[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015090428A1 - Procédé et système de traitement de défaillance de cellule de convertisseur - Google Patents

Procédé et système de traitement de défaillance de cellule de convertisseur Download PDF

Info

Publication number
WO2015090428A1
WO2015090428A1 PCT/EP2013/077542 EP2013077542W WO2015090428A1 WO 2015090428 A1 WO2015090428 A1 WO 2015090428A1 EP 2013077542 W EP2013077542 W EP 2013077542W WO 2015090428 A1 WO2015090428 A1 WO 2015090428A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switching
switching module
failed
healthy
state
Prior art date
Application number
PCT/EP2013/077542
Other languages
English (en)
Inventor
Hamid DURAN
Alireza NAMI
Filippo Chimento
Gernot Riedel
Helge Kolstad
Eiril Bjornstad
Original Assignee
Abb Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ltd filed Critical Abb Technology Ltd
Priority to PCT/EP2013/077542 priority Critical patent/WO2015090428A1/fr
Publication of WO2015090428A1 publication Critical patent/WO2015090428A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present disclosure generally relates to power converters comprising converter cells which include semiconductor switching modules.
  • it relates to a method and to a system for handling the failure of semiconductor switching modules in a converter cell.
  • VSC Voltage source converters
  • IGBT insulated gate bipolar transistor
  • HVDC high-voltage direct current
  • SVC static var compensators
  • IGBTs and gate turnoff (GTO) thyristors are suitable for high power applications.
  • IGBTs are often preferable as they combine great power handling ability with features that make them well suited for connection in series.
  • Short circuit situations may occur in semiconductor circuits. In such situations it is necessary to be able to handle the effect of the short circuit.
  • a semiconductor breaks down, e.g. as a result of an over current or over voltage, the semiconductor cannot hold a voltage any longer.
  • a damaged semiconductor cannot be controlled. It may hold only a small voltage difference and when conducting its resistance can have a value within a broad range. In the worst case, forcing a current through a damaged semiconductor with high resistance can generate an arc that will generate extensive power dissipation.
  • StakPak modules are used as power switches. These semiconductor switching modules comprise a number of submodules, i.e. IGBT and diode chips. They have the ability to go into a stable short circuit failure mode (SCFM) in case of an IGBT submodule/chip or diode failure.
  • SCFM stable short circuit failure mode
  • the SCFM capability in StakPak modules is achieved by placing a plate made of a suitable metal on top of the IGBT and diode chips. A failure usually leads to a break-through and subsequently melts the metal plate and the silicon chip which then forms a conductive metal-silicon alloy. The lifetime of a conductive alloy, i.e.
  • the SCFM may have different durations for different semiconductor switching modules and different application conditions such as load current etc.
  • the desired duration of the SCFM typically depends on the particular application.
  • WO2012143037 discloses a method of handling a failure in a chain-link converter, especially a fault in an H-bridge cell.
  • the other cell in that leg of the H-bridge cell where the faulty IGBT is located is set in the OFF state while the faulty IGBT is in the short circuit failure mode and the IGBTs of the other leg of the cell are switched such that the current alternatingly flows through the cell capacitor via the faulty IGBT and one of the two IGBTs of the other leg to discharge the cell capacitor.
  • the gate unit which controls the gates of the submodules may be provided with a kill-switch functionality, as for example disclosed in WO2012152316.
  • the gate unit comprises a contact board which may be sectioned into a plurality of independent parts, each part being arranged to supply one submodule independently from the gate unit. This ensures a high integrity in case of failure.
  • the failed submodule i.e. a submodule in which a chip has failed, is fused out and the healthy submodules are set to a permanent ON state, the semiconductor switching module thus acting as a bypass.
  • the short circuit state thus obtained may be more reliable than the type described in WO2012143037.
  • An object of the present disclosure is to provide a method and a system for handling faults in both half-bridge and full-bridge converter cell
  • Another object is to limit currents in the faulty converter cell when
  • a method of handling a failed semiconductor switching module of a converter cell comprising a plurality of semiconductor switching modules and a cell capacitor, each semiconductor switching module being of a type that has a short circuit failure mode, SCFM, and each semiconductor switching module comprising a number of semiconductor submodules controllable by a gate unit and a kill-switch, wherein the method comprises: a) controlling the kill-switch associated with the failed semiconductor switching module, which is in the SCFM, to drive the failed semiconductor switching module to a resistive state by driving functioning semiconductor submodules in the failed semiconductor switching module to resistive states, b) controlling that healthy semiconductor switching module of the
  • the cell capacitor is thus discharged through the failed semiconductor switching module and on a healthy semiconductor switching module. Since at least the failed semiconductor switching module is set in its resistive state, the discharge current can be limited at least for the necessary time to provide the capacitor discharge, and the power electronic components of the converter cell may be protected from too high discharge currents which could damage these components. The proper functioning of as many components as possible is important to be able to ensure a long stable short circuit state of the converter cell. Moreover, by means of this method, discharge and bypass of converter cells of both full-bridge type and half-bridge type is possible.
  • the conductive state is a resistive state of said healthy semiconductor switching module.
  • the conductive state is an ON-state of said healthy semiconductor switching module.
  • said healthy semiconductor switching module is controlled by means of a gate unit associated with said healthy semiconductor switching module.
  • step b) said healthy semiconductor switching module is controlled by means of a kill-switch associated with said healthy semiconductor switching module.
  • each semiconductor switching module comprises an insulated gate bipolar transistor, IGBT.
  • the converter cell forms part of a modular multilevel converter, MMC.
  • MMC modular multilevel converter
  • a system for handling a failed semiconductor switching module in a converter cell comprising: a converter cell comprising a plurality of semiconductor switching modules and a cell capacitor, each being of a type that has a short circuit failure mode, SCFM, and each semiconductor switching module being controllable by a gate unit and a kill-switch, and a control unit arranged to control: the kill-switch of a failed semiconductor switching module, which is in its SCFM, to drive the failed semiconductor switching module to a resistive state by driving functioning semiconductor submodules in the failed semiconductor switching module to resistive states, that healthy semiconductor switching module of the plurality of semiconductor switching modules of the converter cell, which together with the failed semiconductor switching module provides a flow path for current through the cell capacitor, to obtain a conductive state in which current is able to flow through said healthy semiconductor switching module, to thereby discharge the cell capacitor through said healthy semiconductor switching module and the failed semiconductor switching module, said healthy semiconductor switching module to maintain an ON- state permanently, and the kill-s
  • the conductive state is an ON-state of said healthy semiconductor switching module.
  • the system comprises a respective kill-switch for each semiconductor switching module, and a respective gate unit for each semiconductor switching module, wherein the control unit is arranged to control said healthy semiconductor switching module by means of its associated kill-switch or gate unit.
  • each semiconductor switching module comprises an insulated gate bipolar transistor, IGBT.
  • the converter cell is one of a half-bridge converter cell and a full-bridge converter cell According to one embodiment the converter cell forms part of a modular multilevel converter, MMC.
  • Fig. 1 schematically depicts an example of a power converter comprising a plurality of converter cells
  • Fig. 2a depicts an example of a system for handling failed semiconductor switching modules comprising a half-bridge converter cell comprising semiconductor switching modules;
  • Fig. 2b schematically depicts a semiconductor switching module which includes a number of semiconductor submodules
  • Figs 3a-d show the operation for handling a fault in the converter cell in Fig. 2a;
  • Fig. 4 depicts another example of a system for handling failed semiconductor switching modules comprising a full-bridge converter cell comprising semiconductor switching modules;
  • Figs 5a-5d show the operation for handling a fault in the converter cell in Fig. 4;
  • Fig. 6 is a flowchart of a method of handling a fault in a semiconductor switching module of a converter cell.
  • Fig. l schematically illustrates a power converter l.
  • the exemplified power converter is a three-phase alternating current (AC) to AC converter. It should be noted that the present concept could be utilised in any type of power converter, e.g. a rectifier, inverter or direct current (DC) to DC converter comprising full-bridge or half-bridge converter cells, and for fewer or more electrical phases than three.
  • the exemplified power converter 1 comprises a plurality of legs L1-L3 on an input terminal side 3 of the power converter 1, and a plurality of legs L4-L6 on an output terminal side 5 of the power converter 1.
  • Each leg L1-L6 comprises a plurality of converter cells 7 comprising semiconductor switching modules.
  • the converter cells are utilised to enable the power converter to convert the input voltage of each electrical phase to a desired output voltage and/or frequency of a corresponding electrical phase.
  • the operation of power converters is well-known, and will not be described in more detail herein.
  • Fig. 2a shows an example of a system for handling a failed semiconductor switching module of a converter cell.
  • the system 6-1 comprises a converter cell 7-1 and a control unit 14.
  • the control unit 14 is provided with a computer program comprising computer-executable components which when run on the control unit 14, e.g. on its processor, performs the method(s) presented herein.
  • the converter cell 7-1 is of half-bridge type, and comprises a plurality of semiconductor switching modules 9a, 9b.
  • the semiconductor switching modules 9a, 9b are of the type which has a built-in short circuit failure mode. This applies to the semiconductor switching modules of all the examples presented herein.
  • Each semiconductor switching module 9a, 9b comprises one ore more semiconductor submodule(s) which in turn comprise one or more
  • Each semiconductor switching module may for example be of IGBT type or gate-controlled thyristor type, or any other type of semiconductor switching device with the feature that it comprises a number of submodules that can be individually driven by a kill-switch.
  • the converter cell 7-1 also comprises a cell capacitor C connected between the collector of the semiconductor switching module 9a and the emitter of the other semiconductor switching module 9b.
  • the converter cell 7-1 has one terminal 13, according to the example in Fig. 2a the DC side, between the emitter of the upper semiconductor switching module 9a and the collector of the lower semiconductor switching module 9b.
  • the other terminal 11, according to the example the AC side, is at the emitter of the lower
  • semiconductor switching module 9b With the terms lower and upper is here merely meant the placement of the semiconductor switching modules as shown in Fig. 2a.
  • the converter cell 7-1 comprises a gate unit 11a and a kill-switch 13a connected to the gate of the semiconductor switching module 9a to control the switching of that semiconductor switching module, and a gate unit lib and a kill-switch 13b connected to the gate of the semiconductor switching device 9b to control the switching of that semiconductor switching module.
  • the gate units and the kill-switch hence control the gate voltage to the semiconductor switching modules. Normal operation of converter cells is well-known in the art, and will not be discussed any further herein.
  • Fig. 2b depicts an example of the internal components of a semiconductor switching module 9.
  • the general configuration shown in Fig. 2b may be included in any semiconductor switching module 9a, 9b, 9c, 9d presented herein, thus also the semiconductor switching modules discussed in the example shown in Figs 4-5.
  • the number of semiconductor submodules contained in a semiconductor switching module may vary depending on the application.
  • a semiconductor switching module need thus not necessarily comprise exactly six semiconductor submodules as depicted in Fig. 2b; there may be fewer or more such submodules.
  • the semiconductor switching module 9 comprises a plurality of semiconductor submodules 15, each being a semiconductor switching device, such as an IGBT in the form of an IGBT chip with an anti-parallel connected diode.
  • the gate of each semiconductor submodule 15 is connected to a common terminal which defines the gate G of the semiconductor switching module 9.
  • the collectors and emitters of the semiconductor submodules 15, are connected to a respective common terminal defining the collector C and emitter E of the semiconductor switching module 9.
  • the gate of each semiconductor submodule 15 may be connected to the common terminal forming the gate G of the semiconductor switching module 9 by means of a respective fuse F.
  • the fuses are arranged to blow in case of a semiconductor submodule failure to separate the gate of the failed semiconductor
  • the kill-switch of semiconductor switching module 9 comprises a plurality of individual supply parts, each being associated with a unique semiconductor submodule 15.
  • the gate unit fails and if one of the semiconductor submodules 15 fails, the remaining healthy semiconductor submodules 15 may be controlled by the kill-switch.
  • the parts associated with the healthy semiconductor submodules 15 may control these semiconductor submodules, as will be described in more detail in the following. With reference to Figs 3a-3d, and to Fig. 6, the handling of a failed
  • FIG. 6 is a flowchart of a method of handling a fault in a semiconductor switching module of a converter cell, which method comprises steps a-d described in detail below.
  • a failed semiconductor switching module is here meant a semiconductor switching module where a semiconductor submodule has failed, and the semiconductor switching module has been set in the SCFM.
  • the lower semiconductor switching module 9b has been subjected to a failure, and is therefore in the following termed a failed semiconductor switching module 9b.
  • the cell capacitor C is to be discharged. It should here be noted that sensor devices or other means known in the art may be utilised to determine that a
  • a semiconductor switching module has failed, and in particular that a semiconductor submodule has failed.
  • This data is provided to the control unit 14, which is arranged to control the gate units and kill-switches of the converter cell 7-1.
  • the control unit has been left out of Figs 3a-3d in order to make the illustrations more clear.
  • the kill-switch 13b is controlled to set the failed semiconductor switching module 9b into a resistive state.
  • the control unit is thus arranged to provide a control signal to kill-switch 13b to set the failed semiconductor switching module 9b into the resistive state.
  • This is obtained by providing control instructions to drive the healthy semiconductor submodules 15 into their resistive states.
  • the semiconductor submodules may be by set in their resistive states by driving their gates with voltages below a voltage that would be necessary to set the semiconductor submodules in their ON-state. This is symbolised by a resistor in Figs 3b and 3c.
  • the healthy semiconductor switching module 9a is set into a conductive state by either its kill-switch 13a or its gate unit 11a.
  • the control signal to the kill-switch 13a or gate unit 11a is provided by the control unit 14.
  • the healthy semiconductor switching module 9a may be set in its ON-state or in its resistive state, thus setting the resistance of the branch defined by the semiconductor switching modules 9a and 9b to a proper value. Current is thereby able to flow through the circuit, as shown in Fig. 3c, and the cell capacitor C may be discharged through the healthy semiconductor switching module 9a and the failed semiconductor switching module 9b.
  • the discharge current may be limited.
  • the risk that the healthy semiconductor switching module 9a and the semiconductor submodules 15 of the failed semiconductor switching module 9b are damaged by the discharge current may thus be reduced.
  • the converter cell 7-1 is to be set in a bypass mode in the second stage of the strategy, it is important that as many components as possible of the cell converter 7-1 function properly in order to be able to provide a stable short circuit of the cell converter 7-1.
  • the healthy semiconductor switching module 9a is controlled to be set into its ON-state permanently.
  • the control signal is provided by the control unit via the kill- switch 13a or the gate unit 11a.
  • the failed semiconductor switching module 9b is controlled to be set into its ON-state. This is obtained by the control unit 14 providing a control signal to the kill-switch 13b that the remaining healthy semiconductor submodules 15 of the failed semiconductor switching module 9b are to be set into their ON-state.
  • the failed semiconductor submodule is already in the SCFM and is thus in a low-ohmic state corresponding to the ON-state.
  • the converter cell 7-1 may thereby effectively be bypassed, as shown by the arrow in Fig. 3d.
  • FIG. 4 depicts a system 6-2 comprising a full-bridge type of cell converter 7-2 and control unit 14.
  • the full-bridge converter is similar to the half-bridge type, but comprises twice as many semiconductor switching modules, namely semiconductor switching modules 9a, 9b, 9c and 9d.
  • Each semiconductor switching module 9a-9d is associated with a respective gate unit na-iid and a respective kill-switch I3a-i3d which are arranged to control the gate voltage of their respective semiconductor switching module 9a-9d.
  • Semiconductor switching modules 9a and 9b define a first leg 17a of the converter cell 7-2.
  • Semiconductor switching modules 9c and 9d define a second leg 17b of the converter cell 7-2.
  • a first terminal 19a is formed between the emitter of the upper semiconductor switching module 9a and the collector of the lower semiconductor switching module 9b of the first leg 17a.
  • a second terminal 19b is formed between the emitter of the upper semiconductor switching module 9a and the collector of the lower semiconductor switching module 9b of the first leg 17a.
  • the converter cell 7-2 also comprises a cell capacitor C.
  • semiconductor switching modules 9a-9d are configured as described in connection with the description of Fig. 2b.
  • a step a) the kill-switch 13b is controlled to set the failed semiconductor switching module 9b into a resistive state.
  • the control unit 14 is thus arranged to provide a control signal to kill-switch 13b to set the failed semiconductor switching module 9b into the resistive state.
  • This is obtained by providing control instructions to drive the healthy semiconductor submodules 15 into their resistive states.
  • the semiconductor submodules may be set in their resistive states by driving their gates with voltages below a voltage that would be necessary to set the semiconductor submodules in their ON-state. This is symbolised by a resistor in Figs 5b and 5c.
  • the healthy semiconductor switching module 9c is set into a conductive state by either its kill-switch 13a or its gate unit 11a. This is that healthy semiconductor switching module which together with the failed semiconductor switching 9b module provides a flow path for current through the cell capacitor C.
  • the control signal to the kill-switch 13a or gate unit 11a is provided by the control unit 14.
  • the healthy semiconductor switching module 9c may be set into a conductive state either by controlling it to obtain its ON- state or its resistive state, thus setting the resistance of the current flow path defined by the failed semiconductor switching modules 9b, the cell capacitor C and semiconductor switching module 9c to a proper value. Current is thereby able to flow through the circuit, as shown in Fig. 5c, and the cell capacitor C may be discharged through the healthy semiconductor switching module 9c and the failed semiconductor switching module 9b.
  • a step c when the cell capacitor C has been discharged, the healthy semiconductor switching module 9c is controlled to be set into its ON-state permanently.
  • the control signal is provided by the control unit 14 via the kill- switch 13c or the gate unit 11c.
  • a step d) the failed semiconductor switching module 9b is controlled to be set into its ON-state.
  • This is obtained by the control unit providing a control signal to the kill-switch 13b that the remaining healthy semiconductor submodules 15 of the failed semiconductor switching module 9b are to be set into their ON-state.
  • the failed semiconductor submodule is already in the SCFM and is thus in a low-ohmic state corresponding to the ON-state.
  • the remaining semiconductor switching modules 9a and 9d may also be set into their ON-state by either their respective kill-switch or gate unit.
  • the converter cell 7-2 is thus shorted and can effectively be bypassed in the power converter. It should be noted that each converter cell 7 of the plurality of converter cells 7 in a power converter of any type mentioned herein may be controlled by one or more control units 14, such that a fault in any converter cell may be handled according to the concept presented herein.
  • subsea applications such as for powering pumps and compressors in subsea installations, or for subsea HVDC/HVAC power transmission and power distribution systems, as well as offshore power generation such as wind energy, tidal energy, wave energy, and ocean current energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention porte sur un procédé de traitement d'un module de commutation à semi-conducteurs défaillant d'une cellule de convertisseur comprenant une pluralité de modules de commutation à semi-conducteurs et un condensateur de cellule, chaque module de commutation à semi-conducteurs étant d'un type qui possède un mode de défaillance de court-circuit, SCFM, et chaque module de commutation à semi-conducteurs comprenant un certain nombre de sous-modules à semi-conducteurs commandables par une unité de grille et un coupe-circuit. Le procédé comprend a) la commande du coupe-circuit associé au module de commutation à semi-conducteurs défaillant, qui est le SCFM, afin de piloter le module de commutation à semi-conducteurs défaillant vers un état résistif par pilotage du sous-module à semi-conducteurs en fonctionnement dans le module de commutation à semi-conducteurs défaillant vers des états résistifs, b) la commande de ce module de commutation à semi-conducteurs fonctionnant normalement de la pluralité de modules de commutation à semi-conducteurs de la cellule de convertisseur qui, conjointement avec le module de commutation à semi-conducteurs défaillant, fournit un chemin de flux pour un courant à travers le condensateur de cellule, afin d'obtenir un état conducteur dans lequel un courant peut circuler à travers ledit module de commutation à semi-conducteurs fonctionnant normalement, déchargeant ainsi le condensateur de cellule par ledit module de commutation à semi-conducteurs fonctionnant normalement et le module de commutation à semi-conducteurs défaillant, c) la commande dudit module de commutation à semi-conducteurs fonctionnant normalement pour maintenir un état activé de manière permanente, et d) la commande du coupe-circuit associé au module de commutation à semi-conducteurs défaillant pour piloter les sous-modules à semi-conducteurs en fonctionnement du module de commutation à semi-conducteurs défaillant vers un état activé, ce qui permet de contourner la cellule de convertisseur.
PCT/EP2013/077542 2013-12-19 2013-12-19 Procédé et système de traitement de défaillance de cellule de convertisseur WO2015090428A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/077542 WO2015090428A1 (fr) 2013-12-19 2013-12-19 Procédé et système de traitement de défaillance de cellule de convertisseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/077542 WO2015090428A1 (fr) 2013-12-19 2013-12-19 Procédé et système de traitement de défaillance de cellule de convertisseur

Publications (1)

Publication Number Publication Date
WO2015090428A1 true WO2015090428A1 (fr) 2015-06-25

Family

ID=49918683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077542 WO2015090428A1 (fr) 2013-12-19 2013-12-19 Procédé et système de traitement de défaillance de cellule de convertisseur

Country Status (1)

Country Link
WO (1) WO2015090428A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160439A (zh) * 2016-07-05 2016-11-23 沈阳远大电力电子科技有限公司 一种高压变频器功率单元旁路装置
CN106385045A (zh) * 2016-10-13 2017-02-08 全球能源互联网研究院 一种海上平台供电系统及其控制方法
GB2544097A (en) * 2015-11-06 2017-05-10 J And M Ferranti Tech Ltd Electrical drive system
CN106909702A (zh) * 2015-12-23 2017-06-30 加拿大欧泊实时技术有限公司北京代表处 一种模块化多电平整流器及变电站、建模仿真平台、方法
CN107317472A (zh) * 2017-06-30 2017-11-03 中国西电电气股份有限公司 一种全桥与半桥混合型模块化多电平换流器启动方法
CN107565519A (zh) * 2017-08-18 2018-01-09 中国南方电网有限责任公司 一种适用于交流保护的柔性直流双极短路解析分析方法
CN107634659A (zh) * 2017-09-13 2018-01-26 华中科技大学 一种扩大混合型mmc运行区域的控制方法
CN108471251A (zh) * 2018-04-27 2018-08-31 广州供电局有限公司 半桥与全桥混合的模块化多电平换流器的启动方法及装置
WO2018197363A1 (fr) 2017-04-28 2018-11-01 Abb Schweiz Ag Module de puissance basé sur des commutateurs à semi-conducteurs normalement actifs
CN109510491A (zh) * 2018-10-31 2019-03-22 中国电力科学研究院有限公司 一种mmc全桥子模块igbt的短路识别方法及装置
EP3462479A1 (fr) * 2017-10-02 2019-04-03 General Electric Technology GmbH Ensemble semi-conducteur comportant protection contre les défauts électriques
EP3514933A4 (fr) * 2016-09-16 2019-09-25 Mitsubishi Electric Corporation Dispositif de conversion de puissance
EP3514934A4 (fr) * 2016-09-16 2019-09-25 Mitsubishi Electric Corporation Dispositif de conversion de puissance
CN110620394A (zh) * 2019-08-26 2019-12-27 南方电网科学研究院有限责任公司 一种半桥子模块型模块化多电平换流器的仿真控制方法
WO2022037783A1 (fr) * 2020-08-20 2022-02-24 Hitachi Energy Switzerland Ag Gestion de défauts dans une cellule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323220A1 (de) * 2003-05-22 2004-12-23 Siemens Ag Kurzschluss-Schaltung für einen Teilumrichter
WO2008028435A1 (fr) * 2006-09-06 2008-03-13 Siemens Aktiengesellschaft Limiteur de courant de court-circuit
WO2012143037A2 (fr) 2011-04-18 2012-10-26 Abb Technology Ag Procédé pour un convertisseur de source de tension à cellules reliées en chaîne, programmes d'ordinateur et produits programmes d'ordinateur
WO2012152316A1 (fr) 2011-05-10 2012-11-15 Abb Research Ltd Module de puissance et son procédé de fonctionnement
US20130063995A1 (en) * 2010-03-18 2013-03-14 Staffan Norrga Converter Cell For Cascaded Converters And A Control System And Method For Operating A Converter Cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323220A1 (de) * 2003-05-22 2004-12-23 Siemens Ag Kurzschluss-Schaltung für einen Teilumrichter
WO2008028435A1 (fr) * 2006-09-06 2008-03-13 Siemens Aktiengesellschaft Limiteur de courant de court-circuit
US20130063995A1 (en) * 2010-03-18 2013-03-14 Staffan Norrga Converter Cell For Cascaded Converters And A Control System And Method For Operating A Converter Cell
WO2012143037A2 (fr) 2011-04-18 2012-10-26 Abb Technology Ag Procédé pour un convertisseur de source de tension à cellules reliées en chaîne, programmes d'ordinateur et produits programmes d'ordinateur
WO2012152316A1 (fr) 2011-05-10 2012-11-15 Abb Research Ltd Module de puissance et son procédé de fonctionnement

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544097A (en) * 2015-11-06 2017-05-10 J And M Ferranti Tech Ltd Electrical drive system
GB2544097B (en) * 2015-11-06 2017-11-15 J And M Ferranti Tech Ltd Electrical drive system
CN106909702A (zh) * 2015-12-23 2017-06-30 加拿大欧泊实时技术有限公司北京代表处 一种模块化多电平整流器及变电站、建模仿真平台、方法
CN106160439A (zh) * 2016-07-05 2016-11-23 沈阳远大电力电子科技有限公司 一种高压变频器功率单元旁路装置
EP3514934A4 (fr) * 2016-09-16 2019-09-25 Mitsubishi Electric Corporation Dispositif de conversion de puissance
EP3514933A4 (fr) * 2016-09-16 2019-09-25 Mitsubishi Electric Corporation Dispositif de conversion de puissance
US10530243B2 (en) 2016-09-16 2020-01-07 Mitsubishi Electric Corporation Power conversion device with malfunction detection
CN106385045A (zh) * 2016-10-13 2017-02-08 全球能源互联网研究院 一种海上平台供电系统及其控制方法
CN106385045B (zh) * 2016-10-13 2020-01-17 全球能源互联网研究院 一种海上平台供电系统及其控制方法
WO2018197363A1 (fr) 2017-04-28 2018-11-01 Abb Schweiz Ag Module de puissance basé sur des commutateurs à semi-conducteurs normalement actifs
US10797586B2 (en) 2017-04-28 2020-10-06 Abb Schweiz Ag Power module based on normally-on semiconductor switches
CN107317472A (zh) * 2017-06-30 2017-11-03 中国西电电气股份有限公司 一种全桥与半桥混合型模块化多电平换流器启动方法
CN107565519B (zh) * 2017-08-18 2018-12-28 中国南方电网有限责任公司 一种适用于交流保护的柔性直流双极短路解析分析方法
CN107565519A (zh) * 2017-08-18 2018-01-09 中国南方电网有限责任公司 一种适用于交流保护的柔性直流双极短路解析分析方法
CN107634659A (zh) * 2017-09-13 2018-01-26 华中科技大学 一种扩大混合型mmc运行区域的控制方法
EP3462479A1 (fr) * 2017-10-02 2019-04-03 General Electric Technology GmbH Ensemble semi-conducteur comportant protection contre les défauts électriques
WO2019068656A1 (fr) * 2017-10-02 2019-04-11 General Electric Technology Gmbh Ensemble semi-conducteur avec protection contre les défauts
WO2019205368A1 (fr) * 2018-04-27 2019-10-31 广州供电局有限公司 Procédé et dispositif de démarrage d'un convertisseur multi-niveaux modulaire hybride à demi-pont/pont complet
CN108471251B (zh) * 2018-04-27 2019-12-06 广州供电局有限公司 半桥与全桥混合的模块化多电平换流器的启动方法及装置
CN108471251A (zh) * 2018-04-27 2018-08-31 广州供电局有限公司 半桥与全桥混合的模块化多电平换流器的启动方法及装置
CN109510491A (zh) * 2018-10-31 2019-03-22 中国电力科学研究院有限公司 一种mmc全桥子模块igbt的短路识别方法及装置
CN109510491B (zh) * 2018-10-31 2021-08-03 中国电力科学研究院有限公司 一种mmc全桥子模块igbt的短路识别方法及装置
CN110620394A (zh) * 2019-08-26 2019-12-27 南方电网科学研究院有限责任公司 一种半桥子模块型模块化多电平换流器的仿真控制方法
CN110620394B (zh) * 2019-08-26 2021-02-09 南方电网科学研究院有限责任公司 一种半桥子模块型模块化多电平换流器的仿真控制方法
WO2022037783A1 (fr) * 2020-08-20 2022-02-24 Hitachi Energy Switzerland Ag Gestion de défauts dans une cellule

Similar Documents

Publication Publication Date Title
WO2015090428A1 (fr) Procédé et système de traitement de défaillance de cellule de convertisseur
US9007787B2 (en) Method and apparatus for bypassing Cascaded H-Bridge (CHB) power cells and power sub cell for multilevel inverter
US9787213B2 (en) Power cell bypass method and apparatus for multilevel inverter
US9083274B2 (en) Power stage precharging and dynamic braking apparatus for multilevel inverter
AU2010348910B2 (en) Converter cell for cascaded converters, control system and method for bypassing a faulty converter cell
EP2471164B1 (fr) Cellule de convertisseur avec autotransformateur comme derivation, convertisseur de source de tension avec telles cellules et méthode pour l'opération
US11108338B2 (en) Dual submodule for a modular multilevel converter and modular multilevel converter including the same
CN101268606B (zh) 故障情况下用于实现带有分布储能器的多相变流器的冗余工作模式的控制方法
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
JP5930567B1 (ja) 機械式バイパススイッチ装置、コンバータアーム、及び電力変換装置
US11356013B2 (en) Method of short-circuiting a faulty converter submodule and power converter supporting same
MX2007014842A (es) Funcionamiento de un inversor con sobremodulacion.
WO2014128842A1 (fr) Convertisseur de puissance
CN118100260A (zh) 柔性交流互联装置及控制方法
WO2018041338A1 (fr) Protection contre les courts-circuits d'une alimentation auxiliaire de cellule de convertisseur dans un convertisseur modulaire à cellules multiples
DK2994984T3 (en) The three-point converter
US20130114314A1 (en) Converter system and power electronic system comprising such converter systems
CN108604877B (zh) 链式链路转换器的子模块
CN109950940B (zh) 阀组充电装置和阀组充电控制方法
US10461630B2 (en) Redundancy control method of MMC for HVDC
CN110999054B (zh) 用于变流器的功率模块和多电平变流器
Kriegel et al. Power module with solid state circuit breakers for fault-tolerant applications
Bhakar et al. A New Fault-Tolerant Method for Switch Failures in Three-Phase Inverter
JP2021048726A (ja) 電力変換装置
CN117616679A (zh) 固态变压器的容错控制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817917

Country of ref document: EP

Kind code of ref document: A1