[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015098409A1 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
WO2015098409A1
WO2015098409A1 PCT/JP2014/081257 JP2014081257W WO2015098409A1 WO 2015098409 A1 WO2015098409 A1 WO 2015098409A1 JP 2014081257 W JP2014081257 W JP 2014081257W WO 2015098409 A1 WO2015098409 A1 WO 2015098409A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
arc
feed
welding
time
Prior art date
Application number
PCT/JP2014/081257
Other languages
French (fr)
Japanese (ja)
Inventor
章博 井手
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to CN201480059830.XA priority Critical patent/CN105682844B/en
Priority to JP2015554687A priority patent/JP6261614B2/en
Priority to KR1020167010917A priority patent/KR102190857B1/en
Publication of WO2015098409A1 publication Critical patent/WO2015098409A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention periodically repeats the forward feed period and the reverse feed period of the feed speed, performs constant voltage control so that the output of the welding power source becomes equal to the voltage target value, and repeats the short circuit period and the arc period.
  • the present invention relates to an arc welding control method for performing welding.
  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
  • FIG. 3 is a waveform diagram in the welding method in which the feeding speed is periodically forwarded and reversed.
  • A shows the waveform of the feeding speed Fw
  • B shows the waveform of the welding current Iw
  • C shows the waveform of the welding voltage Vw
  • D shows a constant waveform.
  • the waveform of the output voltage setting signal Er which is a voltage target value of voltage control is shown.
  • the feeding speed Fw is 0 or more for the normal feeding period and less than 0 for the reverse feeding period.
  • Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the period from time t5 to t6 again becomes the normal feed acceleration period
  • the period from time t6 to t7 again becomes the normal feed deceleration period.
  • a constant voltage control welding power source is used for consumable electrode arc welding. This constant voltage control is performed by feedback control so that the output voltage of the welding power source becomes equal to a predetermined output voltage setting signal Er. As shown in FIG. 4D, since the output voltage setting signal Er is a constant value during welding, a constant output voltage is output by constant voltage control.
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4.
  • This figure shows a case where an arc is regenerated at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
  • the welding voltage Vw When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased.
  • the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
  • the next short circuit occurs at time t61 during the normal feed deceleration period from time t6 to t7.
  • the short circuit that occurred at time t61 is delayed in the time (phase) from the maximum value of forward feeding compared to the short circuit that occurred at time t21.
  • the period from time t31 to t61 is the arc period.
  • the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened.
  • the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
  • an arc welding control method capable of performing stable welding while suppressing the period of short circuit and arc and the period of forward feeding and reverse feeding of the feeding speed from being synchronized. The purpose is to provide.
  • the arc welding control method of the present invention includes: Periodically repeat the forward feed period and reverse feed period of the electrode feed speed relative to the base metal, control the constant voltage so that the output of the welding power source is equal to the voltage target value, repeat the short circuit period and the arc period
  • the voltage target value is decreased with time. It is characterized by that.
  • the decrease in the voltage target value is performed from the start point of the normal feed period in the arc period. It is characterized by that.
  • the decrease in the voltage target value is performed from the time when a predetermined period has elapsed from the start of the normal feed period in the arc period. It is characterized by that.
  • the decrease in the voltage target value is performed from the time when the feeding speed of the normal feeding period in the arc period reaches a predetermined reference value. It is characterized by that.
  • the arc welding control method of the present invention changes the rate of change of the voltage target value according to a specific value of the feed speed, It is characterized by that.
  • the welding current is reduced, so that the droplets can be prevented from being lifted. .
  • it is possible to suppress variations in timing at which a short circuit occurs. For this reason, in this invention, it can suppress that the period of a short circuit and an arc, and the period of forward feeding and reverse feeding of a feed rate will be in a synchronous shift state, and can perform stable welding.
  • FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
  • the power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to an error amplification signal Ea described later, and outputs an output voltage E.
  • This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down to an appropriate voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a modulation circuit that performs pulse width modulation control using the error amplification signal Ea as an input, and a pulse width modulation control signal are input.
  • a commercial power supply not shown
  • a smoothing capacitor that smoothes the rectified direct current
  • an inverter circuit that converts the smoothed direct current to high frequency alternating current
  • the reactor WL smoothes the output voltage E described above.
  • the inductance value of the reactor WL is, for example, 200 ⁇ H.
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • a feed control signal Fc which will be described later
  • Fc feed control signal
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the welding wire 1 and the base material 2.
  • a welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
  • the voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal vd.
  • the short circuit determination circuit SD receives the voltage detection signal vd as an input, and when this value is less than a predetermined short circuit determination value, it determines that it is a short circuit period and becomes a high level, and the voltage detection signal vd becomes a predetermined short circuit determination. When the value is equal to or greater than the value, it is determined that the current period is an arc period, and a short circuit determination signal Sd that is at a low level is output. This short circuit discrimination value is set to about 15V.
  • the feed speed setting circuit FR outputs a feed speed setting signal Fr having a predetermined pattern in which the forward feed and the reverse feed are periodically repeated as will be described in detail with reference to FIG.
  • the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
  • the feed control circuit FC receives the feed speed setting signal Fr and inputs a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the set value to the feed motor WM. Output to.
  • the output voltage setting circuit ER outputs a predetermined output voltage setting signal Er.
  • the output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
  • the output voltage control setting circuit ECR receives the output voltage setting signal Er, the short circuit determination signal Sd, and the feed speed setting signal Fr as input, and the short circuit determination signal Sd is at a low level (arc period).
  • the value of the output voltage setting signal Er is set during the first period from when the feed speed setting signal Fr becomes 0 or more (normal feed period) until the short circuit determination signal Sd becomes High level (short circuit period).
  • An output voltage control setting signal Ecr that decreases with the passage of time is output as a base point.
  • the output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the first period of the arc period.
  • the output voltage control setting signal Ecr is a voltage target value for constant voltage control.
  • the error amplifying circuit EA receives the output voltage control setting signal Ecr and the output voltage detection signal Ed, and amplifies an error between the output voltage control setting signal Ecr (+) and the output voltage detection signal Ed ( ⁇ ).
  • the error amplification signal Ea is output.
  • the welding power source is controlled at a constant voltage.
  • FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 for explaining the arc welding control method according to the first embodiment of the present invention.
  • FIG. 4A shows the time change of the feeding speed Fw
  • FIG. 4B shows the time change of the welding current Iw
  • FIG. 4C shows the time change of the welding voltage Vw
  • FIG. ) Shows a time change of the output voltage control setting signal Ecr which is a voltage target value of the constant voltage control.
  • This figure corresponds to FIG. 3 described above, and the operation during the arc period normal feed period Tas from time t5 to t61 is different.
  • FIG. 3 Shows a time change of the output voltage control setting signal Ecr which is a voltage target value of the constant voltage control.
  • the feeding speed Fw is 0 or more for the normal feeding period and less than 0 for the reverse feeding period.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the change pattern of the feeding speed Fw may be triangular or trapezoidal.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the period from time t5 to t6 again becomes the normal feed acceleration period
  • the period from time t6 to t7 again becomes the normal feed deceleration period.
  • the repetition cycle of the forward feed and the reverse feed is set to a predetermined value.
  • the forward feed acceleration period from time t1 to t2 is 2.7 ms
  • the forward feed deceleration period from time t2 to t3 is 2.7 ms
  • the reverse feed acceleration period from time t3 to t4 is 2.3 ms.
  • the reverse feed deceleration period from time t4 to t5 is 2.3 ms.
  • the maximum value for forward feed is 50 m / min
  • the maximum value for reverse feed is ⁇ 50 m / min.
  • the repetition cycle of forward feeding and reverse feeding is 10 ms
  • the average value of the feeding speed Fw is about 4 m / min (the average welding current is about 150 A).
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4.
  • This figure shows a case where an arc has occurred at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
  • the output voltage control setting signal Ecr is a predetermined constant value as shown in FIG. This is the same as the prior art.
  • the welding voltage Vw When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased.
  • the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
  • the output voltage control setting signal Ecr remains at a constant value as shown in FIG. The operation during this period is the same as in the prior art.
  • the next short circuit occurs at time t61 during the normal feed deceleration period from time t6 to t7.
  • the period from time t31 to t61 is the arc period.
  • the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened.
  • the output voltage control setting signal Ecr gradually decreases with time.
  • the welding voltage Vw becomes smaller as shown in FIG.
  • the output voltage control setting signal Ecr decreases, so that the reduction rate of the welding voltage Vw becomes larger than that in the prior art of FIG.
  • the welding current Iw is gradually reduced, unlike the prior art. Therefore, during the arc period forward feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases with a large decrease rate as shown in FIG. 10C, and the welding current is reduced as shown in FIG. Iw also becomes gradually smaller.
  • the output voltage control setting signal Ecr becomes a constant value during a period other than the arc period forward feed period Tas, and decreases with the passage of time during the arc period forward feed period Tas.
  • This reduction method is performed as follows. 1) As shown in FIG. 4D, the output voltage control setting signal Ecr starts decreasing from the start of the arc period normal feed period Tas at time t5 and continues until the short-circuit period at time t61.
  • the output voltage control setting circuit ECR in this case is as shown in FIG.
  • the output voltage control setting signal Ecr may start decreasing from the time when the predetermined period has elapsed from the start of the arc period normal feed period Tas at time t5 and may continue until the short-circuit period at time t61.
  • the output voltage control setting circuit ECR receives the output voltage setting signal Er, the short-circuit determination signal Sd, and the feed speed setting signal Fr as inputs, and supplies the short-circuit determination signal Sd when it is at the low level (arc period).
  • the output voltage setting signal Er An output voltage control setting signal Ecr that decreases with the passage of time is output from the value of.
  • the output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the second period of the arc period.
  • the output voltage control setting signal Ecr starts to decrease from when the feed speed Fw during the arc period normal feed period Tas reaches a predetermined reference value, and continues until the short-circuit period at time t61. good.
  • the output voltage control setting circuit ECR receives the output voltage setting signal Er, the short-circuit determination signal Sd, and the feed speed setting signal Fr as inputs, and supplies the short-circuit determination signal Sd when it is at the low level (arc period).
  • the value of the output voltage setting signal Er is used as a base point.
  • the output voltage control setting signal Ecr that decreases with time elapses.
  • the output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the third period of the arc period.
  • the rate of change of the output voltage control setting signal Ecr may be changed in accordance with a specific value of the feed speed Fw.
  • the specific value of the feeding speed Fw is an average value of the feeding speed Fw, a maximum value of forward feeding, or a rate of change of the feeding speed Fw during the arc period forward feeding period Tas.
  • the decrease may be stopped.
  • the decrease in the output voltage control setting signal Ecr may be linear or curved.
  • the voltage target value (output voltage control setting signal Ecr) is decreased with time during the forward feed period (arc period forward feed period Tas) during the arc period.
  • the welding current is reduced, so that the droplets are prevented from being lifted. be able to.
  • it is possible to suppress variations in timing at which a short circuit occurs. For this reason, in this Embodiment, it can suppress that the period of a short circuit and an arc, and the period of forward feeding and reverse feeding of a feed rate will be in a synchronous shift state, and can perform stable welding.
  • the forward feed period and the reverse feed period of the feed rate are periodically repeated, and the constant voltage control is performed so that the output of the welding power source becomes equal to the value of the voltage target value. It is possible to provide an arc welding control method in which welding is repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)

Abstract

 The stability of arc welding performed by cyclically repeating forward feed and reverse feed of a welding wire is improved in the present invention. An arc welding control method, in which a forward-feed period and a reverse-feed period at a feed speed (Fw) are cyclically repeated, the output of the welding power source is controlled at a constant voltage so as to be equal to a voltage target value (Ecr), and welding is performed by repeating a short-circuit period and an arc period, wherein during the forward-feed period (Tas) during the arc period, the voltage target value (Ecr) is reduced over time. As a consequence thereof, during the forward-feed period (Tas) within the arc period, even if the arc length is shortened and the welding voltage (Vw) is reduced, the welding current (Iw) can be reduced, thereby making it possible to keep the short-circuit occurrence timing fixed, and improve stability of the welding state.

Description

アーク溶接制御方法Arc welding control method
 本発明は、送給速度の正送期間と逆送期間とを周期的に繰り返し、溶接電源の出力が電圧目標値の値と等しくなるように定電圧制御し、短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法に関するものである。 The present invention periodically repeats the forward feed period and the reverse feed period of the feed speed, performs constant voltage control so that the output of the welding power source becomes equal to the voltage target value, and repeats the short circuit period and the arc period. The present invention relates to an arc welding control method for performing welding.
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In general consumable electrode type arc welding, a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding. In the consumable electrode type arc welding, the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
 溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1参照)。以下、この溶接方法について説明する。 In order to further improve the welding quality, a method has been proposed in which welding is performed by periodically repeating forward feeding and reverse feeding of a welding wire (for example, see Patent Document 1). Hereinafter, this welding method will be described.
 図3は、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。同図(A)は送給速度Fwの波形を示し、同図(B)は溶接電流Iwの波形を示し、同図(C)は溶接電圧Vwの波形を示し、同図(D)は定電圧制御の電圧目標値である出力電圧設定信号Erの波形を示す。以下、同図を参照して説明する。 FIG. 3 is a waveform diagram in the welding method in which the feeding speed is periodically forwarded and reversed. (A) shows the waveform of the feeding speed Fw, (B) shows the waveform of the welding current Iw, (C) shows the waveform of the welding voltage Vw, and (D) shows a constant waveform. The waveform of the output voltage setting signal Er which is a voltage target value of voltage control is shown. Hereinafter, a description will be given with reference to FIG.
 同図(A)に示すように、送給速度Fwは、0以上が正送期間となり、0未満が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。 As shown in FIG. 5A, the feeding speed Fw is 0 or more for the normal feeding period and less than 0 for the reverse feeding period. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material. The feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。 As shown in FIG. 5A, the feeding speed Fw is 0 at time t1, the period from time t1 to t2 is the forward acceleration period, the maximum value of forward feeding at time t2, and the time t2 to The period of t3 is the forward deceleration period, becomes 0 at time t3, the period of time t3 to t4 is the reverse acceleration period, becomes the maximum value of reverse transmission at time t4, and the period of time t4 to t5 is the reverse deceleration period It becomes. The period from time t5 to t6 again becomes the normal feed acceleration period, and the period from time t6 to t7 again becomes the normal feed deceleration period.
 消耗電極式アーク溶接には定電圧制御の溶接電源が使用される。この定電圧制御は、溶接電源の出力電圧が予め定めた出力電圧設定信号Erと等しくなるようにフィードバック制御されることによって行なわれる。同図(D)に示すように、出力電圧設定信号Erは溶接中は一定値であるので、定電圧制御によって一定の出力電圧が出力される。 A constant voltage control welding power source is used for consumable electrode arc welding. This constant voltage control is performed by feedback control so that the output voltage of the welding power source becomes equal to a predetermined output voltage setting signal Er. As shown in FIG. 4D, since the output voltage setting signal Er is a constant value during welding, a constant output voltage is output by constant voltage control.
 溶接ワイヤと母材との短絡は、時刻t2の正送最大値の前後で発生することが多い。同図は、正送の最大値の後の正送減速期間中の時刻t21で短絡が発生した場合を示している。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。 短 絡 Short-circuiting between the welding wire and the base material often occurs before and after the maximum feed value at time t2. This figure shows the case where a short circuit occurs at time t21 during the forward feed deceleration period after the maximum value of forward feed. When a short circuit occurs at time t21, the welding voltage Vw rapidly decreases to a short circuit voltage value of several V as shown in FIG. 10C, and the welding current Iw gradually increases as shown in FIG.
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送の最大値の前後で発生することが多い。同図は、逆送の最大値の前の逆送加速期間中の時刻t31でアークが再発生した場合を示している。したがって、時刻t21~t31の期間が短絡期間となる。 As shown in FIG. 4A, the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward. The short circuit is released by this reverse feed, and the arc is regenerated at time t31. The reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4. This figure shows a case where an arc is regenerated at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
 時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。 When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
 時刻t31~t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31~t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。 During the period from time t31 to t5, as shown in FIG. 5A, the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased. As the arc length increases, the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
 そして、次の短絡が、時刻t6~t7の正送減速期間中の時刻t61に発生する。但し、時刻t61に発生した短絡は、時刻t21に発生した短絡よりも正送の最大値からの時間(位相)が遅くなっている。時刻t31~t61の期間がアーク期間となる。時刻t5~t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。アーク長が短くなると、溶接電圧Vwは小さくなり、定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t5~t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。 Then, the next short circuit occurs at time t61 during the normal feed deceleration period from time t6 to t7. However, the short circuit that occurred at time t61 is delayed in the time (phase) from the maximum value of forward feeding compared to the short circuit that occurred at time t21. The period from time t31 to t61 is the arc period. During the period from time t5 to time t61, as shown in FIG. 5A, the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened. When the arc length is shortened, the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
 上述したように、溶接ワイヤの正送と逆送とを繰り返す溶接方法では、定速送給の従来技術では不可能であった短絡とアークとの繰り返しの周期を所望値に設定することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。 As described above, in the welding method that repeats forward and reverse feeding of the welding wire, it is possible to set the cycle of repetition of short circuit and arc, which is impossible with the conventional technique of constant speed feeding, to a desired value. Therefore, it is possible to improve the welding quality, such as reducing the amount of spatter generated and improving the bead appearance.
 しかし、上述したように、時刻t5~t61のアーク期間正送期間Tas中は、アーク長が短くなるのに伴い溶接電流Iwが次第に大きくなるために、溶接ワイヤ先端の溶滴に作用する持ち上げ力が次第に大きくなる。この結果、短絡の発生タイミングがばらつくことになる。短絡発生タイミングのばらつきが大きくなると、短絡とアークとの周期と正送と逆送との周期とが同期しなくなり、短絡とアークとの周期がばらつくことになる。この同期ズレ状態を元の同期状態に戻すための方法が、特許文献1に開示されている。 However, as described above, during the arc period normal feeding period Tas from time t5 to t61, the welding current Iw gradually increases as the arc length becomes shorter, so that the lifting force acting on the droplet at the tip of the welding wire is increased. Gradually grows. As a result, the occurrence timing of the short circuit varies. When the variation in the occurrence timing of the short circuit becomes large, the cycle of the short circuit and the arc and the cycle of the forward feed and the reverse feed are not synchronized, and the cycle of the short circuit and the arc varies. A method for returning the synchronization shift state to the original synchronization state is disclosed in Patent Document 1.
 特許文献1の発明では、溶接ワイヤの正送中で送給速度の減速中に、送給速度が所定の送給速度になるまでに短絡が発生しない場合には、周期的な変化を中止して送給速度を第1の送給速度に一定制御し、第1の送給速度による正送中に短絡が発生すると第1の送給速度から減速を開始して周期的な変化を再開して溶接を行うものである。これにより、同期ズレ状態を同期状態に戻そうとしている。 In the invention of Patent Document 1, when a short-circuit does not occur before the feeding speed reaches a predetermined feeding speed during normal feeding of the welding wire and deceleration of the feeding speed, the periodic change is stopped. The feed speed is controlled to be constant at the first feed speed, and if a short circuit occurs during normal feed at the first feed speed, deceleration is started from the first feed speed and the periodic change is resumed. Welding. As a result, the synchronization shift state is returned to the synchronization state.
日本国特許第4807474号公報Japanese Patent No. 4807474
 特許文献1の発明では、短絡が適正なタイミングで発生しないときは、送給速度を正送の一定速度に切り換え、短絡が発生すると送給速度を元の周期的な変化に戻している。しかし、この制御では、短絡とアークとの周期が送給速度の正送と逆送との周期と同期ズレ状態に陥った後に処置することになり、溶接状態が不安定になりやすいという問題がある。 In the invention of Patent Document 1, when a short circuit does not occur at an appropriate timing, the feeding speed is switched to a constant feed speed, and when a short circuit occurs, the feeding speed is returned to the original periodic change. However, this control has a problem that the welding state tends to become unstable because the cycle between the short circuit and the arc falls into a state of synchronization deviation with the cycle between the forward feed and the reverse feed of the feed speed. is there.
 そこで、本発明では、短絡とアークとの周期と送給速度の正送と逆送との周期とが同期ズレ状態になることを抑制し、安定した溶接を行うことができるアーク溶接制御方法を提供することを目的とする。 Therefore, in the present invention, there is provided an arc welding control method capable of performing stable welding while suppressing the period of short circuit and arc and the period of forward feeding and reverse feeding of the feeding speed from being synchronized. The purpose is to provide.
 上述した課題を解決するために、本発明のアーク溶接制御方法は、
母材に対する電極の送給速度の正送期間と逆送期間とを周期的に繰り返し、溶接電源の出力が電圧目標値と等しくなるように定電圧制御し、短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
 前記アーク期間中の前記正送期間中は、前記電圧目標値を時間経過に伴って減少させる、
ことを特徴とする。
In order to solve the above-described problem, the arc welding control method of the present invention includes:
Periodically repeat the forward feed period and reverse feed period of the electrode feed speed relative to the base metal, control the constant voltage so that the output of the welding power source is equal to the voltage target value, repeat the short circuit period and the arc period In the arc welding control method for welding,
During the forward feed period during the arc period, the voltage target value is decreased with time.
It is characterized by that.
 本発明のアーク溶接制御方法は、前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の開始時点から行う、
ことを特徴とする。
In the arc welding control method of the present invention, the decrease in the voltage target value is performed from the start point of the normal feed period in the arc period.
It is characterized by that.
 本発明のアーク溶接制御方法は、前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の開始から所定期間が経過した時点から行う、
ことを特徴とする。
In the arc welding control method of the present invention, the decrease in the voltage target value is performed from the time when a predetermined period has elapsed from the start of the normal feed period in the arc period.
It is characterized by that.
 本発明のアーク溶接制御方法は、前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の前記送給速度が予め定めた基準値に達した時点から行う、
ことを特徴とする。
In the arc welding control method of the present invention, the decrease in the voltage target value is performed from the time when the feeding speed of the normal feeding period in the arc period reaches a predetermined reference value.
It is characterized by that.
 本発明のアーク溶接制御方法は、前記電圧目標値の前記減少の変化率を、前記送給速度の特定の値に応じて変化させる、
ことを特徴とする。
The arc welding control method of the present invention changes the rate of change of the voltage target value according to a specific value of the feed speed,
It is characterized by that.
 本発明によれば、アーク期間中の正送期間中にアーク長が次第に短くなり、溶接電圧が次第に小さくなっても、溶接電流が小さくなるので、溶滴が持ち上げられることを防止することができる。この結果、短絡が発生するタイミングのばらつきを抑制することができる。このために、本発明では、短絡とアークとの周期と送給速度の正送と逆送との周期とが同期ズレ状態になることを抑制し、安定した溶接を行うことができる。 According to the present invention, even when the arc length is gradually shortened during the normal feeding period of the arc period and the welding voltage is gradually reduced, the welding current is reduced, so that the droplets can be prevented from being lifted. . As a result, it is possible to suppress variations in timing at which a short circuit occurs. For this reason, in this invention, it can suppress that the period of a short circuit and an arc, and the period of forward feeding and reverse feeding of a feed rate will be in a synchronous shift state, and can perform stable welding.
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 1 for demonstrating the arc welding control method which concerns on Embodiment 1 of this invention. 従来技術において、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。In a prior art, it is a wave form diagram in the welding method which repeats forward feeding and reverse feeding of feed speed periodically.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施の形態1]
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換するインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器、上記の誤差増幅信号Eaを入力としてパルス幅変調制御を行う変調回路、パルス幅変調制御信号を入力としてインバータ回路のスイッチング素子を駆動するインバータ駆動回路を備えている。 The power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to an error amplification signal Ea described later, and outputs an output voltage E. This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down to an appropriate voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a modulation circuit that performs pulse width modulation control using the error amplification signal Ea as an input, and a pulse width modulation control signal are input. As an inverter driving circuit for driving a switching element of the inverter circuit.
 リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。 The reactor WL smoothes the output voltage E described above. The inductance value of the reactor WL is, for example, 200 μH.
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。この送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。 The feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed. As this feed motor WM, a motor having a fast transient response is used. In order to increase the rate of change of the feeding speed Fw of the welding wire 1 and the reversal of the feeding direction, the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、溶接ワイヤ1と母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加され、溶接電流Iwが通電する。 The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the welding wire 1 and the base material 2. A welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
 電圧検出回路VDは、上記の溶接電圧Vwを検出して、電圧検出信号vdを出力する。短絡判別回路SDは、この電圧検出信号vdを入力として、この値が予め定めた短絡判別値未満のときは短絡期間であると判別してHighレベルとなり、電圧検出信号vdが予め定めた短絡判別値以上のときはアーク期間であると判別してLowレベルとなる短絡判別信号Sdを出力する。この短絡判別値は、15V程度に設定される。 The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal vd. The short circuit determination circuit SD receives the voltage detection signal vd as an input, and when this value is less than a predetermined short circuit determination value, it determines that it is a short circuit period and becomes a high level, and the voltage detection signal vd becomes a predetermined short circuit determination. When the value is equal to or greater than the value, it is determined that the current period is an arc period, and a short circuit determination signal Sd that is at a low level is output. This short circuit discrimination value is set to about 15V.
 送給速度設定回路FRは、図2(A)で詳述するように、正送と逆送とが周期的に繰り返される予め定めたパターンの送給速度設定信号Frを出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。 The feed speed setting circuit FR outputs a feed speed setting signal Fr having a predetermined pattern in which the forward feed and the reverse feed are periodically repeated as will be described in detail with reference to FIG. When the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
 送給制御回路FCは、この送給速度設定信号Frを入力として、この設定値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。 The feed control circuit FC receives the feed speed setting signal Fr and inputs a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the set value to the feed motor WM. Output to.
 出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。 The output voltage setting circuit ER outputs a predetermined output voltage setting signal Er. The output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
 出力電圧制御設定回路ECRは、上記の出力電圧設定信号Er、上記の短絡判別信号Sd及び上記の送給速度設定信号Frを入力として、短絡判別信号SdがLowレベル(アーク期間)であるときに、送給速度設定信号Frが0以上(正送期間)になった時点から短絡判別信号SdがHighレベル(短絡期間)になるまでの第一の期間中は、出力電圧設定信号Erの値を基点として時間経過に伴って減少する出力電圧制御設定信号Ecrを出力する。出力電圧制御設定回路ECRは、アーク期間の第一の期間以外の期間中は、出力電圧設定信号Erの値をそのまま出力電圧制御設定信号Ecrとして出力する。本実施の形態では、この出力電圧制御設定信号Ecrが、定電圧制御の電圧目標値となる。 The output voltage control setting circuit ECR receives the output voltage setting signal Er, the short circuit determination signal Sd, and the feed speed setting signal Fr as input, and the short circuit determination signal Sd is at a low level (arc period). The value of the output voltage setting signal Er is set during the first period from when the feed speed setting signal Fr becomes 0 or more (normal feed period) until the short circuit determination signal Sd becomes High level (short circuit period). An output voltage control setting signal Ecr that decreases with the passage of time is output as a base point. The output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the first period of the arc period. In the present embodiment, the output voltage control setting signal Ecr is a voltage target value for constant voltage control.
 誤差増幅回路EAは、上記の出力電圧制御設定信号Ecr及び上記の出力電圧検出信号Edを入力として、出力電圧制御設定信号Ecr(+)と出力電圧検出信号Ed(-)との誤差を増幅して、誤差増幅信号Eaを出力する。この回路によって、溶接電源は定電圧制御される。 The error amplifying circuit EA receives the output voltage control setting signal Ecr and the output voltage detection signal Ed, and amplifies an error between the output voltage control setting signal Ecr (+) and the output voltage detection signal Ed (−). The error amplification signal Ea is output. By this circuit, the welding power source is controlled at a constant voltage.
 図2は、本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は定電圧制御の電圧目標値である出力電圧制御設定信号Ecrの時間変化を示す。同図は上述した図3と対応しており、時刻t5~t61のアーク期間正送期間Tas中の動作が異なる。以下、同図を参照して説明する。 FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 for explaining the arc welding control method according to the first embodiment of the present invention. FIG. 4A shows the time change of the feeding speed Fw, FIG. 4B shows the time change of the welding current Iw, FIG. 4C shows the time change of the welding voltage Vw, and FIG. ) Shows a time change of the output voltage control setting signal Ecr which is a voltage target value of the constant voltage control. This figure corresponds to FIG. 3 described above, and the operation during the arc period normal feed period Tas from time t5 to t61 is different. Hereinafter, a description will be given with reference to FIG.
 同図(A)に示すように、送給速度Fwは、0以上が正送期間となり、0未満が逆送期間となる。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。送給速度Fwの変化パターンは、三角波状又は台形波状でも良い。 As shown in FIG. 5A, the feeding speed Fw is 0 or more for the normal feeding period and less than 0 for the reverse feeding period. The feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average. The change pattern of the feeding speed Fw may be triangular or trapezoidal.
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。この正送と逆送との繰り返し周期は、所定値に設定されている。例えば、時刻t1~t2の正送加速期間は2.7msであり、時刻t2~t3の正送減速期間は2.7msであり、時刻t3~t4の逆送加速期間は2.3msであり、時刻t4~t5の逆送減速期間は2.3msである。また、正送の最大値は50m/minであり、逆送の最大値は-50m/minである。この場合は、正送と逆送との繰り返し周期は10msとなり、送給速度Fwの平均値は約4m/min(平均溶接電流は約150A)となる。 As shown in FIG. 5A, the feeding speed Fw is 0 at time t1, the period from time t1 to t2 is the forward acceleration period, the maximum value of forward feeding at time t2, and the time t2 to The period of t3 is the forward deceleration period, becomes 0 at time t3, the period of time t3 to t4 is the reverse acceleration period, becomes the maximum value of reverse transmission at time t4, and the period of time t4 to t5 is the reverse deceleration period It becomes. The period from time t5 to t6 again becomes the normal feed acceleration period, and the period from time t6 to t7 again becomes the normal feed deceleration period. The repetition cycle of the forward feed and the reverse feed is set to a predetermined value. For example, the forward feed acceleration period from time t1 to t2 is 2.7 ms, the forward feed deceleration period from time t2 to t3 is 2.7 ms, and the reverse feed acceleration period from time t3 to t4 is 2.3 ms. The reverse feed deceleration period from time t4 to t5 is 2.3 ms. The maximum value for forward feed is 50 m / min, and the maximum value for reverse feed is −50 m / min. In this case, the repetition cycle of forward feeding and reverse feeding is 10 ms, and the average value of the feeding speed Fw is about 4 m / min (the average welding current is about 150 A).
 溶接ワイヤと母材との短絡は、時刻t2の正送の最大値の前後で発生することが多い。同図では、正送の最大値の後の正送減速期間中の時刻t21で短絡が発生した場合を示している。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。 短 絡 Short-circuiting between the welding wire and the base material often occurs around the maximum value of the forward feed at time t2. This figure shows the case where a short circuit occurs at time t21 during the forward feed deceleration period after the maximum value of forward feed. When a short circuit occurs at time t21, the welding voltage Vw rapidly decreases to a short circuit voltage value of several V as shown in FIG. 10C, and the welding current Iw gradually increases as shown in FIG.
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送の最大値の前後で発生することが多い。同図では、逆送の最大値の前の逆送加速期間中の時刻t31でアークが発生した場合を示している。したがって、時刻t21~t31の期間が短絡期間となる。この短絡期間中は、同図(D)に示すように、出力電圧制御設定信号Ecrは予め定めた一定の値となっている。この点は、従来技術と同一である。 As shown in FIG. 4A, the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward. The short circuit is released by this reverse feed, and the arc is regenerated at time t31. The reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4. This figure shows a case where an arc has occurred at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period. During this short circuit period, the output voltage control setting signal Ecr is a predetermined constant value as shown in FIG. This is the same as the prior art.
 時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。 When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
 時刻t31~t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31~t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。このアーク期間逆送期間Tar中は、同図(D)に示すように、出力電圧制御設定信号Ecrは一定の値のままである。この期間の動作は従来技術と同一である。 During the period from time t31 to t5, as shown in FIG. 5A, the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased. As the arc length increases, the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become. During the arc period reverse feed period Tar, the output voltage control setting signal Ecr remains at a constant value as shown in FIG. The operation during this period is the same as in the prior art.
 そして、次の短絡が、時刻t6~t7の正送減速期間中の時刻t61に発生する。但し、図3とは異なり、時刻t61に発生した短絡と時刻t21に発生した短絡とは正送の最大値からの時間(位相)が略一致している。時刻t31~t61の期間がアーク期間となる。時刻t5~t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。このアーク期間正送期間Tas中は、同図(D)に示すように、出力電圧制御設定信号Ecrは時間経過に伴い次第に減少する。アーク長が短くなると、同図(C)に示すように、溶接電圧Vwは小さくなる。ここで、同図(D)に示すように、出力電圧制御設定信号Ecrが減少するために、溶接電圧Vwの減少率は図3の従来技術のときよりも大きくなる。この結果、同図(B)に示すように、溶接電流Iwは、従来技術とは異なり、次第に小さくなる。したがって、時刻t5~t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは大きな減少率で次第に小さくなり、同図(B)に示すように、溶接電流Iwも次第に小さくなる。 Then, the next short circuit occurs at time t61 during the normal feed deceleration period from time t6 to t7. However, unlike FIG. 3, the short-circuit that occurred at time t61 and the short-circuit that occurred at time t21 have substantially the same time (phase) from the maximum value of forward feeding. The period from time t31 to t61 is the arc period. During the period from time t5 to time t61, as shown in FIG. 5A, the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened. During this arc period forward feed period Tas, as shown in FIG. 4D, the output voltage control setting signal Ecr gradually decreases with time. As the arc length becomes shorter, the welding voltage Vw becomes smaller as shown in FIG. Here, as shown in FIG. 4D, the output voltage control setting signal Ecr decreases, so that the reduction rate of the welding voltage Vw becomes larger than that in the prior art of FIG. As a result, as shown in FIG. 5B, the welding current Iw is gradually reduced, unlike the prior art. Therefore, during the arc period forward feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases with a large decrease rate as shown in FIG. 10C, and the welding current is reduced as shown in FIG. Iw also becomes gradually smaller.
 同図(D)に示すように、出力電圧制御設定信号Ecrは、アーク期間正送期間Tas以外の期間中は一定値となり、アーク期間正送期間Tas中は時間経過に伴って減少する。この減少の方法は、以下のようにして行う。
1)同図(D)に示すように、出力電圧制御設定信号Ecrは、時刻t5のアーク期間正送期間Tasの開始時点から減少を開始し、時刻t61の短絡期間まで継続する。この場合の出力電圧制御設定回路ECRは図1の通りである。
As shown in FIG. 4D, the output voltage control setting signal Ecr becomes a constant value during a period other than the arc period forward feed period Tas, and decreases with the passage of time during the arc period forward feed period Tas. This reduction method is performed as follows.
1) As shown in FIG. 4D, the output voltage control setting signal Ecr starts decreasing from the start of the arc period normal feed period Tas at time t5 and continues until the short-circuit period at time t61. The output voltage control setting circuit ECR in this case is as shown in FIG.
2)出力電圧制御設定信号Ecrは、時刻t5のアーク期間正送期間Tasの開始から所定期間が経過した時点から減少を開始し、時刻t61の短絡期間まで継続するようにしても良い。この場合の出力電圧制御設定回路ECRは、出力電圧設定信号Er、短絡判別信号Sd及び送給速度設定信号Frを入力として、短絡判別信号SdがLowレベル(アーク期間)であるときに、送給速度設定信号Frが0以上(正送期間)になってから所定期間が経過した時点から短絡判別信号SdがHighレベル(短絡期間)になるまでの第二の期間中は、出力電圧設定信号Erの値を基点として時間経過に伴って減少する出力電圧制御設定信号Ecrを出力する。出力電圧制御設定回路ECRは、アーク期間の第二の期間以外の期間中は、出力電圧設定信号Erの値をそのまま出力電圧制御設定信号Ecrとして出力する。 2) The output voltage control setting signal Ecr may start decreasing from the time when the predetermined period has elapsed from the start of the arc period normal feed period Tas at time t5 and may continue until the short-circuit period at time t61. In this case, the output voltage control setting circuit ECR receives the output voltage setting signal Er, the short-circuit determination signal Sd, and the feed speed setting signal Fr as inputs, and supplies the short-circuit determination signal Sd when it is at the low level (arc period). During the second period from when the predetermined period has elapsed after the speed setting signal Fr becomes 0 or more (forward feeding period) until the short circuit determination signal Sd becomes High level (short circuit period), the output voltage setting signal Er An output voltage control setting signal Ecr that decreases with the passage of time is output from the value of. The output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the second period of the arc period.
3)出力電圧制御設定信号Ecrは、アーク期間正送期間Tas中の送給速度Fwが予め定めた基準値に達した時点から減少を開始し、時刻t61の短絡期間まで継続するようにしても良い。この場合の出力電圧制御設定回路ECRは、出力電圧設定信号Er、短絡判別信号Sd及び送給速度設定信号Frを入力として、短絡判別信号SdがLowレベル(アーク期間)であるときに、送給速度設定信号Frが予め定めた正の値の基準値に達した時点から短絡判別信号SdがHighレベル(短絡期間)になるまでの第三の期間中は、出力電圧設定信号Erの値を基点として時間経過に伴って減少する出力電圧制御設定信号Ecrを出力する。出力電圧制御設定回路ECRは、アーク期間の第三の期間以外の期間中は、出力電圧設定信号Erの値をそのまま出力電圧制御設定信号Ecrとして出力する。 3) The output voltage control setting signal Ecr starts to decrease from when the feed speed Fw during the arc period normal feed period Tas reaches a predetermined reference value, and continues until the short-circuit period at time t61. good. In this case, the output voltage control setting circuit ECR receives the output voltage setting signal Er, the short-circuit determination signal Sd, and the feed speed setting signal Fr as inputs, and supplies the short-circuit determination signal Sd when it is at the low level (arc period). During the third period from when the speed setting signal Fr reaches a predetermined positive reference value until the short-circuit determination signal Sd becomes a high level (short-circuit period), the value of the output voltage setting signal Er is used as a base point. The output voltage control setting signal Ecr that decreases with time elapses. The output voltage control setting circuit ECR outputs the value of the output voltage setting signal Er as it is as the output voltage control setting signal Ecr during a period other than the third period of the arc period.
4)上記の1)~3)において、出力電圧制御設定信号Ecrの減少の変化率を、送給速度Fwの特定の値に応じて変化させるようにしても良い。送給速度Fwの特定の値とは、送給速度Fwの平均値、正送の最大値又はアーク期間正送期間Tas中の送給速度Fwの変化率である。
5)上記の1)~4)において、減少中の出力電圧制御設定信号Ecrが予め定めた下限値に達したら、減少を停止するようにしても良い。
6)上記の1)~5)において、出力電圧制御設定信号Ecrの減少は、直線状又は曲線状であっても良い。
4) In the above 1) to 3), the rate of change of the output voltage control setting signal Ecr may be changed in accordance with a specific value of the feed speed Fw. The specific value of the feeding speed Fw is an average value of the feeding speed Fw, a maximum value of forward feeding, or a rate of change of the feeding speed Fw during the arc period forward feeding period Tas.
5) In the above 1) to 4), when the decreasing output voltage control setting signal Ecr reaches a predetermined lower limit value, the decrease may be stopped.
6) In the above 1) to 5), the decrease in the output voltage control setting signal Ecr may be linear or curved.
 上述した実施の形態1によれば、アーク期間中の正送期間(アーク期間正送期間Tas)中は、電圧目標値(出力電圧制御設定信号Ecr)を時間経過に伴って減少させている。これにより、実施の形態1では、アーク期間中の正送期間中にアーク長が次第に短くなり、溶接電圧が次第に小さくなっても、溶接電流が小さくなるので、溶滴が持ち上げられることを防止することができる。この結果、短絡が発生するタイミングのばらつきを抑制することができる。このために、本実施の形態では、短絡とアークとの周期と送給速度の正送と逆送との周期とが同期ズレ状態になることを抑制し、安定した溶接を行うことができる。 According to the first embodiment described above, the voltage target value (output voltage control setting signal Ecr) is decreased with time during the forward feed period (arc period forward feed period Tas) during the arc period. Thereby, in Embodiment 1, since the arc length is gradually shortened during the normal feeding period in the arc period, and the welding current is gradually decreased, the welding current is reduced, so that the droplets are prevented from being lifted. be able to. As a result, it is possible to suppress variations in timing at which a short circuit occurs. For this reason, in this Embodiment, it can suppress that the period of a short circuit and an arc, and the period of forward feeding and reverse feeding of a feed rate will be in a synchronous shift state, and can perform stable welding.
 本発明によれば、送給速度の正送期間と逆送期間とを周期的に繰り返し、溶接電源の出力が電圧目標値の値と等しくなるように定電圧制御し、短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法を提供することができる。 According to the present invention, the forward feed period and the reverse feed period of the feed rate are periodically repeated, and the constant voltage control is performed so that the output of the welding power source becomes equal to the value of the voltage target value. It is possible to provide an arc welding control method in which welding is repeated.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2013年12月25日出願の日本特許出願(特願2013-266768)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on December 25, 2013 (Japanese Patent Application No. 2013-266768), the contents of which are incorporated herein.
1     溶接ワイヤ
2     母材
3     アーク
4     溶接トーチ
5     送給ロール
EA   誤差増幅回路
Ea   誤差増幅信号
ECR 出力電圧制御設定回路
Ecr 出力電圧制御設定信号
ED   出力電圧検出回路
Ed   出力電圧検出信号
ER   出力電圧設定回路
Er   出力電圧設定信号
FC   送給制御回路
Fc   送給制御信号
FR   送給速度設定回路
Fr   送給速度設定信号
Fw   送給速度
Iw   溶接電流
PM   電源主回路
SD   短絡判別回路
Sd   短絡判別信号
Tar アーク期間逆送期間
Tas アーク期間正送期間
VD   電圧検出回路
vd   電圧検出信号
Vw   溶接電圧
WL   リアクトル
WM   送給モータ
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll EA Error amplification circuit Ea Error amplification signal ECR Output voltage control setting circuit Ecr Output voltage control setting signal ED Output voltage detection circuit Ed Output voltage detection signal ER Output voltage setting circuit Er Output voltage setting signal FC Feeding control circuit Fc Feeding control signal FR Feeding speed setting circuit Fr Feeding speed setting signal Fw Feeding speed Iw Welding current PM Power supply main circuit SD Short circuit judgment circuit Sd Short circuit judgment signal Tar Arc period reverse Feed period Tas Arc period Forward feed period VD Voltage detection circuit vd Voltage detection signal Vw Welding voltage WL Reactor WM Feed motor

Claims (5)

  1.  母材に対する電極の送給速度の正送期間と逆送期間とを周期的に繰り返し、溶接電源の出力が電圧目標値と等しくなるように定電圧制御し、短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
     前記アーク期間中の前記正送期間中は、前記電圧目標値を時間経過に伴って減少させる、
    ことを特徴とするアーク溶接制御方法。
    Periodically repeat the forward feed period and reverse feed period of the electrode feed speed relative to the base metal, control the constant voltage so that the output of the welding power source is equal to the voltage target value, repeat the short circuit period and the arc period In the arc welding control method for welding,
    During the forward feed period during the arc period, the voltage target value is decreased with time.
    An arc welding control method characterized by the above.
  2.  前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の開始時点から行う、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
    The decrease in the voltage target value is performed from the start point of the forward feed period in the arc period.
    The arc welding control method according to claim 1.
  3.  前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の開始から所定期間が経過した時点から行う、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
    The decrease in the voltage target value is performed from the time when a predetermined period has elapsed from the start of the normal feed period in the arc period.
    The arc welding control method according to claim 1.
  4.  前記電圧目標値の前記減少を、前記アーク期間中の前記正送期間の前記送給速度が予め定めた基準値に達した時点から行う、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
    The decrease in the voltage target value is performed from the time when the feeding speed of the normal feeding period in the arc period reaches a predetermined reference value.
    The arc welding control method according to claim 1.
  5.  前記電圧目標値の前記減少の変化率を、前記送給速度の特定の値に応じて変化させる、
    ことを特徴とする請求項1~4のいずれか1項に記載のアーク溶接制御方法。
    Changing the rate of change of the voltage target value according to a specific value of the feed rate;
    The arc welding control method according to any one of claims 1 to 4, wherein:
PCT/JP2014/081257 2013-12-25 2014-11-26 Arc welding control method WO2015098409A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480059830.XA CN105682844B (en) 2013-12-25 2014-11-26 Arc welding control method
JP2015554687A JP6261614B2 (en) 2013-12-25 2014-11-26 Arc welding control method
KR1020167010917A KR102190857B1 (en) 2013-12-25 2014-11-26 Arc welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-266768 2013-12-25
JP2013266768 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098409A1 true WO2015098409A1 (en) 2015-07-02

Family

ID=53478279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081257 WO2015098409A1 (en) 2013-12-25 2014-11-26 Arc welding control method

Country Status (4)

Country Link
JP (1) JP6261614B2 (en)
KR (1) KR102190857B1 (en)
CN (1) CN105682844B (en)
WO (1) WO2015098409A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446753B2 (en) * 2016-08-02 2022-09-20 Daihen Corporation Arc welding control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013305A1 (en) * 2009-07-29 2011-02-03 パナソニック株式会社 Arc welding method and arc welding device
JP2013022593A (en) * 2011-07-15 2013-02-04 Panasonic Corp Method for controlling arc welding, and arc welding equipment
JP2013071154A (en) * 2011-09-28 2013-04-22 Daihen Corp Arc welding method and arc welding system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS487474Y1 (en) 1969-07-17 1973-02-26
JP2013151000A (en) * 2012-01-25 2013-08-08 Daihen Corp Protection control method for welding power source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013305A1 (en) * 2009-07-29 2011-02-03 パナソニック株式会社 Arc welding method and arc welding device
JP2013022593A (en) * 2011-07-15 2013-02-04 Panasonic Corp Method for controlling arc welding, and arc welding equipment
JP2013071154A (en) * 2011-09-28 2013-04-22 Daihen Corp Arc welding method and arc welding system

Also Published As

Publication number Publication date
CN105682844A (en) 2016-06-15
JPWO2015098409A1 (en) 2017-03-23
KR102190857B1 (en) 2020-12-14
KR20160099532A (en) 2016-08-22
JP6261614B2 (en) 2018-01-17
CN105682844B (en) 2019-06-07

Similar Documents

Publication Publication Date Title
JP6555818B2 (en) Arc welding control method
JP6472435B2 (en) Arc welding power supply
JP6537137B2 (en) Reverse feed arc welding method
JP6472387B2 (en) Arc welding control method
JP6448622B2 (en) Arc welding control method
WO2016080166A1 (en) Arc welding control method
WO2015178170A1 (en) Arc welding control method
WO2015141664A1 (en) Arc welding control method
WO2016027638A1 (en) Arc welding control method
JP6396162B2 (en) Arc welding control method
WO2016125540A1 (en) Arc welding control method
JP6261614B2 (en) Arc welding control method
JP2016144820A (en) Arc-welding control method
JP6347721B2 (en) Arc welding control method
WO2015166793A1 (en) Arc welding control method
JP6340295B2 (en) Arc welding control method
JP6198327B2 (en) Arc welding control method
JP6460821B2 (en) Arc welding control method
WO2016027639A1 (en) Arc welding control method
JP6516291B2 (en) Reverse feed arc welding method
JP2024037473A (en) Arc-welding control method
JP2015231632A (en) Arc-welding control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554687

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167010917

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873238

Country of ref document: EP

Kind code of ref document: A1