WO2015093507A1 - Novel modified protein of extracellular domain of protein g - Google Patents
Novel modified protein of extracellular domain of protein g Download PDFInfo
- Publication number
- WO2015093507A1 WO2015093507A1 PCT/JP2014/083346 JP2014083346W WO2015093507A1 WO 2015093507 A1 WO2015093507 A1 WO 2015093507A1 JP 2014083346 W JP2014083346 W JP 2014083346W WO 2015093507 A1 WO2015093507 A1 WO 2015093507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- region
- immunoglobulin
- amino acid
- domain
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/22—Affinity chromatography or related techniques based upon selective absorption processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/315—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
Definitions
- the present invention is a protein comprising a conventional wild type protein G / B domain (extracellular domain), or a variant of the protein, wherein the binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced.
- the binding activity in the weakly acidic region to the protein having the Fc / Fab region of immunoglobulin G (hereinafter referred to as “pH-responsive variant”) is also reduced. For example).
- affinity chromatography is a method for purifying a target protein using specific affinity with the target protein.
- proteins can be easily and selectively recovered.
- affinity is very strong, in order to dissociate the protein adsorbed on the chromatographic packing material, the pH is generally about 2.5. Elution with acidic buffer is often required. Under such strongly acidic conditions, activity reduction such as protein denaturation is likely to occur, and purification under milder conditions is required.
- Protein G is a membrane protein present in the cell membrane of Streptococcus spp. And is known to have specific binding activity to the Fc region of immunoglobulin G, which is a kind of antibody (Non-patent Document 1, Patent Document 1). ). Protein G is a multidomain membrane protein composed of a plurality of domains, and shows a binding activity to a protein having an Fc region of immunoglobulin G (hereinafter referred to as “antibody binding activity”). It is an extracellular domain (Non-patent Document 2). For example, in the case of protein G derived from the G148 strain shown in FIG. 1 of Patent Document 8, three domains B1, B2, and B3 exhibit antibody binding activity (also referred to as C1, C2, and C3 domains in the literature).
- the antibody is selectively adsorbed by contacting with a phase support. Thereafter, washing with a neutral to weak acid solution (pH 5 to 8) is performed to remove components other than antibodies. Finally, it is common to add a strongly acidic solution of pH 2.4 to 3.5 to desorb the antibody from the immobilized protein G and to elute it together with the strongly acidic solution (Patent Document 3). Thereby, the antibody can be isolated, recovered and purified with high purity.
- Non-patent Document 4 Treatment in a weakly acidic region at a pH higher than 2.4-3.5 is attempted, but since the binding force between the extracellular domain of protein G and the antibody is strong, in the weakly acidic region the antibody is separated from protein G. It does not elute and a sufficient recovery amount cannot be obtained.
- Protein G extracellular domain is known to bind to Fab (Non-patent Document 2), and one antibody molecule can bind to protein G extracellular domain in two regions, Fc region and Fab region. is there. In such a binding state, the antibody and the extracellular domain of protein G cannot be easily dissociated, making it difficult to recover the antibody.
- protein stability having thermal stability, chemical stability against denaturing agents, resistance to proteolytic enzymes, etc.
- Improved protein comprising an extracellular domain mutant of the above (Patent Document 5 and Patent Document 6), and further, has a binding property to an immunoglobulin Fc region and / or a binding property to the Fab region in a weakly acidic region.
- Patent Document 7 A reduced improved protein was also developed (Patent Document 7). However, all of these improved proteins contain only one domain exhibiting antibody binding activity.
- the present inventors have developed a protein comprising a tandem multimer of the improved protein (Patent Document 8). Compared with the tandem multimer of the wild-type protein G / B1 domain, such a protein has a much lower binding property in the weakly acidic region with the Fc region of human immunoglobulin G of different subclasses IgG1 and IgG3.
- the captured human immunoglobulin G can be more easily obtained in a weakly acidic region (about pH 4 to 5) without denaturation. It became possible to elute.
- the problem to be solved by the present invention is that the binding to the Fc region of immunoglobulin and / or the Fab in the weakly acidic region further compared with the conventional wild-type protein G / B domain or its modified protein. It is to provide a novel protein having a reduced binding property to a region and a more acidic pH shifted to a slightly acidic side. Furthermore, the problem to be solved by the present invention is to provide a chromatography column for protein separation and purification, particularly an affinity chromatography column for antibody purification, which is packed with the capture agent.
- the present inventor has a positive charge that exists within a certain distance from the Fc region in the domain variant / Fc complex model structure of wild-type protein G. We found that by substituting amino acid residues near the residues with positively charged residues, the binding activity of these proteins to the Fc region of immunoglobulin G in the weakly acidic region can be significantly reduced. Completed the invention.
- each aspect of the present invention is as follows.
- [Aspect 1] Compared to the protein consisting of wild-type protein G and B domains, it has binding activity to the Fc region of immunoglobulin G. By substituting residues near the positively charged residues of protein G with positively charged residues A protein with reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
- [Aspect 2] The protein according to embodiment 1, wherein the amino acid residue after mutation is histidine.
- Aspect 19 A method for purifying an immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G using the affinity chromatography for purification according to aspect 18.
- the present invention there is a residue near the positively charged residue of protein G in an acidic solution as compared with a protein having a binding activity to the Fc region of immunoglobulin G and consisting of wild-type protein G and B domains.
- a positively charged residue By substituting with a positively charged residue, it is possible to provide a protein having reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
- the captured antibody such as immunoglobulin G is more easily eluted in a weakly acidic region without denaturation. It becomes possible.
- Protein G a streptococcal protein, is known to have a specific binding activity to the Fc region of immunoglobulin G, which is a kind of antibody (Reference Document 1). It is a protein useful for purification, removal, diagnosis, treatment, testing, etc. using antibodies. Protein G is a multidomain membrane protein composed of a plurality of domains, and shows a binding activity to a protein having an Fc region of immunoglobulin G (hereinafter referred to as “antibody binding activity”). It is an extracellular domain (Reference Document 2). For example, in the case of protein G derived from the G148 strain, three domains B1, B2, and B3 exhibit antibody binding activity (also referred to as C1, C2, and C3 domains in the literature).
- the present invention has a binding activity to the Fc region of immunoglobulin G, and a residue near the positively charged residue of protein G as a positively charged residue compared to a protein consisting of wild type protein G and B domains. It relates to a protein whose binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced by substitution.
- immunoglobulin G examples include human and non-human animals, particularly various antibodies of mammals such as rats, mice, hamsters, goats and rabbits, and various fragments of antibodies such as Fab fragments of human IgG. including.
- its structure or component is not particularly limited, and includes any of various types of antibody molecules and their fragment molecules known to those skilled in the art. That is, in addition to normal (complete) IgG type antibody molecules, for example, single chain antibodies (scFv), single chain antibody dimers, bispecific antibodies, diabody type bispecific antibodies, And multimerized low molecular weight antibodies, and various antibody fragments such as Fab fragments, F (ab ′) 2 and Fab ′.
- the binding activity in the weakly acidic region with respect to the Fc region of immunoglobulin G is reduced means that, for example, as shown in the Examples of the present specification, pH 4 is measured in the SPR method. This means that the antibody dissociation rate (%) in the solution is higher than that of the wild type protein G ⁇ B or its domain variant, preferably about 2 to 30 times higher than that of the domain variant.
- the column in which the protein of the present invention is immobilized has an elution peak of immunoglobulin G such as human IgG in pH gradient affinity chromatography as compared to a column in which wild type protein G • B or a domain variant thereof is immobilized. This means that it shifts to the neutral side (pH value is about 0.6 to 2.6).
- Substituting a residue in the vicinity of a positively charged residue of protein G in the protein of the present invention with a positively charged residue specifically includes one to several positively charged residues of protein G (in acidic solution)
- a positively charged residue specifically includes one to several positively charged residues of protein G (in acidic solution)
- the closest residue of the positively charged residue of protein G is changed to a positively charged residue. To replace.
- the distance from the positively charged amino acid residue substituted with the positively charged residue in the wild type protein G • B or its domain variant is the origin of the charged atom of the positively charged residue, and any substituted amino acid With the heavy atom in the side chain of the residue as the end point, the smallest value among these distances is defined as the distance between the residues.
- the type of amino acid of the mutated residue is not particularly limited, but the mutated amino acid residue is preferably histidine.
- the positively charged residue of wild type protein G or its domain variant is the same as the Fc region in the wild type protein G / Fc complex crystal structure or the wild type protein G domain variant / Fc complex model structure derived therefrom. From the viewpoint of the pH responsiveness of the protein of the present invention, it is preferably in the vicinity of the binding interface, for example, within 6 angstroms from any amino acid residue in the Fc region.
- the distance between the positively charged residue and the mutated positively charged amino acid residue is preferably within about 6 angstroms in the above crystal structure or model structure.
- the design concept (design procedure) of the structure of the protein of the present invention having such characteristics is as follows. [Example of design procedure using PG19 described in Patent Document 8 (see FIG. 7)] (1) Based on the wild-type PG / Fc region complex crystal structure (pdb, 1FCC) and the PG19 crystal structure (pdb, 2ZW1), the PG19 / Fc region complex structure is modeled. Complex modeling is performed by software superpose (non-patent literature @@ E. Krissinel and K. Henrick (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256-2268) is used for molecular structure calculation by software MOE (Ryoka System).
- Information on the atoms selected for calculating the inter-atomic distance between the PG19 / Fc region molecules and the PG19 molecule using the software CONTACT is as follows. For positively charged residues ( ⁇ ) contained in PG19, select a charged nitrogen atom. For the residue in PG19 closest to the positively charged residue ( ⁇ ), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom. For the residue in the Fc region closest to the positively charged residue ( ⁇ ), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom.
- wild-type protein G ⁇ B domain examples include any of B1, B2 and B3 of protein G of Streptococcus genus Streptococcus.
- the protein of the present invention is a mutant of the wild type protein G ⁇ B1 domain, and is compared to a protein comprising the wild type protein G ⁇ B1 domain (amino acid sequence of SEQ ID NO: 1 described in Patent Document 8).
- a protein comprising the wild type protein G ⁇ B1 domain amino acid sequence of SEQ ID NO: 1 described in Patent Document 8.
- One or several amino acids in the amino acid sequence of a conventional improved protein having reduced binding in the weakly acidic region of binding to the Fab region of immunoglobulin G and / or binding to the Fc region Those containing mutants obtained by mutation are preferred.
- an improved protein of the wild type protein G • B1 domain described in Patent Document 8 (SEQ ID NOS: 13 to 20). Amino acid sequence).
- the amino acid sequences of these wild-type protein G ⁇ B1 domains and mutants thereof are shown as SEQ ID NOS: 30 to 38 in the sequence listing of the present specification.
- Such a mutation in the amino acid sequence of the improved protein can be performed by any method known to those skilled in the art, for example, as described in the examples of the present specification.
- amino acid sequence of the mutant obtained by further mutating the amino acid sequence of such an improved protein the amino acids at positions 25, 36 and 41 in the sequence of the protein G / B domain or its domain mutant Mention may be made of proteins in which at least one of the residues is mutated to histidine.
- the protein of the present invention can be a tandem multimer of these proteins.
- the multimer can be appropriately converted into, for example, a dimer, trimer, tetramer, or pentamer according to the wild type.
- each extracellular domain variant which comprises the multimer contained in the protein of this invention is mutually different, or is mutually the same.
- each domain variant may be linked by a linker sequence.
- a linker sequence can be appropriately designed and adjusted by those skilled in the art in consideration of the amino acid sequence of each variant.
- the protein of the present invention may be a fusion protein comprising a fused amino acid sequence in which the amino acid sequence of any other protein is linked to the N-terminal side or C-terminal side.
- Examples of other amino acid sequences used for such fusion proteins include the amino acid sequence of oxaloacetatetdecarboxylase alpha-subunit c-terminal domain (OXADac).
- OXADac-protein G mutant fusion protein can carry a plurality of functions of an avidin binding activity derived from the OXADac region and an antibody binding activity derived from the protein G variant region as a single molecule.
- the protein of the present invention when synthesized in the form of a His-tagged or fusion protein with another protein, the protein is sequenced between the tag and the mutant protein after synthesis or between the other protein and the protein of the present invention. Even if it is degraded with a specific proteolytic enzyme, one to several amino acid residues may remain on the N-terminal side or C-terminal side of the protein of the present invention. In production, methionine derived from an initiation codon may be added to the N-terminal side, but the addition of these amino acid residues does not change the activity of the protein of the present invention as shown below. In addition, the addition of these amino acid residues does not lose the effect of the designed mutation. Therefore, the protein of the present invention naturally includes these mutations.
- a protein produced using Escherichia coli or the like, and further using an enzyme such as methionylaminopeptidase It can be obtained by selectively cleaving amino acid residues (Reference Document 7) and separating and purifying the reaction mixture by chromatography or the like.
- the present invention further relates to a nucleic acid encoding the protein, a recombinant vector containing the nucleic acid, and a transformant into which the recombinant vector has been introduced.
- the above-mentioned protein is immobilized on a water-insoluble solid phase support, and is characterized by immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G (also referred to as “immunoglobulin G etc.”) ), An antibody containing the capture agent, affinity chromatography for purifying immunoglobulin G and the like, a method for purifying immunoglobulin G and the like using the affinity chromatography for purification, and the like.
- “having affinity” means that, for example, immunoglobulin G can be adsorbed in chromatography.
- a filler formed by immobilizing a protein on a water-insoluble carrier (water-insoluble solid support) represented by agarose beads is glass. It is preferable to use an affinity column packed in a column such as a tube.
- a buffer having a neutral pH is used, and any salt species can be used as long as the pH can be adjusted. Typically, phosphate buffer, Tris buffer, sodium chloride, etc. The one in which the electrolyte is dissolved is used.
- the pH of the adsorption buffer is 9.0 to 6.5, preferably pH 8.0 to 7.0.
- the elution buffer may be in the pH range where the target immunoglobulin G or the like is eluted, and one having a pH of 6.5 to 2.0 is used.
- the type of elution buffer may be any known to those skilled in the art, and representative examples include phosphate buffer, citrate buffer, acetate buffer, glycine buffer, and the like.
- the operation itself in the purification method of the present invention can be carried out by ordinary operations known to those skilled in the art. That is, as in normal affinity purification, first, a sample solution containing immunoglobulin G or the like to be purified is injected into a column stabilized with an adsorption buffer, and immunoglobulin G or the like is adsorbed to the filler. Thereafter, after washing away non-adsorbed components remaining in the column with the adsorption buffer, the immunoglobulin G adsorbed with the elution buffer is eluted, and the immunoglobulin G is recovered in the eluate. It should be noted that other affinity purification conditions such as the flow rate (flow rate) of the adsorption buffer and elution buffer and the column temperature can be appropriately determined by those skilled in the art.
- any purification means can be used as long as it utilizes the affinity between a protein containing a domain mutant (artificially mutated domain) and immunoglobulin G or the like.
- any means known to those skilled in the art such as immunoprecipitation or immobilizing the protein on magnetic beads can be used.
- mutant protein described in Patent Document 8 As a preferable example of the mutant of the wild type protein G ⁇ B1 domain contained in the improved protein used as the basis for obtaining a suitable protein in the present invention, the mutant protein described in Patent Document 8 is mentioned. be able to. Such mutant proteins can be easily prepared by those skilled in the art according to the method described in Patent Document 7 or Patent Document 8, for example, by the following method.
- Production of protein (1) Production of protein by genetic engineering a. Gene encoding protein (variant)
- a genetic engineering method can be used to produce the above-designed protein.
- the gene used in such a method has a binding activity to a protein having an Fc region of immunoglobulin G, and at least to an Fc region of immunoglobulin G compared to a protein comprising a wild type protein G / B domain.
- the binding activity in the weakly acidic region is reduced, while the binding activity in the neutral region to immunoglobulin G is not reduced, such as any of SEQ ID NOS: 14 to 16 in Patent Document 8.
- the gene used in the present invention is a nucleic acid that hybridizes under stringent conditions with a nucleic acid comprising a sequence complementary to the base sequence of the above nucleic acid, and an antibody, immunoglobulin G, or immunoglobulin G.
- Examples also include a nucleic acid encoding the mutant protein having a reduced binding activity.
- stringent conditions refer to conditions in which a specific hybrid is formed and a non-specific hybrid is not formed.
- nucleic acids having high identity refers to conditions under which nucleic acids having high identity (identity is 60% or higher, preferably 80% or higher, more preferably 90% or higher, most preferably 95% or higher) hybridize. More specifically, it refers to conditions under which the sodium concentration is 150 to 900 mM, preferably 600 to 900 mM, and the temperature is 60 to 68 ° C., preferably 65 ° C.
- hybridization conditions are 65 ° C. and washing conditions are 0.1 ⁇ SSC containing 0.1% SDS at 65 ° C. for 10 minutes
- hybridization is performed by a conventional method such as Southern blotting or dot blot hybridization. When it is confirmed that the hybridization occurs, it can be said that the cells hybridize under stringent conditions.
- the gene encoding the protein of the present invention includes the above nucleic acids and nucleic acids encoding any of the above linker sequences, depending on the desired structure of the protein of the present invention.
- Nucleic acid encoding each mutant protein constituting a tandem multimer and a nucleic acid encoding a linker sequence may be linked in plural, or the nucleic acid and a nucleic acid encoding an amino acid sequence of an arbitrary protein may be linked. And may be designed to encode a fused amino acid sequence.
- the gene of the present invention described above can be synthesized by chemical synthesis, PCR, cassette mutagenesis, site-directed mutagenesis and the like. For example, a plurality of oligonucleotides up to about 100 bases having a complementary region of about 20 base pairs at the end are chemically synthesized, and the target gene is totally synthesized by combining these and performing the overlap extension method (Reference Document 8). be able to.
- the recombinant vector of the present invention can be obtained by linking (inserting) a gene containing the above-described base sequence to an appropriate vector.
- the vector used in the present invention is not particularly limited as long as it can be replicated in the host or can integrate the target gene into the host genome. For example, bacteriophage, plasmid, cosmid, phagemid and the like can be mentioned.
- plasmid DNA As plasmid DNA, plasmids derived from actinomycetes (eg pK4, pRK401, pRF31 etc.), plasmids derived from E. coli (eg pBR322, pBR325, pUC118, pUC119, pUC18 etc.), plasmids derived from Bacillus subtilis (eg pUB110, pTP5 etc.) Yeast-derived plasmids (eg, YEp13, YEp24, YCp50, etc.) and the like, and phage DNAs include ⁇ phage ( ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.).
- animal viruses such as retrovirus or vaccinia virus
- insect virus vectors such as baculovirus
- a method in which purified DNA is cleaved with a suitable restriction enzyme, inserted into a restriction enzyme site or a multicloning site of a suitable vector DNA, and linked to the vector is employed. .
- the gene needs to be integrated into the vector so that the mutant protein of the invention is expressed.
- the vector of the present invention includes a promoter, a base sequence of a gene, a cis element such as an enhancer, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence), an initiation codon, a termination codon, if desired. Etc. can be connected.
- a tag sequence for facilitating purification of the protein to be produced can also be linked.
- a base sequence encoding a known tag such as His tag, GST tag, MBP tag, BioEase tag can be used.
- Whether or not a gene has been inserted into a vector can be confirmed using a known genetic engineering technique. For example, in the case of a plasmid vector or the like, it can be confirmed by subcloning the vector using a competent cell, extracting the DNA, and then specifying the base sequence using a DNA sequencer. For other vectors that can be subcloned using bacteria or other hosts, the same technique can be used. In addition, vector selection using a selection marker such as a drug resistance gene is also effective.
- a transformant can be obtained by introducing the recombinant vector of the present invention into a host cell so that the mutant protein of the present invention can be expressed.
- the host used for transformation is not particularly limited as long as it can express a protein or polypeptide. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, plant cells, animal cells (COS cells, CHO cells, etc.) and insect cells.
- the recombinant vector When a bacterium is used as a host, the recombinant vector is autonomously replicable in the bacterium, and at the same time, it is composed of a promoter, a ribosome binding sequence, a start codon, a nucleic acid encoding the mutant protein of the present invention, and a transcription termination sequence. It is preferable.
- E. coli include Escherichia coli BL21
- Bacillus subtilis include Bacillus subtilis.
- the method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a heat shock method, a method using calcium ions, and an electroporation method.
- yeast When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe and the like are used.
- the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method.
- monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells), mouse L cells, rat GH3, human FL cells and the like are used.
- methods for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
- Sf9 cells and the like are used.
- the method for introducing a recombinant vector into insect cells include the calcium phosphate method, lipofection method, electroporation method and the like.
- PCR Southern hybridization
- Northern hybridization or the like.
- DNA is prepared from the transformant, PCR is performed by designing a DNA-specific primer. Subsequently, the PCR amplification product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, or the like, stained with ethidium bromide, SyberGreen solution, etc., and the amplification product is detected as a single band. You can confirm that it has been converted.
- PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
- the protein of the present invention can be obtained by culturing the above-described transformant and collecting it from the culture.
- the culture means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells.
- the method for culturing the transformant of the present invention is carried out according to a usual method used for culturing a host.
- a medium for culturing transformants obtained using microorganisms such as Escherichia coli and yeast as a host contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms, and efficiently cultures the transformants.
- a carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol.
- Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like.
- Examples of the inorganic substance include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
- the culture is usually performed at 20 to 37 ° C. for 12 hours to 3 days under aerobic conditions such as shaking culture or aeration and agitation culture.
- the protein of the present invention When the protein of the present invention is produced in cells or cells after culturing, the protein or cells are collected by crushing the cells or cells by sonication, repeated freeze-thawing, homogenizer treatment, etc. . When the protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Thereafter, a general biochemical method used for protein isolation and purification, for example, ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. can be used alone or in appropriate combination in the culture. From the above, the protein of the present invention can be isolated and purified.
- the mutant protein of the present invention when using a so-called cell-free synthesis system in which only factors (enzymes, nucleic acids, ATP, amino acids, etc.) involved in protein biosynthesis reactions are mixed, the mutant protein of the present invention can be obtained from a vector without using living cells. Can be synthesized in vitro (Reference 9). Thereafter, using the same purification method as described above, the mutant protein of the present invention can be isolated and purified from the mixed solution after the reaction. In order to confirm whether the isolated and purified protein of the present invention is a protein having a desired amino acid sequence, a sample containing the protein is analyzed. As an analysis method, SDS-PAGE, Western blotting, mass spectrometry, amino acid analysis, amino acid sequencer, etc. can be used (Reference Document 10).
- the protein of the present invention can also be produced by organic chemical methods such as solid phase peptide synthesis. Protein production methods using such techniques are well known in the art and are briefly described below.
- the protection having the amino acid sequence of the protein of the present invention is preferably achieved by repeating the polycondensation reaction of the activated amino acid derivative using an automatic synthesizer.
- the polypeptide is synthesized on the resin.
- the protective polypeptide is cleaved from the resin and the side chain protecting group is cleaved simultaneously. This cleaving reaction is known to have an appropriate cocktail depending on the type of resin, protecting group, and amino acid composition (Reference 11).
- the crude protein is transferred from the organic solvent layer to the aqueous layer, and the target protein is purified.
- reverse phase chromatography or the like can be used (Ref. 11).
- the protein of the present invention can be used as a capture agent for antibodies and the like by utilizing its antibody binding property.
- the antibody capture agent can be used for purification and removal of antibodies, diagnosis, treatment, examination, etc. using antibodies.
- the antibody capture agent of the present invention may be in any form as long as it contains the protein of the present invention.
- the form of the mutant protein of the present invention immobilized on a water-insoluble solid support. Is appropriate.
- water-insoluble carrier used examples include inorganic carriers such as glass beads and silica gel, synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextran.
- inorganic carriers such as glass beads and silica gel
- synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextran.
- organic carriers composed of polysaccharides and organic-organic and organic-inorganic composite carriers obtained by a combination thereof.
- hydrophilic carriers have relatively little nonspecific adsorption, and antibodies or immunoglobulin G Alternatively, it is preferable because the protein having the Fc region of immunoglobulin G has good selectivity.
- hydrophilic carrier refers to a carrier having a contact angle with water of 60 ° or less when the compound constituting the carrier is formed into a flat plate shape.
- Such carriers include cellulose, chitosan, dextran and other polysaccharides, polyvinyl alcohol, saponified ethylene-vinyl acetate copolymer, polyacrylamide, polyacrylic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylic acid grafting
- Representative examples include carriers made of polyethylene, polyacrylamide grafted polyethylene, glass and the like.
- porous cellulose gels GCL2000 and GC700 include porous cellulose gels GCL2000 and GC700, Sephacryl® S-1000 with allyl dextran and methylenebisacrylamide cross-linked covalently, acrylate-based carrier Toyopearl, agarose-based cross-linked carrier SepharoseCL4B, epoxy group
- Eupergit C250L which is polymethacrylamide activated by the above method
- the present invention is not limited to these carriers and activated carriers.
- Each of the above carriers may be used alone, or any two or more of them may be mixed.
- the water-insoluble carrier used in the present invention preferably has a large surface area in view of the purpose and method of use of the present antibody capture agent, and has a large number of pores of an appropriate size, that is, is porous. preferable.
- the form of the carrier can be any of beads, fibers, membranes (including hollow fibers), and any form can be selected.
- a bead shape is particularly preferably used because of easy preparation of a carrier having a specific exclusion limit molecular weight.
- the average particle size of beads is 10 to 2500 ⁇ m, and is particularly preferably in the range of 25 ⁇ m to 800 ⁇ m from the viewpoint of easy ligand immobilization reaction. Furthermore, if a functional group that can be used for the ligand immobilization reaction is present on the surface of the carrier, it is convenient for immobilization of the ligand.
- these functional groups include hydroxyl group, amino group, aldehyde group, carboxyl group, thiol group, silanol group, amide group, epoxy group, succinimide group, acid anhydride group, iodoacetyl group and the like.
- a hydrophilic spacer for example, a polyalkylene oxide derivative in which both ends are substituted with a carboxyl group, an amino group, an aldehyde group, an epoxy group or the like is preferably used.
- the method and conditions for immobilizing the mutant protein to be introduced into the carrier and the organic compound used as the spacer are not particularly limited, but the method generally employed when immobilizing a protein or peptide on the carrier is used. Illustrate.
- the carrier is reacted with cyanogen bromide, epichlorohydrin, diglycidyl ether, tosyl chloride, tresyl chloride, hydrazine, etc.
- the carrier compounds that are immobilized as ligands from the functional groups that the carrier originally has reacted
- a functional group that can be easily immobilized reacting with a compound to be immobilized as a ligand, a method of immobilizing, or a system in which a compound to be immobilized as a carrier and a ligand exists, such as a condensation reagent such as carbodiimide, or glutaraldehyde
- Performance confirmation test of protein and antibody capture agent The protein produced as described above (hereinafter also simply referred to as “protein”) and the antibody capture agent may be selected by performing the following performance confirmation test and selecting a good one. However, both the protein and the antibody capturing material of the present invention had good performance.
- the antibody binding of the protein of the present invention is confirmed and evaluated using Western blotting, immunoprecipitation, pull-down assay, ELISA (Enzyme-Linked ImmunoSorbent Assay), surface plasmon resonance (SPR) method, etc. can do.
- the SPR method allows the interaction between living organisms to be observed over time in real time without a label, so that the binding reaction of the mutant protein can be quantitatively evaluated from a kinetic viewpoint.
- the antibody binding property of the mutant protein immobilized on the water-insoluble solid phase support can be confirmed and evaluated by the above SPR method or liquid chromatography method. Among them, the liquid chromatography method can accurately evaluate the pH dependence on the antibody binding property.
- the thermal stability of the mutant protein of the present invention includes circular dichroism (CD) spectrum, fluorescence spectrum, infrared spectroscopy, differential scanning calorimetry, residual activity after heating. Etc. can be used for evaluation.
- CD spectrum is a spectroscopic analysis method that sharply reflects changes in the secondary structure of the protein, so the change in the three-dimensional structure with respect to the temperature of the mutant protein is observed, and the structural stability is quantified thermodynamically. Can be evaluated.
- Patent Document 8 The following contents are specifically disclosed in Patent Document 8.
- Example 1 the wild type amino acid sequence of the protein G • B1 domain represented by [SEQ ID NO: 1], the wild type amino acid sequence of the protein G • B2 domain represented by [SEQ ID NO: 2], and [SEQ ID NO: 3]
- a mutant protein contained in the protein used in the present invention in which a mutation is introduced into the B1, B2 or B3 domain of protein G (hereinafter referred to as "improved protein G")
- the amino acid residue to be substituted is specified and the amino acid residue to be substituted is specified.
- Example 2 the amino acid sequences of a plurality of improved protein Gs represented by [SEQ ID NO: 4] to [SEQ ID NO: 19] are obtained using the selected mutation target site and the above-identified amino acid residue information to be substituted.
- [SEQ ID NO: 13] to [SEQ ID NO: 20] were finally selected as specific amino acid sequences, and an improved protein G showing this sequence was actually synthesized and its molecular properties were evaluated. Are listed.
- Example 3 the base sequence of the nucleic acid encoding the amino acid sequence of the improved protein G ([SEQ ID NO: 13] to [SEQ ID NO: 20]) and the base sequence of Oxaloacetate decarboxylase alpha-subunit c-terminal domain (OXADac) No. 31]
- the nucleotide sequence of the mutant protein using cocoons is described.
- Example 4 a plasmid vector containing a gene encoding improved protein G was synthesized using the PG gene consisting of the nucleotide sequence of [SEQ ID NO: 21] to [SEQ ID NO: 29], and then Oxaloacetate decarboxylase using E. coli. It describes the production of a fusion protein of alpha-subunit c-terminal domain (OXADac) [SEQ ID NO: 31] and a mutant protein.
- OXADac alpha-subunit c-terminal domain
- Example 5 a plasmid vector containing a gene encoding improved protein G was synthesized using various primers ([SEQ ID NO: 32] to [SEQ ID NO: 35]), and then Met-added improved protein using Escherichia coli. The manufacture of G is described.
- Example 6 the purity of the improved protein G was confirmed by polyacrylamide gel electrophoresis.
- Example 7 the molecular weight of the improved protein G was measured by a MALDI-TOF mass spectrometer.
- Example 8 the protein was identified.
- pH gradient affinity chromatography was performed using a column on which the OXADac-PG fusion protein was immobilized, and the pH at which the monoclonal antibody was eluted was examined.
- Example 9 in Example 9, stepwise pH affinity chromatography was performed using a column immobilized with OXADac-PG fusion protein, and elution of monoclonal antibodies was examined at several pHs.
- Example 10 the protein dissociation property in the weakly acidic region of improved protein G was evaluated.
- Example 11 In G mutant was evaluated by surface plasmon resonance (SPR) method.
- the mutant was obtained in the neutral region and in the weakly acidic region where 95% or more of the histidine residues were protonated.
- the antibody binding property of the protein was evaluated by the surface plasmon resonance (SPR) method, the thermal stability of the mutant protein was evaluated in Example 12, the single crystal of the mutant protein was prepared in Example 13, It is described that the three-dimensional structure was determined by X-ray diffraction analysis.
- Example 14 a tandem type of a trimeric wild type PG (CGB01H-3D, [SEQ ID NO: 36]) ⁇ ⁇ added with a cysteine residue and a His tag on the carboxyl terminal side or a mutant PG which is a protein of the present invention.
- Example 15 describes a comparison of protein G extracellular domain mutant tandem multimers and the same monomers with respect to antibody binding dissociation with IgG1 type humanized monoclonal antibodies.
- Example 16 a mutant PG monomer mutant PG (CGB19H-1D, FIG. 4, [SEQ ID NO: 38]) having a cysteine residue and a His tag added to the carboxyl terminus, a tandem tetramer of the mutant PG Incorporating a gene encoding the body PG (CGB19H-4D, FIG. 4, [SEQ ID NO: 39]) and the tandem pentamer PG of the mutant PG (CGB19H-5D, FIG. 4, [SEQ ID NO: 40]) 3 It describes the production of a protein G extracellular domain mutant monomer, tandem tetramer, and pentamer using a species of artificially synthesized expression plasmid.
- each of the mutant proteins for the IgG1-type humanized monoclonal antibody was prepared by immobilizing the monomer and tandem-type multimer of the extracellular domain mutant of protein G to the solid phase through a cysteine residue at the carboxyl terminal. It is described that the antibody binding property of each was comparatively evaluated by the SPR method.
- N-terminus amino terminus
- C-terminus carboxyl terminus
- Non-patent Document 5 such as histidine residues of a fusion protein (SEQ ID NO: 1) containing an extracellular domain mutant of protein G (hereinafter referred to as “modified protein G”). It consists of an amino acid sequence in which a part is substituted with a wild-type amino acid residue.
- the site of mutagenesis introduction of histidine was determined as follows.
- the lysine residues that are positively charged residues of the improved protein G are identified from the three-dimensional structure information (PDB: 2ZW1) of protein G downloaded from the public database Protein Data Bank, and the residues present within 7 ⁇ ⁇ of the lysine residue Was identified as a candidate for mutagenesis.
- CONTACT of the structural analysis software CCP4 was used.
- Non-Patent Document 7 residues that have been found to be important for binding to Fc from the previously reported mutant analysis (Non-Patent Document 7), and the structure of protein G that has been determined from structural information Residues important for formation were excluded from the mutagenesis candidates, and residues that contact these important residues were also excluded from the candidates. As a result, nine residue positions of Asp1, Asn8, Glu15, Thr25, Glu36, Tyr33, Gly41, Thr55, and Glu56 were determined as mutation introduction sites.
- SEQ ID NO: 2 a fusion protein gene
- PG19 improved protein G
- Mutant gene encoding the amino acid sequence (SEQ ID NO: 21-29) of the fusion protein containing the body (PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H, Each was produced.
- An expression plasmid containing the gene of each histidine additional mutant was isolated and purified, and transformed into E. coli BL21 (DE3) strain (Novagen) for expression.
- the histidine additional mutant of the present invention was immobilized on a solid phase via a cysteine residue at the carboxyl terminus, and the pH responsiveness of each histidine additional mutant was evaluated by the SPR method.
- improved protein G was also evaluated in the same manner.
- the improved protein G (PG19) and histidine additional mutant (PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H and PG19 E56H) were immobilized by maleimide coupling method using EMCH (N- [ ⁇ -Maleimidocaproic acid] hydrazide, trifluoroacetic acid) (Thermo scientific).
- EMCH N- [ ⁇ -Maleimidocaproic acid] hydrazide, trifluoroacetic acid
- IgG1-type humanized monoclonal antibody was dissolved in a running buffer (10 mM HEPES pH7.4, 150 mM NaCl, 0.005% v / v Surfactant P20) to prepare a sample antibody solution of 1 mg / ml.
- SPR measurement was performed using a Biacore T100 (GE Healthcare) at a reaction temperature of 25 ° C., and the SPR response at each pH solution was measured. ( Figures 2-4).
- an extracellular domain mutant of protein G was produced, and a column using the protein was produced.
- To express the target protein 0.5 mM IPTG was added, and further cultured with shaking at 37 ° C. for 3 hours.
- the collected cells were suspended in PBS, subjected to ultrasonic disruption and then centrifuged, and the resulting supernatant was used as a total protein solution.
- Recombinant PG was adsorbed onto a 1 ml column of HisTrap FF (GE Healthcare Bioscience), washed with 20 mM imidazole, and eluted with 500 mM imidazole to obtain purified protein.
- 1 mL of the activated carrier was collected on a glass filter and washed with a coupling buffer (0.1 M sodium phosphate, 1.0 M sodium sulfate, 1 mM EDTA, pH 8.0). Transfer the activated carrier to the flask, add 1.4 ml of recombinant PG-containing solution containing 5 mg / ml recombinant PG (PG19 T25H) and 2 mL of coupling buffer, and shake for 16 hours at 37 ° C and 150 rpm. Of cysteine residues. The solution was filtered with a glass filter and washed with a coupling buffer.
- a coupling buffer 0.1 M sodium phosphate, 1.0 M sodium sulfate, 1 mM EDTA, pH 8.0.
- the carrier was transferred to a flask, 3 ml of a solution of 1 M thioglycerol, 0.1 M sodium phosphate, 1 mM EDTA, pH 8.0 was added, and the mixture was shaken at 37 ° C. and 150 rpm for 4 hours to mask unreacted active groups.
- the solution was filtered off with a glass filter, and washing solution 1 (0.1 M Tris-HCl, 0.5 M sodium chloride, pH 8.0) and washing solution 2 (0.1 M acetic acid, 0.5 M sodium chloride, pH 4.0) were alternately washed with 15 ml for 3 cycles.
- 1 ml of the immobilization carrier was washed with ultrapure water and packed in a Tricon 5/50 Column.
- PG19 E36H 921 ⁇ L of 7.6mg / mL recombinant PG-containing solution
- ⁇ PG19 G41H 897 ⁇ L of 7.8mg / mL recombinant PG solution -PG01: 853 ⁇ L of 8.2mg / mL recombinant PG containing solution ⁇ PG19: 1.4mL of 12.0mg / mL recombinant PG solution
- the antibody adsorption capacity of the recombinant PG-immobilized column prepared in Example 3 was measured.
- human IgG orientational yeast
- the injection was continued until the absorbance at 280 nm of the eluate reached 15% of the absorbance of the injected sample, and after washing with the adsorption buffer, the adsorption buffer was replaced with 20 mM citric acid (pH 2.4).
- the dynamic binding capacity was calculated from the amount of sample injected until the absorbance excluding non-adsorbed components at 280 nm of the eluate reached 10% of the absorbance of the injected sample.
- Table 3 shows the DBC of each immobilized column. PG19 G41H had a significantly reduced DBC compared to other columns.
- pH gradient affinity chromatography was performed using the recombinant PG-immobilized column prepared in Example 3.
- human IgG (oriental yeast) prepared to 1 mg / mL was injected.
- the solution was replaced with 20 mM citric acid buffer (pH 6.0) and continuously with 20 mM citric acid (pH 2.4) at a flow rate of 1.0 mL / min over 80 min.
- Human IgG elution peak is around pH3.9 for PG01 immobilized column, around pH4.4 for PG19 immobilized column, around pH5.0 for PG19 T25H immobilized column, around pH4.5 for PG19 E36H immobilized column, PG19 G41H It was around pH 6.5 in the immobilized column (FIG. 6). Therefore, the PG19 G41H immobilized column can elute human IgG on the neutral side from pH 6.0, and the PG19 T25H and PG19 E36H immobilized columns elute under mild acidic conditions compared to the PG19 immobilized column. It became clear that it was possible.
- the wild-type protein G extracellular domain is commercially available as an affinity chromatography carrier for antibody purification and a test reagent for antibody detection, and is widely used in each field of life science.
- the demand for these products has increased dramatically. Therefore, many protein G extracellular domain-containing products utilize the advantage that the binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced by substituting the protein of the present invention with the wild type. This greatly contributes to technological development in a wide range of technical fields dealing with various antibodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The purpose of the present invention is to provide a novel protein, or the like, which has reduced bindability with the Fc region and/or the Fab region of an immunoglobulin in a weakly acidic range and has an elution pH which has been shifted towards weak acidity. The present invention pertains to: a protein that has a binding activity to the Fc region of immunoglobulin G and, as a result of substituting a residue in the vicinity of a positively charged residue of protein G for the positively charged residue, has a reduced binding activity to the Fc region of immunoglobulin G in a weakly acidic range compared to a protein comprising a wild-type protein G B domain; a scavenger of immunoglobulin G or of a protein having the Fc region or the Fab region of immunoglobulin G, wherein the protein is immobilised on a water-insoluble solid-phase support; affinity chromatography for purification of immunoglobulin G or of a protein having the Fc region or the Fab region of immunoglobulin G, said affinity chromatography including the scavenger; and a method which uses the affinity chromatography for purification and in which immunoglobulin G or a protein having the Fc region or the Fab region of immunoglobulin G is purified.
Description
本発明は、従来の野生型プロテインG・Bドメイン(細胞外ドメイン)から成るタンパク質、又は、該タンパク質の変異体であって免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下している改良型タンパク質(ドメイン変異体)に比べ、更に、免疫グロブリンGのFc/Fab領域を有するタンパク質に対する弱酸性領域での結合活性が低下しているタンパク質(以下「pH応答性改良変異体」とも称する)等に関する。
The present invention is a protein comprising a conventional wild type protein G / B domain (extracellular domain), or a variant of the protein, wherein the binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced. In addition to the improved protein (domain variant), the binding activity in the weakly acidic region to the protein having the Fc / Fab region of immunoglobulin G (hereinafter referred to as “pH-responsive variant”) is also reduced. For example).
従来、抗体をはじめとするタンパク質の精製は生化学研究における重要な課題であり、アフィニティクロマトグラフィ、ゲル濾過クロマトグラフィ、イオン交換クロマトグラフィなど様々な技術が知られている。アフィニティクロマトグラフィは、目的タンパク質との特異的な親和性を利用して目的タンパク質を精製する方法である。この方法はでは容易に選択的にタンパク質の回収が可能であるが、その親和性が非常に強いため、クロマト充填剤に吸着させたタンパク質を解離させるために、一般的にはpH2.5程度の酸性緩衝液での溶出が必要となることが多い。そのような強酸性条件では、タンパク質の変性などの活性低下が起こりやすく、より温和な条件での精製が求められている。
Conventionally, purification of proteins such as antibodies has been an important issue in biochemical research, and various techniques such as affinity chromatography, gel filtration chromatography, and ion exchange chromatography are known. Affinity chromatography is a method for purifying a target protein using specific affinity with the target protein. In this method, proteins can be easily and selectively recovered. However, since the affinity is very strong, in order to dissociate the protein adsorbed on the chromatographic packing material, the pH is generally about 2.5. Elution with acidic buffer is often required. Under such strongly acidic conditions, activity reduction such as protein denaturation is likely to occur, and purification under milder conditions is required.
プロテインGはストレプトコッカス属連鎖球菌の細胞膜に存在する膜タンパク質であり、抗体の一種である免疫グロブリンGのFc領域に対する特異的結合活性を有することが知られている(非特許文献1、特許文献1)。プロテインGは、複数のドメインからなるマルチドメイン型膜タンパク質で、免疫グロブリンGのFc領域を有するタンパク質に対する結合活性(以下、「抗体結合活性」と呼ぶ)を示すのは、このうちの一部の細胞膜外ドメインである(非特許文献2)。例えば、特許文献8の図1に示すG148株由来のプロテインGの場合、抗体結合活性を示すのは、B1、B2、B3の3つのドメインである(文献によってC1、C2、C3ドメインとも表記される)。また、GX7805株のプロテインGでは3つの、GX7809のプロテインGでは2つの抗体結合ドメインが存在する。これらは、いずれも60アミノ酸弱の小型タンパク質で、そのアミノ酸配列の間には高い同一性が見られることが知られている)。また、プロテインGを切断して各々のドメイン単独を単離しても、抗体結合活性は保たれることが知られている(非特許文献3)。
Protein G is a membrane protein present in the cell membrane of Streptococcus spp. And is known to have specific binding activity to the Fc region of immunoglobulin G, which is a kind of antibody (Non-patent Document 1, Patent Document 1). ). Protein G is a multidomain membrane protein composed of a plurality of domains, and shows a binding activity to a protein having an Fc region of immunoglobulin G (hereinafter referred to as “antibody binding activity”). It is an extracellular domain (Non-patent Document 2). For example, in the case of protein G derived from the G148 strain shown in FIG. 1 of Patent Document 8, three domains B1, B2, and B3 exhibit antibody binding activity (also referred to as C1, C2, and C3 domains in the literature). ) In addition, there are three antibody binding domains in protein G of GX7805 strain and two antibody binding domains in protein G of GX7809. These are all small proteins of less than 60 amino acids and are known to show high identity between their amino acid sequences). In addition, it is known that antibody binding activity is maintained even when protein G is cleaved to isolate each domain alone (Non-patent Document 3).
プロテインGの細胞膜外ドメインは、現在、その選択的な抗体結合活性を利用した多くのプロテインG細胞膜外ドメイン含有製品が上市されている(例えば、抗体精製のためのアフィニティクロマトグラフィー用担体(特許文献3、4)や抗体を検出するための検査試薬、研究試薬など)。プロテインGの細胞膜外ドメインと抗体の結合力は、中性~弱酸性域で高く、強酸性域で低いことが知られている(非特許文献4)。ゆえに、抗体の単離、回収、精製を目的とした場合、まず、血清等の抗体を含む試料溶液を中性状態にして、プロテインGの細胞膜外ドメインを固定化したビーズ等の水不溶性の固相支持体に接触させ、抗体を選択的に吸着させる。この後、中性~弱酸溶液(pH5~8)で洗浄し抗体以外の成分を除去する。最後にpH2.4~3.5の強酸性溶液を加え抗体を固定化したプロテインGから脱離させ、強酸性溶液と共に溶出させることが一般的である(特許文献3)。これにより、高い純度で抗体を単離、回収、精製することができる。
As for the extracellular domain of protein G, many products containing protein G extracellular domain utilizing its selective antibody binding activity are currently on the market (for example, carriers for affinity chromatography for antibody purification (patent documents) 3, 4), test reagents for detecting antibodies, research reagents, etc.). It is known that the binding force between an extracellular domain of protein G and an antibody is high in a neutral to weakly acidic region and low in a strongly acidic region (Non-patent Document 4). Therefore, for the purpose of antibody isolation, recovery, and purification, first, a sample solution containing an antibody such as serum is neutralized, and a water-insoluble solid phase such as beads immobilized with the extracellular domain of protein G is immobilized. The antibody is selectively adsorbed by contacting with a phase support. Thereafter, washing with a neutral to weak acid solution (pH 5 to 8) is performed to remove components other than antibodies. Finally, it is common to add a strongly acidic solution of pH 2.4 to 3.5 to desorb the antibody from the immobilized protein G and to elute it together with the strongly acidic solution (Patent Document 3). Thereby, the antibody can be isolated, recovered and purified with high purity.
しかし、抗体はpH2.4~3.5の強酸性溶液におくと変性凝集等で劣化することがあり、抗体の種類によっては、本来の機能を失う場合もある(非特許文献4)。これを防ぐために、pH2.4~3.5より高いpHの弱酸性域で処理することが試みられるが、プロテインGの細胞膜外ドメインと抗体の結合力は強いので、弱酸性域では抗体はプロテインGから溶出せず、十分な回収量が得られない。一方、プロテインG細胞膜外ドメインはFabとも結合することが知られており(非特許文献2)、一つの抗体分子はFc領域とFab領域の2つの領域で、プロテインG細胞膜外ドメインと結合可能である。このような結合状態になると、抗体とプロテインGの細胞膜外ドメインは容易に解離できず、抗体の回収は困難になる。
However, when an antibody is placed in a strongly acidic solution having a pH of 2.4 to 3.5, it may deteriorate due to denaturation aggregation or the like, and depending on the type of antibody, the original function may be lost (Non-patent Document 4). In order to prevent this, treatment in a weakly acidic region at a pH higher than 2.4-3.5 is attempted, but since the binding force between the extracellular domain of protein G and the antibody is strong, in the weakly acidic region the antibody is separated from protein G. It does not elute and a sufficient recovery amount cannot be obtained. On the other hand, protein G extracellular domain is known to bind to Fab (Non-patent Document 2), and one antibody molecule can bind to protein G extracellular domain in two regions, Fc region and Fab region. is there. In such a binding state, the antibody and the extracellular domain of protein G cannot be easily dissociated, making it difficult to recover the antibody.
これまでに本発明者等は、熱安定性、変性剤に対する化学的安定性、及びタンパク質分解酵素に対する耐性等(これらの特性を総称して、単に「タンパク質安定性」ともいう)を有するプロテインGの細胞膜外ドメイン変異体からなる改良型タンパク質を開発し(特許文献5及び特許文献6)、更に、弱酸性域における免疫グロブリンのFc領域との結合性及び/または同Fab領域との結合性が低下した改良型タンパク質も開発した(特許文献7)。しかしながら、これらの改良型タンパク質はいずれも抗体結合活性を示す1つのドメインのみを含むものである。
To date, the present inventors have described a protein G having thermal stability, chemical stability against denaturing agents, resistance to proteolytic enzymes, etc. (these properties are collectively referred to simply as “protein stability”). Improved protein comprising an extracellular domain mutant of the above (Patent Document 5 and Patent Document 6), and further, has a binding property to an immunoglobulin Fc region and / or a binding property to the Fab region in a weakly acidic region. A reduced improved protein was also developed (Patent Document 7). However, all of these improved proteins contain only one domain exhibiting antibody binding activity.
更に、本発明者等は、上記改良型タンパク質のタンデム型多量体から成るタンパク質を開発した(特許文献8)。かかるタンパク質は、野生型のプロテインG・B1ドメインのタンデム型多量体に比べて、IgG1及びIgG3という異なるサブクラスのヒト免疫グロブリンGのFc領域との弱酸性域における結合性がより大きく低下しており、該タンパク質を含む本発明の捕捉剤を充填したタンパク質分離精製用クロマトグラフィー用カラムにおいては、捕捉したヒト免疫グロブリンGを弱酸性領域(pH4~5程度)において、変性のない状態でより容易に溶出することが可能となった。
Furthermore, the present inventors have developed a protein comprising a tandem multimer of the improved protein (Patent Document 8). Compared with the tandem multimer of the wild-type protein G / B1 domain, such a protein has a much lower binding property in the weakly acidic region with the Fc region of human immunoglobulin G of different subclasses IgG1 and IgG3. In the chromatographic column for protein separation and purification packed with the capture agent of the present invention containing the protein, the captured human immunoglobulin G can be more easily obtained in a weakly acidic region (about pH 4 to 5) without denaturation. It became possible to elute.
しかしながら、依然として、抗体によっては変性を避けるためより弱酸性側のpHで溶出可能な抗体の精製法が望まれている。
However, in order to avoid denaturation of some antibodies, there is still a demand for a method for purifying antibodies that can be eluted at a slightly acidic pH.
そこで本発明が解決しようとする課題は、従来の、野生型のプロテインG・Bドメイン又はその改変型タンパク質と比較してさらに弱酸性域における免疫グロブリンのFc領域との結合性及び/または同Fab領域との結合性が低下しており、より溶出pHが弱酸性側へシフトした新規タンパク質を提供することである。
更に、本発明が解決しようとする課題は、該捕捉剤を充填して成るタンパク質分離精製用クロマトグラフィー用カラム、特に、抗体精製用のアフィニティクロマトグラフィー用カラムを提供することである。 Thus, the problem to be solved by the present invention is that the binding to the Fc region of immunoglobulin and / or the Fab in the weakly acidic region further compared with the conventional wild-type protein G / B domain or its modified protein. It is to provide a novel protein having a reduced binding property to a region and a more acidic pH shifted to a slightly acidic side.
Furthermore, the problem to be solved by the present invention is to provide a chromatography column for protein separation and purification, particularly an affinity chromatography column for antibody purification, which is packed with the capture agent.
更に、本発明が解決しようとする課題は、該捕捉剤を充填して成るタンパク質分離精製用クロマトグラフィー用カラム、特に、抗体精製用のアフィニティクロマトグラフィー用カラムを提供することである。 Thus, the problem to be solved by the present invention is that the binding to the Fc region of immunoglobulin and / or the Fab in the weakly acidic region further compared with the conventional wild-type protein G / B domain or its modified protein. It is to provide a novel protein having a reduced binding property to a region and a more acidic pH shifted to a slightly acidic side.
Furthermore, the problem to be solved by the present invention is to provide a chromatography column for protein separation and purification, particularly an affinity chromatography column for antibody purification, which is packed with the capture agent.
本発明者は、従来の野生型プロテインG・Bドメイン又はそのドメイン変異体において、野生型プロテインGのドメイン変異体/Fc複合体モデル構造においてFc領域から一定の距離の範囲内に存在する正電荷残基の近傍のアミノ酸残基を、正電荷残基に置換することによって、これらタンパク質の免疫グロブリンGのFc領域に対する弱酸性領域での結合活性を有意に低下させることが出来ることを見出し、本発明を完成した。
In the conventional wild-type protein G · B domain or a domain variant thereof, the present inventor has a positive charge that exists within a certain distance from the Fc region in the domain variant / Fc complex model structure of wild-type protein G. We found that by substituting amino acid residues near the residues with positively charged residues, the binding activity of these proteins to the Fc region of immunoglobulin G in the weakly acidic region can be significantly reduced. Completed the invention.
即ち、本発明の各態様は、以下のとおりである。
[態様1]
免疫グロブリンGのFc領域に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、プロテインGの正電荷残基の近傍の残基を正電荷残基に置換することにより免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下したタンパク質。
[態様2]
変異後のアミノ酸残基がヒスチジンである態様1記載のタンパク質。
[態様3]
近傍の残基が、野生型プロテインG/Fc複合体結晶構造又はそれから導かれる野生型プロテインGのドメイン変異体/Fc複合体モデル構造において、Fc領域の任意のアミノ酸残基から6オングストローム以内にある野生型プロテインG又はそのドメイン変異体の正電荷残基から6オングストローム以内にあるアミノ酸残基である、態様1又は2記載のタンパク質。
[態様4]
野生型プロテインG・Bドメインが、ストレプトコッカス属連鎖球菌のプロテインGのB1、B2、又はB3のいずれかである、態様1~3のいずれか一項に記載のタンパク質。
[態様5]
野生型プロテインG・Bドメインが配列番号30、そのドメイン変異体が配列番号31~38のいずれかで示されるアミノ酸配列を有する、態様1~4のいずれか一項に記載のタンパク質。
[態様6]
プロテインG・Bドメイン又はそのドメイン変異体の配列のうち25位、36位及び41位のアミノ酸残基にうちの少なくとも一つがヒスチジンへ変異されて成る態様1~5のいずれか一項に記載のタンパク質。
[態様7]
SPR法による測定においてpH4溶液における抗体解離率が野生型プロテインG・B又はそのドメイン変異体に比べて高いことを特徴とする、態様1~6のいずれか一項に記載のタンパク質。
[態様8]
態様1~7のいずれか一項に記載のタンパク質のタンデム型多量体であるタンパク質。
[態様9]
三量体、四量体、又は五量体である、態様6記載のタンパク質。
[態様10]
多量体を構成する細胞膜外ドメイン変異体が互いに同一である、態様8又は9記載のタンパク質。
[態様11]
各細胞膜外ドメイン変異体がリンカー配列によって連結されている、態様8~10のいずれか一項に記載のタンパク質。
[態様12]
態様1~11のいずれか一項に記載のタンパク質のアミノ酸配列と他のタンパク質のアミノ酸配列を連結したアミノ酸配列からなる融合タンパク質であるタンパク質。
[態様13]
配列番号21、23または24のいずれかで示されるアミノ酸配列を有する、態様12記載のタンパク質。
[態様14]
態様1~13のいずれか一項に記載のタンパク質をコードする核酸。
[態様15]
態様14に記載の核酸を含有する組換えベクター。
[態様16]
態様15に記載の組換えベクターが導入された形質転換体。
[態様17]
態様1~13のいずれか一項に記載のタンパク質が水不溶性の固相支持体に固定化されていることを特徴とする、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の捕捉剤。
[態様18]
態様17に記載の捕捉剤を含む、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の精製用アフィニティクロマトグラフィー。
[態様19]
態様18に記載の精製用アフィニティクロマトグラフィーを用いて、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質を精製する方法。 That is, each aspect of the present invention is as follows.
[Aspect 1]
Compared to the protein consisting of wild-type protein G and B domains, it has binding activity to the Fc region of immunoglobulin G. By substituting residues near the positively charged residues of protein G with positively charged residues A protein with reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
[Aspect 2]
The protein according toembodiment 1, wherein the amino acid residue after mutation is histidine.
[Aspect 3]
Neighboring residues are within 6 angstroms from any amino acid residue in the Fc region in the wild type protein G / Fc complex crystal structure or the domain variant / Fc complex model structure of wild type protein G derived therefrom The protein according toembodiment 1 or 2, which is an amino acid residue within 6 angstroms from a positively charged residue of wild-type protein G or a domain variant thereof.
[Aspect 4]
The protein according to any one ofaspects 1 to 3, wherein the wild-type protein G · B domain is any one of B1, B2 and B3 of protein G of Streptococcus spp.
[Aspect 5]
The protein according to any one ofaspects 1 to 4, wherein the wild-type protein G · B domain has an amino acid sequence represented by SEQ ID NO: 30, and the domain variant thereof is represented by any one of SEQ ID NOs: 31 to 38.
[Aspect 6]
The amino acid residue at positions 25, 36 and 41 in the sequence of the protein G / B domain or a domain variant thereof is mutated to histidine according to any one ofembodiments 1 to 5. protein.
[Aspect 7]
The protein according to any one ofembodiments 1 to 6, wherein the antibody dissociation rate in the pH4 solution is higher than that of wild-type protein G · B or a domain variant thereof as measured by the SPR method.
[Aspect 8]
A protein which is a tandem multimer of the protein according to any one ofaspects 1 to 7.
[Aspect 9]
The protein according toembodiment 6, which is a trimer, tetramer, or pentamer.
[Aspect 10]
The protein according toembodiment 8 or 9, wherein the extracellular domain mutants constituting the multimer are identical to each other.
[Aspect 11]
The protein according to any one ofembodiments 8 to 10, wherein each extracellular domain variant is linked by a linker sequence.
[Aspect 12]
A protein which is a fusion protein comprising an amino acid sequence obtained by linking the amino acid sequence of the protein according to any one ofembodiments 1 to 11 and the amino acid sequence of another protein.
[Aspect 13]
The protein according to embodiment 12, which has the amino acid sequence represented by any of SEQ ID NO: 21, 23 or 24.
[Aspect 14]
A nucleic acid encoding the protein according to any one ofEmbodiments 1 to 13.
[Aspect 15]
A recombinant vector containing the nucleic acid according to Aspect 14.
[Aspect 16]
A transformant into which the recombinant vector according to aspect 15 has been introduced.
[Aspect 17]
An immunoglobulin G, or a protein having an Fc region or Fab region of immunoglobulin G, wherein the protein according to any one ofembodiments 1 to 13 is immobilized on a water-insoluble solid phase support. Scavenger.
[Aspect 18]
Affinity chromatography for purification of immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G, comprising the capture agent according to aspect 17.
[Aspect 19]
A method for purifying an immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G using the affinity chromatography for purification according to aspect 18.
[態様1]
免疫グロブリンGのFc領域に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、プロテインGの正電荷残基の近傍の残基を正電荷残基に置換することにより免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下したタンパク質。
[態様2]
変異後のアミノ酸残基がヒスチジンである態様1記載のタンパク質。
[態様3]
近傍の残基が、野生型プロテインG/Fc複合体結晶構造又はそれから導かれる野生型プロテインGのドメイン変異体/Fc複合体モデル構造において、Fc領域の任意のアミノ酸残基から6オングストローム以内にある野生型プロテインG又はそのドメイン変異体の正電荷残基から6オングストローム以内にあるアミノ酸残基である、態様1又は2記載のタンパク質。
[態様4]
野生型プロテインG・Bドメインが、ストレプトコッカス属連鎖球菌のプロテインGのB1、B2、又はB3のいずれかである、態様1~3のいずれか一項に記載のタンパク質。
[態様5]
野生型プロテインG・Bドメインが配列番号30、そのドメイン変異体が配列番号31~38のいずれかで示されるアミノ酸配列を有する、態様1~4のいずれか一項に記載のタンパク質。
[態様6]
プロテインG・Bドメイン又はそのドメイン変異体の配列のうち25位、36位及び41位のアミノ酸残基にうちの少なくとも一つがヒスチジンへ変異されて成る態様1~5のいずれか一項に記載のタンパク質。
[態様7]
SPR法による測定においてpH4溶液における抗体解離率が野生型プロテインG・B又はそのドメイン変異体に比べて高いことを特徴とする、態様1~6のいずれか一項に記載のタンパク質。
[態様8]
態様1~7のいずれか一項に記載のタンパク質のタンデム型多量体であるタンパク質。
[態様9]
三量体、四量体、又は五量体である、態様6記載のタンパク質。
[態様10]
多量体を構成する細胞膜外ドメイン変異体が互いに同一である、態様8又は9記載のタンパク質。
[態様11]
各細胞膜外ドメイン変異体がリンカー配列によって連結されている、態様8~10のいずれか一項に記載のタンパク質。
[態様12]
態様1~11のいずれか一項に記載のタンパク質のアミノ酸配列と他のタンパク質のアミノ酸配列を連結したアミノ酸配列からなる融合タンパク質であるタンパク質。
[態様13]
配列番号21、23または24のいずれかで示されるアミノ酸配列を有する、態様12記載のタンパク質。
[態様14]
態様1~13のいずれか一項に記載のタンパク質をコードする核酸。
[態様15]
態様14に記載の核酸を含有する組換えベクター。
[態様16]
態様15に記載の組換えベクターが導入された形質転換体。
[態様17]
態様1~13のいずれか一項に記載のタンパク質が水不溶性の固相支持体に固定化されていることを特徴とする、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の捕捉剤。
[態様18]
態様17に記載の捕捉剤を含む、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の精製用アフィニティクロマトグラフィー。
[態様19]
態様18に記載の精製用アフィニティクロマトグラフィーを用いて、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質を精製する方法。 That is, each aspect of the present invention is as follows.
[Aspect 1]
Compared to the protein consisting of wild-type protein G and B domains, it has binding activity to the Fc region of immunoglobulin G. By substituting residues near the positively charged residues of protein G with positively charged residues A protein with reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
[Aspect 2]
The protein according to
[Aspect 3]
Neighboring residues are within 6 angstroms from any amino acid residue in the Fc region in the wild type protein G / Fc complex crystal structure or the domain variant / Fc complex model structure of wild type protein G derived therefrom The protein according to
[Aspect 4]
The protein according to any one of
[Aspect 5]
The protein according to any one of
[Aspect 6]
The amino acid residue at positions 25, 36 and 41 in the sequence of the protein G / B domain or a domain variant thereof is mutated to histidine according to any one of
[Aspect 7]
The protein according to any one of
[Aspect 8]
A protein which is a tandem multimer of the protein according to any one of
[Aspect 9]
The protein according to
[Aspect 10]
The protein according to
[Aspect 11]
The protein according to any one of
[Aspect 12]
A protein which is a fusion protein comprising an amino acid sequence obtained by linking the amino acid sequence of the protein according to any one of
[Aspect 13]
The protein according to embodiment 12, which has the amino acid sequence represented by any of SEQ ID NO: 21, 23 or 24.
[Aspect 14]
A nucleic acid encoding the protein according to any one of
[Aspect 15]
A recombinant vector containing the nucleic acid according to Aspect 14.
[Aspect 16]
A transformant into which the recombinant vector according to aspect 15 has been introduced.
[Aspect 17]
An immunoglobulin G, or a protein having an Fc region or Fab region of immunoglobulin G, wherein the protein according to any one of
[Aspect 18]
Affinity chromatography for purification of immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G, comprising the capture agent according to aspect 17.
[Aspect 19]
A method for purifying an immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G using the affinity chromatography for purification according to aspect 18.
本発明によれば、免疫グロブリンGのFc領域に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、酸性溶液中においてプロテインGの正電荷残基の近傍の残基を正電荷残基に置換することにより免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下したタンパク質を提供することが出来る。
According to the present invention, there is a residue near the positively charged residue of protein G in an acidic solution as compared with a protein having a binding activity to the Fc region of immunoglobulin G and consisting of wild-type protein G and B domains. By substituting with a positively charged residue, it is possible to provide a protein having reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
その結果、該タンパク質を含む本発明の捕捉剤を充填したタンパク質分離精製用クロマトグラフィー用カラムにおいては、捕捉した免疫グロブリンG等の抗体を弱酸性領域において、変性のない状態でより容易に溶出することが可能となる。
As a result, in the chromatography column for protein separation and purification packed with the capture agent of the present invention containing the protein, the captured antibody such as immunoglobulin G is more easily eluted in a weakly acidic region without denaturation. It becomes possible.
連鎖球菌由来のタンパク質であるプロテインGは、抗体の一種である免疫グロブリンGのFc領域に対する特異的結合活性を有することが知られており(参照文献1)、この抗体結合性を利用した抗体の精製や除去、および抗体を利用した診断、治療、検査等に有用なタンパク質である。プロテインGは、複数のドメインからなるマルチドメイン型膜タンパク質で、免疫グロブリンGのFc領域を有するタンパク質に対する結合活性(以下、「抗体結合活性」と呼ぶ)を示すのは、このうちの一部の細胞膜外ドメインである(参照文献2)。たとえば、G148株由来のプロテインGの場合、抗体結合活性を示すのは、B1、B2、B3の3つのドメインである(文献によってC1、C2、C3ドメインとも表記される)。また、GX7805株のプロテインGでは3つの抗体結合ドメインが、GX7809のプロテインGでは2つの抗体結合ドメインが存在する。これらは、いずれも60アミノ酸弱の小型タンパク質で、そのアミノ酸配列の間には高い同一性が見られる。また、プロテインGを切断して各々のドメイン単独を単離しても、抗体結合活性は保たれることが知られている(参照文献3)。
Protein G, a streptococcal protein, is known to have a specific binding activity to the Fc region of immunoglobulin G, which is a kind of antibody (Reference Document 1). It is a protein useful for purification, removal, diagnosis, treatment, testing, etc. using antibodies. Protein G is a multidomain membrane protein composed of a plurality of domains, and shows a binding activity to a protein having an Fc region of immunoglobulin G (hereinafter referred to as “antibody binding activity”). It is an extracellular domain (Reference Document 2). For example, in the case of protein G derived from the G148 strain, three domains B1, B2, and B3 exhibit antibody binding activity (also referred to as C1, C2, and C3 domains in the literature). In addition, there are three antibody binding domains in protein G of GX7805 strain, and two antibody binding domains in protein G of GX7809. These are all small proteins of less than 60 amino acids, and high identity is seen between their amino acid sequences. In addition, it is known that antibody binding activity is maintained even if protein G is cleaved to isolate each domain alone (Reference 3).
本発明は、免疫グロブリンGのFc領域に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、プロテインGの正電荷残基の近傍の残基を正電荷残基に置換することにより免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下したタンパク質に係る。
The present invention has a binding activity to the Fc region of immunoglobulin G, and a residue near the positively charged residue of protein G as a positively charged residue compared to a protein consisting of wild type protein G and B domains. It relates to a protein whose binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced by substitution.
ここで、免疫グロブリンGの例としては、ヒト及びヒト以外の動物、特に、ラット、マウス、ハムスター、ヤギ及びウサギ等の哺乳類の各種抗体、並びに、ヒトIgGのFab断片等の各抗体の各種断片を含む。Fc部分またはFab部分を有するものであれば、その構造又は構成要素に特に制限はなく、当業者に公知の任意の様々な型の抗体分子及びそれらのフラグメント分子を包合する。即ち、通常の(完全な)IgG型抗体分子に加えて、例えば、一本鎖抗体(scFv)、一本鎖抗体の二量体、二重特異性抗体、ダイアボディ型二重特異性抗体、及び多量体化低分子抗体、並びに、Fabフラグメント、F(ab’)2及びFab’等の各種の抗体フラグメントを挙げることが出来る。
Here, examples of immunoglobulin G include human and non-human animals, particularly various antibodies of mammals such as rats, mice, hamsters, goats and rabbits, and various fragments of antibodies such as Fab fragments of human IgG. including. As long as it has an Fc part or Fab part, its structure or component is not particularly limited, and includes any of various types of antibody molecules and their fragment molecules known to those skilled in the art. That is, in addition to normal (complete) IgG type antibody molecules, for example, single chain antibodies (scFv), single chain antibody dimers, bispecific antibodies, diabody type bispecific antibodies, And multimerized low molecular weight antibodies, and various antibody fragments such as Fab fragments, F (ab ′) 2 and Fab ′.
本発明のタンパク質において、「免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下した」とは、例えば、本明細書の実施例に示されているように、SPR法による測定においてpH4溶液における抗体解離率(%)が野生型プロテインG・B又はそのドメイン変異体に比べて高い、好ましくは、ドメイン変異体に比べて約2倍~30倍程度高いことを意味する。又は、pH勾配アフィニティクロマトグラフィにおけるヒトIgG等の免疫グロブリンGの溶出ピークが、野生型プロテインG・B又はそのドメイン変異体を固定して成るカラムに比べて、本発明のタンパク質を固定してなるカラムを使用した場合に、より中性側(pH値で0.6~2.6程度)にシフトすることを意味する。
In the protein of the present invention, “the binding activity in the weakly acidic region with respect to the Fc region of immunoglobulin G is reduced” means that, for example, as shown in the Examples of the present specification, pH 4 is measured in the SPR method. This means that the antibody dissociation rate (%) in the solution is higher than that of the wild type protein G · B or its domain variant, preferably about 2 to 30 times higher than that of the domain variant. Alternatively, the column in which the protein of the present invention is immobilized has an elution peak of immunoglobulin G such as human IgG in pH gradient affinity chromatography as compared to a column in which wild type protein G • B or a domain variant thereof is immobilized. This means that it shifts to the neutral side (pH value is about 0.6 to 2.6).
本発明のタンパク質におけるプロテインGの正電荷残基の近傍の残基を正電荷残基に置換することは、具体的には、酸性溶液中においてプロテインGの1ないし数個の正電荷残基(例えば、リジン残基又はヒスチジン残基)とその最近接残基との間で静電反発が生起することを期待して、プロテインGの正電荷残基の最近接残基を正電荷残基へ置換するものである。
Substituting a residue in the vicinity of a positively charged residue of protein G in the protein of the present invention with a positively charged residue specifically includes one to several positively charged residues of protein G (in acidic solution) For example, in the hope that an electrostatic repulsion will occur between a lysine residue or a histidine residue) and its nearest residue, the closest residue of the positively charged residue of protein G is changed to a positively charged residue. To replace.
ここで、野生型プロテインG・B又はそのドメイン変異体における正電荷残基と置換した正電荷のアミノ酸残基との距離は、該正電荷残基の荷電原子を起点とし、任意の置換したアミノ酸残基の側鎖の重原子を終点として、これらの距離のなかで最小の値を残基間の距離と定義する。
Here, the distance from the positively charged amino acid residue substituted with the positively charged residue in the wild type protein G • B or its domain variant is the origin of the charged atom of the positively charged residue, and any substituted amino acid With the heavy atom in the side chain of the residue as the end point, the smallest value among these distances is defined as the distance between the residues.
ここで、変異させた残基のアミノ酸の種類に特に制限はないが、変異後のアミノ酸残基はヒスチジンであることが好ましい。
Here, the type of amino acid of the mutated residue is not particularly limited, but the mutated amino acid residue is preferably histidine.
野生型プロテインG又はそのドメイン変異体の正電荷残基は、野生型プロテインG/Fc複合体結晶構造又はそれから導かれる野生型プロテインGのドメイン変異体/Fc複合体モデル構造において、Fc領域との結合界面近傍、例えば、Fc領域の任意のアミノ酸残基から6オングストローム以内にあることが本発明のタンパク質のpH応答性の観点から好ましい。
The positively charged residue of wild type protein G or its domain variant is the same as the Fc region in the wild type protein G / Fc complex crystal structure or the wild type protein G domain variant / Fc complex model structure derived therefrom. From the viewpoint of the pH responsiveness of the protein of the present invention, it is preferably in the vicinity of the binding interface, for example, within 6 angstroms from any amino acid residue in the Fc region.
更に、該正電荷残基と変異させた正電荷のアミノ酸残基との距離は、上記の結晶構造又はモデル構造において、約6オングストローム以内であることが好ましい。
Further, the distance between the positively charged residue and the mutated positively charged amino acid residue is preferably within about 6 angstroms in the above crystal structure or model structure.
このような特徴を有する本発明のタンパク質の構造の設計コンセプト(設計手順)は以下の通りである。
[特許文献8に記載のPG19を用いた設計手順の一例(図7を参照)]
(1)野生型PG/Fc領域複合体結晶構造(pdb, 1FCC) とPG19結晶構造(pdb, 2ZW1)を元に、PG19/Fc領域複合体構造をモデリングする。複合体のモデリングは、ソフトウエアsuperpose(非特許文献@@ E.Krissinel and K.Henrick (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256-2268)を用いて作製した複合体構造を、ソフトウェアMOE(菱化システム)による分子力学計算により行う。
(2)ソフトウエアパッケージCCP4(非特許文献6)に含まれるCONTACTを用いてPG19/Fc領域分子間、およびPG19分子内の原子間距離を計算する。
(3)上記の定義に基づき、PG19に含まれる正電荷残基(☆)から最近接のPG19内残基を変異対象残基(○)とする。
(4)変異対象残基(○)のうち、従来の研究(非特許文献7) で行なわれたアラニン置換体の結合解析に基づき、PG19とFc領域の結合に重要であることが明らかとなっているものは除外する。尚、自由エネルギー差 DDG が正の場合、結合に不利であることを示す。
(5)上記の定義に基づき、PG19に含まれる正電荷残基(☆)から最近接のFc領域内残基(□)の距離を決定する。 The design concept (design procedure) of the structure of the protein of the present invention having such characteristics is as follows.
[Example of design procedure using PG19 described in Patent Document 8 (see FIG. 7)]
(1) Based on the wild-type PG / Fc region complex crystal structure (pdb, 1FCC) and the PG19 crystal structure (pdb, 2ZW1), the PG19 / Fc region complex structure is modeled. Complex modeling is performed by software superpose (non-patent literature @@ E. Krissinel and K. Henrick (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256-2268) is used for molecular structure calculation by software MOE (Ryoka System).
(2) The distance between atoms within the PG19 / Fc region molecule and within the PG19 molecule is calculated using CONTACT included in the software package CCP4 (Non-patent Document 6).
(3) Based on the above definition, the closest residue in PG19 from the positively charged residue (☆) included in PG19 is the residue to be mutated (◯).
(4) Of the residues to be mutated (O), based on the binding analysis of the alanine substitution performed in the previous research (Non-patent Document 7), it became clear that it is important for the binding of PG19 and Fc region. Exclude those that are. If the free energy difference DDG is positive, it indicates that it is disadvantageous for coupling.
(5) Based on the above definition, the distance from the positively charged residue (☆) contained in PG19 to the closest Fc region residue (□) is determined.
[特許文献8に記載のPG19を用いた設計手順の一例(図7を参照)]
(1)野生型PG/Fc領域複合体結晶構造(pdb, 1FCC) とPG19結晶構造(pdb, 2ZW1)を元に、PG19/Fc領域複合体構造をモデリングする。複合体のモデリングは、ソフトウエアsuperpose(非特許文献@@ E.Krissinel and K.Henrick (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256-2268)を用いて作製した複合体構造を、ソフトウェアMOE(菱化システム)による分子力学計算により行う。
(2)ソフトウエアパッケージCCP4(非特許文献6)に含まれるCONTACTを用いてPG19/Fc領域分子間、およびPG19分子内の原子間距離を計算する。
(3)上記の定義に基づき、PG19に含まれる正電荷残基(☆)から最近接のPG19内残基を変異対象残基(○)とする。
(4)変異対象残基(○)のうち、従来の研究(非特許文献7) で行なわれたアラニン置換体の結合解析に基づき、PG19とFc領域の結合に重要であることが明らかとなっているものは除外する。尚、自由エネルギー差 DDG が正の場合、結合に不利であることを示す。
(5)上記の定義に基づき、PG19に含まれる正電荷残基(☆)から最近接のFc領域内残基(□)の距離を決定する。 The design concept (design procedure) of the structure of the protein of the present invention having such characteristics is as follows.
[Example of design procedure using PG19 described in Patent Document 8 (see FIG. 7)]
(1) Based on the wild-type PG / Fc region complex crystal structure (pdb, 1FCC) and the PG19 crystal structure (pdb, 2ZW1), the PG19 / Fc region complex structure is modeled. Complex modeling is performed by software superpose (non-patent literature @@ E. Krissinel and K. Henrick (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256-2268) is used for molecular structure calculation by software MOE (Ryoka System).
(2) The distance between atoms within the PG19 / Fc region molecule and within the PG19 molecule is calculated using CONTACT included in the software package CCP4 (Non-patent Document 6).
(3) Based on the above definition, the closest residue in PG19 from the positively charged residue (☆) included in PG19 is the residue to be mutated (◯).
(4) Of the residues to be mutated (O), based on the binding analysis of the alanine substitution performed in the previous research (Non-patent Document 7), it became clear that it is important for the binding of PG19 and Fc region. Exclude those that are. If the free energy difference DDG is positive, it indicates that it is disadvantageous for coupling.
(5) Based on the above definition, the distance from the positively charged residue (☆) contained in PG19 to the closest Fc region residue (□) is determined.
尚、ソフトウエアCONTACTを用いたPG19/Fc領域分子間、およびPG19分子内の原子間距離の計算に選択した原子に関する情報は以下の通りである。
PG19に含まれる正電荷残基(☆)については、電荷を帯びる窒素原子を選択する。正電荷残基(☆)から最近接のPG19内残基については、上述の正電荷窒素原子から最近接の側鎖原子(グリシンの場合は主鎖原子)を選択する。正電荷残基(☆)から最近接のFc領域内残基については、上述の正電荷窒素原子から最近接の側鎖原子(グリシンの場合は主鎖原子)を選択する。 Information on the atoms selected for calculating the inter-atomic distance between the PG19 / Fc region molecules and the PG19 molecule using the software CONTACT is as follows.
For positively charged residues (☆) contained in PG19, select a charged nitrogen atom. For the residue in PG19 closest to the positively charged residue (☆), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom. For the residue in the Fc region closest to the positively charged residue (☆), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom.
PG19に含まれる正電荷残基(☆)については、電荷を帯びる窒素原子を選択する。正電荷残基(☆)から最近接のPG19内残基については、上述の正電荷窒素原子から最近接の側鎖原子(グリシンの場合は主鎖原子)を選択する。正電荷残基(☆)から最近接のFc領域内残基については、上述の正電荷窒素原子から最近接の側鎖原子(グリシンの場合は主鎖原子)を選択する。 Information on the atoms selected for calculating the inter-atomic distance between the PG19 / Fc region molecules and the PG19 molecule using the software CONTACT is as follows.
For positively charged residues (☆) contained in PG19, select a charged nitrogen atom. For the residue in PG19 closest to the positively charged residue (☆), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom. For the residue in the Fc region closest to the positively charged residue (☆), the closest side chain atom (main chain atom in the case of glycine) is selected from the above positively charged nitrogen atom.
野生型プロテインG・Bドメインの例としては、ストレプトコッカス属連鎖球菌のプロテインGのB1、B2、又はB3のいずれかを挙げることができる。
Examples of the wild-type protein G · B domain include any of B1, B2 and B3 of protein G of Streptococcus genus Streptococcus.
本発明のタンパク質は、野生型プロテインG・B1ドメインの変異体であって、野生型のプロテインG・B1ドメイン(特許文献8に記載されている配列番号1のアミノ酸配列)から成るタンパク質に比べて、免疫グロブリンGのFab領域との結合性及び/または同Fc領域との結合性の弱酸性域における結合性が低下している従来の改良型タンパク質のアミノ酸配列における一個又は数個のアミノ酸を更に変異することによって得られる変異体を含むものが好ましい。このような、弱酸性域における結合性が低下している従来の改良型タンパク質の例として、特許文献8に記載されている野生型プロテインG・B1ドメインの改良型タンパク質(配列番号13~20のアミノ酸配列)を挙げることができる。尚、これらの野生型プロテインG・B1ドメイン及びその変異体のアミノ酸配列を本願明細書の配列表において、配列番号30~38として示す。
The protein of the present invention is a mutant of the wild type protein G · B1 domain, and is compared to a protein comprising the wild type protein G · B1 domain (amino acid sequence of SEQ ID NO: 1 described in Patent Document 8). One or several amino acids in the amino acid sequence of a conventional improved protein having reduced binding in the weakly acidic region of binding to the Fab region of immunoglobulin G and / or binding to the Fc region Those containing mutants obtained by mutation are preferred. As an example of such a conventional improved protein having reduced binding in a weakly acidic region, an improved protein of the wild type protein G • B1 domain described in Patent Document 8 (SEQ ID NOS: 13 to 20). Amino acid sequence). The amino acid sequences of these wild-type protein G · B1 domains and mutants thereof are shown as SEQ ID NOS: 30 to 38 in the sequence listing of the present specification.
このような改良型タンパク質のアミノ酸配列における変異は、例えば、本明細書の実施例に記載されているような、当業者に公知の任意の方法で実施することが出来る。
Such a mutation in the amino acid sequence of the improved protein can be performed by any method known to those skilled in the art, for example, as described in the examples of the present specification.
このような改良型タンパク質のアミノ酸配列を更に変異した結果得られる変異体のアミノ酸配列の好適例として、プロテインG・Bドメイン又はそのドメイン変異体の配列のうち25位、36位及び41位のアミノ酸残基のうちの少なくとも一つがヒスチジンへ変異されて成るタンパク質を挙げることができる。
As a suitable example of the amino acid sequence of the mutant obtained by further mutating the amino acid sequence of such an improved protein, the amino acids at positions 25, 36 and 41 in the sequence of the protein G / B domain or its domain mutant Mention may be made of proteins in which at least one of the residues is mutated to histidine.
本発明のタンパク質は、これらタンパク質のタンデム型多量体とすることが出来る。多量体は上記野生型に準じて、適宜、例えば、二量体、三量体、四量体、又は五量体とすることが出来る。更に、本発明のタンパク質に含まれる多量体を構成する夫々の細胞膜外ドメイン変異体は互いに異なるか、又は、互いに同一である。
The protein of the present invention can be a tandem multimer of these proteins. The multimer can be appropriately converted into, for example, a dimer, trimer, tetramer, or pentamer according to the wild type. Furthermore, each extracellular domain variant which comprises the multimer contained in the protein of this invention is mutually different, or is mutually the same.
更に、各ドメイン変異体がリンカー配列によって連結されていても良い。このようなリンカー配列は、各変異体のアミノ酸配列等を考慮して、当業者が適宜設計し調整することが出来る。
Further, each domain variant may be linked by a linker sequence. Such a linker sequence can be appropriately designed and adjusted by those skilled in the art in consideration of the amino acid sequence of each variant.
又、本発明のタンパク質は、任意の他タンパク質のアミノ酸配列をN末端側もしくはC末端側に連結した融合型アミノ酸配列からなる融合タンパク質としても良い。このような融合タンパク質に使用する他のアミノ酸配列としては、例えば、oxaloacetate decarboxylase alpha-subunit c-terminal domain(OXADac)のアミノ酸配列が挙げられる。この場合のOXADac-プロテインG変異体融合タンパク質は、OXADac領域に由来するアビジン結合活性とプロテインG変異体領域に由来する抗体結合活性の複数の機能を単一分子で担うことが可能である。
The protein of the present invention may be a fusion protein comprising a fused amino acid sequence in which the amino acid sequence of any other protein is linked to the N-terminal side or C-terminal side. Examples of other amino acid sequences used for such fusion proteins include the amino acid sequence of oxaloacetatetdecarboxylase alpha-subunit c-terminal domain (OXADac). In this case, the OXADac-protein G mutant fusion protein can carry a plurality of functions of an avidin binding activity derived from the OXADac region and an antibody binding activity derived from the protein G variant region as a single molecule.
例えば、本発明のタンパク質をHisタグ付きあるいは他のタンパク質との融合タンパク質の形態で合成する場合、合成した後にタグと変異体タンパク質の間を、あるいは他のタンパク質と本発明のタンパク質の間を配列特異的タンパク分解酵素で分解しても、本発明のタンパク質のN末端側もしくはC末端側に1乃至数個のアミノ酸残基が残る場合もあり、また、大腸菌等を用いて本発明のタンパク質を生産する際には、N末端側に開始コドン由来のメチオニン等が付加されることがあるが、これらのアミノ酸残基の付加により、以下に示すような本発明のタンパク質の活性は変わらない。また、これらのアミノ酸残基の付加により、設計された変異が及ぼす効果を失うこともない。したがって、本発明のタンパク質は当然これらの変異も含む。なお、このようなアミノ酸残基の付加のない本発明のタンパク質を作製するためには、たとえば、大腸菌等を用いて生産したタンパク質を、さらにメチオニルアミノペプチダーゼ等の酵素を用いて、N末のアミノ酸残基を選択的に切断し(参照文献7)、反応混合物よりクロマトグラフィー等で分離精製することで、得ることができる。
For example, when the protein of the present invention is synthesized in the form of a His-tagged or fusion protein with another protein, the protein is sequenced between the tag and the mutant protein after synthesis or between the other protein and the protein of the present invention. Even if it is degraded with a specific proteolytic enzyme, one to several amino acid residues may remain on the N-terminal side or C-terminal side of the protein of the present invention. In production, methionine derived from an initiation codon may be added to the N-terminal side, but the addition of these amino acid residues does not change the activity of the protein of the present invention as shown below. In addition, the addition of these amino acid residues does not lose the effect of the designed mutation. Therefore, the protein of the present invention naturally includes these mutations. In order to produce the protein of the present invention without addition of such amino acid residues, for example, a protein produced using Escherichia coli or the like, and further using an enzyme such as methionylaminopeptidase, It can be obtained by selectively cleaving amino acid residues (Reference Document 7) and separating and purifying the reaction mixture by chromatography or the like.
本明細書において、以上のタンパク質、タンデム型多量体及びの融合タンパク質を含めて、単に、「タンパク質」ともいう。本発明は更に、係るタンパク質をコードする核酸、該核酸を含有する組換えベクター、該組換えベクターが導入された形質転換体に係る。
In the present specification, including the above proteins, tandem multimers and fusion proteins, they are also simply referred to as “proteins”. The present invention further relates to a nucleic acid encoding the protein, a recombinant vector containing the nucleic acid, and a transformant into which the recombinant vector has been introduced.
又、上記のタンパク質が水不溶性の固相支持体に固定化されていることを特徴とする、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質(「免疫グロブリンG等」ともいう)の捕捉剤、該捕捉剤を含む抗体、免疫グロブリンG等の精製用アフィニティクロマトグラフィー、該精製用アフィニティクロマトグラフィーを用いて、免疫グロブリンG等を精製する方法等にも係る。ここで、「アフィニティを有する」、とは、例えば、クロマトグラフィにおいて免疫グロブリンG等が吸着できることを指す。
In addition, the above-mentioned protein is immobilized on a water-insoluble solid phase support, and is characterized by immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G (also referred to as “immunoglobulin G etc.”) ), An antibody containing the capture agent, affinity chromatography for purifying immunoglobulin G and the like, a method for purifying immunoglobulin G and the like using the affinity chromatography for purification, and the like. Here, “having affinity” means that, for example, immunoglobulin G can be adsorbed in chromatography.
本発明の精製方法においては、上記のタンパク質を抗体補足剤として利用するために、タンパク質がアガロースビーズに代表させる水不溶性担体(水不溶性の固相支持体)に固定化されて成る充填剤をガラス管等のカラムに充填したアフィニティカラムを使用することが好ましい。
In the purification method of the present invention, in order to use the above-mentioned protein as an antibody-supplementing agent, a filler formed by immobilizing a protein on a water-insoluble carrier (water-insoluble solid support) represented by agarose beads is glass. It is preferable to use an affinity column packed in a column such as a tube.
吸着緩衝液としては、pHが中性付近のものを用い、用いる塩種はpHが調整可能であれば、いずれでもよいが、代表的には、リン酸緩衝液、トリス緩衝液に塩化ナトリウムなどの電解質を溶解させたものを使用する。吸着緩衝液のpHとしては、9.0~6.5で、好ましくはpH8.0~7.0のものを用いる。また、溶出緩衝液としては、目的とする免疫グロブリンG等が溶出するpH領域であればよく、pH6.5~2.0のものを用いる。溶出緩衝液の種類としては、当業者に公知のいずれのものでもよく、代表例として、リン酸緩衝液、クエン酸緩衝液、酢酸緩衝液、グリシン緩衝液等を上げることができる。
As the adsorption buffer, a buffer having a neutral pH is used, and any salt species can be used as long as the pH can be adjusted. Typically, phosphate buffer, Tris buffer, sodium chloride, etc. The one in which the electrolyte is dissolved is used. The pH of the adsorption buffer is 9.0 to 6.5, preferably pH 8.0 to 7.0. The elution buffer may be in the pH range where the target immunoglobulin G or the like is eluted, and one having a pH of 6.5 to 2.0 is used. The type of elution buffer may be any known to those skilled in the art, and representative examples include phosphate buffer, citrate buffer, acetate buffer, glycine buffer, and the like.
本発明の精製方法における操作自体は当業者に公知の通常の操作で実施することが可能である。即ち、通常のアフィニティ精製と同様に、まず、吸着緩衝液で安定化したカラムに精製したい免疫グロブリンG等を含むサンプル溶液をインジェクションし、上記充填剤に免疫グロブリンG等を吸着させる。その後、吸着緩衝液でカラム中に残る非吸着成分を洗い流したあと、溶出緩衝液で吸着している免疫グロブリンG等を溶出させ、溶出液中に免疫グロブリンG等を回収する。尚、吸着緩衝液及び溶出緩衝液の流量(流速)及びカラム温度等のその他のアフィニティ精製の条件は当業者が適宜決めることが出来る。
The operation itself in the purification method of the present invention can be carried out by ordinary operations known to those skilled in the art. That is, as in normal affinity purification, first, a sample solution containing immunoglobulin G or the like to be purified is injected into a column stabilized with an adsorption buffer, and immunoglobulin G or the like is adsorbed to the filler. Thereafter, after washing away non-adsorbed components remaining in the column with the adsorption buffer, the immunoglobulin G adsorbed with the elution buffer is eluted, and the immunoglobulin G is recovered in the eluate. It should be noted that other affinity purification conditions such as the flow rate (flow rate) of the adsorption buffer and elution buffer and the column temperature can be appropriately determined by those skilled in the art.
サンプル溶液は血清・腹水培養液など免疫グロブリンG等を含むものであれば、その由来・その他の成分に制限はない。更に、本発明の精製方法においては、精製手段として、ドメイン変異体(人工的に変異させたドメイン)を含むタンパク質と免疫グロブリンG等との間のアフィニティを利用するものであればよく、カラムを使用する方法以外にも、免疫沈降法や磁気ビーズに該タンパク質を固定化したもの等の当業者に公知の任意の手段を用いることが出来る。
As long as the sample solution contains immunoglobulin G or the like such as serum or ascites culture solution, its origin and other components are not limited. Furthermore, in the purification method of the present invention, any purification means can be used as long as it utilizes the affinity between a protein containing a domain mutant (artificially mutated domain) and immunoglobulin G or the like. In addition to the method to be used, any means known to those skilled in the art such as immunoprecipitation or immobilizing the protein on magnetic beads can be used.
本発明における好適なタンパク質を得る際にその基礎として使用する改良型タンパク質に含まれる野生型プロテインG・B1ドメインの変異体の好適例としては、上記の特許文献8に記載の変異体タンパク質を挙げることができる。かかる変異体タンパク質は、特許文献7又は特許文献8に記載の方法に従って、当業者であれば、例えば、以下のような方法で容易に調製することが出来る。
As a preferable example of the mutant of the wild type protein G · B1 domain contained in the improved protein used as the basis for obtaining a suitable protein in the present invention, the mutant protein described in Patent Document 8 is mentioned. be able to. Such mutant proteins can be easily prepared by those skilled in the art according to the method described in Patent Document 7 or Patent Document 8, for example, by the following method.
1.タンパク質の製造
(1)遺伝子工学的手法によるタンパク質の製造
a.タンパク質(変異体)をコードする遺伝子
本発明においては、上記設計されたタンパク質を製造するため、遺伝子工学的方法を使用することできる。
このような方法に使用する遺伝子は、免疫グロブリンGのFc領域を有するタンパク質に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、少なくとも、免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下しており、一方で、免疫グロブリンGに対する中性領域での結合活性は低下していないタンパク質、例えば、特許文献8の配列番号14~16のいずれかで示されるアミノ酸配列、あるいは該アミノ酸配列において、変異が行われたアミノ酸以外の1個若しくは数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列からなる変異体であって、上記のような本発明の特性を有するタンパク質をコードする核酸からなる。 1. Production of protein (1) Production of protein by genetic engineering a. Gene encoding protein (variant) In the present invention, a genetic engineering method can be used to produce the above-designed protein.
The gene used in such a method has a binding activity to a protein having an Fc region of immunoglobulin G, and at least to an Fc region of immunoglobulin G compared to a protein comprising a wild type protein G / B domain. The binding activity in the weakly acidic region is reduced, while the binding activity in the neutral region to immunoglobulin G is not reduced, such as any of SEQ ID NOS: 14 to 16 inPatent Document 8. Or a variant consisting of an amino acid sequence in which one or several amino acid residues other than the mutated amino acid are deleted, substituted, inserted or added in the amino acid sequence, And a nucleic acid encoding a protein having the characteristics of the present invention.
(1)遺伝子工学的手法によるタンパク質の製造
a.タンパク質(変異体)をコードする遺伝子
本発明においては、上記設計されたタンパク質を製造するため、遺伝子工学的方法を使用することできる。
このような方法に使用する遺伝子は、免疫グロブリンGのFc領域を有するタンパク質に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、少なくとも、免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下しており、一方で、免疫グロブリンGに対する中性領域での結合活性は低下していないタンパク質、例えば、特許文献8の配列番号14~16のいずれかで示されるアミノ酸配列、あるいは該アミノ酸配列において、変異が行われたアミノ酸以外の1個若しくは数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列からなる変異体であって、上記のような本発明の特性を有するタンパク質をコードする核酸からなる。 1. Production of protein (1) Production of protein by genetic engineering a. Gene encoding protein (variant) In the present invention, a genetic engineering method can be used to produce the above-designed protein.
The gene used in such a method has a binding activity to a protein having an Fc region of immunoglobulin G, and at least to an Fc region of immunoglobulin G compared to a protein comprising a wild type protein G / B domain. The binding activity in the weakly acidic region is reduced, while the binding activity in the neutral region to immunoglobulin G is not reduced, such as any of SEQ ID NOS: 14 to 16 in
また、本発明において使用する遺伝子としては、以上の核酸の塩基配列に相補的な配列からなる核酸とストリンジェントな条件下でハイブリダイズする核酸であって、かつ抗体あるいは免疫グロブリンGあるいは免疫グロブリンGのFc領域を有するタンパク質に結合活性を有し、かつ対応する各野生型プロテインG・細胞膜外ドメインタンパク質に比べ、免疫グロブリンGのFab領域に対する結合活性及び/又はFc領域に対し弱酸性領域での結合活性が低下した上記変異体タンパク質をコードする核酸もあげられる。ここで、ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。たとえば、例えば、高い同一性(同一性が60%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上)を有する核酸がハイブリダイズする条件をいう。より具体的には、ナトリウム濃度が150~900mM、好ましくは600~900mMであり、温度が60~68℃、好ましくは65℃での条件をいう。例えばハイブリダイゼーション条件が65℃であり、洗浄の条件が0.1%SDSを含む0.1×SSC中で65℃、10分の場合に、慣例的な手法、例えばサザンブロット、ドットブロットハイブリダイゼーションなどによってハイブリダイズすることが確認された場合には、ストリンジェントな条件でハイブリダイズするといえる。
The gene used in the present invention is a nucleic acid that hybridizes under stringent conditions with a nucleic acid comprising a sequence complementary to the base sequence of the above nucleic acid, and an antibody, immunoglobulin G, or immunoglobulin G. The binding activity to the Fab region of immunoglobulin G and / or the weakly acidic region with respect to the Fc region compared to the corresponding wild-type protein G / extracellular domain protein. Examples also include a nucleic acid encoding the mutant protein having a reduced binding activity. Here, stringent conditions refer to conditions in which a specific hybrid is formed and a non-specific hybrid is not formed. For example, it refers to conditions under which nucleic acids having high identity (identity is 60% or higher, preferably 80% or higher, more preferably 90% or higher, most preferably 95% or higher) hybridize. More specifically, it refers to conditions under which the sodium concentration is 150 to 900 mM, preferably 600 to 900 mM, and the temperature is 60 to 68 ° C., preferably 65 ° C. For example, when hybridization conditions are 65 ° C. and washing conditions are 0.1 × SSC containing 0.1% SDS at 65 ° C. for 10 minutes, hybridization is performed by a conventional method such as Southern blotting or dot blot hybridization. When it is confirmed that the hybridization occurs, it can be said that the cells hybridize under stringent conditions.
本発明のタンパク質をコードする遺伝子としては、本発明のタンパク質の所望の構造に応じて、以上の核酸と上記任意のリンカー配列をコードする核酸を含む。タンデム型多量体を構成する各変異体タンパク質をコードする核酸とリンカー配列をコードする核酸がそれぞれ交互に複数連結したものでもよく、または該核酸と任意のタンパク質のアミノ酸配列をコードする核酸とを連結し、融合型アミノ酸配列をコードするように設計してもよい。
The gene encoding the protein of the present invention includes the above nucleic acids and nucleic acids encoding any of the above linker sequences, depending on the desired structure of the protein of the present invention. Nucleic acid encoding each mutant protein constituting a tandem multimer and a nucleic acid encoding a linker sequence may be linked in plural, or the nucleic acid and a nucleic acid encoding an amino acid sequence of an arbitrary protein may be linked. And may be designed to encode a fused amino acid sequence.
b.遺伝子、組み替えベクターおよび形質転換体
前記した本発明の遺伝子は、化学合成、PCR、カセット変異法、部位特異的変異導入法などにより合成することができる。たとえば、末端に20塩基対程度の相補領域を有する100塩基程度までのオリゴヌクレオチドを複数化学合成し、これらを組み合わせてオーバーラップ伸長法(参照文献8)を行うことにより目的の遺伝子を全合成することができる。
本発明の組換えベクターは、適当なベクターに上記の塩基配列を含む遺伝子を連結(挿入)することにより得ることができる。本発明で使用するベクターとしては、宿主中で複製可能なもの又は目的の遺伝子を宿主ゲノムに組み込み可能なものであれば特に限定されない。例えば、バクテリオファージ、プラスミド、コスミド、ファージミドなどが挙げられる。 b. Gene, Recombinant Vector and Transformant The gene of the present invention described above can be synthesized by chemical synthesis, PCR, cassette mutagenesis, site-directed mutagenesis and the like. For example, a plurality of oligonucleotides up to about 100 bases having a complementary region of about 20 base pairs at the end are chemically synthesized, and the target gene is totally synthesized by combining these and performing the overlap extension method (Reference Document 8). be able to.
The recombinant vector of the present invention can be obtained by linking (inserting) a gene containing the above-described base sequence to an appropriate vector. The vector used in the present invention is not particularly limited as long as it can be replicated in the host or can integrate the target gene into the host genome. For example, bacteriophage, plasmid, cosmid, phagemid and the like can be mentioned.
前記した本発明の遺伝子は、化学合成、PCR、カセット変異法、部位特異的変異導入法などにより合成することができる。たとえば、末端に20塩基対程度の相補領域を有する100塩基程度までのオリゴヌクレオチドを複数化学合成し、これらを組み合わせてオーバーラップ伸長法(参照文献8)を行うことにより目的の遺伝子を全合成することができる。
本発明の組換えベクターは、適当なベクターに上記の塩基配列を含む遺伝子を連結(挿入)することにより得ることができる。本発明で使用するベクターとしては、宿主中で複製可能なもの又は目的の遺伝子を宿主ゲノムに組み込み可能なものであれば特に限定されない。例えば、バクテリオファージ、プラスミド、コスミド、ファージミドなどが挙げられる。 b. Gene, Recombinant Vector and Transformant The gene of the present invention described above can be synthesized by chemical synthesis, PCR, cassette mutagenesis, site-directed mutagenesis and the like. For example, a plurality of oligonucleotides up to about 100 bases having a complementary region of about 20 base pairs at the end are chemically synthesized, and the target gene is totally synthesized by combining these and performing the overlap extension method (Reference Document 8). be able to.
The recombinant vector of the present invention can be obtained by linking (inserting) a gene containing the above-described base sequence to an appropriate vector. The vector used in the present invention is not particularly limited as long as it can be replicated in the host or can integrate the target gene into the host genome. For example, bacteriophage, plasmid, cosmid, phagemid and the like can be mentioned.
プラスミドDNAとしては、放線菌由来のプラスミド(例えばpK4,pRK401,pRF31等)、大腸菌由来のプラスミド(例えばpBR322,pBR325,pUC118,pUC119,pUC18等)、枯草菌由来のプラスミド(例えばpUB110,pTP5等)、酵母由来のプラスミド(例えばYEp13,YEp24,YCp50等)などが挙げられ、ファージDNAとしてはλファージ(λgt10、λgt11、λZAP等)が挙げられる。さらに、レトロウイルス又はワクシニアウイルスなどの動物ウイルス、バキュロウイルスなどの昆虫ウイルスベクターを用いることもできる。
ベクターに遺伝子を挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位又はマルチクローニングサイトに挿入してベクターに連結する方法などが採用される。遺伝子は、本発明の変異体タンパク質が発現されるようにベクターに組み込まれることが必要である。そこで、本発明のベクターには、プロモーター、遺伝子の塩基配列のほか、所望によりエンハンサーなどのシスエレメント、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)、開始コドン、終止コドンなどを連結することができる。 また、製造するタンパク質の精製を容易にするためのタグ配列を連結することもできる。タグ配列としては、Hisタグ、GSTタグ、MBPタグ、BioEaseタグなどの公知のタグをコードする塩基配列を利用することができる。 As plasmid DNA, plasmids derived from actinomycetes (eg pK4, pRK401, pRF31 etc.), plasmids derived from E. coli (eg pBR322, pBR325, pUC118, pUC119, pUC18 etc.), plasmids derived from Bacillus subtilis (eg pUB110, pTP5 etc.) Yeast-derived plasmids (eg, YEp13, YEp24, YCp50, etc.) and the like, and phage DNAs include λ phage (λgt10, λgt11, λZAP, etc.). Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as baculovirus can also be used.
In order to insert a gene into a vector, first, a method in which purified DNA is cleaved with a suitable restriction enzyme, inserted into a restriction enzyme site or a multicloning site of a suitable vector DNA, and linked to the vector is employed. . The gene needs to be integrated into the vector so that the mutant protein of the invention is expressed. Therefore, the vector of the present invention includes a promoter, a base sequence of a gene, a cis element such as an enhancer, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence), an initiation codon, a termination codon, if desired. Etc. can be connected. A tag sequence for facilitating purification of the protein to be produced can also be linked. As the tag sequence, a base sequence encoding a known tag such as His tag, GST tag, MBP tag, BioEase tag can be used.
ベクターに遺伝子を挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位又はマルチクローニングサイトに挿入してベクターに連結する方法などが採用される。遺伝子は、本発明の変異体タンパク質が発現されるようにベクターに組み込まれることが必要である。そこで、本発明のベクターには、プロモーター、遺伝子の塩基配列のほか、所望によりエンハンサーなどのシスエレメント、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)、開始コドン、終止コドンなどを連結することができる。 また、製造するタンパク質の精製を容易にするためのタグ配列を連結することもできる。タグ配列としては、Hisタグ、GSTタグ、MBPタグ、BioEaseタグなどの公知のタグをコードする塩基配列を利用することができる。 As plasmid DNA, plasmids derived from actinomycetes (eg pK4, pRK401, pRF31 etc.), plasmids derived from E. coli (eg pBR322, pBR325, pUC118, pUC119, pUC18 etc.), plasmids derived from Bacillus subtilis (eg pUB110, pTP5 etc.) Yeast-derived plasmids (eg, YEp13, YEp24, YCp50, etc.) and the like, and phage DNAs include λ phage (λgt10, λgt11, λZAP, etc.). Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as baculovirus can also be used.
In order to insert a gene into a vector, first, a method in which purified DNA is cleaved with a suitable restriction enzyme, inserted into a restriction enzyme site or a multicloning site of a suitable vector DNA, and linked to the vector is employed. . The gene needs to be integrated into the vector so that the mutant protein of the invention is expressed. Therefore, the vector of the present invention includes a promoter, a base sequence of a gene, a cis element such as an enhancer, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence), an initiation codon, a termination codon, if desired. Etc. can be connected. A tag sequence for facilitating purification of the protein to be produced can also be linked. As the tag sequence, a base sequence encoding a known tag such as His tag, GST tag, MBP tag, BioEase tag can be used.
遺伝子がベクターに挿入されたか否かの確認は、公知の遺伝子工学技術を利用して行うことができる。たとえば、プラスミドベクターなどの場合、コンピテントセルを用いてベクターをサブクローニングし、DNAを抽出後、DNAシーケンサーを用いてその塩基配列を特定することで確認できる。他のベクターについても細菌あるいは他の宿主を用いてサブクローニング可能なものは、同様の手法が利用できる。また、薬剤耐性遺伝子などの選択マーカーを利用したベクター選別も有効である。
形質転換体は、本発明の組換えベクターを、本発明の変異体タンパク質が発現し得るように宿主細胞に導入することにより得ることができる。形質転換に使用する宿主としては、タンパク質又はポリペプチドを発現できるものであれば特に限定されるものではない。例えば、細菌(大腸菌、枯草菌等)、酵母、植物細胞、動物細胞(COS細胞、CHO細胞等)、昆虫細胞が挙げられる。 Whether or not a gene has been inserted into a vector can be confirmed using a known genetic engineering technique. For example, in the case of a plasmid vector or the like, it can be confirmed by subcloning the vector using a competent cell, extracting the DNA, and then specifying the base sequence using a DNA sequencer. For other vectors that can be subcloned using bacteria or other hosts, the same technique can be used. In addition, vector selection using a selection marker such as a drug resistance gene is also effective.
A transformant can be obtained by introducing the recombinant vector of the present invention into a host cell so that the mutant protein of the present invention can be expressed. The host used for transformation is not particularly limited as long as it can express a protein or polypeptide. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, plant cells, animal cells (COS cells, CHO cells, etc.) and insect cells.
形質転換体は、本発明の組換えベクターを、本発明の変異体タンパク質が発現し得るように宿主細胞に導入することにより得ることができる。形質転換に使用する宿主としては、タンパク質又はポリペプチドを発現できるものであれば特に限定されるものではない。例えば、細菌(大腸菌、枯草菌等)、酵母、植物細胞、動物細胞(COS細胞、CHO細胞等)、昆虫細胞が挙げられる。 Whether or not a gene has been inserted into a vector can be confirmed using a known genetic engineering technique. For example, in the case of a plasmid vector or the like, it can be confirmed by subcloning the vector using a competent cell, extracting the DNA, and then specifying the base sequence using a DNA sequencer. For other vectors that can be subcloned using bacteria or other hosts, the same technique can be used. In addition, vector selection using a selection marker such as a drug resistance gene is also effective.
A transformant can be obtained by introducing the recombinant vector of the present invention into a host cell so that the mutant protein of the present invention can be expressed. The host used for transformation is not particularly limited as long as it can express a protein or polypeptide. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, plant cells, animal cells (COS cells, CHO cells, etc.) and insect cells.
細菌を宿主とする場合は、組換えベクターが該細菌中で自律複製可能であると同時に、プロモーター、リボゾーム結合配列、開始コドン、本発明の変異体タンパク質をコードする核酸、転写終結配列により構成されていることが好ましい。大腸菌としては、例えばエッシェリヒア・コリ(Escherichia coli)BL21などが挙げられ、枯草菌としては、例えばバチルス・ズブチリス(Bacillus subtilis)などが挙げられる。細菌への組換えベクターの導入方法は、細菌にDNAを導入する方法であれば特に限定されるものではない。例えばヒートショック法、カルシウムイオンを用いる方法、エレクトロポレーション法等が挙げられる。
酵母を宿主とする場合は、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)などが用いられる。酵母への組換えベクターの導入方法は、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法、スフェロプラスト法、酢酸リチウム法等が挙げられる。 When a bacterium is used as a host, the recombinant vector is autonomously replicable in the bacterium, and at the same time, it is composed of a promoter, a ribosome binding sequence, a start codon, a nucleic acid encoding the mutant protein of the present invention, and a transcription termination sequence. It is preferable. Examples of E. coli include Escherichia coli BL21, and examples of Bacillus subtilis include Bacillus subtilis. The method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a heat shock method, a method using calcium ions, and an electroporation method.
When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe and the like are used. The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method.
酵母を宿主とする場合は、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)などが用いられる。酵母への組換えベクターの導入方法は、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法、スフェロプラスト法、酢酸リチウム法等が挙げられる。 When a bacterium is used as a host, the recombinant vector is autonomously replicable in the bacterium, and at the same time, it is composed of a promoter, a ribosome binding sequence, a start codon, a nucleic acid encoding the mutant protein of the present invention, and a transcription termination sequence. It is preferable. Examples of E. coli include Escherichia coli BL21, and examples of Bacillus subtilis include Bacillus subtilis. The method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a heat shock method, a method using calcium ions, and an electroporation method.
When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe and the like are used. The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method.
動物細胞を宿主とする場合は、サル細胞COS-7、Vero、チャイニーズハムスター卵巣細胞(CHO細胞)、マウスL細胞、ラットGH3、ヒトFL細胞等が用いられる。動物細胞への組換えベクターの導入方法としては、例えばエレクトロポレーション法、リン酸カルシウム法、リポフェクション法等が挙げられる。
昆虫細胞を宿主とする場合は、Sf9細胞などが用いられる。昆虫細胞への組換えベクターの導入方法としては、例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法などが挙げられる。 When animal cells are used as hosts, monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells), mouse L cells, rat GH3, human FL cells and the like are used. Examples of methods for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
When insect cells are used as hosts, Sf9 cells and the like are used. Examples of the method for introducing a recombinant vector into insect cells include the calcium phosphate method, lipofection method, electroporation method and the like.
昆虫細胞を宿主とする場合は、Sf9細胞などが用いられる。昆虫細胞への組換えベクターの導入方法としては、例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法などが挙げられる。 When animal cells are used as hosts, monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells), mouse L cells, rat GH3, human FL cells and the like are used. Examples of methods for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
When insect cells are used as hosts, Sf9 cells and the like are used. Examples of the method for introducing a recombinant vector into insect cells include the calcium phosphate method, lipofection method, electroporation method and the like.
遺伝子が宿主に導入されたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法等により行うことができる。例えば、形質転換体からDNAを調製し、DNA特異的プライマーを設計してPCRを行う。ついで、PCRの増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動又はキャピラリー電気泳動等を行い、臭化エチジウム、SyberGreen液等により染色し、増幅産物を1本のバンドとして検出することにより、形質転換されたことを確認することができる。また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。
Whether or not a gene has been introduced into the host can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like. For example, DNA is prepared from the transformant, PCR is performed by designing a DNA-specific primer. Subsequently, the PCR amplification product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, or the like, stained with ethidium bromide, SyberGreen solution, etc., and the amplification product is detected as a single band. You can confirm that it has been converted. Moreover, PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
c.形質転換体培養によるタンパク質の取得
組替えタンパク質として製造する場合、本発明のタンパク質は、上述の形質転換体を培養し、その培養物から採取することにより得ることができる。培養物とは、培養上清、培養細胞若しくは培養菌体又は細胞若しくは菌体の破砕物のいずれをも意味するものである。本発明の形質転換体を培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。 c. Obtaining Protein by Transformant Culture When producing the protein as a recombinant protein, the protein of the present invention can be obtained by culturing the above-described transformant and collecting it from the culture. The culture means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells. The method for culturing the transformant of the present invention is carried out according to a usual method used for culturing a host.
組替えタンパク質として製造する場合、本発明のタンパク質は、上述の形質転換体を培養し、その培養物から採取することにより得ることができる。培養物とは、培養上清、培養細胞若しくは培養菌体又は細胞若しくは菌体の破砕物のいずれをも意味するものである。本発明の形質転換体を培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。 c. Obtaining Protein by Transformant Culture When producing the protein as a recombinant protein, the protein of the present invention can be obtained by culturing the above-described transformant and collecting it from the culture. The culture means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells. The method for culturing the transformant of the present invention is carried out according to a usual method used for culturing a host.
大腸菌や酵母菌等の微生物を宿主として得られた形質転換体を培養する培地は、微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。炭素源としては、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類が挙げられる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩又はその他の含窒素化合物のほか、ペプトン、肉エキス、コーンスティープリカー等が挙げられる。無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。培養は、通常、振盪培養又は通気攪拌培養などの好気的条件下、20~37℃で12時間~3日間行う。
A medium for culturing transformants obtained using microorganisms such as Escherichia coli and yeast as a host contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms, and efficiently cultures the transformants. As long as the medium can be used, either a natural medium or a synthetic medium may be used. Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol. Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like. Examples of the inorganic substance include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate. The culture is usually performed at 20 to 37 ° C. for 12 hours to 3 days under aerobic conditions such as shaking culture or aeration and agitation culture.
培養後、本発明のタンパク質が菌体内又は細胞内に生産される場合には、超音波処理、凍結融解の繰り返し、ホモジナイザー処理などを施して菌体又は細胞を破砕することにより該タンパク質を採取する。また、該タンパク質が菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離等により菌体又は細胞を除去する。その後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等を単独で又は適宜組み合わせて用いることにより、前記培養物中から本発明のタンパク質を単離精製することができる。
When the protein of the present invention is produced in cells or cells after culturing, the protein or cells are collected by crushing the cells or cells by sonication, repeated freeze-thawing, homogenizer treatment, etc. . When the protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Thereafter, a general biochemical method used for protein isolation and purification, for example, ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. can be used alone or in appropriate combination in the culture. From the above, the protein of the present invention can be isolated and purified.
また、タンパク質の生合成反応にかかわる因子(酵素、核酸、ATP、アミノ酸など)のみを混合させた、いわゆる無細胞合成系を利用すると、生細胞を用いることなく、ベクターから本発明の変異体タンパク質を試験管内で合成することができる(参照文献9)。その後、前記と同様の精製法を用いて、反応後の混合溶液から本発明の変異体タンパク質を単離精製することができる。
単離精製した本発明のタンパク質が、目的通りのアミノ酸配列からなるタンパク質であるかを確認するため、該タンパク質を含む試料を分析する。分析方法としては、SDS-PAGE、ウエスタンブロッティング、質量分析、アミノ酸分析、アミノ酸シーケンサーなどを利用することができる(参照文献10)。 In addition, when using a so-called cell-free synthesis system in which only factors (enzymes, nucleic acids, ATP, amino acids, etc.) involved in protein biosynthesis reactions are mixed, the mutant protein of the present invention can be obtained from a vector without using living cells. Can be synthesized in vitro (Reference 9). Thereafter, using the same purification method as described above, the mutant protein of the present invention can be isolated and purified from the mixed solution after the reaction.
In order to confirm whether the isolated and purified protein of the present invention is a protein having a desired amino acid sequence, a sample containing the protein is analyzed. As an analysis method, SDS-PAGE, Western blotting, mass spectrometry, amino acid analysis, amino acid sequencer, etc. can be used (Reference Document 10).
単離精製した本発明のタンパク質が、目的通りのアミノ酸配列からなるタンパク質であるかを確認するため、該タンパク質を含む試料を分析する。分析方法としては、SDS-PAGE、ウエスタンブロッティング、質量分析、アミノ酸分析、アミノ酸シーケンサーなどを利用することができる(参照文献10)。 In addition, when using a so-called cell-free synthesis system in which only factors (enzymes, nucleic acids, ATP, amino acids, etc.) involved in protein biosynthesis reactions are mixed, the mutant protein of the present invention can be obtained from a vector without using living cells. Can be synthesized in vitro (Reference 9). Thereafter, using the same purification method as described above, the mutant protein of the present invention can be isolated and purified from the mixed solution after the reaction.
In order to confirm whether the isolated and purified protein of the present invention is a protein having a desired amino acid sequence, a sample containing the protein is analyzed. As an analysis method, SDS-PAGE, Western blotting, mass spectrometry, amino acid analysis, amino acid sequencer, etc. can be used (Reference Document 10).
(2)他の手法によるタンパク質の製造
本発明のタンパク質は、有機化学的手法、例えば固相ペプチド合成法などによっても製造することができる。このような手法を利用したタンパク質の生産方法は当技術分野で周知であり、以下に簡潔に説明する。
固相ペプチド合成法により化学的にタンパク質を製造する場合、好ましくは自動合成機を利用して、活性化されたアミノ酸誘導体の重縮合反応を繰り返すことにより、本発明のタンパク質のアミノ酸配列を有する保護ポリペプチドを樹脂上で合成する。ついで、この保護ポリペプチドを樹脂上から切断すると共に側鎖の保護基も同時に切断する。この切断反応には、樹脂や保護基の種類、アミノ酸の組成に応じて適切なカクテルがあることが知られている(参照文献11)。この後、有機溶媒層から粗精製タンパク質を水層に移し、目的のタンパク質を精製する。精製法としては、逆相クロマトグラフィーなどを利用することができる(参照文献11)。 (2) Production of protein by other methods The protein of the present invention can also be produced by organic chemical methods such as solid phase peptide synthesis. Protein production methods using such techniques are well known in the art and are briefly described below.
When a protein is chemically produced by a solid phase peptide synthesis method, the protection having the amino acid sequence of the protein of the present invention is preferably achieved by repeating the polycondensation reaction of the activated amino acid derivative using an automatic synthesizer. The polypeptide is synthesized on the resin. Next, the protective polypeptide is cleaved from the resin and the side chain protecting group is cleaved simultaneously. This cleaving reaction is known to have an appropriate cocktail depending on the type of resin, protecting group, and amino acid composition (Reference 11). Thereafter, the crude protein is transferred from the organic solvent layer to the aqueous layer, and the target protein is purified. As a purification method, reverse phase chromatography or the like can be used (Ref. 11).
本発明のタンパク質は、有機化学的手法、例えば固相ペプチド合成法などによっても製造することができる。このような手法を利用したタンパク質の生産方法は当技術分野で周知であり、以下に簡潔に説明する。
固相ペプチド合成法により化学的にタンパク質を製造する場合、好ましくは自動合成機を利用して、活性化されたアミノ酸誘導体の重縮合反応を繰り返すことにより、本発明のタンパク質のアミノ酸配列を有する保護ポリペプチドを樹脂上で合成する。ついで、この保護ポリペプチドを樹脂上から切断すると共に側鎖の保護基も同時に切断する。この切断反応には、樹脂や保護基の種類、アミノ酸の組成に応じて適切なカクテルがあることが知られている(参照文献11)。この後、有機溶媒層から粗精製タンパク質を水層に移し、目的のタンパク質を精製する。精製法としては、逆相クロマトグラフィーなどを利用することができる(参照文献11)。 (2) Production of protein by other methods The protein of the present invention can also be produced by organic chemical methods such as solid phase peptide synthesis. Protein production methods using such techniques are well known in the art and are briefly described below.
When a protein is chemically produced by a solid phase peptide synthesis method, the protection having the amino acid sequence of the protein of the present invention is preferably achieved by repeating the polycondensation reaction of the activated amino acid derivative using an automatic synthesizer. The polypeptide is synthesized on the resin. Next, the protective polypeptide is cleaved from the resin and the side chain protecting group is cleaved simultaneously. This cleaving reaction is known to have an appropriate cocktail depending on the type of resin, protecting group, and amino acid composition (Reference 11). Thereafter, the crude protein is transferred from the organic solvent layer to the aqueous layer, and the target protein is purified. As a purification method, reverse phase chromatography or the like can be used (Ref. 11).
2.タンパク質の固定化
本発明のタンパク質は、その抗体結合性を利用して、抗体等の捕捉剤として利用することができる。該抗体捕捉剤は、抗体の精製や除去、抗体を利用した診断、治療、検査等に用いることができる。
本発明の抗体捕捉剤は、本発明のタンパク質を含む限りにおいて、どのような形態であってもよいが、好ましくは、本発明の変異体タンパク質を水不溶性の固相支持体に固定化した形態が適切である。用いる水不溶性担体としては、ガラスビーズ、シリカゲルなどの無機担体、架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレンなどの合成高分子や結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストランなどの多糖類からなる有機担体、さらにはこれらの組み合わせによって得られる有機-有機、有機-無機などの複合担体などが挙げられるが、中でも親水性担体は非特異吸着が比較的少なく、抗体あるいは免疫グロブリンGあるいは免疫グロブリンGのFc領域を有するタンパク質の選択性が良好であるため好ましい。ここでいう親水性担体とは、担体を構成する化合物を平板状にしたときの水との接触角が60度以下の担体を示す。この様な担体としてはセルロース、キトサン、デキストラン等の多糖類、ポリビニルアルコール、エチレン-酢酸ビニル共重合体けん化物、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリメタクリル酸メチル、ポリアクリル酸グラフト化ポリエチレン、ポリアクリルアミドグラフト化ポリエチレン、ガラスなどからなる担体が代表例として挙げられる。 2. Protein Immobilization The protein of the present invention can be used as a capture agent for antibodies and the like by utilizing its antibody binding property. The antibody capture agent can be used for purification and removal of antibodies, diagnosis, treatment, examination, etc. using antibodies.
The antibody capture agent of the present invention may be in any form as long as it contains the protein of the present invention. Preferably, the form of the mutant protein of the present invention immobilized on a water-insoluble solid support. Is appropriate. Examples of the water-insoluble carrier used include inorganic carriers such as glass beads and silica gel, synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextran. Examples include organic carriers composed of polysaccharides, and organic-organic and organic-inorganic composite carriers obtained by a combination thereof. Among them, hydrophilic carriers have relatively little nonspecific adsorption, and antibodies or immunoglobulin G Alternatively, it is preferable because the protein having the Fc region of immunoglobulin G has good selectivity. The term “hydrophilic carrier” as used herein refers to a carrier having a contact angle with water of 60 ° or less when the compound constituting the carrier is formed into a flat plate shape. Such carriers include cellulose, chitosan, dextran and other polysaccharides, polyvinyl alcohol, saponified ethylene-vinyl acetate copolymer, polyacrylamide, polyacrylic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylic acid grafting Representative examples include carriers made of polyethylene, polyacrylamide grafted polyethylene, glass and the like.
本発明のタンパク質は、その抗体結合性を利用して、抗体等の捕捉剤として利用することができる。該抗体捕捉剤は、抗体の精製や除去、抗体を利用した診断、治療、検査等に用いることができる。
本発明の抗体捕捉剤は、本発明のタンパク質を含む限りにおいて、どのような形態であってもよいが、好ましくは、本発明の変異体タンパク質を水不溶性の固相支持体に固定化した形態が適切である。用いる水不溶性担体としては、ガラスビーズ、シリカゲルなどの無機担体、架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレンなどの合成高分子や結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストランなどの多糖類からなる有機担体、さらにはこれらの組み合わせによって得られる有機-有機、有機-無機などの複合担体などが挙げられるが、中でも親水性担体は非特異吸着が比較的少なく、抗体あるいは免疫グロブリンGあるいは免疫グロブリンGのFc領域を有するタンパク質の選択性が良好であるため好ましい。ここでいう親水性担体とは、担体を構成する化合物を平板状にしたときの水との接触角が60度以下の担体を示す。この様な担体としてはセルロース、キトサン、デキストラン等の多糖類、ポリビニルアルコール、エチレン-酢酸ビニル共重合体けん化物、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリメタクリル酸メチル、ポリアクリル酸グラフト化ポリエチレン、ポリアクリルアミドグラフト化ポリエチレン、ガラスなどからなる担体が代表例として挙げられる。 2. Protein Immobilization The protein of the present invention can be used as a capture agent for antibodies and the like by utilizing its antibody binding property. The antibody capture agent can be used for purification and removal of antibodies, diagnosis, treatment, examination, etc. using antibodies.
The antibody capture agent of the present invention may be in any form as long as it contains the protein of the present invention. Preferably, the form of the mutant protein of the present invention immobilized on a water-insoluble solid support. Is appropriate. Examples of the water-insoluble carrier used include inorganic carriers such as glass beads and silica gel, synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextran. Examples include organic carriers composed of polysaccharides, and organic-organic and organic-inorganic composite carriers obtained by a combination thereof. Among them, hydrophilic carriers have relatively little nonspecific adsorption, and antibodies or immunoglobulin G Alternatively, it is preferable because the protein having the Fc region of immunoglobulin G has good selectivity. The term “hydrophilic carrier” as used herein refers to a carrier having a contact angle with water of 60 ° or less when the compound constituting the carrier is formed into a flat plate shape. Such carriers include cellulose, chitosan, dextran and other polysaccharides, polyvinyl alcohol, saponified ethylene-vinyl acetate copolymer, polyacrylamide, polyacrylic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylic acid grafting Representative examples include carriers made of polyethylene, polyacrylamide grafted polyethylene, glass and the like.
市販品としては多孔質セルロースゲルであるGCL2000、GC700、アリルデキストランとメチレンビスアクリルアミドを共有結合で架橋したSephacryl S-1000、アクリレート系の担体であるToyopearl、アガロース系の架橋担体であるSepharoseCL4B、エポキシ基で活性化されたポリメタクリルアミドであるオイパーギットC250L等を例示することができる。ただし、本発明においてはこれらの担体、活性化担体のみに限定されるものではない。上述の担体はそれぞれ単独で用いてもよいし、任意の2種類以上を混合してもよい。又、本発明に用いる水不溶性担体としては、本抗体捕捉剤の使用目的および方法からみて、表面積が大きいことが望ましく、適当な大きさの細孔を多数有する、すなわち、多孔質であることが好ましい。
Commercially available products include porous cellulose gels GCL2000 and GC700, Sephacryl® S-1000 with allyl dextran and methylenebisacrylamide cross-linked covalently, acrylate-based carrier Toyopearl, agarose-based cross-linked carrier SepharoseCL4B, epoxy group For example, Eupergit C250L, which is polymethacrylamide activated by the above method, can be exemplified. However, the present invention is not limited to these carriers and activated carriers. Each of the above carriers may be used alone, or any two or more of them may be mixed. The water-insoluble carrier used in the present invention preferably has a large surface area in view of the purpose and method of use of the present antibody capture agent, and has a large number of pores of an appropriate size, that is, is porous. preferable.
担体の形態としては、ビーズ状、線維状、膜状(中空糸も含む)など何れも可能であり、任意の形態を選ぶことができる。特定の排除限界分子量を持つ担体作製の容易さからビーズ状が特に好ましく用いられる。ビーズ状の平均粒径は10~2500μmのものが使いやすく、とりわけ、リガンド固定化反応のしやすさの点から25μmから800μmの範囲が好ましい。
さらに担体表面には、リガンドの固定化反応に用いうる官能基が存在しているとリガンドの固定化に好都合である。これらの官能基の代表例としては、水酸基、アミノ基、アルデヒド基、カルボキシル基、チオール基、シラノール基、アミド基、エポキシ基、サクシニルイミド基、酸無水物基、ヨードアセチル基などが挙げられる。
上記担体への変異体タンパク質の固定化においては、変異体タンパク質の立体障害を小さくすることにより捕捉効率を向上させ、さらに非特異的な結合を抑えるために、親水性スペーサーを介して固定化することが、より好ましい。親水性スペーサーとしては、例えば、両末端をカルボキシル基、アミノ基、アルデヒド基、エポキシ基などで置換したポリアルキレンオキサイドの誘導体を用いるのが好ましい。 The form of the carrier can be any of beads, fibers, membranes (including hollow fibers), and any form can be selected. A bead shape is particularly preferably used because of easy preparation of a carrier having a specific exclusion limit molecular weight. The average particle size of beads is 10 to 2500 μm, and is particularly preferably in the range of 25 μm to 800 μm from the viewpoint of easy ligand immobilization reaction.
Furthermore, if a functional group that can be used for the ligand immobilization reaction is present on the surface of the carrier, it is convenient for immobilization of the ligand. Representative examples of these functional groups include hydroxyl group, amino group, aldehyde group, carboxyl group, thiol group, silanol group, amide group, epoxy group, succinimide group, acid anhydride group, iodoacetyl group and the like.
In immobilization of the mutant protein to the carrier, it is immobilized via a hydrophilic spacer in order to improve the capture efficiency by reducing the steric hindrance of the mutant protein and to suppress non-specific binding. It is more preferable. As the hydrophilic spacer, for example, a polyalkylene oxide derivative in which both ends are substituted with a carboxyl group, an amino group, an aldehyde group, an epoxy group or the like is preferably used.
さらに担体表面には、リガンドの固定化反応に用いうる官能基が存在しているとリガンドの固定化に好都合である。これらの官能基の代表例としては、水酸基、アミノ基、アルデヒド基、カルボキシル基、チオール基、シラノール基、アミド基、エポキシ基、サクシニルイミド基、酸無水物基、ヨードアセチル基などが挙げられる。
上記担体への変異体タンパク質の固定化においては、変異体タンパク質の立体障害を小さくすることにより捕捉効率を向上させ、さらに非特異的な結合を抑えるために、親水性スペーサーを介して固定化することが、より好ましい。親水性スペーサーとしては、例えば、両末端をカルボキシル基、アミノ基、アルデヒド基、エポキシ基などで置換したポリアルキレンオキサイドの誘導体を用いるのが好ましい。 The form of the carrier can be any of beads, fibers, membranes (including hollow fibers), and any form can be selected. A bead shape is particularly preferably used because of easy preparation of a carrier having a specific exclusion limit molecular weight. The average particle size of beads is 10 to 2500 μm, and is particularly preferably in the range of 25 μm to 800 μm from the viewpoint of easy ligand immobilization reaction.
Furthermore, if a functional group that can be used for the ligand immobilization reaction is present on the surface of the carrier, it is convenient for immobilization of the ligand. Representative examples of these functional groups include hydroxyl group, amino group, aldehyde group, carboxyl group, thiol group, silanol group, amide group, epoxy group, succinimide group, acid anhydride group, iodoacetyl group and the like.
In immobilization of the mutant protein to the carrier, it is immobilized via a hydrophilic spacer in order to improve the capture efficiency by reducing the steric hindrance of the mutant protein and to suppress non-specific binding. It is more preferable. As the hydrophilic spacer, for example, a polyalkylene oxide derivative in which both ends are substituted with a carboxyl group, an amino group, an aldehyde group, an epoxy group or the like is preferably used.
上記の担体へ導入される変異体タンパク質およびスペーサーとして用いられる有機化合物の固定化方法及び条件は特に限定されるものではないが、一般にタンパク質やペプチドを担体に固定化する場合に採用される方法を例示する。担体を臭化シアン、エピクロロヒドリン、ジグリシジルエーテル、トシルクロライド、トレシルクロライド、ヒドラジンなどと反応させて担体を活性化し(担体が元々持っている官能基よりリガンドとして固定化する化合物が反応しやすい官能基に変え)、リガンドとして固定化する化合物と反応、固定化する方法、また、担体とリガンドとして固定化する化合物が存在する系にカルボジイミドのような縮合試薬、または、グルタルアルデヒドのように分子中に複数の官能基を持つ試薬を加えて縮合、架橋することによる固定化方法が挙げられるが、捕捉剤の滅菌時または利用時に蛋白類が担体より容易に脱離しない固定化方法を適用することがより好ましい。
The method and conditions for immobilizing the mutant protein to be introduced into the carrier and the organic compound used as the spacer are not particularly limited, but the method generally employed when immobilizing a protein or peptide on the carrier is used. Illustrate. The carrier is reacted with cyanogen bromide, epichlorohydrin, diglycidyl ether, tosyl chloride, tresyl chloride, hydrazine, etc. to activate the carrier (compounds that are immobilized as ligands from the functional groups that the carrier originally has reacted) A functional group that can be easily immobilized), reacting with a compound to be immobilized as a ligand, a method of immobilizing, or a system in which a compound to be immobilized as a carrier and a ligand exists, such as a condensation reagent such as carbodiimide, or glutaraldehyde In addition, there is an immobilization method by adding a reagent having a plurality of functional groups in the molecule to condense and crosslink, but the immobilization method does not easily desorb proteins from the carrier when the capture agent is sterilized or used. It is more preferable to apply.
3.タンパク質および抗体捕捉剤の性能確認試験
上記のようにして製造されたタンパク質(以下、単に「タンパク質」ともいう)、及び抗体捕捉剤は、以下の性能確認試験を行い良好なものを選択することができるが、本発明のタンパク質および抗体捕捉材はいずれも良好な性能を有していた。 3. Performance confirmation test of protein and antibody capture agent The protein produced as described above (hereinafter also simply referred to as “protein”) and the antibody capture agent may be selected by performing the following performance confirmation test and selecting a good one. However, both the protein and the antibody capturing material of the present invention had good performance.
上記のようにして製造されたタンパク質(以下、単に「タンパク質」ともいう)、及び抗体捕捉剤は、以下の性能確認試験を行い良好なものを選択することができるが、本発明のタンパク質および抗体捕捉材はいずれも良好な性能を有していた。 3. Performance confirmation test of protein and antibody capture agent The protein produced as described above (hereinafter also simply referred to as “protein”) and the antibody capture agent may be selected by performing the following performance confirmation test and selecting a good one. However, both the protein and the antibody capturing material of the present invention had good performance.
(1)抗体結合性試験
本発明のタンパク質の抗体結合性は、ウエスタンブロッティング、免疫沈降、プルダウンアッセイ、ELISA (Enzyme-Linked ImmunoSorbent Assay)、表面プラズモン共鳴(SPR)法などを利用して確認・評価することができる。中でもSPR法は、生体間の相互作用をラベルなしでリアルタイムに経時的に観察することが可能であることから、変異体タンパク質の結合反応を速度論的観点から定量的に評価することができる。
また、水不溶性の固相支持体に固定化した変異体タンパク質の抗体結合性は、上記のSPR法や液体クロマトグラフィー法で確認・評価することができる。中でも液体クロマトグラフィー法は、抗体結合性に及ぼすpH依存性を的確に評価することができる。
(2)タンパク質の熱安定性試験
本発明の変異体タンパク質の熱安定性は、円偏光二色性(CD)スペクトル、蛍光スペクトル、赤外分光法、示差走査熱量測定法、加熱後の残留活性などを利用して評価することができる。中でもCDスペクトルは、タンパク質の二次構造の変化を鋭敏に反映する分光学的分析方法であることから、変異体タンパク質の温度に対する立体構造の変化を観測し、構造安定性を熱力学的に定量的に評価することができる。 (1) Antibody binding test The antibody binding of the protein of the present invention is confirmed and evaluated using Western blotting, immunoprecipitation, pull-down assay, ELISA (Enzyme-Linked ImmunoSorbent Assay), surface plasmon resonance (SPR) method, etc. can do. In particular, the SPR method allows the interaction between living organisms to be observed over time in real time without a label, so that the binding reaction of the mutant protein can be quantitatively evaluated from a kinetic viewpoint.
Moreover, the antibody binding property of the mutant protein immobilized on the water-insoluble solid phase support can be confirmed and evaluated by the above SPR method or liquid chromatography method. Among them, the liquid chromatography method can accurately evaluate the pH dependence on the antibody binding property.
(2) Thermal stability test of protein The thermal stability of the mutant protein of the present invention includes circular dichroism (CD) spectrum, fluorescence spectrum, infrared spectroscopy, differential scanning calorimetry, residual activity after heating. Etc. can be used for evaluation. In particular, the CD spectrum is a spectroscopic analysis method that sharply reflects changes in the secondary structure of the protein, so the change in the three-dimensional structure with respect to the temperature of the mutant protein is observed, and the structural stability is quantified thermodynamically. Can be evaluated.
本発明のタンパク質の抗体結合性は、ウエスタンブロッティング、免疫沈降、プルダウンアッセイ、ELISA (Enzyme-Linked ImmunoSorbent Assay)、表面プラズモン共鳴(SPR)法などを利用して確認・評価することができる。中でもSPR法は、生体間の相互作用をラベルなしでリアルタイムに経時的に観察することが可能であることから、変異体タンパク質の結合反応を速度論的観点から定量的に評価することができる。
また、水不溶性の固相支持体に固定化した変異体タンパク質の抗体結合性は、上記のSPR法や液体クロマトグラフィー法で確認・評価することができる。中でも液体クロマトグラフィー法は、抗体結合性に及ぼすpH依存性を的確に評価することができる。
(2)タンパク質の熱安定性試験
本発明の変異体タンパク質の熱安定性は、円偏光二色性(CD)スペクトル、蛍光スペクトル、赤外分光法、示差走査熱量測定法、加熱後の残留活性などを利用して評価することができる。中でもCDスペクトルは、タンパク質の二次構造の変化を鋭敏に反映する分光学的分析方法であることから、変異体タンパク質の温度に対する立体構造の変化を観測し、構造安定性を熱力学的に定量的に評価することができる。 (1) Antibody binding test The antibody binding of the protein of the present invention is confirmed and evaluated using Western blotting, immunoprecipitation, pull-down assay, ELISA (Enzyme-Linked ImmunoSorbent Assay), surface plasmon resonance (SPR) method, etc. can do. In particular, the SPR method allows the interaction between living organisms to be observed over time in real time without a label, so that the binding reaction of the mutant protein can be quantitatively evaluated from a kinetic viewpoint.
Moreover, the antibody binding property of the mutant protein immobilized on the water-insoluble solid phase support can be confirmed and evaluated by the above SPR method or liquid chromatography method. Among them, the liquid chromatography method can accurately evaluate the pH dependence on the antibody binding property.
(2) Thermal stability test of protein The thermal stability of the mutant protein of the present invention includes circular dichroism (CD) spectrum, fluorescence spectrum, infrared spectroscopy, differential scanning calorimetry, residual activity after heating. Etc. can be used for evaluation. In particular, the CD spectrum is a spectroscopic analysis method that sharply reflects changes in the secondary structure of the protein, so the change in the three-dimensional structure with respect to the temperature of the mutant protein is observed, and the structural stability is quantified thermodynamically. Can be evaluated.
〔参照文献〕
参照文献1;Bjorck L, Kronvall G. (1984) Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol. 133, 69-74.
参照文献2;Boyle M. D.P., Ed. (1990) Bacterial Immunoglobulin Binding Proteins. Academic Press, Inc., San Diego, CA.
参照文献3;Gallagher T, Alexander P, Bryan P, Gilliland GL. (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 19, 4721-4729.
参照文献4;Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA. (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265-278.
参照文献5;Derrick JP, Wigley DB. (1994) The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol. 243, 906-918.
参照文献6;Alexander P, Fahnestock S, Lee T, Orban J, Bryan P. (1992) Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 14, 3597-3603.
参照文献7;D'souza VM, Holz RC. (1999) The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 38, 11079-11085.
参照文献8;Horton R. M., Hunt H. D., Ho S. N., Pullen J. M. and Pease L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68.
参照文献9;岡田雅人、宮崎香(2004)タンパク質実験ノート(上)、羊土社
参照文献10;大野茂男、西村善文監修(1997)タンパク質実験プロトコール1-機能解析編、秀潤社
参照文献11;大野茂男、西村善文監修(1997)タンパク質実験プロトコール2-構造解析編、秀潤社 [References]
Reference 1; Bjorck L, Kronvall G. (1984) Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol. 133, 69-74.
Reference 2; Boyle M. DP, Ed. (1990) Bacterial Immunoglobulin Binding Proteins. Academic Press, Inc., San Diego, CA.
Reference 3; Gallagher T, Alexander P, Bryan P, Gilliland GL. (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 19, 4721-4729.
Reference 4; Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA. (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265-278.
Reference 5; Derrick JP, Wigley DB. (1994) The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol. 243, 906- 918.
Reference 6; Alexander P, Fahnestock S, Lee T, Orban J, Bryan P. (1992) Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 14, 3597-3603.
Reference 7; D'souza VM, Holz RC. (1999) The methionyl aminopeptidase from Escherichia coli can function as an iron (II) enzyme. Biochemistry 38, 11079-11085.
Reference 8; Horton R. M., Hunt H. D., Ho S. N., Pullen J. M. and Pease L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68.
Reference 9; Masato Okada, Kaoru Miyazaki (2004) Protein Experiment Note (above), Yodosha Reference 10; Shigeo Ohno, supervised by Yoshifumi Nishimura (1997) Protein Experiment Protocol 1-Functional Analysis, Shujunsha Reference 11 Supervised by Shigeo Ohno and Yoshifumi Nishimura (1997) Protein Experiment Protocol 2-Structural Analysis, Shujunsha
参照文献1;Bjorck L, Kronvall G. (1984) Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol. 133, 69-74.
参照文献2;Boyle M. D.P., Ed. (1990) Bacterial Immunoglobulin Binding Proteins. Academic Press, Inc., San Diego, CA.
参照文献3;Gallagher T, Alexander P, Bryan P, Gilliland GL. (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 19, 4721-4729.
参照文献4;Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA. (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265-278.
参照文献5;Derrick JP, Wigley DB. (1994) The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol. 243, 906-918.
参照文献6;Alexander P, Fahnestock S, Lee T, Orban J, Bryan P. (1992) Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 14, 3597-3603.
参照文献7;D'souza VM, Holz RC. (1999) The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 38, 11079-11085.
参照文献8;Horton R. M., Hunt H. D., Ho S. N., Pullen J. M. and Pease L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68.
参照文献9;岡田雅人、宮崎香(2004)タンパク質実験ノート(上)、羊土社
参照文献10;大野茂男、西村善文監修(1997)タンパク質実験プロトコール1-機能解析編、秀潤社
参照文献11;大野茂男、西村善文監修(1997)タンパク質実験プロトコール2-構造解析編、秀潤社 [References]
Reference 2; Boyle M. DP, Ed. (1990) Bacterial Immunoglobulin Binding Proteins. Academic Press, Inc., San Diego, CA.
Reference 9; Masato Okada, Kaoru Miyazaki (2004) Protein Experiment Note (above), Yodosha Reference 10; Shigeo Ohno, supervised by Yoshifumi Nishimura (1997) Protein Experiment Protocol 1-Functional Analysis, Shujunsha Reference 11 Supervised by Shigeo Ohno and Yoshifumi Nishimura (1997) Protein Experiment Protocol 2-Structural Analysis, Shujunsha
尚、特許文献8には以下の内容が具体的に開示されている。
The following contents are specifically disclosed in Patent Document 8.
実施例1においては、[配列番号1]で示されるプロテインG・B1ドメインの野生型アミノ酸配列、[配列番号2]で示されるプロテインG・B2ドメインの野生型アミノ酸配列及び[配列番号3]で示されるプロテインG・B3ドメインの野生型アミノ酸配列に基づき、プロテインGのB1、B2、あるいはB3ドメインに変異を導入した本発明に用いるタンパク質に含まれる変異体タンパク質(以降、「改良型プロテインG」と呼ぶ)のアミノ酸配列を設計するための変異を導入する部位を選定し、置換するアミノ酸残基を特定することが記載されている。
In Example 1, the wild type amino acid sequence of the protein G • B1 domain represented by [SEQ ID NO: 1], the wild type amino acid sequence of the protein G • B2 domain represented by [SEQ ID NO: 2], and [SEQ ID NO: 3] Based on the wild-type amino acid sequence of the protein G / B3 domain shown, a mutant protein contained in the protein used in the present invention in which a mutation is introduced into the B1, B2 or B3 domain of protein G (hereinafter referred to as "improved protein G") The amino acid residue to be substituted is specified and the amino acid residue to be substituted is specified.
実施例2では、選定した変異対象部位と上記特定した置換するアミノ酸残基の情報を利用して、[配列番号4] ~[配列番号19]で示される複数の改良型プロテインGのアミノ酸配列を設計し、更に、具体的アミノ酸配列として[配列番号13]~[配列番号20]を最終的に選別し、この配列を示す改良型プロテインGを実際に合成し、その分子特性を評価したことが記載されている。
In Example 2, the amino acid sequences of a plurality of improved protein Gs represented by [SEQ ID NO: 4] to [SEQ ID NO: 19] are obtained using the selected mutation target site and the above-identified amino acid residue information to be substituted. In addition, [SEQ ID NO: 13] to [SEQ ID NO: 20] were finally selected as specific amino acid sequences, and an improved protein G showing this sequence was actually synthesized and its molecular properties were evaluated. Are listed.
実施例3では、改良型プロテインGのアミノ酸配列をコードする核酸の塩基配列([配列番号13]~[配列番号20])及びOxaloacetate decarboxylase alpha-subunit c-terminal domain (OXADac)の塩基配列[配列番号31] を用いた、変異体タンパク質の塩基配列について記載されている。
In Example 3, the base sequence of the nucleic acid encoding the amino acid sequence of the improved protein G ([SEQ ID NO: 13] to [SEQ ID NO: 20]) and the base sequence of Oxaloacetate decarboxylase alpha-subunit c-terminal domain (OXADac) No. 31] The nucleotide sequence of the mutant protein using cocoons is described.
実施例4では、[配列番号21]~[配列番号29]の塩基配列からなるPG遺伝子を用いて、改良型プロテインGをコードする遺伝子を含むプラスミドベクターを合成し、ついで大腸菌を用いたOxaloacetate decarboxylase alpha-subunit c-terminal domain (OXADac) [配列番号31]と変異体タンパク質の融合タンパク質の製造について記載されている。
In Example 4, a plasmid vector containing a gene encoding improved protein G was synthesized using the PG gene consisting of the nucleotide sequence of [SEQ ID NO: 21] to [SEQ ID NO: 29], and then Oxaloacetate decarboxylase using E. coli. It describes the production of a fusion protein of alpha-subunit c-terminal domain (OXADac) [SEQ ID NO: 31] and a mutant protein.
実施例5では、各種プライマー([配列番号32]~[配列番号35])を用いて、改良型プロテインGをコードする遺伝子を含むプラスミドベクターを合成し、ついで大腸菌を用いたMet付加改良型プロテインGの製造について記載されている。
In Example 5, a plasmid vector containing a gene encoding improved protein G was synthesized using various primers ([SEQ ID NO: 32] to [SEQ ID NO: 35]), and then Met-added improved protein using Escherichia coli. The manufacture of G is described.
実施例6では、改良型プロテインGの純度をポリアクリルアミドゲル電気泳動法で確認したこと、実施例7では、改良型プロテインGの分子量をMALDI-TOF型質量分析計で計測することで、製造したタンパク質を同定したこと、実施例8では、OXADac-PG融合タンパク質を固定化したカラムを用いてpH勾配アフィニティクロマトグラフィーを行い、モノクローナル抗体の溶出するpHを調べることで、改良型プロテインGの弱酸性域での抗体解離性を評価したこと、実施例9では、OXADac-PG融合タンパク質を固定化したカラムを用いてステップワイズpHアフィニティクロマトグラフィーを行い、モノクローナル抗体の溶出を、いくつかのpHで調べることで、改良型プロテインGの弱酸性域での抗体解離性を評価したこと、実施例10では、変異体タンパク質(プロテインG変異体)の結合解離性を表面プラズモン共鳴(SPR)法により評価したこと、実施例11では、中性領域、およびヒスチジン残基の95%以上がプロトン化する弱酸性領域において、変異体タンパク質の抗体結合性を表面プラズモン共鳴(SPR)法により評価したこと、実施例12では、変異体タンパク質の熱安定性を評価したこと、実施例13では、変異体タンパク質の単結晶を作製し、立体構造をX線回折解析により決定したことが記載されている。
In Example 6, the purity of the improved protein G was confirmed by polyacrylamide gel electrophoresis. In Example 7, the molecular weight of the improved protein G was measured by a MALDI-TOF mass spectrometer. In Example 8, the protein was identified. In Example 8, pH gradient affinity chromatography was performed using a column on which the OXADac-PG fusion protein was immobilized, and the pH at which the monoclonal antibody was eluted was examined. In Example 9, in Example 9, stepwise pH affinity chromatography was performed using a column immobilized with OXADac-PG fusion protein, and elution of monoclonal antibodies was examined at several pHs. In Example 10, the protein dissociation property in the weakly acidic region of improved protein G was evaluated. In G mutant) was evaluated by surface plasmon resonance (SPR) method. In Example 11, the mutant was obtained in the neutral region and in the weakly acidic region where 95% or more of the histidine residues were protonated. The antibody binding property of the protein was evaluated by the surface plasmon resonance (SPR) method, the thermal stability of the mutant protein was evaluated in Example 12, the single crystal of the mutant protein was prepared in Example 13, It is described that the three-dimensional structure was determined by X-ray diffraction analysis.
更に、実施例14では、カルボキシル末端側にシステイン残基、Hisタグを付加した三量体野生型PG(CGB01H-3D,[配列番号36]) または本発明のタンパク質である変異型PGのタンデム型三量体(CGB19H-3D,[配列番号37])をコードする 遺伝子を組み込んだ2種の人工合成プラスミドを用いた、プロテインGの細胞膜外ドメイン変異体のタンデム型多量体の製造及び該タンパク質を用いるアフィニティクロマトグラフィーカラムの作製及び当該カラムによるヒトIgG1抗体、IgG3抗体の精製等に関して記載されている。
Furthermore, in Example 14, a tandem type of a trimeric wild type PG (CGB01H-3D, [SEQ ID NO: 36]) し た added with a cysteine residue and a His tag on the carboxyl terminal side or a mutant PG which is a protein of the present invention. Production of a tandem multimer of an extracellular domain mutant of protein G using two artificially synthesized plasmids incorporating a spider gene encoding a trimer (CGB19H-3D, [SEQ ID NO: 37]) and the protein It describes the preparation of the affinity chromatography column to be used and the purification of human IgG1 antibody and IgG3 antibody using the column.
実施例15では、IgG1タイプのヒト化モノクローナル抗体との抗体結合解離性に関してプロテインGの細胞膜外ドメイン変異体のタンデム型多量体と同単量体との比較が記載されている。
Example 15 describes a comparison of protein G extracellular domain mutant tandem multimers and the same monomers with respect to antibody binding dissociation with IgG1 type humanized monoclonal antibodies.
実施例16では、カルボキシル末端にシステイン残基、Hisタグを付加した変異型PGの単量体変異型PG(CGB19H-1D、図4、[配列番号38])、変異型PGのタンデム型四量体PG(CGB19H-4D、図4、[配列番号39])、および変異型PGのタンデム型五量体PG(CGB19H-5D、図4、[配列番号40])をコードする遺伝子を組み込んだ3種の人工合成発現用プラスミドを用いた、プロテインGの細胞膜外ドメイン変異体の単量体及びタンデム型四量体、五量体の製造に関して記載されている。
In Example 16, a mutant PG monomer mutant PG (CGB19H-1D, FIG. 4, [SEQ ID NO: 38]) having a cysteine residue and a His tag added to the carboxyl terminus, a tandem tetramer of the mutant PG Incorporating a gene encoding the body PG (CGB19H-4D, FIG. 4, [SEQ ID NO: 39]) and the tandem pentamer PG of the mutant PG (CGB19H-5D, FIG. 4, [SEQ ID NO: 40]) 3 It describes the production of a protein G extracellular domain mutant monomer, tandem tetramer, and pentamer using a species of artificially synthesized expression plasmid.
実施例17では、プロテインGの細胞膜外ドメイン変異体の単量体およびタンデム型多量体をカルボキシル末端のシステイン残基を介して固相に固定化して、IgG1タイプのヒト化モノクローナル抗体に対する各変異タンパク質の抗体結合性をSPR法により比較評価したことが記載されている。
In Example 17, each of the mutant proteins for the IgG1-type humanized monoclonal antibody was prepared by immobilizing the monomer and tandem-type multimer of the extracellular domain mutant of protein G to the solid phase through a cysteine residue at the carboxyl terminal. It is described that the antibody binding property of each was comparatively evaluated by the SPR method.
以下、実施例を用いて本発明を具体的に説明する。ただし、本発明の技術的範囲はこれらの実施例に限定されるものではない。なお、本明細書においては、各種アミノ酸残基を次の略号で記載する。Ala;L-アラニン残基、Arg;L-アルギニン残基、Asp;L-アスパラギン酸残基、Asn;L-アスパラギン残基、Cys;L-システイン残基、Gln;L-グルタミン残基、Glu;L-グルタミン酸残基、Gly;L-グリシン残基、His;L-ヒスチジン残基、Ile;L-イソロイシン残基、Leu;L-ロイシン残基、Lys;L-リジン残基、Met;L-メチオニン残基、Phe;L-フェニルアラニン残基、Pro;L-プロリン残基、Ser;L-セリン残基、Thr;L-スレオニン残基、Trp;L-トリプトファン残基、Tyr;L-チロシン残基、Val;L-バリン残基。また本明細書においては、ペプチドのアミノ酸配列を、そのアミノ末端(以下N末端という)が左側に位置し、カルボキシル末端(以下C末端という)が右側に位置するように、常法に従って記述する。
Hereinafter, the present invention will be specifically described with reference to examples. However, the technical scope of the present invention is not limited to these examples. In the present specification, various amino acid residues are described by the following abbreviations. Ala; L-alanine residue, Arg; L-arginine residue, Asp; L-aspartic acid residue, Asn; L-asparagine residue, Cys; L-cysteine residue, Gln; L-glutamine residue, Glu L-glutamic acid residue, Gly; L-glycine residue, His; L-histidine residue, Ile; L-isoleucine residue, Leu; L-leucine residue, Lys; L-lysine residue, Met; L -Methionine residue, Phe; L-phenylalanine residue, Pro; L-proline residue, Ser; L-serine residue, Thr; L-threonine residue, Trp; L-tryptophan residue, Tyr; L-tyrosine Residue, Val; L-valine residue. In the present specification, the amino acid sequence of a peptide is described according to a conventional method such that the amino terminus (hereinafter referred to as N-terminus) is located on the left side and the carboxyl terminus (hereinafter referred to as C-terminus) is located on the right side.
本実施例では、本発明のタンパク質(変異体)を製造した。これらは、Watanabeらが報告した(非特許文献5)、プロテインGの細胞膜外ドメイン変異体(以下、「改良型プロテインG」と呼ぶ)を含む融合タンパク質(配列番号1)のヒスチジン残基等の一部を野生型のアミノ酸残基に置換したアミノ酸配列からなる。
In this example, the protein (variant) of the present invention was produced. These were reported by Watanabe et al. (Non-patent Document 5), such as histidine residues of a fusion protein (SEQ ID NO: 1) containing an extracellular domain mutant of protein G (hereinafter referred to as “modified protein G”). It consists of an amino acid sequence in which a part is substituted with a wild-type amino acid residue.
酸性溶液中において残基間の静電反発がプロテインGの分子内部で生じることを期待して、ヒスチジンの変異導入部位を以下のように決めた。公共データベースProtein Data BankよりダウンロードしたプロテインGの立体構造情報(PDB:2ZW1)より改良型プロテインGの正電荷残基であるリジン残基を特定し、該リジン残基から7Å以内に存在する残基を変異導入候補として同定した。計算には構造解析ソフトCCP4(非特許文献6)のCONTACTを用いた。これら7Å以内に存在する残基の内、既報の変異体解析(非特許文献7)よりFcとの結合に重要であることが判明している残基、および構造情報より判明したプロテインGの構造形成に重要な残基は変異導入候補から除外し、またこれら重要な残基に接触している残基も候補から除外した。その結果、Asp1, Asn8, Glu15, Thr25, Glu36, Tyr33, Gly41, Thr55, Glu56の9つの残基位置を変異導入部位に決定した。これらは、Fc領域との結合界面との関係において、結合界面近傍(即ち、対応するリジン残基がFc領域の任意のアミノ酸残基から6オングストローム以内にある)のグループ(Thr25, Glu36, Gly41, Thr55)とそれ以外の結合界面から遠いグループ(Asp1, Asn8, Glu15, Tyr33, Glu56)に大別される。以上の変異が導入された残基に関する各種情報を以下の表1に示す。
With the expectation that electrostatic repulsion between residues occurs in the protein G molecule in an acidic solution, the site of mutagenesis introduction of histidine was determined as follows. The lysine residues that are positively charged residues of the improved protein G are identified from the three-dimensional structure information (PDB: 2ZW1) of protein G downloaded from the public database Protein Data Bank, and the residues present within 7 か ら of the lysine residue Was identified as a candidate for mutagenesis. For the calculation, CONTACT of the structural analysis software CCP4 (Non Patent Literature 6) was used. Of these residues within 7%, residues that have been found to be important for binding to Fc from the previously reported mutant analysis (Non-Patent Document 7), and the structure of protein G that has been determined from structural information Residues important for formation were excluded from the mutagenesis candidates, and residues that contact these important residues were also excluded from the candidates. As a result, nine residue positions of Asp1, Asn8, Glu15, Thr25, Glu36, Tyr33, Gly41, Thr55, and Glu56 were determined as mutation introduction sites. In relation to the binding interface with the Fc region, these are in the vicinity of the binding interface (that is, the corresponding lysine residue is within 6 angstroms from any amino acid residue in the Fc region) (Thr25, Glu36, Gly41, Thr55) and other groups far from the bonding interface (Asp1, Asn8, Glu15, Tyr33, 遠 Glu56). Various information regarding the residues into which the above mutations have been introduced is shown in Table 1 below.
Watanabeら(非特許文献5)の方法により作製した改良型プロテインG(PG19)を含む融合タンパク質の遺伝子(配列番号2)を含む発現プラスミドに対し、ヒスチジンコドンを含んだセンスおよびアンチセンスオリゴDNAプライマー(配列番号3~20)を用いて、部位特異的変異導入PCR反応とテンプレートプラスミド切断反応(図1)を行い、上記方法にて決定された変異導入部位にヒスチジン残基を置換したヒスチジン追加変異体(PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H, PG19 E56H)を含む融合タンパク質のアミノ酸配列(配列番号21~29)をコードする変異体遺伝子をそれぞれ作製した。各ヒスチジン追加変異体の遺伝子を含む発現プラスミドを単離精製した後、これによって発現用大腸菌BL21(DE3)株(Novagen)を形質転換した。前培養した形質転換体を、2ml / 200mlで2YT培地に継代し、O.D.600 = 0.8~1.0になるまで振とう培養した。目的タンパク質を発現させるため0.5mM IPTGを加え、さらに37℃で2時間振とう培養した。回収した菌体を10mLのPBSに懸濁し、超音波破砕を行った後濾過滅菌し、これを全タンパク質溶液とした。Ni Sepharose(GE ealthcare) 2mlカラムにヒスチジン追加変異体を吸着させ、20mMイミダゾールにて洗浄後、500mMイミダゾールにて溶出し、精製タンパク質とした。改良型プロテインG(PG19)に関しても、対応する発現プラスミドを用いて同様の方法で作製した。
Sense and antisense oligo DNA primers containing a histidine codon for an expression plasmid containing a fusion protein gene (SEQ ID NO: 2) containing the improved protein G (PG19) produced by the method of Watanabe et al. (SEQ ID NOs: 3 to 20), site-directed mutagenesis PCR reaction and template plasmid cleaving reaction (FIG. 1) were performed, and a histidine residue was substituted at the mutagenesis site determined by the above method. Mutant gene encoding the amino acid sequence (SEQ ID NO: 21-29) of the fusion protein containing the body (PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H, Each was produced. An expression plasmid containing the gene of each histidine additional mutant was isolated and purified, and transformed into E. coli BL21 (DE3) strain (Novagen) for expression. The pre-cultured transformant was subcultured to 2YT medium at 2 ml / 200 ml, and cultured with shaking until O.D.600 = 0.8-1.0. In order to express the target protein, 0.5 mM IPTG was added, and further cultured with shaking at 37 ° C. for 2 hours. The collected microbial cells were suspended in 10 mL of PBS, subjected to ultrasonic disruption and then sterilized by filtration to obtain a total protein solution. The histidine additional mutant was adsorbed onto a Ni Sepharose (GE ealthcare) 2 ml column, washed with 20 mM imidazole, and eluted with 500 mM imidazole to obtain a purified protein. Improved protein G (PG19) was prepared in the same manner using the corresponding expression plasmid.
本実施例では、本発明のヒスチジン追加変異体を、カルボキシル末端にあるシステイン残基を介して固相に固定化し、各ヒスチジン追加変異体のpH応答性をSPR法により評価した。また、比較のため改良型プロテインGも同様の方法で評価した。
In this example, the histidine additional mutant of the present invention was immobilized on a solid phase via a cysteine residue at the carboxyl terminus, and the pH responsiveness of each histidine additional mutant was evaluated by the SPR method. For comparison, improved protein G was also evaluated in the same manner.
まず、センサーチップCM-5(GE Healthcare)の測定セルに、改良型プロテインG(PG19)とヒスチジン追加変異体(PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H, PG19 E56H)をEMCH (N-[ε-Maleimidocaproic acid] hydrazide, trifluoroacetic acid)(Thermo scientific)を用いたマレイミドカップリング法により固定化した。次いで、IgG1タイプのヒト化モノクローナル抗体を、ランニング緩衝液(10 mM HEPES pH7.4, 150 mM NaCl, 0.005% v/v Surfactant P20)に溶解し、1 mg/ mlの試料抗体溶液を調整した。SPR測定はBiacore T100(GE Healthcare)を用い、反応温度25℃で行い、各pH溶液でのSPRレスポンスを測定した。(図2~4)。
First of all, the improved protein G (PG19) and histidine additional mutant (PG19 T25H, PG19 Y33H, PG19 E36H, PG19 G41H, PG19 T55H, PG19 D1H, PG19 N8H, PG19 E15H and PG19 E56H) were immobilized by maleimide coupling method using EMCH (N- [ε-Maleimidocaproic acid] hydrazide, trifluoroacetic acid) (Thermo scientific). Subsequently, IgG1-type humanized monoclonal antibody was dissolved in a running buffer (10 mM HEPES pH7.4, 150 mM NaCl, 0.005% v / v Surfactant P20) to prepare a sample antibody solution of 1 mg / ml. SPR measurement was performed using a Biacore T100 (GE Healthcare) at a reaction temperature of 25 ° C., and the SPR response at each pH solution was measured. (Figures 2-4).
センサグラムからpH 4溶液での抗体解離率およびリーク率を算出しpH応答性を比較した。その結果を以下の表2に示す。pH 4で最も高い解離率を示したPG19 G41Hは、pH 4溶液を入れる前にすでに大部分の抗体がリークしていたため、この変異体は抗体結合能が低下していることが分かった。つぎに高い解離率を示したPG19 T25Hは結合能の低下も無く、pH 4での応答性がPG19と比較して有意に上昇していることが分かった。
From the sensorgram, the antibody dissociation rate and leak rate in pH 4 solution were calculated and the pH responsiveness was compared. The results are shown in Table 2 below. Since PG19 G41H, which showed the highest dissociation rate at pH 4, had already leaked most of the antibody before adding the pH 4 solution, it was found that this mutant had reduced antibody binding ability. Next, it was found that PG19 T25H, which showed the next highest dissociation rate, had no decrease in binding ability, and the response at pH で 4 was significantly increased compared to PG19.
表2において、抗体添加終了直後のSPRレスポンスを解離率=0%、再生溶液で抗体を完全に除去した後のSPRレスポンスを解離率=100%とした時のpH 4添加後レスポンスから「解離(%)」を算出。「リーク(%)」は、pH 4の溶液を添加する前のバッファー中でのレスポンス減少分から算出した。尚、センサグラムからの解離率(%)及びリーク(%)の算出に基準等に関しては図5も参照されたい。
In Table 2, the SPR response immediately after the addition of the antibody is dissociation rate = 0%, and the SPR response after completely removing the antibody with the regeneration solution is the dissociation rate = 100%. %) ”. “Leak (%)” was calculated from the decrease in response in the buffer before the addition of the pH 4 solution. In addition, please also refer FIG. 5 regarding a reference | standard etc. in calculation of the dissociation rate (%) and leak (%) from a sensorgram.
本実施例では、プロテインGの細胞膜外ドメイン変異体を製造し、及び該タンパク質を用いるカラムを作製した。
(1)組換えPGの発現と精製
実施例1で構築した変異体(PG19, PG19 T25H, PG19 E36H, PG19 G41H) 及び非特許文献5に記載の野生型プロテインG(PG01)を含む融合タンパク質(配列番号38)の遺伝子を含む発現プラスミドによって形質転換された大腸菌をLB培地に継代し、O.D.600 = 0.8~1.0になるまで振とう培養した。目的タンパク質を発現させるため0.5mM IPTGを加え、さらに37℃で3時間振とう培養した。回収した菌体をPBSに懸濁し、超音波破砕を行った後遠心分離し、得られた上清を全タンパク質溶液とした。HisTrap FF (GE Healthcare Bioscience) 1mlカラムに組換えPGを吸着させ、20mMイミダゾールにて洗浄後、500mMイミダゾールにて溶出し、精製タンパク質とした。 In this example, an extracellular domain mutant of protein G was produced, and a column using the protein was produced.
(1) Expression and purification of recombinant PG Fusion protein comprising mutants (PG19, PG19 T25H, PG19 E36H, PG19 G41H) constructed in Example 1 and wild-type protein G (PG01) described inNon-Patent Document 5 Escherichia coli transformed with an expression plasmid containing the gene of SEQ ID NO: 38) was subcultured in LB medium and cultured with shaking until OD600 = 0.8 to 1.0. To express the target protein, 0.5 mM IPTG was added, and further cultured with shaking at 37 ° C. for 3 hours. The collected cells were suspended in PBS, subjected to ultrasonic disruption and then centrifuged, and the resulting supernatant was used as a total protein solution. Recombinant PG was adsorbed onto a 1 ml column of HisTrap FF (GE Healthcare Bioscience), washed with 20 mM imidazole, and eluted with 500 mM imidazole to obtain purified protein.
(1)組換えPGの発現と精製
実施例1で構築した変異体(PG19, PG19 T25H, PG19 E36H, PG19 G41H) 及び非特許文献5に記載の野生型プロテインG(PG01)を含む融合タンパク質(配列番号38)の遺伝子を含む発現プラスミドによって形質転換された大腸菌をLB培地に継代し、O.D.600 = 0.8~1.0になるまで振とう培養した。目的タンパク質を発現させるため0.5mM IPTGを加え、さらに37℃で3時間振とう培養した。回収した菌体をPBSに懸濁し、超音波破砕を行った後遠心分離し、得られた上清を全タンパク質溶液とした。HisTrap FF (GE Healthcare Bioscience) 1mlカラムに組換えPGを吸着させ、20mMイミダゾールにて洗浄後、500mMイミダゾールにて溶出し、精製タンパク質とした。 In this example, an extracellular domain mutant of protein G was produced, and a column using the protein was produced.
(1) Expression and purification of recombinant PG Fusion protein comprising mutants (PG19, PG19 T25H, PG19 E36H, PG19 G41H) constructed in Example 1 and wild-type protein G (PG01) described in
(2)組換えPGの固定化とカラム作製
Sepharose4FastFlow(GE Healthcare)をガラスフィルターでろ別し、超純水で洗浄して担体10mlを得た。フラスコに担体を移液し、2M水酸化ナトリウム水溶液3mlとブタンジオールジグリシジルエーテル 4gを加え25℃で4時間振とうして反応させた。ガラスフィルターでろ別し、超純水で洗浄して活性化担体を得た。活性化担体1mLをガラスフィルターに採取してカップリング緩衝液(0.1Mリン酸ナトリウム、1.0M硫酸ナトリウム、1mM EDTA、pH 8.0)で洗浄した。活性化担体をフラスコに移し、組換えPG(PG19 T25H)が5mg/mlの組換えPG含有溶液を1.4ml、カップリング緩衝液2mLを加え、37℃、150rpmで16時間振とうして組み換えPGのシステイン残基を介して固定化した。ガラスフィルターでろ別し、カップリング緩衝液で洗浄した。次いでフラスコに担体を移し、1Mチオグリセロール、0.1Mリン酸ナトリウム、1mM EDTA、pH8.0の溶液3mlを加え37℃,150rpmで4時間振とうして未反応活性基をマスクした。ガラスフィルターでろ別し、洗浄液1(0.1Mトリス塩酸、0.5M塩化ナトリウム、pH8.0) 、洗浄液2(0.1M酢酸、0.5M塩化ナトリウム、pH4.0)を15mlで交互に3サイクル洗浄した。固定化担体1mlを超純水で洗浄し、Tricon 5/50 Columnにパッキングした。 (2) Immobilization of recombinant PG and column preparation
Sepharose 4 Fast Flow (GE Healthcare) was filtered off with a glass filter and washed with ultrapure water to obtain 10 ml of a carrier. The carrier was transferred to the flask, 3 ml of 2M aqueous sodium hydroxide solution and 4 g of butanediol diglycidyl ether were added, and the mixture was reacted by shaking at 25 ° C. for 4 hours. It was filtered with a glass filter and washed with ultrapure water to obtain an activated carrier. 1 mL of the activated carrier was collected on a glass filter and washed with a coupling buffer (0.1 M sodium phosphate, 1.0 M sodium sulfate, 1 mM EDTA, pH 8.0). Transfer the activated carrier to the flask, add 1.4 ml of recombinant PG-containing solution containing 5 mg / ml recombinant PG (PG19 T25H) and 2 mL of coupling buffer, and shake for 16 hours at 37 ° C and 150 rpm. Of cysteine residues. The solution was filtered with a glass filter and washed with a coupling buffer. Next, the carrier was transferred to a flask, 3 ml of a solution of 1 M thioglycerol, 0.1 M sodium phosphate, 1 mM EDTA, pH 8.0 was added, and the mixture was shaken at 37 ° C. and 150 rpm for 4 hours to mask unreacted active groups. The solution was filtered off with a glass filter, and washing solution 1 (0.1 M Tris-HCl, 0.5 M sodium chloride, pH 8.0) and washing solution 2 (0.1 M acetic acid, 0.5 M sodium chloride, pH 4.0) were alternately washed with 15 ml for 3 cycles. 1 ml of the immobilization carrier was washed with ultrapure water and packed in a Tricon 5/50 Column.
Sepharose4FastFlow(GE Healthcare)をガラスフィルターでろ別し、超純水で洗浄して担体10mlを得た。フラスコに担体を移液し、2M水酸化ナトリウム水溶液3mlとブタンジオールジグリシジルエーテル 4gを加え25℃で4時間振とうして反応させた。ガラスフィルターでろ別し、超純水で洗浄して活性化担体を得た。活性化担体1mLをガラスフィルターに採取してカップリング緩衝液(0.1Mリン酸ナトリウム、1.0M硫酸ナトリウム、1mM EDTA、pH 8.0)で洗浄した。活性化担体をフラスコに移し、組換えPG(PG19 T25H)が5mg/mlの組換えPG含有溶液を1.4ml、カップリング緩衝液2mLを加え、37℃、150rpmで16時間振とうして組み換えPGのシステイン残基を介して固定化した。ガラスフィルターでろ別し、カップリング緩衝液で洗浄した。次いでフラスコに担体を移し、1Mチオグリセロール、0.1Mリン酸ナトリウム、1mM EDTA、pH8.0の溶液3mlを加え37℃,150rpmで4時間振とうして未反応活性基をマスクした。ガラスフィルターでろ別し、洗浄液1(0.1Mトリス塩酸、0.5M塩化ナトリウム、pH8.0) 、洗浄液2(0.1M酢酸、0.5M塩化ナトリウム、pH4.0)を15mlで交互に3サイクル洗浄した。固定化担体1mlを超純水で洗浄し、Tricon 5/50 Columnにパッキングした。 (2) Immobilization of recombinant PG and column preparation
他の組み換えPGもPG19 T25Hと同様の操作でカラムを作製した。PG含有液の仕込み量は以下の通り。
・PG19 E36H:7.6mg/mLの組み換えPG含有液を921μL
・PG19 G41H:7.8mg/mLの組み換えPG含有液を897μL
・PG01:8.2mg/mLの組み換えPG含有液を853μL
・PG19:12.0mg/mLの組み換えPG含有液を1.4mL For other recombinant PGs, columns were prepared in the same manner as PG19 T25H. The amount of PG containing liquid is as follows.
・ PG19 E36H: 921μL of 7.6mg / mL recombinant PG-containing solution
・ PG19 G41H: 897μL of 7.8mg / mL recombinant PG solution
-PG01: 853μL of 8.2mg / mL recombinant PG containing solution
・ PG19: 1.4mL of 12.0mg / mL recombinant PG solution
・PG19 E36H:7.6mg/mLの組み換えPG含有液を921μL
・PG19 G41H:7.8mg/mLの組み換えPG含有液を897μL
・PG01:8.2mg/mLの組み換えPG含有液を853μL
・PG19:12.0mg/mLの組み換えPG含有液を1.4mL For other recombinant PGs, columns were prepared in the same manner as PG19 T25H. The amount of PG containing liquid is as follows.
・ PG19 E36H: 921μL of 7.6mg / mL recombinant PG-containing solution
・ PG19 G41H: 897μL of 7.8mg / mL recombinant PG solution
-PG01: 853μL of 8.2mg / mL recombinant PG containing solution
・ PG19: 1.4mL of 12.0mg / mL recombinant PG solution
本実施例では、実施例3で作製した組換えPG固定化カラムの抗体吸着容量を測定した。
組換えPG固定化カラムを液体クロマトグラフィー装置AKTAexplore (GE Healthcare Bioscience) にセットし、吸着緩衝液(20mM りん酸緩衝液、150mM 塩化ナトリウム、pH7.2)を1 mL/min もしくは0.4mL/min の条件で流し平衡化させた後、1mg/mLに調製したヒトIgG (オリエンタル酵母)を注入した。溶出液の280nmにおける吸光度が注入サンプルの吸光度の15%に到達するまで注入を続けた後、吸着緩衝液で洗浄後、吸着緩衝液を20 mM くえん酸(pH2.4) へ置換した。 In this example, the antibody adsorption capacity of the recombinant PG-immobilized column prepared in Example 3 was measured.
Set the recombinant PG-immobilized column in the liquid chromatography device AKTAexplore (GE Healthcare Bioscience) and add the adsorption buffer (20 mM phosphate buffer, 150 mM sodium chloride, pH 7.2) at 1 mL / min or 0.4 mL / min. After flowing and equilibrating under conditions, human IgG (oriental yeast) prepared to 1 mg / mL was injected. The injection was continued until the absorbance at 280 nm of the eluate reached 15% of the absorbance of the injected sample, and after washing with the adsorption buffer, the adsorption buffer was replaced with 20 mM citric acid (pH 2.4).
組換えPG固定化カラムを液体クロマトグラフィー装置AKTAexplore (GE Healthcare Bioscience) にセットし、吸着緩衝液(20mM りん酸緩衝液、150mM 塩化ナトリウム、pH7.2)を1 mL/min もしくは0.4mL/min の条件で流し平衡化させた後、1mg/mLに調製したヒトIgG (オリエンタル酵母)を注入した。溶出液の280nmにおける吸光度が注入サンプルの吸光度の15%に到達するまで注入を続けた後、吸着緩衝液で洗浄後、吸着緩衝液を20 mM くえん酸(pH2.4) へ置換した。 In this example, the antibody adsorption capacity of the recombinant PG-immobilized column prepared in Example 3 was measured.
Set the recombinant PG-immobilized column in the liquid chromatography device AKTAexplore (GE Healthcare Bioscience) and add the adsorption buffer (20 mM phosphate buffer, 150 mM sodium chloride, pH 7.2) at 1 mL / min or 0.4 mL / min. After flowing and equilibrating under conditions, human IgG (oriental yeast) prepared to 1 mg / mL was injected. The injection was continued until the absorbance at 280 nm of the eluate reached 15% of the absorbance of the injected sample, and after washing with the adsorption buffer, the adsorption buffer was replaced with 20 mM citric acid (pH 2.4).
動的結合容量(DBC)は、溶出液の280 nmにおける非吸着成分を除いた吸光度が注入サンプルの吸光度の10 %に到達するまでに注入されたサンプル量から計算された。各固定化カラムのDBCを表3に示した。PG19 G41Hは他のカラムと比較してDBCが大幅に低下していた。
The dynamic binding capacity (DBC) was calculated from the amount of sample injected until the absorbance excluding non-adsorbed components at 280 nm of the eluate reached 10% of the absorbance of the injected sample. Table 3 shows the DBC of each immobilized column. PG19 G41H had a significantly reduced DBC compared to other columns.
本実施例では、実施例3で作製した組換えPG固定化カラムを用いてpH勾配アフィニティクロマトグラフィーを実施した。
組換えPG固定化カラムを液体クロマトグラフィー装置AKTAexplore (GE Healthcare Bioscience) にセットし、吸着緩衝液(20mM りん酸緩衝液、150mM 塩化ナトリウム、pH7.2)を1 ml/min の条件で流し平衡化させた後、1mg/mLに調製したヒトIgG(オリエンタル酵母)を注入した。吸着緩衝液で洗浄後、20 mM くえん酸緩衝液(pH6.0)に置換し、1.0mL/minの流速で80minかけて連続的に20mM くえん酸 (pH2.4)へ置換した。 In this example, pH gradient affinity chromatography was performed using the recombinant PG-immobilized column prepared in Example 3.
Set the recombinant PG-immobilized column in the liquid chromatography device AKTAexplore (GE Healthcare Bioscience), and equilibrate by flowing an adsorption buffer solution (20 mM phosphate buffer, 150 mM sodium chloride, pH 7.2) at 1 ml / min. Then, human IgG (oriental yeast) prepared to 1 mg / mL was injected. After washing with an adsorption buffer, the solution was replaced with 20 mM citric acid buffer (pH 6.0) and continuously with 20 mM citric acid (pH 2.4) at a flow rate of 1.0 mL / min over 80 min.
組換えPG固定化カラムを液体クロマトグラフィー装置AKTAexplore (GE Healthcare Bioscience) にセットし、吸着緩衝液(20mM りん酸緩衝液、150mM 塩化ナトリウム、pH7.2)を1 ml/min の条件で流し平衡化させた後、1mg/mLに調製したヒトIgG(オリエンタル酵母)を注入した。吸着緩衝液で洗浄後、20 mM くえん酸緩衝液(pH6.0)に置換し、1.0mL/minの流速で80minかけて連続的に20mM くえん酸 (pH2.4)へ置換した。 In this example, pH gradient affinity chromatography was performed using the recombinant PG-immobilized column prepared in Example 3.
Set the recombinant PG-immobilized column in the liquid chromatography device AKTAexplore (GE Healthcare Bioscience), and equilibrate by flowing an adsorption buffer solution (20 mM phosphate buffer, 150 mM sodium chloride, pH 7.2) at 1 ml / min. Then, human IgG (oriental yeast) prepared to 1 mg / mL was injected. After washing with an adsorption buffer, the solution was replaced with 20 mM citric acid buffer (pH 6.0) and continuously with 20 mM citric acid (pH 2.4) at a flow rate of 1.0 mL / min over 80 min.
ヒトIgG溶出ピークは、PG01固定化カラムにおいてpH3.9付近、PG19固定化カラムにおいてpH4.4付近、PG19 T25H固定化カラムにおいてpH5.0付近、PG19 E36H固定化カラムにおいてpH4.5付近、PG19 G41H固定化カラムにおいてpH6.5付近、であった(図6)。このことから、PG19 G41H固定化カラムはpH6.0より中性側でヒトIgGを溶出可能であり、PG19 T25H, PG19 E36H固定化カラムはいずれもPG19固定化カラムに比べてマイルドな酸性条件で溶出可能なことが明らかになった。
Human IgG elution peak is around pH3.9 for PG01 immobilized column, around pH4.4 for PG19 immobilized column, around pH5.0 for PG19 T25H immobilized column, around pH4.5 for PG19 E36H immobilized column, PG19 G41H It was around pH 6.5 in the immobilized column (FIG. 6). Therefore, the PG19 G41H immobilized column can elute human IgG on the neutral side from pH 6.0, and the PG19 T25H and PG19 E36H immobilized columns elute under mild acidic conditions compared to the PG19 immobilized column. It became clear that it was possible.
現在、野生型のプロテインG細胞膜外ドメインは、抗体の精製用のアフィニティクロマトグラフィー担体や抗体検出のための検査試薬として市販され、ライフサイエンスの各分野で広範に利用されている。また、近年の抗体医薬をはじめとする抗体関連産業の発展をうけて、これらの製品の需要が飛躍的に拡大している。したがって、多くのプロテインG細胞膜外ドメイン含有製品において、本発明のタンパク質を野生型と代替することにより、免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下している、という特長を利用することによって、様々な抗体を扱う広範な技術分野において、その技術発展に大いに資するものである。
Currently, the wild-type protein G extracellular domain is commercially available as an affinity chromatography carrier for antibody purification and a test reagent for antibody detection, and is widely used in each field of life science. In addition, with the recent development of antibody-related industries including antibody drugs, the demand for these products has increased dramatically. Therefore, many protein G extracellular domain-containing products utilize the advantage that the binding activity in the weakly acidic region to the Fc region of immunoglobulin G is reduced by substituting the protein of the present invention with the wild type. This greatly contributes to technological development in a wide range of technical fields dealing with various antibodies.
Claims (19)
- 免疫グロブリンGのFc領域に対する結合活性を有し、かつ、野生型プロテインG・Bドメインから成るタンパク質に比べ、プロテインGの正電荷残基の近傍の残基を正電荷残基に置換することにより免疫グロブリンGのFc領域に対する弱酸性領域での結合活性が低下したタンパク質。 Compared to the protein consisting of wild-type protein G and B domains, it has binding activity to the Fc region of immunoglobulin G. By substituting residues near the positively charged residues of protein G with positively charged residues A protein with reduced binding activity in the weakly acidic region to the Fc region of immunoglobulin G.
- 変異後のアミノ酸残基がヒスチジンである請求項1記載のタンパク質。 The protein according to claim 1, wherein the mutated amino acid residue is histidine.
- 近傍の残基が、野生型プロテインG/Fc複合体結晶構造又はそれから導かれる野生型プロテインGのドメイン変異体/Fc複合体モデル構造において、Fc領域の任意のアミノ酸残基から6オングストローム以内にある野生型プロテインG又はそのドメイン変異体の正電荷残基から6オングストローム以内にあるアミノ酸残基である、請求項1又は2記載のタンパク質。 Neighboring residues are within 6 angstroms from any amino acid residue in the Fc region in the wild type protein G / Fc complex crystal structure or the domain variant / Fc complex model structure of wild type protein G derived therefrom The protein according to claim 1 or 2, which is an amino acid residue within 6 angstroms from a positively charged residue of wild-type protein G or a domain variant thereof.
- 野生型プロテインG・Bドメインが、ストレプトコッカス属連鎖球菌のプロテインGのB1、B2、又はB3のいずれかである、請求項1~3のいずれか一項に記載のタンパク質。 The protein according to any one of claims 1 to 3, wherein the wild-type protein G · B domain is any one of B1, B2 and B3 of protein G of Streptococcus spp.
- 野生型プロテインG・Bドメインが配列番号30、そのドメイン変異体が配列番号31~38のいずれかで示されるアミノ酸配列を有する、請求項1~4のいずれか一項に記載のタンパク質。 The protein according to any one of claims 1 to 4, wherein the wild-type protein G / B domain has an amino acid sequence represented by SEQ ID NO: 30, and a domain variant thereof is represented by any one of SEQ ID NOs: 31 to 38.
- プロテインG・Bドメイン又はそのドメイン変異体の配列のうち25位、36位及び41位のアミノ酸残基にうちの少なくとも一つがヒスチジンへ変異されて成る請求項1~5のいずれか一項に記載のタンパク質。 6. The protein G / B domain or a domain variant thereof, wherein at least one of amino acid residues at positions 25, 36 and 41 is mutated to histidine. Protein.
- SPR法による測定においてpH4溶液における抗体解離率が野生型プロテインG・B又はそのドメイン変異体に比べて高いことを特徴とする、請求項1~6のいずれか一項に記載のタンパク質。 The protein according to any one of claims 1 to 6, wherein the antibody dissociation rate in the pH4 solution is higher than that of wild-type protein G · B or a domain variant thereof in the measurement by SPR method.
- 請求項1~7のいずれか一項に記載のタンパク質のタンデム型多量体であるタンパク質。 A protein that is a tandem multimer of the protein according to any one of claims 1 to 7.
- 三量体、四量体、又は五量体である、請求項6記載のタンパク質。 The protein according to claim 6, which is a trimer, a tetramer, or a pentamer.
- 多量体を構成する細胞膜外ドメイン変異体が互いに同一である、請求項8又は9記載のタンパク質。 The protein according to claim 8 or 9, wherein the extracellular domain mutants constituting the multimer are identical to each other.
- 各細胞膜外ドメイン変異体がリンカー配列によって連結されている、請求項8~10のいずれか一項に記載のタンパク質。 The protein according to any one of claims 8 to 10, wherein each extracellular domain variant is linked by a linker sequence.
- 請求項1~11のいずれか一項に記載のタンパク質のアミノ酸配列と他のタンパク質のアミノ酸配列を連結したアミノ酸配列からなる融合タンパク質であるタンパク質。 A protein which is a fusion protein comprising an amino acid sequence obtained by linking the amino acid sequence of the protein according to any one of claims 1 to 11 and the amino acid sequence of another protein.
- 配列番号21、23または24のいずれかで示されるアミノ酸配列を有する、請求項12記載のタンパク質。 The protein according to claim 12, which has an amino acid sequence represented by any one of SEQ ID NOs: 21, 23 and 24.
- 請求項1~13のいずれか一項に記載のタンパク質をコードする核酸。 A nucleic acid encoding the protein according to any one of claims 1 to 13.
- 請求項14に記載の核酸を含有する組換えベクター。 A recombinant vector containing the nucleic acid according to claim 14.
- 請求項15に記載の組換えベクターが導入された形質転換体。 A transformant into which the recombinant vector according to claim 15 has been introduced.
- 請求項1~13のいずれか一項に記載のタンパク質が水不溶性の固相支持体に固定化されていることを特徴とする、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の捕捉剤。 14. A protein having immunoglobulin F or an immunoglobulin G Fc region or Fab region, wherein the protein according to any one of claims 1 to 13 is immobilized on a water-insoluble solid phase support. Scavenger.
- 請求項17に記載の捕捉剤を含む、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質の精製用アフィニティクロマトグラフィー。 Affinity chromatography for purification of immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G, comprising the capture agent according to claim 17.
- 請求項18に記載の精製用アフィニティクロマトグラフィーを用いて、免疫グロブリンG又は免疫グロブリンGのFc領域あるいはFab領域を有するタンパク質を精製する方法。 A method for purifying immunoglobulin G or a protein having an Fc region or Fab region of immunoglobulin G using the purification affinity chromatography according to claim 18.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013262097A JP2017029001A (en) | 2013-12-19 | 2013-12-19 | Novel modified protein of extracellular domain of protein G |
JP2013-262097 | 2013-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093507A1 true WO2015093507A1 (en) | 2015-06-25 |
Family
ID=53402852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083346 WO2015093507A1 (en) | 2013-12-19 | 2014-12-17 | Novel modified protein of extracellular domain of protein g |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017029001A (en) |
WO (1) | WO2015093507A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153945A (en) * | 1992-06-25 | 1994-06-03 | Yakult Honsha Co Ltd | New protease and microorganism having new protease activity |
JP2009297018A (en) * | 2008-05-16 | 2009-12-24 | National Institute Of Advanced Industrial & Technology | Antibody-bondable protein having improved dissociation characteristic in slightly acidic region, and antibody scavenger |
JP2012531439A (en) * | 2009-06-26 | 2012-12-10 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Easily isolated bispecific antibodies with natural immunoglobulin formats |
WO2013018880A1 (en) * | 2011-08-04 | 2013-02-07 | 独立行政法人産業技術総合研究所 | Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g |
JP2013075916A (en) * | 1999-01-15 | 2013-04-25 | Biogen Idec Ma Inc | Antagonists of tweak and of tweak receptor and their use to treat immunological disorder |
-
2013
- 2013-12-19 JP JP2013262097A patent/JP2017029001A/en active Pending
-
2014
- 2014-12-17 WO PCT/JP2014/083346 patent/WO2015093507A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153945A (en) * | 1992-06-25 | 1994-06-03 | Yakult Honsha Co Ltd | New protease and microorganism having new protease activity |
JP2013075916A (en) * | 1999-01-15 | 2013-04-25 | Biogen Idec Ma Inc | Antagonists of tweak and of tweak receptor and their use to treat immunological disorder |
JP2009297018A (en) * | 2008-05-16 | 2009-12-24 | National Institute Of Advanced Industrial & Technology | Antibody-bondable protein having improved dissociation characteristic in slightly acidic region, and antibody scavenger |
JP2012531439A (en) * | 2009-06-26 | 2012-12-10 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Easily isolated bispecific antibodies with natural immunoglobulin formats |
WO2013018880A1 (en) * | 2011-08-04 | 2013-02-07 | 独立行政法人産業技術総合研究所 | Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g |
Non-Patent Citations (1)
Title |
---|
HIDEKI WATANABE ET AL.: "Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein- protein interactions.", J. BIOL. CHEM., vol. 284, no. 18, 2009, pages 12373 - 12383 * |
Also Published As
Publication number | Publication date |
---|---|
JP2017029001A (en) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229888B2 (en) | Protein A mutant protein and antibody capture agent with improved easy dissociation in weakly acidic region | |
JP5812303B2 (en) | Protein A mutant protein and antibody capture agent with reduced affinity in the acidic region | |
US20210206815A1 (en) | Alkaline stable fc-binding proteins for affinity chromatography | |
JP6181145B2 (en) | Novel immunoglobulin binding proteins with improved specificity | |
AU2016293063B2 (en) | Novel immunoglobulin-binding proteins and their use in affinity purification | |
WO2014021240A1 (en) | Scavenger containing protein formed from tandem-type multimer of mutant extracellular domain of protein g | |
WO2013018880A1 (en) | Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g | |
JP5858394B2 (en) | Antibody binding protein and antibody capture agent with improved dissociation characteristics in weakly acidic region | |
WO2015050153A1 (en) | PROTEIN COMPRISED BY LINKING BY LINKER MULTIPLE DOMAINS HAVING AFFINITY FOR PROTEINS HAVING Fc PART OF IMMUNOGLOBULIN G (IgG) | |
JP5236311B2 (en) | IgG-Fab fragment antibody binding peptide | |
JP2015019615A (en) | Novel modified protein derived from variant of outer membrane domain of cell of protein g | |
JP2015003872A (en) | Purification method of mouse igg | |
JP4481260B2 (en) | Antibody binding peptide | |
WO2015093507A1 (en) | Novel modified protein of extracellular domain of protein g | |
WO2024055988A1 (en) | Immunoglobulin binding protein and use thereof | |
JP2023533529A (en) | Immunoglobulin binding proteins for affinity purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871779 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14871779 Country of ref document: EP Kind code of ref document: A1 |