit 10 to the motor 1 is provided with a first current detector 16, and the three-phase current detection value is transferred from the first current detector 16 to the motor controller 14. The three-phase currents iu, iv, and iw are converted into two components of id and iqi in the motor controller 14 and used. The torque control of the motor 1 is a so-called vector control in which two components of the current id and iq are set to values according to a desired torque.
バッテリ12とインバータ制御部10を繋ぐ配線には第2の電流検出器17が設けられ、第2の電流検出器17の出力はバッテリの状態監視装置18に伝達される。バッテリの状態監視装置18は第2の電流検出器17から得た電流情報の他、バッテリ12の正極-負極間電圧、その他、バッテリの温度等を検知して、バッテリの残存容量や許容充電電流、放電電流を推定する。バッテリ12の状態監視装置18は、検出した情報を車両コントローラ9に伝えるが、図1ではこの信号をバッテリ状態検知信号22で表す。
The second current detector 17 is provided in the wiring connecting the battery 12 and the inverter control unit 10, and the output of the second current detector 17 is transmitted to the battery state monitoring device 18. The battery state monitoring device 18 detects not only the current information obtained from the second current detector 17 but also the voltage between the positive and negative electrodes of the battery 12, the temperature of the battery, etc., and the remaining capacity of the battery and the allowable charging current. Estimate the discharge current. The state monitoring device 18 of the battery 12 transmits the detected information to the vehicle controller 9, and this signal is represented by a battery state detection signal 22 in FIG.
バッテリ12とコンデンサ13の電極間を繋ぐ配線に第3の電流検出器19が設けられ、その信号がモータ制御コントローラ14に取り込まれる。モータ制御コントローラ14は、後述するように、コンデンサ13の正負極間電圧を計測し、この検出電圧と第3の電流検出器19で検出した直流電流とを掛け算し、電力量を演算する機能を有する。この演算式は後述(1)式である。
A third current detector 19 is provided in the wiring connecting the electrodes of the battery 12 and the capacitor 13, and the signal is taken into the motor controller 14. As will be described later, the motor controller 14 measures the voltage between the positive and negative electrodes of the capacitor 13 and multiplies the detected voltage by the DC current detected by the third current detector 19 to calculate the amount of power. Have. This arithmetic expression is an expression (1) described later.
更に、モータ制御コントローラ14は、モータ1に通電する電流からモータ1の銅損を演算する。この演算式は後述(2)式である。モータ制御コントローラ14は、銅損を先の電力量演算結果に加算し、この加算結果を磁極位置検出器15で求めたモータ1の角速度で割り、モータ1の制動時における実トルクを推定する機能も有する。この演算式は後述(3)式である。
Furthermore, the motor controller 14 calculates the copper loss of the motor 1 from the current flowing through the motor 1. This arithmetic expression is an expression (2) described later. The motor controller 14 adds the copper loss to the previous electric energy calculation result, divides this addition result by the angular velocity of the motor 1 obtained by the magnetic pole position detector 15, and estimates the actual torque during braking of the motor 1. Also have. This arithmetic expression is an expression (3) described later.
以下、図2を参照して、回生制動時に得られた実トルク推定値を用いて回生制動トルクのフィードバック制御を行う第1の実施の形態における制動制御装置の動作を説明する。図2では、インバータ制御部10内のモータ制御コントローラ14が実行する制御を機能ブロック図で示し、その他に、主回路11とモータ1、磁極位置検出器15、第1の電流検出器16を備える構成を示したものである。
Hereinafter, the operation of the braking control apparatus according to the first embodiment that performs feedback control of regenerative braking torque using the actual torque estimated value obtained during regenerative braking will be described with reference to FIG. In FIG. 2, the control executed by the motor controller 14 in the inverter control unit 10 is shown by a functional block diagram. In addition, the main circuit 11, the motor 1, the magnetic pole position detector 15, and the first current detector 16 are provided. The structure is shown.
モータ制御コントローラ14は、機能的に、力行時に車両コントローラ9から送信される力行トルク指令τ^に基づいて力行時の2相電流指令id,iqを演算する第1電流指令演算部51と、回生時に車両コントローラ9から送信される制動トルク指令τ^に基づいて回生時の2相電流指令id,iqを演算する第2電流指令演算部56と、力行運転時には第1電流指令演算部51の指令を選択し、回生運転時には第2電流指令演算部56の指令を選択する切替器52とを備えている。
The motor controller 14 functionally includes a first current command calculation unit 51 that calculates the two-phase current commands id and iq during power running based on the power running torque command τ ^ transmitted from the vehicle controller 9 during power running, A command of the second current command calculation unit 56 that calculates the two-phase current commands id and iq at the time of regeneration based on the braking torque command τ ^ transmitted from the vehicle controller 9 at times, and a command of the first current command calculation unit 51 during powering operation And a switcher 52 that selects a command of the second current command calculation unit 56 during regenerative operation.
モータ制御コントローラ14はまた、第1の電流検出器16で検出したモータ1の3相交流信号iu、iv,iwを2相電流信号id,iqに変換する3相2相変換部55と、3相2相変換部55で変換されたid,iq電流信号と切替器52で選択された電流指令値との偏差を取る比較器53とを備えている。比較器53の出力である電流指令偏差は電流制御部54に入力され、電流制御部54はベクトル演算を行って制御電流値を算出してPWM発生部50に入力する。PWM発生部50は入力された制御電流値に基づいてIGBT駆動パルスを生成してIGBTのゲートに駆動パルスを印加する。
The motor controller 14 also includes a three-phase two-phase converter 55 that converts the three-phase AC signals iu, iv, iw of the motor 1 detected by the first current detector 16 into two-phase current signals id, iq, and 3 A comparator 53 is provided that takes a deviation between the id and iq current signals converted by the phase-to-phase converter 55 and the current command value selected by the switch 52. The current command deviation that is the output of the comparator 53 is input to the current control unit 54, and the current control unit 54 performs a vector operation to calculate a control current value and inputs the control current value to the PWM generation unit 50. The PWM generator 50 generates an IGBT drive pulse based on the input control current value and applies the drive pulse to the gate of the IGBT.
モータ制御コントローラ14はさらに、トルク推定部として、回生電力演算部57と、実トルク演算部60と、銅損演算部58と、角速度演算部59とを備えている。
回生電力演算部57は、回生時に、コンデンサ13の正負極間電圧の検出量V※と、第3の電流検出器19で検出した直流電流の検出量I※の積を用いて回生電力量Pを(1)式から算出する。
P=V※×I※ (1)
銅損演算部58は、座標変換されたモータ電流id、 iq の2成分を各2乗した和にモータ1のコイル抵抗RMを乗算して銅損Wcを(2)式から求める。
Wc=(id2+iq2)×RM (2)
実トルク演算部60は、ロータ磁極位置検出信号が入力される角速度演算部59で算出したモータ角速度ωと、回生電力演算部57で算出した回生電力量Pと、銅損演算部58で算出した銅損Wcを用いて(3)式から実トルク推定値τ0を求める。
τ0=(P+Wc)/ω (3) Themotor controller 14 further includes a regenerative power calculation unit 57, an actual torque calculation unit 60, a copper loss calculation unit 58, and an angular velocity calculation unit 59 as a torque estimation unit.
Theregenerative power calculator 57 uses the product of the detected amount V * of the voltage between the positive and negative electrodes of the capacitor 13 and the detected amount I * of the direct current detected by the third current detector 19 during regeneration. Is calculated from the equation (1).
P = V * × I * (1)
Copperloss calculation unit 58, the motor current id which is the coordinate transformation, by multiplying the coil resistance R M of the motor 1 the two components of iq each squared sum seek copper loss Wc from equation (2).
Wc = (id 2 + iq 2 ) × R M (2)
The actualtorque calculation unit 60 calculates the motor angular velocity ω calculated by the angular velocity calculation unit 59 to which the rotor magnetic pole position detection signal is input, the regenerative power amount P calculated by the regenerative power calculation unit 57, and the copper loss calculation unit 58. The actual torque estimated value τ 0 is obtained from the equation (3) using the copper loss Wc.
τ 0 = (P + Wc) / ω (3)
回生電力演算部57は、回生時に、コンデンサ13の正負極間電圧の検出量V※と、第3の電流検出器19で検出した直流電流の検出量I※の積を用いて回生電力量Pを(1)式から算出する。
P=V※×I※ (1)
銅損演算部58は、座標変換されたモータ電流id、 iq の2成分を各2乗した和にモータ1のコイル抵抗RMを乗算して銅損Wcを(2)式から求める。
Wc=(id2+iq2)×RM (2)
実トルク演算部60は、ロータ磁極位置検出信号が入力される角速度演算部59で算出したモータ角速度ωと、回生電力演算部57で算出した回生電力量Pと、銅損演算部58で算出した銅損Wcを用いて(3)式から実トルク推定値τ0を求める。
τ0=(P+Wc)/ω (3) The
The
P = V * × I * (1)
Copper
Wc = (id 2 + iq 2 ) × R M (2)
The actual
τ 0 = (P + Wc) / ω (3)
力行運転時のモータ制御コントローラ14の動作を説明する。
力行運転は、実トルクフィードバックを実施しないように、切替器52により、第1電流指令演算部51の電流指令値が選択される。モータ1には、前述のように、磁極位置検出器15と第1の電流検出器16が設けられている。磁極位置検出器15の出力はベクトル制御を行う電流制御部54に伝えられる。また、第1の電流検出器16の出力は、3相2相変換部55で3相電流からid、 iq の2成分の電流に座標変換される。 The operation of themotor controller 14 during powering operation will be described.
In the power running operation, the current command value of the first currentcommand calculation unit 51 is selected by the switch 52 so that the actual torque feedback is not performed. As described above, the motor 1 is provided with the magnetic pole position detector 15 and the first current detector 16. The output of the magnetic pole position detector 15 is transmitted to a current control unit 54 that performs vector control. The output of the first current detector 16 is coordinate-converted from a three-phase current to a two-component current of id and iq by a three-phase to two-phase converter 55.
力行運転は、実トルクフィードバックを実施しないように、切替器52により、第1電流指令演算部51の電流指令値が選択される。モータ1には、前述のように、磁極位置検出器15と第1の電流検出器16が設けられている。磁極位置検出器15の出力はベクトル制御を行う電流制御部54に伝えられる。また、第1の電流検出器16の出力は、3相2相変換部55で3相電流からid、 iq の2成分の電流に座標変換される。 The operation of the
In the power running operation, the current command value of the first current
第1電流指令演算部51は、車両コントローラ9より駆動トルク指令τ^の入力を受けて、この駆動トルク指令τ^に対応する2相電流指令値id,iqを演算して出力する。この電流指令値は、3相2相変換部55で座標変換されたid detec、 iq detec の各成分と比較器53で比較され、その偏差Δid、Δiqに応じて電流制御部54が制御電流値をベクトル演算する。このベクトル演算結果に応じてPWM発生部50は主回路11のIGBTをスイッチ制御するゲート駆動パルスを発生させる。
The first current command calculation unit 51 receives the input of the drive torque command τ ^ from the vehicle controller 9 and calculates and outputs the two-phase current command values id, iq corresponding to the drive torque command τ ^. The current command value is compared by the comparator 53 with the components of id detec and iq detec whose coordinates are converted by the three-phase / two-phase converter 55, and the current controller 54 controls the control current value according to the deviations Δid and Δiq. Is a vector operation. In accordance with the vector calculation result, the PWM generator 50 generates a gate drive pulse for switch-controlling the IGBT of the main circuit 11.
回生運転時のモータ制御コントローラ14の動作を説明する。
回生運転は、実トルクフィードバックが実施されるように、切替器52により、第2電流指令演算部56の電流指令値が選択される。そして、回生電力演算部57は、上記(1)式から回生電力量Pを算出する。また、銅損演算部58は、上記(2)式からモータ1の銅損Wcを演算する。更に、角速度演算部59は、磁極位置検出器15により検出された信号によりモータ1の角速度ωを求める。以上の回生電力P、銅損Wc、角速度ωの値を用いて、実トルク演算部60は上記(3)式から実トルク推定値τ0を求める。 The operation of themotor controller 14 during regenerative operation will be described.
In the regenerative operation, the current command value of the second currentcommand calculation unit 56 is selected by the switch 52 so that actual torque feedback is performed. And the regenerative electric power calculating part 57 calculates the regenerative electric energy P from said (1) Formula. Further, the copper loss calculation unit 58 calculates the copper loss Wc of the motor 1 from the above equation (2). Further, the angular velocity calculation unit 59 obtains the angular velocity ω of the motor 1 from the signal detected by the magnetic pole position detector 15. Using the values of the regenerative power P, the copper loss Wc, and the angular velocity ω, the actual torque calculation unit 60 obtains the actual torque estimated value τ 0 from the above equation (3).
回生運転は、実トルクフィードバックが実施されるように、切替器52により、第2電流指令演算部56の電流指令値が選択される。そして、回生電力演算部57は、上記(1)式から回生電力量Pを算出する。また、銅損演算部58は、上記(2)式からモータ1の銅損Wcを演算する。更に、角速度演算部59は、磁極位置検出器15により検出された信号によりモータ1の角速度ωを求める。以上の回生電力P、銅損Wc、角速度ωの値を用いて、実トルク演算部60は上記(3)式から実トルク推定値τ0を求める。 The operation of the
In the regenerative operation, the current command value of the second current
比較器61は、回生制動時に実トルク演算部60で算出した実トルク推定値τ0と、回生制動時に車両コントローラ9で算出されて出力された回生制動トルク指令τ^との偏差Δτを得る。第2電流指令演算部56は、比較器61から得る偏差Δτを考慮して2相電流指令値id,iqを演算して出力する。第2電流指令演算部56で算出され切替器52で選択された電流指令値id,iqは、3相2相変換部55で座標変換されたiddetec、 iqdetec の各成分と比較器53で比較され、両者の偏差が算出される。この偏差に応じて電流制御部54が制御電流値をベクトル演算し、その結果に応じてPWM発生部50はIGBTをスイッチ制御するゲート駆動パルスを発生させる。
The comparator 61 obtains a deviation Δτ between the actual torque estimated value τ 0 calculated by the actual torque calculation unit 60 during regenerative braking and the regenerative braking torque command τ ^ calculated and output by the vehicle controller 9 during regenerative braking. The second current command calculation unit 56 calculates and outputs the two-phase current command values id and iq in consideration of the deviation Δτ obtained from the comparator 61. The current command values id and iq calculated by the second current command calculation unit 56 and selected by the switch 52 are the id detec and iq detec components converted by the three-phase / two-phase conversion unit 55 and the comparator 53. The difference between the two is calculated. In response to this deviation, the current control unit 54 performs a vector operation on the control current value, and in accordance with the result, the PWM generation unit 50 generates a gate drive pulse for switch-controlling the IGBT.
以上の制御により、回生制動時の実トルク値が設計上のトルク指令値に精度よく制御される。とくに、回生協調ブレーキ装置のように、ブレーキペダルの踏み込みによる制動トルク要求値を摩擦トルクと回生トルクに分担させる場合、ブレーキ性能が向上する。
By the above control, the actual torque value during regenerative braking is accurately controlled to the designed torque command value. In particular, as in the case of a regenerative cooperative brake device, when the required braking torque value due to depression of the brake pedal is shared between the friction torque and the regenerative torque, the braking performance is improved.
図6は、モータ1と電子制御式摩擦ブレーキによる制動トルクの分担に関する特性図である。駆動時は、車両が走行抵抗で減速するため、これを補うように運転手がアクセル操作するので、モータ1が一定なトルク状態を維持することは稀である。特にハイブリッド自動車のように、モータ1とエンジンの二種で駆動する場合は、エンジンの出力状態に応じてモータトルクは細かく制御されている。一方、制動時には、運転手によるブレーキ操作に従って制動制御部がモータ1による制動トルクを指令すると、減速の加速度をほぼ一定とするように、車速が時間と共に低下してゆく。
FIG. 6 is a characteristic diagram regarding the sharing of braking torque by the motor 1 and the electronically controlled friction brake. During driving, the vehicle decelerates due to running resistance, so the driver operates the accelerator to compensate for this, so it is rare for the motor 1 to maintain a constant torque state. In particular, as in a hybrid vehicle, when the motor 1 and the engine are used for driving, the motor torque is finely controlled according to the engine output state. On the other hand, at the time of braking, when the braking control unit commands the braking torque by the motor 1 according to the braking operation by the driver, the vehicle speed decreases with time so that the deceleration acceleration is substantially constant.
図6に示すように、制動時には数秒間に渡ってモータ1は一定な制動トルクを維持する状況があり、モータ1の実トルクを検出するために制動時は好適なタイミングである。図2を参照して説明した、第1の実施の形態において、実トルクを検出するのはこのタイミングが好適である。
As shown in FIG. 6, there is a situation where the motor 1 maintains a constant braking torque for several seconds during braking, and it is a suitable timing during braking in order to detect the actual torque of the motor 1. In the first embodiment described with reference to FIG. 2, this timing is suitable for detecting the actual torque.
制動時にモータ1で制御されるトルクは、バッテリに回生する電力量とモータ1及びインバータ制御部10で消費される電力損失の和になる。モータ1の電力損失は、コイルの銅損、ステータやロータコアの鉄損、そして、永久磁石の渦電流損の三つが支配的である。ここで、コアの鉄損と永久磁石の渦電流損はモータ1が高回転であるほど大きくなる。
The torque controlled by the motor 1 during braking is the sum of the amount of power regenerated in the battery and the power loss consumed by the motor 1 and the inverter control unit 10. The power loss of the motor 1 is dominated by the copper loss of the coil, the iron loss of the stator and the rotor core, and the eddy current loss of the permanent magnet. Here, the core iron loss and the permanent magnet eddy current loss increase as the motor 1 rotates more rapidly.
図7は、モータ回転数と磁石温度の変化を表す特性図である。図7では、永久磁石が渦電流損で温度上昇する挙動を表す事例を示す。この事例は、電気自動車を高速な走行モードであるUS06モードで4回、連続的に走行させた場合のシミュレーション結果である。磁石温度は走行開始において50°Cであるが、4回のUS06モードで駆動すると、その温度は110°Cまで上昇することが分かる。
FIG. 7 is a characteristic diagram showing changes in motor rotation speed and magnet temperature. FIG. 7 shows an example showing a behavior in which a permanent magnet rises in temperature due to eddy current loss. This example is a simulation result when the electric vehicle is continuously driven four times in the US06 mode which is a high-speed driving mode. It can be seen that the magnet temperature is 50 ° C. at the start of running, but the temperature rises to 110 ° C. when driven in four US06 modes.
一方、制動時にはモータ1はトルクを維持しながら、車速の減少に比例して回転数も下がるため、これらの鉄損、渦電流損は銅損に比べて無視できるほど小さくなる。鉄損、渦電流損はそれぞれコアや磁石の磁気特性が温度依存性を持つため非線形性を持つが、銅損はコイルの材質である銅材の温度特性を事前に記憶しておけば、モータ電流を検出しているインバータ制御部10で精度良く推定することができる。これにより、(2)式、(3)式で回生制動トルクを精度よく検出することができる。
尚、モータ1の温度はステータ及びコイルの温度は熱電対により計測が容易であるが、ロータコアとそれに取り付けられた磁石は、高速度で回転しているため、それらの温度を測定することは容易でない。 On the other hand, at the time of braking, themotor 1 maintains the torque and the rotational speed decreases in proportion to the decrease in the vehicle speed. Therefore, these iron loss and eddy current loss are negligibly small compared to the copper loss. Iron loss and eddy current loss are nonlinear because the magnetic characteristics of the core and magnet are temperature-dependent, but copper loss is a motor if the temperature characteristics of the copper material that is the coil material is stored in advance. The inverter control unit 10 that detects the current can estimate it with high accuracy. As a result, the regenerative braking torque can be accurately detected by the equations (2) and (3).
Note that the temperature of themotor 1 can be easily measured by the thermocouple of the stator and the coil, but the rotor core and the magnet attached thereto are rotating at a high speed, so it is easy to measure their temperatures. Not.
尚、モータ1の温度はステータ及びコイルの温度は熱電対により計測が容易であるが、ロータコアとそれに取り付けられた磁石は、高速度で回転しているため、それらの温度を測定することは容易でない。 On the other hand, at the time of braking, the
Note that the temperature of the
以上説明したとおり、第1の実施の形態による電動車両の制動制御装置はインバータ制御部10を備えている。このインバータ制御部10はモータ制御コントローラ14を含み、モータ制御コントローラ14は、モータ1の回生電力からモータ1の実トルクτ0を推定するトルク推定部57~60と、車両コントローラ9などの制動制御部がモータ1に指示した制動トルク指令値τ^とトルク推定部が推定した実トルク値τ0の差Δτから、モータ1が出力する制動トルクをフィードバック制御するフィードバック制御部61とを備える。
As described above, the braking control device for an electric vehicle according to the first embodiment includes the inverter control unit 10. The inverter control unit 10 includes a motor control controller 14. The motor control controller 14 is configured to estimate the actual torque τ 0 of the motor 1 from the regenerative electric power of the motor 1, and the braking control of the vehicle controller 9 and the like. Department comprises from difference Δτ of the actual torque value tau 0 braking torque command value tau ^ and torque estimation unit instructs the motor 1 is estimated, and a feedback controller 61 for feedback control of the braking torque motor 1 outputs.
このような制動制御装置によれば次のような作用効果を奏することができる。
(1)制動時に、トルク指令値τ^と実トルク推定値τ0との偏差ΔτによりIGBTを駆動してモータ回生運転をきめ細かく制御することができる。その結果、温度などの影響により、ブレーキペダルの踏み込み量に応じた回生制動力の精度劣化を防止できる。 According to such a braking control device, the following operational effects can be achieved.
(1) during braking, it is possible to drive the IGBT by deviation Δτ between the torque command value tau ^ and the actual torque estimate tau 0 to finely control the motor regenerative operation. As a result, it is possible to prevent deterioration in the accuracy of the regenerative braking force according to the depression amount of the brake pedal due to the influence of temperature or the like.
(1)制動時に、トルク指令値τ^と実トルク推定値τ0との偏差ΔτによりIGBTを駆動してモータ回生運転をきめ細かく制御することができる。その結果、温度などの影響により、ブレーキペダルの踏み込み量に応じた回生制動力の精度劣化を防止できる。 According to such a braking control device, the following operational effects can be achieved.
(1) during braking, it is possible to drive the IGBT by deviation Δτ between the torque command value tau ^ and the actual torque estimate tau 0 to finely control the motor regenerative operation. As a result, it is possible to prevent deterioration in the accuracy of the regenerative braking force according to the depression amount of the brake pedal due to the influence of temperature or the like.
(2)第1の実施の形態による実トルクの推定値τ0は、上述した(3)式で算出される。すなわち、回生運転時に、コンデンサ13の正負極間電圧の検出量V※と、第3の電流検出器19で検出した直流電流の検出量I※の積を用いてバッテリ12への回生電力量Pを算出する。また、第1の電流検出器16で計測したモータ3相電流iu,iv,iwを3相2相変換して得たid,iqを用いて上述した(2)式で銅損Wcを算出する。さらに、磁極位置検出器15の検出信号に基づいてモータの角速度ωを算出し、電力量P、銅損Wc、角速度ωにより、上述した(3)式から、制動時におけるトルク推定値τ0を推定する。このトルク推定値τ0と制動トルク指令τ^との偏差をフィードバックすることにより、種々の要因で設計上の回生制動トルクが得られないときでも、ブレーキペダル6の踏み込み量に応じた設計上の回生制動トルクを得ることができる。
(2) The estimated value τ 0 of the actual torque according to the first embodiment is calculated by the above-described equation (3). That is, during the regenerative operation, the regenerative electric energy P to the battery 12 is calculated by using the product of the detected amount V * of the voltage between the positive and negative electrodes of the capacitor 13 and the detected amount I * of the direct current detected by the third current detector 19. Is calculated. Further, the copper loss Wc is calculated by the above-described equation (2) using id and iq obtained by three-phase to two-phase conversion of the motor three-phase currents iu, iv and iw measured by the first current detector 16. . Further, the angular velocity ω of the motor is calculated based on the detection signal of the magnetic pole position detector 15, and the estimated torque value τ 0 during braking is calculated from the above equation (3) using the electric energy P, the copper loss Wc, and the angular velocity ω. presume. By feeding back the deviation between this estimated torque value τ 0 and the braking torque command τ ^, even when the designed regenerative braking torque cannot be obtained due to various factors, the design according to the depression amount of the brake pedal 6 is designed. Regenerative braking torque can be obtained.
(3)切替器52を設け、力行運転時は実トルクフィードバック制御を行わないようにした。力行運転時のモータトルクは時々刻々、種々の要因で変動するので、回生制動運転中にのみ実トルクフィードバック制御を行って力行運転時に悪影響を与えることがない。
(3) A switch 52 is provided so that actual torque feedback control is not performed during power running. Since the motor torque during power running varies from time to time due to various factors, actual torque feedback control is performed only during regenerative braking operation, and there is no adverse effect during power running.
以上説明した第2電流指令演算部56の電流指令値が選択されていた場合の実トルクフィードバック制御は、数秒間に渡ってモータが一定な制動トルクを出力する制動時に、モータの実トルクを検出して実施することが望ましい。
The actual torque feedback control when the current command value of the second current command calculation unit 56 described above is selected is to detect the actual torque of the motor during braking in which the motor outputs a constant braking torque for several seconds. It is desirable to implement it. *
実トルクの推定に必要な変化量として回生電力P、銅損Wc、角速度ωをモータ制御コントローラ14で演算する例で説明したが、車両コントローラ9で行っても良く、同じ車両に搭載された別のコントローラで行っても良い。
As an example of calculating the regenerative power P, the copper loss Wc, and the angular velocity ω by the motor controller 14 as the amount of change necessary for the estimation of the actual torque, the vehicle controller 9 may be used. The controller may be used.
(第2の実施の形態)
制動時以外のタイミングでは、実トルクが時々刻々、変化している。指令値に対して実トルクが誤差を持つ要因は、前述の通り(1)温度、(2)減磁、(3)電流検出誤差であり、いずれも持続的な現象と言える。そこで、制動時に図2に示した制御と類似な方法で、制動トルク指令値τ^と実トルク推定値τ0の比(ゲイン)を求め、モータ制御コントローラ14に記憶された補正量(具体的には以下に述べるトルク定数)を上記ゲインに基づき書き換えることで、その後、上記(1)~(3)の状況が変化するまで実トルクフィードバックを実施することなく、同等の精度を維持させることも可能になる。 (Second Embodiment)
At timings other than braking, the actual torque changes every moment. As described above, the factors that cause the actual torque to have an error with respect to the command value are (1) temperature, (2) demagnetization, and (3) current detection error. Therefore, a ratio (gain) between the braking torque command value τ ^ and the estimated actual torque value τ 0 is obtained by a method similar to the control shown in FIG. 2 at the time of braking, and the correction amount (specifically, stored in the motor controller 14). The torque constant described below can be rewritten based on the above gain to maintain the same accuracy without performing actual torque feedback until the above conditions (1) to (3) change. It becomes possible.
制動時以外のタイミングでは、実トルクが時々刻々、変化している。指令値に対して実トルクが誤差を持つ要因は、前述の通り(1)温度、(2)減磁、(3)電流検出誤差であり、いずれも持続的な現象と言える。そこで、制動時に図2に示した制御と類似な方法で、制動トルク指令値τ^と実トルク推定値τ0の比(ゲイン)を求め、モータ制御コントローラ14に記憶された補正量(具体的には以下に述べるトルク定数)を上記ゲインに基づき書き換えることで、その後、上記(1)~(3)の状況が変化するまで実トルクフィードバックを実施することなく、同等の精度を維持させることも可能になる。 (Second Embodiment)
At timings other than braking, the actual torque changes every moment. As described above, the factors that cause the actual torque to have an error with respect to the command value are (1) temperature, (2) demagnetization, and (3) current detection error. Therefore, a ratio (gain) between the braking torque command value τ ^ and the estimated actual torque value τ 0 is obtained by a method similar to the control shown in FIG. 2 at the time of braking, and the correction amount (specifically, stored in the motor controller 14). The torque constant described below can be rewritten based on the above gain to maintain the same accuracy without performing actual torque feedback until the above conditions (1) to (3) change. It becomes possible.
一方、トルクに偏差が生じる状況は制動時だけでなく力行の場合でも同じである。そこで、力行時のトルクを指令値に揃えるためには、制動時に実トルク推定値τ0から算出して記憶した上記補正量(トルク定数)を力行時にも用いる。これにより、力行時のモータトルクに対しても、温度他の影響を排除できる。
On the other hand, the situation in which a deviation occurs in the torque is the same not only in braking but also in powering. Therefore, in order to align the torque during power running with the command value, the correction amount (torque constant) calculated and stored from the actual torque estimated value τ 0 during braking is also used during power running. Thereby, it is possible to eliminate the influence of temperature and the like on the motor torque during power running.
第2実施の形態の制動制御装置のシステム構成は、図1で示したブロック図にトルク補償部30を追加したものである。インバータ制御部10内のモータ制御コントローラ14は、制動トルク指令値τ^と実トルク推定値τ0の比であるゲインを求め、モータ制御コントローラ14に記憶された補正量を上記ゲインに基づき書き換える。実トルクの推定に必要な変化量として回生電力P、銅損Wc、角速度ωは、モータ制御コントローラ14で上述した式(1)~(3)により演算される。
The system configuration of the braking control apparatus of the second embodiment is obtained by adding a torque compensator 30 to the block diagram shown in FIG. The motor controller 14 in the inverter control unit 10 obtains a gain that is a ratio between the braking torque command value τ ^ and the actual torque estimated value τ 0 and rewrites the correction amount stored in the motor controller 14 based on the gain. The regenerative power P, the copper loss Wc, and the angular velocity ω as the amount of change necessary for the estimation of the actual torque are calculated by the motor controller 14 according to the above formulas (1) to (3).
トルク補償部30は、詳細は後述するが、車両コントローラ9がモータ制御コントローラ14に指示した制動トルクのトルク指令値(τ^)21と同じ制御指令τ^を信号31として入力する。信号32はトルク補償部30とインバータ制御部10間の双方向信号ネットワークである。トルク補償部30はさらに、状態監視装置18からバッテリ12の残存容量や許容充電電流、放電電流を信号33として入力する。信号34は、モータ1による回生制動から電子制御式摩擦ブレーキによる制動に切り替える判定結果を負圧レスブレーキ7或いはESC85へ出力する信号である。
Although the details will be described later, the torque compensator 30 inputs a control command τ ^ that is the same as the torque command value (τ ^) 21 of the braking torque instructed to the motor controller 14 by the vehicle controller 9 as the signal 31. A signal 32 is a bidirectional signal network between the torque compensator 30 and the inverter controller 10. The torque compensator 30 further receives the remaining capacity, allowable charging current, and discharging current of the battery 12 from the state monitoring device 18 as a signal 33. The signal 34 is a signal for outputting a determination result for switching from regenerative braking by the motor 1 to braking by an electronically controlled friction brake to the negative pressureless brake 7 or the ESC 85.
以下、モータのトルク補正と制動時における異常判定に関する第2の実施の形態について、図4、図5のフローチャートを参照して説明する。図4は、モータのトルク補正に関するフローチャートである。図5は、制動時における異常判定に関するフローチャートである。
Hereinafter, a second embodiment related to motor torque correction and abnormality determination during braking will be described with reference to the flowcharts of FIGS. 4 and 5. FIG. 4 is a flowchart relating to motor torque correction. FIG. 5 is a flowchart regarding abnormality determination during braking.
モータのトルク補正に関するフローチャートである図4のステップS1、S2はトルク補償部30によって実行される処理、図4のステップS3~S9はモータ制御コントローラ14によって実行される処理である。
Steps S1 and S2 in FIG. 4 which are flowcharts relating to motor torque correction are processes executed by the torque compensator 30, and steps S3 to S9 in FIG. 4 are processes executed by the motor controller 14.
まず、トルク補償部30の入力と出力について説明する。トルク補償部30への入力として、次の3種の信号31、32,33がある。
(1)第1の入力信号31は、力行時に車両コントローラ9がモータ1に指示した駆動トルクの指令値21と同じ制御指令値τ^である。
(2)第2の入力信号32は、トルク補償部30とインバータ制御部10間の双方向ネットワーク信号であり、多種の情報をやり取りする。その1つは、モータ制御コントローラ14で算出したトルク推定値τ0である。
(3)第3の入力信号33は、バッテリ12の状態監視装置18からバッテリ12の残存容量や許容充電・放電電流を表す信号である。
(4)第4の入力信号は、ブレーキペダル6の踏み込み角度を示す信号35である。この信号に基づいて、トルク補償部30は、ブレーキペダルの踏み込み量と踏み込み速度を算出し、後述する制動トルク要求値τdを求める。 First, the input and output of thetorque compensator 30 will be described. There are the following three types of signals 31, 32, and 33 as inputs to the torque compensator 30.
(1) Thefirst input signal 31 is a control command value τ ^ that is the same as the drive torque command value 21 instructed to the motor 1 by the vehicle controller 9 during power running.
(2) Thesecond input signal 32 is a bidirectional network signal between the torque compensator 30 and the inverter controller 10 and exchanges various types of information. One of them is the estimated torque value τ 0 calculated by the motor controller 14.
(3) Thethird input signal 33 is a signal representing the remaining capacity of the battery 12 and the allowable charge / discharge current from the state monitoring device 18 of the battery 12.
(4) The fourth input signal is asignal 35 indicating the depression angle of the brake pedal 6. Based on this signal, the torque compensator 30 calculates a depression amount and a depression speed of the brake pedal, and obtains a braking torque request value τd described later.
(1)第1の入力信号31は、力行時に車両コントローラ9がモータ1に指示した駆動トルクの指令値21と同じ制御指令値τ^である。
(2)第2の入力信号32は、トルク補償部30とインバータ制御部10間の双方向ネットワーク信号であり、多種の情報をやり取りする。その1つは、モータ制御コントローラ14で算出したトルク推定値τ0である。
(3)第3の入力信号33は、バッテリ12の状態監視装置18からバッテリ12の残存容量や許容充電・放電電流を表す信号である。
(4)第4の入力信号は、ブレーキペダル6の踏み込み角度を示す信号35である。この信号に基づいて、トルク補償部30は、ブレーキペダルの踏み込み量と踏み込み速度を算出し、後述する制動トルク要求値τdを求める。 First, the input and output of the
(1) The
(2) The
(3) The
(4) The fourth input signal is a
トルク補償部30の出力として、次の2種の信号がある。
(1)第1の出力信号32は、インバータ制御部10との間で種々の情報を授受する双方向信号である。たとえば、モータ制御コントローラ14から送信されるトルク定数φが含まれる。
(2)第2の出力信号34は、回生制動から摩擦制動に切り替えるための判定信号である。判定信号34は、制動トルク指令値31と、トルク推定値32と、更に、バッテリ12の状態検出信号33の結果も考慮して、モータ1による回生制動から電子制御式摩擦ブレーキによる制動に切り替える信号である。この信号34は、負圧レスブレーキ7或いはESC8の制御部に出力される。 There are the following two types of signals as the output of thetorque compensator 30.
(1) Thefirst output signal 32 is a bidirectional signal that exchanges various information with the inverter control unit 10. For example, the torque constant φ transmitted from the motor controller 14 is included.
(2) Thesecond output signal 34 is a determination signal for switching from regenerative braking to friction braking. The determination signal 34 is a signal for switching from regenerative braking by the motor 1 to braking by the electronically controlled friction brake in consideration of the braking torque command value 31, the estimated torque value 32, and the result of the state detection signal 33 of the battery 12. It is. This signal 34 is output to the negative pressure-less brake 7 or the controller of the ESC 8.
(1)第1の出力信号32は、インバータ制御部10との間で種々の情報を授受する双方向信号である。たとえば、モータ制御コントローラ14から送信されるトルク定数φが含まれる。
(2)第2の出力信号34は、回生制動から摩擦制動に切り替えるための判定信号である。判定信号34は、制動トルク指令値31と、トルク推定値32と、更に、バッテリ12の状態検出信号33の結果も考慮して、モータ1による回生制動から電子制御式摩擦ブレーキによる制動に切り替える信号である。この信号34は、負圧レスブレーキ7或いはESC8の制御部に出力される。 There are the following two types of signals as the output of the
(1) The
(2) The
以下、図4のフローチャートを参照して説明する。まず、ブレーキペダル6が踏まれ、運転者が制動を指示すると、ステップS1においてトルク補償部30は状態監視装置18から入力されたバッテリ12の残存容量や許容充電・放電電流に関する監視情報を信号入力33として得て、回生が可能かどうかを判断する。ここで、許容充電・放電電流とは、バッテリが充電電流(回生時)、或いは放電電流(力行時)を流した場合に、バッテリの内部抵抗による電圧変動で、許容される最大或いは最小の電圧しきい値を超えない条件での値を表す。
回生が可能と判断されると、ステップS2で電子制御摩擦ブレーキからモータ1による回生ブレーキに切り替わる。そしてモータ制御コントローラ14に処理を移す。 Hereinafter, a description will be given with reference to the flowchart of FIG. First, when thebrake pedal 6 is depressed and the driver instructs braking, in step S1, the torque compensator 30 inputs monitoring information regarding the remaining capacity of the battery 12 and the allowable charging / discharging current input from the state monitoring device 18. It is obtained as 33 and it is judged whether regeneration is possible. Here, the allowable charging / discharging current is the maximum or minimum voltage that is allowed due to voltage fluctuations due to the internal resistance of the battery when the battery carries a charging current (during regeneration) or a discharging current (during powering). Represents the value under conditions that do not exceed the threshold.
If it is determined that regeneration is possible, the electronically controlled friction brake is switched to the regeneration brake by themotor 1 in step S2. Then, the processing is transferred to the motor controller 14.
回生が可能と判断されると、ステップS2で電子制御摩擦ブレーキからモータ1による回生ブレーキに切り替わる。そしてモータ制御コントローラ14に処理を移す。 Hereinafter, a description will be given with reference to the flowchart of FIG. First, when the
If it is determined that regeneration is possible, the electronically controlled friction brake is switched to the regeneration brake by the
次に、インバータ制御部10内のモータ制御コントローラ14は以下に示す処理を実行する。ステップS3において、モータ1の回転数Nが実トルク検出に好適な速度未満、すなわち、回転数NがN※未満であり、かつ、モータ1の回転数Nが車両が停止しているとみなされる下限速度、すなわち下限回転数N0を超えているか否かを判断する。換言すると、ステップS3では、モータ回転数NがN0<N<N※であるか否かを判断する。この範囲であれば本実施の形態の特徴である実トルクの推定処理に入る。
Next, the motor controller 14 in the inverter control unit 10 executes the following process. In step S3, it is considered that the rotation speed N of the motor 1 is less than the speed suitable for the actual torque detection, that is, the rotation speed N is less than N * , and the rotation speed N of the motor 1 is stopped. It is determined whether or not the lower limit speed, that is, the lower limit rotational speed N 0 is exceeded. In other words, in step S3, the motor rotation speed N is determined whether or not N 0 <N <N ※. Within this range, actual torque estimation processing, which is a feature of the present embodiment, is entered.
ここで、永久磁石型モータは、回転数に比例して逆起電力を発生する。この逆起電力がバッテリ12の電圧より大きく上回ると、モータ1からバッテリ12にエネルギーが流出してしまうため、通常は電流成分idによって逆起電力を低減する弱め磁束制御を行っている。ステップS3において、モータ1の回転数が実トルク検出に好適な速度範囲にあると判定されると、ステップS4に進む。モータ回転数NがN0<N<N※の速度範囲では逆起電力も小さく、電流成分idをゼロにしても差し支えない。この制御をステップS4で行う。
Here, the permanent magnet type motor generates a counter electromotive force in proportion to the rotational speed. When this counter electromotive force is much higher than the voltage of the battery 12, energy flows out from the motor 1 to the battery 12, so that normally, the flux weakening control is performed to reduce the counter electromotive force by the current component id. If it is determined in step S3 that the rotation speed of the motor 1 is in a speed range suitable for actual torque detection, the process proceeds to step S4. In the speed range where the motor rotation speed N is N 0 <N <N * , the back electromotive force is also small, and the current component id may be zero. This control is performed in step S4.
ここで、永久磁石型モータのトルクτは(4)式で表すことができる。
τ=Pn{φa・iq-(Ld-Lq)id・iq} (4)
ただし、
Pnはモータ1の極対数
φaは磁石の磁束量であり、いわゆるトルク定数に相当する。
Ld、Lqはそれぞれモータ1のd軸、q軸方向のインダクタンスである。 Here, the torque τ of the permanent magnet type motor can be expressed by equation (4).
τ = Pn {φa · iq− (Ld−Lq) id · iq} (4)
However,
Pn is the number of pole pairs of themotor 1 φa is the amount of magnetic flux of the magnet and corresponds to a so-called torque constant.
Ld and Lq are inductances of themotor 1 in the d-axis and q-axis directions, respectively.
τ=Pn{φa・iq-(Ld-Lq)id・iq} (4)
ただし、
Pnはモータ1の極対数
φaは磁石の磁束量であり、いわゆるトルク定数に相当する。
Ld、Lqはそれぞれモータ1のd軸、q軸方向のインダクタンスである。 Here, the torque τ of the permanent magnet type motor can be expressed by equation (4).
τ = Pn {φa · iq− (Ld−Lq) id · iq} (4)
However,
Pn is the number of pole pairs of the
Ld and Lq are inductances of the
永久磁石型モータにおいて、磁石が温度変化することで磁束量φaが低下し、同じ電流を通電しても磁石の特性に応じてトルクが減少する。また、ネオジウム磁石を用いる場合、高温で永久的な減磁に至る場合があり、それ以後は磁束量φaが低減して、同じ電流を流してもトルクは正常な場合より減少する。
In a permanent magnet type motor, when the temperature of the magnet changes, the amount of magnetic flux φa decreases, and the torque decreases according to the characteristics of the magnet even when the same current is applied. When a neodymium magnet is used, permanent demagnetization may occur at a high temperature. Thereafter, the amount of magnetic flux φa is reduced, and the torque is reduced as compared with the normal case even when the same current is applied.
ステップS4において、電流成分idをゼロに設定すると、(1)式の右辺は第一項のみになり、これを(5)式で表す。
τ≒Pnφa・iq (5)
即ち、トルクτはPnφa・iqで表現できるが、φaが磁石の温度に応じて変化するため、実際のトルクと(5)式で算出したトルク、すなわち設計値としてのトルクとの間に誤差が発生する。
(5)式で用いるidは、第1の電流検出器16で検出する三相電流iu,iv,iwを3相2相変換部55で得られたidが用いられる。 In step S4, when the current component id is set to zero, the right side of equation (1) is only the first term, which is expressed by equation (5).
τ ≒ Pnφa · iq (5)
That is, although the torque τ can be expressed by Pnφa · iq, since φa changes depending on the temperature of the magnet, there is an error between the actual torque and the torque calculated by the equation (5), that is, the torque as the design value. appear.
As the id used in the equation (5), the id obtained by the three-phase to two-phase converter 55 for the three-phase currents iu, iv and iw detected by the first current detector 16 is used.
τ≒Pnφa・iq (5)
即ち、トルクτはPnφa・iqで表現できるが、φaが磁石の温度に応じて変化するため、実際のトルクと(5)式で算出したトルク、すなわち設計値としてのトルクとの間に誤差が発生する。
(5)式で用いるidは、第1の電流検出器16で検出する三相電流iu,iv,iwを3相2相変換部55で得られたidが用いられる。 In step S4, when the current component id is set to zero, the right side of equation (1) is only the first term, which is expressed by equation (5).
τ ≒ Pnφa · iq (5)
That is, although the torque τ can be expressed by Pnφa · iq, since φa changes depending on the temperature of the magnet, there is an error between the actual torque and the torque calculated by the equation (5), that is, the torque as the design value. appear.
As the id used in the equation (5), the id obtained by the three-phase to two-
ステップS5において、モータ1が回生してバッテリに戻る電力量Pを次式(6)式から算出する。
P=VDC×IB(6)
なお、図2では、コンデンサ13の正負極間電圧をV※で、また、第3の電流検出器19で検出した直流電流の検出量をI※でそれぞれ表現したが、これらの変化量は式(6)と図4のフローチャートではVDCとIBで記載している。 In step S5, the electric energy P which themotor 1 regenerates and returns to the battery is calculated from the following equation (6).
P = V DC × I B (6)
In FIG. 2, the voltage between the positive and negative electrodes of thecapacitor 13 is expressed by V * , and the detected amount of the direct current detected by the third current detector 19 is expressed by I * , respectively. In the flowchart of (6) and FIG. 4, V DC and I B are described.
P=VDC×IB(6)
なお、図2では、コンデンサ13の正負極間電圧をV※で、また、第3の電流検出器19で検出した直流電流の検出量をI※でそれぞれ表現したが、これらの変化量は式(6)と図4のフローチャートではVDCとIBで記載している。 In step S5, the electric energy P which the
P = V DC × I B (6)
In FIG. 2, the voltage between the positive and negative electrodes of the
ステップS6において、銅損演算部58は、第1の電流検出器16の検出量からモータ1の銅損Wcを上記(2)式から演算する。
In step S6, the copper loss calculation unit 58 calculates the copper loss Wc of the motor 1 from the expression (2) based on the detection amount of the first current detector 16.
ステップS7では、角速度演算部59で磁極位置検出器15からの信号でモータ1の角速度ωを求め、次の(7)式でモータ1の実トルク推定値τ0を演算する。
τ0=(VDC・IB+Wc)/ω (7) In step S7, the angularvelocity calculation unit 59 calculates the angular velocity ω of the motor 1 from the signal from the magnetic pole position detector 15, and calculates the actual torque estimated value τ 0 of the motor 1 by the following equation (7).
τ 0 = (V DC · I B + Wc) / ω (7)
τ0=(VDC・IB+Wc)/ω (7) In step S7, the angular
τ 0 = (V DC · I B + Wc) / ω (7)
そして、ステップS8で、(5)式と(7)式から導出される(8)式でトルク定数φaを求める。
φa=τ0/Pn・iq (8) In step S8, a torque constant φa is obtained from equation (8) derived from equations (5) and (7).
φa = τ 0 / P n · iq (8)
φa=τ0/Pn・iq (8) In step S8, a torque constant φa is obtained from equation (8) derived from equations (5) and (7).
φa = τ 0 / P n · iq (8)
次のステップS9で、パラメータであるトルク定数φaを更新してモータ制御コントローラ14内に記憶する。ステップS3で判定がyesの場合、予め定めたサンプリング期間毎にステップS4から ステップS9までの処理が繰り返されるが、最初の1回目で(8)式の結果としてトルク定数φaが更新されると、その後の繰返しでは温度による変動等が無い限りトルク定数φaが不変となり、特に変化はない。
In the next step S 9, the torque constant φa that is a parameter is updated and stored in the motor controller 14. If the determination in step S3 is yes, the processing from step S4 to step S9 is repeated for each predetermined sampling period, but when the torque constant φa is updated as a result of equation (8) at the first time, In subsequent repetitions, the torque constant φa remains unchanged as long as there is no fluctuation due to temperature, and there is no particular change.
最終的に、ステップS3の判定でモータ回転数が所定値以下になると、ステップS10に移行してパラメータ更新の作業が終了する。
Finally, when the motor rotation speed becomes equal to or less than the predetermined value in the determination in step S3, the process proceeds to step S10, and the parameter update operation is completed.
図4のフローチャートで述べた処理は、毎回の制動時に実施する。そして制動時以外でモータ1が駆動する場合にも、図4の処理で更新されたパラメータφaを使用するため、上記(4)式や(5)式を用いて算出するモータの実トルクは精度が高い結果を維持することができる。このように実トルクの精度を補償ができれば、電動車両で状況に応じてトルクをきめ細かく自動調整を可能にすることが可能になる。
The processing described in the flowchart of FIG. 4 is performed at each braking. Even when the motor 1 is driven at times other than braking, the parameter φa updated in the process of FIG. 4 is used, so the actual torque of the motor calculated using the above equations (4) and (5) is accurate. Can maintain high results. If the accuracy of the actual torque can be compensated in this way, it becomes possible to finely and automatically adjust the torque according to the situation in the electric vehicle.
図5は、制動時における異常判定に関するフローチャートであり、判定に応じてトルク定数φaの補正等を行う。図5に示す処理は、トルク補償部30で実行される処理であり、ブレーキペダル6から踏力が発生した場合に開始される。この図で、制動トルクに関して以下の4種の量を扱う。
τd:ブレーキペダル6の踏み込み量に基づく回生トルク要求値
τ^:車両コントローラ9からモータ1への回生制動トルク指令値
τ0:(7)式から推定したトルク推定値
τ※:インバータ制御部10の指令に基づくモータトルク制御量
ここで、τ※はインバータ制御部10の第1の電流検出器16で検出した交流電流iu,iv,iwから算出したiqを使用して以下の(9)式で演算したトルク制御量である。
τ※=Pn・φa・iq (9) FIG. 5 is a flowchart regarding abnormality determination during braking, and correction of the torque constant φa is performed according to the determination. The process shown in FIG. 5 is a process executed by thetorque compensator 30 and is started when a pedaling force is generated from the brake pedal 6. In this figure, the following four types are dealt with regarding the braking torque.
τd: Regenerative torque request value based on the depression amount of thebrake pedal 6 τ ^: Regenerative braking torque command value from the vehicle controller 9 to the motor 1
τ 0: (7) torque estimated value estimated from the equation tau ※: AC motor torque control amount based on the command of theinverter control unit 10 where, tau ※ is detected by the first current detector 16 of the inverter control unit 10 The torque control amount is calculated by the following equation (9) using iq calculated from the currents iu, iv, and iw.
τ * = Pn · φa · iq (9)
τd:ブレーキペダル6の踏み込み量に基づく回生トルク要求値
τ^:車両コントローラ9からモータ1への回生制動トルク指令値
τ0:(7)式から推定したトルク推定値
τ※:インバータ制御部10の指令に基づくモータトルク制御量
ここで、τ※はインバータ制御部10の第1の電流検出器16で検出した交流電流iu,iv,iwから算出したiqを使用して以下の(9)式で演算したトルク制御量である。
τ※=Pn・φa・iq (9) FIG. 5 is a flowchart regarding abnormality determination during braking, and correction of the torque constant φa is performed according to the determination. The process shown in FIG. 5 is a process executed by the
τd: Regenerative torque request value based on the depression amount of the
τ 0: (7) torque estimated value estimated from the equation tau ※: AC motor torque control amount based on the command of the
τ * = Pn · φa · iq (9)
上述したように、図5の異常判定のフローチャートはブレーキペダル6に踏力が加わると開始される。最初に車両コントローラ9はブレーキ踏み込み量に応じた制動トルクを回生トルクと摩擦制動トルクの2つに分担させる。
図5のステップS11では、ブレーキペダル6の踏み込み量から信号35により得られた回生トルク要求値τdと、車両コントローラ9から信号31として入力された制動トルク指令値τ^とについて、両者が許容される誤差範囲内で一致しているかどうかを判断する。回生トルク指令値τdと制動トルク指令値τ^が誤差範囲を超えて異なっていると判定される原因は、例えば、信号の通信過程での異常が考えられ、この場合は、ステップS11が否定されてステップS12において、ブレーキ指令の異常と判断する。 As described above, the abnormality determination flowchart of FIG. 5 is started when a depression force is applied to thebrake pedal 6. First, the vehicle controller 9 assigns the braking torque corresponding to the amount of depression of the brake to the regenerative torque and the friction braking torque.
In step S11 in FIG. 5, both the regenerative torque request value τd obtained from the amount of depression of thebrake pedal 6 by the signal 35 and the braking torque command value τ ^ input as the signal 31 from the vehicle controller 9 are allowed. Judgment is made within the error range. The cause for determining that the regenerative torque command value τd and the braking torque command value τ ^ are different from each other beyond the error range may be, for example, an abnormality in the signal communication process. In this case, step S11 is denied. In step S12, it is determined that the brake command is abnormal.
図5のステップS11では、ブレーキペダル6の踏み込み量から信号35により得られた回生トルク要求値τdと、車両コントローラ9から信号31として入力された制動トルク指令値τ^とについて、両者が許容される誤差範囲内で一致しているかどうかを判断する。回生トルク指令値τdと制動トルク指令値τ^が誤差範囲を超えて異なっていると判定される原因は、例えば、信号の通信過程での異常が考えられ、この場合は、ステップS11が否定されてステップS12において、ブレーキ指令の異常と判断する。 As described above, the abnormality determination flowchart of FIG. 5 is started when a depression force is applied to the
In step S11 in FIG. 5, both the regenerative torque request value τd obtained from the amount of depression of the
次に、ステップS13において、制動トルク指令値τ^とトルク推定値τ0が許容される誤差範囲内で一致しているかどうかを判断する。制動トルク指令値τ^とトルク推定値τ0が誤差範囲を超えて異なっていると判定された場合は、次のステップS14において、インバータ制御部10の指令基づくモータトルク制御量、すなわちモータトルク指令値τ※とトルク推定値τ0が許容される誤差範囲内で一致しているかどうかを判断する。
Next, in step S13, it is determined whether the braking torque command value τ ^ and the estimated torque value τ 0 are within an allowable error range. If the braking torque command value tau ^ and torque estimate tau 0 is determined to be different than the error range, in step S14, the command based motor torque control amount of the inverter control unit 10, i.e. the motor torque command It is determined whether or not the value τ * and the estimated torque value τ 0 are within an allowable error range.
ステップS13及びS14の両判断がいずれもNoになる場合は、ステップS15でモータ制御コントローラ14によるトルク定数φaの補正を行う。すなわち、前述した図4のステップS3~S9の処理をモータ制御コントローラ14によって実行させ、トルク定数φaを求め、これを補正量としてモータ制御コントローラ14内に記憶する。
If both determinations in steps S13 and S14 are No, the motor controller 14 corrects the torque constant φa in step S15. That is, the process of steps S3 to S9 in FIG. 4 described above is executed by the motor controller 14 to obtain the torque constant φa, which is stored in the motor controller 14 as a correction amount.
ステップS14において、インバータ制御部10の指令に基づくモータトルク指令値τ※が(3)式から推定した回生制動トルクのトルク推定値τ0と一致していると判定された場合は、ステップS16に進む。すなわち、ステップS14が肯定判定されるのは、ステップS13において、制動トルク指令値τ^とトルク推定値τ0が誤差範囲を超えて異なっている状況下で、モータ1が車両コントローラ9からの制動トルク指令値τ^に従って駆動されていない場合である。これは、バッテリ12の異常によりバッテリが回生電力を受入れることができない状況を意味している。この状況はステップS16で判定され、次のステップS17でモータ1による回生を中止する。すなわち、モータによる回生制動を中止して、電子制御式摩擦ブレーキによる制動に切り替えるべく、トルク補償部30は切替信号34を出力する。この切替信号34により、負圧レスブレーキ7は、ブレーキペダル6の踏み込みにより摩擦ブレーキのみで制動を行うように駆動される。
If it is determined in step S14 that the motor torque command value τ * based on the command of the inverter control unit 10 matches the torque estimate value τ 0 of the regenerative braking torque estimated from the equation (3), the process proceeds to step S16. move on. That is, the step S14 is affirmative determination in step S13, in a situation where the braking torque command value tau ^ and torque estimate tau 0 are different beyond the error range, braking the motor 1 from the vehicle controller 9 This is a case where the motor is not driven according to the torque command value τ ^. This means that the battery cannot accept regenerative power due to the abnormality of the battery 12. This situation is determined in step S16, and the regeneration by the motor 1 is stopped in the next step S17. That is, the torque compensator 30 outputs the switching signal 34 in order to stop the regenerative braking by the motor and switch to the braking by the electronically controlled friction brake. By this switching signal 34, the negative pressure-less brake 7 is driven so as to perform braking only by the friction brake when the brake pedal 6 is depressed.
前述のステップS13で制動トルク指令値τ^と(3)式から推定した回生制動トルクのトルク推定値τ0が概ね一致している場合は、前述した図4の処理でモータ制御コントローラ14によって求められたトルク定数の補正が利いているケースである。そこで、ステップS18で車両の減速加速度は妥当かを判断し、Noの場合は電子式摩擦ブレーキに異常の可能性ありと判断し、ステップS19で摩擦ブレーキに異常の可能性ありのフラグを立てる。ステップS18でYesの場合は、ステップS20で全てが正常であることを判定し、その後、例えば、車両が停止するまで、ステップS13に戻って異常判定の動作を継続する。図5の実施形態によれば、制動時において複数の異常要因を判定することが可能になり、電動車両の安全性を高めることができる。
When the braking torque command value τ ^ in step S13 described above and the estimated torque value τ 0 of the regenerative braking torque estimated from the expression (3) are substantially the same, the motor controller 14 obtains the value in the processing shown in FIG. This is a case where the correction of the obtained torque constant is effective. In step S18, it is determined whether the deceleration acceleration of the vehicle is appropriate. If No, it is determined that the electronic friction brake may be abnormal. In step S19, a flag indicating that the friction brake may be abnormal is set. If Yes in step S18, it is determined in step S20 that everything is normal, and then, for example, the process returns to step S13 and the abnormality determination operation is continued until the vehicle stops. According to the embodiment of FIG. 5, it becomes possible to determine a plurality of abnormal factors during braking, and the safety of the electric vehicle can be improved.
以上説明した第2の実施の形態による電動車両の制動制御装置が適用される電動車両では永久磁石型モータが使用されており、インバータ制御部10は、ベクトル制御によりモータ1のトルクを制御する。ベクトル制御では、三相の電流を回転座標系の考えでid成分(磁束と同方向な電流成分)と iq成分(idに直交する成分)の2種に変換して制御する。モータトルクは、トルク定数φとiq成分と極数との積で決まる第一の値に、id成分とiq成分の積で決まる第二の値を加えて求める。ここで、第二の値が小さいほどトルク補正量の前述の補正量を精度良く求めることができる。そこで、インバータ制御部10は制動時に、モータ1の回転数が所定の回転数N※未満に減速すると、該モータ1のトルクをベクトル制御する電流指令値の内、磁束と同方向な電流成分idを予め定めた値以下に低減すると共に、該電流成分idを低減した状態で、電圧検出部による電圧検出VDCと第3の電流検出部19による電流検出IBを実施し、モータ1が回生するトルクを
推定する。 In the electric vehicle to which the braking control device for the electric vehicle according to the second embodiment described above is applied, a permanent magnet motor is used, and theinverter control unit 10 controls the torque of the motor 1 by vector control. In the vector control, the three-phase current is converted into two types of control, i.e., an id component (current component in the same direction as the magnetic flux) and an iq component (component orthogonal to id) based on the concept of the rotating coordinate system. The motor torque is obtained by adding the second value determined by the product of the id component and the iq component to the first value determined by the product of the torque constant φ, the iq component and the number of poles. Here, as the second value is smaller, the aforementioned correction amount of the torque correction amount can be obtained with higher accuracy. Therefore, when the inverter control unit 10 decelerates to less than a predetermined number of rotations N * during braking, the current component id in the same direction as the magnetic flux is included in the current command value for vector control of the torque of the motor 1. while reducing below a predetermined value, and while reducing the electric current component id, conduct current detection I B by the voltage detection V DC and third current detecting unit 19 by the voltage detection unit, the motor 1 is regenerated To estimate the torque to be applied.
推定する。 In the electric vehicle to which the braking control device for the electric vehicle according to the second embodiment described above is applied, a permanent magnet motor is used, and the
また、モータ1のトルク誤差だけではなく、バッテリ12が自身の状態を検知して充電電力の受入が困難と判断される場合もある。この場合は、回生トルクで制動力を得ることができないので、摩擦ブレーキにより必要な制動力を得る必要があり、ブレーキ踏み込みに応じた制動要求値を回生制動トルクと摩擦トルクに分配する車両コントローラ9に対して摩擦ブレーキでのみ制動力を得るような切替を指令する必要がある。そこで、インバータ制御部10は、電流検出部16で検知したモータ1の三相交流電流値iu,iv,iwから(9)式で算出されたモータ1のトルク制御量τ※と、車両コントローラ9からインバータ制御部10に指示した制動トルク指令値τ^と、式(7)で推定したトルク推定値τ0とを比較し、回生電力の受入れ可否を判断する。
Further, not only the torque error of the motor 1 but also the battery 12 may detect its own state and determine that it is difficult to accept charging power. In this case, since the braking force cannot be obtained with the regenerative torque, it is necessary to obtain the necessary braking force by the friction brake, and the vehicle controller 9 distributes the braking request value according to the depression of the brake to the regenerative braking torque and the friction torque. On the other hand, it is necessary to instruct switching to obtain a braking force only by the friction brake. Therefore, the inverter control unit 10 calculates the torque control amount τ * of the motor 1 calculated by the equation (9) from the three-phase AC current values iu, iv, iw of the motor 1 detected by the current detection unit 16 and the vehicle controller 9. Then, the braking torque command value τ ^ instructed to the inverter control unit 10 is compared with the estimated torque value τ 0 estimated by the equation (7) to determine whether the regenerative power can be accepted.
バッテリ12が充電電力の受入を困難であるか否かの判断は、次のように行われる。トルク推定部が推定したトルク推定値τ0とトルク制御量τ※がほぼ等しいにも拘わらず、これら二者と車両コントローラ9からインバータ制御部10に指示した制動トルク指令値τ^が異なることがある。これは、図5のステップS13が否定され、ステップS14が肯定された場合であり、バッテリ12自体が回生電力の受け入れをできない状況により生じる現象である。第2の実施の形態によれば、ステップS16において、こうした現象をバッテリ12が充電電力の受入が困難である状況であると判断し、ステップS17において、モータ1による回生制動から電子制御式摩擦ブレーキによる制動に切り替える。
このような制御により、バッテリ12により回生電力の受け入れが困難な状態であっても、ブレーキペダルの踏み込みに応じた制動トルクを確実に発生させることができる。
また、モータ制御コントローラ14はトルク定数φaを適宜補正するので、回生制動から摩擦制動への切替タイミングの精度も向上する。 The determination as to whether or not thebattery 12 is difficult to accept the charging power is performed as follows. Although the estimated torque value τ 0 estimated by the torque estimating unit and the torque control amount τ * are substantially equal, the braking torque command value τ ^ instructed from the vehicle controller 9 to the inverter control unit 10 is different from these two. is there. This is a case where step S13 in FIG. 5 is denied and step S14 is affirmed, and is a phenomenon caused by a situation where the battery 12 itself cannot accept regenerative power. According to the second embodiment, in step S16, it is determined that such a phenomenon is a situation in which the battery 12 has difficulty in receiving charging power. In step S17, the regenerative braking by the motor 1 is changed to the electronically controlled friction brake. Switch to braking with.
By such control, even when it is difficult to receive regenerative power by thebattery 12, it is possible to reliably generate a braking torque corresponding to depression of the brake pedal.
Moreover, since themotor controller 14 corrects the torque constant φa as appropriate, the accuracy of the switching timing from regenerative braking to friction braking is also improved.
このような制御により、バッテリ12により回生電力の受け入れが困難な状態であっても、ブレーキペダルの踏み込みに応じた制動トルクを確実に発生させることができる。
また、モータ制御コントローラ14はトルク定数φaを適宜補正するので、回生制動から摩擦制動への切替タイミングの精度も向上する。 The determination as to whether or not the
By such control, even when it is difficult to receive regenerative power by the
Moreover, since the
以上説明した実施の形態では、電気自動車の制動装置について言及しているが、ハイブリッド自動車への適用や、その他のシステムへの適用も可能であり、上記実施形態の構成に限定されるものではない。
Although the embodiment described above refers to the braking device for an electric vehicle, it can be applied to a hybrid vehicle and other systems, and is not limited to the configuration of the above embodiment. .
本発明は、上記の実施の形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. It is.
1 モータ
6 ブレーキペダル
9 車両コントローラ
10 インバータ制御部
11 主回路
12 バッテリ
13 コンデンサ
14 モータ制御コントローラ
15 磁極位置検出器
16 第1の電流検出器
17 第2の電流検出器
18 状態監視装置
19 第3の電流検出器
30 トルク補償部
57 電力演算部
58 銅損演算部
59 角速度演算部
60 トルク演算部
61 比較器
62 アクセルペダル DESCRIPTION OFSYMBOLS 1 Motor 6 Brake pedal 9 Vehicle controller 10 Inverter control part 11 Main circuit 12 Battery 13 Capacitor 14 Motor control controller 15 Magnetic pole position detector 16 1st electric current detector 17 2nd electric current detector 18 State monitoring apparatus 19 3rd Current detector 30 Torque compensator 57 Power calculator 58 Copper loss calculator 59 Angular velocity calculator 60 Torque calculator 61 Comparator 62 Accelerator pedal
6 ブレーキペダル
9 車両コントローラ
10 インバータ制御部
11 主回路
12 バッテリ
13 コンデンサ
14 モータ制御コントローラ
15 磁極位置検出器
16 第1の電流検出器
17 第2の電流検出器
18 状態監視装置
19 第3の電流検出器
30 トルク補償部
57 電力演算部
58 銅損演算部
59 角速度演算部
60 トルク演算部
61 比較器
62 アクセルペダル DESCRIPTION OF
Claims (6)
- バッテリから供給される電力を制御するインバータ制御部と、
前記インバータ制御部によって制御され、力行運転時には駆動輪に駆動トルクを与え、回生運転時には駆動輪に回生制動トルクを与えるモータと、
制動時に、前記モータから前記バッテリに回生する回生電力による得られる前記回生制動トルクと、電子制御式摩擦ブレーキによる摩擦制動トルクの分担を制御する制動制御部とを備え、
前記インバータ制御部は、更に、
前記バッテリへ回生する回生電力から前記モータの実トルクを推定するトルク推定部と、
前記制動制御部が前記モータに指示した回生制動トルク指令値と、前記トルク推定部が推定した実トルク値との差から、前記モータが出力する前記回生制動トルクをフィードバック制御するフィードバック制御部とを備える電動車両の制動制御装置。 An inverter control unit for controlling power supplied from the battery;
A motor that is controlled by the inverter control unit and applies driving torque to the driving wheel during power running operation, and applies regenerative braking torque to the driving wheel during regenerative operation;
A braking control unit that controls the sharing of the regenerative braking torque obtained by the regenerative electric power regenerated from the motor to the battery at the time of braking, and the friction braking torque by the electronically controlled friction brake;
The inverter control unit further includes:
A torque estimator for estimating the actual torque of the motor from regenerative power regenerated to the battery;
A feedback control unit that feedback-controls the regenerative braking torque output by the motor from a difference between a regenerative braking torque command value instructed to the motor by the braking control unit and an actual torque value estimated by the torque estimation unit; A braking control device for an electric vehicle. - 請求項1に記載の電動車両の制動制御装置において、
前記トルク推定部は、前記モータの3相の出力線に設けられた第1電流検出器の電流検出値から前記モータの銅損を求め、前記求められた銅損と前記モータの角速度と前記回生電力とに基づいて前記モータの実トルクを推定する電動車両の制動制御装置。 The braking control device for an electric vehicle according to claim 1,
The torque estimating unit obtains a copper loss of the motor from a current detection value of a first current detector provided on a three-phase output line of the motor, and obtains the obtained copper loss, the angular velocity of the motor, and the regeneration. A braking control device for an electric vehicle that estimates an actual torque of the motor based on electric power. - 請求項1または請求項2に記載の電動車両の制動制御装置において、
前記トルク推定部は、前記バッテリの正負極間電圧と、前記バッテリへ回生させる電流とに基づいて前記回生電力を算出する電動車両の制動制御装置。 In the braking control device for an electric vehicle according to claim 1 or 2,
The said torque estimation part is a braking control apparatus of the electric vehicle which calculates the said regenerative electric power based on the voltage between the positive / negative electrodes of the said battery, and the electric current regenerated to the said battery. - 請求項1に記載の電動車両の制動制御装置において、
制動制御装置はさらに、前記バッテリの正負極端子間の電圧を検出する電圧検出部と、 前記バッテリへ回生させる電流を検出する第3の電流検出部とを有し、
前記トルク推定部は、制動時に前記電圧検出部が検知した電圧値と前記第3の電流検出部が検知した電流とに基づいて、前記モータが回生するトルクの推定値を推定し、
前記インバータ制御部は、前記制動制御部が前記モータに指示した制動トルク指令値と、前記トルク推定部が推定したトルク推定値とに基づいて、トルクを補正する補正量を演算して記憶する補正量演算部をさらに有する電動車両の制動制御装置。 The braking control device for an electric vehicle according to claim 1,
The braking control device further includes a voltage detection unit that detects a voltage between the positive and negative terminals of the battery, and a third current detection unit that detects a current to be regenerated to the battery,
The torque estimation unit estimates an estimated value of torque regenerated by the motor based on the voltage value detected by the voltage detection unit during braking and the current detected by the third current detection unit,
The inverter control unit calculates and stores a correction amount for correcting torque based on the braking torque command value instructed to the motor by the braking control unit and the estimated torque value estimated by the torque estimation unit. The braking control apparatus of the electric vehicle which further has a quantity calculating part. - 請求項4に記載の電動車両の制動制御装置において、
前記トルク推定部は、制動時に前記モータの回転数が所定の回転数未満に減速すると、前記モータのトルクをベクトル制御する電流指令値の内、磁束と同方向な電流成分を予め定めた値以下に低減すると共に、前記電流成分を低減した状態で、前記電圧検出部による電圧検出と前記第3の電流検出部による電流検出を行い、前記モータが回生するトルクを推定する電動車両の制動制御装置。 The braking control device for an electric vehicle according to claim 4,
The torque estimating unit reduces a current component in the same direction as the magnetic flux within a predetermined value within a current command value for vector control of the torque of the motor when the rotational speed of the motor is reduced below a predetermined rotational speed during braking. And a braking control device for an electric vehicle that performs voltage detection by the voltage detection unit and current detection by the third current detection unit in a state where the current component is reduced, and estimates a torque regenerated by the motor . - 請求項4または5記載の電動車両の制動制御装置において、
前記インバータ制御部は、前記モータに供給する電流を検出する第4の電流検出部を有し、この第4の電流検出部で検知した電流値から前記モータのトルク制御量を演算し、
制動制御装置はさらに、前記モータに指示した制動トルク指令値と、前記トルク推定部が推定したトルク推定値と、前記演算されたトルク制御量の三種を比較して、三種の比較結果に基づいて、
(1)前記補正量の更新処理と、(2)前記バッテリが回生電力の受け入れ可否判定処理と、(3)回生電力の受け入れができないと判定したときに前記モータによる回生制動から前記電子制御式摩擦ブレーキによる制動に切り替える切替処理とを行うトルク補償部を備える電動車両の制動制御装置。 The braking control device for an electric vehicle according to claim 4 or 5,
The inverter control unit has a fourth current detection unit that detects a current supplied to the motor, calculates a torque control amount of the motor from a current value detected by the fourth current detection unit,
The braking control apparatus further compares the braking torque command value instructed to the motor, the estimated torque value estimated by the torque estimating unit, and the calculated torque control amount, and based on the three types of comparison results. ,
(1) the correction amount update process, (2) the battery accepts regenerative power, and (3) regenerative braking by the motor when it is determined that regenerative power cannot be accepted. A braking control device for an electric vehicle including a torque compensator that performs switching processing for switching to braking by a friction brake.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013141671A JP2016165165A (en) | 2013-07-05 | 2013-07-05 | Braking control device of electric vehicle |
JP2013-141671 | 2013-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015001849A1 true WO2015001849A1 (en) | 2015-01-08 |
Family
ID=52143442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063014 WO2015001849A1 (en) | 2013-07-05 | 2014-05-16 | Electric-vehicle braking control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016165165A (en) |
WO (1) | WO2015001849A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3144175A1 (en) * | 2015-09-17 | 2017-03-22 | ALSTOM Transport Technologies | Method for controlling an electric vehicle, in particular a railway vehicle, control device for an electric vehicle, and railway vehicle |
CN111817637A (en) * | 2019-04-08 | 2020-10-23 | 三菱电机株式会社 | Motor control device |
CN115081266A (en) * | 2022-05-10 | 2022-09-20 | 中国第一汽车股份有限公司 | Method and system for calculating efficiency of electric drive system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113765443A (en) * | 2021-08-30 | 2021-12-07 | 武汉理工大学 | Electric power-assisted brake control method, design simulation method, device and medium thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05284611A (en) * | 1992-03-30 | 1993-10-29 | Toyota Motor Corp | Controller for electric automobile |
JPH0923508A (en) * | 1995-07-07 | 1997-01-21 | Honda Motor Co Ltd | Controller for electric motor car |
JPH11146501A (en) * | 1997-11-05 | 1999-05-28 | Hitachi Ltd | Controlling device for electric vehicle |
JP2001028892A (en) * | 1999-07-13 | 2001-01-30 | Toyota Motor Corp | Torque detector and driving controller for ac motor |
JP2010173610A (en) * | 2009-02-02 | 2010-08-12 | Toyota Motor Corp | Electric motor vehicle |
JP2013031257A (en) * | 2011-07-27 | 2013-02-07 | Aisin Aw Co Ltd | Rotary electric machine control device |
JP2013056587A (en) * | 2011-09-07 | 2013-03-28 | Toyota Motor Corp | Vehicle brake control device |
-
2013
- 2013-07-05 JP JP2013141671A patent/JP2016165165A/en active Pending
-
2014
- 2014-05-16 WO PCT/JP2014/063014 patent/WO2015001849A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05284611A (en) * | 1992-03-30 | 1993-10-29 | Toyota Motor Corp | Controller for electric automobile |
JPH0923508A (en) * | 1995-07-07 | 1997-01-21 | Honda Motor Co Ltd | Controller for electric motor car |
JPH11146501A (en) * | 1997-11-05 | 1999-05-28 | Hitachi Ltd | Controlling device for electric vehicle |
JP2001028892A (en) * | 1999-07-13 | 2001-01-30 | Toyota Motor Corp | Torque detector and driving controller for ac motor |
JP2010173610A (en) * | 2009-02-02 | 2010-08-12 | Toyota Motor Corp | Electric motor vehicle |
JP2013031257A (en) * | 2011-07-27 | 2013-02-07 | Aisin Aw Co Ltd | Rotary electric machine control device |
JP2013056587A (en) * | 2011-09-07 | 2013-03-28 | Toyota Motor Corp | Vehicle brake control device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3144175A1 (en) * | 2015-09-17 | 2017-03-22 | ALSTOM Transport Technologies | Method for controlling an electric vehicle, in particular a railway vehicle, control device for an electric vehicle, and railway vehicle |
CN111817637A (en) * | 2019-04-08 | 2020-10-23 | 三菱电机株式会社 | Motor control device |
CN111817637B (en) * | 2019-04-08 | 2024-04-16 | 三菱电机株式会社 | Motor control device |
CN115081266A (en) * | 2022-05-10 | 2022-09-20 | 中国第一汽车股份有限公司 | Method and system for calculating efficiency of electric drive system |
Also Published As
Publication number | Publication date |
---|---|
JP2016165165A (en) | 2016-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055246B2 (en) | Control device for rotating electrical machine | |
US8791716B2 (en) | Anomaly detector of permanent magnet synchronous electric motor | |
JP4634321B2 (en) | Control device for electric four-wheel drive vehicle | |
US9787230B2 (en) | Synchronous motor control device for electric automobile | |
EP2097288B1 (en) | Apparatus and method for controlling energy feedback for electric vehicle | |
JP3695342B2 (en) | Electric motor control device | |
JP5055836B2 (en) | Phase shift detection device and detection method for magnetic pole position sensor for synchronous motor | |
US20120323430A1 (en) | Electrically powered vehicle and method of controlling the same | |
EP2671747B1 (en) | Vehicle and vehicle control method | |
US9590551B2 (en) | Control apparatus for AC motor | |
EP2963807B1 (en) | Motor control device and motor control method | |
US9050895B2 (en) | Control apparatus of rotating electrical machine | |
JPH1118496A (en) | Controller and control method for electric vehicle | |
WO2015001849A1 (en) | Electric-vehicle braking control device | |
JP6589492B2 (en) | Inverter control device | |
JP2011050183A (en) | Inverter device | |
JP6983305B2 (en) | Vehicle control device | |
JPH1169900A (en) | Controller for electric rolling stock | |
EP3745589B1 (en) | Inverter control method and inverter control device | |
JP6217299B2 (en) | Motor control system | |
JP5462121B2 (en) | Motor control device | |
JP5884747B2 (en) | AC motor control device | |
CN113261199B (en) | Motor control device | |
JP2012114974A (en) | Control apparatus for electric vehicle | |
JP6269328B2 (en) | Synchronous motor control device and vehicle control system including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14819830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14819830 Country of ref document: EP Kind code of ref document: A1 |