WO2015096070A1 - 波导偏振分离和偏振转换器 - Google Patents
波导偏振分离和偏振转换器 Download PDFInfo
- Publication number
- WO2015096070A1 WO2015096070A1 PCT/CN2013/090451 CN2013090451W WO2015096070A1 WO 2015096070 A1 WO2015096070 A1 WO 2015096070A1 CN 2013090451 W CN2013090451 W CN 2013090451W WO 2015096070 A1 WO2015096070 A1 WO 2015096070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- conversion
- mode
- straight
- input
- Prior art date
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 132
- 238000006243 chemical reaction Methods 0.000 claims abstract description 118
- 230000003287 optical effect Effects 0.000 claims abstract description 32
- 238000000926 separation method Methods 0.000 claims description 60
- 230000008878 coupling Effects 0.000 claims description 25
- 238000010168 coupling process Methods 0.000 claims description 25
- 238000005859 coupling reaction Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 abstract description 9
- 230000037431 insertion Effects 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1228—Tapered waveguides, e.g. integrated spot-size transformers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2726—Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
- G02B6/2733—Light guides evanescently coupled to polarisation sensitive elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2753—Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
- G02B6/2766—Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
Definitions
- the present invention relates to the field of communication devices, and in particular, to a waveguide polarization separation and polarization converter. Background technique
- Photonic integrated chips especially silicon optical chips, have the advantages of high bandwidth, low power consumption, and compatibility with existing CMOS processes, and are the development direction and key technologies of all-optical switching in the future. Due to the waveguide size limitation and birefringence effect of the silicon optical chip, the TE mode (Transverse Electric Wave, no electric field component along the electromagnetic wave propagation direction) and the TM mode (Transverse Magnetic Wave) are along the silicon optical chip. The effective refractive index of the non-magnetic field component in the direction of electromagnetic wave propagation is different, which causes the transmission speed and transmission characteristics of the TE mode and the TM mode in the waveguide to be different. Therefore, most silicon optical devices are sensitive to polarization, that is, can only be used for A mode in TE or TM.
- the mainstream method of eliminating the influence of polarization is to implement Polarization diversity technology, which uses a polarization beam splitter to separate the TE mode and the TM mode in the waveguide and then separately process them. Since the performance of the TE mode is better than that of the TM mode, a more prone solution is to convert the separated TM mode to a polarization converter (Polarization Rotator).
- Polarization Diversity technology uses a polarization beam splitter to separate the TE mode and the TM mode in the waveguide and then separately process them. Since the performance of the TE mode is better than that of the TM mode, a more prone solution is to convert the separated TM mode to a polarization converter (Polarization Rotator).
- the TE mode is processed again, and the processed signal is reconverted to a TM mode using a polarization converter.
- the actual polarization beam splitter and polarization converter often need to be used at the same time.
- Most of the existing devices can only achieve a single function of polarization separation or polarization conversion, and need to be cascaded to increase the insertion loss. And device length.
- Figure 1 shows a device capable of polarization separation and polarization conversion.
- the entire device is based on a SOI (Silicon-On-Insulator) structure, and the cladding of the waveguide is silicon nitride (Si3N4).
- the device consists of a multi-section width tapered waveguide 101 and an asymmetric directional coupler 102.
- the tapered waveguide 101 is a single mode waveguide at the input end (width w0) and a multimode waveguide at the output end (width w3).
- the TM0 mode is converted into the TE1 mode.
- the converted TE1 mode is coupled to the waveguide of width w4 by the asymmetric coupler 102, the coupled mode is converted to the TE mode, and exits from the upper port via the curved waveguide 103 (Sbend).
- the incident TE light does not change through the tapered waveguide 101.
- the coupling with the TE1 mode to the TE0 mode is sensitive to the length of the waveguide, resulting in a decrease in the tolerance of the device to the process error; and the untransformed TM0 mode after the tapered waveguide 101 is incomplete.
- the TE1 mode coupled into the waveguide w4 will remain in the waveguide and output from the lower port with the TE0, resulting in a decrease in the extinction ratio of the device.
- the use of a multi-segment tapered waveguide increases the insertion loss and manufacturing difficulty of the device as a whole. .
- Fig. 2 is another device capable of simultaneously performing polarization separation and polarization conversion.
- the entire device is composed of an adiabatic tapered waveguide 104, a Y beam splitter 105, a ⁇ /2 phase shifting portion 106, and an MMI 107 (Multimode Interference).
- MMI 107 Multimode Interference
- the tapered waveguide 104 converts the TM0 mode to TE1 mode, and then the TE1 mode light splits into two paths: one pass light passes through the ⁇ /2 phase shift portion
- the waveguide of 106 changes its phase; it is then input into a ⁇ 107 together with the unprocessed light of the other path, and the two beams are interferometrically imaged in the MMI 107, and finally the TE0 mode is output at the lower end of the waveguide.
- the TE0 mode light is still output through the tapered waveguide 104, and the split beam splitter 105 is split into two paths: one pass light passes through the waveguide containing the nil phase shift portion 106, and its phase changes; It is then input into an MMI 107 along with another unprocessed light. The two beams are interferometrically imaged in the MMI 107, and finally the TE0 mode is output at the upper end of the waveguide. Thereby, the TE/TM mode polarization splitting and the TM mode to TE mode polarization conversion process are realized.
- the structure of the device is very complicated, and the structure of the multi-section tapered waveguide 104, the Y beam splitter 105, and the ⁇ /2 phase shifting portion 106 is used, which makes the device difficult to manufacture, and the insertion loss of the device is large.
- a waveguide polarization separation and polarization converter comprising: an input waveguide including an input direct waveguide for inputting an optical signal; a conversion waveguide including a first converted straight waveguide, a second converted straight waveguide, and a connection station a tapered waveguide of the first converted straight waveguide and the second converted straight waveguide; a first converted straight waveguide disposed adjacent to the input straight waveguide and coupled to the input straight waveguide to perform separation and conversion of the first polarization mode; and an output waveguide including an output straight waveguide for outputting the optical signal
- the output straight waveguide is disposed adjacent to the second converted straight waveguide and coupled to the second converted straight waveguide to complete separation and conversion of the second polarization mode.
- an effective refractive index of a TE1 mode in the first converted straight waveguide is the same as an effective refractive index of a TM0 mode in the input straight waveguide; the second converted straight waveguide
- the mode effective refractive index of TE1 is the same as the effective refractive index of the TE0 mode in the output waveguide.
- the input straight waveguide has a width of a first width
- the first converted straight waveguide has a second width
- the first width and the second width
- the effective refractive index of the TE1 mode in the first converted straight waveguide is the same as the effective refractive index of the TM0 mode in the input straight waveguide
- the width of the output straight waveguide is a first width
- the width of the second converted straight waveguide is a
- the three widths, the third width and the first width are such that the effective refractive index of the TE1 mode in the second converted straight waveguide is the same as the effective refractive index of the TE0 mode in the output waveguide.
- the input waveguide and the output waveguide are located on the same side of the conversion waveguide.
- the input waveguide and the output waveguide are located on opposite sides of the conversion waveguide.
- the input waveguide further includes a curved waveguide connected to the input straight waveguide, the curved waveguide is configured to convert the input straight waveguide and the first conversion The coupling between the straight waveguides is separated.
- the curved waveguide is a circular waveguide or an S-shaped waveguide.
- the material of the input waveguide, the conversion waveguide, and the output waveguide is silicon, silicon nitride, a polymer, or a semiconductor material.
- the refractive indices of the cover layers of the input waveguide, the conversion waveguide, and the output waveguide are different from those of the substrate.
- the input straight waveguide, the first converted straight waveguide, the second converted straight waveguide, and the output straight waveguide are added with at least one electrode; the electrode is used to change the waveguide Effective refractive index.
- the electrode acts as a polarization selective switch.
- the waveguide polarization separation and polarization converter can simultaneously realize the functions of polarization separation and polarization conversion, and has the advantages of simple structure, stable performance, small insertion loss, and short overall length, which is advantageous for high-density monolithic films. Integration; Compared with other polarization conversion devices, the structure is simple, the fabrication method is compatible with the CMOS process, and the scale compatibility of the waveguide is high, and it is easy to integrate with other devices and systems.
- FIG. 1 is a structural view of a conventional device capable of achieving polarization separation and polarization conversion
- FIG. 2 is a structural view of another device capable of achieving polarization separation and polarization conversion
- FIG. 3 is an embodiment of the present invention
- Figure 1 is a structural diagram of the waveguide polarization separation and polarization converter
- Figure 4 is a diagram showing the relationship between the effective refractive index of the waveguide and the waveguide width in the embodiment of the present invention
- Figure 5 is a first conversion of the TM0 and TE1 modes in the embodiment of the present invention.
- Figure 6 is a schematic illustration of a mixed mode in adjacent waveguides having widths w0 and wl in an embodiment of the present invention
- FIG. 8 is a schematic diagram showing the conversion of the TE0 mode in the waveguide w0 and the TE1 mode in the waveguide w2 in the embodiment of the present invention
- FIG. 9 is a schematic diagram showing the conversion of the TE0 and TM0 modes and converting the TM0 mode to the TE0 mode in the embodiment of the present invention.
- FIG. 10 is a structural diagram of a waveguide polarization separation and polarization converter according to Embodiment 2 of the present invention
- FIG. 11 is a structural diagram of a waveguide polarization separation and polarization converter according to Embodiment 3 of the present invention
- FIG. 12 is a waveguide of Embodiment 4 of the present invention
- Structure of polarization separation and polarization converter
- Fig. 13 is a structural diagram of a waveguide polarization separation and polarization converter according to a fifth embodiment of the present invention.
- Figure 14 is a schematic diagram showing the mode transition of a waveguide polarization separation and polarization converter for inputting a signal from an input terminal when used as a polarization converter according to Embodiments 4 and 5 of the present invention.
- Fig. 15 is a view showing the waveform polarization separation and polarization converter of the fourth and fifth embodiments of the present invention, when used as a polarization converter, inputting a signal from an output terminal, and performing reversible conversion.
- Figure 16 is a configuration diagram of a waveguide polarization separation and polarization converter according to a sixth embodiment of the present invention.
- Figure 17 is a configuration diagram of a waveguide polarization separation and polarization converter according to a seventh embodiment of the present invention.
- a waveguide polarization separation and polarization converter provided by an embodiment of the present invention includes an input waveguide, a conversion waveguide, and an output waveguide.
- the effective refractive index of the input end of the input waveguide and the conversion waveguide is the same, and the phase is
- the coupling between the input waveguide and the conversion waveguide disposed adjacent to each other completes the separation and conversion of the first polarization mode; on the signal output side, the effective refractive index of the output waveguide and the output of the adjacent waveguide are the same, and the output waveguides adjacent to each other are disposed.
- a waveguide polarization separation and polarization converter 10 includes an input waveguide 11, a conversion waveguide 12, and an output waveguide 13.
- the input waveguide 11, the conversion waveguide 12, and the output waveguide 13 are disposed on a silicon substrate.
- the input waveguide 11 includes: an input straight waveguide 112 for inputting an optical signal, and a curved waveguide 113 connected to the input straight waveguide 112.
- the conversion waveguide 12 includes a first conversion straight waveguide 121, a second conversion straight waveguide 123, and a tapered waveguide 125 connecting the first conversion straight waveguide 121 and the second conversion straight waveguide 123; the first conversion straight waveguide 121 is located at the conversion
- the input of the waveguide 12 is disposed adjacent to the input straight waveguide 112 and coupled to the input straight waveguide 121 to complete the separation and conversion of the first polarization mode.
- the second converted straight waveguide 123 is located at the output of the conversion waveguide 12.
- the output waveguide 13 includes an output straight waveguide 131 for outputting an optical signal, and the output straight waveguide 131 is disposed adjacent to the second converted straight waveguide 123 and coupled with the second converted straight waveguide 123 to complete separation of the second polarization mode. And conversion.
- the input straight waveguide 112 and the first converted straight waveguide 121 extend in the same direction, and are disposed adjacent to each other on the perpendicular line of the extending direction and have a predetermined interval; the second converted straight waveguide 123 and the first converted straight waveguide 121
- the second conversion straight waveguide 123 extends in the same direction as the output straight waveguide 131, and is disposed adjacent to the vertical line of the extending direction and has a predetermined interval.
- the input waveguide 11 can input an optical signal of the TE/TM mixed mode, and the effective refractive index of the first converted straight waveguide 121 for the TE1 mode is the same as the effective refractive index of the input straight waveguide 112 for the TM0 mode.
- the effective refractive index of the second converted straight waveguide 123 for the TE1 mode is the same as the effective refractive index of the output straight waveguide 131 for the TE0 mode.
- the input straight waveguide 112 and the first converted straight waveguide 121 are coupled to complete separation and conversion of the first polarization mode; the second converted straight waveguide 123 and the output straight waveguide
- the 131 is coupled to complete the separation and conversion of the second polarization mode.
- the curved waveguide 113 is used to separate the coupling between the input straight waveguide 112 and the first converted straight waveguide 121.
- the first converted straight waveguide 121, the second converted straight waveguide 123, and the output straight waveguide 131 have a suitable width width, and the first converted straight waveguide 121 has a TE1 mode.
- the effective refractive index and the effective refractive index of the input straight waveguide 112 for the TM0 mode are the same, and the effective refractive index of the second converted straight waveguide 123 for the TE1 mode is the same as the effective refractive index of the output straight waveguide 131 for the TE0 mode.
- the width of the input straight waveguide 112 is a first width wO
- the width of the first converted straight waveguide 121 is a second width w1
- the width of the second converted straight waveguide 123 is a third width of w2
- the width of 131 is the first width w0.
- Fig. 4 there is shown a relationship between the effective refractive index of the waveguide and the waveguide width. As can be seen from Fig. 4, for a standard waveguide having a width of wO, it is only necessary to select a suitable waveguide width w1 to satisfy:
- the waveguide having the width wO has the same effective refractive index for the TM0 mode and the waveguide with the width w1 has the same effective refractive index for the TE1 mode, that is, energy coupling and mode conversion can be completed.
- the appropriate wO and wl can be selected to complete the transition from TMO to TE1 mode.
- FIG. 5 the mode field distribution diagram of the TE1 mode in the waveguide with the width wO and the TE1 mode in the waveguide with the width w1 is shown, respectively, in the two waveguides with adjacent settings and widths wO and wl, respectively.
- the mixing mode of the two TMO modes and the TE1 mode, the hybrid mode is shown in Fig. 6.
- the TMO mode in the waveguide having the width wO is converted to the TE1 mode in the waveguide having the width w1, that is, in the present embodiment, the input is straight.
- the TMO mode is converted into a TE1 mode, and its conversion efficiency is about 90% to 95% as shown in FIG. 7, and the input straight waveguide 112 is coupled to the first converted straight waveguide 121.
- the length is about several tens of micrometers, and the specific values are related to the parameters such as the waveguide width and the waveguide material, and are set according to actual needs.
- the TMO mode When the TMO mode is converted to the TE1 mode, since the waveguide having the width wO has an effective refractive index for the TEO mode and the waveguide having the width w1 is different for any one of the modes, the input straight waveguide 112 and the first conversion are straight. When the waveguide 121 is coupled, the TEO mode does not couple. Thus, by selecting an appropriate value by the width wO of the input straight waveguide 112 and the width w1 of the first converted straight waveguide 121, the TMO of the mixed mode including the TM/TE mode input to the input straight waveguide 112 can be divided. It is coupled and coupled to the first converted straight waveguide 121 and converted to a TE1 mode.
- the tapered waveguide 125 connects the first converted straight waveguide 121 and the second converted straight waveguide 123 to function as a transition. Through the connection of the tapered waveguide 125, the waveguide width is changed, the mode of the optical signal in the waveguide does not change, and the energy is hardly lost.
- the tapered waveguide 125 is an adiabatic tapered waveguide having an entrance width w1 and an exit width w2, and the width is gradually increased. After passing through the tapered waveguide 125, after the optical signal in the first converted straight waveguide 121 passes through the tapered waveguide 125, the mode of the optical signal does not change, and is still the TE1 mode.
- the waveguide with the width w2 has the same effective refractive index for the TE1 mode and the effective refractive index of the waveguide with the width w0 for the TE0 mode, that is, energy coupling and mode conversion can be completed.
- the transition from TE1 to TEO mode can be done by selecting the appropriate w0 and wl.
- the TE1 mode in the waveguide of width w2 is converted to the TE0 mode in the waveguide of width w1, that is, in the present embodiment, after the second converted straight waveguide 123 is coupled with the output straight waveguide 131,
- the TE1 mode is converted to the TE0 mode, and the optical signal of the TE0 mode is output through the output straight waveguide 131.
- the conversion efficiency of the TE1 mode to TE0 is greater than 95%, and the coupling length is about several tens of micrometers.
- the specific values are related to the waveguide width and material parameters.
- the effective refractive index of the TM0 mode in the output straight waveguide 131 of width wO is different from any of the second converted straight waveguides 123 of width w2, so the TM0 mode does not couple.
- FIG. 9 a schematic diagram of a process of energy coupling and mode conversion in a waveguide polarization separation and polarization converter 10 according to an embodiment of the present invention is shown.
- the input straight waveguide 112 inputs the optical signal of the TE0/TM0 mixed mode. After the coupling and mode conversion between the input straight waveguide 112 and the first converted straight waveguide 121, the TM0 mode is separated from the input optical signal and converted into the TE1 mode. It is coupled into the first conversion straight waveguide 121.
- the optical signal input to the straight waveguide 112 is transmitted to the curved waveguide 113, the TE0 mode.
- the TM0 mode in the curved waveguide is larger than the TE0 mode, the residual TM0 mode can be reduced by increasing the degree of bending of the curved waveguide 113, thereby achieving the purpose of increasing the extinction ratio.
- the mode of the optical signal in the tapered waveguide 125 does not change, that is, the first converted straight waveguide 121 and the second converted straight waveguide 123 are both TE1 modes.
- the TE1 mode optical signal in the second conversion straight waveguide 123 is converted into a TE0 mode and coupled to the output straight waveguide 131 after coupling and mode conversion between the output straight waveguide 131 and the second converted straight waveguide 123. Make the output.
- the waveguide polarization separation and polarization converter 10 of the embodiment of the present invention each of which is composed of a material having a high refractive index, such as: silicon, silicon nitride, polymer, semiconductor material, substrate selectable silicon dioxide, overcoat material Unlike substrate materials, which may be, for example, air or other materials having a low refractive index, this can enhance coupling and conversion between modes.
- the waveguide polarization separation and polarization converter 10 of the embodiment of the present invention can simultaneously realize the functions of polarization separation and polarization conversion, and has a simple structure and stable performance.
- the waveguide polarization separation and polarization converter 10 of the embodiment of the present invention has a small insertion loss (insertion loss, which represents a ratio of the output light intensity of the light energy after transmitting the device to the incident light intensity), and the insertion loss value is 0.5. Between dB and ldB, the conversion efficiency is high; the overall length is short, can be ⁇ 50um, which is conducive to high-density monolithic integration; at the same time, it has low wavelength sensitivity and can be used in the entire C-band (C-band).
- insertion loss which represents a ratio of the output light intensity of the light energy after transmitting the device to the incident light intensity
- the waveguide polarization separation and polarization converter 10 of the embodiment of the present invention has a simple structure, is compatible with the CMOS process, and has high scale compatibility with the waveguide, and is easy to implement with other devices and systems. integrated.
- a waveguide polarization separation and polarization converter according to Embodiment 2 of the present invention is similar to Embodiment 1, and includes an input waveguide 21, a conversion waveguide 22, and an output waveguide 23.
- the input waveguide 21 and the output waveguide 23 are respectively disposed on both sides of the conversion waveguide 22.
- the input waveguide 21 includes: an input straight waveguide 212 for inputting an optical signal, and a curved waveguide 213 connected to the input straight waveguide 212.
- the difference from the first embodiment is that the bending The waveguide 213 is a circular waveguide.
- the shape of the curved waveguide 213 is not limited to the S-shaped waveguide of the first embodiment and the circular shape of the second embodiment, and may be other shapes. Therefore, when connecting with other devices, a suitable shape may be selected according to actual needs. Efficient use of space for greater flexibility when connecting to other devices.
- a waveguide polarization separation and polarization converter according to Embodiment 3 of the present invention is similar to Embodiment 2, except that the input waveguide 21 and the output waveguide 23 are respectively disposed on the conversion waveguide 22. The same side. In this way, when connecting with other devices, you can choose the appropriate layout according to the actual needs, make efficient use of space, and have more flexibility when connecting with other devices. Referring to FIG.
- a waveguide polarization separation and polarization converter according to Embodiment 4 of the present invention is used as a polarization converter.
- the waveguide polarization separation and polarization converter of Embodiment 4 includes an input waveguide 41 and a conversion waveguide 42. And output waveguide 43.
- the conversion waveguide 42 includes a first conversion straight waveguide 421, a second conversion straight waveguide 423, and a tapered waveguide 425 connecting the first conversion straight waveguide 421 and the second conversion straight waveguide 423.
- the input waveguide 41 and the output waveguide 43 are respectively disposed on both sides of the conversion waveguide 42.
- the input straight waveguide 412 is coupled to the first converted straight waveguide 421 of the conversion waveguide 42
- the input TM0 mode is converted into a TE1 mode coupled to the conversion waveguide 42.
- the second converted straight waveguide 423 of the conversion waveguide 42 is coupled to the output waveguide 43
- TE1 in the conversion waveguide 42 is converted into a TE0 mode coupled to the output waveguide 43.
- a waveguide polarization separation and polarization converter according to Embodiment 5 of the present invention is similar to Embodiment 4, except that the input waveguide 41 and the output waveguide 43 are disposed on the same side of the conversion waveguide 42. .
- the waveguide polarization separation and polarization converter according to Embodiment 4 and Embodiment 5 of the present invention are reversible when used as a polarization converter, that is, the optical signal can also be outputted from the output wave.
- the input terminal 43 is sequentially outputted through the coupling and mode conversion between the output waveguide 43 and the conversion waveguide 42, and the coupling and mode conversion between the conversion waveguide 42 and the input waveguide 41, and then outputted from the input waveguide 41 end.
- a waveguide polarization separation and polarization converter according to Embodiment 6 of the present invention is similar to Embodiments 1 to 3, and includes an input waveguide 61, a conversion waveguide 62, and an output waveguide 63.
- the input waveguide 61 includes: an input straight waveguide 612 for inputting an optical signal, and a curved waveguide 613 connected to the input straight waveguide 612.
- the conversion waveguide 62 includes a first conversion straight waveguide 621, a second conversion straight waveguide 623, and a tapered waveguide 625 connecting the first conversion straight waveguide 621 and the second conversion straight waveguide 623.
- the output waveguide 63 includes an output direct waveguide 631 for outputting an optical signal.
- the waveguide electrode polarization separation and polarization converter of the sixth embodiment of the present invention is provided with a control electrode 601.
- the control electrode 601 functions to change the refractive index of the waveguide, and the principle of formation may be heat.
- An electrode or current is injected into the electrode. By controlling the current of the control electrode 601, the refractive index of the waveguide can be changed to achieve the wavelength of the center of the waveguide.
- the control electrode 601 may be disposed in the input straight waveguide 61, the first converted straight waveguide 621, the second converted straight waveguide 623, and the output straight waveguide 63, and the number of control electrodes may be one or more. .
- control electrode 601 is disposed in the output straight waveguide 612 and the output straight waveguide 631.
- the control electrode 601 is disposed in the first converted straight waveguide 621 and the second converted straight waveguide 623. Since the refractive index of the waveguide can be changed by controlling the current of the control electrode 601, in one embodiment, the electrode 601 functions as a polarization selective switch. That is, by changing the magnitude of the current of the control electrode 601, control includes whether the input waveguide 61 and the conversion waveguide 62, or between the conversion waveguide 62 and the output waveguide 63, is subjected to energy coupling and mode conversion.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供一种波导偏振分离和偏振转换器,包括:输入波导,包括用于输入光信号的输入直波导以及与所述输入直波导相连接的弯曲波导;转换波导,包括第一转换直波导、第二转换直波导,以及连接所述第一转换直波导和所述第二转换直波导的锥形波导;所述第一转换直波导与所述输入直波导相邻设置,并与所述输入直波导耦合,完成第一偏振模式的分离和转换;以及输出波导,包括用于输出光信号的输出直波导,所述输出直波导与所述第二转换直波导相邻设置,并与所述第二转换直波导耦合,完成第二偏振模式的分离和转换。上述偏振分离和偏振转换器可减少插损、制造简单。
Description
波导偏振分离和偏振转换器
技术领域
本发明涉及通信设备领域, 尤其涉及一种波导偏振分离和偏振转换器。 背景技术
随着互联网的发展, 特别是云计算、 云存储、 移动互联网的兴起, 对于通 信网络的传输速率和通信质量提出了更高的要求,现有的电交换由于背板、 能 耗等技术的限制已经不能满足交换容量持续增长的需求。 全光交换具有低能 耗, 大容量等优点, 是未来宽带通信的发展方向。
光子集成芯片, 尤其是硅光芯片具有高带宽、 低功耗、 与现有的 CMOS 工艺兼容的优点,是未来全光交换的发展方向和关键技术。 由于硅光芯片的波 导尺寸限制和双折射效应等原因, 硅光芯片中 TE模( Transverse Electric Wave 横电波, 沿着电磁波传播方向上无电场分量)和 TM模 ( Transverse magnetic Wave横磁波, 沿着电磁波传播方向上无磁场分量)的有效折射率不同, 导致 TE模和 TM模的在波导中的传输速度和传输特性不同, 因此大多数的硅光器 件对于偏振是敏感的, 即只能用于 TE或 TM中的一种模式。
目前主流的消除偏振的影响的方法是实行偏振差异技术 ( Polarization diversity technology ), 即利用偏振分束器(Polarization Beam Splitter )将波导 中的 TE模和 TM模分离后再分别处理。 由于 TE模的性能优于 TM模, 较为 倾向的方案是利用偏振转换器( Polarization Rotator )将分离后的 TM模转换为
TE模再进行处理, 处理后的信号再利用偏振转换器重新转换为 TM模。 为了 提高消光比和转换效果, 实际中的偏振分束器和偏振转换器经常需要同时使 用,现有的器件大多只能实现偏振分离或偏振转换的单一功能,需要级联使用, 增加了插损和器件长度。
图 1 是一种能够实现偏振分离和偏振转换的器件, 整个器件基于 SOI ( Silicon-On-Insulator , 绝缘衬底上的硅) 结构, 波导的覆盖层是氮化硅 ( Si3N4 )。 器件由多段宽度渐变的锥形波导 101和一个不对称定向耦合器 102 组成。 锥形波导 101在输入端 (宽度为 w0 )是单模波导, 在输出端 (宽度为 w3 )是多模波导。 当 TM光通过锥形波导 101时, TM0模式会转化为 TE1模
式, 转化后的 TE1模式通过非对称耦合器 102耦合到宽度为 w4的波导中, 耦 合后的模式转化为 TE模式, 经过弯曲波导 103 ( Sbend )由上端口出射。 另一 方面,入射的 TE光经过锥形波导 101不发生变化,经过非对称耦合器 102时, 由于其有效折射率与宽度为 w4的波导中任何模式均不相同, 不发生耦合, 由 下端口出射, 实现了偏振的分离和转换。
然而, 由于 TM0模式到 TE1模式的转化, 和 TE1模式到 TE0模式的耦 合都对波导的长度敏感, 导致器件对工艺误差的容忍下降; 且经过锥形波导 101后未转化的 TM0模式和未完全耦合到波导 w4中的 TE1模式将残留在波 导中随 TE0—起从下端口输出, 导致器件的消光比降低; 此外, 由于使用了 多段锥形波导 , 增加了器件整体的插损和制造的难度。
图 2是另一种能够同时实现偏振分离和偏振转换的器件,整个器件由绝热 锥形波导 104、 Y 分束器 105、 一个 π/2相移部分 106 以及一个 MMI107 ( Multimode Interference )组成。
当 TE和 TM模式的光进入该芯片时: 对于 TM0模式的光,锥形波导 104 将 TM0模式转变为 TE1模式, 然后该 TE1模式的光分成两路: 一路光通过含 有 π/2相移部分 106的波导, 其相位发生变化; 然后和另一路没有经过处理的 光一起输入到一个 ΜΜΙ 107中, 两束光在 MMI107中干涉成像, 最终在下端 波导输出 TE0模。 而对于 TE0模式的光, 通过锥形波导 104不发生变化, 依 然输出 TE0模式的光, 经 Υ分束器 105分成两路: 一路光通过含有 nil相移 部分 106的波导, 其相位发生变化; 然后和另一路没有经过处理的光一起输入 到一个 MMI107中,两束光在 MMI107中干涉成像,最终在上端波导输出 TE0 模。 由此, 实现了 TE/TM模偏振分束和 TM模到 TE模式偏振转换的过程。
然而,这种器件的结构十分复杂,使用了多段锥形波导 104、Y分束器 105、 有 π/2相移部分 106等结构, 导致器件的制造难度较大, 且器件的插损很大。 发明内容
本发明提供一种可减少插损、 制造简单的波导偏振分离和偏振转换器。 第一方面, 提供一种波导偏振分离和偏振转换器, 包括: 输入波导, 包括 用于输入光信号的输入直波导; 转换波导, 包括第一转换直波导、 第二转换直 波导, 以及连接所述第一转换直波导和所述第二转换直波导的锥形波导; 所述
第一转换直波导与所述输入直波导相邻设置, 并与所述输入直波导耦合, 完成 第一偏振模式的分离和转换; 以及输出波导, 包括用于输出光信号的输出直波 导, 所述输出直波导与所述第二转换直波导相邻设置, 并与所述第二转换直波 导耦合, 完成第二偏振模式的分离和转换。
在第一方面的第一种可能的实现方式中, 所述第一转换直波导中 TE1 模 的有效折射率和所述输入直波导中 TM0模的有效折射率相同; 所述第二转换 直波导中 TE1的模有效折射率和所述输出波导中 TE0模的有效折射率相同。
在第一方面的第二种可能的实现方式中,所述输入直波导的宽度为第一宽 度, 所述第一转换直波导的宽度为第二宽度; 所述第一宽度及第二宽度使得所 述第一转换直波导中 TE1模有效折射率和所述输入直波导中 TM0模有效折射 率相同; 所述输出直波导的宽度为第一宽度, 所述第二转换直波导的宽度为第 三宽度, 所述第三宽度及第一宽度使得所述第二转换直波导中 TE1 模有效折 射率和所述输出波导中 TE0模有效折射率相同。
在第一方面的第三种可能的实现方式中,所述输入波导及所述输出波导位 于所述转换波导的同一侧。
在第一方面的第四种可能的实现方式中,所述输入波导及所述输出波导分 别位于所述转换波导的两侧。
在第一方面的第五种可能的实现方式中,所述输入波导还包括与所述输入 直波导相连接的弯曲波导,所述弯曲波导用于将所述输入直波导与所述第一转 换直波导之间的耦合分开。
在第一方面的第六种可能的实现方式中, 所述弯曲波导为圓波导或者 S 形波导。
在第一方面的第七种可能的实现方式中, 所述输入波导、转换波导以及输 出波导的材料为硅、 氮化硅、 聚合物或者半导体材料。
在第一方面的第八种可能的实现方式中, 所述输入波导、转换波导以及输 出波导的覆盖层的折射率与衬底不同。
在第一方面的第九种可能的实现方式中, 所述输入直波导、第一转换直波 导、 第二转换直波导, 以及输出直波导中至少添加一个电极; 所述电极用于改 变所在波导的有效折射率。
在第一方面的第十种可能的实现方式中, 所述电极作为偏振选择开关。
根据各种实施方式提供的波导偏振分离和偏振转换器,可同时实现偏振分 离和偏振转换的功能, 结构简单, 性能稳定, 其插损较小, 整体长度短, 有利 于高密集度的单片集成; 相较于其他偏振转换器件, 其结构简单, 加工制备方 法与 CMOS工艺兼容, 且对于波导的尺度兼容性高, 容易实现与其他器件、 系统集成。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是现有的一种能够实现偏振分离和偏振转换的器件的结构图; 图 2是现有的另一种能够实现偏振分离和偏振转换的器件的结构图; 图 3是本发明实施方式一的波导偏振分离和偏振转换器的结构图; 图 4是本发明实施方式中波导有效折射率和波导宽度的关系图; 图 5是本发明实施方式中, TM0和 TE1模在第一转换直波导和输入直波 导的中的模场分步图;
图 6是本发明实施方式中, 宽度为 w0和 wl的相邻波导中的混合模式示 意图;
图 7是本发明实施方式中, TM0模与 TE1模之间的转换关系;
图 8是本发明实施方式中,波导 w0中的 TE0模和波导 w2中的 TE1模的 转换示意图;
图 9是本发明实施方式中, TE0、 TM0模分离并转化 TM0模为 TE0模的 转换示意图;
图 10是本发明实施方式二的波导偏振分离和偏振转换器的结构图; 图 11是本发明实施方式三的波导偏振分离和偏振转换器的结构图; 图 12是本发明实施方式四的波导偏振分离和偏振转换器的结构图; 图 13是本发明实施方式五的波导偏振分离和偏振转换器的结构图。
图 14是本发明实施方式四和五的波导偏振分离和偏振转换器在作为偏振 转换器使用时, 从输入端输入信号的模式转换示意图。
图 15是本发明实施方式四和五的波导偏振分离和偏振转换器在作为偏振 转换器使用时, 从输出端输入信号, 进行可逆转换的示意图。
图 16是本发明实施方式六的波导偏振分离和偏振转换器的结构图。
图 17是本发明实施方式七的波导偏振分离和偏振转换器的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 首先介绍本发明应用到的一个重要原理:当两条相邻设置的光波导满足针 对传播模式的有效折射率相同时, 就可以发生能量耦合和模式的转换。有效折 射率( effective refractive index )是表征光波导的重要参数, 其与波导的尺寸和 波导材料的折射率有关,在波导尺寸和材料确定的情况下, 波导的有效折射率 也将确定。 此外, 有效折射率还与传输的光信号的模式有关, 同一波导传输的 不同模式时, 其有效折射率各不相同, 具体的有效折射率的数值可以借助仿真 软件进行计算。 本发明实施方式提供的波导偏振分离和偏振转换器, 包括输入波导、转换 波导和输出波导, 其利用上述原理, 在信号输入侧, 使输入波导和转换波导的 输入端的有效折射率相同,则相邻设置的输入波导和转换波导之间耦合完成第 一偏振模式的分离和转换; 在信号输出侧,使相邻设置的输出波导和转换波导 输出端的有效折射率相同,相邻设置的输出波导和转换波导之间的耦合完成第 二偏振模式的分离和转换; 从而, 信号输入侧输入的 TE、 TM混合输入光信 号, 经过在输入波导与转换波导之间发生的能量耦合和模式的转换, 以及转换 波导与输出波导之间发生的能量耦合和模式的转换, 实现对 TE、 TM混合输
入光信号的分离, 并将分离后的 TM光转换为 TE光进行输出。 请参见图 3 , 本发明实施方式一的波导偏振分离和偏振转换器 10, 包括输 入波导 11、 转换波导 12, 及输出波导 13。 输入波导 11、 转换波导 12, 及输 出波导 13设置于硅基板上。
所述输入波导 11 包括: 用于输入光信号的输入直波导 112, 以及与输入 直波导 112相连接的弯曲波导 113。
所述转换波导 12, 包括第一转换直波导 121、 第二转换直波导 123 , 以及 连接第一转换直波导 121和第二转换直波导 123的锥形波导 125; 第一转换直 波导 121位于转换波导 12的输入端, 与输入直波导 112相邻设置, 并与输入 直波导 121耦合, 完成第一偏振模式的分离和转换。 第二转换直波导 123位于 转换波导 12的输出端。
所述输出波导 13 , 包括用于输出光信号的输出直波导 131 , 输出直波导 131与第二转换直波导 123相邻设置, 并与第二转换直波导 123耦合, 完成第 二偏振模式的分离和转换。
所述输入直波导 112和第一转换直波导 121沿同一方向延伸,且在该延伸 方向的垂线上相邻设置并具有一预设间隔;第二转换直波导 123与第一转换直 波导 121同轴向延伸;第二转换直波导 123与输出直波导 131沿同一方向延伸, 且在该延伸方向的垂线上相邻设置并具有一预设间隔。
所述输入波导 11可输入 TE/TM混合模式的光信号, 第一转换直波导 121 对于 TE1模的有效折射率和输入直波导 112对于 TM0模的有效折射率相同。 第二转换直波导 123对于 TE1模的有效折射率和输出直波导 131对于 TE0模 的有效折射率相同。 根据前述的相邻波导之间发生能量耦合和模式转换的条 件, 输入直波导 112和第一转换直波导 121耦合, 完成第一偏振模式的分离和 转换; 第二转换直波导 123和输出直波导 131耦合, 完成第二偏振模式的分离 和转换。弯曲波导 113用于将输入直波导 112与第一转换直波导 121之间的耦 合分开。 所述第一转换直波导 121、 第二转换直波导 123 , 以及输出直波导 131在 选择合适的宽度(waveguide width )时, 第一转换直波导 121对于 TE1模的有
效折射率和输入直波导 112对于 TM0模的有效折射率相同, 第二转换直波导 123对于 TE1模的有效折射率和输出直波导 131对于 TE0模的有效折射率相 同。 具体而言, 所述输入直波导 112的宽度为第一宽度 wO , 第一转换直波导 121的宽度为第二宽度 wl , 第二转换直波导 123的宽度为第三宽度为 w2 , 输 出直波导 131的宽度为第一宽度 w0。 请参见图 4 , 所示为波导的有效折射率与波导宽度之间的关系图, 从图 4 中可以看出, 对于宽度为 wO的标准波导, 只要选择合适的波导宽度 wl , 使 其满足:
即,宽度为 wO的波导对于 TM0模的有效折射率与宽度为 wl的波导对于 TE1模的有效折射率相同, 即可以完成能量耦合和模式转换。 例如, 在图 4中 所示的 , 选择合适的 wO和 wl , 可以完成从 TMO到 TE1模式的转换。 请参见图 5 ,所示为宽度为 wO的波导中 TMO模和宽度为 wl的波导中 TE1 模的模场分布图, 在相邻设置、 宽度分别为 wO和 wl的两条波导中, 分别存 在两个 TMO模与 TE1模的混合模式, 混合模式如图 6所示。
请参见图 6 , 由于这两个混合 TMO模与 TE1模的存在, 宽度为 wO的波 导中的 TMO模与宽度为 wl的波导中的 TE1模发生转换, 即, 在本实施方式 中, 输入直波导 112与第一转换直波导 121发生耦合后, TMO模转换为 TE1 模, 其转换效率如图 7所示, 大约为 90%〜95% , 输入直波导 112与第一转换 直波导 121的耦合长度约为几十微米, 具体数值与波导宽度、 波导材料等参数 有关, 根据实际需要进行设定。
在 TMO模转换为 TE1模时, 由于宽度为 wO的波导对于 TEO模式的有效 折射率与宽度为 wl的波导对于任何一个模式的折射率都不相同, 因此, 输入 直波导 112与第一转换直波导 121耦合时, TEO模式不发生耦合。 这样, 通过 将输入直波导 112的宽度 wO , 以及第一转换直波导 121的宽度 wl选择合适 的值,可以将输入直波导 112输入的包含 TM/TE模的混合模式中的 TMO模分
离并耦合到第一转换直波导 121 , 转换为 TE1模。 所述锥形波导 125连接第一转换直波导 121和第二转换直波导 123 , 起到 过渡的作用。 通过锥形波导 125的连接, 波导宽度发生改变, 波导中光信号的 模式不发生变化, 能量几乎没有损耗。 在本实施方式中, 锥形波导 125为绝热 锥形波导, 其入口宽度为 wl、 出口宽度为 w2, 宽度逐渐增加。 经过锥形波导 125后, 第一转换直波导 121中的光信号经过锥形波导 125后, 光信号的模式 不发生改变, 仍然为 TE1模。 与输入直波导 112及第一转换直波导 121之间的模式转换的原理相似,通 过对第二转换直波导 123的宽度 w2, 输出直波导 131的宽度 w0选择合适的 值, 使其满足条件:
即, 宽度为 w2的波导对于 TE1模的有效折射率与宽度为 w0的波导对于 TE0模的有效折射率相同, 即可以完成能量耦合和模式转换。 例如, 在图 4中 所示的, 选择合适的 w0和 wl , 可以完成从 TE1到 TEO模式的转换。
在这种情况下,宽度为 w2的波导中的 TE1模与宽度为 wl的波导中的 TE0 模发生转换, 即, 在本实施方式中, 第二转换直波导 123 与输出直波导 131 发生耦合后, TE1模转换为 TE0模, TE0模的光信号通过输出直波导 131进 行输出。 如图 8所示, TE1模转换为 TE0的转换效率大于 95%, 耦合长度约 为几十微米, 具体数值与波导宽度、 材料等参数有关。 宽度为 wO的输出直波 导 131中 TM0模的有效折射率与宽度为 w2的第二转换直波导 123中任何一 个模式都不相同, 因此 TM0模式不发生耦合。 请参见图 9, 所示为本发明实施方式的波导偏振分离和偏振转换器 10中, 能量耦合和模式转换的过程示意图。
输入直波导 112输入 TE0/TM0混合模式的光信号, 经过输入直波导 112 与第一转换直波导 121之间的耦合和模式转换后, TM0模从输入光信号中分 离出来, 并转换成 TE1模耦合至第一转换直波导 121中。
在完成耦合后, 输入直波导 112中的光信号传输至弯曲波导 113 , TE0模
通过弯曲波导输出, 由于 TM0模式在弯曲波导中的损耗大于 TE0模式, 因此 通过增大弯曲波导 113的弯曲程度可以减小残留的 TM0模, 达到提高消光比 的目的。
锥形波导 125 中光信号的模式不发生变化, 即第一转换直波导 121和第 二转换直波导 123均为 TE1模。
第二转换直波导 123中的 TE1模式的光信号, 在经过输出直波导 131与 第二转换直波导 123之间的耦合和模式转换后, TE1模转换成 TE0模, 耦合 至输出直波导 131中进行输出。 本发明实施方式的波导偏振分离和偏振转换器 10, 其各波导由高折射率 的材料组成, 例如: 硅、 氮化硅、 聚合物、 半导体材料, 衬底可选择二氧化硅, 覆盖层材料与衬底材料不同, 例如可以是空气或者其他折射率低的材料, 这样 可以加强模式间的耦合和转换。 本发明实施方式的波导偏振分离和偏振转换器 10, 可同时实现偏振分离 和偏振转换的功能, 结构简单, 性能稳定。
本发明实施方式的波导偏振分离和偏振转换器 10, 其插损 (插入损耗, 表示一种光能量在透射插入器件后的出射光强与入射光强的比值 )较小 ,插损 值在 0.5 dB -ldB之间, 转换效率高; 整体长度短, 可以 <50um, 有利于高密 集度的单片集成; 同时对波长敏感度低, 能满足在整个 C-band ( C 波段)使 用。
本发明实施方式的波导偏振分离和偏振转换器 10, 相较于其他偏振转换 器件, 其结构简单, 加工制备方法与 CMOS工艺兼容, 且对于波导的尺度兼 容性高, 容易实现与其他器件、 系统集成。 请参见图 10, 本发明实施方式二的波导偏振分离和偏振转换器, 其与实 施方式一相似, 包括输入波导 21、 转换波导 22, 及输出波导 23。 所述输入波 导 21及所述输出波导 23分别设置于所述转换波导 22的两侧。
所述输入波导 21 包括: 用于输入光信号的输入直波导 212, 以及与所述 输入直波导 212相连接的弯曲波导 213。 与实施方式一的区别在于, 所述弯曲
波导 213为圓形波导。
当然,弯曲波导 213的形状也不限于实施方式一的 S形波导以及实施方式 二的圓形, 还可以是其他形状, 这样, 在与其他器件连接时, 可以根据实际的 需要选择合适形状, 可有效利用空间, 在与其他器件连接时更具有灵活性。 请参见图 11 , 本发明实施方式三的波导偏振分离和偏振转换器, 其与实 施方式二相似, 不同之处, 所述输入波导 21及所述输出波导 23分别设置于所 述转换波导 22的同一侧。 这样, 在与其他器件连接时, 可以根据实际的需要 选择合适的布置方式, 有效利用空间, 在与其他器件连接时更具有灵活性。 请参见图 12, 本发明实施方式四的波导偏振分离和偏振转换器作为偏振 转换器使用, 与实施方式一相似, 实施方式四的波导偏振分离和偏振转换器包 括输入波导 41、 转换波导 42, 及输出波导 43。 其区别在于, 所述输入波导 41 包括仅包括用于输入光信号的输入直波导 412。 转换波导 42包括第一转换直 波导 421 , 第二转换直波导 423 , 以及连接所述第一转换直波导 421和所述第 二转换直波导 423的锥形波导 425。 所述输入波导 41及所述输出波导 43分别 设置于所述转换波导 42的两侧。
与实施方式一详述的能量耦合和模式转换原理相同,输入直波导 412与转 换波导 42的第一转换直波导 421耦合后, 输入的 TM0模转换成 TE1模耦合 至转换波导 42。 转换波导 42的第二转换直波导 423与输出波导 43耦合后, 转换波导 42中的 TE1转换成 TE0模耦合至输出波导 43。
所述输入直波导 412的宽度 w0、 第一转换直波导的宽度 wl、 第二转换直 波导的宽度 w2 ,以及输出波导 43的宽度 w0的数值的选择与实施方式一相同。 请参见图 13 , 本发明实施方式五的波导偏振分离和偏振转换器, 与实施 方式四相似, 其区别在于, 所述输入波导 41及所述输出波导 43设置于所述转 换波导 42的同一侧。 请参见图 14和图 15 , 本发明实施方式四和实施方式五的波导偏振分离和 偏振转换器在作为偏振转换器使用时, 具有可逆性, 即光信号也可以从输出波
导 43端输入, 依次经过输出波导 43与转换波导 42之间的耦合和模式转换, 以及转换波导 42与输入波导 41之间的耦合和模式转换后, 从输入波导 41端 进行输出。
具体的, 当输出波导 43输入 TE0模的光信号时 , 经过输出波导 43与转 换波导 42之间的耦合和转换, 转换为 TE1模; 经过转换波导 42与输入直波 导 412之间的耦合和模式转换后, TE1转换为 TM0模从输入波导 41输出。 请参见图 16及图 17, 本发明实施方式六的波导偏振分离和偏振转换器, 其与实施方式一至三相似, 包括输入波导 61、 转换波导 62, 及输出波导 63。 所述输入波导 61 包括: 用于输入光信号的输入直波导 612, 以及与所述输入 直波导 612相连接的弯曲波导 613。 所述转换波导 62, 包括第一转换直波导 621、 第二转换直波导 623 , 以及连接所述第一转换直波导 621和所述第二转 换直波导 623的锥形波导 625。输出波导 63 , 包括用于输出光信号的输出直波 导 631。
与其与实施方式一至三的区别在于,本发明实施方式六的波导偏振分离和 偏振转换器的波导中设置控制电极 601 , 控制电极 601的作用是改变波导的折 射率, 其形成的原理可以是热电极或者电流注入电极。 通过控制控制电极 601 的电流, 可以改变波导的折射率, 达到 调波导中心波长的作用。
控制电极 601可以设置于所述输入直波导 61、第一转换直波导 621、第二 转换直波导 623 , 以及输出直波导 63中, 控制电极数目可以是一个或多个。。
请参见图 16, 实施方式六中, 控制电极 601设置于输出直波导 612及输 出直波导 631中。
请参见图 17, 实施方式七中, 控制电极 601设置于第一转换直波导 621 和第二转换直波导 623中。 由于通过控制控制电极 601的电流, 可以改变波导的折射率,在一实施方 式中, 所述电极 601作为偏振选择开关。 即, 通过改变控制电极 601的电流大 小 , 控制包括输入波导 61与转换波导 62, 或者转换波导 62与输出波导 63之 间是否进行能量耦合和模式转换。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。
Claims
1、 一种波导偏振分离和偏振转换器, 包括:
输入波导, 包括用于输入光信号的输入直波导;
转换波导, 包括第一转换直波导、 第二转换直波导, 以及连接所述第一转 换直波导和所述第二转换直波导的锥形波导;所述第一转换直波导与所述输入 直波导相邻设置,并与所述输入直波导耦合,完成第一偏振模式的分离和转换; 以及
输出波导, 包括用于输出光信号的输出直波导, 所述输出直波导与所述第 二转换直波导相邻设置, 并与所述第二转换直波导耦合, 完成第二偏振模式的 分离和转换。
2、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述第一转换直波导中 TE1模的有效折射率和所述输入直波导中 TM0模的有效 折射率相同; 所述第二转换直波导中 TE1 的模有效折射率和所述输出波导中 TE0模的有效折射率相同。
3、 根据权利要求 2所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入直波导的宽度为第一宽度, 所述第一转换直波导的宽度为第二宽度; 所 述第一宽度及第二宽度使得所述第一转换直波导中 TE1模有效折射率和所述 输入直波导中 TM0模有效折射率相同; 所述输出直波导的宽度为第一宽度, 所述第二转换直波导的宽度为第三宽度,所述第三宽度及第一宽度使得所述第 二转换直波导中 TE1模有效折射率和所述输出波导中 TE0模有效折射率相同。
4、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入波导及所述输出波导位于所述转换波导的同一侧。
5、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入波导及所述输出波导分别位于所述转换波导的两侧。
6、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入波导还包括与所述输入直波导相连接的弯曲波导,所述弯曲波导用于将 所述输入直波导与所述第一转换直波导之间的耦合分开。
7、 根据权利要求 6所述的波导偏振分离和偏振转换器, 其特征在于: 所 述弯曲波导为圓波导或者 S形波导。
8、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入波导、 转换波导以及输出波导的材料为硅、 氮化硅、 聚合物或者半导体 材料。
9、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入波导、 转换波导以及输出波导的覆盖层的折射率与衬底不同。
10、 根据权利要求 1所述的波导偏振分离和偏振转换器, 其特征在于: 所 述输入直波导、 第一转换直波导、 第二转换直波导, 以及输出直波导中至少添 加一个电极; 所述电极用于改变所在波导的有效折射率。
11、 根据权利要求 10所述的波导偏振分离和偏振转换器, 其特征在于: 所述电极作为偏振选择开关。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/090451 WO2015096070A1 (zh) | 2013-12-25 | 2013-12-25 | 波导偏振分离和偏振转换器 |
CN201380081807.6A CN105829933B (zh) | 2013-12-25 | 2013-12-25 | 波导偏振分离和偏振转换器 |
JP2016542984A JP6198091B2 (ja) | 2013-12-25 | 2013-12-25 | 導波路偏光スプリッタ兼偏光回転子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/090451 WO2015096070A1 (zh) | 2013-12-25 | 2013-12-25 | 波导偏振分离和偏振转换器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096070A1 true WO2015096070A1 (zh) | 2015-07-02 |
Family
ID=53477345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/090451 WO2015096070A1 (zh) | 2013-12-25 | 2013-12-25 | 波导偏振分离和偏振转换器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6198091B2 (zh) |
CN (1) | CN105829933B (zh) |
WO (1) | WO2015096070A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223647A (zh) * | 2015-11-04 | 2016-01-06 | 江苏尚飞光电科技有限公司 | 一种偏振分束旋转器及其设计方法 |
CN105652372A (zh) * | 2016-01-21 | 2016-06-08 | 浙江大学 | 一种偏振分束-旋转器 |
CN106019483A (zh) * | 2016-07-29 | 2016-10-12 | 东南大学 | 一种偏振态无差异的光学混频器 |
CN106291820A (zh) * | 2016-10-13 | 2017-01-04 | 兰州大学 | 一种硅基集成化光模式数据交换器 |
WO2017008311A1 (zh) * | 2015-07-16 | 2017-01-19 | 华为技术有限公司 | 一种偏振模式转换器 |
CN108227075A (zh) * | 2018-03-16 | 2018-06-29 | 中国科学院上海微系统与信息技术研究所 | 弯曲波导结构及偏振分束旋转器 |
CN108519641A (zh) * | 2018-05-11 | 2018-09-11 | 兰州大学 | 一种可重构的光模式转换器 |
CN112327411A (zh) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | 基于绝热锥形非对称耦合与y分支的硅基偏振分束旋转器 |
CN112327410A (zh) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | 基于非对称耦合的两级亚波长光栅硅基光偏振分束旋转器 |
CN112630885A (zh) * | 2020-12-21 | 2021-04-09 | 浙江大学 | 一种级联弯曲波导型铌酸锂偏振旋转器 |
CN112946826A (zh) * | 2020-12-16 | 2021-06-11 | 东南大学 | 一种基于soi材料制备的具有偏振旋转功能的热光开关 |
CN113109902A (zh) * | 2021-04-20 | 2021-07-13 | 中国科学院半导体研究所 | 片上铌酸锂薄膜偏振分集器及其制备方法 |
CN115061239A (zh) * | 2022-06-24 | 2022-09-16 | 之江实验室 | 一种基于多段锥形波导结构的偏振旋转分束器 |
WO2023203387A1 (en) * | 2022-04-19 | 2023-10-26 | New York University In Abu Dhabi Corporation | Devices and methods for polarization control and wavelength multiplexing |
CN117289390A (zh) * | 2023-09-15 | 2023-12-26 | 深圳技术大学 | 一种基于氮化硅脊形光波导的片上集成偏振分束器 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9864141B1 (en) * | 2016-12-09 | 2018-01-09 | Inphi Corporation | Silicon-waveguide-based broadband polarization beam rotator |
CN106842430A (zh) * | 2017-04-05 | 2017-06-13 | 电子科技大学 | 一种非对称定向耦合器 |
CN108563030B (zh) * | 2018-01-31 | 2023-05-26 | 中国地质大学(武汉) | 一种偏振分束器 |
CN110299583B (zh) * | 2018-03-22 | 2020-10-09 | 华为技术有限公司 | 模式转换装置及信号传输系统 |
CN108873168A (zh) * | 2018-07-19 | 2018-11-23 | 湖北捷讯光电有限公司 | 一种硅基光波导偏振模式分离器 |
CN111338025A (zh) * | 2018-12-19 | 2020-06-26 | 中兴光电子技术有限公司 | 一种滤模装置和方法 |
JP6771600B2 (ja) * | 2019-01-15 | 2020-10-21 | 沖電気工業株式会社 | 光導波路回路 |
JP6656435B1 (ja) * | 2019-01-15 | 2020-03-04 | 沖電気工業株式会社 | 光導波路回路 |
JP7172642B2 (ja) * | 2019-01-23 | 2022-11-16 | 日本電信電話株式会社 | モード合分波光回路 |
CN109814202B (zh) * | 2019-03-28 | 2020-04-28 | 浙江大学 | 一种基于pt对称的非互易偏振分束器 |
JP7218652B2 (ja) * | 2019-03-28 | 2023-02-07 | 住友大阪セメント株式会社 | 光制御素子 |
CN110646884B (zh) * | 2019-07-09 | 2021-01-26 | 华中科技大学 | 一种具有大制作容差高偏振消光比的偏振分束器 |
US11385407B2 (en) * | 2020-04-15 | 2022-07-12 | Marvell Asia Pte Ltd. | Colorless splitter based on SOI platform |
JP7468102B2 (ja) | 2020-04-15 | 2024-04-16 | 富士通オプティカルコンポーネンツ株式会社 | 光導波路素子 |
US11609379B2 (en) * | 2020-10-21 | 2023-03-21 | Globalfoundries U.S. Inc. | Structures for managing light polarization states on a photonics chip |
CN113346977B (zh) * | 2021-05-28 | 2022-09-20 | 华中科技大学 | 一种少模光纤模分复用信号四模式循环转换系统 |
CN115079345B (zh) * | 2022-06-22 | 2023-03-31 | 西南交通大学 | 一种基于双锥形非对称定向耦合器型光偏振分束旋转器 |
CN115421245B (zh) * | 2022-11-03 | 2023-03-28 | 之江实验室 | 一种基于soi上氮化硅平台的o波段3d模式分束器 |
CN116027483B (zh) * | 2023-03-28 | 2023-06-30 | 济南量子技术研究院 | 一种基于铌酸锂薄膜脊型波导的偏振分束器 |
CN116642663B (zh) * | 2023-05-26 | 2024-07-09 | 上海赛丽微电子有限公司 | 端面耦合器测试装置、方法及测试阵列 |
CN117055161B (zh) * | 2023-08-18 | 2024-09-17 | 南通大学 | 一种绝热光学循环器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101765796A (zh) * | 2007-07-24 | 2010-06-30 | 英飞聂拉股份有限公司 | 偏振分束器-偏振旋转器结构 |
CN203311029U (zh) * | 2013-05-21 | 2013-11-27 | 宁波屹诺电子科技有限公司 | 一种实现光偏振分束和旋转的集成器件 |
CN103424893A (zh) * | 2013-08-23 | 2013-12-04 | 西安电子科技大学 | 光学偏振变换器及其制作方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118105A (ja) * | 1987-10-30 | 1989-05-10 | Brother Ind Ltd | 薄膜光機能素子 |
DE69023028T2 (de) * | 1989-03-23 | 1996-05-30 | At & T Corp | Bauelement für die adiabatische Veränderung der Polarisation. |
JPH06324363A (ja) * | 1993-05-14 | 1994-11-25 | Furukawa Electric Co Ltd:The | 高消光比方向性結合器型光機能素子 |
NL1000182C2 (nl) * | 1995-04-20 | 1996-10-22 | Nederland Ptt | Geïntegreerde optische polarisatie-splitser. |
WO2009067776A1 (en) * | 2007-11-26 | 2009-06-04 | Onechip Photonics Inc. | Integrated lateral mode converter |
JP6028339B2 (ja) * | 2012-02-27 | 2016-11-16 | 沖電気工業株式会社 | 波長選択性経路切換素子 |
CN102902012B (zh) * | 2012-10-12 | 2013-10-09 | 中国计量学院 | 串接三个半圆弧结构的太赫兹波偏振分束器 |
-
2013
- 2013-12-25 JP JP2016542984A patent/JP6198091B2/ja active Active
- 2013-12-25 CN CN201380081807.6A patent/CN105829933B/zh active Active
- 2013-12-25 WO PCT/CN2013/090451 patent/WO2015096070A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101765796A (zh) * | 2007-07-24 | 2010-06-30 | 英飞聂拉股份有限公司 | 偏振分束器-偏振旋转器结构 |
CN203311029U (zh) * | 2013-05-21 | 2013-11-27 | 宁波屹诺电子科技有限公司 | 一种实现光偏振分束和旋转的集成器件 |
CN103424893A (zh) * | 2013-08-23 | 2013-12-04 | 西安电子科技大学 | 光学偏振变换器及其制作方法 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017008311A1 (zh) * | 2015-07-16 | 2017-01-19 | 华为技术有限公司 | 一种偏振模式转换器 |
US10101531B2 (en) | 2015-07-16 | 2018-10-16 | Huawei Technologies Co., Ltd. | Polarization mode converter |
CN105223647A (zh) * | 2015-11-04 | 2016-01-06 | 江苏尚飞光电科技有限公司 | 一种偏振分束旋转器及其设计方法 |
CN105652372A (zh) * | 2016-01-21 | 2016-06-08 | 浙江大学 | 一种偏振分束-旋转器 |
CN105652372B (zh) * | 2016-01-21 | 2018-11-02 | 浙江大学 | 一种偏振分束-旋转器 |
CN106019483A (zh) * | 2016-07-29 | 2016-10-12 | 东南大学 | 一种偏振态无差异的光学混频器 |
CN106291820A (zh) * | 2016-10-13 | 2017-01-04 | 兰州大学 | 一种硅基集成化光模式数据交换器 |
CN106291820B (zh) * | 2016-10-13 | 2019-01-25 | 兰州大学 | 一种硅基集成化光模式数据交换器 |
CN108227075A (zh) * | 2018-03-16 | 2018-06-29 | 中国科学院上海微系统与信息技术研究所 | 弯曲波导结构及偏振分束旋转器 |
CN108519641A (zh) * | 2018-05-11 | 2018-09-11 | 兰州大学 | 一种可重构的光模式转换器 |
CN112327411A (zh) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | 基于绝热锥形非对称耦合与y分支的硅基偏振分束旋转器 |
CN112327410A (zh) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | 基于非对称耦合的两级亚波长光栅硅基光偏振分束旋转器 |
CN112327410B (zh) * | 2020-11-19 | 2021-08-03 | 西南交通大学 | 基于非对称耦合的两级亚波长光栅硅基光偏振分束旋转器 |
CN112946826A (zh) * | 2020-12-16 | 2021-06-11 | 东南大学 | 一种基于soi材料制备的具有偏振旋转功能的热光开关 |
CN112630885A (zh) * | 2020-12-21 | 2021-04-09 | 浙江大学 | 一种级联弯曲波导型铌酸锂偏振旋转器 |
CN113109902A (zh) * | 2021-04-20 | 2021-07-13 | 中国科学院半导体研究所 | 片上铌酸锂薄膜偏振分集器及其制备方法 |
WO2023203387A1 (en) * | 2022-04-19 | 2023-10-26 | New York University In Abu Dhabi Corporation | Devices and methods for polarization control and wavelength multiplexing |
CN115061239A (zh) * | 2022-06-24 | 2022-09-16 | 之江实验室 | 一种基于多段锥形波导结构的偏振旋转分束器 |
CN115061239B (zh) * | 2022-06-24 | 2023-11-03 | 之江实验室 | 一种基于多段锥形波导结构的偏振旋转分束器 |
CN117289390A (zh) * | 2023-09-15 | 2023-12-26 | 深圳技术大学 | 一种基于氮化硅脊形光波导的片上集成偏振分束器 |
Also Published As
Publication number | Publication date |
---|---|
CN105829933B (zh) | 2019-04-12 |
JP6198091B2 (ja) | 2017-09-20 |
JP2017504830A (ja) | 2017-02-09 |
CN105829933A (zh) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015096070A1 (zh) | 波导偏振分离和偏振转换器 | |
Zhang et al. | Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction | |
CN204536588U (zh) | 偏振分束旋转器 | |
CN209606662U (zh) | 基于二氧化硅平面光波导的2×2集成光开关 | |
CN114721176B (zh) | 一种基于片上模式转换的偏振控制器 | |
CN106959485B (zh) | 基于亚波长光栅的定向耦合型tm起偏器及分束器 | |
WO2015021577A1 (zh) | 基于双谐振腔耦合马赫—曾德尔光开关结构 | |
CN104007512B (zh) | 一种光偏振分束器 | |
CN103513333A (zh) | 一种硅基纳米线混合十字交叉器 | |
CN105866885B (zh) | 偏振分束旋转器 | |
CN115079345B (zh) | 一种基于双锥形非对称定向耦合器型光偏振分束旋转器 | |
CN109814202A (zh) | 一种基于pt对称的非互易偏振分束器 | |
CN103941336B (zh) | 一种基于平面光波导技术的三端口路由器及其制备方法 | |
CN105408791B (zh) | 单模垂直腔面发射激光器收发模块及光信号传播方法 | |
CN113985522B (zh) | 基于硅-氮化硅三维集成的微环光开关 | |
CN111999957A (zh) | 基于锗锑碲化合物相变材料辅助的偏振不敏感光开关 | |
CN204129403U (zh) | 基于垂直耦合微环激光器光学双稳态的全光异或逻辑门 | |
Wang et al. | Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers | |
CN104360561B (zh) | 基于垂直耦合微环激光器光学双稳态的全光异或逻辑门 | |
CN112415663B (zh) | 一种基于多级微盘耦合的马赫曾德尔宽带低功耗光开关 | |
CN211669401U (zh) | 一种基于混合表面等离子体槽波导实现的有源偏振旋转器 | |
CN109471273A (zh) | 一种硅基偏振旋转器及其控制光信号偏振态的方法 | |
CN114624815A (zh) | 一种大制作容差高偏振消光比无源波导型偏振旋转分束器 | |
CN111239896A (zh) | 一种基于混合表面等离子体槽波导实现的有源偏振旋转器 | |
WO2015089844A1 (zh) | 起偏器及偏振调制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13900540 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542984 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13900540 Country of ref document: EP Kind code of ref document: A1 |