WO2015099427A1 - 의료용 바늘의 삽입 경로의 생성 방법 - Google Patents
의료용 바늘의 삽입 경로의 생성 방법 Download PDFInfo
- Publication number
- WO2015099427A1 WO2015099427A1 PCT/KR2014/012761 KR2014012761W WO2015099427A1 WO 2015099427 A1 WO2015099427 A1 WO 2015099427A1 KR 2014012761 W KR2014012761 W KR 2014012761W WO 2015099427 A1 WO2015099427 A1 WO 2015099427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insertion path
- needle
- distance
- image
- lung
- Prior art date
Links
- 238000003780 insertion Methods 0.000 title claims abstract description 460
- 230000037431 insertion Effects 0.000 title claims abstract description 450
- 238000000034 method Methods 0.000 title claims abstract description 163
- 230000009545 invasion Effects 0.000 claims abstract description 37
- 210000003484 anatomy Anatomy 0.000 claims abstract description 33
- 210000004204 blood vessel Anatomy 0.000 claims description 75
- 210000004072 lung Anatomy 0.000 claims description 71
- 230000008569 process Effects 0.000 claims description 39
- 230000002685 pulmonary effect Effects 0.000 claims description 36
- 230000002792 vascular Effects 0.000 claims description 34
- 210000001147 pulmonary artery Anatomy 0.000 claims description 21
- 238000002059 diagnostic imaging Methods 0.000 claims description 13
- 238000005266 casting Methods 0.000 claims description 12
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 10
- 210000003492 pulmonary vein Anatomy 0.000 claims description 7
- 238000013152 interventional procedure Methods 0.000 abstract description 8
- 238000001574 biopsy Methods 0.000 description 108
- 210000004556 brain Anatomy 0.000 description 56
- 230000001681 protective effect Effects 0.000 description 45
- 230000011218 segmentation Effects 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 210000001367 artery Anatomy 0.000 description 7
- 238000002513 implantation Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 210000003462 vein Anatomy 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 210000000038 chest Anatomy 0.000 description 3
- HGBLNBBNRORJKI-WCABBAIRSA-N cyclacillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C1(N)CCCCC1 HGBLNBBNRORJKI-WCABBAIRSA-N 0.000 description 3
- 238000002594 fluoroscopy Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000001370 mediastinum Anatomy 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000010827 pathological analysis Methods 0.000 description 2
- 210000004303 peritoneum Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 206010063659 Aversion Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000002924 energy minimization method Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0534—Electrodes for deep brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/06—Ray-tracing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/005—Tree description, e.g. octree, quadtree
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0801—Prevention of accidental cutting or pricking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2021—Shape modification
Definitions
- the present disclosure relates to a method of generating an insertion path of a medical needle, and more particularly, to a method of generating an insertion path of a medical needle that automatically generates an insertion path.
- the present disclosure relates to a method of generating an insertion path of a medical device, and more particularly, to a method of generating an insertion path of a medical device that automatically generates an insertion path.
- the present disclosure also relates generally to an INTERVENTIONAL PROCEDURE ROBOT HAVING NEEDLE INSERTION TYPE, and more particularly to a needle-inserted interventional robot that reduces the fear that a needle-type medical instrument gives to a patient.
- Medical imaging-based biopsy is an interventional procedure that minimizes damage to normal surrounding tissue and draws samples for pathological diagnosis of neoplastic disease. It is widely applied to areas such as the peritoneum, lung mediastinum, spine and extremities. Medical imaging-based biopsies use high-resolution images to delicately localize lesions in three dimensions and to view biopsy needles that enter tissues, making it easier to detect small lesions.
- the insertion path of the biopsy needle may be guided by a CT or C-arm fluoroscopy image at a procedure for performing a medical image-based biopsy. Due to problems such as radiation exposure, the insertion path is usually planned in advance on the diagnostic image. For example, in the planning of the insertion path, the entry angle of the biopsy needle to the patient's body is important, and the insertion path is planned by defining the entry angle and the insertion point. However, the planning of this route of insertion depends largely on the experience of the physician rather than on the objective basis of the degree of invasion of blood vessels or bones. Therefore, the optimal path of insertion may be different for different physicians in the biopsy of the same lesion. In particular, in the biopsy of lungs using floroscopy, it is common to select the insertion path of the shortest distance in an axial two-dimensional image. However, in reality, bleeding occurs frequently during biopsy and is a great risk.
- US Patent No. 6,487,431 discloses a technique for displaying a plurality of CT slices on a medical image in real time to guide a biopsy needle along a guideline.
- US Patent No. 6,487,431 discloses a technique for displaying a plurality of CT slices on a medical image in real time to guide a biopsy needle along a guideline.
- the guideline insertion path
- Medical devices such as leads (e.g., leads for deep brain stimulation), biopsy needles (e.g., biopsy needles, probes, catheter) It is important that implantation or implantation be done so that blood vessels or anatomically important structures are intact or minimally invasive.
- such procedures include neurosurgery that affects various functions of the brain.
- Neurosurgery surgery may include surgery to remove tumors from the brain, as well as surgery to stimulate specific areas of the brain with specific functions (Deep Brain Stimulation (DBS)).
- DBS Deep Brain Stimulation
- neurosurgeons perform deep brain stimulation (DBS) to treat serious illnesses such as Parkinson's disease, OCD and depression.
- Deep brain stimulation requires implanting electrodes in the deeper part of the brain that can suppress or stimulate certain parts of the brain nerve to normalize the brain function of the patient.
- the electrode may be provided at the end of the lead, and the lead is inserted along the insertion path of the brain.
- the implantation or implantation of the medical device involves the insertion of a lead that does not damage major structures such as blood vessels of the brain while allowing the electrodes of the medical device, e.g., DBS, to reach the target precisely. Finding a path is important. In the planning of the insertion path, the entry angle of the lead to the brain is important, and the insertion path is planned by defining the entry angle and the insertion point.
- existing planning of implantation route relies heavily on the experience and knowledge of physicians rather than on objective and quantitative basis as to the extent of invasion of the insertion route to the critical anatomical structures of blood vessels or brain. Thus, different physicians for the same patient may have different paths of insertion.
- 2012/0184844 discloses a method for generating a plurality of insertion paths in DBS, but does not disclose a specific method of evaluating the degree of invasion of the insertion path itself and planning the insertion path by avoiding blood vessels and the like. I can't.
- biopsy needles e.g. biopsy needles
- leads e.g. leads for deep brain stimulation
- probes catheter, etc.
- Interventional procedures such as implantation or implantation, are important to ensure that blood vessels or anatomically important structures are intact or minimally invasive.
- medical imaging-based biopsy is an interventional procedure that minimizes damage to the surrounding normal tissue and draws samples for pathological diagnosis of neoplastic disease. It is widely applied to areas such as the peritoneum, lung mediastinum, spine and extremities such as the pancreas and lymph nodes.
- Biopsy medical image-based biopsy
- the path of insertion of the biopsy needle is guided by a CT or C-arm fluoroscopy image at the operating room, and the procedure can be performed while the operator is exposed to radiation because the operator's experience is highly dependent. Therefore, there is a need for developing a needle-insertion interventional robot to solve problems such as the exposure of the operator and the patient to the radiation and the accuracy of the procedure.
- the patient's radiation exposure is reduced due to the shortening of the procedure time, and it can be expected to reduce complications and maximize safety.
- the operator's radiation exposure can be eliminated and operator safety improved through an automated system.
- an interventional robot is set, the biopsy needle is mounted on the interventional robot, automatically moved in accordance with an external control signal to set the initial position, and the biopsy is just before the entry point on the patient's skin.
- the needle will move.
- the biopsy needle causes fear and discomfort in the patient.
- a nearby operator or assistant may be infected by a biopsy needle being stuck or collided with the biopsy needle and other equipment to contaminate the biopsy needle.
- U.S. Patent Application Publication No. 2012/0330325 discloses a robot equipped with a biopsy needle, but the needle is exposed as it is, and there is no disclosure or suggestion of a method of solving the problems because there is no problem.
- a method of generating an insertion path of a medical needle from an entry point to a target, a target and an anatomical structure Preparing a medical image including a; And extracting the insertion path in consideration of at least one of the invasion amount and the distance of the insertion path to the anatomical structure by the insertion path.
- the method in a method of generating an insertion path of a medical device from an entry point to a target, the method comprises a target and a non-invasive region. Preparing an image of the subject; Specifying an initial insertion region including an insertion path; specifying an initial insertion region having a three-dimensional column shape in which a cross-sectional area decreases closer to a target; Determining whether the initial insertion region intersects with the non-invasive region; And the initial insertion area is reduced to avoid the intersection to create a safe insertion area; there is provided a method of generating an insertion path of a medical device.
- a needle-insertion interventional robot comprising: a robot arm positioned around a patient in accordance with a control signal applied from the outside; A needle-shaped medical tool carried by the robotic arm; And a protection module installed on the robot arm and covering the needle-type medical tool from the patient's field of view.
- FIG. 1 is a view illustrating an example of a method for generating an insertion path of a medical needle according to the present disclosure
- FIG. 2 is a diagram illustrating an example of a segmented lung image
- 3 is a view for explaining an example of a method for obtaining a distance map
- FIG. 4 is a view for explaining an example of a method for creating a pulmonary vascular tree
- FIG. 5 is a view for explaining an example of a ray casting method
- FIG. 6 is a view for explaining an example of an insertion path extraction method
- FIG. 7 is a view showing an insertion path reduced out of a safety margin
- FIG. 8 is a view showing the number of sizes of blood vessels located at a predetermined distance from the selected insertion path
- FIG. 9 is a view for explaining a method of removing a part of the insertion path in consideration of the movement, such as breathing in the operating room,
- FIGS. 8 and 9 are views illustrating an example in which the insertion path described in FIGS. 8 and 9 is actually implemented
- FIG. 11 is a view for explaining an example in which the insertion region and the optimum insertion path shown in FIG. 10 are displayed on the MPR;
- FIG. 12 illustrates an example of a method for generating an insertion path of a medical device according to the present disclosure
- FIG. 13 to 16 are views illustrating an example of a process of preparing a brain image including a target and an invasive non-invasive region
- 17 and 18 are diagrams for explaining an example of brain images arranged in a volume image
- 19 is a view showing an example of an interface of software for insert path planning
- 20 is a view for explaining an example of how an insertion range is specified
- FIG. 21 is an enlarged view of a portion of FIG. 20; FIG.
- 22 is a view for explaining an example of a process of generating a safe insertion region from an initial insertion region
- 23 is a view for explaining an example of an insertion path shown in sagittal, axial, coronal views, and 3D image;
- 25 is a view for explaining an example of an interventional intervention system in which a needle insertion interventional robot according to the present disclosure is used;
- Figure 26 (a) is a view showing an example of a state in which the needle-shaped medical tool is hidden
- Figure 26 (b) is a view showing an example of a state in which the needle-shaped medical tool is exposed
- 27 is a view for explaining an example of the operation of the needle insertion intervention robot
- FIG. 30 is a view for explaining an example of a manner in which a protection module operates
- 31 is a view for explaining another example of the needle-insertion interventional robot according to the present disclosure.
- 32 is a view for explaining another example of the needle-inserted interventional robot according to the present disclosure.
- 33 is a view for explaining another example of the needle-insertion interventional robot according to the present disclosure.
- 34 is a view for explaining another example of the needle insertion interventional robot according to the present disclosure.
- 35 is a view for explaining an example of the operation of the needle insertion interventional robot according to the present disclosure.
- FIG. 1 is a view illustrating an example of a method for generating an insertion path of a medical needle according to the present disclosure.
- a medical image including a target is first prepared (S11).
- An insertion point of the medical needle is determined using the medical image, and at least one of the invasion amount and the distance of the insertion path by the insertion path from the insertion point to the object 100 (see FIG. 6) is taken into consideration so that the insertion path is determined. It is extracted (S41).
- the medical image may be prepared through an image processing process (eg, segmentation) of the basic medical image generated from the medical imaging apparatus.
- anatomical structures eg, blood vessels, bones, etc.
- a distance map may be generated using the set of voxels (S21), and a target of the medical needle may be selected from the divided medical images (S31).
- S21 set of voxels
- S31 target of the medical needle
- S31 the distance of the insertion path from the insertion point to the subject is weighted, and each distance from the insertion path to the anatomical structure included in the medical image, i. At least one insertion path below the allowable value may be generated (S31).
- the extracted plurality of insertion paths may form a cone-shaped insertion region, and the insertion region may be reduced in consideration of safety margin (S51).
- the insertion path thus determined may be input to the medical image to be a surgical plan.
- the procedure image is acquired at the procedure site, the plan image and the procedure image are matched, and an insertion path is displayed on the procedure image to guide the procedure (S61).
- the insertion path may be modified through the user interface (S71), and an inappropriate insertion path may be removed in consideration of breathing or movement (S81).
- FIG. 2 is a diagram illustrating an example of a segmented lung image.
- the method of generating the insertion path of the medical needle may be applied to organs such as lungs, kidneys, liver, etc., and application to other parts of the organs is not excluded.
- organs such as lungs, kidneys, liver, etc.
- application to other parts of the organs is not excluded.
- the lungs are described.
- anatomical structures e.g., blood vessels, ribs, airways, lung boundaries, etc.
- segmentation techniques e.g., adaptive threshold.
- anatomical structures, such as blood vessels are extracted into a three-dimensional set of voxels (eg, the segmented vessels shown in the first figure on the left side of FIG. 4).
- 2 shows an axial cross section of a lung image in which anatomical structures such as blood vessels are divided.
- Anatomical structures, such as blood vessels, ribs, and airways segmented from the lung images include lung masks, vessel masks, rib masks, and airway masks. Can be stored as.
- 3 is a view for explaining an example of a method for obtaining a distance map.
- a lung map, a lung boundary, a lip distance map using a lung mask, a vessel mask, a rib mask, an airway mask, or the like may be used.
- a map of ribs, a distance map of pulmonary vessels, a distance map of airway, and the like may be made (S21).
- the generation of the pulmonary vascular distance map may include a process in which distance information from a boundary of a blood vessel to all voxels is given to all voxels of the lung image.
- the process of generating the lung boundary distance map, the lip distance map, and the airway distance map may likewise include processes in which distance information from the lung boundary, distance from the rib boundary, and distance information from the airway boundary are assigned to the voxels, respectively.
- the distance of the insertion path or the distance between the insertion path and the anatomical structure can be calculated. Therefore, it is possible to find an anatomical structure that intersects the insertion path of the medical needle.
- 3 (a) shows an example of a method of generating an Euclidean distance map.
- the right lung and left lung divided in the set of voxels of the lung image may be mathematically represented as LR and LL ⁇ as a set of voxels.
- Euclidean distance maps may be generated from their boundaries 5 (see FIG. 3 (b)) for the LRs and LLs for the generation of closed boundary distance maps. It will be appreciated by those skilled in the art that various methods may be used in addition to the Euclidean distance map as a method of generating the distance map.
- FIG. 4 is a view for explaining an example of a method for creating a pulmonary vascular tree.
- the distance map described above can be used in the process of calculating the subsequent invasion amount and the distance of the insertion path.
- a method of using a pulmonary vessel tree may be considered.
- pulmonary vessels are extracted from a volumetric chest CT image as a set of voxels (a point set extraction; FIG. 4 (a)) and an initial pulmonary vessel tree is generated by the construction energy minimization method (initial tree). construction (Fig. 4 (b)). Then, the proximal region (Fig. 4 (c)) is cut from the initial pulmonary vascular tree (Fig. 4 (c)) so that the branches of the initial pulmonary vascular tree are automatically split into sub-trees. (segmentation) (automatically separated branches; FIG. 4 (d)). Then, the branches extend from the branches of the initial pulmonary vascular tree to the cut off root region to recombine the subtree (FIG. 4 (e)). Thereafter, pulmonary blood vessels are classified into pulmonary arteries and pulmonary veins based on the recombined initial tree to generate a classified pulmonary vascular tree (artery and vein selection; FIG. 4 (f)).
- the number of blood vessels that meet the insertion path and the extent to which the blood vessels invade can be calculated by the insertion path in a subsequent procedure.
- Generating an insertion path is generally performed in a diagnostic image.
- performing the process of distinguishing the pulmonary artery and the pulmonary vein from the diagnostic image may be helpful in a subsequent process.
- the basic is to perform pulmonary blood vessel segmentation, artery and vein segmentation information from the diagnostic image by overlaying the procedure image (overlay) can also be used.
- FIG. 4 (f) is a sagittal view of the divided pulmonary vascular tree, in which the pulmonary artery and the pulmonary vein may be distinguished by displaying different colors (color distinction is not shown in FIG. 4 (f)).
- the right lung and left lung are clearly divided into LR and LL ⁇ as a set of voxels before the blood vessels are obtained as a set of voxels.
- ⁇ ⁇ c
- v a set of voxels of an image and let I (c) be the attenuation intensity of voxel c.
- vascular points V ⁇ vi ⁇ ⁇ R 3 are extracted.
- E is the set of edges.
- the initial tree is constructed by the minimizing the cost method defined by Equation (1) below.
- w j is the weight of vertex j
- e ij is the direction weight of edge (i, j)
- ⁇ , ⁇ , ⁇ ⁇ R are positive user-defined constants.
- w j is a value indicating the connection characteristics of vertex j
- Is defined as I (v j ) is the attenuation intensity of v j normalized by the total vascular points, and ⁇ (v j ) is the normalized distance from the vessel boundaries.
- e ij is a factor indicating the directional similarity between the direction of the edge and the vascular orientation evaluated at v j .
- the solution to minimizing equation (1) is naturally the minimum spanning tree (MST).
- T i (Vi, Ei) ⁇ T i-th sub-tree of T
- equations (2) derived from Livny et al, "Automatic reconstruction of tree skeletal structures from point clouds", ACM Transactions on Graphics , vol. 29 (6), Article 151, 2010 before cutting.
- the orientation vectors ⁇ o i ⁇ of all vertices are evaluated again.
- V P i is The parent vertex of vi. Using ⁇ oi ⁇ the groups multiply back from each root vertex to the truncated area and recombine if there are no overlapping branches. Finally, based on the recombined pulmonary vascular tree, the types of blood vessels (artery or vein) are determined by the user interface to create a separate pulmonary vascular tree. Separated pulmonary vascular trees are stored with the masks T A , T V , respectively, for the next step.
- the number and thickness of invaded vessels by the insertion route in subsequent procedures can be calculated as well as whether the invaded vessels are arteries or veins.
- FIG. 5 is a view for explaining an example of a ray casting method.
- the location of the blood vessel that meets can be found. That is, a voxel at a specific position forming a blood vessel meeting the ray 3 may be found or a distance from the blood vessel may be obtained.
- the vascular distance map includes distance information from the vascular boundary shown in the vascular mask to all voxels.
- calculating all distances from the boundaries of anatomical structures using masks of anatomical structures other than blood vessels, i.e. using the distance maps described above, the thickness of the vessels that intersects the number of vessels in the path of the ray can be calculated. have.
- the pulmonary vascular tree described above may be used to determine the distance of invasion and insertion path.
- a method of finding the intersection of the pulmonary vascular tree and the offset surface may be used.
- a virtual offset surface 7 at the same distance from the lung boundary 5 can be extracted in the form of a triangular mesh using the Euclidean distance map described in FIG. 3 (a) (FIG. 3).
- the triangular mesh can be calculated using a known marching cubes algorithm, which can be performed efficiently by parallel computing using graphic processing units (GPUs). Then, for example, it can be found at which offset surface 7 the intersection of the ray 3 and the blood vessel is located.
- the azimuth vector of the blood vessel can be obtained by performing basic component analysis on the blood vessel.
- the blood vessels of the divided pulmonary vascular tree do not always pass vertically through the offset surface (7)
- the blood vessels are projected perpendicular to the offset surface (7) so that the cross-sectional area of the blood vessels at the offset surface (7)
- the in offset area can be calculated.
- the radius of the blood vessel may be calculated using the offset area and the blood vessel orientation vector in a direction perpendicular to the blood vessel orientation vector. Therefore, quantitative values such as the number and thickness (or area) of blood vessels that meet the insertion path can be calculated.
- FIG. 6 is a view for explaining an example of the insertion path extraction method.
- the distance to anatomical structures such as blood vessels that meet the insertion path by 3D ray casting can be calculated using a distance map as described in FIG. 5, or using a pulmonary vessel tree.
- the method of generating an insertion path in 3D encompasses a method of extracting an insertion path in a 2D manner.
- the insertion path in 3D allows the creation of an insertion path in 3D, ie obliquely, beyond the limitations of guiding the insertion path on a 2D cross section (eg axial cross section), such as fluoroscopy.
- an insertion path having an inclination with respect to two surfaces (sagittal view and coronal view) in which the insertion path is perpendicular to the axial plane may be formed.
- more selection ranges can be provided for optimization of the insertion path.
- the insertion path may be found by raycasting the entire 360 degree
- the user eg, a doctor
- the range of the insertion point 20 may be selected widely except for the region where the insertion of the medical needle is not allowed from the medical point of view.
- the computer automatically changes the insertion point within the range of insertion points 20, and an insertion path is set from the insertion point to the target, and the amount of invasion to the vessel or the like for each insertion area is established. And the distance of the insertion path can be calculated.
- a predetermined range may be given as the insertion point range 20 based on the insertion point of the shortest distance insertion path 300, and the invasion amount and distance of the insertion path may be calculated while the insertion point is changed within this range.
- . 6 illustrates a 2D axial cross section, the extraction of the insertion path may be performed in 3D as described above.
- the amount of invasion is, for example, the number and thickness (or area) of the insertion path meeting with anatomical structures such as blood vessels, and the distance of the insertion path is, for example, from the insertion point of the border of the lung to the object 100.
- Distance The method of obtaining the distance of the insertion path or the chip wetness is illustrated in FIGS. 5 and 6.
- the safety margin set by the user Drib can be infinite. This means that the insertion path intersects the ribs and cannot be created as the insertion path. As such, an insertion path of a desired condition may be generated using each distance and weight.
- the insertion path 300 having the shortest distance may be extracted.
- the actual insertion path can be determined between and including these two approaches. For example, an insertion path having an amount of invasion less than or equal to an allowable value may be extracted, and an insertion path having a minimum distance of the insertion path may be extracted from an insertion path having an invasion amount less than or equal to the allowable value.
- FIG. 7 is a view showing an insertion path reduced out of a safety margin.
- a plurality of insertion paths satisfying the above equation may be extracted.
- the plurality of insertion paths may be represented by the insertion region 230 in approximately three dimensions.
- the insertion region 230 may have a cone shape in which the cross-sectional area is reduced from the insertion point 271 to the object 100.
- the safety margin of the insertion area of the medical needle can be determined.
- the safety margin may be an area of distance from the invading structure of the vessel 140 or the virtual wall 120 (eg, an organ other than the lung). Therefore, the insertion path within the safety margin is preferably removed from the insertion region 230 which is a set of insertion paths generated by the above equation. As such, the reduced insertion region 235 may be generated as a result of the insertion path within the safety margin being removed.
- FIG. 8 is a view showing the number of blood vessels located at a predetermined distance from the selected insertion path.
- a centerline may be extracted to the insertion path 251 in the reduced insertion region 235.
- an insertion path may be selected within the reduced insertion area 235.
- the at least one insertion path determined as described above may be displayed on the lung image from which the insertion path is extracted, and the lung image to which the insertion path is input becomes an operation plan image (see the left figure of FIG. 11).
- the surgical planning image may be matched with a surgical lung image obtained from the current patient in the operating room.
- An insertion path may be mapped and displayed on the matched lab lung image (refer to the right figure of FIG. 11). The surgeon may modify the insertion path shown in the matched lung image on the user interface (eg, a mouse).
- the invasion amount and the distance of the insertion path by the modified insertion path may be automatically calculated and displayed on the matched lung image or another device.
- the number of blood vessels located in the planes 252, 254, and 256 at intervals based on the selected insertion path 251 may be measured and displayed.
- the display eg, operating room image
- FIG. 9 is a view for explaining a method of removing a part of the insertion path in consideration of the movement, such as breathing in the operating room.
- the matched lab lung image may include an insertion path 142 overlapping the safety margin due to breathing, and an insertion path 141 further away from the safety margin. This can be found by observing the cycle of breathing. Therefore, it is desirable that the insertion path 142 overlapping the safety margin due to breathing be removed.
- FIG. 10 is a diagram illustrating an example in which the insertion path described in FIGS. 8 and 9 is actually implemented.
- FIG. 11 is a view for explaining an example in which the insertion region and the optimum insertion path shown in FIG. 10 are displayed on the MPR.
- the insertion region 235 on a multiplanar reconstruction (MPR, axial view, coronal view, sagittal view) ) And an optimal insertion path 251 and a user defined path 257 may be overlaid and displayed (an axial view is illustrated in FIG. 11).
- MPR multiplanar reconstruction
- axial view coronal view
- sagittal view a multiplanar reconstruction
- user defined path 257 an optimal insertion path 251 and a user defined path 257 may be overlaid and displayed (an axial view is illustrated in FIG. 11).
- the amount of invasion, the distance of the insertion path is optimized, the breathing is considered, and the medical needle is guided along the insertion path identified on the MPR to perform a necessary procedure such as a biopsy.
- the final confirmed insertion path may be sent to a robot or navigation device or the like using TCP / IP or a dedicated communication protocol to aid in the procedure.
- FIG. 12 is a view for explaining an example of a method for generating an insertion path of a medical device according to the present disclosure.
- a brain image including a target and a non-invasive region is first prepared (S11).
- an invasive non-invasive region including a blood vessel and a target are obtained as a set of three-dimensional voxels through segmentation of sagittal view, axial view, and coronal view brain images obtained from a medical imaging apparatus (S11). Segmented brain images are volume aligned based on the Anterior commissure-Posterior commissure line (S21).
- S31 an initial insertion region including an insertion path is designated (S31).
- the initial insertion region has a three-dimensional column shape (eg truncated column) whose cross-sectional area decreases closer to the target. For example, by specifying an entry range on the surface of the object shown in the image of the object, an initial insertion area is defined from the insertion range to the target. Subsequently, it is determined whether or not the intersection between the initial insertion region and the non-invasive region is allowed. For example, the distance from the boundary of the initial insertion region to the non-invasive region is calculated using the distance map (S41). Thereafter, the initial insertion region is reduced to avoid the intersection to generate the safety insertion region (S51). The insertion point may be extracted from the centerline of the safe insertion region (S61).
- a three-dimensional column shape eg truncated column
- a method of generating an insertion path of a medical device according to the present disclosure is to allow a medical device (eg, a biopsy needle, a lead for deep brain stimulation, a probe, a catheter, etc.) to reach a target in the body. It can be applied to various procedures, and in particular, to automatically generate a non-invasive insertion path in deep brain stimulation (DBS).
- DBS deep brain stimulation
- FIGS. 13 to 16 are diagrams illustrating an example of a process of preparing a brain image including a target and an invasive region.
- multiple MRI brain images are generated by MRI.
- the target see 100 of FIGS. 20 and 22
- the non-invasive region see 120 and 140 of FIG. 22
- S11 of FIG. 12 For example, in the T1 image, masks of intact regions (non-invasive regions) such as vessels and ventricles of the brain are generated by software rendering methods, and targets may be determined by a user. have.
- the target is a part of the brain that is a target of stimulation.
- the DBS lead may be provided with electrodes (eg, three electrodes) for stimulating the target.
- Brain images generated from the MRI include, for example, sagittal view (see upper right), axial view (see upper left), and coronal view (see lower left) as shown in FIG. 13.
- blood vessels may be divided as shown in FIG. 14 (b) by a segmentation technique (for example, adaptive region growing) using an MRI Brain Angiography image in an axial view as shown in FIG. 14 (a).
- segmentation technique for example, adaptive region growing
- invasive non-invasive regions such as blood vessels such as arteries and veins and ventricles, and targets can be obtained as a three-dimensional set of voxels.
- safety zones can be obtained as a three-dimensional set of voxels except for non-invasive zones.
- the non-invasive area and the safe area are not color-coded, but the non-invasive area and the safe area may be displayed to be color-coded.
- the 3D volume rendering (FIG. 16 (a)) or 3D surface rendering (FIG. 16B) structure may be generated from the divided blood vessels.
- Invasive region extraction is the process of analyzing based on brain images and storing the result as a mask.
- a blood vessel segmentation method (Thresholding, etc.) is applied as described above.
- a control program that prevents the surgical tool from being invaded in the subsequent process should be implemented.
- the mask is sufficient, but more precisely, You can create a surface model of this area and apply algorithms to find intersections with 3D modeled surgical tools. In other words, it implements mask intersection or 3D model intersection.
- Volume Rendering and Surface Rendeirng visualize each piece of information because it may need to be identified with the human eye.
- 17 and 18 are diagrams illustrating an example of brain images arranged in a volume image.
- the divided brain images are volume aligned based on the Anterior commissure-Posterior commissure line (AC-PC line) (S21 of FIG. 12).
- AC-PC line Anterior commissure-Posterior commissure line
- the sagittal view (see upper right of FIG. 17 and FIG. 7) allows the user to select two point AC and PC using the brain image, and also the axial view (see upper left of FIG. 18) and the coronal view (lower left). It is possible to select both points AC and PC.
- the sagittal view, the axial view, and the coronal view are volume aligned based on the AC-PC line (see FIG. 18, lower right).
- FIG. 19 is a view illustrating an example of an interface of software for insert path planning
- FIG. 20 is a view illustrating an example of a method of specifying an insertion range
- FIG. 21 is an enlarged view of a portion of FIG. 20.
- an initial entry region (refer to Fig. 22 (a) 240) is designated by the user (S31 in Fig. 12).
- the insertion path can finally be extracted from a single line, but first the possible range of this final insertion path is specified by the user.
- the possible range of such insertion paths is designated as a constant area of three-dimensional columnar shape leading to the target.
- the insertion path specified by the user is defined as the initial insertion path.
- a user may select information or a numerical value regarding AC-PC alignment, target position and entry range, etc. through an interface of software for insert path planning.
- an insertion range is placed on the surface of the brain shown in the sagittal view (see FIG. 20 upper right and FIG. 21 (a)) and the coronal view (see FIG. 20 lower left and FIG. 21 (b)), respectively.
- range 211, 215 may be designated as a line. Therefore, the insertion range designated as lines in the orthogonal sagittal view and the coronal view may be designated as a curved surface (see FIG. 22 (b) 210) in the 3D volume.
- 22 is a view for explaining an example of a process of generating a safe insertion region from an initial insertion region.
- the initial insertion region 240 in the form of a three-dimensional column is defined from the insertion range 210 to the target 100 as shown in Fig. 22A.
- the initial insertion region 240 has a truncated cone shape in which the cross-sectional area decreases closer to the target 100. If the insertion range 210 is not circular, a cone fitting process may be performed, as a result of which the initial insertion region 240 of the truncated cone shape is defined.
- the structure of blood vessels 140 including arteries and veins of the brain, is simpler than the lungs with complex blood vessel structures, and it is skilled to designate initial insertion regions 240, avoiding invasive non-invasive regions 120, 140, including blood vessels.
- the initial insertion region 240 is not forced to completely avoid the non-invasive regions 120 and 140, and since the process of extracting the safe insertion region 280 to be described later proceeds, the initial insertion region 240 is not invasive. It may be partially intersected with the regions 120 and 140 (see Fig. 22 (a)). However, the initial insertion region 240 designates a region that is the least invasive according to the user's experience and knowledge, and is suitable as an insertion path for the subsequent process.
- the distance from the boundary of the initial insertion region to the non-invasive region can be calculated. For example, as shown in FIG. 22 (a), from the boundary of the initial insertion region 240 to the voxels of the non-invasive regions 120 and 140 by a ray casting method from the target 100.
- the process of generating the distance map of may be performed (S41 of FIG. 12).
- the generation of the distance map includes calculating a distance from the boundary for all voxels based on the boundary on the mask of the non-invasive region. If the distance is calculated from the boundary of the non-invasive area such as a blood vessel, there is an advantage that the safety distance can be calculated and used in real time when the DBS lead is inserted or when the robot pierces the medical needle.
- the voxels of the non-invasive regions 120 and 140 such as blood vessels located in the initial insertion region 240 may be found using the distance map.
- the distance between the boundary of the non-invasive regions 120 and 140 and the boundary of the initial insertion region 240 may also be obtained. Referring to FIG. 22A, it can be seen that the initial insertion region 240 partially crosses the blood vessel 140 and other important structures 120 (eg, the hippocampus and tonsils) of the brain.
- the initial insertion region 240 is reduced to avoid the intersection to generate the safety insertion region 280 (S51 in Fig. 12). Even if the initial insertion region 240 intersects with or does not intersect the invasive non-invasive regions 120 and 140, the initial insertion region 240 is reduced so as to be separated from the boundary of the invasive non-invasive regions 120 and 140 by a safety distance. do. That is, the safe insertion region 280 is an area included in the initial insertion region 240. For example, by using the distance map, the initial insertion region 240 is reduced out of the safety distance from the non-invasive regions 120 and 140 to form the safety insertion region 280, and the safety insertion region 280 is a cone.
- the safe insertion region 280 generated as described above may represent a range of an insertion path that may be applied to the actual procedure. If the generated safe insertion region 280 is too small or some other inappropriate reason is found, another initial insertion region may be designated and another safety insertion region may be obtained.
- FIG. 23 is a diagram illustrating an example of an insertion path shown in sagittal, axial, coronal views, and 3D image.
- 24 is a diagram illustrating an example of an image of the brain by surgeon's Eye View.
- the intersection of the centerline of the cone-shaped safe insertion region 280 (see FIG. 22 (b) 250) and the head surface shown in the brain images is extracted as the entry point 270. (See Figures 22 (b) and 23). Therefore, the insertion path from the insertion point 270 to the target 100 (eg, to the center of the target) is extracted.
- the insertion paths in the safe insertion area 280 may all be insertion paths applicable to the procedure, and not necessarily only insertion paths along the center line 250.
- the method of generating the insertion path of the medical device may include displaying an image of the brain along the insertion path.
- an image of the brain eg, a 2D MPR image from the perspective of the virtual camera 5 located in the medical device (eg, DBS lead) 7 along the insertion path from the insertion point 270 to the target 100). path
- 3D surface view display see FIG. 24.
- the view of this virtual camera 5 shows an image of the brain that the medical device will pass along the insertion path in the doctor's eye view. This allows the adequacy of the insertion path to be assessed again and the insertion path can be modified if necessary.
- the modification process may be performed by directly inputting or changing parameters as illustrated in FIG. 19, adjusting the insertion point 270 with a mouse, or moving the insertion path.
- the process of designating the insertion range 210 described above, generating the initial insertion region 240, generating the distance map, generating the safety insertion region 280, and extracting the insertion path along the centerline 250 may be performed by the user setting condition. Under the computer.
- a specific method of objectively evaluating invasion of the invasive non-invasive regions 120 and 140 by the insertion path of the medical device using a brain image and avoiding the invasive non-invasive regions 120 and 140 has been disclosed. .
- 25 is a view for explaining an example of an interventional surgery system in which a needle-inserted interventional robot according to the present disclosure is used.
- the needle insertion interventional robot 100 may be used in a needle insertion image intervention surgery robot system for biopsy and treatment for reducing radiation exposure and improving procedure accuracy. Needle-insertion interventional robots can be used for biopsy and treatment of 1 cm grade lesions in the abdomen, chest, and the like.
- the needle insertion imaging interventional robot system includes, for example, a master device 200 that controls the needle insertion interventional robot in real time, a high reliability and high precision needle insertion intervention robot 100, and a human body. It may include a device 300 for photographing the position of the surgical device, a device 400 for monitoring the position and posture of the surgical device and the patient (5).
- the needle insertion interventional robot 100 is a slave robot and is not limited to a needle type medical tool as a medical tool installed in a robot arm.
- the needle type medical tool is installed in the slave robot, it will be referred to as a needle insertion interventional robot 100.
- FIG. 26A illustrates an example of a state in which the needle-shaped medical tool is hidden
- FIG. 26B illustrates an example of a state in which the needle-shaped medical tool is exposed.
- the needle inserted interventional robot 100 includes a robotic arm 10, a needle-shaped medical tool 20, and a protective module 30.
- the robot arm 10 positions itself around the patient 5 in accordance with a control signal applied from the outside.
- the robot arm 10 includes an axis for position control, an axis for positioning in space, an axis for attitude control, and the like, and may be configured to allow left and right rotations.
- the needle-shaped medical tool 20 may be installed directly on the robot arm 10 or mounted on the protection module 30 to be installed on the robot arm 10.
- the protective module 30 is installed in the robot arm 10, for example in the posture control unit 11 of the robot arm, and while the needle-shaped medical tool 20 is being transported by the robot arm, FIG. 26 (a).
- the needle-shaped medical tool 20 is hidden from the field of view of the patient 5, and the needle-shaped medical tool 20 is aligned with a target (eg, tissue to be biopsyed) of the patient 5. ), The needle-like medical tool 20 can be exposed, as shown in FIG. 26 (b).
- the needle-type medical tool 20 is fixed to the robotic arm 10, and the protection module 30 may be moved to cover the needle-type medical tool 20 from the field of view of the patient 5.
- the protective module 30 may be fixed to the lott arm 10 and the needle-shaped medical tool 20 may be moved so that the needle-shaped medical tool 20 may be covered by the protective module 30. Specific structures of the needle-shaped medical tool 20 and the protection module 30 will be described later.
- the needle 5 is hidden from the field of view of the patient 5 by the protection module 30 until it is aligned with the target of the patient 5, thereby fearing the patient 5. It can reduce the contact, the infection of the needle-shaped medical tool 20 and the operator, assistant, peripheral devices, and the like, can be prevented.
- 27 is a view for explaining an example of the operation of the needle insertion intervention robot.
- the needle-type medical tool 20 may be a medical device such as a biopsy needle (eg, biopsy needle), a lead (eg, a lead for deep brain stimulation), a probe, a catheter, or the like. Include.
- a biopsy needle eg, biopsy needle
- a lead eg, a lead for deep brain stimulation
- a probe e.g., a catheter
- the biopsy needle is mainly described as an example.
- the needle insertion interventional robot 100 is set to a standby state.
- the biopsy needle 20 and the protection module 30 is mounted on the needle insertion interventional robot 100.
- the biopsy needle 20 may be hidden from the field of view of the patient 5 by the protective module 30.
- the patient 5 enters into an image acquisition device such as CT 300, and as shown in FIG. 27C, the needle-inserted interventional robot 100 is shown. It is positioned translating towards the CT gantry.
- the needle insertion interventional robot 100 enters into the CT gantry to determine the posture.
- the biopsy needle 20 is covered from the field of view of the patient 5 by the protection module 30 to prevent fear of the patient 5, and contamination of the needle by contact is prevented. Thereafter, the biopsy needle 20 is aligned with the target of the patient 5 as shown in FIG. 27 (e). For example, the biopsy needle 20 is exposed from the protection module 30 such that the biopsy needle 20 is aligned about 1 cm from the entry point of the skin of the patient 5. After the biopsy needle 20 has stabbed the insertion point and exits the biopsy, the protection module 30 again moves away from the patient 5 while covering and covering the biopsy needle 20 and may exit from the CT gantry. The biopsy results are obtained from the biopsy needle 20, and the biopsy needle 20 and the protection module 30 can be detached together or from the needle inserted interventional robot 100, respectively.
- the protection module 30 is manufactured to have a compact size so as not to cause inconvenience to the CT gantry or the patient 5, and is easily mounted on the robot arm 10 by a suitable mechanism that is removable. Move. During the biopsy, it is important that the protection module 30 is moved to an appropriate position so as not to interfere with the biopsy. On the other hand, during biopsy or when the biopsy needle 20 is detached from the skin, blood, etc. may swell, wherein the protection module 30 covers the biopsy needle 20 to protect the system to prevent contamination or infection, After hiding the stained biopsy needle 20 and discarded all at once, nurses, doctors are basically blocked from stabbing or infecting the bloody needle.
- 28 is a diagram showing examples of a needle-shaped medical tool.
- the needle-shaped medical tool 20 means a tool that sticks toward the target of the patient 5 and is not necessarily limited to a tool including a needle. It may be a biopsy needle 20 as shown in FIG. 28 (a) or a lead electrode for DBS as shown in FIG. 28 (b).
- the biopsy needle 20 may include a needle and a body for triggering the needle.
- the biopsy needle 20 is not limited to the one illustrated in FIG. 28 (a), and also includes a case in which the needle-shaped medical tool includes a biopsy needle and a driver for allowing the biopsy needle to come out or enter the protection module 30. do.
- 29 is a diagram illustrating examples of how the protection module is coupled to the robotic arm.
- the protection module 30 may include a protection cover 31 and a driver 35.
- the protective cover 31 may have a cylindrical shape, such as a cylinder, and may have a structure in which some side surfaces thereof are opened to reduce interference when installed on the biopsy needle 20 or the posture control unit 11 of the robot arm 10. .
- the protective cover 31 may be made of a material such as plastic or metal.
- the driving unit 35 is provided in the protective cover 31 and may include a power transmission mechanism such as a motor driven by an external power source.
- the biopsy needle 20 is mounted inside the protective cover 31 as shown in FIG. 29 (a) or the robot arm 10 separately from the protective cover 31 as shown in FIG. 29 (b). It can be mounted on the posture control unit 11 of.
- FIG. 30 is a view for explaining an example of a manner in which a protection module operates.
- the driving unit 35 may move the protective cover 31 up and down along the posture control unit 11 of the robot arm 10 according to a control signal transmitted from the outside (eg, the master device).
- the protective cover 31 may slide on the posture controller 11 of the robot arm 10 by the driving unit 35.
- the posture control unit 11 may be provided with a structure such as a rail or a groove for guiding the protective cover 31.
- the position of the driving unit 35, the power transmission method, the coupling method with the protective cover 31, and the like may be variously modified.
- the driving unit 35 may include a motor and a gear connected to the motor, and the protective cover 31 may include a tooth that meshes with the gear.
- the biopsy needle 20 and the protection module 30 When the biopsy needle 20 and the protection module 30 are attached to the robot arm, the biopsy needle 20 and the protection module 30 may be detached from the robot arm 10 together.
- the manner in which the protective module 30 and the biopsy needle 20 are installed in the robotic arm 10 may be variously modified in addition to the manner illustrated in FIGS. 26 to 30.
- the biopsy needle 20 and the protection module 30 can function as a basic needle insert end effector.
- 31 is a view for explaining another example of the needle insertion interventional robot according to the present disclosure.
- the protective module 30 is a pail or protective cover for receiving the needle-shaped medical tool 20 therein.
- the needle medical device 20 may include a biopsy needle 21 and a drive 25. As illustrated in FIG. 27, before the biopsy needle 21 is aligned to the target of the patient 5, as shown in FIG. 31A, the biopsy needle 21 is concealed within the protection module 30. have. The biopsy needle 21 is aligned with the target of the patient 5, and the driver 25 moves the biopsy needle 21 to expose it from the protection module 30. Thereafter, the biopsy needle 21 is triggered toward the insertion point or the biopsy needle 21 is stuck at the insertion point of the patient 5 by the minute operation of the posture control unit 11 of the robot arm. Thereafter, when the biopsy needle 21 exits the insertion point, the driver 25 hides the biopsy needle 21 in the protection module 30, and the robot arm 10 may move.
- 32 is a view for explaining another example of the needle insertion interventional robot according to the present disclosure.
- the protection module 30 includes a protective cover and a drive unit installed in the posture control unit 11 of the robot arm 10 separately from the biopsy needle 20.
- the needle-shaped medical tool 20 is mounted to the posture control unit 11 of the robotic arm 10 and may include one or more biopsy needles.
- the needle-shaped medical tool 20 may be a cartridge in which a plurality of biopsy needles are housed. Such a cartridge itself can also cause discomfort and aversion to the patient.
- the protective cover blocks the biopsy needle cartridge 20 from the patient's field of view during movement, as shown in FIG. 32 (a), and when the biopsy needle is aligned with the insertion point of the patient, as shown in FIG. 32 (b). As such, the protective cover may be moved to expose the biopsy needle cartridge and the biopsy needle may pop out.
- 33 is a view for explaining another example of the needle insertion interventional robot according to the present disclosure.
- the protection module 30 includes a protection cover 31 and a drive unit 35.
- the protective cover 31 is installed in the posture control unit 11 of the robot arm as shown in FIG. 33 (a) to cover the biopsy needle 20.
- the driving unit 35 may be provided at one side of the protective cover 31 and may be coupled to the posture control unit 11.
- the protective cover 31 is rotated, for example, by rotating the biopsy needle 20 axially to expose the biopsy needle 20 as shown in FIG. 33 (b), and again in FIG. 33 (c). Sliding as shown in Figure 1) is positioned so as not to interfere with the biopsy needle 20 during the biopsy. After the biopsy, the biopsy needle 20 may be covered in the reverse process.
- 34 is a view for explaining another example of the needle-inserted interventional robot according to the present disclosure.
- the protection module 30 is a cap that houses the needle portion of the biopsy needle 20.
- the cap is coupled to the posture control 11 or the biopsy needle 20 of the robotic arm as shown in Figure 34 (a) to cover the biopsy needle 20, and manually peeled off as shown in Figure 34 (b). 20 may be exposed.
- the interventional assistant is aligned with the needle insertion interventional robot 100 on the target of the patient 5
- the cap may be removed by hand and capped to cover the biopsy needle 20 again after the biopsy. have.
- 35 is a view for explaining an example of the operation of the needle insertion interventional robot according to the present disclosure.
- the protective cover 31 hides the biopsy needle 20 from the patient's field of view and reduces fear, and the biopsy needle 20 is the target of the patient 5.
- the protective cover 31 is moved upward to expose the biopsy needle 20.
- the protective cover 31 may cover the biopsy needle 20 again as shown in FIG. 35 (a) to prevent blood splatter or other contamination. have.
- FIG. 35B when the biopsy needle 20 comes out, the protective cover 31 may move and cover the biopsy needle 20 again. This movement can prevent the bloody biopsy needle 20 from being contaminated or infected by people or devices around it.
- the biopsy needle 20 and the protection module 30 are detached from the robot arm and handled together, the risk of being stuck to the needle can be prevented at the source.
- (1) a method for generating an insertion path of a medical needle from an entry point to a target comprising: preparing a medical image including a target and an anatomical structure; And extracting the insertion path in consideration of at least one of the invasion amount and the distance of the insertion path with respect to the anatomical structure by the insertion path.
- the extracting of the insertion path may include: extracting an insertion path having a distance weight of 0 and having a minimum invasive amount of the insertion path; And extracting an insertion path having an invasion weight weight of 0 and having a shortest distance; Method of generating an insertion path of the medical needle, characterized in that it comprises at least one of.
- extracting the insertion path includes: extracting an insertion path whose invasion amount is less than an allowable value; And extracting an insertion path having a minimum distance from the insertion path among the insertion paths whose invasion amount is less than the allowable value.
- a plurality of insertion paths are extracted, and the plurality of insertion paths form a cone shape in which the cross-sectional area is reduced from the insertion point to the object. How to produce.
- (6) preparing the medical image may include: segmenting anatomical structures included in the lung image; Generating a distance map of the anatomical structure using the segmented lung image; And a process of selecting a target from the divided lung images.
- the process of generating a distance map of the anatomical structure includes: a distance map of lung boundary (Dlung), a distance map of rib (Drib) and a pulmonary vascular distance map (A process of generating a distance map of pulmonary vessel (Dvessel) and a distance map of airway (Dairway),
- the step of extracting the insertion path is at least one of the invasion amount and the distance of the insertion path by the insertion path is less than the allowable
- Dlung is the distance of the insertion path from the insertion point to the target
- Dairway, Dvessel and Drib are distances on the distance map from the insertion path to the airway, blood vessels and ribs, and w1, w2, w3 and w4 are expressed as weights.
- the present disclosure includes even considering a method of catching a plurality of target points at which the medical needle touches the target when the size of the target is large.
- the medical needle is moved laterally instead of the oblique path of the medical needle, it may be possible to minimize the invasion while the insertion path is in the axial plane.
- stabbing parallel to the axial plane is much simpler and faster in engineering, but there may be a problem of having to biopsy several places.
- the step of extracting the insertion path may include: calculating the number and thickness of blood vessels that meet the insertion path by 3D ray casting from an object included in the 3D image of the lung; And calculating a shortest distance from the insertion point of the insertion path to the subject by using a distance map of lung boundary (Dlung) of the 3D image of the lung.
- Dlung distance map of lung boundary
- the preparing of the medical image may include: extracting blood vessels as a 3D set of voxels based on an initial lung image generated from the medical imaging apparatus; A process in which an initial pulmonary vascular tree is generated by applying a minimum spanning tree method to pulmonary blood vessels included in the initial lung image; Removing the root region in which the pulmonary vessels are aggregated in the initial pulmonary vascular tree so that the initial pulmonary vascular tree is automatically separated into sub-trees; Pulmonary vessels of the initial tree are extended to the removed root region where the subtrees are merged; And a process in which the pulmonary blood vessels of the recombined initial tree are classified into pulmonary arteries and pulmonary veins to generate a divided pulmonary blood vessel tree; Using segmented lung images, distance maps of anatomical structures, including distance map of rib (Drib), distance map of lung boundary (Dlung), distance map of pulmonary vessel (Dvessel), and distance map of airway (Dairway) (distance map) is generated, including the step of extract
- (11) a method of generating an insertion path of a medical device from an entry point to a target, the method comprising: preparing an image of a procedure object including a target and an invasive non-invasive region; Specifying an initial insertion region including an insertion path; specifying an initial insertion region having a three-dimensional column shape in which a cross-sectional area decreases closer to a target; Determining whether the initial insertion region intersects with the non-invasive region; And reducing the initial insertion area to generate a safe insertion area so as to avoid the intersection.
- the step of specifying the initial insertion region includes: a process of defining an initial insertion region from an insertion range to a target by specifying an entry range on the surface of the object shown in the image of the target; A method of generating an insertion path of a medical device.
- the step of determining whether the intersection includes: calculating a distance from the boundary of the initial insertion region to the non-invasive region; the method of generating an insertion path of the medical device.
- the preparation of the image of the subject includes: segmentation of an invasive non-invasive region including blood vessels using Sagittal, Axial, and Coronal view images of the subject obtained from the medical imaging apparatus:
- DBS Deep Brain Stimulation
- the preparation of the image of the subject includes: a process of segmenting an invasive non-invasive region including blood vessels using Sagittal, Axial, and Coronal view brain images obtained from a medical imaging apparatus: and anterior the brain images.
- Volumetric image alignment based on the commissure-Posterior commissure line including the step of specifying an initial insertion region: a surface using at least two of the aligned Sagittal, Axial, and Coronal view brain images.
- the preparation of the image of the subject may include: a process of segmenting an invasive non-invasive region including blood vessels into a set of 3D voxels using Sagittal, Axial and Coronal view brain images obtained from a medical imaging apparatus: And segmenting the brain images by volume alignment based on the Anterior commissure-Posterior commissure line, and determining whether or not the intersection is: ray casting from the boundary of the initial insertion region. generating a distance map from a boundary to a voxel of the non-invasive region by a casting method.
- the step of generating the safe insertion region may include: using a distance map to cone fitting the safe insertion region whose initial insertion region is reduced from the non-invasive region outside the safety margin; And extracting, as an entry point, an intersection point between the centerline of the safe insertion region and the head surface shown in the brain images.
- the preparation of the brain images may include: invasive non-invasive regions including blood vessels and DBS targets are segmented into sets of three-dimensional voxels using Sagittal, Axial and Coronal view brain images obtained from a medical imaging apparatus. Process: and volume alignment of brain images with respect to the Anterior commissure-Posterior commissure line. The initial insertion area is assigned to: curved surface using aligned Sagittal and Coronal view brain images.
- (surface) is defined by the entry range (entry range), the process of defining the initial insertion region of the truncated cone shape from the insertion range to the target; including, the step of determining whether the intersection: the initial insertion region The distance map from the boundary to the voxel of the non-invasive region is generated by the ray casting method. ; Step which includes, the inserted safety zone is created: a distance map using the initial insertion area reduction in the safety margin from the outer area not allowed invasion safety fitting insertion region is cone (cone fitting) process; And a point where an intersection between the centerline of the safe insertion region and the head surface shown in the brain images is designated as an entry point.
- a needle-insertion interventional robot comprising: a robotic arm positioned around a patient in accordance with a control signal applied from the outside; A needle-shaped medical tool carried by the robotic arm; And a protection module installed on the robotic arm and covering the needle-type medical tool from the patient's field of view.
- the protective module covers the needle-shaped medical tool until the needle-shaped medical tool is aligned at the insertion point of the patient located in the medical imaging device, and the needle is removed from the protection module after the needle-shaped medical tool is aligned at the insertion point.
- a needle insertion interventional robot characterized in that the medical device is exposed.
- the protection module comprising: a protective cover for receiving the needle-shaped medical tool; And a drive unit which moves the protective cover to cover or expose the needle-shaped medical tool during the movement of the robot arm.
- the protective module includes: a protective cover for accommodating the needle-shaped medical tool; And a drive unit for moving the needle-shaped medical tool into or out of the protective cover.
- a protective module and a needle-shaped medical tool are separately installed on the robotic arm, the protective module comprising: a protective cover installed on the robotic arm; And a driving unit installed on the robot arm to move the protective cover to cover or expose the needle-type medical tool.
- a protective module and a needle-shaped medical tool are individually installed on the robotic arm, the needle-shaped medical tool comprising: a medical needle mounted on the robotic arm; And a driving unit installed on the robot arm to move the medical needle to cover or expose the needle-type medical tool by the protection module.
- Needle insertion interventional robot characterized in that the protective cover is slid on the robot arm by the drive unit.
- the needle insertion interventional robot characterized in that the protective cover is moved by the drive unit to rotate the needle-shaped medical tool to the axis to cover or expose the needle-shaped medical tool.
- the needle-type medical instrument includes a medical needle;
- the protective module includes a cap (cap) coupled with the needle-shaped medical tool to receive the needle;
- the drive portion moves the protective cover to cover the insertion point when the needle-shaped medical tool is inserted into the patient, and moves the protective cover to cover the needle-shaped medical tool when the needle-shaped medical tool is pulled out of the patient. Needle-insertion interventional robot.
- an insertion path having an objective and quantitative basis for at least one of a minimally invasive and shortest distance is generated.
- invasion of blood vessels and the like can be reduced in a procedure such as a biopsy using a medical needle to reduce risk.
- an insertion path considering at least one of a minimum invasion and a shortest distance is automatically generated and convenient.
- an insertion path having an objective and quantitative basis in avoiding an area where invasion is not allowed is generated.
- the method for generating an insertion path of another medical device it is possible to reduce the risk by avoiding invasion of blood vessels or the like in a procedure such as DBS using the medical device.
- an insertion path that avoids an invasive non-invasive area is automatically generated under a user setting condition and is convenient.
- a needle-insertion interventional robot which reduces the fear of a patient by hiding a needle-like medical tool such as a biopsy needle from the patient's field of view.
- contamination of a biopsy needle is prevented by covering a needle-shaped medical tool such as a biopsy needle with a protection module, and infection and contamination of a device by a biopsy needle of a nearby person such as an operator are prevented. Is prevented.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Computer Graphics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychology (AREA)
- Software Systems (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Primary Health Care (AREA)
- Cardiology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Architecture (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Optics & Photonics (AREA)
- Data Mining & Analysis (AREA)
- Urology & Nephrology (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
Abstract
본 개시는 삽입점(entry point)으로부터 대상(target)까지의 의료용 바늘의 삽입 경로의 생성 방법에서, 대상(target) 및 해부학적 구조물을 포함하는 의료 영상이 준비되는 단계; 그리고 삽입 경로에 의한 해부학적 구조물에 대한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려되어 삽입 경로가 추출되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법에 관한 것이다. 또한, 의료 디바이스의 삽입 경로의 생성 방법 및 바늘 삽입형 중재 시술 로봇에 관한 것이다.
Description
본 개시(Disclosure)는 의료용 바늘의 삽입 경로의 생성 방법{METHOD FOR GENERATING INSERTION TRAJECTORY OF SURGICAL NEEDLE}에 관한 것으로, 특히 삽입 경로를 자동으로 생성하는 의료용 바늘의 삽입 경로의 생성 방법에 관한 것이다.
또한, 본 개시(Disclosure)는 의료 디바이스의 삽입 경로의 생성 방법{METHOD FOR GENERATING INSERTION TRAJECTORY OF MEDICAL DEVICE}에 관한 것으로, 특히 삽입 경로를 자동으로 생성하는 의료 디바이스의 삽입 경로의 생성 방법에 관한 것이다.
또한, 본 개시(Disclosure)는 전체적으로 바늘 삽입형 중재 시술 로봇{INTERVENTIONAL PROCEDURE ROBOT HAVING NEEDLE INSERTION TYPE}에 관한 것으로, 특히 바늘형 의료 도구가 환자에게 주는 두려움을 감소한 바늘 삽입형 중재 시술 로봇에 관한 것이다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
의료 영상 기반 생체검사(Biopsy)는 주위의 정상조직에 대한 피해를 최소화하고, 종양 질환(neoplastic disease)의 병리적 진단에 필요한 견본을 뽑아내는 중재 시술(interventional procedure)로서, 부신, 췌장, 림프절 등의 후 복막, 폐 종격, 척추, 사지골 등의 부위에 광범위하게 적용된다. 의료 영상 기반 생체검사는 고해상의 영상을 이용하여 병변 부위를 섬세하게 3차원적으로 지역화(localization) 하고 조직 내에 진입한 생검 바늘(Biopsy Needle)을 볼 수 있어서 작은 크기의 병변 감지가 용이하다.
의료 영상 기반 생체검사를 시행하는 시술장에서 CT 또는 C-arm 플로로스코피(fluoroscopy) 영상에 의해 생검 바늘의 삽입 경로가 가이드될 수 있다. 방사선 노출 등의 문제로 인해 삽입 경로는 사전에 진단 영상에서 계획되는 것이 일반적이다. 예를 들어, 삽입 경로의 계획에서 환자 몸에 생검 바늘의 진입 각도가 중요하며, 진입 각도 및 삽입점을 정함으로써 삽입 경로가 계획된다. 그러나 이러한 삽입 경로의 계획은 혈관이나 뼈 등에 대한 침습의 정도에 대한 객관적 근거에 의해 결정된 것이라기보다는 의사의 경험에 크게 의존하고 있다. 따라서 동일한 병변의 생검에 있어서 의사마다 최적의 삽입 경로를 다르게 정할 수도 있다. 특히 플로로스코피를 사용한 폐의 생검에서는 엑시얼(axial) 2차원 영상에서 최단 거리의 삽입 경로를 선택하는 것이 일반적이다. 그러나 실재 시술장에서는 생검시 출혈 발생이 빈번하며, 큰 위험이 되고 있다.
의료 영상 기술, 특히 X-ray CT 이미지의 발전은 생체 내에서 밀리미터 이하의 작은 구조들을 관찰하는 것을 가능하게 한다. 공간적 해상도뿐만 아니라 시간적 해상도에서도 빠른 진보가 있어 왔다. 그러나 폐 혈관의 형태학적인 복잡한 구조, 예를 들어, 밀집된 분포, 근접 교차하는 케이스들, 나란하게 이웃한 다른 혈관들 등 때문에 폐혈관을 완전히 회피하여 삽입 경로를 잡는 것이 어렵다. 따라서 삽입 경로가 어느 정도 혈관을 침습하는지 및 삽입 경로의 거리가 어느 정도인지 등에 대해 보다 객관적이고 정량적인 근거를 제공하는 것이 필요하다. 또한, 이러한 최소 침습 경로 및 최단 거리 삽입 경로를 3차원으로 자동으로 생성하여 의료 영상에 삽입 경로가 생성된다면 매우 편리하고 시술의 안전성 향상에 크게 기여할 것이다.
미국 특허공보 제6,487,431에서는 복수의 CT 슬라이스를 실시간으로 의료 영상에 표시하여 가이드 라인을 따라 생검 바늘이 가이드 되도록 하는 기술이 개시되어 있다. 그러나 삽입점과 대상(target)을 연결하는 가이드 라인(삽입 경로) 자체가 얼마나 침습적인지, 최적의 경로인지 여부에 대해 객관적 및 정량적으로 판단하는 방법에 대한 개시는 없다.
리드(예: Deep Brain Stimulation용 리드(lead)), 생검 바늘(예: biopsy needle), 프로브(probe), 카데터(catheter) 등의 의료 디바이스(medical device)를 폐, 뇌, 간 등 신체 내부로 삽입하거나 이식(implant)하는 시술은 혈관이나 해부학적으로 중요한 구조들이 손상되지 않거나 최소 침습이 되도록 시행되는 것이 중요하다.
예를 들어 뇌의 경우, 이러한 시술은 뇌의 다양한 기능에 영향을 주는 신경외과적 수술들을 포함한다. 신경외과적 수술에는 뇌에서 종양을 제거하는 수술뿐만 아니라 특정 기능을 하는 뇌의 특정 부위를 자극(stimulation)하는 수술(Deep Brain Stimulation; DBS)이 포함될 수 있다. 예를 들어, 신경외과 의사는 파킨슨병, 강박장애 및 우울증과 같은 중대한 병을 치료하기 위해 심부 뇌 자극술(DBS)을 시행한다. 심부 뇌 자극술에서는 환자의 뇌 기능을 정상화하기 위해 뇌신경의 일정부분을 억압하거나 자극할 수 있는 전극을 뇌의 심층부에 이식하는 과정이 필요하다. 전극은 리드(lead)의 끝에 구비될 수 있으며, 리드가 뇌의 삽입 경로를 따라 삽입된다.
상기한 의료 디바이스의 삽입 또는 이식 수술에는 의료 도구, 예를 들어, DBS의 전극을 타겟(target)에 정확히 도달하게 하면서 뇌의 혈관 등 중요 구조(major structure)를 손상하지 않는 리드(lead)의 삽입 경로를 찾는 것이 중요하다. 삽입 경로의 계획에서 뇌에 리드의 진입 각도가 중요하며, 진입 각도 및 삽입점을 정함으로써 삽입 경로가 계획된다. 그러나 기존의 삽입 경로의 계획은 혈관이나 뇌의 중요 해부학적 구조에 대한 삽입 경로의 침습의 정도에 대해 객관적이고 정량적인 근거에 의해 결정된 것이라기보다는 의사의 경험과 지식에 크게 의존하고 있다. 따라서 동일한 환자에 대해 의사가 다르면 삽입 경로에 차이가 있을 수 있다. 미국 특허공개공보 제2012/0184844호에는 DBS에서 복수의 삽입 경로를 생성하는 방법이 개시되어 있지만, 삽입 경로 자체의 침습의 정도를 평가하고 혈관 등을 피하여 삽입 경로를 계획하는 구체적인 방법에 대해서는 개시하지 못하고 있다.
생검 바늘(예: biopsy needle), 리드(예: Deep Brain Stimulation용 리드(lead)),프로브(probe), 카데터(catheter) 등의 의료 디바이스(medical device)를 폐, 뇌, 간 등 신체 내부로 삽입하거나 이식(implant)하는 중재 시술(interventional procedure)은 혈관이나 해부학적으로 중요한 구조들이 손상되지 않거나 최소 침습이 되도록 시행되는 것이 중요하다.
중재 시술의 하나로서 의료 영상 기반 생체 검사(Biopsy)는 주위의 정상조직에 대한 피해를 최소화하고, 종양 질환(neoplastic disease)의 병리적 진단에 필요한 견본을 뽑아내는 중재 시술(interventional procedure)로서, 부신, 췌장, 림프절 등의 후 복막, 폐 종격, 척추, 사지골 등의 부위에 광범위하게 적용된다.
이러한 생체 검사와 같은 바늘 삽입형 중재 시술에서 최소 침습 시술이 최근 급격히 증가하고 있다. 이러한 의료 영상 기반 생체 검사(Biopsy)는 방사선 노출 등의 문제로 인해 생검 바늘의 삽입 경로는 사전에 진단 영상에서 계획되는 것이 일반적이다. 그러나 시술장에서 CT 또는 C-arm 플로로스코피(fluoroscopy) 영상에 의해 생검 바늘의 삽입 경로가 가이드되며, 시술자 경험 의존도가 높아서 시술자가 방사선에 노출된 채로 시술이 수행될 수 있다. 이로 인해 시술자 및 환자가 방사선에 노출되는 문제와 시술의 정확도 등의 문제를 해결하기 위해 바늘 삽입형 중재 시술 로봇 개발 필요성이 대두하고 있다. 이러한 바늘 삽입형 중재 시술 로봇을 사용하면 시술 시간의 단축으로 환자의 방사선 피폭 감소되며, 합병증 감소 및 안전 극대화를 기대할 수 있다. 또한, 시술자의 방사선 피폭을 제거하고 및 자동화 시스템을 통한 시술자 안전 향상을 이룰 수 있다.
이러한 바늘 삽입형 중재 시술에서는 중재 시술 로봇이 세팅되고, 생검 바늘이 중재 시술 로봇에 장착되며, 외부 제어신호에 따라 자동으로 움직여서 초기 위치를 잡고, 환자의 피부 상의 삽이점(entry point) 바로 앞까지 생검 바늘이 이동하게 된다.
그러나 생검 바늘이 환자에게 두려움과 불편함을 유발하는 문제가 있다. 또한, 주변의 시술자나 보조자가 생검 바늘이 찔려 감염되거나, 생검 바늘과 다른 장비와 충돌하여 생검 바늘 오염되는 등의 위험이 있다.
미국 공개특허공보 제2012/0330325호에는 생검바늘이 장착된 로봇이 개시되어 있지만, 바늘이 그대로 노출되어 있고, 이에 대해 문제의식이 없어서 상기 문제들을 해소하는 방법의 개시나 암시가 없다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 삽입점(entry point)으로부터 대상(target)까지의 의료용 바늘의 삽입 경로의 생성 방법에서, 대상(target) 및 해부학적 구조물을 포함하는 의료 영상이 준비되는 단계; 그리고 삽입 경로에 의한 해부학적 구조물에 대한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려되어 삽입 경로가 추출되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법이 제공된다.
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 삽입점(entry point)으로부터 타겟(target)까지의 의료 디바이스의 삽입 경로의 생성 방법에서, 타겟 및 침습 불허 영역을 포함하는 시술 대상의 영상이 준비되는 단계; 삽입 경로를 포함하는 초기 삽입 영역이 지정되는 단계;로서, 타겟에 가까워질수록 단면적이 감소하는 3차원 기둥 형상을 가지는 초기 삽입 영역이 지정되는 단계; 초기 삽입 영역과 침습 불허 영역과의 교차여부가 판단되는 단계; 그리고 교차를 피하도록 초기 삽입 영역이 축소되어 안전 삽입 영역이 생성되는 단계;를 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법이 제공된다.
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 바늘 삽입형 중재 시술 로봇에 있어서, 외부로부터 인가된 제어신호에 따라 환자의 주변에서 위치를 정하는 로봇 팔; 로봇 팔에 의해 이송되는 바늘형 의료 도구; 그리고 로봇 팔에 설치되며, 바늘형 의료 도구를 환자의 시야로부터 가리는 보호 모듈;을 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇이 제공된다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
도 1은 본 개시에 따른 의료용 바늘의 삽입 경로의 생성 방법의 일 예를 설명하는 도면,
도 2는 분할된 폐 영상의 일 예를 나타내는 도면,
도 3은 디스턴스 맵을 구하는 방법의 일 예를 설명하는 도면,
도 4는 폐혈관 트리를 만드는 방법의 일 예를 설명하는 도면,
도 5는 레이 케스팅 방법의 일 예를 설명하는 도면,
도 6은 삽입 경로 추출 방법의 일 예를 설명하는 도면,
도 7은 안전 여유 밖으로 축소된 삽입 경로를 나타내는 도면,
도 8은 선택된 삽입 경로로부터 일정한 간격의 거리에 위치한 혈관의 크기별 개수를 보여주는 도면,
도 9는 시술장에서 호흡 등 움직임을 고려하여 삽입 경로의 일부가 제거되는 방법을 설명하는 도면,
도 10은 도 8 및 도 9에서 설명된 삽입 경로가 실제 구현된 예를 나타내는 도면,
도 11은 도 10에서 보여진 삽입 영역과 최적 삽입 경로가 MPR위에 표시된 예를 설명하는 도면.
도 12는 본 개시에 따른 의료 디바이스의 삽입 경로의 생성 방법의 일 예를 설명하는 도면,
도 13 내지 도 16은 타겟 및 침습 불허 영역을 포함하는 뇌 영상이 준비되는 과정의 일 예를 설명하는 도면들,
도 17 및 도 18은 볼륨 영상 정렬되는 뇌 영상들의 일 예를 설명하는 도면들,
도 19는 삽입 경로 계획을 하는 소프트웨어의 인터페이스의 일 예를 보여주는 도면,
도 20은 삽입 범위가 지정되는 방법의 일 예를 설명하는 도면,
도 21은 도 20에서 일부가 확대된 도면,
도 22는 초기 삽입 영역으로부터 안전 삽입 영역이 생성되는 과정의 일 예를 설명하는 도면,
도 23은 sagittal, axial, coronal views 및 3D 영상에 나타난 삽입 경로의 일 예를 설명하는 도면,
도 24는 surgeon's Eye View에 의한 뇌의 이미지의 일 예를 나타내는 도면.
도 25는 본 개시에 따른 바늘 삽입형 중재 시술 로봇이 사용되는 중재 시술 시스템의 일 예를 설명하는 도면,
도 26(a)는 바늘형 의료 도구가 감추어진 상태의 일 예를 보여주는 도면,
도 26(b)는 바늘형 의료 도구가 노출된 상태의 일 예를 보여주는 도면,
도 27은 바늘 삽입형 중재로봇의 동작의 일 예를 설명하는 도면,
도 28은 바늘형 의료 도구의 예들을 보여주는 도면,
도 29는 보호 모듈이 로봇 팔에 결합하는 방식의 예들을 설명하는 도면,
도 30은 보호 모듈이 동작하는 방식의 일 예를 설명하는 도면,
도 31은 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 다른 예를 설명하는 도면,
도 32는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면,
도 33은 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면,
도 34는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면,
도 35는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 작동 방식의 일 예를 설명하는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 1은 본 개시에 따른 의료용 바늘의 삽입 경로의 생성 방법의 일 예를 설명하는 도면이다.
의료용 바늘의 삽입 경로의 생성 방법에서, 먼저 대상(target)을 포함하는 의료 영상이 준비된다(S11). 의료용 영상을 사용하여 의료용 바늘의 삽입점(entry point)이 정해지고, 삽입점으로부터 대상(100; 도 6 참조)까지 삽입 경로에 의한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려되어 삽입 경로가 추출된다(S41).
의료 영상은 의료 영상 장치로부터 생성된 기초 의료 영상을 영상처리 과정(예: segmentation)하는 과정을 통해 준비될 수 있다. 분할(segmentation)의 결과, 의료 영상에 포함된 해부학적 구조물(예: 혈관, 뼈 등)이 복셀(voxel)의 3차원 집합으로 구해질 수 있다. 복셀의 집합을 사용하여 디스턴스 맵(distance map)이 생성될 수 있고(S21), 분할된 의료 영상에서 의료용 바늘의 대상(target)이 선정될 수 있다(S31). 삽입 경로를 추출하기 위해 삽입점으로부터 대상까지 삽입 경로의 거리에 가중치가 부여되고, 삽입 경로로부터 의료 영상에 포함된 해부학적 구조물까지의 각각의 거리, 즉 침습량에 가중치가 부여된 후, 이들이 합산되어 허용치 이하의 적어도 하나의 삽입 경로가 생성될 수 있다(S31). 추출된 복수의 삽입 경로가 콘 형상의 삽입 영역을 이룰 수 있으며, 안전 여유를 고려하여 삽입 영역이 축소될 수 있다(S51). 이렇게 결정된 삽입 경로가 의료 영상에 입력되어 수술 계획이 될 수 있다. 시술장에서 시술장 영상이 획득되며, 계획 영상과 시술장 영상이 정합되어 시술장 영상에 삽입 경로가 표시됨으로써 시술이 가이드될 수 있다(S61). 삽입 경로는 사용자 인터페이스를 통해 수정될 수 있고(S71), 호흡 또는 움직임을 고려하여 부적절한 삽입 경로가 제거될 수 있다(S81).
이하, 각 과정이 상세히 설명된다.
도 2는 분할된 폐 영상의 일 예를 나타내는 도면이다.
의료용 바늘의 삽입 경로의 생성 방법은 폐, 신장, 간 등의 장기(organ)에 적용될 수 있으며, 장기 이외의 부위에도 적용이 배제되는 것은 아니다. 본 예에서는 폐를 중심으로 설명된다.
예를 들어, 볼륨 흉부 시티 영상(volumetric chest CT images; 이하 폐 영상)을 획득한 후, 폐 영상이 분할되어 분할된 폐 영상이 준비된다(S11). 예를 들어, 폐 영상에 포함된 해부학적 구조물(예: 혈관, 갈비뼈, 에어웨이(airway), 폐 경계 등)이, 분할 기법(예: 어뎁티브 쓰레쉬홀드(adaptive threshold))에 의해 분할(segmentation)된다. 분할의 결과, 혈관 등의 해부학적 구조물이 복셀의 3차원 집합으로 추출된다(예: 도 4의 좌측에서 첫 번째 그림에 나타난 분할된 혈관 참조). 도 2는 혈관 등의 해부학적 구조물이 분할된 폐 영상의 엑시얼(axial) 단면을 보여준다. 폐 영상으로부터 분할된 혈관, 갈비뼈(rib), 에어웨이(airway) 등의 해부학적 구조물이 폐 마스크(lung mask), 혈관 마스크(vessel mask), 립 마스크(Rib mask), 에어웨이 마스크(airway mask) 등으로 저장될 수 있다.
도 3은 디스턴스 맵을 구하는 방법의 일 예를 설명하는 도면이다.
이후, 폐 마스크(lung mask), 혈관 마스크(vessel mask), 립 마스크(Rib mask), 에어웨이 마스크(airway mask) 등을 사용하여 폐 경계 디스턴스 맵(distance map of lung boundary), 립 디스턴스 맵(distance map of rib), 폐혈관 디스턴스 맵(distance map of pulmonary vessel), 에어웨이 디스턴스 맵(distance map of airway) 등이 만들어질 수 있다(S21).
예를 들어, 폐혈관 디스턴스 맵의 생성 과정은 폐 영상의 모든 복셀들에 혈관의 경계로부터 모든 복셀들까지의 거리 정보가 부여되는 과정을 포함할 수 있다. 폐 경계 디스턴스 맵, 립 디스턴스 맵 및 에어웨이 디스턴스 맵의 생성 과정도 마찬가지로, 각각 폐 경계로부터 거리, 갈비뼈 경계로부터 거리 및 에어웨이 경계로부터 거리 정보가 복셀들에 부여되는 과정들을 포함할 수 있다. 이와 같은 디스턴스 맵들을 사용하여 삽입 경로의 거리 또는 삽입 경로와 해부학적 구조물 사이의 거리가 계산될 수 있다. 따라서 의료용 바늘의 삽입 경로와 교차되는 해부학적 구조물을 찾을 수 있다.
도 3(a)에는 유클리드 디스턴스 맵(Euclidean Distance map)이 생성되는 방법의 일 예가 나타나 있다. 폐 영상의 복셀들의 집합에서 분할된 우측 폐 및 좌측 폐를 복셀들의 집합으로서 수학적으로 각각 LR, LL ⊂Γ로 표시할 수 있다. 여기서, 폐의 복셀 집합은 Γ = {c | c= (i, j, k), i=1,···, nx, j=1,···, ny, k=1,···, nz}이다. 예를 들어, 폐 경계 디스턴스 맵의 생성을 위해 상기 LR, LL에 대해 이들의 경계(5;도 3(b) 참조)로부터 유클리드 디스턴스 맵이 생성될 수 있다. 디스턴스 맵의 생성 방법으로는 유클리드 디스턴스 맵 이외에 다양한 방법이 사용될 수 있음을 당업자는 알 것이다.
미설명 부호(7)에 대해서는 후술된다.
도 4는 폐혈관 트리를 만드는 방법의 일 예를 설명하는 도면이다.
전술된 디스턴스 맵은 후속되는 침습량 및 삽입 경로의 거리를 계산하는 과정에 사용될 수 있다. 침습량 및 삽입 경로의 거리를 계산하는 데 있어서, 디스턴스 맵을 사용하는 방법 이외에, 폐혈관 트리(tree)를 사용하는 방법이 고려될 수 있다.
예를 들어, volumetric chest CT images로부터 복셀들의 집합으로서 폐혈관들을 추출하고(a point set extraction; 도 4(a)), construction energy minimization 방법에 의해 초기 폐혈관 트리(tree)가 생성된다(initial tree construction; 도 4(b)). 이후, 초기 폐혈관 트리로부터 뿌리 영역(mediastinal region)이 잘려져서(cutting the proximal region; 도 4(c)) 초기 폐혈관 트리의 가지들(branches)이 서브 트리(sub-trees)로 자동적으로 분할(segmentation)된다(automatically separated branches; 도 4(d)). 그 다음, 초기 폐혈관 트리의 가지들로부터 잘려진 뿌리 영역으로 가지들이 연장되어 서브 트리가 재결합된다(tree reconstruction and merging; 도 4(e)). 그 후, 재결합된 초기 트리를 기초로 폐혈관이 폐동맥 및 폐정맥으로 구분(classification)되어 구분된(classified) 폐혈관 트리가 생성된다(artery and vein selection; 도 4(f)).
구분된 폐혈관 트리를 사용하여, 후속되는 과정에서 삽입 경로에 의해 삽입 경로와 만나는 혈관의 개수 및 혈관이 침습되는 정도가 계산될 수 있다.
삽입 경로를 생성하는 것은 일반적으로 진단 영상에서 수행되며, 전술된 것과 같이 폐혈관 트리를 생성하는 경우, 진단 영상에서는 폐동맥 및 폐정맥을 구분하는 과정까지 수행하면, 후속 과정에서 도움이 될 수 있다. 예를 들어, 폐정맥에 공기가 들어가면 환자가 죽을 수도 있어서 폐동맥 및 폐정맥을 구분하는 것이 중요하지만, 실제 시술 영상에서는 구분하기가 어려움이 있다. 따라서 기본은 폐혈관 분할을 수행하되, 진단영상에서 동맥 및 정맥 분할 정보를 만들어서 시술 영상에 오버레이(overlay)해서 사용하는 방법도 가능하다. 도 4(f)는 분할된 폐혈관 트리의 시상(sagittal view)이며, 이 영상에서 폐동맥과 폐정맥이 다른 색으로 표시되어 구분될 수 있다(도 4(f)에는 색 구별이 표시되지 않음).
그러나, 반드시 폐혈관 트리를 사용해야 하는 것은 아니며, 전술한 것과 같이, 디스턴스 맵들을 사용하여 침습량 및 삽입 경로의 거리를 구할 수 있다. 다만, 폐혈관 트리를 이용하면, 삽입 경로와 혈관의 교차(intersection)의 계산 정확도가 더 좋을 수 있다.
이하, 도 4에 도시된 것과 같이 구분된 폐혈관 트리를 생성하는 방법을 수학식을 사용하여 설명한다.
먼저, 혈관이 복셀의 집합으로 구해지기 전에 우측 폐 및 좌측 폐가 명확히 복셀의 집합으로서 LR, LL ⊂Γ로 분할된다. 여기서, Γ = {c | c= (i, j, k), i=1,···, nx, j=1,···, ny, k=1,···, nz}을 시티 스캔(CT scans)으로부터 구성된 폐 영상의 복셀들의 집합(set)이라 하고, I(c)를 복셀 c의 attenuation 인텐시티라 하자. 먼저 vascular points V={vi}⊂R3 가 추출된다. 여기서 v(c)=(x, y, z)T = ((ci-0.5)×dx,(cj-0.5)×dy,(ck-0.5)×dz)T는 대응하는 복셀 c의 중심 위치이다. 그러면 종류가 다른 복셀들은 초기 트리(tree) T=(V, E)을 구성함으로써 구분될 수 있다. 여기서 E는 가장자리의 집합(set of edges)이다. 상기 초기 트리는 아래의 방정식(1)에 의해 정의되는 minimizing the cost 방식에 의해 구성된다.
여기서 wj는 vertex j의 가중치이고, eij는 edge (i, j)의 방향 가중치이며, α,β,γ ∈ R는 positive user-defined constants이다. wj는 vertex j의 연결특성을 지시하는 값이며,
로 정의된다. I(vj)는 전체 vascular points에 의해 표준화된 vj의 attenuation 인텐시티이고,Φ(vj)는 혈관 경계들로부터 표준화된 거리이다. eij는 에지의 방향과 vj에서 평가된 vascular orientation 간의 방향 유사성을 나타내는 요소이다. 방정식(1)을 최소화하는 솔루션은 자연스럽게 minimum spanning tree (MST)가 된다.
초기 트리를 구성한 이후, 뿌리 영역(mediastinal region)을 자른다. 연결된 vertices만을 그룹핑함으로써 가지들은 서로 분리되어 자동적으로 서브 트리가 형성된다.
Ti=(Vi, Ei)⊂T를 i-th sub-tree of T 라고 하자. 자르기 전에 논문(Livny et al, "Automatic reconstruction of tree skeletal structures from point clouds", ACM Transactions on Graphics, vol. 29(6), Article 151, 2010)로부터 유도된 아래의 방정식(2)를 최소화하는 전체적 최적화를 함으로써 모든 vertices의 방위 벡터들 {oi}이 다시 평가된다.
VP
i는 vi의 parent vertex이다. {oi}를 사용하여 상기 그룹들은 각 뿌리 vertex로부터 끝이 절단된 영역까지 다시 증식되고, 오버랩되는 가지가 없다면 재결합된다. 마지막으로 재결합된 폐혈관 트리를 기초로 혈관의 타입들(동맥 또는 정맥)이 사용자 인터페이스에 의해 결정되어 구분된 폐혈관 트리가 생성된다. 구분된 폐혈관 트리가 다음 단계를 위해 각각 혈관의 마스크 TA, TV,로 저장된다.
선택 사항이지만, 폐혈관을 동맥과 정맥으로 구분함으로써, 이후의 과정에서 삽입 경로에 의한 침습된 혈관의 개수 및 두께뿐만 아니라 침습된 혈관이 동맥인지 정맥인지도 계산될 수 있다.
도 5는 레이 케스팅 방법의 일 예를 설명하는 도면이다.
3D 레이 케스팅(ray casting) 방법으로 시점(viewpoin; 예: 대상(100))로부터 프로젝션(projection)된 레이(ray; 3)을 추적(tracing)하면 만나는 혈관의 위치를 찾을 수 있다. 즉 레이(3)와 만나는 혈관을 이루는 특정 위치의 복셀이 찾아지거나 혈관과의 거리가 구해질 수 있다.
예를 들어, 혈관 디스턴스 맵은 혈관 마스크에 나타난 혈관 경계로부터 모든 복셀까지 거리 정보를 포함한다. 마찬가지로 혈관 이외의 해부학적 구조물의 마스크를 사용하여 해부학적 구조물의 경계로부터 모든 거리를 계산해 놓으면, 즉 전술된 디스턴스 맵들을 사용하면 상기 레이의 경로 내에 혈관의 개수와 교차하는 혈관의 두께가 계산될 수 있다.
이와 다른 방법으로, 전술된 폐혈관 트리를 사용하여 침습량 및 삽입 경로의 거리를 구할 수도 있다. 일 예로, 폐혈관 트리와 오프셋 표면의 교차점을 찾는 방법이 사용될 수 있다. 예를 들어, 도 3(a)에서 설명된 유클리드 디스턴스 맵을 사용하여 폐 경계(5)로부터 동일 거리에 있는 가상의 오프셋 표면(7; offset surface)이 triangular mesh 형태로 추출될 수 있다(도 3(b) 참조). 상기 triangular mesh는 알려진 marching cubes algorithm을 사용하여 계산될 수 있으며, 이 계산 과정은 graphic processing units (GPUs)을 사용하는 parallel computing에 의해 시간효율적으로 수행될 수 있다. 이후, 예를 들어, 레이(3)와 혈관의 교차점이 어느 오프셋 표면(7)에 있는지 찾을 수 있다. 전술된 폐혈관 트리를 형성할 때, 혈관에 대한 기본 성분 분석을 수행함으로써 혈관의 방위백터가 구해질 수 있다. 그런데 구분된 폐혈관 트리의 혈관이 오프셋 표면(7)을 항상 수직으로 통과하는 것은 아니므로, 혈관의 직경 또는 면적을 구하기 위해서는 혈관을 오프셋 표면(7)에 수직으로 투영하여 오프셋 표면에서 혈관의 단면적인 오프셋 면적이 계산될 수 있다. 여기서 상기 오프셋 면적과 혈관의 방위 벡터를 사용하여 혈관의 방위 벡터에 수직인 방향으로 혈관의 반경이 계산될 수 있다. 따라서 삽입 경로와 만나는 혈관의 개수 및 두께(또는 면적) 등의 정량적 값이 계산될 수 있다.
도 6은 삽입 경로 추출 방법의 일 예를 설명하는 도면이다.
전술된 것과 같이, 3D 레이 케스팅(ray casting)에 의해 삽입 경로와 만나는 혈관 등의 해부학적 구조물까지의 거리가 도 5에서 설명된 것과 같이 디스턴스 맵을 사용하거나, 폐혈관 트리를 사용하여 계산될 수 있다. 3D에서 삽입 경로를 생성하는 방식은 2D 방식으로 삽입 경로를 추출하는 방식을 포괄한다. 이와 같이, 3D에서 삽입 경로는 플로로스코피(fluoroscopy)와 같이 2D 단면(예: axial 단면) 상에서 삽입 경로를 가이드하는 방식의 한계를 넘어서 3D로, 즉 비스듬하게 삽입 경로를 생성할 수 있게 해준다. 즉 삽입 경로가 axial 면과 수직인 2개의 면(sagittal view, coronal view)에 대해 모두 기울기를 가지는 삽입 경로가 형성될 수 있다. 따라서 삽입 경로의 최적화를 위해 더욱 많은 선택 범위가 제공될 수 있다.
먼저, 360도 전체를 레이 케스팅하여 삽입 경로를 찾을 수도 있지만, 불필요한 계산을 생략하기 위해 사용자(예; 의사)가 삽입점(entry point)의 범위(20)를 정의해 줄 수 있다. 이때의 삽입점의 범위(20)는 의료용 바늘의 삽입이 의료적 관점에서 불허인 영역을 제외하고 넓게 선택될 수 있다. 삽입점의 범위(20)가 정해지면 컴퓨터가 삽입점의 범위(20) 내에서 자동으로 삽입점을 계속 변경해 가면서 삽입점으로부터 대상까지 삽입 경로가 설정되고, 각 삽입 영역에 대해 혈관 등에 대한 침습량과 삽입 경로의 거리를 계산할 수 있다. 예를 들어, 최단 거리 삽입 경로(300)의 삽입점을 기준으로 일정 범위가 삽입점 범위(20)로 주어지고, 이 범위 내에서 삽입점이 변경되면서 삽입 경로의 침습량과 거리가 계산될 수 있다. 도 6에는 2D 엑시얼 단면이 예시되어 있지만, 삽입 경로의 추출은 3D로 수행될 수 있음은 전술한 바와 같다. 여기서 침습량은, 예를 들어, 삽입 경로가 혈관 등 해부학적 구조물과의 만나는 개수 및 두께(또는 면적)이고, 삽입 경로의 거리는, 예를 들어, 폐의 경계의 삽입점으로부터 대상(100)까지 거리이다. 삽입 경로의 거리나 칩습량을 구하는 방법은 도 5 및 도 6에서 예시되었다.
예를 들어, 하기 수학식으로 표현된 것과 같이, 삽입점으로부터 대상(100)까지 삽입 경로의 거리(Dlung), 삽입 경로로부터 에어웨이까지 거리(Dairway), 삽입 경로로부터 혈관까지 거리(Dvessel), 삽입 경로로부터 갈비뼈까지 거리(Drip) 각각에 가중치(w1,w2,w3,w4)가 부여되고, 이들이 합산되어 삽입 경로의 각도(Φ)가 결정될 수 있다. 실재 적용 가능한 일 예로 w2, w4 = 10, w3 = 0.5, w1 = 0.5와 같이 가중치가 부여될 수 있다. 이 경우의 의미는 삽입 경로가 에어웨이(airway)와 갈비뼈(rib)을 절대로 지나지 말고, 폐 경계까지 거리와 혈관까지의 거리는 동등하게 취급하라는 의미이다.
여기서, 사용자가 정하는 안전 여유에 의해 Drib는 무한대가 될 수 있다. 이것은 삽입 경로가 갈비뼈(rib)와 교차하는 것은 삽입 경로로서 생성되지 못하는 것을 의미한다. 이와 같이, 각각의 거리와 가중치를 사용하여 원하는 조건의 삽입 경로가 생성될 수 있다. 상기 수학식 중 삽입 경로의 거리(Dlung) 및 가중치 w1은 삽입 경로의 거리를 고려한 항이고, 에어웨이까지 거리(Dairway), 삽입 경로로부터 혈관까지 거리(Dvessel), 삽입 경로로부터 갈비뼈까지 거리(Drip), 가중치(w2,w3,w4)은 침습량을 고려한 항들이다. 예를 들어, 삽입 경로의 거리 가중치 w1=0 인 경우, 침습량만 고려되어 최소 침습량을 가지는 삽입 경로(200)가 추출될 수 있다. 또는 침습량 가중치(w2,w3,w4)가 모두 0인 경우, 최단 거리를 가지는 삽입 경로(300)가 추출될 수 있다. 실재 삽입 경로는 이 두 가지 방식을 포함한 그 사이에서 결정될 수 있다. 예를 들어, 침습량이 허용치 이하인 삽입 경로가 추출되고, 침습량이 허용치 이하인 삽입 경로 중에서 삽입 경로의 거리가 최소인 삽입 경로가 추출될 수 있다.
도 7은 안전 여유 밖으로 축소된 삽입 경로를 나타내는 도면이다.
상기 수학식을 충족하는 복수의 삽입 경로가 추출될 수 있다. 이러한 복수의 삽입 경로는 대략 3차원의 삽입 영역(230)으로 표시될 수 있다. 삽입 영역(230)은 삽입점(271)으로부터 대상(100)까지 단면적이 감소하는 콘(cone) 형상을 이룰 수 있다.
경험적으로 또한 이론적으로 의료용 바늘의 삽입 영역의 안전 여유(safty margin)가 정해질 수 있다. 안전 여유는 혈관(140)이나 virtual wall(120; 예: 폐 이외의 다른 장기(organ) 등)의 침습되는 구조물로부터 일정 거리 영역이 될 수 있다. 따라서 상기 수학식에 의해 생성된 삽입 경로의 집합인 삽입 영역(230) 중에서 안전 여유 내의 삽입 경로는 제거되는 것이 바람직하다. 이와 같이 안전 여유 내의 삽입 경로가 제거된 결과 축소된 삽입 영역(235)가 생성될 수 있다.
도 8은 선택된 삽입 경로로부터 일정한 간격의 거리에 위치한 혈관의 크기별 개수를 보여주는 도면이다.
예를 들어, 상기 축소된 삽입 영역(235)에서 중심선이 일차적으로 삽입 경로(251)로 추출될 수 있다. 삽입 경로(251) 외에도 축소된 삽입 영역(235) 범위 내에서 삽입 경로가 선택될 수 있다. 이렇게 결정된 적어도 하나의 삽입 경로는 삽입 경로가 추출된 폐 영상 상에서 표시될 수 있고, 삽입 경로가 입력된 폐 영상은 수술 계획 영상이 된다(도 11의 좌측 그림 참조). 수술 계획 영상은 시술장에서 현재 환자로부터 획득된 시술장 폐 영상과 정합될 수 있다. 정합된 시술장 폐 영상에는 삽입 경로가 매핑되어 표시될 수 있다(도 11의 우측 그림 참조). 의사는 정합된 시술장 폐 영상에 나타난 삽입 경로를 사용자 인터페이스(예: 마우스 등)로 수정할 수 있다. 이때, 수정된 삽입 경로에 의한 침습량 및 삽입 경로의 거리가 자동 계산되어 정합된 폐 영상 또는 다른 장치에 표시될 수 있다. 예를 들어, 도 8에 도시된 것과 같이, 선택된 삽입 경로(251)을 기준으로 일정 간격별 면들(252, 254, 256)에 위치한 혈관의 크기별 개수가 측정되어 디스플레이될 수 있다. 디스플레이(예: 시술장 영상)에는 시술자가 삽입 경로를 조절 또는 수정할 때 삽입 경로를 결정하는데 도움을 주는 지표(예: 혈관 크기별 개수)가 표시될 수 있다.
도 9는 시술장에서 호흡 등 움직임을 고려하여 삽입 경로의 일부가 제거되는 방법을 설명하는 도면이다.
한편, 시술장 영상은 환자의 현재 영상이므로 환자의 호흡으로 인해 움직임이 있을 수 있다. 따라서 정합된 시술장 폐 영상에는 호흡으로 인해 안전 여유와 중첩되는 삽입 경로(142)와, 안전 여유로부터 더 멀어지는 삽입 경로(141)가 있을 수 있다. 이는 호흡의 사이클을 관찰함으로써 찾아질 수 있다. 따라서 호흡으로 인해 안전 여유와 중첩되는 삽입 경로(142)는 제거되는 것이 바람직하다.
도 10은 도 8 및 도 9에서 설명된 삽입 경로가 실제 구현된 예를 나타내는 도면이고, 도 11은 도 10에서 보여진 삽입 영역과 최적 삽입 경로가 MPR위에 표시된 예를 설명하는 도면이다.
실재 갈비뼈와, 갈비뼈 사이로 Cone 형상의 삽입 영역(235)과, 최적 삽입 경로(optimal path; 251)가 도 10에 도시된 것과 같이 3D로 시각화될 수 있다.
상기 3D 시각화된 삽입 영역(235)과, 최적 삽입 경로(251)를 더욱 확실하게 확인(confirm)하기 위해, MPR(multiplanar reconstruction; 예: axial view, coronal view, sagittal view) 상에 삽입 영역(235)과, 최적 삽입 경로(251) 및 User defined Path(257)가 오버레이되어 표시될 수 있다(도 11에는 axial view가 예시됨).
이와 같이, 침습량, 삽입 경로의 거리에서 최적화되고, 호흡까지 고려되며, MPR 상에서 확인된 삽입 경로를 따라 의료용 바늘이 가이드되어 생검(biopsy) 등 필요한 시술이 수행될 수 있다. 예를 들어, 최종 컨펌된 삽입 경로가 TCP/IP 또는 전용 통신 프로토콜을 이용하여 로봇 또는 항법 장치 등으로 전송되어 시술에 도움이 되게 할 수 있다.
도 12는 본 개시에 따른 의료 디바이스의 삽입 경로의 생성 방법의 일 예를 설명하는 도면이다.
삽입점(entry point)으로부터 타겟까지의 의료 디바이스의 삽입 경로의 생성 방법에서, 먼저 타겟(target) 및 침습 불허 영역을 포함하는 뇌 영상이 준비된다(S11). 예를 들어, 의료영상 장치로부터 획득된 Sagittal view, Axial view 및 Coronal view 뇌 영상들을 분할(segmentation) 과정을 통해 혈관을 포함하는 침습 불허 영역과 타겟이 3차원 복셀의 집합으로 구해지고(S11), 분할된 뇌 영상들이 Anterior commissure-Posterior commissure line을 기준으로 볼륨 영상 정렬(volume alignment)된다(S21). 다음으로, 삽입 경로를 포함하는 초기 삽입 영역이 지정된다(S31). 초기 삽입 영역은 타겟에 가까워질수록 단면적이 감소하는 3차원 기둥 형상(예: truncated column)을 가진다. 예를 들어, 대상의 영상에 나타난 대상의 표면에 삽입 범위(entry range)가 지정됨으로써, 삽입 범위로부터 타겟까지 초기 삽입 영역이 정의된다. 계속해서, 초기 삽입 영역과 침습 불허 영역 간의 교차여부가 판단된다. 예를 들어, 디스턴스 맵을 이용하여 초기 삽입 영역의 경계(boundary)로부터 침습 불허 영역까지의 거리가 계산된다(S41). 이후, 교차를 피하도록 초기 삽입 영역이 축소되어 안전 삽입 영역이 생성된다(S51). 안전 삽입 영역의 중심선으로부터 삽입점이 추출될 수 있다(S61). 삽입 경로는 안전 삽입 영역 내에서 변경이 가능하므로 안전 삽입 영역은 삽입 경로의 허용 여유가 된다. 즉, 본 개시에 따른 의료 디바이스의 삽입 경로의 생성 방법에 의하면 단일한 또는, 복수의 삽입 경로를 개별적으로 추출하는 것과는 다르게 3차원 공간으로서 삽입 영역이 추출된다. 본 개시에 따른 의료 디바이스의 삽입 경로의 생성 방법은 의료 디바이스(예: 생검 바늘, Deep Brain Stimulation용 리드(lead), 프로브(probe), 카데터(catheter) 등)을 신체 내의 타겟에 도달하게 하는 다양한 시술에 적용될 수 있고, 특히 DBS(Deep Brain Stimulation)에서 비침습 삽입 경로를 자동으로 생성하는 데에 적용될 수 있다. 이하, DBS를 중심으로 설명된다.
이하, 각 과정이 상세히 설명된다.
도 13 내지 도 16은 타겟 및 침습 불허 영역을 포함하는 뇌 영상이 준비되는 과정의 일 예를 설명하는 도면들이다.
먼저, MRI에 의해 다종의 MRI 뇌 영상들(예: Vessel angiography,T1 등)이 생성된다. 이후, 타겟(도 20 및 도 22의 100 참조) 및 침습 불허 영역(도 22의 120, 140 참조)이 분할(segmentation)될 수 있다(도 12의 S11). 예를 들어, T1 영상에서 소프트웨어 렌더링 방법으로 뇌의 혈관(vessel), 뇌실(ventricle) 등 다치면 안되는 영역(침습 불허 영역)의 마스크(mask)가 각각 생성되며, 타겟이 사용자에 의해 정해질 수 있다. 타겟은 DBS의 경우 뇌의 특정 기능을 수행하는 부분으로서 자극의 목표가 된다. DBS 리드(lead)에는 타겟을 자극하기 위한 전극(예; 3개의 전극)이 구비될 수 있다. MRI로부터 생성되는 뇌 영상들은, 예를 들어, 도 13에 도시된 것과 같이, sagittal view(우측 상단 참조), axial view(좌측 상단 참조), coronal view(좌측 하단 참조) 뇌 영상들을 포함한다. 혈관의 경우, 도 14(a)와 같이 axial view에서 MRI Brain Angiography 영상을 사용하여 분할기법(예: Adaptive region growing)에 의해 도 14(b)와 같이 혈관이 분할될 수 있다. 이러한 분할에 의해 동맥 및 정맥과 같은 혈관과 뇌실 등 침습 불허 영역과, 타겟이 복셀의 3차원 집합으로 구해질 수 있다. 마찬가지로 침습 불허 영역을 제외한 안전 영역이 복셀의 3차원 집합으로 구해질 수 있다. 도 15에서 침습 불허 영역과 안전 영역이 색으로 구분되지 않았지만, 침습 불허 영역과 안전 영역이 색으로 구분되게 표시될 있다. 의료영상 소프트웨어를 사용하여 분할된 혈관으로부터 3D volume Rendering(도 16(a)) 또는 3D surface Rendering(도 16(b))된 혈관의 구조가 생성될 수 있다.
침습 불허 영역 추출은 뇌 영상을 기반으로 분석하여 결과를 마스크(Mask)로 저장하는 과정이다. 침습 불허 영역을 추출하는 방법은 혈관의 경우 전술한 것과 같이 혈관 강조영상을 가지고 분할하는 방법(Thresholding 등)이 적용된다. 이러한 마스크 등의 정보를 이용하여 이후 과정에서 침습 불허 영역으로 시술 도구가 못 가게 하는 제어 프로그램 등이 구현되어야 하는데, 이때 정확도를 복셀 하나의 크기보다 크면 마스크만으로 충분하지만, 좀더 정교하게 정확도를 구현하려면 이 영역의 Surface Model을 생성하고, 3D modelling된 시술 도구와 교차점(intersection)을 구하는 알고리즘을 적용할 수 있다. 즉, mask intersection이나 3D model intersection을 구현하는 것이다. Volume Rendering, Surface Rendeirng은 사람의 눈으로 확인이 필요할 수 있으므로 각각의 정보를 시각화해서 보여주는 것이다.
도 17 및 도 18은 볼륨 영상 정렬되는 뇌 영상들의 일 예를 설명하는 도면들이다.
계속해서, 분할된 뇌 영상들이 Anterior commissure-Posterior commissure line(AC-PC line)을 기준으로 볼륨 영상 정렬(volume alignment)된다(도 12의 S21).
예를 들어, sagittal view(도 17 및 도7 우측 상단 참조) 뇌 영상을 이용하여 두 점 AC 및 PC을 사용자가 선택할 수 있으며, 또한, axial view(도 18 좌측 상단 참조) 및 coronal view(좌측 하단 참조)에서 두 점 AC 및 PC을 선택하는 것이 모두 가능하다. 이와 같은 AC-PC line을 기준으로 sagittal view, axial view 및 coronal view가 볼륨 영상 정렬(volume alignment)된다(도 18 우측 하단 참조).
도 19는 삽입 경로 계획을 하는 소프트웨어의 인터페이스의 일 예를 보여주는 도면이고, 도 20은 삽입 범위가 지정되는 방법의 일 예를 설명하는 도면이고, 도 21은 도 20에서 일부가 확대된 도면이다.
계속해서, 사용자에 의해 초기 삽입 영역(initial entry region; 도 22(a) 240 참조)이 지정된다(도 12의 S31). 본 예에서 삽입 경로는 최종적으로는 단일한 선이 추출될 수 있지만, 우선 이러한 최종적인 삽입 경로의 가능한 범위가 사용자에 의해 지정된다. 예를 들어, 이러한 삽입 경로의 가능한 범위는 타겟으로 이어지는 3차원 기둥 형상의 일정한 영역으로 지정된다. 사용자에 의해 지정된 삽입 경로가 초기 삽입 경로로 정의된다.
도 19을 참조하면, 사용자는 삽입 경로 계획을 하는 소프트웨어의 인터페이스를 통해 AC-PC alignment, target position 및 entry range 등에 관한 정보 또는 수치를 선택할 수 있다. 이러한 인터페이스를 통해 예를 들어, sagittal view(도 20 우측 상단 및 도 21(a) 참조) 및 coronal view(도 20 좌측 하단 및 도 21(b) 참조)에 나타난 뇌의 표면에 각각 삽입 범위(entry range; 211, 215)가 선으로 지정될 수 있다. 따라서 직교하는 sagittal view 및 coronal view에서 각각 선으로 지정된 삽입 범위는 3차원 볼륨에서는 곡면(도 22(b) 210 참조)으로 지정될 수 있다.
도 22는 초기 삽입 영역으로부터 안전 삽입 영역이 생성되는 과정의 일 예를 설명하는 도면이다.
전술된 삽입 범위(210)가 지정됨으로써, 삽입 범위(210)로부터 타겟(100)까지 도 22(a)에 도시된 것과 같이 3차원 기둥 형상의 초기 삽입 영역(240)이 정의된다. 본 예에서 초기 삽입 영역(240)은 타겟(100)에 가까워질수록 단면적이 감소하는 원뿔대(truncated cone) 형상을 가진다. 삽입 범위(210)가 원형이 아닌 경우 콘피팅(cone fitting) 과정이 수행될 수 있고, 그 결과 상기 원뿔대 형상의 초기 삽입 영역(240)이 정의된다. 혈관 구조가 복잡한 폐에 비하여 뇌의 동맥 및 정맥을 포함한 혈관(140)의 구조는 더 단순하며, 혈관을 포함한 침습 불허 영역(120, 140)을 피하여 초기 삽입 영역(240)을 지정하는 것은 숙련된 의사에게는 가능한 일이다. 여기서 초기 삽입 영역(240)이 완벽하게 침습 불허 영역(120, 140)을 피할 것이 강제되는 것은 아니며, 후술될 안전 삽입 영역(280)을 추출하는 과정이 진행되므로 초기 삽입 영역(240)이 침습 불허 영역(120, 140)과 일부 교차하여도 무방하다(도 22(a) 참조). 다만 초기 삽입 영역(240)은 사용자의 경험과 지식에 의해 침습이 가장 작고, 삽입 경로로서 적합한 영역을 후속 과정을 위해 지정하는 것이다.
이후, 초기 삽입 영역(240)과 침습 불허 영역(120, 140)과의 교차여부가 판단된다. 이를 위해 초기 삽입 영역의 경계(boundary)로부터 침습 불허 영역까지의 거리가 계산될 수 있다. 예를 들어, 도 22(a)에 도시된 것과 같이, 타킷(100)으로부터의 레이 케스팅(ray casting) 방법에 의해 초기 삽입 영역(240)의 경계로부터 침습 불허 영역(120, 140)의 복셀까지의 디스턴스 맵(distance map)이 생성되는 과정이 진행될 수 있다(도 12의 S41).
디스턴스 맵의 생성 과정은 침습 불허 영역의 마스크 상의 경계면을 기준으로 모든 복셀에 대해 이 경계면과의 거리를 계산하는 과정을 포함한다. 혈관 등 침습 불허 영역 경계면으로부터 거리를 계산해 놓으면 DBS용 리드의 삽입 경로 생성시나 로봇이 의료용 바늘을 찌를 때 실시간으로 안전 거리를 계산해서 쓸 수 있는 장점이 있다.
상기 디스턴스 맵을 사용하여 초기 삽입 영역(240) 내에 위치하는 혈관 등의 침습 불허 영역(120, 140)의 복셀들이 찾아질 수 있다. 또한, 침습 불허 영역(120, 140)의 경계와 초기 삽입 영역(240)의 경계 간의 거리도 구해질 수 있다. 도 22(a)를 참조하면, 초기 삽입 영역(240)과 혈관(140) 및 뇌의 다른 중요 구조물(120; 예: 해마, 편도체 등)이 일부 교차하는 것을 알 수 있다.
다음으로, 도 22(b)에 도시된 것과 같이, 교차를 피하도록 초기 삽입 영역(240)이 축소되어 안전 삽입 영역(280)이 생성된다(도 12의 S51). 초기 삽입 영역(240)이 침습 불허 영역(120, 140)과 교차하거나, 교차하지 않더라도 안전성 확보를 위해 침습 불허 영역(120, 140)의 경계로부터 안전 거리만큼 떨어지도록 초기 삽입 영역(240)이 축소된다. 즉 안전 삽입 영역(280)은 초기 삽입 영역(240)의 내에 포함된 영역이다. 예를 들어, 상기 디스턴스 맵을 사용하여 침습 불허 영역(120, 140)으로부터 안전 거리 바깥으로 초기 삽입 영역(240)이 축소되어 안전 삽입 영역(280)이 형성되며, 안전 삽입 영역(280)은 콘피팅(cone fitting)될 수 있다. 이와 같이 생성된 안전 삽입 영역(280)은 실재 시술에 적용될 수 있는 삽입 경로의 범위를 나타낼 수 있다. 생성된 안전 삽입 영역(280)이 너무 작거나 기타 다른 부적합한 이유가 발견되는 경우 다른 초기 삽입 영역을 지정하고 다른 안전 삽입 영역을 구하는 과정을 수행할 수도 있다.
도 23은 sagittal, axial, coronal views 및 3D 영상에 나타난 삽입 경로의 일 예를 설명하는 도면이다. 도 24는 surgeon's Eye View에 의한 뇌의 이미지의 일 예를 나타내는 도면이다.
이후, 콘 형상의 안전 삽입 영역(280)의 중심선(도 22(b) 250 참조)과 뇌 영상들에 나타난 머리의 표면(head surface)과의 교차점이 삽입점(270; entry point)로 추출된다(도 22(b) 및 도 23 참조). 따라서 삽입점(270)으로부터 타겟(100)까지(예: 타겟의 중심까지) 삽입 경로가 추출된다. 안전 삽입 영역(280) 내의 삽입 경로는 모두 시술에 적용 가능한 삽입 경로가 될 수 있으며, 반드시 상기 중심선(250)을 따르는 삽입 경로만 가능한 것은 아니다.
본 예에서, 의료 디바이스의 삽입 경로의 생성 방법은 삽입 경로를 따라 뇌의 이미지를 디스플레이하는 과정을 포함할 수 있다. 예를 들어, 삽입점(270)으로부터 타겟(100)까지 삽입 경로를 따라 의료 디바이스(예: DBS 리드; 7)에 위치한 가상 카메라(5)의 시각에서 뇌의 이미지(예: 2D MPR 이미지(projected path) 또는 3D surface view display)가 표시될 수 있다(도 24 참조). 이러한 가상 카메라(5)의 시각은 의사의 시각(surgeon's Eye View)에서 삽입 경로를 따라 의료 디바이스가 지나가게 될 뇌의 이미지를 보여준다. 이를 통해 삽입 경로의 적절성이 다시 평가될 수 있고, 필요하면 삽입 경로가 수정될 수 있다. 수정 과정은 도 19에 도시된 것과 같이 파라미터들 직접 입력하여 변경하거나 마우스로 삽입점(270)을 조정하거나, 삽입 경로를 이동시키는 등의 방법으로 간단히 수행될 수 있다.
전술된 삽입 범위(210)를 지정, 초기 삽입 영역(240)의 생성, 디스턴스 맵의 생성, 안전 삽입 영역(280)의 생성, 중심선(250)을 따른 삽입 경로의 추출 등의 과정은 사용자 설정 조건 하에서 컴퓨터에 의해 자동으로 수행될 수 있다. 또한, 의료 디바이스의 삽입 경로에 의한 침습 불허 영역(120, 140)의 침습여부를 뇌 영상을 이용하여 객관적으로 평가하고 침습 불허 영역(120, 140)을 피하여 삽입 경로를 생성하는 구체적 방법이 개시되었다.
도 25는 본 개시에 따른 바늘 삽입형 중재 시술 로봇이 사용되는 중재 시술 시스템의 일 예를 설명하는 도면이다.
바늘 삽입형 중재 시술 로봇(100)은 방사선 피폭을 저감하고, 시술 정확도 향상을 위한 생검 및 치료용 바늘 삽입형 영상 중재 시술 로봇 시스템에 사용될 수 있다. 바늘 삽입형 중재 시술 로봇은 복부, 흉부 등에서 1cm 급 병소의 생검 및 치료용으로 사용될 수 있다.
예를 들어, 바늘 삽입형 영상 중재 시술 로봇 시스템은, 예를 들어, 실시간으로 바늘 삽입형 중재 시술 로봇을 제어하는 마스터장치(200)와, 고신뢰 및 고정밀의 바늘 삽입형 중재 시술 로봇(100)과, 인체 내 시술 장치의 위치를 촬영하는 장치(300)와, 시술 장치 및 환자(5)의 위치 및 자세를 모니터링하는 장치(400) 등을 포함할 수 있다. 여기서 바늘 삽입형 중재 시술 로봇(100)은 슬레이브 로봇(slave robot)으로서 로봇 팔에 설치되는 의료 도구로는 바늘형 의료 도구에 한정되지 않는다. 이하, 바늘형 의료 도구가 슬레이브 로봇에 설치된 경우 이를 바늘 삽입형 중재 시술 로봇(100)으로 칭하기로 한다.
도 26(a)는 바늘형 의료 도구가 감추어진 상태의 일 예를 보여주는 도면이고, 도 26(b)는 바늘형 의료 도구가 노출된 상태의 일 예를 보여주는 도면이다.
바늘 삽입형 중재 시술 로봇(100)은 로봇 팔(10), 바늘형 의료 도구(20) 및 보호 모듈(30)을 포함한다. 로봇 팔(10)은 외부로부터 인가된 제어신호에 따라 환자(5)의 주변에서 위치를 정한다. 로봇 팔(10)은 로봇 팔은 위치 제어를 위한 축과, 공간상의 위치 결정을 위한 축과, 자세 제어를 위한 축 등을 구비하며, 좌우 및 앞뒤 회전이 가능하도록 구성될 수 있다.
바늘형 의료 도구(20)는 로봇 팔(10)에 직접 설치되거나 보호 모듈(30)에 장착되어 로봇 팔(10)에 설치될 수 있다. 보호 모듈(30)은 로봇 팔(10)에, 예를 들어, 로봇 팔의 자세 제어 부(11)에 설치되며, 바늘형 의료 도구(20)가 로봇 팔에 의해 이송되는 동안 도 26(a)에 도시된 것과 같이, 바늘형 의료 도구(20)를 환자(5)의 시야로부터 가리고, 바늘형 의료 도구(20)가 환자(5)의 타겟(예: 생검 대상 조직)에 얼라인된(aligned) 때에, 도 26(b)에 도시된 것과 같이, 바늘형 의료 도구(20)를 노출할 수 있다.
바늘형 의료 도구(20)는 로봇 팔(10)에 고정되고, 보호 모듈(30)이 움직여 바늘형 의료 도구(20)를 환자(5)의 시야로부터 가리는 방식이 채택될 수 있다. 이와 다르게, 보호 모듈(30)은 로롯 팔(10)에 고정되고, 바늘형 의료 도구(20)가 움직여 보호 모듈(30)에 의해 바늘형 의료 도구(20)가 가려지게 구성될 수도 있다. 바늘형 의료 도구(20) 및 보호 모듈(30)의 구체적 구조에 대해서는 후술된다.
이와 같이, 바늘형 의료 도구(20)가 환자(5)의 타겟(target)에 얼라인될 때까지 보호 모듈(30)에 의해 환자(5)의 시야로부터 가려짐으로써, 환자(5)에게 두려움을 감소하고, 바늘형 의료 도구(20)와 시술자, 보조자, 주변 장치 등의 접촉이나 감염, 오염을 방지할 수 있다.
도 27은 바늘 삽입형 중재로봇의 동작의 일 예를 설명하는 도면이다.
바늘형 의료 도구(20)는 생검 바늘(예: biopsy needle), 리드(예: Deep Brain Stimulation용 리드(lead)),프로브(probe), 카데터(catheter) 등의 의료 디바이스(medical device)를 포함한다. 이하, 본 예에서는 주로 생검 바늘을 예로 설명한다.
예를 들어, 먼저, 도 27(a) 도시된 것과 같이, 바늘 삽입형 중재 시술 로봇(100)이 대기 상태로 세팅된다. 이때, 생검 바늘(20) 및 보호 모듈(30)이 바늘 삽입형 중재 시술 로봇(100)에 장착되어 있다. 생검 바늘(20)은 보호 모듈(30)에 의해 환자(5)의 시야로부터 가려질 수 있다. 이후, 도 27(b)에 도시된 것과 같이, 환자(5)가 CT(300)와 같은 영상 획득 장치 내로 진입되고, 도 27(c)에 도시된 것과 같이, 바늘 삽입형 중재 시술 로봇(100)이 CT 겐트리를 향해 병진 이동하며 위치 결정된다. 이후, 도 27(d)에 도시된 것과 같이, 바늘 삽입형 중재 시술 로봇(100)이 CT 겐트리 내로 진입하여 자세를 결정한다. 이때까지 생검 바늘(20)은 보호 모듈(30)에 의해 환자(5)의 시야로부터 가려져 있어서 환자(5)에게 두려움을 주는 것을 방지하고, 접촉에 의한 바늘의 오염이 방지된다. 이후, 도 27(e)에 도시된 것과 같이 생검 바늘(20)이 환자(5)의 타겟에 얼라인된다. 예를 들어, 환자(5)의 피부의 삽입점(entry point)으로부터 1cm 정도에 생검 바늘(20)이 얼라인되도록 보호 모듈(30)로부터 생검 바늘(20)이 노출된다. 생검 바늘(20)이 삽입점을 찌른 후 생검을 마치고 빠져나오면 다시 보호 모듈(30)이 생검 바늘(20)을 커버하여 가린 채로 환자(5)로부터 멀어지며, CT 겐트리로부터 나올 수 있다. 생검 바늘(20)로부터 생검 결과를 얻고, 생검 바늘(20)과 보호 모듈(30)이 함께, 또는 각각 바늘 삽입형 중재 시술 로봇(100)으로부터 탈착될 수 있다.
이와 같은 중재 시술 과정에서 보호 모듈(30)은 CT 겐트리나 환자(5)에 불편함이 없도록 컴팩트한 사이즈를 가지도록 제작되고, 장탈착 가능한 적절한 메커니즘에 의해 로봇 팔(10)에 장착되어 용이하게 움직인다. 생검 실시 중에는 생검에 지장을 주지 않도록 보호 모듈(30)이 적절한 위치로 이동되는 것이 중요하다. 한편, 생검 중에 또는 생검 바늘(20)이 피부로부터 이탈될 때, 피 등이 튈 수 있는데, 이때 보호 모듈(30)은 생검 바늘(20)을 가려서 시스템을 보호하여 오염 또는 감염을 방지하며, 피묻은 생검 바늘(20)을 감춘 후 찰탁되어 한꺼번에 버려지면, 간호사, 의사들이 피묻은 바늘을 찔리거나 감염되는 것이 원천적으로 차단된다.
도 28은 바늘형 의료 도구의 예들을 보여주는 도면이다.
본 예에서 바늘형 의료 도구(20)는 환자(5)의 타겟을 향해 찌르는 도구를 의미하며 반드시 바늘을 포함하는 도구에 한정되지 않는다. 도 28(a)와 같은 생검 바늘(20) 또는 도 28(b)와 같은 DBS용 리드 전극일 수도 있다. 생검 바늘(20)의 경우 바늘과 바늘을 격발하는 몸체를 포함할 수 있다. 본 개시에서 생검 바늘(20)이 도 28(a)에 예시된 것에 한정되지 않고, 바늘형 의료 도구가 생검 바늘과 생검 바늘을 보호 모듈(30) 밖으로 나오게 하거나 들어가게 하는 구동부를 포함하는 경우도 포함한다.
도 29는 보호 모듈이 로봇 팔에 결합하는 방식의 예들을 설명하는 도면이다.
보호 모듈(30)은 보호 커버(31) 및 구동부(35)를 포함할 수 있다. 보호 커버(31)는 원통과 같은 통 형상을 가질 수 있고, 일부 측면이 개구되어 생검 바늘(20)이나 로봇팔(10)의 자세 제어부(11)에 설치시 간섭을 감소하는 구조를 가질 수 있다. 보호 커버(31)는 플라스틱이나 금속 등의 재질로 이루어질 수 있다. 구동부(35)는 보호 커버(31)에 구비되며, 외부 전원에 의해 구동되는 모터 등 동력 전달 기구를 포함할 수 있다. 생검 바늘(20)은 도 29(a)에 도시된 것과 같이 보호 커버(31) 내측에 장착되거나, 도 29(b)에 도시된 것과 같이, 보호 커버(31)와 별개로 로봇 팔(10)의 자세 제어부(11)에 장착될 수 있다.
도 30은 보호 모듈이 동작하는 방식의 일 예를 설명하는 도면이다.
구동부(35)는 외부(예; 마스터 장치)로부터 전송된 제어 신호에 따라 보호 커버(31)를 로봇 팔(10)의 자세 제어부(11)를 따라 상하로 움직일 수 있다. 보호 커버(31)는 구동부(35)에 의해 로봇 팔(10)의 자세 제어부(11) 상에서 슬라이딩될 수 있다. 이를 위해 자세 제어부(11)에는 보호 커버(31)를 가이드 하는 레일이나 홈 등의 구조가 구비될 수 있다. 구동부(35)의 위치, 동력 전달 방식, 보호 커버(31)와의 결합 방식 등은 다양한 변형이 가능하다. 예를 들어, 도 30(b)에 도시된 것과 같이, 구동부(35)는 모터와 모터에 연결된 기어를 포함할 수 있고, 보호 커버(31)에는 기어와 맞물리는 톱니를 구비할 수 있다. 생검 바늘(20)과 보호 모듈(30)이 결합하여 로봇 팔에 장착되는 경우, 생검 바늘(20)과 보호 모듈(30)이 함께 로봇 팔(10)로부터 탈착될 수 있다. 보호 모듈(30)과 생검 바늘(20)이 로봇 팔(10)에 설치되는 방식은 도 26 내지 도 30에서 예시된 방식 이외에도 다양한 변형이 가능하다. 본 예에서는 생검 바늘(20)과 보호 모듈(30)은 기본적인 바늘 삽입형 엔드이펙터(end effector)로서 기능할 수 있다.
도 31은 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 다른 예를 설명하는 도면이다.
본 예에서 보호 모듈(30)은 바늘형 의료 도구(20)를 내부에 수용하는 통 또는 보호 커버이다. 바늘형 의료 도구(20)는 생검 바늘(21) 및 구동부(25)를 포함할 수 있다. 도 27에서 설명된 것과 같이, 환자(5)의 타겟에 생검 바늘(21)이 얼라인 되기 전에는 도 31(a)에 도시된 것과 같이, 생검 바늘(21)은 보호 모듈(30) 내에 감추어져 있다. 환자(5)의 타겟에 생검 바늘(21)이 얼라인되고, 구동부(25)는 생검 바늘(21)을 움직여 보호 모듈(30)로부터 노출한다. 이후, 생검 바늘(21)이 삽입점을 향해 격발되거나 로봇 팔의 자세 제어부(11)의 미세한 동작에 의해 생검 바늘(21)이 환자(5)의 삽입점에 찌르게 된다. 이후, 생검 바늘(21)이 삽입점을 빠져나오면 구동부(25)는 생검 바늘(21)을 보호 모듈(30) 내에 감추고, 로봇 팔(10)이 이동할 수 있다.
도 32는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면이다.
본 예에서 보호 모듈(30)은 생검 바늘(20)과 별개로 로봇 팔(10)의 자세 제어부(11)에 설치된 보호 커버 및 구동부를 포함한다. 바늘형 의료 도구(20)는 로봇 팔(10)의 자세 제어부(11)에 장착되며, 하나 이상의 생검 바늘을 포함할 수 있다. 예를 들어, 바늘형 의료 도구(20)는 복수의 생검 바늘이 수납된 카트리지일 수 있다. 이러한 카트리지 자체도 환자에게 불편감과 혐오감을 줄 수 있다. 보호 커버는 도 32(a)에 도시된 것과 같이, 이동시에는 생검 바늘 카트리지(20)를 환자의 시야로부터 차단하며, 생검 바늘이 환자의 삽입점에 얼라인된 때에는 도 32(b)에 도시된 것과 같이, 보호 커버가 움직여서 생검 바늘 카트리지가 노출되고, 생검 바늘이 튀어 나올 수 있다.
도 33은 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면이다.
본 예에서 보호 모듈(30)은 보호 커버(31) 및 구동부(35)를 포함한다. 보호 커버(31)는 도 33(a)에 도시된 것과 같이 로봇 팔의 자세 제어부(11)에 설치되어 생검 바늘(20)을 가린다. 구동부(35)는 보호 커버(31)의 일 측면에 구비될 수 있고, 자세 제어부(11)에 결합될 수 있다. 본 예에서 보호 커버(31)는 회전하여, 예를 들어, 생검 바늘(20)을 축으로 회전하여 도 33(b)에 도시된 것과 같이 생검 바늘(20)을 노출하며, 다시 도 33(c)에 도시된 것과 같이 슬라이딩되어 생검시에 생검 바늘(20)을 방해하지 않도록 위치한다. 생검 이후, 반대의 과정으로 생검 바늘(20)을 가릴 수 있다.
도 34는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 또 다른 예를 설명하는 도면이다.
본 예에서 보호 모듈(30)은 생검 바늘(20)의 바늘 부분을 수용하는 캡(cap)이다. 캡은 생검 바늘(20)을 가리도록 도 34(a)와 같이 로봇 팔의 자세 제어부(11) 또는 생검 바늘(20)에 결합되며, 수동으로 도 34(b)에 도시된 것과 같이 벗겨져 생검 바늘(20)을 노출할 수 있다. 예를 들어, 중재 시술 보조자가 바늘 삽입형 중재 시술 로봇(100)이 환자(5)의 타겟에 얼라인되면, 손으로 캡을 벗겨내고, 생검 이후 다시 생검 바늘(20)을 가리도록 캡을 씌울 수 있다.
도 35는 본 개시에 따른 바늘 삽입형 중재 시술 로봇의 작동 방식의 일 예를 설명하는 도면이다.
생검 바늘(20)이 환자(5)를 향해 이동 중에는 보호 커버(31)가 생검 바늘(20)을 환자(5)의 시야로부터 가려 두려움 감소하고, 생검 바늘(20)이 환자(5)의 타겟에 얼라인된 후에는 보호 커버(31)가 위로 이동하여 생검 바늘(20)이 노출된다. 이후, 생검 바늘(20)이 삽입점을 찔러 생검하는 중에 보호 커버(31)가 다시 도 35(a)에 도시된 것과 같이 생검 바늘(20) 주변을 커버하여 피의 튀김이나 다른 오염을 방지할 수 있다. 이후, 도 35(b)에 도시된 것과 같이 생검 바늘(20)이 빠져나오면 보호 커버(31)가 다시 생검 바늘(20)을 가리고 이동될 수 있다. 이렇게 이동하면 피 묻은 생검 바늘(20)에 주변의 사람이나 장치가 오염 또는 감염되는 것을 방지할 수 있다. 또한, 생검 바늘(20)과 보호 모듈(30)이 함께 로봇 팔로부터 탈착되어 취급되면 바늘에 찔리는 위험을 원천적으로 방지할 수 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 삽입점(entry point)으로부터 대상(target)까지의 의료용 바늘의 삽입 경로의 생성 방법에서, 대상(target) 및 해부학적 구조물을 포함하는 의료 영상이 준비되는 단계; 그리고 삽입 경로에 의한 해부학적 구조물에 대한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려되어 삽입 경로가 추출되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(2) 삽입 경로가 추출되는 단계에서, 삽입점으로부터 대상까지 삽입 경로의 거리에 가중치가 부여되고, 삽입 경로로부터 의료 영상에 포함된 해부학적 구조물까지의 각각의 거리에 가중치가 부여된 후, 이들이 합산되어 삽입 경로의 삽입 각도가 결정되는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(3) 삽입 경로가 추출되는 단계는: 삽입 경로의 거리 가중치가 0이고 최소 침습량을 가지는 삽입 경로가 추출되는 과정; 그리고 침습량 가중치가 0이고 최단 거리를 가지는 삽입 경로가 추출되는 과정; 중 적어도 하나를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(4) 삽입 경로가 추출되는 단계는: 침습량이 허용치 이하인 삽입 경로가 추출되는 과정; 그리고 침습량이 허용치 이하인 삽입 경로 중에서 삽입 경로의 거리가 최소인 삽입 경로가 추출되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(5) 삽입 경로가 추출되는 단계에서, 복수의 삽입 경로가 추출되며, 복수의 삽입 경로는 삽입점으로부터 대상까지 단면적이 감소하는 콘(cone) 형상을 이루는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(6) 의료 영상이 준비되는 단계는: 폐 영상에 포함된 해부학적 구조물이 분할(segmentation)되는 과정; 분할된 폐 영상을 사용하여 해부학적 구조물의 디스턴스 맵(distance map)이 생성되는 과정; 그리고 분할된 폐 영상에서 대상(target)이 선정되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(7) 해부학적 구조물의 디스턴스 맵(distance map)이 생성되는 과정은: 폐 경계 디스턴스 맵(Dlung; distance map of lung boundary), 립 디스턴스 맵(Drib; distance map of rib), 폐혈관 디스턴스 맵(Dvessel; distance map of pulmonary vessel) 및 에어웨이 디스턴스 맵(Dairway; distance map of airway)이 생성되는 과정을 포함하며,
삽입 경로에 의한 침습량 및 삽입 경로의 거리 중 적어도 하나가 허용치 이하인 삽입 경로가 추출되는 단계에서,
여기서, Dlung는 삽입점으로부터 대상까지 삽입 경로의 거리, Dairway, Dvessel 및 Drib는 삽입 경로로부터 에어웨이, 혈관, 갈비뼈(rib)까지의 디스턴스 맵 상의 거리이고, w1, w2, w3, w4는 가중치로 표현되는 수학식을 만족하는 삽입 경로의 각도(Φ)가 생성되는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
본 개시는 대상(target)의 사이즈가 큰 경우 의료용 바늘이 대상에 닿는 목표점을 여러 개 잡는 방법을 고려하는 것까지 포함한다. 이 경우, 의료용 바늘을 비스듬이 찌르는 경로 대신 대상의 목표점을 옆으로 이동하면, 삽입 경로가 axial 면 내에 있으면서 최소침습이 되도록 하는 방법도 가능할 것이다. 다만, 대상의 사이즈가 커서 목표점을 이동할 수 있다면 axial면과 평행이게 찌르는 것이 공학적으로도 훨씬 간단하고 빠르지만 여러 군데를 생검을 해야하는 문제가 있을 수 있다.
(8) 삽입 경로가 추출되는 단계는: 폐의 3D 영상에 포함된 대상으로부터 3D 레이 케스팅(ray casting)에 의해 삽입 경로와 만나는 혈관의 개수 및 두께가 계산되는 과정; 그리고 폐의 3D 영상의 Dlung(distance map of lung boundary)을 이용하여 삽입 경로의 삽입점으로부터 대상까지의 최단 거리가 계산되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(9) 삽입 경로가 생성된 폐 영상과 시술장 폐 영상이 정합되는 단계; 그리고
정합된 시술장 폐 영상에 옮겨진 삽입 경로에서 호흡시 해부학적 구조물로부터의 안전 여유에 가까워지는 삽입 경로가 제외되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 계획 방법.
(10) 의료 영상이 준비되는 단계는: 의료 영상 장치로부터 생성된 초기 폐 영상을 기초로 복셀들의 3D 집합으로서 혈관이 추출되는 과정; 초기 폐 영상에 포함된 폐혈관에 최소 스패닝 트리법(minimum spanning tree method)이 적용되어 초기 폐혈관 트리(tree)가 생성되는 과정; 초기 폐혈관 트리에서 폐혈관이 뭉쳐진 뿌리 영역이 제거되어 초기 폐혈관 트리가 서브 트리들(sub-trees)로 자동적으로 분리(separated)되는 과정; 초기 트리의 폐혈관이 제거된 뿌리 영역으로 연장되어 서브 트리들이 재결합되는(merged) 과정; 그리고 재결합된 초기 트리의 폐혈관이 폐동맥 및 폐정맥으로 구분(classification)되어 구분된 폐혈관 트리가 생성되는 과정; 분할된 폐 영상을 사용하여, Drib(distance map of rib), Dlung(distance map of lung boundary), Dvessel(distance map of pulmonary vessel) 및 Dairway(distance map of airway)을 포함하는 해부학적 구조물의 디스턴스 맵(distance map)이 생성되는 과정:을 포함하며, 삽입 경로가 추출되는 단계는:
폐의 3D 영상에 포함된 대상으로부터 3D 레이 케스팅(ray casting)에 의해 삽입 경로와 만나는 혈관의 개수 및 두께가 계산되는 과정; 그리고 폐의 3D 영상의 Dlung(distance map of lung boundary)을 이용하여 삽입 경로의 삽입점으로부터 대상까지의 최단 거리가 계산되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
(11) 삽입점(entry point)으로부터 타겟(target)까지의 의료 디바이스의 삽입 경로의 생성 방법에서, 타겟 및 침습 불허 영역을 포함하는 시술 대상의 영상이 준비되는 단계; 삽입 경로를 포함하는 초기 삽입 영역이 지정되는 단계;로서, 타겟에 가까워질수록 단면적이 감소하는 3차원 기둥 형상을 가지는 초기 삽입 영역이 지정되는 단계; 초기 삽입 영역과 침습 불허 영역과의 교차여부가 판단되는 단계; 그리고 교차를 피하도록 초기 삽입 영역이 축소되어 안전 삽입 영역이 생성되는 단계;를 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법
(12) 초기 삽입 영역이 지정되는 단계는: 대상의 영상에 나타난 대상의 표면에 삽입 범위(entry range)가 지정됨으로써, 삽입 범위로부터 타깃까지 초기 삽입 영역이 정의되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(13) 교차여부가 판단되는 단계는: 초기 삽입 영역의 경계(boundary)로부터 침습 불허 영역까지의 거리가 계산되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(14) 대상의 영상이 준비되는 단계는: 의료영상 장치로부터 획득된 대상에 대한 Sagittal, Axial 및 Coronal view 영상들을 사용하여 혈관을 포함하는 침습 불허 영역이 분할(segmentation)되는 과정: 그리고 영상들이 볼륨 영상 정렬(volume alignment)되는 과정:을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(15) 타깃은 Deep Brain Stimulation(DBS)에서 자극(Stimulation) 타깃인 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(16) 시술 대상의 영상이 준비되는 단계는: 의료영상 장치로부터 획득된 Sagittal, Axial 및 Coronal view 뇌 영상들을 사용하여 혈관을 포함하는 침습 불허 영역이 분할(segmentation)되는 과정: 그리고 뇌 영상들이 Anterior commissure-Posterior commissure line을 기준으로 볼륨 영상 정렬(volume alignment)되는 과정:을 포함하며, 초기 삽입 영역이 지정되는 단계는: 정렬된 Sagittal, Axial 및 Coronal view 뇌 영상들 중 적어도 2개를 사용하여 곡면(surface) 형태의 삽입 범위(entry range)가 지정됨으로써, 삽입 범위로부터 타깃까지 원뿔대(truncated cone) 형상의 초기 삽입 영역이 정의되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(17) 대상의 영상이 준비되는 단계는: 의료영상 장치로부터 획득된 Sagittal, Axial 및 Coronal view 뇌 영상들을 사용하여 혈관을 포함하는 침습 불허 영역이 3차원 복셀의 집합으로 분할(segmentation)되는 과정: 그리고 분할된 뇌 영상들이 Anterior commissure-Posterior commissure line을 기준으로 볼륨 영상 정렬(volume alignment)되는 과정:을 포함하며, 교차여부가 판단되는 단계는: 초기 삽입 영역의 경계(boundary)로부터 레이 케스팅(ray casting) 방법에 의해 경계로부터 침습 불허 영역의 복셀까지의 디스턴스 맵(distance map)이 생성되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(18) 안전 삽입 영역이 생성되는 단계는: 디스턴스 맵을 사용하여 침습 불허 영역으로부터 안전 여유 바깥에서 초기 삽입 영역이 축소된 안전 삽입 영역이 콘피팅(cone fitting)되는 과정; 그리고 안전 삽입 영역의 중심선과 뇌 영상들에 나타난 머리의 표면(head surface)과의 교차점이 삽입점(entry point)로 추출되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(19) 삽입점으로부터 타깃까지 삽입 경로를 따라 의료 디바이스에 위치한 가상 카메라의 시각에서 뇌의 이미지가 표시되는 단계;를 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(20) 뇌 영상이 준비되는 단계는: 의료영상 장치로부터 획득된 Sagittal, Axial 및 Coronal view 뇌 영상들을 사용하여 혈관을 포함하는 침습 불허 영역 및 DBS 타깃이 3차원 복셀의 집합으로 분할(segmentation)되는 과정: 그리고 뇌 영상들이 Anterior commissure-Posterior commissure line을 기준으로 볼륨 영상 정렬(volume alignment)되는 과정:을 포함하며, 초기 삽입 영역이 지정되는 단계는: 정렬된 Sagittal 및 Coronal view 뇌 영상들을 사용하여 곡면(surface) 형태의 삽입 범위(entry range)가 지정됨으로써, 삽입 범위로부터 타깃까지 원뿔대(truncated cone) 형상의 초기 삽입 영역이 정의되는 과정;을 포함하며, 교차여부가 판단되는 단계는: 초기 삽입 영역의 경계(boundary)로부터 레이 케스팅(ray casting) 방법에 의해 경계로부터 침습 불허 영역의 복셀까지의 디스턴스 맵(distance map)이 생성되는 과정;을 포함하며, 안전 삽입 영역이 생성되는 단계는: 디스턴스 맵을 사용하여 침습 불허 영역으로부터 안전 여유 바깥에서 초기 삽입 영역이 축소된 안전 삽입 영역이 콘피팅(cone fitting)되는 과정; 그리고 안전 삽입 영역의 중심선과 뇌 영상들에 나타난 머리의 표면(head surface)과의 교차점이 삽입점(entry point)로 지정되는 과정;을 포함하는 것을 특징으로 하는 의료 디바이스의 삽입 경로의 생성 방법.
(21) 바늘 삽입형 중재 시술 로봇에 있어서, 외부로부터 인가된 제어신호에 따라 환자의 주변에서 위치를 정하는 로봇 팔; 로봇 팔에 의해 이송되는 바늘형 의료 도구; 그리고 로봇 팔에 설치되며, 바늘형 의료 도구를 환자의 시야로부터 가리는 보호 모듈;을 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇
(22) 의료 영상 장치 내에 위치한 환자의 삽입점에 바늘형 의료 도구가 얼라인될 때까지 보호 모듈이 바늘형 의료 도구를 가리며, 바늘형 의료 도구가 삽입점에 얼라인된 후에 보호 모듈로부터 바늘형 의료 도구가 노출되는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(23) 보호 모듈 및 바늘형 의료 도구가 결합된 채로 로봇 팔에 장착되며, 보호 모듈은: 바늘형 의료 도구를 수용하는 보호 커버; 그리고 보호 커버를 움직여 로봇 팔의 이동 중에 바늘형 의료 도구를 가리거나 노출시키는 구동부;를 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(24) 보호 모듈 및 바늘형 의료 도구가 결합된 채로 로봇 팔에 장착되며,
보호 모듈은: 바늘형 의료 도구를 수용하는 보호 커버; 그리고 바늘형 의료 도구를 움직여 보호 커버 안으로 넣거나 빼는 구동부;를 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(25) 보호 모듈 및 바늘형 의료 도구가 개별적으로 로봇 팔에 설치되며, 보호 모듈은: 로봇 팔에 설치된 보호 커버; 그리고 로봇 팔에 설치되어 보호 커버를 움직여 바늘형 의료 도구를 가리거나 노출하는 구동부;를 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(26) 보호 모듈 및 바늘형 의료 도구가 개별적으로 로봇 팔에 설치되며, 바늘형 의료 도구는: 로봇 팔에 장착된 의료용 바늘; 그리고 로봇 팔에 설치되어 의료용 바늘을 움직여 보호 모듈에 의해 바늘형 의료 도구를 가리거나 노출하는 구동부;를 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(27) 보호 커버는 구동부에 의해 로봇 팔 상에서 슬라이딩 되는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(28) 보호 커버는 구동부에 의해 바늘형 의료 도구를 축으로 회전하여 바늘형 의료 도구를 가리거나 노출하도록 움직이는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(29) 바늘형 의료 도구는 의료용 바늘;을 포함하며, 보호 모듈은 바늘을 수용하도록 바늘형 의료 도구와 결합하는 캡(cap);을 포함하는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
(30) 구동부는 바늘형 의료 도구가 환자에 삽입된 때에 삽입점 주변을 가리도록 보호 커버를 움직이고, 바늘형 의료 도구가 환자로부터 뽑힐 때 바늘형 의료 도구를 가리도록 보호 커버를 움직이는 것을 특징으로 하는 바늘 삽입형 중재 시술 로봇.
본 개시에 따른 하나의 의료용 바늘의 삽입 경로의 생성 방법에 의하면, 최소 침습 및 최단 거리 중 적어도 하나에 대해 객관적이고 정량적인 근거를 가지는 삽입 경로가 생성된다.
본 개시에 따른 다른 하나의 의료용 바늘의 삽입 경로의 생성 방법에 의하면, 의료용 바늘을 이용한 생검 등의 시술에서 혈관 등의 침습을 감소하여 위험을 줄일 수 있다.
본 개시에 따른 또 다른 하나의 의료용 바늘의 삽입 경로의 생성 방법에 의하면, 최소 침습 및 최단 거리 중 적어도 하나를 고려한 삽입 경로가 자동으로 생성되어 편리하다.
본 개시에 따른 또 다른 하나의 의료용 바늘의 삽입 경로의 생성 방법에 의하면, 3D로 삽입 경로를 생성하므로 2D 단면상에서 삽입 경로를 계획 및 가이드하는 방식의 한계를 넘게 해준다.
본 개시에 따른 하나의 의료 디바이스의 삽입 경로의 생성 방법에 의하면, 혈관이나 뇌실 등 침습이 불허되는 영역을 피함에 있어서 객관적이고 정량적인 근거를 가지는 삽입 경로가 생성된다.
본 개시에 따른 다른 하나의 의료 디바이스의 삽입 경로의 생성 방법에 의하면, 의료 디바이스를 이용한 DBS 등의 시술에서 혈관 등의 침습을 피하여 위험을 줄일 수 있다.
본 개시에 따른 또 다른 하나의 의료 디바이스의 삽입 경로의 생성 방법에 의하면, 침습 불허 영역을 피하는 삽입 경로가 사용자 설정 조건하에서 자동으로 생성되어 편리하다.
본 개시에 따른 또 다른 하나의 의료 디바이스의 삽입 경로의 생성 방법에 의하면, 3D로 삽입 경로를 생성하므로 2D 단면상에서 삽입 경로를 계획 및 가이드하는 방식의 한계를 넘게 해준다.
본 개시에 따른 하나의 바늘 삽입형 중재 시술 로봇에 의하면, 생검 바늘 등 바늘형 의료 도구를 환자의 시야로부터 가려서 환자의 두려움을 감소하는 바늘 삽입형 중재 시술 로봇이 제공된다.
본 개시에 따른 다른 하나의 바늘 삽입형 중재 시술 로봇에 의하면, 생검 바늘 등 바늘형 의료 도구를 보호 모듈로 가려서 생검 바늘의 오염이 방지되고, 시술자 등 주변 사람의 생검 바늘에 의한 감염과 장치의 오염이 방지된다.
Claims (10)
- 삽입점(entry point)으로부터 대상(target)까지의 의료용 바늘의 삽입 경로의 생성 방법에서,대상(target) 및 해부학적 구조물을 포함하는 의료 영상이 준비되는 단계; 그리고삽입 경로에 의한 해부학적 구조물에 대한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려되어 삽입 경로가 추출되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 1에 있어서,삽입 경로가 추출되는 단계에서,가중치가 부여된 삽입 경로의 거리와, 가중치가 부여된 삽입 경로와 해부학적 구조물 간의 거리가 고려되어 삽입 경로가 추출되는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 1에 있어서,삽입 경로가 추출되는 단계는:삽입 경로의 거리 가중치가 0이고 최소 침습량을 가지는 삽입 경로가 추출되는 과정; 그리고침습량 가중치가 0이고 최단 거리를 가지는 삽입 경로가 추출되는 과정; 중 적어도 하나를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 1에 있어서,삽입 경로가 추출되는 단계는:침습량이 허용치 이하인 삽입 경로가 추출되는 과정; 그리고침습량이 허용치 이하인 삽입 경로 중에서 삽입 경로의 거리가 최소인 삽입 경로가 추출되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 1에 있어서,삽입 경로가 추출되는 단계에서, 복수의 삽입 경로가 추출되며, 복수의 삽입 경로는 삽입점으로부터 대상까지 단면적이 감소하는 콘(cone) 형상을 이루는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 1에 있어서,의료 영상이 준비되는 단계는:폐 영상에 포함된 해부학적 구조물이 분할(segmentation)되는 과정;분할된 폐 영상을 사용하여 해부학적 구조물의 디스턴스 맵(distance map)이 생성되는 과정; 그리고분할된 폐 영상에서 대상(target)이 선정되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 6에 있어서,해부학적 구조물의 디스턴스 맵(distance map)이 생성되는 과정은:폐 경계 디스턴스 맵(distance map of lung boundary), 립 디스턴스 맵(distance map of rib), 폐혈관 디스턴스 맵(distance map of pulmonary vessel) 및 에어웨이 디스턴스 맵(distance map of airway)이 생성되는 과정을 포함하며,삽입 경로에 의한 침습량 및 삽입 경로의 거리 중 적어도 하나가 고려된 삽입 경로가 추출되는 단계에서,여기서, Dlung는 삽입점으로부터 대상까지 삽입 경로의 거리, Dairway, Dvessel 및 Drib는 삽입 경로로부터 에어웨이, 혈관, 갈비뼈(rib)까지의 디스턴스 맵 상의 거리이고, w1, w2, w3, w4는 가중치로 표현되는 수학식을 만족하는 삽입 경로의 각도(Φ)가 생성되는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 6에 있어서,삽입 경로가 추출되는 단계는:폐의 3D 영상에 포함된 대상으로부터 3D 레이 케스팅(ray casting)에 의해 삽입 경로와 만나는 혈관의 개수 및 두께가 계산되는 과정; 그리고폐의 3D 영상의 폐 경계 디스턴스 맵(distance map of lung boundary)을 이용하여 삽입 경로의 삽입점으로부터 대상까지의 최단 거리가 계산되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
- 청구항 6에 있어서,삽입 경로가 생성된 폐 영상과 시술장 폐 영상이 정합되는 단계; 그리고해부학적 구조물로부터 일정 거리 내의 영역으로서 삽입 경로가 통과하는 것이 불허되는 안전 여유가 정의되며, 정합된 시술장 폐 영상에 옮겨진 삽입 경로에서 호흡시 해부학적 구조물로부터의 안전 여유에 가까워지는 삽입 경로가 제외되는 단계;를 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 계획 방법.
- 청구항 1에 있어서,의료 영상이 준비되는 단계는:의료 영상 장치로부터 생성된 초기 폐 영상을 기초로 복셀들의 3D 집합으로서 혈관이 추출되는 과정;초기 폐 영상에 포함된 폐혈관에 최소 스패닝 트리법(minimum spanning tree method)이 적용되어 초기 폐혈관 트리(tree)가 생성되는 과정;초기 폐혈관 트리에서 폐혈관이 뭉쳐진 뿌리 영역이 제거되어 초기 폐혈관 트리가 서브 트리들(sub-trees)로 자동적으로 분리(separated)되는 과정;초기 트리의 폐혈관이 제거된 뿌리 영역으로 연장되어 서브 트리들이 재결합되는(merged) 과정; 그리고재결합된 초기 트리의 폐혈관이 폐동맥 및 폐정맥으로 구분(classification)되어 구분된 폐혈관 트리가 생성되는 과정;을 포함하며,삽입 경로가 추출되는 단계는:폐의 3D 영상에 포함된 대상을 기준으로 3D 레이 케스팅(ray casting)하는 방법에 의해 구분된 폐혈관 트리와 삽입 경로가 만나는 혈관의 개수 및 두께가 계산되는 과정; 그리고폐의 3D 영상의 폐 경계 디스턴스 맵(distance map of lung boundary)을 이용하여 삽입점으로부터 대상까지의 최단 거리가 계산되는 과정;을 포함하는 것을 특징으로 하는 의료용 바늘의 삽입 경로의 생성 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/107,401 US10123841B2 (en) | 2013-12-23 | 2014-12-23 | Method for generating insertion trajectory of surgical needle |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0161279 | 2013-12-23 | ||
KR1020130161284A KR101540402B1 (ko) | 2013-12-23 | 2013-12-23 | 의료용 바늘의 삽입 경로의 생성 방법 |
KR10-2013-0161284 | 2013-12-23 | ||
KR1020130161288A KR101556725B1 (ko) | 2013-12-23 | 2013-12-23 | 의료 디바이스의 삽입 경로의 생성 방법 |
KR1020130161279A KR101529243B1 (ko) | 2013-12-23 | 2013-12-23 | 바늘 삽입형 중재 시술 로봇 |
KR10-2013-0161288 | 2013-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099427A1 true WO2015099427A1 (ko) | 2015-07-02 |
Family
ID=53479198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/012761 WO2015099427A1 (ko) | 2013-12-23 | 2014-12-23 | 의료용 바늘의 삽입 경로의 생성 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10123841B2 (ko) |
WO (1) | WO2015099427A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017139894A1 (en) * | 2016-02-16 | 2017-08-24 | Goyal Mayank | Systems and methods for routing a vessel line such as a catheter within a vessel |
WO2021138097A1 (en) * | 2019-12-30 | 2021-07-08 | Intuitive Surgical Operations, Inc. | Systems and methods for automatically generating an anatomical boundary |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10881461B2 (en) * | 2014-08-07 | 2021-01-05 | Henry Ford Health System | Method of analyzing hollow anatomical structures for percutaneous implantation |
CN105381534B (zh) * | 2015-12-28 | 2018-12-07 | 上海昕健医疗技术有限公司 | 粒子植入用导板及其制造方法、装置 |
CA3010443A1 (en) * | 2016-01-06 | 2017-07-13 | Boston Scientific Scimed, Inc. | Systems and methods for planning medical procedures |
US10311631B2 (en) * | 2017-05-12 | 2019-06-04 | Siemens Healthcare Gmbh | Light path fusion for rendering surface and volume data in medical imaging |
WO2019033098A2 (en) * | 2017-08-11 | 2019-02-14 | Elucid Bioimaging Inc. | QUANTITATIVE MEDICAL IMAGING REPORT |
US20210059762A1 (en) * | 2017-12-28 | 2021-03-04 | Changi General Hospital Pte Ltd | Motion compensation platform for image guided percutaneous access to bodily organs and structures |
US11123139B2 (en) | 2018-02-14 | 2021-09-21 | Epica International, Inc. | Method for determination of surgical procedure access |
CA3097847A1 (en) * | 2018-04-20 | 2019-10-24 | Abdullah Bin ZAHID | Methods and kits for optimization of neurosurgical intervention site |
US20210228292A1 (en) * | 2018-05-15 | 2021-07-29 | The Regents Of The University Of California | System and method for automated image-guided robotic intraocular surgery |
US10621728B2 (en) * | 2018-06-26 | 2020-04-14 | Sony Corporation | Internal organ localization in computed tomography (CT) images |
CN112638305A (zh) * | 2018-07-24 | 2021-04-09 | Ndr医疗科技有限公司 | 用于确定细长工具轨迹的系统和方法 |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
WO2020142338A1 (en) * | 2018-12-31 | 2020-07-09 | Xact Medical, Inc. | Needle insertion into subcutaneous target |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
EP3754606A1 (en) | 2019-06-17 | 2020-12-23 | Galgo Medical, SL | A computer implemented method, a system and computer programs for computing simultaneous rectilinear paths using medical images |
WO2021221929A1 (en) * | 2020-04-30 | 2021-11-04 | Clearpoint Neuro, Inc. | Surgical planning systems that automatically assess different potential trajectory paths and identify candidate trajectories for surgical systems |
CN115316972A (zh) * | 2022-06-27 | 2022-11-11 | 中国科学院自动化研究所 | 柔性电极的植入方法、装置和电子设备 |
CN116077155B (zh) * | 2023-04-06 | 2023-06-27 | 深圳惟德精准医疗科技有限公司 | 基于光学追踪设备和机械臂的手术导航方法及相关装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070049861A1 (en) * | 2005-08-05 | 2007-03-01 | Lutz Gundel | Device and method for automated planning of an access path for a percutaneous, minimally invasive intervention |
JP2011525827A (ja) * | 2008-06-25 | 2011-09-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 最小の侵襲性の手術のための入れ子カニューレ |
KR20130089037A (ko) * | 2012-02-01 | 2013-08-09 | 삼성메디슨 주식회사 | 바늘 가이드 장치를 제어하는 방법 및 그를 위한 초음파 진단 장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3749400B2 (ja) | 1998-10-27 | 2006-02-22 | 株式会社島津製作所 | 断層撮影装置 |
US8273076B2 (en) | 2005-06-30 | 2012-09-25 | Intuitive Surgical Operations, Inc. | Indicator for tool state and communication in multi-arm robotic telesurgery |
US8160676B2 (en) | 2006-09-08 | 2012-04-17 | Medtronic, Inc. | Method for planning a surgical procedure |
-
2014
- 2014-12-23 US US15/107,401 patent/US10123841B2/en not_active Expired - Fee Related
- 2014-12-23 WO PCT/KR2014/012761 patent/WO2015099427A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070049861A1 (en) * | 2005-08-05 | 2007-03-01 | Lutz Gundel | Device and method for automated planning of an access path for a percutaneous, minimally invasive intervention |
JP2011525827A (ja) * | 2008-06-25 | 2011-09-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 最小の侵襲性の手術のための入れ子カニューレ |
KR20130089037A (ko) * | 2012-02-01 | 2013-08-09 | 삼성메디슨 주식회사 | 바늘 가이드 장치를 제어하는 방법 및 그를 위한 초음파 진단 장치 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017139894A1 (en) * | 2016-02-16 | 2017-08-24 | Goyal Mayank | Systems and methods for routing a vessel line such as a catheter within a vessel |
US10548669B2 (en) | 2016-02-16 | 2020-02-04 | Mentice Ab | Systems and methods for routing a vessel line such as a catheter within a vessel |
US10987170B2 (en) | 2016-02-16 | 2021-04-27 | Mentice Ab | Systems and methods for routing a vessel line such as a catheter within a vessel |
US11464572B2 (en) | 2016-02-16 | 2022-10-11 | Mentice Ab | Systems and methods for routing a vessel line such as a catheter within a vessel |
WO2021138097A1 (en) * | 2019-12-30 | 2021-07-08 | Intuitive Surgical Operations, Inc. | Systems and methods for automatically generating an anatomical boundary |
Also Published As
Publication number | Publication date |
---|---|
US20170000567A1 (en) | 2017-01-05 |
US10123841B2 (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015099427A1 (ko) | 의료용 바늘의 삽입 경로의 생성 방법 | |
EP4084719B1 (en) | Systems for indicating approach to an anatomical boundary | |
EP3422297B1 (en) | System and method for glass state view in real-time three-dimensional (3d) cardiac imaging | |
CN107072625B (zh) | 治疗程序规划系统和方法 | |
JP7478143B2 (ja) | 解剖学的境界を規定するためのグラフィカルユーザインターフェイス | |
CN110192917B (zh) | 用于执行经皮导航规程的系统和方法 | |
WO2017043926A1 (ko) | 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템 | |
JP2019162339A (ja) | 手術支援システムおよび表示方法 | |
EP3690810B1 (en) | Method for displaying tumor location within endoscopic images | |
WO2017043924A1 (ko) | 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템 | |
JPH09173352A (ja) | 医用ナビゲーションシステム | |
EP3673854B1 (en) | Correcting medical scans | |
EP3643265A1 (en) | Loose mode for robot | |
WO2016060308A1 (ko) | 바늘 삽입형 중재시술 로봇 장치 | |
US20240033006A1 (en) | Pulp diagnosis-treatment assistance method and system based on digital dynamic guide | |
US20230360212A1 (en) | Systems and methods for updating a graphical user interface based upon intraoperative imaging | |
US20230034112A1 (en) | Systems and methods for automatically generating an anatomical boundary | |
US20240164853A1 (en) | User interface for connecting model structures and associated systems and methods | |
CN205054426U (zh) | 手术用手柄、电磁刀手术系统及定位系统 | |
KR20000011134A (ko) | 정위 수술 방법 및 장치 | |
KR20150073510A (ko) | 의료용 바늘의 삽입 경로의 생성 방법 | |
US11850004B2 (en) | Systems and methods for determining an arrangement of explanted tissue and for displaying tissue information | |
US20240169480A1 (en) | Systems for image resampling and associated methods | |
WO2023129934A1 (en) | Systems and methods for integrating intra-operative image data with minimally invasive medical techniques | |
Becker et al. | Towards automatic path planning for multi-port minimally-traumatic lateral skull base surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874122 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15107401 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874122 Country of ref document: EP Kind code of ref document: A1 |