[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015093235A1 - 冷凍装置の昇華デフロストシステム及び昇華デフロスト方法 - Google Patents

冷凍装置の昇華デフロストシステム及び昇華デフロスト方法 Download PDF

Info

Publication number
WO2015093235A1
WO2015093235A1 PCT/JP2014/081044 JP2014081044W WO2015093235A1 WO 2015093235 A1 WO2015093235 A1 WO 2015093235A1 JP 2014081044 W JP2014081044 W JP 2014081044W WO 2015093235 A1 WO2015093235 A1 WO 2015093235A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
circuit
brine
circulating
Prior art date
Application number
PCT/JP2014/081044
Other languages
English (en)
French (fr)
Inventor
吉川 朝郁
神村 岳
貴弘 古舘
深野 修司
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to CN201480033284.2A priority Critical patent/CN105283720B/zh
Priority to EP14873060.9A priority patent/EP2940410B1/en
Priority to KR1020167018741A priority patent/KR101790461B1/ko
Priority to US14/904,283 priority patent/US9863677B2/en
Priority to JP2015532991A priority patent/JP5944058B2/ja
Priority to MX2015011266A priority patent/MX366606B/es
Priority to BR112015017791-3A priority patent/BR112015017791B1/pt
Publication of WO2015093235A1 publication Critical patent/WO2015093235A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/10Removing frost by spraying with fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/022Cool gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00

Definitions

  • the present disclosure is applied to a refrigeration apparatus that cools the inside of a freezer by circulating a CO 2 refrigerant in a cooler provided in the freezer, and does not dissolve frost attached to a heat exchange tube provided in the cooler.
  • the present invention relates to a sublimation defrost system for sublimation removal and a sublimation defrost method.
  • Natural refrigerants such as NH 3 and CO 2 have been reviewed as refrigerants of refrigeration equipment used for indoor air conditioning and freezing of food and the like from the viewpoint of ozone layer destruction prevention and global warming prevention. Therefore, a refrigeration system in which NH 3 having high cooling performance but having toxicity is used as a primary refrigerant and nontoxic and odorless CO 2 as a secondary refrigerant is being widely used.
  • the refrigeration apparatus connects a primary refrigerant circuit and a secondary refrigerant circuit by a cascade condenser, and exchanges heat between the NH 3 refrigerant and the CO 2 refrigerant by the cascade condenser.
  • the CO 2 refrigerant cooled and condensed by the NH 3 refrigerant is sent to a cooler provided inside the freezer.
  • the air in the freezer is cooled via a heat transfer tube provided in the cooler.
  • the partially vaporized CO 2 refrigerant returns to the cascade condenser via the secondary refrigerant circuit, and is recooled and liquefied by the cascade condenser.
  • frost adheres to the heat exchange pipe provided in the cooler, and the heat transfer efficiency decreases. Therefore, it is necessary to periodically interrupt the operation of the refrigeration system to perform defrosting.
  • Patent documents 1 and 2 disclose a defrost system of such a refrigeration system.
  • the defrost system disclosed in Patent Document 1 is provided with a heat exchanger that vaporizes a CO 2 refrigerant by the heat generated in an NH 3 refrigerant, and the heat exchange pipe in the cooler is a CO 2 hot gas generated by the heat exchanger. Circulation and defrost.
  • the defrost system disclosed in Patent Document 2 is provided with a heat exchanger for heating the CO 2 refrigerant with cooling water that has absorbed the exhaust heat of the NH 3 refrigerant, and the heated CO 2 refrigerant is used as a heat exchange pipe in the cooler. It circulates and defrosts.
  • Patent Document 3 a cooling tube is provided with a heating tube separately from the cooling tube, and warm water or warm brine is allowed to flow through the heating tube during defrost operation to dissolve and remove frost adhering to the cooling tube. Means are disclosed.
  • sublimation defrost as an ideal defrost method. In this method, the surface of the heat exchange tube is uniformly heated so as not to exceed 0 ° C., that is, the frost does not turn into water, and the frost is sublimated and removed from the surface of the heat exchange tube. If this method is realized, drains are not generated, drain pans and drainage facilities become unnecessary, and equipment costs can be significantly reduced.
  • the present applicant has previously cooled the internal air to a temperature of 0 ° C. or less and sublimated and removed the frost adhering to the heat exchange tube of the cooler in a low steam atmosphere dehumidified by the adsorption dehumidifier. (Patent Document 4).
  • the defrosting means disclosed in Patent Document 3 has a problem that the heat transfer efficiency is not high because the cooling tube is heated from the outside through plate fins and the like.
  • an NH 3 refrigerant circulates, a primary refrigerant circuit having a refrigeration cycle constituent device, and a CO 2 refrigerant circulates, and the primary refrigerant circuit is connected to the first refrigerant circuit via a cascade condenser and a secondary having a refrigeration cycle constituent device
  • a binary refrigerator comprising a refrigerant circuit
  • high temperature and pressure CO 2 gas is present in the secondary refrigerant circuit. Therefore, it considered defrosting circulating a CO 2 hot gas to the heat exchange tubes of the cooler is possible.
  • the problem is the complication and cost increase of the apparatus by providing a switching valve, a branch pipe and the like, and the instability of operation control caused by the high / low heat balance.
  • the above-described sublimation defrost needs to be uniformly heated so that the frost on the surface of the heat exchange tube does not exceed 0 ° C.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to realize reduction of initial cost and running cost required for defrosting a refrigeration system and energy saving by putting the above-mentioned sublimation defrosting method into practical use. Do.
  • a sublimation defrost system is A cooler provided inside the freezer and having a casing and a heat exchange pipe provided inside the casing; A refrigerator for cooling and liquefying the CO 2 refrigerant, A refrigerant circuit connected to the heat exchange pipe and circulating a CO 2 refrigerant cooled and liquefied by the refrigerator to the heat exchange pipe, the sublimation defrost system of the refrigeration apparatus, A dehumidifier for dehumidifying the air in the storage of the freezer; A CO 2 circulation path formed by a circulation path forming path connected to the inlet path and the outlet path of the heat exchange pipe and including the heat exchange pipe; An on-off valve provided in the inlet passage and the outlet passage of the heat exchange tube, for closing at the time of defrosting, and closing the CO 2 circulation passage; Circulation means for CO 2 refrigerant provided in the CO 2 circulation path, A first heat exchange unit configured to exchange heat between brine as a first heating medium and a CO 2 refrig
  • the configuration (1) when defrosting is performed, if the air in the storage room of the freezer has a saturated water vapor partial pressure, first, the room air is dehumidified by the dehumidifying device to reduce the water vapor partial pressure. Next, the on-off valve is closed to make the CO 2 circulation circuit a closed circuit. After that, the pressure adjusting unit adjusts the pressure of the CO 2 refrigerant circulating in the closed circuit so that the condensation temperature of the water vapor in the air in the freezer is below the freezing point of the water vapor. Then, the CO 2 refrigerant is circulated in the closed circuit by the circulation means.
  • the circulating means refers to, for example, a liquid pump or the like provided in the CO 2 circulation path in order to circulate the CO 2 refrigerant liquid in a closed circuit.
  • the pressure adjusting unit for example, a pressure sensor for detecting the pressure of the CO 2 refrigerant, or CO 2 detects the temperature of the refrigerant, by converting the saturation pressure of CO 2 refrigerant which corresponds to the temperature detection value, It has means for determining the pressure of the CO 2 refrigerant.
  • the CO 2 refrigerant circulating in the closed circuit is heated by the warm brine as a heating medium in the first heat exchange unit, and the CO 2 refrigerant is vaporized. Then, the CO 2 refrigerant vaporized in the closed circuit is circulated, and the frost adhering to the outer surface of the heat exchange pipe is sublimated and removed by the heat of the CO 2 refrigerant gas. The CO 2 refrigerant that has given heat to the frost is liquefied, and then is again heated and vaporized in the first heat exchange unit.
  • freezer includes all refrigerators and other components that form a cooling space, and the inlet and outlet passages of the heat exchange tube are the outer side of the casing from the vicinity of the partition of the casing of the cooler. And refers to the range of heat exchange tubes provided inside the freezer.
  • the conditions for sublimating the frost adhering to the outer surface of the heat exchange tube are: (1) the water vapor partial pressure of the air in the storage is not high to the saturated water vapor partial pressure, and (2) the frost temperature is below the freezing point It is a certain thing. Furthermore, as a desirable but not required condition, (3) an air flow is formed on the outer surface of the heat exchanger to dissipate the sublimated water vapor. Under these conditions, frost can be sublimated by giving heat to the frost.
  • the frost attached to the outer surface of the heat exchange pipe is heated by the heat of the CO 2 refrigerant flowing in the heat exchange pipe, uniform heating is possible in the entire heat exchange pipe.
  • the condensation temperature of the CO 2 refrigerant is controlled by adjusting the pressure of the closed circuit, the temperature of the CO 2 refrigerant gas flowing in the closed circuit can be accurately controlled, whereby the frost is accurately adjusted to a temperature below the freezing point Because it can be heated, sublimation defrost is possible.
  • the frost adhering to the heat exchange pipe is sublimated without melting, the drain pan and the drainage equipment for drain accumulated in the drain pan become unnecessary, and the cost of the refrigeration system can be significantly reduced.
  • the frost adhering to the heat exchange pipe is heated from the inside only through the pipe wall of the heat exchange pipe, the heat exchange efficiency can be improved, and energy saving becomes possible.
  • the CO 2 refrigerant can be defrosted in a low pressure state corresponding to the condensation temperature of the freezing point of the steam in the storage, it is not necessary to provide pressure resistance to piping equipment such as the CO 2 circulation path, and the cost does not increase.
  • the circulation path forming path is a defrost circuit branched from the inlet path and the outlet path of the heat exchange pipe,
  • the heat exchange unit is formed in the defrost circuit. According to the configuration (2), the degree of freedom of the installation place of the first heat exchange unit can be expanded by providing the defrost circuit.
  • the circulation path is a bypass path connected between an inlet and an outlet of the heat exchange pipe,
  • the heat exchange unit is formed in a partial area of the heat exchange tube.
  • the CO 2 circulation path can be configured by only the heat exchange pipe except for the bypass path. Therefore, it is not necessary to provide a new pipeline except for the bypass in order to form the CO 2 circulation route, and the cost does not increase.
  • the CO 2 circulation path is formed with a height difference
  • the first heat exchange unit is formed in the lower region of the CO 2 circulation path
  • the circulating means naturally circulates the CO 2 refrigerant in the closed circuit at the time of defrosting by thermosiphon action.
  • the brine as the heating medium heats and vaporizes the CO 2 refrigerant present in the lower region of the heat exchange pipe.
  • the vaporized CO 2 refrigerant raises the closed circuit by thermosiphon action.
  • the CO 2 refrigerant which has risen to the upper region of the closed circuit heats and sublimes and removes the frost adhering to the outer surface of the heat exchange tube, and the CO 2 refrigerant itself is liquefied.
  • the liquefied CO 2 refrigerant descends by gravity.
  • a second heat exchange unit for heating the brine with a second heating medium A brine circuit connected to the first heat exchange unit and the second heat exchange unit for circulating the brine heated in the second heat exchange unit to the first heat exchange unit;
  • the second heating medium may be, for example, any of high-temperature and high-pressure refrigerant gas discharged from a compressor constituting a refrigerator, warm drainage of a factory, heat generated from a boiler, or a medium having absorbed heat of an oil cooler.
  • a heating medium can be used.
  • the heat exchange tubes are disposed with a height difference inside the cooler,
  • the brine circuit is disposed in the lower region of the heat exchange tube inside the cooler,
  • the first heat exchange portion is formed between the brine circuit and the lower region of the heat exchange tube.
  • the brine circuit is not disposed in the upper region of the heat exchange tube, the power of the fan for forming the air flow inside the cooler can be reduced, and the heat exchange tube is provided in the remaining space of the upper region. Can increase the cooling capacity of the cooler.
  • the heat exchange tube and the brine circuit are arranged with a difference in height inside the cooler, and the brine circuit is configured to flow the brine from the lower side to the upper side,
  • a flow control valve is provided at an intermediate portion in the vertical direction of the brine circuit, and the first heat exchange unit is formed by the brine circuit upstream of the flow control valve.
  • the flow rate of the brine is reduced by the flow rate control valve, and the flow rate of the brine flowing into the upper region of the brine circuit is limited to form the first heat exchange portion in the lower region Can be limited to
  • frost can be removed by sublimation while naturally circulating a CO 2 refrigerant by thermosiphon action inside the heat exchange tube.
  • the system further comprises a first temperature sensor and a second temperature sensor provided at the inlet and the outlet of the brine circuit, respectively, for detecting the temperature of the brine flowing through the inlet and the outlet.
  • a first temperature sensor and a second temperature sensor provided at the inlet and the outlet of the brine circuit, respectively, for detecting the temperature of the brine flowing through the inlet and the outlet.
  • the pressure adjustment unit is A pressure sensor for detecting the pressure of the CO 2 refrigerant circulating in the closed circuit; A pressure control valve provided at an outlet of the heat exchange pipe; The value detected by the pressure sensor is input, and the opening degree of the pressure control valve is set so that the condensation temperature of the CO 2 refrigerant circulating in the closed circuit becomes a condensation temperature below the freezing point of water vapor in the air inside the freezer. And a control device for controlling. According to the configuration (9), the pressure of the CO 2 refrigerant circulating in the closed circuit can be accurately controlled by the control device.
  • the refrigerator is A primary refrigerant circuit in which an NH 3 refrigerant is circulated and a refrigeration cycle component is provided;
  • a CO 2 refrigerant circulates and is guided to the cooler, and a secondary refrigerant circuit connected to the primary refrigerant circuit via a cascade condenser, Provided in the secondary refrigerant circuit sends CO 2 liquid receiver for storing the CO 2 refrigerant liquefied in the cascade condenser, and the CO 2 refrigerant stored in the CO 2 receiver to the cooler And a fluid pump.
  • the refrigerator since the refrigerator is a natural refrigerant of NH 3 and CO 2 , it can contribute to ozone layer destruction prevention, global warming prevention and the like.
  • NH 3 with high cooling performance but having toxicity is used as the primary refrigerant
  • nontoxic and odorless CO 2 is used as the secondary refrigerant, so it is used for indoor air conditioning and refrigeration of food while maintaining high cooling performance.
  • the refrigerator is A primary refrigerant circuit in which an NH 3 refrigerant is circulated and a refrigeration cycle component is provided;
  • the CO 2 refrigerant circulates, is guided to the cooler, and is connected to the primary refrigerant circuit via a cascade condenser, and a secondary refrigerant circuit provided with a refrigeration cycle component device;
  • NH 3 / It is a CO 2 two- stage refrigerator.
  • the configuration (11) by using the natural refrigerant, it is possible to contribute to the prevention of ozone layer destruction, global warming, etc., and since nontoxic and odorless CO 2 is used as the secondary refrigerant, high cooling performance is maintained. However, it can be used for indoor air conditioning and freezing of food and the like. Furthermore, since it is a binary refrigerator, the COP of the refrigerator can be improved.
  • the primary refrigerant circuit further comprises a cooling water circuit conducted to a condenser provided as a part of the refrigeration cycle component equipment
  • the second heat exchange unit is a heat exchanger which is provided with the cooling water circuit and the brine circuit and heats the brine circulating in the brine circuit with the cooling water heated by the condenser.
  • the brine can be heated by the condenser-heated cooling water, a heating source outside the refrigeration apparatus is not necessary. Further, since the temperature of the cooling water can be lowered by the brine during the defrosting operation, the condensing temperature of the NH 3 refrigerant can be lowered during the freezing operation, and the COP of the refrigerator can be improved. Furthermore, in an exemplary embodiment in which the cooling water circuit is disposed between the condenser and the cooling tower, the second heat exchange unit may be provided in the cooling tower, whereby it is used for defrosting. Installation space can be reduced.
  • the second heat exchange unit is The heating tower is integrated with the cooling tower, and comprises a heating tower for introducing the sprinkled water and exchanging heat between the sprinkled water and the brine circulating in the brine circuit. According to the above configuration (13), the installation space of the second heat exchange unit can be reduced by integrating the heating tower with the cooling tower.
  • the sublimation defrost method is A sublimation defrost method using a sublimation defrost system having the above configurations (1) to (13), wherein A first step of dehumidifying the air inside the freezer so as not to be saturated water vapor partial pressure by the dehumidifying device; A second step of forming the closed circuit by closing the on-off valve at the time of defrosting; A third step of pressure-adjusting the CO 2 refrigerant so that the CO 2 refrigerant circulating in the closed circuit has a condensation temperature below the freezing point of water vapor in air in the freezer's interior; A fourth step of vaporizing the CO 2 refrigerant by heat exchange between the brine as a heating medium and the CO 2 refrigerant circulating in the closed circuit; And D. a fifth step of circulating the CO 2 refrigerant vaporized in the fourth step through the closed circuit, and sublimation-removing the frost adhering to the outer surface of the heat exchange pipe with
  • the fourth step is to exchange heat between the brine and the CO 2 refrigerant circulating in the closed circuit in the lower region of the closed circuit formed with a level difference;
  • the fifth step is to naturally circulate the CO 2 refrigerant in the closed circuit by thermosiphon action.
  • the present invention it is possible to sublime and defrost the frost adhering to the surface of the heat exchange tube of the cooler, so that drain pan and drain drainage equipment become unnecessary. Further, since draining work becomes unnecessary, it is possible to reduce the initial cost and running cost required for defrosting and save energy.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • Refrigerating apparatuses 10A to 10D used in these embodiments include coolers 33a and 33b respectively provided inside freezers 30a and 30b, refrigerators 11A to 11D for cooling and liquefying a CO 2 refrigerant, and the refrigerators And a refrigerant circuit (corresponding to the secondary refrigerant circuit 14) for circulating the liquefied CO 2 refrigerant to the coolers 33a and 33b.
  • the coolers 33a and 33b have casings 34a and 34b and heat exchange pipes 42a and 42b disposed inside the casings.
  • the insides of the freezers 30a and 30b are maintained at a low temperature of, for example, ⁇ 25 ° C. during the freezing operation.
  • the heat exchange pipes 42a and 42b are conducted from the outside of the casings 34a and 34b to the inside of the casings 34a and 34b.
  • the regions of the heat exchange pipes 42a and 42b disposed inside the freezers 30a and 30b outside the partition walls of the casings 34a and 34b are referred to as an inlet pipe 42c and an outlet pipe 42d.
  • dehumidifiers 38a and 38b for dehumidifying the air in the storage are provided.
  • Dehumidifiers 38a and 38b are, in some embodiments shown in FIGS. 1-9, adsorption dehumidifiers.
  • An adsorption type dehumidifier is, for example, constituted by a rotary rotor carrying an adsorbent on the surface, and in a part of the area of the rotary rotor, a step of adsorbing water vapor from air in the storage and It is a desiccant rotor type dehumidifier that simultaneously and continuously carries out the process of desorbing water vapor.
  • Outside air a is supplied to the dehumidifiers 38a and 38b, and the water vapor s is adsorbed from the air in the storage and discharged to the outside, and the low-temperature dry air d is discharged into the storage.
  • a CO 2 circulation path is formed by the circulation path formation path connected to the inlet pipe 42 c and the outlet pipe 42 d of the heat exchange pipes 42 a and 42 b.
  • the circulation path is the defrosting circuits 50a and 50b connected to the inlet pipe and the outlet pipe of the heat exchange pipes 42a and 42b, and the embodiments shown in FIGS. In form, they are bypass pipes 72a and 72b connected to the inlet and outlet pipes of the heat exchange pipes 42a and 42b.
  • the inlet pipe 42c and the outlet pipe 42d of the heat exchange pipes 42a and 42b are provided with on-off valves for closing the CO 2 circulation path at the time of defrosting.
  • the on-off valves are, in some embodiments shown in FIGS. 1-9, electromagnetic on-off valves 54a and 54b.
  • two openings for ventilation are formed in the casings 34a and 34b, and fans 35a and 35b are provided in one of the openings.
  • the operation of the fans 35a and 35b creates an air flow that flows in and out of the casings 34a and 34b.
  • the heat exchange tubes 42a and 42b are arranged, for example, in a serpentine shape in the horizontal direction and the vertical direction.
  • pressure adjusting units 45a and 45b are provided to store the pressure of the CO 2 refrigerant circulating in the closed circuit at the time of defrosting.
  • the closed circuit CO 2 refrigerant is pressure-controlled by the pressure control units 45a and 45b to have a condensation temperature lower than the freezing point (for example, 0 ° C.) of water vapor present inside the freezers 30a and 30b.
  • pressure regulators 45a and 45b include pressure sensors 46a and 46b for detecting the pressure of the CO 2 refrigerant circulating in the closed circuit.
  • the detection values of the pressure control valves 48a and 48b provided in the outlet pipe 42d and the pressure sensors 46a and 46b are input, and the condensation temperature of the CO 2 refrigerant circulating in the closed circuit is in the air inside the freezer 30a and 30b.
  • the control devices 47a and 47b control the opening degree of the pressure control valves 48a and 48b so that the condensation temperature below the freezing point of water vapor is obtained.
  • the pressure control valves 48a and 48b are provided in parallel to the solenoid on-off valves 52a and 52b.
  • the pressure sensors 46a and 46b are provided in the outlet pipe 42d upstream of the pressure control valves 48a and 48b.
  • the control devices 47a and 47b control the condensation temperature of the CO 2 refrigerant circulating in the closed circuit to be a condensation temperature below the freezing point of the water vapor in the air in the freezer 30a and 30b according to the detected value of the pressure sensor.
  • the pressure control valves 48a and 48b are controlled to control the pressure of the CO 2 refrigerant.
  • the CO 2 refrigerant is circulated by the circulation means in the closed circuit.
  • the circulation means is, for example, a liquid pump provided in the CO 2 circulation path, or, as employed in some embodiments shown in FIGS. 1 to 10, not forced circulation means.
  • a CO 2 refrigerant is naturally circulated by thermosiphon action.
  • a first heat exchange unit which heats and vaporizes the CO 2 refrigerant circulating in the CO 2 circulation path using brine as the heating medium.
  • the first heat exchange unit is a heat exchanger 70a and 70b in which the defrost circuits 50a and 50b and the brine branch circuits 61a and 61b branched from the brine circuit 60 are conducted. is there.
  • the embodiment shown in FIGS. 2 to 6 is a heat exchange portion constituted by lower regions of the heat exchange tubes 42a and 42b and brine branch circuits 63a, 61b or 80a, 80b provided in the lower regions.
  • aqueous solution such as ethylene glycol and propylene glycol, can be used, for example.
  • the circulation path forming path is provided with defrost circuits 50a and 50b, and heat exchangers 70a and 70b are provided as the first heat exchange unit.
  • bypass pipes 72a and 72b are provided as the circulation path forming path, and are conducted to the lower area and the lower area of the heat exchange pipes 42a and 42b as the first heat exchange section.
  • a heat exchange portion is formed which is constituted by the brine branch circuits 61a and 61b.
  • the CO 2 circulation path is formed with a height difference in the vertical direction, and the first heat exchange portion is formed in the lower region of the CO 2 circulation path. That is, in the embodiment shown in FIGS. 1 and 9, the defrost circuits 50a and 50b are disposed below the coolers 33a and 33b, thereby providing a difference in height between the CO 2 circulation paths. In the embodiment shown in FIGS. 2 to 6, the heat exchange pipes 42a and 42b forming the CO 2 circulation path are arranged with a height difference.
  • the CO 2 refrigerant can be naturally circulated by thermosiphon action in a closed circuit formed at the time of defrosting. That is, the CO 2 refrigerant gas vaporized in the first heat exchange unit rises by the thermosiphon action.
  • the elevated CO 2 refrigerant gas exchanges heat with the frost adhering to the outer surface of the heat exchanger in the heat exchange tubes 42a and 42b or the upper region of the heat exchange tubes to sublime and dehumidify the frost.
  • the CO 2 refrigerant loses its own heat and is liquefied, and the liquefied CO 2 refrigerant descends the CO 2 circulation path by gravity.
  • the loop thermosyphon is activated and the CO 2 refrigerant circulates naturally in the closed circuit.
  • a second heat exchange unit (corresponding to the heat exchanger 58) for heat exchange between the brine and the heating medium (cooling water) and heating the brine;
  • a brine circuit 60 (indicated by a broken line) connected to the second heat exchange unit and the first heat exchange unit is provided to circulate the brine heated in the second heat exchange unit to the first heat exchange unit.
  • the brine circuit 60 is branched outside the freezers 30a and 30b into brine branch circuits 61a and 61b (indicated by broken lines).
  • the brine branch circuits 61a and 61b are conducted to the heat exchangers 70a and 70b, and in the embodiment shown in FIGS. 2 to 6, the freezers 30a and 30b are connected via the connection 62. Is connected to a brine branch circuit 63a, 63b or 80a, 80b (indicated by a broken line) provided inside.
  • the heat exchange tubes 42a and 42b are arranged with differences in height inside the coolers 33a and 33b.
  • the brine branch circuits 63a and 63b are conducted inside the coolers 33a and 33b, and are disposed in the lower regions of the heat exchange pipes 42a and 42b.
  • the brine branch circuits 63a and 63b are disposed in the lower area of 1/3 to 1/5 of the area in which the heat exchange tubes 42a and 42b are disposed.
  • the first heat exchange portion is formed between the brine branch circuits 63a and 63b and the lower regions of the heat exchange tubes 42a and 42b.
  • ventilation openings are formed in the upper surface and the side surface (not shown) of the casing 34a, and the internal air c flows in from the side surface and flows out from the upper surface.
  • ventilation openings are formed on both side surfaces, and the internal air c flows in and out of the casing 34a through the both side surfaces.
  • the heat exchange tubes 42a, 42b and the brine branch circuits 80a, 80b are arranged with differences in height inside the coolers 33a and 33b. Further, in the brine branch circuits 80a and 80b, the brine flows from the lower side to the upper side. Further, flow rate adjustment valves 82a and 82b are provided at middle positions in the vertical direction of the brine branch circuits 61a and 61b.
  • a heat exchange part can be formed.
  • temperature sensors 66 and 68 are provided at the inlet and outlet, respectively, of the brine circuit 60, which allow the temperature of the brine flowing through the inlet and outlet to be measured. If the difference between the detection values of these temperature sensors is reduced, it can be determined that the defrost is near completion. Therefore, a threshold (for example, 2 to 3 ° C.) is set to the difference between the detected values, and when the difference between the detected values becomes equal to or less than the threshold, it may be determined that the defrosting is completed. In the embodiment shown in FIGS.
  • a receiver (open brine tank) 64 for temporarily storing brine in the outward path of the brine circuit 60 and a brine pump 65 for circulating the brine are provided.
  • an expansion tank 92 is provided instead of the receiver 64 for absorption of pressure fluctuation, flow adjustment of brine, and the like.
  • the refrigeration systems 10A-10C include a refrigerator 11A.
  • Refrigerator 11A is, NH 3 refrigerant is circulated, the primary refrigerant circuit 12 a refrigeration cycle component devices are provided, CO 2 refrigerant is circulated and a secondary refrigerant circuit 14 which is extended to the condenser 33a and 33b Have.
  • the secondary refrigerant circuit 14 is connected to the primary refrigerant circuit 12 via a cascade condenser 24.
  • the refrigeration cycle component provided in the primary refrigerant circuit 12 comprises a compressor 16, a condenser 18, an NH 3 receiver 20, an expansion valve 22 and a cascade condenser 24.
  • a secondary refrigerant circuit 14 the CO 2 receiver 36 CO 2 refrigerant liquid liquefied by the cascade condenser 24 is temporarily stored, the heat exchange tubes of CO 2 refrigerant liquid retained in the CO 2 receiver 36
  • a CO 2 liquid pump 37 is provided to circulate through 42a and 42b.
  • a CO 2 circulation path 44 is provided between the cascade condenser 24 and the CO 2 receiver 36. From CO 2 receiver 36 via the CO 2 circulation path 44 CO 2 refrigerant gas introduced into the cascade condenser 24 returns cooled by NH 3 refrigerant cascade condenser 24 liquefied in the CO 2 receiver 36.
  • a refrigerator 11B can be provided instead of the refrigerator 11A.
  • a low-stage compressor 16b and a high-stage compressor 16a are provided in a primary refrigerant circuit 12 in which NH 3 refrigerant circulates, and the primary refrigerant circuit 12 between the low-stage compressor 16b and the high-stage compressor 16a is provided
  • An intercooler 84 is provided.
  • a branch passage 12a branches from the primary refrigerant circuit 12, and an intermediate expansion valve 86 is provided in the branch passage 12a. The NH 3 refrigerant flowing in the branch path 12 a is expanded and cooled by the intermediate expansion valve 86 and introduced into the intercooler 84.
  • the NH 3 refrigerant discharged from the low-stage compressor 16b is cooled by the NH 3 refrigerant introduced from the branch passage 12a.
  • the COP (coefficient of performance) of the refrigerator 11B can be improved.
  • a refrigerator 11C can be provided instead of the refrigerator 11A.
  • the refrigerator 11C constitutes a binary refrigeration cycle.
  • a high-level compressor 88 a and an expansion valve 22 a are provided in the primary refrigerant circuit 12 in which the NH 3 refrigerant circulates.
  • a low-pressure compressor 88 b and an expansion valve 22 b are provided in the secondary refrigerant circuit 14 which is connected to the primary refrigerant circuit 12 via the cascade condenser 24 and in which the CO 2 refrigerant circulates.
  • the refrigerator 11 ⁇ / b> C is a binary refrigerator in which each of the primary refrigerant circuit 12 and the secondary refrigerant circuit 14 constitutes a mechanical compression type refrigeration cycle, so that the COP of the refrigerator can be improved.
  • the refrigeration systems 10A-10C include a refrigerator 11A.
  • the cooling water circuit 28 is conducted to the condenser 18.
  • a cooling water branch circuit 56 having a cooling water pump 57 is branched to the cooling water circuit 28, and the cooling water branch circuit 56 and the brine circuit 60 (indicated by broken lines) are conducted to the heat exchanger 58 as the second heat exchange unit. It is done.
  • the coolant circulating in the coolant circuit 28 is heated by the NH 3 refrigerant in the condenser 18.
  • the heated cooling water heats the brine circulating in the brine circuit 60 in the heat exchanger 58 at the time of defrosting as the heating medium.
  • the brine can be heated to 15 to 20 ° C. by this cooling water.
  • a high temperature / high pressure NH 3 refrigerant gas discharged from the compressor 16 a warm drainage of a factory, a heat generated from a boiler or a stored heat of an oil cooler
  • Arbitrary heating media such as a medium which absorbed, can be used.
  • a cooling water circuit 28 is provided between the condenser 18 and the enclosed cooling tower 26.
  • the coolant is circulated through the coolant circuit 28 by a coolant pump 29.
  • the cooling water which has absorbed the exhaust heat of the NH 3 refrigerant in the condenser 18 is cooled by the latent heat of vaporization of the water sprayed in the closed cooling tower 26 while being in contact with the outside air.
  • the closed cooling tower 26 has a cooling coil 26a connected to the cooling water circuit 28, a fan 26b for ventilating the outside air a to the cooling coil 26a, and a water sprinkling pipe 26c and a pump 26d for dispersing the cooling water to the cooling coil 26a. doing. Part of the cooling water sprayed from the water spray pipe 26c is evaporated, and the latent heat of evaporation is used to cool the cooling water flowing through the cooling coil 26a.
  • the refrigerator 11D provided in the refrigerator 10D has a closed cooling heating unit 90 in which the closed cooling tower 26 and the closed heating tower 91 are integrated.
  • the closed cooling tower 26 cools the cooling water circulating in the cooling water circuit 28 with the spread water, and its basic configuration is the same as the closed cooling tower 26 shown in FIGS. 1 to 6.
  • the enclosed heating tower 91 introduces the sprinkled water used for cooling the cooling water circulating in the cooling water circuit 28 in the enclosed cooling tower 26 and exchanges heat between the scattered water and the brine circulated in the brine circuit 60. .
  • the enclosed heating tower 91 has a heating coil 91a connected to the brine circuit 60, and a water sprinkling pipe 91c and a pump 91d for dispersing cooling water to the cooling coil 91a.
  • the inside of the closed cooling tower 26 and the inside of the closed heating tower 91 communicate with each other at the lower part of the shared housing.
  • the spread water which has absorbed the exhaust heat of the NH 3 refrigerant circulating in the primary refrigerant circuit 12 is dispersed from the water spray pipe 91c to the cooling coil 91a, and becomes a heating medium for heating the brine circulating in the heating coil 91a and the brine circuit 60.
  • the secondary refrigerant circuit 14 branches into CO 2 branch circuits 40a and 40b.
  • the CO 2 branch circuits 40a and 40b are connected to the inlet and outlet pipes of the heat exchange pipes 42a and 42b outside the freezers 30a and 30b.
  • the brine branch circuits 61a and 61b are conducted to the heat exchangers 70a and 70b provided inside the freezers 30a and 30b.
  • the dehumidifiers 38a and 38b are operated to dehumidify so as to have a low steam partial pressure.
  • the electromagnetic on-off valves 52a and 52b are closed, and the CO 2 circulation path constituted by the heat exchange pipes 42a and 42b and the defrost circuits 50a and 50b is closed.
  • control device 47a and 47b detected value of the pressure sensor 46a and 46b are input to the control device 47a and 47b operates the pressure regulating valve 48a and 48b based on the detected value, CO 2 refrigerant circulating in the closed circuit
  • the pressure of the CO 2 refrigerant is adjusted so that the condensation temperature of the water vapor in the air in the cold storage is below the freezing point (eg, 0 ° C.).
  • the CO 2 refrigerant is pressurized to 3.0 MPa (condensing temperature: -5 ° C.).
  • the vaporized CO 2 refrigerant is circulated in a closed circuit, and the frost adhering to the outer surfaces of the heat exchange tubes 42 a and 42 b is the latent heat of condensation of the CO 2 refrigerant (249 kJ / kg at ⁇ 5 ° C./3.0 MPa) Remove by sublimation.
  • the lower limit value of the condensation temperature of the CO 2 refrigerant adjusted to sublime frost is the temperature inside the refrigerator (eg, -25 ° C.).
  • a CO 2 refrigerant eg, -30 ° C.
  • a CO 2 refrigerant having a temperature equal to or lower than the internal temperature
  • the temperature of the frost also becomes lower than the temperature in the storage (for example, -25 ° C to -30 ° C), so the condensation temperature of the CO 2 refrigerant is in the range from the temperature in the storage to the freezing point of the steam existing in the storage
  • frost can be heated and sublimed.
  • the defrost circuits 50a and 50b are provided below the heat exchange pipes 42a and 42b, and the CO 2 circulation path has a height difference. Therefore, the CO 2 refrigerant vaporized in the heat exchangers 70a and 70b rises to the heat exchange pipes 42a and 42b by the thermosiphon action.
  • the CO 2 refrigerant gas which has risen to the heat exchange pipes 42a and 42b sublimes the frost adhering to the outer surfaces of the heat exchange pipes 42a and 42b by its own heat, and the CO 2 refrigerant is liquefied.
  • the liquefied CO 2 refrigerant descends the defrost circuits 50a and 50b by gravity, and is again vaporized in the heat exchangers 70a and 70b.
  • the heat exchange pipes 42a and 42b and the brine branch circuits 63a and 63b or 80a and 80b are provided inside the coolers 33a and 33b. It is arranged with the height difference. Further, outside the casings 34a and 34b, bypass pipes 72a and 72b are connected between the inlet and outlet pipes of the heat exchange pipes 42a and 42b, and the solenoid valves 74a and 74b are provided on the bypass pipes 72a and 72b. ing. In the inlet pipe, electromagnetic switching valves 54a and 54b are provided upstream of the bypass pipes 52a and 52b, and in the outlet pipe, electromagnetic switching valves 54a and 54b are provided downstream of the bypass pipes 52a and 52b.
  • brine branch circuits 63a and 63b are conducted in the lower region of heat exchange tubes 42a and 42b, and a heat exchange portion is formed by the lower regions of heat exchange tubes 42a and 42b and brine branch circuits 63a and 63b. ing.
  • the brine branch circuits 80a and 80b are disposed substantially over the entire region where the heat exchange pipes 42a and 42b are disposed, and the flow rate adjustment valve 82a is provided at the middle portion in the vertical direction of the brine branch circuits 80a and 80b. And 82b are provided.
  • the brine branch circuits 80a and 80b form a flow path for the brine b to flow from the lower region to the upper region.
  • the heat exchange tubes 42a, 42b and the brine branch circuits 63a, 63b and 80a, 80b are serpentine and horizontal Arranged in the direction, and arranged in the vertical direction.
  • the brine branch circuits 80a and 80b form a flow path for the brine b to flow from the lower region to the upper region.
  • the heat exchange pipe 42a has headers 43a and 43b in the inlet pipe 42c and the outlet pipe 42d outside the cooler 33a.
  • the brine branch circuits 63a and 80a are provided with headers 78a and 78b at the inlet and outlet of the cooler 33a.
  • a large number of plate fins 76a are provided in the vertical direction inside the cooler 33a.
  • the heat exchange pipe 42a and the brine branch circuit 63a or 80a are inserted into a large number of holes formed in the plate fin 76a and supported by the plate fin 76a.
  • the support strength of the piping can be enhanced, and heat transfer between the heat exchange pipe 42a and the brine branch circuit 63a or 80a is promoted.
  • the internal air c cooled by the cooler 33a is diffused to the inside of the freezer 32a by the fan 35a. Note that no drain pan is provided below the casing 34a because no dissolved water is generated at the time of defrosting.
  • the configuration of the cooler 33a described above is the same as that of the cooler 33b.
  • the inlet pipe 42c and the outlet pipe 42d of the heat exchange pipes 42a and 42b are connected to the CO 2 branch circuits 40a and 40b via the connection portion 41 outside the freezers 30a and 30b.
  • the brine branch circuits 63a, 63b and 80a, 80b are connected to the brine branch circuits 61a and 61b via connections 62 outside the freezers 30a and 30b.
  • the casings 34a and 34b of the freezers 30a and 30b, the heat exchange pipes 42a and 42b including the inlet pipe 42c and the outlet pipe 42d, the brine branch circuits 63a and 63b, and the bypass pipes 72a and 72b are integrally configured.
  • the cooling units 31a and 31b are configured.
  • the casings 34a and 34b of the freezers 30a and 30b, the heat exchange pipes 42a and 42b including the inlet pipe 42c and the outlet pipe 42d, the brine branch circuits 80a and 80b, and the bypass pipes 72a and 72b are integrally configured.
  • the configured cooling units 32a and 32b are configured.
  • the cooling units 31 a, 31 b or 32 a, 32 b are detachably connected to the CO 2 branch circuits 40 a, 40 b and the brine branch circuits 61 a, 61 b via the connection portions 41 and 62.
  • the solenoid on-off valves 74a and 74b are closed, and the solenoid on-off valves 52a and 52b are opened.
  • the solenoid on-off valves 74a and 74b are opened, the solenoid on-off valves 52a and 52b are closed, and a closed circuit composed of heat exchange pipes 42a and 42b and bypass pipes 72a and 72b is formed.
  • the CO 2 refrigerant is vaporized in the lower region of the heat exchange pipes 42a and 42b by the heat stored in the brine flowing in the brine branch circuits 63a and 63b.
  • the vaporized CO 2 refrigerant ascends to the upper region of the heat exchange tubes 42a and 42b to sublime and remove the frost adhering to the outer surfaces of the heat exchange tubes 42a and 42b.
  • the CO 2 refrigerant which has sublimed and dehumidified frost is liquefied, descends by gravity, and is vaporized again in the lower region.
  • the CO 2 refrigerant is naturally circulated by thermosiphon action.
  • the opening degree of the flow control valves 82a and 82b is squeezed to restrict the flow of the brine b so that the CO 2 refrigerant and the brine are only in the upstream region (lower region) And a heat exchange unit for heat exchange with each other. Therefore, the CO 2 refrigerant is naturally circulated by thermosiphon action between the regions of the heat exchange pipes 42 a and 42 b corresponding to the upstream region and the downstream region of the flow rate adjustment valves 82 a and 82 b, and the retained heat of the circulated CO 2 refrigerant The frost can be removed by sublimation.
  • the heat exchange pipes Uniform heating is possible over the entire area. Further, by controlling the pressure of the closed circuit, the temperature of the CO 2 refrigerant gas flowing through the closed circuit can be precisely controlled to control the condensation temperature of the CO 2 refrigerant, thereby making the frost to a temperature below the freezing point. Since accurate heating is possible, sublimation defrosting becomes possible. At the time of defrosting, sublimation can be promoted by forming an air flow flowing inside and outside the casings 34a and 34b by the operation of the fans 35a and 35b.
  • the frost adhering to the heat exchange pipes 42a and 42b is not melted and is sublimated, drainage facilities for drain pan and drain collected in the drain pan become unnecessary, and the cost of the refrigeration system can be significantly reduced. Further, since the frost adhering to the heat exchange pipes 42a and 42b is heated from the inside only through the pipe wall of the heat exchange pipes, the heat exchange efficiency can be improved, and energy saving becomes possible. In addition, since the CO 2 refrigerant can be defrosted in a low pressure state, it is not necessary to provide pressure resistance to the piping system such as the CO 2 circulation path, and the cost does not increase.
  • the CO 2 circulation path is formed only by the heat exchange pipes 42a and 42b except for the bypass pipes 72a and 72b, so that it is not necessary to provide a new pipe line, resulting in high cost. .
  • the heat exchange portion with the brine is formed in the lower region of the heat exchange tubes 42a and 42b, and the CO 2 refrigerant is naturally circulated by thermosiphon action. And 72b, and the need for equipment for forced circulation is not required, so that the cost of the coolers 33a and 33b can be reduced.
  • the brine branch circuits 63a and 63b are not disposed in the upper region of the heat exchange pipes 42a and 42b, the power of the fans 35a and 35b for forming the air flow inside the coolers 33a and 33b can be reduced.
  • the heat exchange pipes 42a and 42b can be provided in the remaining space in the upper region, and the cooling capacity of the coolers 33a and 33b can be enhanced.
  • the brine flow rate is reduced by the flow rate adjustment valves 82a and 82b while the brine branch circuits 80a and 80b are provided all over the heat exchange pipes 42a and 42b in the vertical direction.
  • the formation of the heat exchange portion can be limited only to the lower region of the heat exchange tubes 42a and 42b. Therefore, the sublimation defrost can be performed by a simple modification in which the flow control valves 82a and 82b are attached to the existing cooler.
  • the pressure adjusting parts 45a and 45b are provided as pressure adjusting means for the CO 2 refrigerant circulating in the closed circuit, thereby simplifying and reducing the cost. Accurate pressure adjustment is possible.
  • the cooling water circuit 28 is conducted to the heat exchanger 58, and the cooling water heated by the condenser 18 is used as a heating medium for heating the brine. Therefore, no heating source outside the refrigeration system is required.
  • the heat exchanger 58 can be provided inside the closed cooling tower 26, which can reduce the installation space of the device used for defrosting.
  • the installation space of the second heat exchange unit can be reduced.
  • the heating tower alone can cool the cooling water by the outside air and heat the brine using the outside air as a heat source.
  • the cooling units 31a, 31b and 32a, 32b of the above configuration attachment of the coolers 33a and 33b with the defroster to the freezers 30a and 30b is facilitated, and these cooling units are assembled in advance integrally. This further facilitates attachment to the freezers 30a and 30b.
  • FIG. 10 shows still another embodiment, in which the handling room 100 is adjacent to the freezer 30 of this embodiment.
  • the cooler 33 includes the casing 34, the heat exchange pipe 42, the brine branch circuits 61 and 63, the CO 2 branch circuit 40, and the like of the above configuration.
  • a dehumidifying device 38 such as, for example, a desiccant dehumidifier is provided in each of the freezer 30 and the handling chamber 100, and the dehumidifying device 38 introduces outside air a from the outside and discharges the water vapor s from the room. Low-temperature dry air d is supplied to the room.
  • the loading room 100 is kept at, for example, + 5 ° C., and an electrically-operated insulation door 102 is provided at the entrance to the freezer 30 from the loading room 100 to minimize water vapor injection into the freezer 30 when the door is opened or closed. ing.
  • the relative humidity is 100% and the absolute humidity is 0.4 g / kg
  • the relative humidity is 25% and the absolute humidity is 0 It is .1 g / kg. Therefore, the value of 2.25 kg obtained by multiplying the absolute humidity difference by the volume of the freezer 30 is the amount of water vapor that can be stored. Therefore, by setting the relative humidity of the air in the storage to 25%, sublimation defrosting is sufficiently possible.
  • the present invention by realizing the sublimation defrost, it is possible to realize the reduction of the initial cost and the running cost required for the defrosting of the refrigeration system and the energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Defrosting Systems (AREA)

Abstract

冷凍庫の内部に設けられ、ケーシング及び該ケーシングの内部に設けられた熱交換管を有する冷却器と、CO冷媒を冷却液化する冷凍機と、熱交換管に接続され、冷凍機で冷却液化されたCO冷媒を熱交換管に循環させる冷媒回路とを有する冷凍装置の昇華デフロストシステムである。冷凍庫の庫内空気を除湿するための除湿装置と、熱交換管の入口路及び出口路に接続された循環路形成路によって形成されるCO循環路と、熱交換管の入口路及び出口路に設けられ、デフロスト時に閉じて前記CO循環路を閉回路とする開閉弁と、CO循環路に設けられたCO冷媒の循環手段と、温ブラインとCO循環路を循環するCO冷媒とを熱交換させる第1熱交換部と、デフロスト時に閉回路を循環するCO冷媒の凝縮温度が冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように、CO冷媒の圧力を調整する圧力調整部とを備え、ドレン受け部を設けずにデフロストを可能にする。

Description

冷凍装置の昇華デフロストシステム及び昇華デフロスト方法
 本開示は、冷凍庫内に設けられた冷却器にCO冷媒を循環させて冷凍庫内を冷却する冷凍装置に適用され、該冷却器に設けられた熱交換管に付着した霜を溶解させずに昇華除去するための昇華デフロストシステム及び昇華デフロスト方法に関する。
 オゾン層破壊防止や温暖化防止等の観点から、室内の空調や食品などの冷凍に用いる冷凍装置の冷媒として、NHやCO等の自然冷媒が見直されている。そこで、冷却性能は高いが毒性があるNHを一次冷媒とし、無毒及び無臭のCOを二次冷媒とした冷凍装置が広く用いられつつある。
 前記冷凍装置は、一次冷媒回路と二次冷媒回路とをカスケードコンデンサで接続し、該カスケードコンデンサでNH冷媒とCO冷媒との熱の授受を行う。NH冷媒によって冷却され凝縮したCO冷媒は冷凍庫の内部に設けられた冷却器に送られる。冷却器に設けられた伝熱管を介して冷凍庫内の空気を冷却する。そこで一部が気化したCO冷媒は、二次冷媒回路を介してカスケードコンデンサに戻り、カスケードコンデンサで再冷却され液化される。
 冷凍装置の運転中、冷却器に設けられた熱交換管には霜が付着し、熱伝達効率が低下するので、定期的に冷凍装置の運転を中断させ、デフロストする必要がある。
 従来、冷却器に設けられた熱交換管のデフロスト方法は、熱交換管に散水したり、熱交換管を電気ヒータで加熱する等の方法を行っている。しかし、散水によるデフロストは新たな霜発生源を作り出すものであり、電気ヒータによる加熱は貴重な電力を消費するという点で省エネに反している。特に、散水によるデフロストは、大容量の水槽と大口径の給水配管及び排水配管が必要となるため、プラント施工コストの増加を招く。
 特許文献1及び2には、かかる冷凍装置のデフロストシステムが開示されている。特許文献1に開示されたデフロストシステムは、NH冷媒に生じる発熱によりCO冷媒を気化させる熱交換器を設け、該熱交換器で生成されるCOホットガスを冷却器内の熱交換管に循環させ除霜するものである。
 特許文献2に開示されたデフロストシステムは、NH冷媒の排熱を吸収した冷却水でCO冷媒を加熱する熱交換器を設け、加熱されたCO冷媒を冷却器内の熱交換管に循環させ除霜するものである。
 特許文献3には、冷却器に冷却用チューブとは別個独立に加熱用チューブを設け、デフロスト運転時に該加熱用チューブに温水や温ブラインを流して前記冷却用チューブに付着した霜を溶解、除去する手段が開示されている。
 また、理想的なデフロスト方法として昇華デフロストがある。この方法は、熱交換管の表面を均一に0℃を超えないように、即ち、霜が水にならないように加熱し、霜を昇華させて熱交換管の表面から除去するものである。この方法が実現すれば、ドレンが発生しないため、ドレンパン及び排水設備が不要となり、設備費を大幅に低コスト化できる。
 本出願人は、先に、庫内空気を0℃以下の温度に冷却すると共に、吸着式除湿装置によって除湿された低水蒸気雰囲気中で冷却器の熱交換管に付着した霜を昇華除去する方法を提案している(特許文献4)。
特開2010-181093号公報 特開2013-124812号公報 特開2003-329334号公報 特開2012-072981号公報
 特許文献1及び2に開示されたデフロストシステムは、冷却システムとは別系統のCO冷媒やNH冷媒の配管を現地で施工する必要があり、プラント施工コストの増加を招くおそれがある。また、前記熱交換器は冷凍庫の外部に別置きで設置されるため、熱交換器を設置するための余分な設置スペースが必要となる。
 特許文献2のデフロストシステムにおいては、熱交換管のサーマルショック(急激な加熱・冷却)を防ぐために加圧・減圧調整手段が必要になる。また、冷却水とCO冷媒とを熱交換する熱交換器の凍結防止のため、デフロスト運転終了後に熱交換器の冷却水を抜く操作が必要となり、操作が煩雑となる等の問題がある。
 特許文献3に開示されたデフロスト手段は、冷却用チューブを外側からプレートフィンなどを介して加熱するため、熱伝達効率は高くならないという問題がある。
 また、NH冷媒が循環し、冷凍サイクル構成機器を有する一次冷媒回路と、CO冷媒が循環し、該一次冷媒回路とカスケードコンデンサを介して接続されると共に、冷凍サイクル構成機器を有する二次冷媒回路とからなる二元冷凍機では、二次冷媒回路に高温高圧のCOガスが存在する。そのため、COホットガスを冷却器の熱交換管に循環させるデフロストが可能になると考えられる。しかし、切替え弁や分岐配管等を設けることによる装置の複雑化及び高コスト化や、高元/低元のヒートバランスに起因する運転制御の不安定化が課題となっている。
 前述の昇華デフロストは、熱交換管表面の霜を0℃を超えないように均一に加熱する必要がある。一方、特許文献4に開示されたデフロスト方法で用いている通常のヒータなどによる加熱方法では、冷却器の熱交換管表面を0℃を超えないように均一に加熱することは困難であるため、昇華デフロストは現状実用化に至っていない。
 本発明は、前記問題点に鑑みなされたものであり、前述の昇華デフロスト方法を実用化することで、冷凍装置のデフロストに要するイニシャルコスト及びランニングコストの低減と省エネを可能にすることを目的とする。
 (1)本発明の少なくとも一実施形態に係る昇華デフロストシステムは、
 冷凍庫の内部に設けられ、ケーシング及び該ケーシングの内部に設けられた熱交換管を有する冷却器と、
 CO冷媒を冷却液化するための冷凍機と、
 前記熱交換管に接続され、前記冷凍機で冷却液化されたCO冷媒を前記熱交換管に循環させるための冷媒回路と、を有する冷凍装置の昇華デフロストシステムであって、
 前記冷凍庫の庫内空気を除湿するための除湿装置と、
 前記熱交換管の入口路及び出口路に接続された循環路形成路によって形成され前記熱交換管を含むCO循環路と、
 前記熱交換管の入口路及び出口路に設けられ、デフロスト時に閉じて前記CO循環路を閉回路とするための開閉弁と、
 前記CO循環路に設けられたCO冷媒の循環手段と、
 第1加熱媒体であるブラインと前記CO循環路を循環するCO冷媒とを熱交換させるように構成された第1熱交換部と、
 デフロスト時に前記閉回路を循環するCO冷媒の凝縮温度が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように、前記CO冷媒の圧力を調整する圧力調整部と、を備え、
 ドレン受け部を設けずにデフロストを可能にする。
 前記構成(1)において、デフロストを行う場合、前記冷凍庫の庫内空気が飽和水蒸気分圧となっているなら、まず、前記除湿装置により庫内空気を除湿し、水蒸気分圧を低下させる。次に、前記開閉弁を閉じて前記CO循環路を閉回路とする。
 その後、前記圧力調整部によって、前記閉回路を循環するCO冷媒が冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように圧力調整する。そして、前記循環手段によって前記閉回路でCO冷媒を循環させる。
 なお、前記循環手段とは、例えば、閉回路でCO冷媒液を循環させるために前記CO循環路に設けられる液ポンプなどを言う。また、前記圧力調整部は、例えば、CO冷媒の圧力を検出する圧力センサ、又はCO冷媒の温度を検出し、該温度検出値に相当するCO冷媒の飽和圧力を換算することで、CO冷媒の圧力を求める手段を有している。
 次に、前記第1熱交換部で加熱媒体としての温ブラインで前記閉回路を循環するCO冷媒を加熱し、CO冷媒を気化する。そして、閉回路内で気化したCO冷媒を循環させ、前記熱交換管の外表面に付着した霜をCO冷媒ガスの熱で昇華除去する。霜に熱を与えたCO冷媒は液化し、その後、前記第1熱交換部で再度加熱され気化する。
 なお、ここで「冷凍庫」とは冷蔵庫その他冷却空間を形成するものをすべて含むものであり、前記熱交換管の入口路及び出口路とは、前記冷却器のケーシングの隔壁付近から前記ケーシングの外側であって前記冷凍庫の内部に設けられる熱交換管の範囲を言う。
 前記熱交換管の外表面に付着した霜を昇華させるための条件は、(1)庫内空気の水蒸気分圧が飽和水蒸気分圧まで高くないこと、及び(2)霜の温度が氷点以下であることである。さらに、必須ではないが望ましい条件として、(3)熱交換器の外表面に空気流を形成して昇華した水蒸気を放散させる。これらの条件下で霜に熱を与えることで霜を昇華できる。
 前記構成(1)によれば、前記熱交換管の外表面に付着した霜を前記熱交換管内を流れるCO冷媒の熱で加熱するので、熱交換管全域で均一加熱が可能になる。また、前記閉回路を圧力調整することで、CO冷媒の凝縮温度を制御するので、閉回路を流れるCO冷媒ガスの温度を精度良く制御でき、これによって、霜を氷点以下の温度に正確に加熱できるので、昇華デフロストが可能になる。
 こうして、熱交換管に付着した霜は融解せずに昇華するので、ドレンパン及び該ドレンパンに溜まったドレンの排水設備が不要になり、冷凍装置を大幅に低コスト化できる。また、前記熱交換管に付着した霜を熱交換管の管壁のみを通して内部から加熱するので、熱交換効率を向上でき省エネが可能になる。
 また、CO冷媒を庫内水蒸気の氷点以下の凝縮温度に相当する低圧状態でデフロストできるので、CO循環路などの配管系機器に耐圧強度を付与する必要がなく、高コストとならない。
 (2)幾つかの実施形態では、前記構成(1)において、
 前記循環路形成路は、前記熱交換管の入口路及び出口路から分岐したデフロスト回路であり、
 前記熱交換部は前記デフロスト回路に形成される。
 前記構成(2)によれば、前記デフロスト回路を設けることで、前記第1熱交換部の設置場所の自由度を広げることができる。
 (3)幾つかの実施形態では、前記構成(1)において、
 前記循環路形成路は、前記熱交換管の入口路及び出口路間に接続されたバイパス路であり、
 前記熱交換部は前記熱交換管の一部領域に形成される。
 前記構成(3)によれば、前記CO循環路は前記バイパス路を除き前記熱交換管のみで構成できる。そのため、前記CO循環路を形成するために前記バイパス路を除き新たな管路を設ける必要がなくなり、コスト高とならない。
 (4)幾つかの実施形態では、前記構成(1)~(3)のいずれかにおいて、
 前記CO循環路は高低差をもって形成されると共に、前記第1熱交換部は前記CO循環路の下方領域に形成され、
 前記循環手段は、デフロスト時に前記閉回路でCO冷媒をサーモサイフォン作用により自然循環させるものである。
 前記構成(4)において、前記第1熱交換部において、加熱媒体としての前記ブラインで前記熱交換管の下部領域に存在するCO冷媒を加熱し気化させる。気化したCO冷媒はサーモサイフォン作用で閉回路を上昇する。閉回路の上部領域に上昇したCO冷媒は、熱交換管の外表面に付着した霜を加熱して昇華除去し、CO冷媒自体は液化する。液化したCO冷媒は重力で下降する。
 前記構成(4)によれば、CO冷媒をサーモサイフォン作用で閉回路を自然循環できるので、閉回路でCO冷媒を強制循環させる手段を必要とせず、強制循環するための装備及び動力が不要となり低コスト化できる。
 (5)幾つかの実施形態では、前記構成(1)~(4)のいずれかにおいて、
 前記ブラインを第2加熱媒体で加熱するための第2熱交換部と、
 前記第1熱交換部及び前記第2熱交換部とに接続され、前記第2熱交換部で加熱された前記ブラインを前記第1熱交換部に循環させるためのブライン回路と、
 をさらに備えている。
 前記第2加熱媒体は、例えば、冷凍機を構成する圧縮機から吐出された高温高圧の冷媒ガス、工場の温排水、ボイラから発せられる熱又はオイルクーラの保有熱を吸収した媒体等、任意の加熱媒体を用いることができる。
 前記構成(5)によれば、前記第2熱交換部及び前記ブライン回路を備えたことで、加熱されたブラインを前記第1熱交換部に供給できると共に、前記ブライン回路を前記第1熱交換部の設置場所に追従させて配置することで、前記第1熱交換部の設置場所の自由度を広げることができる。
 (6)幾つかの実施形態では、前記構成(5)において、
 前記熱交換管は前記冷却器の内部で高低差をもって配置され、
 前記ブライン回路は前記冷却器の内部で前記熱交換管の下部領域に配設され、
 前記第1熱交換部は前記ブライン回路と前記熱交換管の下部領域との間で形成される。
 前記構成(6)においては、前記熱交換管の下部領域で気化したCO冷媒をサーモサイフォン作用により自然循環させながら、熱交換管の外表面に付着した霜を昇華除去できる。そのため、前記熱交換管以外の配管を必要とせず、かつCO冷媒を強制循環させるための装備を必要としないので、冷却器を低コスト化できる。
 また、前記ブライン回路を熱交換管の上部領域に配設しないので、冷却器の内部で空気流を形成するためのファンの動力を低減できると共に、上部領域の余ったスペースに熱交換管を設けることができるので、冷却器の冷却能力を高めることができる。
 (7)幾つかの実施形態では、前記構成(5)において、
 前記熱交換管及び前記ブライン回路は前記冷却器の内部で高低差をもって配置されると共に、前記ブライン回路で前記ブラインが下方から上方へ流れるように構成され、
 前記ブライン回路の上下方向の中間部位に流量調整弁が設けられ、該流量調整弁より上流側の前記ブライン回路で前記第1熱交換部が形成される。
 前記構成(7)において、前記流量調整弁でブラインの流量を絞り、ブライン回路の上部領域に流入するブラインの流量を制限することで、前記第1熱交換部の形成を熱交換管の下部領域のみに制限できる。こうして、前記構成(6)と同様に、熱交換管の内部でサーモサイフォン作用によりCO冷媒を自然循環させながら霜を昇華除去できる。
 そのため、特許文献3に開示された冷却器のように、温ブラインなどが循環する加熱チューブが熱交換管の上下方向全域に配設された既存の冷却器であっても、熱交換管に流量調整弁を付設するだけの簡単な改造によって、熱交換管に付着した霜を昇華除去できる。
 (8)幾つかの実施形態では、前記構成(5)において、
 前記ブライン回路の入口及び出口に夫々設けられ、前記入口及び前記出口を流れる前記ブラインの温度を検出するための第1温度センサ及び第2温度センサをさらに備えている。
 前記構成(8)において、前記2つの温度センサの検出値の差が小さくなった時は、霜の融解量が減少し、デフロストがほぼ完了したことを示している。前記熱交換部はブラインによる顕熱加熱を行うため、前記2つの温度センサの検出値の差を求めることで、デフロスト運転終了のタイミングを正確に判定できる。
 そのため、冷凍庫内の過剰な加熱や過剰な加熱による水蒸気拡散を防ぐことができる。従って、さらなる省エネを達成できると共に、庫内温度を安定化でき、冷凍庫に保冷された食品の品質向上を実現できる。
 (9)幾つかの実施形態では、前記構成(1)において、
 前記圧力調整部は、
 前記閉回路を循環するCO冷媒の圧力を検出するための圧力センサと、
 前記熱交換管の出口路に設けられた圧力調整弁と、
 前記圧力センサの検出値が入力され、前記閉回路を循環するCO冷媒の凝縮温度が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように前記圧力調整弁の開度を制御するための制御装置と、で構成されている。
 前記構成(9)によれば、前記制御装置によって前記閉回路を循環するCO冷媒の圧力を精度良く制御できる。
 (10)幾つかの実施形態では、前記構成(1)において、
 前記冷凍機は、
 NH冷媒が循環し冷凍サイクル構成機器が設けられた一次冷媒回路と、
 CO冷媒が循環し、前記冷却器に導設されると共に、前記一次冷媒回路とカスケードコンデンサを介して接続された二次冷媒回路と、
 前記二次冷媒回路に設けられ、前記カスケードコンデンサで液化されたCO冷媒を貯留するためのCO受液器、及び該CO受液器に貯留されたCO冷媒を前記冷却器に送る液ポンプとを有している。
 前記構成(10)によれば、NH及びCOの自然冷媒を用いた冷凍機であるので、オゾン層破壊防止や温暖化防止等に寄与できる。また、冷却性能は高いが毒性があるNHを一次冷媒とし、無毒かつ無臭のCOを二次冷媒としているので、高い冷却性能を保持しつつ、室内の空調や食品などの冷凍に用いることができる。
 (11)幾つかの実施形態では、前記構成(1)において、
 前記冷凍機は、
 NH冷媒が循環し冷凍サイクル構成機器が設けられた一次冷媒回路と、
 前記CO冷媒が循環し、前記冷却器に導設されると共に、前記一次冷媒回路とカスケードコンデンサを介して接続され、冷凍サイクル構成機器が設けられた二次冷媒回路と、を有するNH/CO二元冷凍機である。
 前記構成(11)によれば、自然冷媒を用いることで、オゾン層破壊防止や温暖化防止等に寄与できると共に、無毒かつ無臭のCOを二次冷媒としているので、高い冷却性能を保持しつつ、室内の空調や食品などの冷凍に用いることができる。さらに、二元冷凍機であるため、冷凍機のCOPを向上できる。
 (12)幾つかの実施形態では、前記構成(10)又は(11)において、
 前記一次冷媒回路に前記冷凍サイクル構成機器の一部として設けられた凝縮器に導設された冷却水回路をさらに備え、
 前記第2熱交換部は、前記冷却水回路及び前記ブライン回路が導設され、前記凝縮器で加熱された冷却水で前記ブライン回路を循環するブラインを加熱するための熱交換器である。
 前記構成(12)によれば、凝縮器で加熱された冷却水でブラインを加熱できるので、冷凍装置外の加熱源が不要になる。
 また、デフロスト運転時に前記ブラインで冷却水の温度を低下できるので、冷凍運転時のNH冷媒の凝縮温度を下げることができ、冷凍機のCOPを向上できる。
 さらに、前記冷却水回路が凝縮器と冷却塔との間に配設される例示的な実施形態では、前記第2熱交換部を冷却塔内に設けることもでき、これによって、デフロストに使用される装置の設置スペースを縮小できる。
 (13)幾つかの実施形態では、前記構成(10)又は(11)において、
 前記一次冷媒回路に前記冷凍サイクル構成機器の一部として設けられた凝縮器に導設された冷却水回路と、
 前記冷却水回路を循環する冷却水を散布水と熱交換させて冷却するための冷却塔と、
 をさらに備え、
 前記第2熱交換部は、
 前記冷却塔と一体に設けられ、前記散布水が導入され該散布水と前記ブライン回路を循環する前記ブラインとを熱交換するための加熱塔で構成されている。
 前記構成(13)によれば、加熱塔を冷却塔と一体にすることで、第2熱交換部の設置スペースを縮小できる。
 (14)本発明の少なくとも一実施形態に係る昇華デフロスト方法は、
 前記構成(1)~(13)を有する昇華デフロストシステムを用いた昇華デフロスト方法であって、
 前記除湿装置によって前記冷凍庫の庫内空気を飽和水蒸気分圧とならないように除湿する第1工程と、
 デフロスト時に前記開閉弁を閉じて前記閉回路を形成する第2工程と、
 前記閉回路を循環するCO冷媒が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように前記CO冷媒を圧力調整する第3工程と、
 加熱媒体としての前記ブラインと前記閉回路を循環するCO冷媒とを熱交換させて前記CO冷媒を気化する第4工程と、
 前記第4工程で気化した前記CO冷媒を前記閉回路を循環させ、前記熱交換管の外表面に付着した霜を前記CO冷媒の熱で昇華除去する第5工程と、を含むものである。
 前記(14)によれば、前記熱交換管の外表面に付着した霜を前記熱交換管内を流れるCO冷媒の熱で加熱するので、熱交換管全域で均一加熱が可能になる。また、前記閉回路を圧力調整することで、CO冷媒の凝縮温度を制御するので、閉回路を流れるCO冷媒ガスの温度を精度良く制御でき、これによって、霜を氷点以下の温度に正確に加熱できるので、昇華デフロストが可能になる。
 こうして、熱交換管に付着した霜は融解せずに昇華するので、ドレンパン及び該ドレンパンに溜まったドレンの排水設備が不要になり、冷凍装置を大幅に低コスト化できる。また、前記熱交換管に付着した霜を熱交換管の管壁のみを通して内部から加熱するので、熱交換効率を向上でき省エネが可能になる。
 (15)幾つかの実施形態では、前記構成(14)において、
 前記第4工程は、高低差をもって形成された前記閉回路の下部領域で、前記ブラインと前記閉回路を循環するCO冷媒とを熱交換させるものであり、
 前記第5工程は、前記閉回路で前記CO冷媒をサーモサイフォン作用によって自然循環させるものである。
 前記構成(15)によれば、前記閉回路でCO冷媒をサーモサイフォン作用により自然循環させるので、CO冷媒を強制循環させる手段を必要とせず、低コスト化できる。
 本発明の少なくとも一実施形態によれば、冷却器の熱交換管表面に付着した霜を昇華デフロストすることが可能になるので、ドレンパン及びドレン排出設備が不要となる。また、ドレン排出作業が不要となるので、デフロストに要するイニシャルコスト及びランニングコストの低減と省エネが可能になる。
一実施形態に係る冷凍装置の系統図である。 一実施形態に係る冷凍装置の系統図である。 図2に示す冷凍装置の冷却器の断面図である。 一実施形態に係る冷却器の断面図である。 一実施形態に係る冷凍装置の系統図である。 図5に示す冷凍装置の冷却器の断面図である。 一実施形態に係る冷凍機の系統図である。 一実施形態に係る冷凍機の系統図である。 一実施形態に係る冷凍装置の系統図である。 一実施形態に係る冷凍装置の配置図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1~図9は、本発明の幾つかの実施形態に係るデフロストシステムを示している。
 これらの実施形態に用いられる冷凍装置10A~10Dは、冷凍庫30a及び30bの内部に夫々設けられる冷却器33a及び33bと、CO冷媒を冷却液化する冷凍機11A~11Dと、該冷凍機で冷却液化したCO冷媒を冷却器33a及び33bに循環させる冷媒回路(二次冷媒回路14が相当)とを備えている。冷却器33a及び33bはケーシング34a及び34bと該ケーシングの内部に配設された熱交換管42a及び42bとを有している。図1~図9に示す冷凍装置10A~10Dでは、冷凍運転時、冷凍庫30a及び30bの内部は例えば-25℃の低温に保持される。
 前記各実施形態の例示的な構成では、熱交換管42a及び42bは、ケーシング34a及び34bの外部からケーシング34a及び34bの内部に導設されている。
 ここでは、ケーシング34a及び34bの隔壁から外側で冷凍庫30a及び30bの内部に配置される熱交換管42a及び42bの領域を入口管42c及び出口管42dと言う。
 冷凍庫30a及び30bの内部には、庫内空気を除湿するための除湿装置38a及び38bが設けられている。除湿装置38a及び38bは、図1~図9に示す幾つかの実施形態では、吸着式除湿装置である。吸着式除湿装置とは、例えば、表面に吸着剤を担持した回転式ロータで構成され、該回転式ロータの一部の領域で庫内空気から水蒸気を吸着する工程と、他の領域で吸着した水蒸気を脱離させる工程とを同時連続的に行うデシカントロータ式除湿装置である。除湿装置38a及び38bには外気aが供給され、庫内空気から水蒸気sを吸着し外部に排出すると共に、庫内に低温乾燥空気dを出す。
 また、熱交換管42a及び42bの入口管42c及び出口管42dに接続される循環路形成路によって、CO循環路が形成される。前記循環路形成路は、図1及び図9に示す実施形態では、熱交換管42a及び42bの入口管及び出口管に接続されたデフロスト回路50a及び50bであり、図2~図6に示す実施形態では、熱交換管42a及び42bの入口管及び出口管に接続されたバイパス管72a及び72bである。
 熱交換管42a及び42bの入口管42c及び出口管42dには、デフロスト時に前記CO循環路を閉回路とするための開閉弁が設けられている。前記開閉弁は、図1~図9に示す幾つかの実施形態では、電磁開閉弁54a及び54bである。
 図1~図9に示す実施形態の例示的な構成では、ケーシング34a及び34bに通風用の開口が2箇所形成され、該開口のひとつにファン35a及び35bが設けられている。ファン35a及び35bの稼働によりケーシング34a及び34bの内外に流通する空気流が形成される。熱交換管42a及び42bは、例えば、水平方向及び上下方向に蛇行形状で配置される。
 また、デフロスト時に前記閉回路を循環するCO冷媒の圧力を貯留空間するための圧力調整部45a及び45bが設けられている。デフロスト時、圧力調整部45a及び45bによって前記閉回路のCO冷媒は冷凍庫30a及び30bの内部に存在する水蒸気の氷点(例えば0℃)より低温の凝縮温度を有するように圧力調整される。
 図1~図9に示す幾つかの実施形態の例示的な構成では、圧力調整部45a及び45bは、前記閉回路を循環するCO冷媒の圧力を検出するための圧力センサ46a及び46bと、出口管42dに設けられた圧力調整弁48a及び48bと、圧力センサ46a及び46bの検出値が入力され、前記閉回路を循環するCO冷媒の凝縮温度が冷凍庫30a及び30bの庫内空気中の水蒸気の氷点以下の凝縮温度となるように圧力調整弁48a及び48bの開度を制御する制御装置47a及び47bとで構成されている。
 前記実施形態の例示的な構成では、圧力調整弁48a及び48bは電磁開閉弁52a及び52bに並列に設けられている。
 圧力センサ46a及び46bは圧力調整弁48a及び48bの上流側の出口管42dに設けられている。制御装置47a及び47bは、該圧力センサの検出値に応じて、前記閉回路を循環するCO冷媒の凝縮温度が冷凍庫30a及び30bの庫内空気中の水蒸気の氷点以下の凝縮温度となるように圧力調整弁48a及び48bの開度を制御し、CO冷媒を圧力調整する。
 また、デフロスト時に電磁開閉弁52a及び52bを閉じて前記CO循環路を閉回路としたとき、前記閉回路で循環手段によってCO冷媒を循環させる。前記循環手段は、例えば、前記CO循環路に設けられた液ポンプであり、あるいは図1~図10に示す幾つかの実施形態で採用されているように、強制的な循環手段ではなく、CO冷媒をサーモサイフォン作用で自然循環させるものである。
 また、加熱媒体としてブラインを用い、このブラインでCO循環路を循環するCO冷媒を加熱し気化させる第1熱交換部が設けられる。この第1熱交換部は、図1及び図9に示す実施形態では、デフロスト回路50a及び50bとブライン回路60から分岐したブライン分岐回路61a及び61bとが導設された熱交換器70a及び70bである。図2~図6に示す実施形態では、熱交換管42a及び42bの下部領域と該下部領域に導設されたブライン分岐回路63a、61b又は80a、80bとで構成される熱交換部である。
 前記ブラインとして、例えば、エチレングリコール、プロピレングリコール等の水溶液を用いることができる。
 図1及び図9に示す実施形態では、前記循環路形成路は、デフロスト回路50a及び50bが設けられ、前記第1熱交換部として熱交換器70a及び70bが設けられている。
 図2~図6に示す実施形態では、前記循環路形成路としてバイパス管72a及び72bが設けられ、前記第1熱交換部として熱交換管42a及び42bの下部領域と該下部領域に導設されたブライン分岐回路61a及び61bとで構成される熱交換部が形成される。
 図1~図9に示す実施形態では、前記CO循環路は上下方向に高低差をもって形成されると共に、前記第1熱交換部はCO循環路の下部領域に形成される。
 即ち、図1及び図9に示す実施形態では、デフロスト回路50a及び50bが冷却器33a及び33bの下方に配置されることで、CO循環路に高低差が付けられる。図2~図6に示す実施形態では、CO循環路を形成する熱交換管42a及び42bが高低差をもって配置されている。
 かかる高低差を有するCO循環路では、デフロスト時に形成される閉回路でCO冷媒をサーモサイフォン作用により自然循環させることができる。即ち、第1熱交換部で気化したCO冷媒ガスはサーモサイフォン作用によって上昇する。上昇したCO冷媒ガスは熱交換管42a及び42b又は該熱交換管の上部領域で該熱交換器の外表面に付着した霜と熱交換して該霜を昇華除湿する。一方、CO冷媒は保有熱を奪われて液化し、液化したCO冷媒は重力でCO循環路を下降する。こうして、ループ型サーモサイフォンが作動し、CO冷媒は前記閉回路を自然循環する。
 図1~図6に示す幾つかの実施形態では、ブラインと加熱媒体(冷却水)とを熱交換させ、前記ブラインを加熱するための第2熱交換部(熱交換器58が相当)と、該第2熱交換部と前記第1熱交換部とに接続され、第2熱交換部で加熱されたブラインを第1熱交換部に循環させるブライン回路60(破線表示)が設けられている。ブライン回路60は冷凍庫30a及び30bの外部でブライン分岐回路61a及び61b(破線表示)に分岐している。
 図1及び図9に示す実施形態では、ブライン分岐回路61a及び61bは熱交換器70a及び70bに導設され、図2~図6に示す実施形態では、接続部62を介して冷凍庫30a及び30bの内部に設けられたブライン分岐回路63a、63b又は80a、80b(破線表示)に接続されている。
 図2及び図3に示す少なくとも一つの実施形態では、熱交換管42a及び42bは冷却器33a及び33bの内部で高低差をもって配置されている。ブライン分岐回路63a及び63bは、冷却器33a及び33bの内部に導設されると共に、熱交換管42a及び42bの下部領域に配置されている。例えば、ブライン分岐回路63a及び63bは熱交換管42a及び42bが配置された領域の1/3~1/5の下部領域に配置される。
 前記第1熱交換部はブライン分岐回路63a及び63bと熱交換管42a及び42bの下部領域との間で形成される。
 なお、図3に示す冷却器33aの例示的な構成では、通風用開口がケーシング34aの上面及び側面(不図示)に形成され、庫内空気cは該側面から流入し、該上面から流出する。
 図4に示す冷却器33aの例示的な構成では、通風用開口が両側の側面に形成され、庫内空気cは該両側面を通してケーシング34aを出入りする。
 図5及び図6に示す少なくとも一つの実施形態では、熱交換管42a、42b及びブライン分岐回路80a、80bは冷却器33a及び33bの内部で高低差をもって配置されている。また、ブライン分岐回路80a、80bではブラインが下方から上方へ流れるように構成されている。そして、ブライン分岐回路61a及び61bの上下方向中間位置に流量調整弁82a及び82bが設けられている。
 かかる構成では、流量調整弁82a及び82bの開度を絞ることで、流量調整弁82a及び82bの上流側領域、即ち、流量調整弁82a及び82bより下方の熱交換管42a及び42bに前記第1熱交換部を形成できる。
 図1~図9に示す幾つかの実施形態では、ブライン回路60の入口及び出口に夫々温度センサ66及び68が設けられ、これらの温度センサで該入口及び出口を流れるブラインの温度を計測できる。これら温度センサの検出値の差が縮まれば、デフロストが完了に近いと判定できる。従って、前記検出値の差に閾値(例えば2~3℃)を設定し、検出値の差が該閾値以下となった時、デフロストが完了したと判定すればよい。
 図2~図6に示す実施形態では、ブライン回路60の往路にブラインを一時的に貯留するレシーバ(開放型ブライン槽)64及びブラインを循環するブラインポンプ65が設けられている。
 図9に示す実施形態では、レシーバ64の代わりに、圧力変動の吸収及びブラインの流量調整等のために膨張タンク92が設けられている。
 図1~図6に示す幾つかの実施形態において、冷凍装置10A~10Cは冷凍機11Aを備えている。冷凍機11Aは、NH冷媒が循環し、冷凍サイクル構成機器が設けられた一次冷媒回路12と、CO冷媒が循環し、冷却器33a及び33bまで延設される二次冷媒回路14とを有している。二次冷媒回路14は一次冷媒回路12とカスケードコンデンサ24を介して接続される。
 一次冷媒回路12に設けられた冷凍サイクル構成機器は、圧縮機16、凝縮器18、NH受液器20、膨張弁22及びカスケードコンデンサ24からなる。
 二次冷媒回路14には、カスケードコンデンサ24で液化されたCO冷媒液が一時貯留されるCO受液器36と、CO受液器36に貯留されたCO冷媒液を熱交換管42a及び42bに循環させるCO液ポンプ37とが設けられている。
 また、カスケードコンデンサ24とCO受液器36との間にCO循環路44が設けられている。CO受液器36からCO循環路44を介してカスケードコンデンサ24に導入されたCO冷媒ガスは、カスケードコンデンサ24でNH冷媒によって冷却され液化してCO受液器36に戻る。
 冷凍機11Aでは、NH及びCOの自然冷媒を用いているので、オゾン層破壊防止や温暖化防止等に寄与できる。また、冷却性能は高いが毒性があるNHを一次冷媒とし、無毒かつ無臭のCOを二次冷媒としているので、室内の空調や食品などの冷凍に用いることができる。
 図7に示す少なくとも一つの例示的な実施形態では、冷凍機11Aの代わりに冷凍機11Bを設けることができる。冷凍機11Bは、NH冷媒が循環する一次冷媒回路12に低段圧縮機16b及び高段圧縮機16aが設けられ、低段圧縮機16bと高段圧縮機16aの間の一次冷媒回路12に中間冷却器84が設けられている。凝縮器18の出口で一次冷媒回路12から分岐路12aが分岐し、分岐路12aに中間膨張弁86が設けられている。
 分岐路12aを流れるNH冷媒は中間膨張弁86で膨張して冷却し、中間冷却器84に導入される。中間冷却器84で、低段圧縮機16bから吐出されたNH冷媒は分岐路12aから導入されたNH冷媒で冷却される。中間冷却器84を設けることで、冷凍機11BのCOP(成績係数)を向上できる。
 カスケードコンデンサ24でNH冷媒と熱交換して冷却液化されたCO冷媒液は、CO受液器36に貯留され、その後、CO受液器36からCO液ポンプ37で冷凍庫30の内部に設けられた冷却器33に循環される。
 図8に示す少なくとも一つの例示的な実施形態では、冷凍機11Aの代わりに冷凍機11Cを設けることができる。冷凍機11Cは二元冷凍サイクルを構成している。NH冷媒が循環する一次冷媒回路12に高元圧縮機88a及び膨張弁22aが設けられている。一次冷媒回路12とカスケードコンデンサ24を介して接続され、CO冷媒が循環する二次冷媒回路14には、低元圧縮機88b及び膨張弁22bが設けられている。
 冷凍機11Cは、一次冷媒回路12及び二次冷媒回路14で夫々機械圧縮式冷凍サイクルを構成した二元冷凍機であるため、冷凍機のCOPを向上できる。
 図1~図6に示す幾つかの実施形態では、冷凍装置10A~10Cは冷凍機11Aを備えている。冷凍機11Aでは、凝縮器18に冷却水回路28が導設されている。冷却水回路28には冷却水ポンプ57を有する冷却水分岐回路56が分岐し、冷却水分岐回路56及びブライン回路60(破線表示)は前記第2熱交換部としての熱交換器58に導設されている。
 冷却水回路28を循環する冷却水は、凝縮器18でNH冷媒によって加熱される。加熱された冷却水は、前記加熱媒体として、デフロスト時に熱交換器58においてブライン回路60を循環するブラインを加熱する。
 冷却水分岐回路56から熱交換器58に導入される冷却水の温度が例えば20~30℃であれば、この冷却水でブラインを15~20℃に加熱できる。
 別な実施形態では、前記加熱媒体として、前記冷却水以外に、例えば、圧縮機16から吐出された高温高圧のNH冷媒ガス、工場の温排水、ボイラから発せられる熱又はオイルクーラの保有熱を吸収した媒体等、任意の加熱媒体を用いることができる。
 前記幾つかの実施形態の例示的な構成として、冷却水回路28は凝縮器18と密閉式冷却塔26との間に設けられる。冷却水は冷却水ポンプ29によって冷却水回路28を循環する。凝縮器18でNH冷媒の排熱を吸収した冷却水は、密閉式冷却塔26で外気と接触しつつ散布される水の蒸発潜熱によって冷却される。
 密閉式冷却塔26は、冷却水回路28に接続された冷却コイル26aと、外気aを冷却コイル26aに通風させるファン26bと、冷却コイル26aに冷却水を散布する散水管26c及びポンプ26dを有している。散水管26cから散布される冷却水の一部は蒸発しその蒸発潜熱を利用して冷却コイル26aを流れる冷却水を冷却する。
 図9に示す少なくとも一つの実施形態において、冷凍装置10Dに設けられる冷凍機11Dは、密閉式冷却塔26と密閉式加熱塔91とが一体になった密閉式冷却加熱ユニット90を有している。密閉式冷却塔26は冷却水回路28を循環する冷却水を散布水で冷却するものであり、その基本的構成は、図1~図6に示す密閉式冷却塔26と同一である。
 密閉式加熱塔91は、密閉式冷却塔26で冷却水回路28を循環する冷却水の冷却に供された散布水を導入し、該散布水とブライン回路60を循環するブラインとを熱交換させる。密閉式加熱塔91は、ブライン回路60に接続された加熱コイル91aと、冷却コイル91aに冷却水を散布する散水管91c及びポンプ91dを有している。密閉式冷却塔26の内部と密閉式加熱塔91の内部とは共有ハウジングの下部で連通している。
 一次冷媒回路12を循環するNH冷媒の排熱を吸収した散布水は、散水管91cから冷却コイル91aに散布され、加熱コイル91a及びブライン回路60を循環するブラインを加熱する加熱媒体となる。
 図1~図9に示す幾つかの実施形態では、冷凍庫30a及び30bの外部で、二次冷媒回路14はCO分岐回路40a及び40bに分岐する。CO分岐回路40a及び40bは、冷凍庫30a及び30bの外部で熱交換管42a及び42bの入口管及び出口管に接続される。
 熱交換器58から冷凍庫30a及び30b付近に延設されたブライン回路60は、冷凍庫30a及び30bの外部でブライン分岐回路61a及び61b(破線表示)に分岐する。
 図1に示す冷凍装置10Aでは、ブライン分岐回路61a及び61bは、冷凍庫30a及び30bの内部に設けられた熱交換器70a及び70bに導設される。
 冷凍装置10Aで昇華デフロストするとき、まず、冷凍庫30a及び30bの庫内空気が飽和水蒸気分圧を有しているなら、除湿装置38a及び38bを作動させ、低水蒸気分圧となるように除湿する。次に、電磁開閉弁52a及び52bを閉じ、熱交換管42a及び42bとデフロスト回路50a及び50bとで構成されるCO循環路を閉回路とする。
 さらに、制御装置47a及び47bに圧力センサ46a及び46bの検出値が入力され、制御装置47a及び47bは該検出値に基づいて圧力調整弁48a及び48bを操作し、閉回路を循環するCO冷媒が庫内空気中の水蒸気の氷点(例えば0℃)以下の凝縮温度となるようにCO冷媒を圧力調整する。例えば、CO冷媒を3.0MPa(凝縮温度-5℃)まで昇圧する。
 その後、熱交換器70a及び70bでブラインとCO冷媒とを熱交換させ、CO冷媒を気化する。次に、気化した前記CO冷媒を閉回路内で循環させ、熱交換管42a及び42bの外表面に付着した霜をCO冷媒の凝縮潜熱(-5℃/3.0MPaで249kJ/kg)で昇華除去する。
 霜を昇華させるために調整されるCO冷媒の凝縮温度の下限値は、庫内温度(例えば-25℃)である。冷却運転時には庫内温度以下の温度のCO冷媒(例えば-30℃)を熱交換管42a及び42bに循環させて庫内を冷却する。そのため、霜の温度も庫内温度以下(例えば-25℃~-30℃)となるので、昇華デフロスト時にCO2冷媒の凝縮温度が庫内温度から庫内に存在する水蒸気の氷点までの範囲であれば、霜を加熱して昇華できる。
 本実施形態では、デフロスト回路50a及び50bは熱交換管42a及び42bの下方に設けられ、CO循環路は高低差を有している。そのため、熱交換器70a及び70bで気化したCO冷媒はサーモサイフォン作用により熱交換管42a及び42bまで上昇する。熱交換管42a及び42bまで上昇したCO冷媒ガスは、その保有熱で熱交換管42a及び42bの外表面に付着した霜を昇華させ、CO冷媒は液化する。液化したCO冷媒は重力でデフロスト回路50a及び50bを下降し、熱交換器70a及び70bで再び気化する。
 図2及び図3に示す冷凍装置10B及び図5及び図6に示す冷凍装置10Cでは、冷却器33a及び33bの内部で、熱交換管42a、42b及びブライン分岐回路63a、63b又は80a、80bは高低差をもって配置されている。
 また、ケーシング34a及び34bの外部で、熱交換管42a及び42bの入口管及び出口管の間にバイパス管72a及び72bが接続され、バイパス管72a及び72bには電磁開閉弁74a及び74bが設けられている。
 前記入口管ではバイパス管52a及び52bの上流側に電磁開閉弁54a及び54bが設けられ、前記出口管ではバイパス管52a及び52bの下流側に電磁開閉弁54a及び54bが設けられている。
 冷凍装置10Bでは、熱交換管42a及び42bの下部領域にブライン分岐回路63a及び63bが導設され、熱交換管42a及び42bの下部領域とブライン分岐回路63a及び63bとで熱交換部が形成されている。
 冷凍装置10Cでは、実質的に熱交換管42a及び42bが配置された領域の全領域にブライン分岐回路80a及び80bが配設され、ブライン分岐回路80a及び80bの上下方向中間部位に流量調整弁82a及び82bが設けられている。ブライン分岐回路80a及び80bはブラインbが下部領域から上方領域へ流れる流路を形成する。
 冷却器33a及び33bの例示的な構成は、図3又は図6に示す冷却器33aを例に取ると、熱交換管42a、42b及びブライン分岐回路63a、63b及び80a、80bは蛇行形状で水平方向に向けて配置され、かつ上下方向に配置される。ブライン分岐回路80a及び80bはブラインbが下部領域から上方領域へ流れる流路を形成する。
 熱交換管42aは冷却器33aの外部で入口管42c及び出口管42dにヘッダ43a及び43bを有している。ブライン分岐回路63a及び80aは冷却器33aの入口及び出口にヘッダ78a及び78bが設けられている。
 冷却器33aの内部に上下方向に多数のプレートフィン76aが設けられている。熱交換管42a及びブライン分岐回路63a又は80aは、プレートフィン76aに形成された多数の孔に嵌挿され、プレートフィン76aによって支持される。プレートフィン76aを設けることで、前記配管の支持強度を高めることができると共に、熱交換管42a及びブライン分岐回路63a又は80a間の熱伝達が促進される。
 冷凍運転時、ファン35aによって、冷却器33aで冷却された庫内空気cを冷凍庫32aの内部に拡散している。なお、デフロスト時溶解水は発生しないため、ケーシング34aの下方にドレンパンは設けられていない。以上の冷却器33aの構成は冷却器33bも同様である。
 冷凍機11B及び11Cにおいて、熱交換管42a及び42bの入口管42c及び出口管42dは冷凍庫30a及び30bの外部で接続部41を介してCO分岐回路40a及び40bに接続される。ブライン分岐回路63a、63b及び80a、80bは、冷凍庫30a及び30bの外部で接続部62を介してブライン分岐回路61a及び61bに接続される。
 冷凍装置10Bで、冷凍庫30a及び30bのケーシング34a及び34b、入口管42c及び出口管42dを含む熱交換管42a及び42b、ブライン分岐回路63a及び63b、及びバイパス管72a及び72bは、一体に構成された冷却ユニット31a及び31bを構成する。
 冷凍装置10Cで、冷凍庫30a及び30bのケーシング34a及び34b、入口管42c及び出口管42dを含む熱交換管42a及び42b、及びブライン分岐回路80a及び80b、及びバイパス管72a及び72bは、一体に構成された冷却ユニット32a及び32bを構成する。
 冷却ユニット31a、31b又は32a、32bは、接続部41及び62を介してCO分岐回路40a、40b及びブライン分岐回路61a、61bと着脱可能に接続される。
 冷凍装置10B及び10Cにおいて、冷凍運転時、電磁開閉弁74a及び74bは閉鎖され、電磁開閉弁52a及び52bは開放される。デフロスト時、電磁開閉弁74a及び74bは開放され、電磁開閉弁52a及び52bは閉鎖され、熱交換管42a及び42b及びバイパス管72a及び72bからなる閉回路が形成される。
 冷凍装置10Bでは、デフロスト時、熱交換管42a及び42bの下部領域で、CO冷媒はブライン分岐回路63a及び63bを流れるブラインの保有熱で気化する。気化したCO冷媒は熱交換管42a及び42bの上部領域に上昇し、該上部領域で熱交換管42a及び42bの外表面に付着した霜を昇華除去する。霜を昇華除湿したCO冷媒は液化し、重力で下降し、下部領域で再び気化する。このように、閉回路内でCO冷媒はサーモサイフォン作用によって自然循環する。
 冷凍装置10Cでは、デフロスト時に流量調整弁82a及び82bの開度を絞り、ブラインbの流量を制限することで、流量調整弁82a及び82bの上流側領域(下方領域)のみにCO冷媒とブラインとを熱交換させる熱交換部を形成できる。
 そのため、流量調整弁82a及び82bの上流側領域及び下流側領域に相当する熱交換管42a及び42bの領域間で、サーモサイフォン作用によりCO冷媒が自然循環し、循環するCO冷媒の保有熱で霜を昇華除去することができる。
 図1~図10に示す幾つかの実施形態によれば、熱交換管42a及び42bの外表面に付着した霜を該熱交換管内を流れるCO冷媒の熱で加熱するので、該熱交換管全域で均一加熱が可能になる。また、前記閉回路を圧力調整することで、CO冷媒の凝縮温度を制御するため、該閉回路を流れるCO冷媒ガスの温度を精度良く制御でき、これによって、霜を氷点以下の温度に正確に加熱できるので、昇華デフロストが可能になる。
 デフロスト時、ファン35a及び35bの稼働によりケーシング34a及び34bの内外に流通する空気流を形成することで、昇華を促進できる。
 こうして、熱交換管42a及び42bに付着した霜は融解せずに昇華するので、ドレンパン及び該ドレンパンに溜まったドレンの排水設備が不要になり、冷凍装置を大幅に低コスト化できる。また、熱交換管42a及び42bに付着した霜を該熱交換管の管壁のみを通して内部から加熱するので、熱交換効率を向上でき省エネが可能になる。
 また、CO冷媒を低圧状態としてデフロストできるので、CO循環路などの配管系機器に耐圧強度を付与する必要がなく、高コストとならない。
 従って、着霜や結露による性能低下が著しいことから、冷凍庫用冷却器への適用が難しいとされるマイクロチャンネル熱交換管の採用も昇華デフロストの実現に可能となる。また、冷凍庫以外にも、バッチ式の凍結庫やノンデフロストで長時間の連続運転が要求されるフリーザ向けのデフロスト方法としても適用可能である。
 図1に示す冷凍装置10Aでは、デフロスト回路50a及び50bを設けてCO循環路を形成するので、該CO循環路に形成される第1熱交換部の設置場所の自由度を広げることができる。
 図2及び図3に示す冷凍装置10Bでは、バイパス管72a及び72bを除き熱交換管42a及び42bのみでCO循環路を形成するので、新たな管路を設ける必要がなく、高コストとならない。
 図1~図9に示す幾つかの実施形態によれば、CO冷媒をサーモサイフォン作用で前記閉回路を自然循環できるので、前記閉回路でCO冷媒を強制循環させる手段を必要とせず、強制循環するための装備及び動力(ポンプ動力など)が不要となり低コスト化できる。
 また、ブライン回路60を備えたことで、加熱されたブラインをCO冷媒と熱交換させる熱交換部の設置場所に追従させて配置でき、そのため、前記熱交換部の設置場所の自由度を広げることができる。
 また、図2及び図3に示す実施形態では、熱交換管42a及び42bの下部領域でブラインとの熱交換部を形成し、かつサーモサイフォン作用によりCO冷媒を自然循環させるので、バイパス管72a及び72b以外に新たな配管を必要とせず、かつ強制循環させるための装備を必要としないので、冷却器33a及び33bを低コスト化できる。
 また、ブライン分岐回路63a及び63bを熱交換管42a及び42bの上部領域に配設しないので、冷却器33a及び33bの内部で空気流を形成するためのファン35a及び35bの動力を低減できる。また、上部領域の余ったスペースに熱交換管42a及び42bを設けることができ、冷却器33a及び33bの冷却能力を高めることができる。
 また、図5及び図6に示す実施形態によれば、ブライン分岐回路80a及び80bを熱交換管42a及び42bの上下方向全域に設けたままで、流量調整弁82a及び82bでブライン流量を絞ることで、熱交換部の形成を熱交換管42a及び42bの下部領域のみに制限できる。そのため、既存の冷却器に流量調整弁82a及び82bを付設するだけの簡単な改造によって、昇華デフロストが可能になる。
 また、図1~図9に示す幾つかの実施形態によれば、ブライン回路60の入口及び出口に夫々設けた温度センサ66及び68の検出値の差から、デフロスト完了時期を正確に求めることができる。これによって、冷凍庫内の過剰な加熱や過剰な加熱による水蒸気拡散を防ぐことができると共に、さらなる省エネを達成でき、かつ庫内温度を安定化でき、冷凍庫に保冷された食品の品質向上を図ることができる。
 また、図1~図9に示す幾つかの実施形態によれば、前記閉回路を循環するCO冷媒の圧力調整手段として圧力調整部45a及び45bを設けたことで、簡易かつ低コスト化で精度良い圧力調整が可能になる。
 また、図1~図5に示す幾つかの実施形態によれば、熱交換器58に冷却水回路28が導設され、凝縮器18で加熱された冷却水をブラインを加熱する加熱媒体としているので、冷凍装置外の加熱源が不要になる。また、デフロスト時にブラインで冷却水の温度を低下できるので、冷凍運転時のNH冷媒の凝縮温度を下げることができ、冷凍機のCOPを向上できる。
 さらに、熱交換器58を密閉式冷却塔26の内部に設けることもでき、これによって、デフロストに使用される装置の設置スペースを縮小できる。
 また、図9に示す実施形態では、加熱媒体とブラインとの熱交換を密閉式冷却塔26と一体の密閉式加熱塔91で行うようにしたので、第2熱交換部の設置スペースを縮小できる。また、密閉式冷却塔26の散布水をブラインの熱源とすることで、外気からの採熱も可能となる。なお、冷凍装置10Dが空冷方式の場合は、加熱塔単独で外気による冷却水の冷却及び外気を熱源としたブラインの加熱が可能になる。
 さらに、前記構成の冷却ユニット31a、31b及び32a、32bを用いることで、冷凍庫30a及び30bへのデフロスト装置付き冷却器33a及び33bの取付けが容易になると共に、これらの冷却ユニットを予め一体に組立てておくことで、冷凍庫30a及び30bへの取付けがさらに容易になる。
 図10は、さらに別な実施形態であり、この実施形態の冷凍庫30には荷捌き室100が隣接している。冷凍庫30の内部には前記構成の複数の冷却器33が設けられている。例えば、冷却器33には、前記構成のケーシング34、熱交換管42、ブライン分岐回路61、63、及びCO分岐回路40等を備えている。
 冷凍庫30及び荷捌き室100の内部には、夫々例えばデシカント除湿機のような除湿装置38が設けられ、除湿装置38によって、室外から外気aを導入し、室内から水蒸気sを排出することで、室内に低温乾燥空気dを供給している。
 荷捌き室100は例えば+5℃に保温され、荷捌き室100から冷凍庫30に出入りする入口には電動式の断熱扉102が設けられ、扉開閉時の冷凍庫30への水蒸気注入を最小限に抑えている。
 例えば、冷凍庫30の温度を-25℃に冷却し、冷凍庫30の容積を7,500mとしたとき、相対湿度100%で絶対湿度0.4g/kgであり、相対湿度25%で絶対湿度0.1g/kgである。そのため、この絶対湿度差に冷凍庫30の容積を掛けた数値2.25kgが保有可能な水蒸気量となる。従って、庫内空気の相対湿度を25%とすることで、昇華デフロストが十分可能である。
 本発明によれば、昇華デフロストを実現したことで、冷凍装置のデフロストに要するイニシャルコスト及びランニングコストの低減と省エネを実現できる。
 10A、10B、10C、10D     冷凍装置
 11A、11B、11C、11D     冷凍機
 12                  一次冷媒回路
 14                  二次冷媒回路
 16                  圧縮機
 16a                 高段圧縮機
 16b                 低段圧縮機
 18                  凝縮器
 20                  NH受液器
 22、22a、22b          膨張弁
 24                  カスケードコンデンサ
 26                  密閉式冷却塔
 28                  冷却水回路
 29、57               冷却水ポンプ
 30、30a、30b          冷凍庫
 31a、31b、32a、32b     冷却ユニット
 33、33a、33b          冷却器
 34、34a、34b          ケーシング
 35a、35b             ファン
 36                  CO受液器
 37                  CO液ポンプ
 38、38a、38b          除湿装置
 40、40a、40b          CO分岐回路
 41,62               接続部
 42、42a、42b          熱交換管
 42c                 入口管
 42d                 出口管
 43a、43b、78a、78b     ヘッダ
 44                  CO循環路
 45a、45b             圧力調整部
 46a、46b             圧力センサ
 47a、47b             制御装置
 48a、48b             圧力調整弁
 50a、50b             デフロスト回路
 52a、52b、74a、74b     電磁開閉弁
 56                  冷却水分岐回路
 58                  熱交換器(第2熱交換部)
 60                  ブライン回路
 61、61a、61b、63、63a、63b、80a、80b  ブライン分岐回路
 64                  レシーバ
 65                  ブラインポンプ
 66                  温度センサ(第1温度センサ)
 68                  温度センサ(第2温度センサ)
 70                  熱交換器(第1熱交換部)
 72a、72b             バイパス管
 76a                 プレートフィン
 82a、82b             流量調整弁
 84                  中間冷却器
 86                  中間膨張弁
 88a                 高元圧縮機
 88b                 低元圧縮機
 90                  密閉式冷却加熱ユニット
 91                  密閉式加熱塔
 92                  膨張タンク
 100                 荷捌き室
 102                 断熱扉
 a                   外気
 b                   ブライン
 c                   庫内空気
 d                   低温乾燥空気

Claims (15)

  1.  冷凍庫の内部に設けられ、ケーシング及び該ケーシングの内部に設けられた熱交換管を有する冷却器と、
     CO冷媒を冷却液化するための冷凍機と、
     前記熱交換管に接続され、前記冷凍機で冷却液化されたCO冷媒を前記熱交換管に循環させるための冷媒回路と、を有する冷凍装置の昇華デフロストシステムであって、
     前記冷凍庫の庫内空気を除湿するための除湿装置と、
     前記熱交換管の入口路及び出口路に接続された循環路形成路によって形成され前記熱交換管を含むCO循環路と、
     前記熱交換管の入口路及び出口路に設けられ、デフロスト時に閉じて前記CO循環路を閉回路とするための開閉弁と、
     前記CO循環路に設けられたCO冷媒の循環手段と、
     第1加熱媒体であるブラインと前記CO循環路を循環するCO冷媒とを熱交換させるように構成された第1熱交換部と、
     デフロスト時に前記閉回路を循環するCO冷媒の凝縮温度が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように、前記CO冷媒の圧力を調整する圧力調整部と、を備え、
     ドレン受け部を設けずにデフロストを可能にしたことを特徴とする冷凍装置の昇華デフロストシステム。
  2.  前記循環路形成路は、前記熱交換管の入口路及び出口路から分岐したデフロスト回路であり、
     前記第1熱交換部は前記デフロスト回路に形成されるものであることを特徴とする請求項1に記載の冷凍装置の昇華デフロストシステム。
  3.  前記循環路形成路は、前記熱交換管の入口路及び出口路間に設けられたバイパス路であり、
     前記第1熱交換部は前記熱交換管の一部領域に形成されるものであることを特徴とする請求項1に記載の冷凍装置の昇華デフロストシステム。
  4.  前記CO循環路は高低差をもって形成されると共に、前記第1熱交換部は前記CO循環路の下方領域に形成され、
     前記循環手段は、デフロスト時に前記閉回路でCO冷媒をサーモサイフォン作用により自然循環させるものであることを特徴とする請求項1乃至3の何れか1項に記載の冷凍装置の昇華デフロストシステム。
  5.  前記ブラインを第2加熱媒体で加熱するための第2熱交換部と、
     前記第1熱交換部及び前記第2熱交換部に接続され、前記第2熱交換部で加熱された前記ブラインを前記第1熱交換部に循環させるためのブライン回路と、をさらに備えていることを特徴とする請求項1乃至4の何れか1項に記載の冷凍装置の昇華デフロストシステム。
  6.  前記熱交換管は前記冷却器の内部で高低差をもって配置され、
     前記ブライン回路は前記冷却器の内部で前記熱交換管の下部領域に配設され、
     前記第1熱交換部は前記ブライン回路と前記熱交換管の下部領域との間で形成されることを特徴とする請求項5に記載の冷凍装置の昇華デフロストシステム。
  7.  前記熱交換管及び前記ブライン回路は前記冷却器の内部で高低差をもって配置されると共に、前記ブライン回路で前記ブラインが下方から上方へ流れるように構成され、
     前記ブライン回路の上下方向の中間部位に流量調整弁が設けられ、該流量調整弁より上流側の前記ブライン回路で前記第1熱交換部が形成されることを特徴とする請求項6に記載の冷凍装置の昇華デフロストシステム。
  8.  前記ブライン回路の入口及び出口に夫々設けられ、前記入口及び前記出口を流れる前記ブラインの温度を検出するための第1温度センサ及び第2温度センサをさらに備えていることを特徴とする請求項5に記載の冷凍装置の昇華デフロストシステム。
  9.  前記圧力調整部は、
     前記閉回路を循環するCO冷媒の圧力を検出するための圧力センサと、
     前記熱交換管の出口路に設けられた圧力調整弁と、
     前記圧力センサの検出値が入力され、前記閉回路を循環するCO冷媒の凝縮温度が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように前記圧力調整弁の開度を制御するための制御装置と、で構成されていることを特徴とする請求項1に記載の冷凍装置の昇華デフロストシステム。
  10.  前記冷凍機は、
     NH冷媒が循環し冷凍サイクル構成機器が設けられた一次冷媒回路と、
     CO冷媒が循環し、前記冷却器に導設されると共に、前記一次冷媒回路とカスケードコンデンサを介して接続された二次冷媒回路と、
     前記二次冷媒回路に設けられ、前記カスケードコンデンサで液化されたCO冷媒を貯留するためのCO受液器、及び該CO受液器に貯留されたCO冷媒を前記冷却器に送る液ポンプと、を有していることを特徴とする請求項1乃至9の何れか1項に記載の冷凍装置の昇華デフロストシステム。
  11.  前記冷凍機は、
     NH冷媒が循環し冷凍サイクル構成機器が設けられた一次冷媒回路と、
     前記CO冷媒が循環し、前記冷却器に導設されると共に、前記一次冷媒回路とカスケードコンデンサを介して接続され、冷凍サイクル構成機器が設けられた二次冷媒回路と、を有するNH/CO二元冷凍機であることを特徴とする請求項1乃至9の何れか1項に記載の冷凍装置の昇華デフロストシステム。
  12.  前記一次冷媒回路に前記冷凍サイクル構成機器の一部として設けられた凝縮器に導設された冷却水回路をさらに備え、
     前記第2熱交換部は、前記冷却水回路及び前記ブライン回路が導設され、前記凝縮器で加熱された冷却水で前記ブライン回路を循環するブラインを加熱するための熱交換器であることを特徴とする請求項10又は11に記載の冷凍装置の昇華デフロストシステム。
  13.  前記一次冷媒回路に前記冷凍サイクル構成機器の一部として設けられた凝縮器に導設された冷却水回路と、
     前記冷却水回路を循環する冷却水を散布水と熱交換させて冷却するための冷却塔と、をさらに備え、
     前記第2熱交換部は、前記冷却塔と一体に設けられ、前記散布水が導入され該散布水と前記ブライン回路を循環する前記ブラインとを熱交換するための加熱塔で構成されていることを特徴とする請求項10又は11に記載の冷凍装置の昇華デフロストシステム。
  14.  請求項1乃至13に記載された冷凍装置の昇華デフロストシステムを用いた昇華デフロスト方法であって、
     前記除湿装置によって前記冷凍庫の庫内空気を飽和水蒸気分圧とならないように除湿する第1工程と、
     デフロスト時に前記開閉弁を閉じて前記閉回路を形成する第2工程と、
     前記閉回路を循環するCO冷媒が前記冷凍庫の庫内空気中の水蒸気の氷点以下の凝縮温度となるように前記CO冷媒を圧力調整する第3工程と、
     加熱媒体としての前記ブラインと前記閉回路を循環するCO冷媒とを熱交換させて前記CO冷媒を気化する第4工程と、
     前記第4工程で気化した前記CO冷媒を前記閉回路を循環させ、前記熱交換管の外表面に付着した霜を前記CO冷媒の熱で昇華除去する第5工程と、を含むことを特徴とする冷凍装置の昇華デフロスト方法。
  15.  前記第4工程は、高低差をもって形成された前記閉回路の下部領域で、前記ブラインと前記閉回路を循環するCO冷媒とを熱交換させるものであり、
     前記第5工程は、前記閉回路で前記CO冷媒をサーモサイフォン作用によって自然循環させるものであることを特徴とする請求項14に記載の冷凍装置の昇華デフロスト方法。
PCT/JP2014/081044 2013-12-17 2014-11-25 冷凍装置の昇華デフロストシステム及び昇華デフロスト方法 WO2015093235A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480033284.2A CN105283720B (zh) 2013-12-17 2014-11-25 冷冻装置的升华除霜系统以及升华除霜方法
EP14873060.9A EP2940410B1 (en) 2013-12-17 2014-11-25 Sublimation defrost system for refrigeration devices and sublimation defrost method
KR1020167018741A KR101790461B1 (ko) 2013-12-17 2014-11-25 냉동 장치의 승화 디프로스트 시스템 및 승화 디프로스트 방법
US14/904,283 US9863677B2 (en) 2013-12-17 2014-11-25 Sublimation defrost system and sublimation defrost method for refrigeration apparatus
JP2015532991A JP5944058B2 (ja) 2013-12-17 2014-11-25 冷凍装置の昇華デフロストシステム及び昇華デフロスト方法
MX2015011266A MX366606B (es) 2013-12-17 2014-11-25 Sistema de descongelacion por sublimacion para dispositivos de refrigeracion y metodo de descongelacion por sublimacion.
BR112015017791-3A BR112015017791B1 (pt) 2013-12-17 2014-11-25 Sistema de descongelamento por sublimação e método de descongelamento por sublimação para aparelho de refrigeração

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-259751 2013-12-17
JP2013259751 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093235A1 true WO2015093235A1 (ja) 2015-06-25

Family

ID=53402588

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2014/081042 WO2015093233A1 (ja) 2013-12-17 2014-11-25 冷凍装置のデフロストシステム及び冷却ユニット
PCT/JP2014/081043 WO2015093234A1 (ja) 2013-12-17 2014-11-25 冷凍装置のデフロストシステム及び冷却ユニット
PCT/JP2014/081044 WO2015093235A1 (ja) 2013-12-17 2014-11-25 冷凍装置の昇華デフロストシステム及び昇華デフロスト方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/081042 WO2015093233A1 (ja) 2013-12-17 2014-11-25 冷凍装置のデフロストシステム及び冷却ユニット
PCT/JP2014/081043 WO2015093234A1 (ja) 2013-12-17 2014-11-25 冷凍装置のデフロストシステム及び冷却ユニット

Country Status (8)

Country Link
US (3) US9746221B2 (ja)
EP (5) EP2940409B1 (ja)
JP (3) JP5944057B2 (ja)
KR (3) KR101823809B1 (ja)
CN (4) CN105283720B (ja)
BR (3) BR112015017789B1 (ja)
MX (3) MX359977B (ja)
WO (3) WO2015093233A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175411A1 (ja) * 2016-04-07 2017-10-12 株式会社前川製作所 昇華による除霜方法、昇華による除霜装置及び冷却装置
CN107543355A (zh) * 2016-06-23 2018-01-05 樊永信 一种新型冷库冷风机系统
JP2019207052A (ja) * 2018-05-29 2019-12-05 株式会社前川製作所 エアクーラ、冷凍システム及びエアクーラの除霜方法
WO2020100767A1 (ja) * 2018-11-13 2020-05-22 株式会社前川製作所 熱交換器及び熱交換器のデフロスト方法
CN112880219A (zh) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 冰箱除霜系统、冰箱以及冰箱除霜方法
WO2024127997A1 (ja) * 2022-12-16 2024-06-20 株式会社前川製作所 冷凍装置のデフロストシステム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679368C1 (ru) * 2015-05-13 2019-02-07 Кэрриер Корпорейшн Эжекторный холодильный контур
KR101723169B1 (ko) * 2015-06-18 2017-04-05 동부대우전자 주식회사 주변 조도에 따라 냉장고를 제어하는 장치 및 방법
DE102015008325A1 (de) * 2015-06-26 2016-12-29 Voss Automotive Gmbh Einrichtung und Verfahren zum Enteisen eines Wärmetauschers im Verdampferbetrieb einer Kälteanlage sowie Fahrzeug mit einer solchen Einrichtung
US11365921B2 (en) * 2015-09-18 2022-06-21 Carrier Corporation System and method of freeze protection for a chiller
CN105466116B (zh) * 2016-01-11 2018-02-06 苟仲武 一种保持蒸发器无霜工作的装置和方法
CN107036344B (zh) 2016-02-03 2021-06-15 开利公司 制冷系统、复叠式制冷系统及其控制方法
EP3433553A4 (en) * 2016-03-24 2019-10-23 Scantec Refrigeration Technologies Pty. Ltd. defrost
KR20170128958A (ko) 2016-05-16 2017-11-24 엘지전자 주식회사 의류처리장치
JP6237942B1 (ja) * 2017-01-30 2017-11-29 富士通株式会社 液浸冷却装置
JP6869800B2 (ja) * 2017-04-28 2021-05-12 株式会社前川製作所 エアクーラ、冷凍システム及びエアクーラの除霜方法
CN111433549A (zh) 2017-07-17 2020-07-17 分形散热器技术有限责任公司 多重分形散热器系统及方法
US10156385B1 (en) * 2017-08-15 2018-12-18 Christopher Kapsha Multistage refrigeration system
US20190257569A1 (en) * 2018-02-19 2019-08-22 Hamilton Sundstrand Corporation Closed loop icing control for heat exchangers
JP6511710B2 (ja) * 2018-03-29 2019-05-15 三菱重工冷熱株式会社 冷凍装置
JP6856580B2 (ja) * 2018-07-10 2021-04-07 株式会社前川製作所 貯蔵システムおよび貯蔵システムの使用方法
CN112368531B (zh) 2018-07-17 2023-04-04 开利公司 冷藏货物货厢货物传感器
CN109163470B (zh) * 2018-10-19 2023-09-19 中国铁路设计集团有限公司 一种超低温二氧化碳冷热水机组
CN109373776A (zh) * 2018-11-19 2019-02-22 洛阳远洋生物制药有限公司 一种冷却循环水加速冷却装置
CN109946098A (zh) * 2019-02-14 2019-06-28 江苏科技大学 一种闭式带中间冷媒的结霜工况下表面冷却器性能试验台
US20220228782A1 (en) * 2019-06-12 2022-07-21 Daikin Industries, Ltd. Refrigerant cycle system
EP4006451A4 (en) * 2019-07-22 2022-08-10 Mayekawa Mfg. Co., Ltd. DEFROSTING SYSTEM
CN110986272B (zh) * 2019-10-28 2021-10-29 青岛海尔空调器有限总公司 空调自清洁控制的方法及装置、空调
JP6999628B2 (ja) * 2019-11-19 2022-01-18 矢崎エナジーシステム株式会社 吸収式冷凍機
KR20210108242A (ko) * 2020-02-25 2021-09-02 엘지전자 주식회사 히트펌프 공기조화기
CN112503840A (zh) * 2021-01-04 2021-03-16 重庆西名制冷设备有限公司 一种冻库用的自动除霜装置
CN112880218B (zh) * 2021-03-26 2024-08-23 珠海格力电器股份有限公司 冰箱除霜系统、冰箱以及冰箱除霜方法
CN112984924B (zh) * 2021-03-26 2024-10-18 珠海格力电器股份有限公司 升华除霜系统、制冷系统、制冷设备及其控制方法
US12130061B2 (en) * 2021-09-03 2024-10-29 Heatcraft Refrigeration Products Llc Hot gas defrost using medium temperature compressor discharge
CN113813635A (zh) * 2021-09-09 2021-12-21 金川集团股份有限公司 一种氯乙烯尾气冷凝器化冻装置
CN114963364A (zh) * 2022-05-31 2022-08-30 宁波奥克斯电气股份有限公司 一种模块机组喷淋系统、控制方法、装置以及模块机组
TW202411578A (zh) * 2022-06-21 2024-03-16 加拿大商Xnrgy氣候系統公司 具有被動式過冷器的冷卻系統

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244468U (ja) * 1975-09-25 1977-03-29
JPS52131652U (ja) * 1976-03-24 1977-10-06
JP2003329334A (ja) 2002-05-14 2003-11-19 Toyo Eng Works Ltd 冷却器
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム
WO2009034300A1 (en) * 2007-09-14 2009-03-19 University Of Exeter An ice making system
JP2010181093A (ja) 2009-02-05 2010-08-19 Toyo Eng Works Ltd 二酸化炭素循環・冷却システムにおけるデフロスト装置
JP2012072981A (ja) 2010-09-29 2012-04-12 Mayekawa Mfg Co Ltd 冷凍方法及び冷凍設備
JP2013124812A (ja) 2011-12-15 2013-06-24 Toyo Eng Works Ltd 二酸化炭素冷媒による冷却および除霜システム、およびその運転方法
JP2013160427A (ja) * 2012-02-03 2013-08-19 Mitsubishi Electric Corp 二元冷凍装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084519A (en) * 1958-03-06 1963-04-09 Whirlpool Co Two temperature forced air refrigerator systems
US3228204A (en) 1963-07-03 1966-01-11 Controls Co Of America Refrigeration control for defrosting
US4037427A (en) * 1971-05-21 1977-07-26 Kramer Doris S Refrigeration evaporators with ice detectors
JPS4976143A (ja) * 1972-11-25 1974-07-23
AT331284B (de) * 1974-02-18 1976-08-10 Wein Gedeon Kuhlanlage
KR940008247Y1 (ko) 1992-06-13 1994-12-05 홍성용 인터페이스케이블용 페라이트코어의 커버장치
DE29817062U1 (de) 1998-09-22 1999-04-01 Lepuschitz, Hans, Villach Kühleinrichtung für Kühlvitrinen
US6170270B1 (en) 1999-01-29 2001-01-09 Delaware Capital Formation, Inc. Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP4197562B2 (ja) * 1999-07-13 2008-12-17 中野冷機株式会社 冷凍機内蔵型ショーケースのドレン蒸発構造
IL144119A (en) * 2001-07-03 2006-07-05 Gad Assaf Air conditioning system
JP2003021365A (ja) * 2001-07-04 2003-01-24 Mitsubishi Heavy Ind Ltd 氷蓄熱装置
JP3861845B2 (ja) * 2003-02-19 2006-12-27 株式会社デンソー 冷機能兼用ヒートポンプ式給湯装置
CA2545370C (en) * 2003-11-21 2011-07-26 Mayekawa Mfg. Co., Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooling unit incorporating that production system
EP1630495A1 (en) 2004-08-24 2006-03-01 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A method and a cooling system in which a refrigerant is used as a cooling agent and/or as a defrosting agent
KR100858991B1 (ko) * 2004-09-30 2008-09-18 마에카와 매뉴팩쳐링 캄파니 리미티드 암모니아/co2 냉동 시스템
WO2006049355A1 (en) 2004-11-02 2006-05-11 Lg Electronics, Inc. Defrost operating method for refrigerator
DK200501574A (da) * 2005-11-11 2005-11-25 York Denmark Aps Defrost system
WO2008112568A2 (en) * 2007-03-09 2008-09-18 Johnson Controls Technology Company Compressor with multiple inlets
JP5244468B2 (ja) 2008-06-06 2013-07-24 株式会社ブリヂストン 防振装置
CA2760488A1 (en) 2008-04-18 2009-10-18 Serge Dube Co2 refrigeration unit
CA2722355A1 (en) * 2008-04-24 2009-10-29 Vkr Holding A/S A device for obtaining heat
WO2009140584A2 (en) * 2008-05-15 2009-11-19 Xdx Innovative Refrigeration, Llc Surged vapor compression heat transfer system with reduced defrost
CA2820930C (en) 2008-10-23 2016-04-26 Serge Dube Co2 refrigeration system
KR101721870B1 (ko) 2009-08-25 2017-03-31 엘지전자 주식회사 냉장고
CN103180678B (zh) * 2010-05-27 2016-04-06 Xdx创新制冷有限公司 浪涌式热泵系统
US8352691B2 (en) * 2010-08-17 2013-01-08 International Business Machines Corporation Facilitation of simultaneous storage initialization and data destage
US20120055185A1 (en) 2010-09-02 2012-03-08 Ran Luo Refrigeration apparatus
JP2013076511A (ja) 2011-09-30 2013-04-25 Mayekawa Mfg Co Ltd 冷凍装置及びそのデフロスト方法
US9285153B2 (en) 2011-10-19 2016-03-15 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having passive sublimation defrost of evaporator
MX359679B (es) 2011-11-21 2018-10-05 Hill Phoenix Inc Sistema de refrigeracion con dioxido de carbono (co2) con deshielo con gas caliente.
WO2014022269A2 (en) 2012-07-31 2014-02-06 Carrier Corporation Frozen evaporator coil detection and defrost initiation
US20140260361A1 (en) * 2013-03-15 2014-09-18 Benoit RODIER Refrigeration apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244468U (ja) * 1975-09-25 1977-03-29
JPS52131652U (ja) * 1976-03-24 1977-10-06
JP2003329334A (ja) 2002-05-14 2003-11-19 Toyo Eng Works Ltd 冷却器
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム
WO2009034300A1 (en) * 2007-09-14 2009-03-19 University Of Exeter An ice making system
JP2010181093A (ja) 2009-02-05 2010-08-19 Toyo Eng Works Ltd 二酸化炭素循環・冷却システムにおけるデフロスト装置
JP2012072981A (ja) 2010-09-29 2012-04-12 Mayekawa Mfg Co Ltd 冷凍方法及び冷凍設備
JP2013124812A (ja) 2011-12-15 2013-06-24 Toyo Eng Works Ltd 二酸化炭素冷媒による冷却および除霜システム、およびその運転方法
JP2013160427A (ja) * 2012-02-03 2013-08-19 Mitsubishi Electric Corp 二元冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940410A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378326B2 (en) 2016-04-07 2022-07-05 Mayekawa Mfg. Co., Ltd. Sublimation defrosting method, sublimation defrosting device, and cooling device
JPWO2017175411A1 (ja) * 2016-04-07 2018-07-19 株式会社前川製作所 昇華による除霜方法、昇華による除霜装置及び冷却装置
CN108700361A (zh) * 2016-04-07 2018-10-23 株式会社前川制作所 利用升华的除霜方法、利用升华的除霜装置及冷却装置
CN108700361B (zh) * 2016-04-07 2020-09-04 株式会社前川制作所 利用升华的除霜方法、利用升华的除霜装置及冷却装置
WO2017175411A1 (ja) * 2016-04-07 2017-10-12 株式会社前川製作所 昇華による除霜方法、昇華による除霜装置及び冷却装置
CN107543355A (zh) * 2016-06-23 2018-01-05 樊永信 一种新型冷库冷风机系统
JP2019207052A (ja) * 2018-05-29 2019-12-05 株式会社前川製作所 エアクーラ、冷凍システム及びエアクーラの除霜方法
JP7140552B2 (ja) 2018-05-29 2022-09-21 株式会社前川製作所 エアクーラ、冷凍システム及びエアクーラの除霜方法
WO2020100767A1 (ja) * 2018-11-13 2020-05-22 株式会社前川製作所 熱交換器及び熱交換器のデフロスト方法
JP2020079678A (ja) * 2018-11-13 2020-05-28 株式会社前川製作所 熱交換器及び熱交換器のデフロスト方法
JP7208769B2 (ja) 2018-11-13 2023-01-19 株式会社前川製作所 熱交換器及び熱交換器のデフロスト方法
CN112880219A (zh) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 冰箱除霜系统、冰箱以及冰箱除霜方法
WO2024127997A1 (ja) * 2022-12-16 2024-06-20 株式会社前川製作所 冷凍装置のデフロストシステム

Also Published As

Publication number Publication date
EP3267131A1 (en) 2018-01-10
WO2015093233A1 (ja) 2015-06-25
US9863677B2 (en) 2018-01-09
KR20160096708A (ko) 2016-08-16
EP2940409A4 (en) 2017-03-08
EP2940408A1 (en) 2015-11-04
BR112015017785A2 (pt) 2017-07-11
JP6046821B2 (ja) 2016-12-21
KR101823809B1 (ko) 2018-01-30
EP2940408B1 (en) 2019-01-02
CN105283719B (zh) 2017-07-18
EP2940409B1 (en) 2019-03-13
KR20160099653A (ko) 2016-08-22
CN105283720B (zh) 2017-08-04
CN105473960B (zh) 2017-07-18
MX369577B (es) 2019-11-13
US20160187041A1 (en) 2016-06-30
EP3285028A1 (en) 2018-02-21
EP2940410B1 (en) 2019-01-02
EP2940410A4 (en) 2016-11-30
MX359977B (es) 2018-10-18
JPWO2015093234A1 (ja) 2017-03-16
BR112015017785B1 (pt) 2022-03-03
JP5944058B2 (ja) 2016-07-05
JPWO2015093235A1 (ja) 2017-03-16
MX2015011266A (es) 2015-12-03
BR112015017791B1 (pt) 2022-04-19
BR112015017789B1 (pt) 2022-03-22
MX2015011265A (es) 2016-03-04
US20150377541A1 (en) 2015-12-31
EP3267131B1 (en) 2019-03-06
US20160178258A1 (en) 2016-06-23
CN105283720A (zh) 2016-01-27
EP3285028B1 (en) 2019-01-30
CN105283719A (zh) 2016-01-27
KR101790462B1 (ko) 2017-10-25
EP2940408A4 (en) 2016-11-30
JP5944057B2 (ja) 2016-07-05
KR101790461B1 (ko) 2017-10-25
BR112015017791A2 (pt) 2017-07-11
US9746221B2 (en) 2017-08-29
WO2015093234A1 (ja) 2015-06-25
CN105473960A (zh) 2016-04-06
BR112015017789A2 (pt) 2017-07-11
JPWO2015093233A1 (ja) 2017-03-16
MX366606B (es) 2019-07-16
KR20160099659A (ko) 2016-08-22
EP2940410A1 (en) 2015-11-04
CN107421181A (zh) 2017-12-01
MX2015011028A (es) 2015-10-22
US10302343B2 (en) 2019-05-28
EP2940409A1 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2015093235A1 (ja) 冷凍装置の昇華デフロストシステム及び昇華デフロスト方法
JP6420686B2 (ja) 冷凍サイクル装置
JP2015098980A (ja) 情報処理室の空調設備
KR20130032681A (ko) 공기조화기
WO2021014526A1 (ja) デフロストシステム
KR20090043991A (ko) 냉장고의 핫 라인 장치
JP7235473B2 (ja) 冷凍装置
JP2005241090A (ja) 複合型空気調和設備及びその運転方法
US20220390150A1 (en) Cooling system with reduced valves
JP6229955B2 (ja) 冷凍装置、および負荷冷却器のデフロスト方法
JP2016142483A (ja) 空気冷却器
JP2006029643A (ja) 冷凍冷蔵庫用冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033284.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015532991

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014873060

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017791

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011266

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14904283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018741

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604590

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112015017791

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150724