[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015087817A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2015087817A1
WO2015087817A1 PCT/JP2014/082320 JP2014082320W WO2015087817A1 WO 2015087817 A1 WO2015087817 A1 WO 2015087817A1 JP 2014082320 W JP2014082320 W JP 2014082320W WO 2015087817 A1 WO2015087817 A1 WO 2015087817A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
upstream
exhaust gas
downstream
zeolite
Prior art date
Application number
PCT/JP2014/082320
Other languages
English (en)
French (fr)
Other versions
WO2015087817A9 (ja
Inventor
辻 誠
啓人 今井
慎太郎 小林
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to EP14870259.0A priority Critical patent/EP3081284B1/en
Priority to JP2015552430A priority patent/JP6453233B2/ja
Priority to US15/101,980 priority patent/US9981223B2/en
Publication of WO2015087817A1 publication Critical patent/WO2015087817A1/ja
Publication of WO2015087817A9 publication Critical patent/WO2015087817A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • B01J35/57Honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus. Specifically, the present invention relates to an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • exhaust gas discharged from an internal combustion engine contains particulate matter (PM) containing carbon as a main component, ash composed of non-combustible components, and is known to cause air pollution.
  • PM particulate matter
  • ash composed of non-combustible components
  • NOx nitrogen oxides
  • a particulate filter for collecting the particulate matter is provided in the exhaust passage of the internal combustion engine.
  • a diesel particulate filter Diesel Particulate Filter: DPF
  • DPF Diesel Particulate Filter
  • a structure called a wall flow type in which a base material is composed of a large number of porous cells, and the inlets and outlets of a large number of cells are alternately closed Patent Literature 1. 1, 2).
  • Patent Literature Patent Literature. 1, 2
  • the exhaust gas flowing in from the cell inlet passes through the partitioned porous cell partition wall and is discharged to the cell outlet. Then, while the exhaust gas passes through the porous cell partition walls, the particulate matter is trapped in the pores inside the partition walls.
  • Patent Document 3 an SCR (Selective Catalytic Reduction) catalyst that selectively reduces NOx in exhaust gas by a reducing action of ammonia or the like has been proposed.
  • SCR Selective Catalytic Reduction
  • a urea addition type exhaust gas purification apparatus urea water is supplied upstream of a filter carrying an SCR catalyst, and the urea water is hydrolyzed to generate ammonia. This ammonia is adsorbed on the SCR catalyst, and NOx in the exhaust gas is purified by the reducing action of the adsorbed ammonia.
  • zeolite such as copper-supported zeolite or iron-supported zeolite is used.
  • the present inventor has examined the combined use of a filter catalyst supporting an SCR catalyst and a honeycomb catalyst supporting an SCR catalyst and a noble metal in an exhaust gas purification apparatus including the SCR catalyst made of zeolite. Yes.
  • the NOx can be purified while removing the PM in the exhaust gas by disposing the filter catalyst carrying the SCR catalyst on the upstream side of the exhaust pipe.
  • the SCR catalyst and the honeycomb catalyst supporting the noble metal are disposed on the downstream side of the exhaust pipe, excess ammonia is removed by the NOx purification, and external discharge (slip) of ammonia is suppressed.
  • the SCR catalyst made of zeolite is used for the upstream filter catalyst and the downstream honeycomb catalyst, and if the same kind of zeolite is used in both catalyst parts, the NOx purification rate decreases, and the desired There were some events where NOx purification performance could not be obtained.
  • the present invention solves the above problems.
  • the exhaust gas purification device provided by the present invention is an exhaust gas purification device that is disposed in an exhaust passage of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.
  • the exhaust gas purification apparatus includes an upstream catalyst portion disposed upstream of the exhaust pipe, a downstream catalyst portion disposed downstream of the exhaust pipe with respect to the upstream catalyst portion, and an upstream side of the upstream catalyst portion. And a reducing agent solution supply means for supplying a reducing agent solution for generating ammonia.
  • the upstream catalyst portion and the downstream catalyst portion each include an SCR catalyst made of zeolite that adsorbs ammonia to reduce NOx in the exhaust gas.
  • the skeleton density A of the SCR catalyst contained in the upstream catalyst part is smaller than the skeleton density B of the SCR catalyst contained in the downstream catalyst part (A ⁇ B). According to such an exhaust gas purification device, an optimum exhaust gas purification device having a higher NOx purification rate and a better improvement in NOx purification performance can be realized as compared with the conventional exhaust gas purification device.
  • the skeleton density A of the SCR catalyst made of zeolite contained in the upstream catalyst portion and the skeleton density B of the SCR catalyst made of zeolite contained in the downstream catalyst portion is 0.1 (T / 1000 3 3 ) ⁇ BA, preferably 0.2 (T / 1000 3 3 ) ⁇ BA.
  • BA skeleton density
  • the catalyst performance improvement effect due to the difference in the skeleton density of the zeolite between the upstream catalyst part and the downstream catalyst part is more appropriately exhibited. Can be done.
  • the skeleton density A of the SCR catalyst made of zeolite contained in the upstream catalyst portion and the skeleton density B of the SCR catalyst made of zeolite contained in the downstream catalyst portion are 14 (T / 1000? 3 ) or more and 17 (T / 1000? 3 ) or less.
  • an SCR catalyst having high heat resistance and high reactivity can be obtained. Therefore, high NOx purification performance can be exhibited as a whole catalyst, and the purification performance can be well maintained.
  • an average pore diameter of an SCR catalyst made of zeolite contained in the upstream catalyst part and an average pore diameter of an SCR catalyst made of zeolite contained in the downstream catalyst part are 2 to 7 inches.
  • an SCR catalyst having high heat resistance and high reactivity can be obtained. Therefore, high NOx purification performance can be exhibited as a whole catalyst, and the purification performance can be well maintained.
  • a filter catalyst portion disposed on the upstream side of the exhaust pipe, and a plurality of honeycomb catalyst portions disposed on the downstream side of the exhaust pipe from the filter catalyst portion And.
  • the upstream catalyst part is provided as the filter catalyst part
  • the downstream catalyst part is provided as a honeycomb catalyst part arranged on the most downstream side of the exhaust pipe among the plurality of honeycomb catalyst parts.
  • a noble metal for example, platinum
  • the honeycomb catalyst portion disposed on the most downstream side.
  • the ammonia remaining in the NOx purification can be removed by the downstream catalyst portion supporting the noble metal functioning as a catalyst. Therefore, discharge (slip) of the ammonia to the outside can be suppressed.
  • FIG. 1 is a diagram schematically illustrating an exhaust gas purification apparatus according to an embodiment.
  • FIG. 2 is a perspective view schematically showing a filter catalyst unit according to an embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a filter catalyst portion according to an embodiment.
  • FIG. 4 is a perspective view schematically showing a honeycomb catalyst portion according to one embodiment.
  • FIG. 5 is a graph comparing the NOx purification rates of each example.
  • FIG. 6 is a graph showing the relationship between the NOx purification rate and the urea addition amount.
  • an exhaust gas purification apparatus 100 is applied to a diesel engine 1 as an internal combustion engine.
  • a diesel engine 1 As shown in FIG. 1, an exhaust gas purification apparatus 100 according to this embodiment is applied to a diesel engine 1 as an internal combustion engine.
  • the configuration of the diesel engine 1 will be briefly described.
  • the diesel engine 1 demonstrated below is only an example of the internal combustion engine which concerns on this invention.
  • the exhaust gas purifying apparatus according to the present invention can also be applied to an internal combustion engine (for example, a gasoline engine) other than the diesel engine 1 described below.
  • the diesel engine 1 typically includes a plurality of combustion chambers 2 and fuel injection valves (not shown) that inject fuel into each combustion chamber 2.
  • Each combustion chamber 2 communicates with an intake manifold 4 and an exhaust manifold 5.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6.
  • the inlet of the compressor 7 a is connected to the air cleaner 9.
  • a cooling device (intercooler) 6 a for cooling the air flowing through the intake duct 6 is disposed.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7b is connected to an exhaust passage (exhaust pipe) 3 through which exhaust gas flows.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation passage (EGR passage) 8.
  • EGR passage exhaust gas recirculation passage
  • the exhaust gas purification device 100 disclosed here is provided in the exhaust passage (exhaust pipe) 3 of the internal combustion engine 1.
  • the exhaust gas purification apparatus 100 includes a reducing agent solution supply unit 50, an upstream filter catalyst unit 10, an upstream side honeycomb catalyst unit 20, and a downstream side in order from the upstream side (left side in FIG. 1) to the downstream side (right side in FIG. 1).
  • a side honeycomb catalyst unit 30 is provided to purify nitrogen oxide (NOx) contained in the exhaust gas discharged.
  • the exhaust gas exhausted from the combustion chamber is guided from the exhaust manifold 5 to the upstream filter catalyst unit 10 through the exhaust pipe 3 and further to the upstream honeycomb catalyst unit 20 and the downstream honeycomb catalyst unit 30.
  • the reducing agent solution supply means 50 is disposed on the upstream side of the exhaust pipe 3 with respect to the filter catalyst unit 10.
  • the reducing agent solution supply means 50 supplies a reducing agent solution (here, urea water) for generating ammonia from the upstream side of the filter catalyst unit 10 in the exhaust gas flow direction.
  • the reducing agent solution supply means 50 includes a spray nozzle 52, a pump 54, and a tank 56.
  • the spray nozzle 52 is connected to a tank 56 via a pump 54.
  • the pump 54 supplies urea water in the tank 56 to the spray nozzle 52.
  • the urea water supplied to the spray nozzle 52 is sprayed into the exhaust pipe 3 and is flowed downstream together with the exhaust gas flowing from the upstream in the exhaust pipe 3 and is hydrolyzed to generate ammonia.
  • This ammonia is adsorbed on the SCR catalysts of the filter 10, the first honeycomb catalyst 20 and the second honeycomb catalyst 30 described later, and NOx in the exhaust gas is purified by the reducing action of the adsorbed ammonia.
  • the number of reducing agent solution supply means is not limited to one and may be two or more.
  • a further reducing agent solution supply unit may be disposed between the filter catalyst unit 10 and the upstream side honeycomb catalyst unit 20.
  • the upstream filter catalyst unit 10 is disposed on the downstream side of the exhaust pipe 3 with respect to the reducing agent solution supply means 50.
  • the upstream filter catalyst unit 10 is a porous filter capable of collecting particulate matter (PM) contained in the exhaust gas, and is provided with a large number of pores through which PM cannot pass. Further, the filter catalyst unit 10 is configured to purify nitrogen oxide (NO x ) in the exhaust gas by supporting an SCR (Selective Catalytic Reduction) catalyst.
  • SCR Selective Catalytic Reduction
  • FIG. 2 is a perspective view of the filter catalyst unit 10
  • FIG. 3 is a schematic diagram enlarging a part of a cross section obtained by cutting the upstream filter catalyst unit 10 in the axial direction.
  • the filter catalyst unit 10 includes a base material having a wall flow structure and a catalyst layer.
  • the base material of the upstream filter catalyst unit 10 includes an inlet cell 12 in which only an end portion on the exhaust gas inflow side is opened, and an outlet cell 14 which is adjacent to the inlet cell 12 and has only an end portion on the exhaust gas outlet side opened. And a porous partition wall 16 that partitions the entry side cell 12 and the exit side cell 14.
  • a base material made of ceramics such as cordierite or a heat-resistant alloy can be used.
  • the inlet side cell 12 is open only at the end on the exhaust gas inflow side, and the outlet side cell 14 is adjacent to the inlet side cell 12 and is open only at the end on the exhaust gas outflow side.
  • the inlet cell 12 is sealed at the exhaust gas outlet side end portion with the sealing portion 15, and the outlet cell 14 is sealed at the exhaust gas inlet side end portion with the sealing portion 17.
  • a partition wall 16 is formed between the adjacent entrance cell 12 and exit cell 14.
  • the entrance cell 12 and the exit cell 14 are partitioned by the partition wall 16.
  • the partition wall 16 has a porous structure through which exhaust gas can pass.
  • a catalyst layer is formed on the surface and / or inside of the partition wall 16.
  • the catalyst layer of the filter catalyst unit 10 includes an SCR catalyst made of zeolite.
  • the SCR catalyst made of zeolite adsorbs ammonia derived from the reducing agent solution (here, urea water) sprayed in the exhaust pipe 3 to reduce NOx in the exhaust gas. *
  • exhaust gas flows from the inlet cell 12 of the base material.
  • the exhaust gas flowing in from the inlet cell 12 passes through the porous partition wall 16 and reaches the outlet cell 14.
  • an arrow indicates a route through which the exhaust gas flowing from the entry side cell 12 passes through the partition wall 16 and reaches the exit side cell 14.
  • the partition wall 16 has a porous structure, PM is collected on the surface of the partition wall 16 or in the pores inside the partition wall 16 while the exhaust gas passes through the partition wall 16.
  • a catalyst layer containing an SCR catalyst that has adsorbed ammonia is provided on the surface and / or inside of the partition wall 16, NOx in the exhaust gas is purified while the exhaust gas passes through and inside the partition wall 16. Is done.
  • the exhaust gas that has passed through the partition wall 16 and reached the outlet cell 14 is discharged from the opening on the exhaust gas outflow side to the outside of the filter catalyst unit 10.
  • the upstream honeycomb catalyst portion 20 is disposed on the downstream side of the exhaust pipe 3 with respect to the upstream filter catalyst portion 10.
  • the downstream honeycomb catalyst portion 30 is disposed on the downstream side (here, the most downstream side) of the exhaust pipe 3 relative to the upstream honeycomb catalyst portion 20.
  • the upstream honeycomb catalyst portion 20 and the downstream honeycomb catalyst portion 30 are configured by forming a catalyst layer on a substrate having a straight flow structure.
  • FIG. 4 is a perspective view of the upstream side honeycomb catalyst part 20 and the downstream side honeycomb catalyst part 30.
  • a cylindrical member having a honeycomb structure is employed as a base material.
  • cylindrical shape, elliptic cylinder shape, polygonal cylinder shape etc. can be employ
  • the base material of the upstream side honeycomb catalyst part 20 and the downstream side honeycomb catalyst part 30 a conventionally known exhaust gas purification catalyst base material can be used.
  • the base material is preferably made of a heat resistant material having a porous structure. Examples of the heat-resistant material include cordierite, silicon carbide (silicon carbide: SiC), heat-resistant metal such as aluminum titanate, silicon nitride, and stainless steel, and alloys thereof.
  • the catalyst layers of the upstream honeycomb catalyst portion 20 and the downstream honeycomb catalyst portion 30 include an SCR catalyst made of zeolite. Ammonia is adsorbed on the SCR catalyst made of zeolite, and NOx in the exhaust gas is purified by the reducing action of the adsorbed ammonia.
  • the catalyst layer of the downstream honeycomb catalyst portion 30 contains a noble metal.
  • the catalyst layer of the downstream honeycomb catalyst portion 30 includes a carrier and a noble metal supported on the carrier.
  • the carrier may contain substances conventionally used as this type of carrier, such as alumina (Al 2 O 3 ), zirconia (ZrO 2 ), solid solutions or composite oxides thereof.
  • a support containing alumina is preferable.
  • the noble metal supported on the carrier those having a catalyst function (oxidation catalyst function) capable of removing excess ammonia by NOx purification are preferable.
  • metal catalyst particles such as platinum (Pt), palladium (Pd), rhodium (Rh), silver (Ag), and composite particles containing the metal catalyst particles can be suitably used.
  • platinum palladium
  • Rh rhodium
  • Ag silver
  • composite particles containing the metal catalyst particles can be suitably used.
  • platinum it is possible to efficiently remove the ammonia remaining from the NOx purification.
  • the exhaust gas purifying apparatus 100 disclosed here is an upstream filter catalyst part (upstream catalyst part) 10 disposed on the upstream side of the exhaust pipe 3, and is disposed on the downstream side of the exhaust pipe 3 relative to the upstream filter catalyst part 10.
  • the upstream filter catalyst unit 10 and the downstream honeycomb catalyst unit 30 each include an SCR catalyst made of zeolite that adsorbs ammonia and reduces NOx in the exhaust gas.
  • FIG. 6 shows the results of NOx purification rate measurement for a catalyst containing an SCR catalyst having a relatively high skeleton density and a catalyst containing an SCR catalyst having a relatively low skeleton density.
  • the line L1 in FIG. 6 shows the NOx purification rate when using an SCR catalyst with a relatively high skeleton density
  • the line L2 in FIG. 6 shows the NOx purification rate when using an SCR catalyst with a relatively low skeleton density. Is shown.
  • the amount of urea water supplied to each of the catalyst parts 10, 20, 30 is not uniform, and the urea water is more separated in the downstream catalyst part away from the reducing agent solution supply means 50.
  • the supply is a tendency for the supply to decrease.
  • the downstream honeycomb catalyst portion 30 containing noble metal (for example, Pt) needs to be arranged at the last stage of the exhaust pipe among the plurality of catalyst portions 10, 20, and 30, and therefore, the supply amount of urea water tends to be low. It can be seen. For this reason, the downstream honeycomb catalyst portion 30 tends to be less supplied with urea water than the upstream filter catalyst portion 10.
  • the present inventor uses zeolite having a relatively low skeleton density for the SCR catalyst in the upstream filter catalyst portion 10 and relatively high skeleton density for the SCR catalyst in the downstream honeycomb catalyst portion 30.
  • Zeolite was used. That is, in the exhaust gas purification apparatus 100 disclosed herein, the skeleton density A of the SCR catalyst included in the upstream filter catalyst unit 10 is smaller than the skeleton density B of the SCR catalyst included in the downstream honeycomb catalyst unit 30 (A ⁇ B).
  • the skeleton density A of the SCR catalyst contained in the upstream filter catalyst unit 10 may be smaller than the skeleton density B of the SCR catalyst contained in the downstream honeycomb catalyst unit 30.
  • skeletal density A of the SCR catalyst contained in the upstream side filter catalyst unit 10 is suitably be approximately 15.1T / 1000 ⁇ 3 or less (e.g., 14T / 1000 ⁇ 3 ⁇ 15.1T / 1000 ⁇ 3), 14. 5T / 1000 ⁇ 3 or less is preferable.
  • the skeleton density B of the SCR catalyst included in the downstream honeycomb catalyst portion 30 may be larger than the skeleton density A of the SCR catalyst included in the upstream filter catalyst portion 10.
  • skeletal density B of the SCR catalyst contained in the downstream honeycomb catalyst portion 30 is suitably be approximately 15.3T / 1000 ⁇ 3 or more (e.g. 15.3T / 1000 ⁇ 3 ⁇ 17T / 1000 ⁇ 3), 16T / is preferably 1000 ⁇ 3 or more.
  • the skeleton density A of the SCR catalyst included in the upstream filter catalyst portion 10 and the skeleton density B of the SCR catalyst included in the downstream honeycomb catalyst portion 30 have a relationship of 0.1T / 1000 ⁇ 3 ⁇ BA. it is preferable to satisfy, it is more preferable to satisfy the relation of 0.2T / 1000 ⁇ 3 ⁇ B-a ⁇ 3T / 1000 ⁇ 3.
  • BA skeleton density
  • both the skeletal density B of the SCR catalyst contained in the downstream honeycomb catalyst portion 30 approximately 14T / 1000 ⁇ 3 or more 17T / 1000 ⁇ It is desirable that it is 3 or less.
  • the skeleton density A, B of the SCR catalyst is too large, the reactivity of the SCR catalyst is lowered, and the NOx purification rate tends to be lowered.
  • the skeleton density A, B of the SCR catalyst is too small, the heat resistance of the SCR catalyst is lowered, and therefore the NOx purification performance after high temperature durability may be lowered.
  • the skeleton density A of the SCR catalyst included in the upstream filter catalyst portion 10 and the skeleton density B of the SCR catalyst included in the downstream honeycomb catalyst portion 30. both the can is preferably approximately 14T / 1000 ⁇ 3 or more 17T / 1000 ⁇ 3 or less, and more preferably about 15T / 1000 ⁇ 3 or more 16T / 1000 ⁇ 3 or less.
  • the average pore diameter of the SCR catalyst made of zeolite contained in the upstream filter catalyst portion 10 and the average pore diameter of the SCR catalyst made of zeolite contained in the downstream honeycomb catalyst portion 30 are calculated. It is preferable that both are 2 to 7 inches.
  • the average pore diameter of zeolite is measured based on a gas adsorption method (typically a nitrogen adsorption method). Within the range of the average pore diameter of such zeolite, high NOx purification performance can be exhibited as a whole, and the purification performance can be well maintained.
  • the reactivity and heat resistance of the SCR catalyst contained in the upstream filter catalyst unit 10 are effectively improved, and the upstream filter catalyst unit 10 NOx purification performance and durability are improved.
  • skeletal density A is at 14T / 1000 ⁇ 3 or more 17T / 1000 ⁇ 3 or less, and an average pore diameter of 7 ⁇ or less the range of 2 ⁇
  • skeletal density a is at 15T / 1000 ⁇ 3 or more 17T / 1000 ⁇ 3 or less, an average pore diameter of 7 ⁇ the range above 3 ⁇
  • skeletal density a is 15.3T / 1000 ⁇ 3 or more 17T / 1000 ⁇ 3 or less
  • the skeleton density B and the average pore diameter of such an SCR catalyst By having both the skeleton density B and the average pore diameter of such an SCR catalyst, the reactivity and heat resistance of the SCR catalyst contained in the downstream honeycomb catalyst portion 30 are effectively improved, and the downstream honeycomb catalyst portion 30. NOx purification performance and durability are improved.
  • the SCR catalyst contained in the upstream filter catalyst portion 10 and the downstream honeycomb catalyst portion 30 include zeolite containing at least Si as an element constituting the basic skeleton. Moreover, you may use the zeolite by which cations, such as Al and P, were substituted in frame
  • ⁇ -type zeolite, silicon aluminophosphate (SAPO) -based zeolite and the like are exemplified.
  • SAPO silicon aluminophosphate
  • the structure of a suitable zeolite is indicated by a code defined by the International Zeolite Association (IZA). AEI, AFT, AFX, AST, BEA, BEC, CHA, EAB, ETR, GME, ITE, KFI, LEV, THO , PAU, UFI. It is desirable to use one or more of these.
  • ion exchange zeolite obtained by ion exchange of transition metals such as Fe, Cu and V may be used.
  • transition metals such as Fe, Cu and V
  • Cu ion exchange SAPO-based zeolite, Fe ion exchange ⁇ -type zeolite and the like can be preferably used.
  • the skeletal density of the zeolite for example, Cu ion-exchanged SAPO-based zeolite approximately 15.1T / 1000 ⁇ 3, Fe ion-exchanged ⁇ -zeolite is about 15.3T / 1000 ⁇ 3.
  • the average pore diameter of the zeolite is about 3.7 mm for Cu ion-exchanged SAPO-based zeolite and about 5.9 mm for Fe ion-exchanged ⁇ -type zeolite.
  • the skeleton density of the SCR catalyst made of zeolite contained in the upstream side honeycomb catalyst part 20 disposed between the upstream side filter catalyst part 10 and the downstream side honeycomb catalyst part 30 is not particularly limited, but the downstream side honeycomb catalyst
  • the skeleton density of the SCR catalyst made of zeolite contained in the part 30 is preferably smaller than that of the SCR catalyst made of zeolite contained in the upstream filter catalyst part 10.
  • the SCR catalyst made of zeolite contained in the upstream honeycomb catalyst part 20 may be qualitatively the same as the SCR catalyst made of zeolite contained in the upstream filter catalyst part 10.
  • the reactivity and heat resistance of the SCR catalyst made of zeolite contained in the upstream honeycomb catalyst portion 20 are effectively improved, and the NOx purification performance and durability of the upstream honeycomb catalyst portion 20 are further improved.
  • honeycomb catalyst parts including the upstream side honeycomb catalyst part 20 and the downstream side honeycomb catalyst part 30 are used is exemplified, but the number of honeycomb catalyst parts is not limited thereto.
  • the number of honeycomb catalyst parts is not limited thereto.
  • three or more honeycomb catalyst portions may be provided.
  • the skeleton density of the SCR catalyst included in at least the most downstream side (last stage) of the exhaust pipe among the plurality (three or more) of honeycomb catalyst units is the upstream filter catalyst unit 10. What is necessary is just to be larger than the skeleton density of the SCR catalyst contained.
  • the reaction efficiency of each catalyst part can be significantly increased by optimally arranging the SCR catalysts having different skeleton densities on the upstream side and the downstream side.
  • a noble metal such as Pt is supported on at least the honeycomb catalyst portion arranged on the most downstream side (last stage) of the exhaust pipe.
  • test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the following test examples.
  • Example 1 (1) Upstream Filter Catalyst After SAPO34 formed from silica, alumina, and phosphorus was dispersed in ion-exchanged water, copper acetate was added, stirred at 80 ° C. for 12 hours, filtered and washed. Then, it was made to dry at 200 degreeC for 5 hours, and Cu ion exchange zeolite (Cu load 3 mass%) was prepared. After mixing 1000 g of this Cu ion-exchanged zeolite, 500 g of silica sol, and 1000 g of pure water, the mixture was stirred for 1 hour with a ball mill to obtain a Cu ion-exchanged SAPO34 slurry.
  • the obtained Cu ion exchange SAPO34 slurry was applied to a wall flow type ceramic substrate (diameter 160 mm ⁇ length 100 mm), excess slurry was removed, dried at 100 ° C., and heat treated at 500 ° C. to upstream filter.
  • a catalyst upstream filter catalyst portion 10 (see FIG. 1)) was produced.
  • the coating amount of the obtained catalyst for Cu ion exchange SAPO34 was 100 g per liter of the substrate.
  • Upstream honeycomb catalyst SAPO34 formed from silica, alumina, and phosphorus was dispersed in ion-exchanged water, copper acetate was added, and the mixture was stirred at 80 ° C for 12 hours, filtered, and washed. Then, it was made to dry at 200 degreeC for 5 hours, and Cu ion exchange zeolite (Cu load 3 mass%) was prepared. After mixing 1000 g of this Cu ion-exchanged zeolite, 500 g of silica sol, and 1000 g of pure water, the mixture was stirred for 1 hour with a ball mill to obtain a Cu ion-exchanged SAPO34 slurry.
  • the obtained Cu ion exchange SAPO34 slurry was applied to a straight flow type ceramic substrate (diameter 160 mm ⁇ length 100 mm), the excess slurry was removed, dried at 100 ° C., and heat treated at 500 ° C.
  • a catalyst upstream honeycomb catalyst portion 20 (see FIG. 1)) was produced.
  • the coating amount of Cu ion exchange SAPO 34 on the obtained upstream honeycomb catalyst was 160 g per liter of the substrate.
  • the obtained Fe ion exchange ⁇ -type zeolite slurry was applied to a straight flow type ceramic substrate (diameter 160 mm ⁇ length 100 mm), the excess slurry was removed, dried at 100 ° C., and heat-treated at 500 ° C. A honeycomb catalyst coated with ion-exchanged ⁇ -type zeolite was obtained.
  • ⁇ -alumina having a specific surface area of 120 m 2 / g was dispersed in pure water, and then dinitrodiamine platinum was added. Then, it dried at 100 degreeC for 6 hours or more, and heat-processed at 500 degreeC for 1 hour, and prepared a Pt carrying
  • the obtained Pt / alumina slurry is applied to the portion corresponding to 1/5 of the total length of the base material from the end on the exhaust gas outflow side of the honeycomb catalyst (base material) coated with the Fe ion exchange ⁇ -type zeolite toward the upstream side. Then, after removing excess slurry, drying at 100 ° C. and heat treatment at 500 ° C. produced a downstream honeycomb catalyst (downstream honeycomb catalyst portion 30 (see FIG. 1)).
  • the coating amount of the obtained catalyst for Fe ion exchange ⁇ -type zeolite was 160 g per liter of the substrate.
  • the coating amount of Pt / alumina per honeycomb catalyst was 20 g, and the amount of Pt supported was 0.2 g per honeycomb catalyst.
  • the upstream filter catalyst, upstream honeycomb catalyst and downstream honeycomb catalyst obtained above were arranged in this order from the upstream side to the exhaust pipe of a 2.0 L direct injection diesel engine to produce an exhaust gas purification apparatus according to Example 1. .
  • the skeleton density of the SCR catalyst (Cu ion exchange SAPO34: skeleton density 15.1T / 1000 3 3 , average pore diameter 3.7 ⁇ ) included in the upstream side honeycomb catalyst and the downstream side honeycomb catalyst is low. It is smaller than the skeleton density of the SCR catalyst (Fe ion exchange ⁇ -type zeolite: skeleton density 15.3T / 1000 / 3 , average pore diameter 5.9 ⁇ ) contained in the catalyst.
  • Example 2 An exhaust gas purification apparatus was produced in the same manner as in Example 1 except that the SCR catalyst used for the downstream honeycomb catalyst was changed to Cu ion exchange ⁇ -type zeolite. Specifically, after dispersing ⁇ -type zeolite having a silica / alumina ratio of 25 in ion-exchanged water, copper acetate was added, stirred at 80 ° C. for 12 hours, filtered and washed. Then, it dried at 200 degreeC for 5 hours, and prepared Cu ion exchange beta type zeolite (Cu loading 2 mass%). Using this Cu ion exchange ⁇ -type zeolite, a downstream honeycomb catalyst was produced in the same procedure as in Example 1.
  • the SCR catalyst used for the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst is an Fe ion-exchanged ⁇ -type zeolite having a silica / alumina ratio of 25 (skeleton density 15.3 T / 1000 3 3 , average pore diameter 5.9 ⁇ ).
  • Exhaust gas purification apparatus was produced in the same manner as in Example 1 except that the above was changed.
  • the SCR catalyst used for the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst is a Cu ion-exchanged Y-type zeolite having a silica / alumina ratio of 25 (skeleton density 13.3T / 1000 ⁇ 3 , average pore diameter 7.47).
  • Exhaust gas purification apparatus was produced in the same manner as in Example 1 except that the above was changed.
  • the SCR catalyst used for the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst is a Cu ion-exchanged ZSM5 zeolite having a silica / alumina ratio of 25 (skeleton density 18.4 T / 1000 3 3 , average pore diameter 4.6 ⁇ ).
  • Exhaust gas purification apparatus was produced in the same manner as in Example 1 except that the change was made.
  • An endurance test was performed on the exhaust gas purifying apparatus of each example.
  • the durability test was performed by performing an aging treatment at 700 ° C. for 20 hours in an atmosphere containing 10% water vapor. Further, the NOx purification rate before and after the durability test (initial and after 700 ° C. durability) was evaluated.
  • the upstream filter catalyst, upstream honeycomb catalyst and downstream honeycomb catalyst of each example are attached to the exhaust pipe of a 2.0 L direct injection diesel engine as described above, exhaust gas is circulated, and the NOx purification rate is measured. did.
  • An injector was installed on the upstream side of the exhaust pipe from the upstream side filter catalyst, and urea water as a reducing agent solution for generating ammonia from the injector was added.
  • the urea water was adjusted so that the equivalent ratio of NH 3 to NOx was 1.
  • the NOx purification rate (%) was calculated by “(NOx concentration of catalyst-containing gas (ppm) ⁇ NOx concentration of catalyst output gas (ppm)) / NOx concentration of catalyst-containing gas (ppm)” ⁇ 100. The results are shown in FIG.
  • the SCR catalyst contained in the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst was a Cu ion exchange Y-type zeolite (skeleton density 13.3 T / 1000 3 3 ).
  • the exhaust gas purification apparatus according to Comparative Example 3 had a high initial NOx purification rate, the NOx purification rate after 700 ° C. endurance significantly decreased.
  • the exhaust gas purifying apparatus according to Comparative Example 3 in which the SCR catalyst contained in the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst is Cu ion exchanged ZSM5 zeolite (skeleton density 18.4T / 1000 ⁇ 3 ). Although the NOx purification rate after 700 ° C.
  • the exhaust gas purifying apparatus according to Comparative Example 1 in which the SCR catalyst contained in the upstream filter catalyst, the upstream honeycomb catalyst, and the downstream honeycomb catalyst are all Cu ion exchange SAPO34 (skeleton density 15.1T / 1000 3 3 ). , And the upstream side filter catalyst, the upstream side honeycomb catalyst, and the downstream side honeycomb catalyst are Fe ion-exchanged ⁇ -type zeolite (skeleton density 15.3T / 1000 ⁇ 3 ).
  • the initial NOx purification rate was higher, and compared with Comparative Example 3, the NOx purification rate after 700 ° C. endurance was also greatly improved.
  • the skeleton density of the SCR catalyst (Cu ion exchange SAPO34: skeleton density 15.1T / 1000 ⁇ 3 ) contained in the upstream side honeycomb catalyst and the downstream side honeycomb catalyst is set to the SCR catalyst (Fe ion exchange ⁇ ) contained in the downstream side honeycomb catalyst.
  • the exhaust gas purifying apparatus according to Example 1 that is smaller than the skeletal density of the type zeolite: skeletal density 15.3T / 1000 ⁇ 3 ) has a higher initial NOx purification rate than that of Comparative Examples 1 and 2, and after 700 ° C. endurance The NOx purification rate was further improved.
  • the skeleton density of the SCR catalyst (Cu ion exchange SAPO34: skeleton density 15.1T / 1000 3 3 ) contained in the upstream side honeycomb catalyst and the downstream side honeycomb catalyst is set to the SCR catalyst (Cu ion exchange) contained in the downstream side honeycomb catalyst.
  • the exhaust gas purifying apparatus according to Example 2 which is smaller than the skeleton density of ⁇ -type zeolite: skeleton density of 15.3 T / 1000 3 ), has a higher initial NOx purification rate and durability at 700 ° C. than Comparative Examples 1 and 2. The later NOx purification rate was further improved.
  • the skeleton density of the SCR catalyst contained in the upstream side honeycomb catalyst and the downstream side honeycomb catalyst is approximately 14T / 1000 cm 3 or more and 17T.
  • / 1000 ⁇ 3 is preferably to be less, and more preferably to about 15T / 1000 ⁇ 3 or more 16T / 1000 ⁇ 3 or less.
  • the structure of the exhaust gas purification apparatus 100 is not limited to any embodiment mentioned above.
  • the exhaust gas purification device 100 is particularly suitable as a device for purifying harmful components in exhaust gas having a relatively low exhaust temperature, such as a diesel engine.
  • the exhaust gas purifying apparatus 100 according to the present invention is not limited to the use of purifying harmful components in exhaust gas of a diesel engine, but various types of purifying harmful components in exhaust gas discharged from other engines (for example, gasoline engines). It can be used in applications.
  • an exhaust gas purification device having high NOx purification performance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 本発明に係る排ガス浄化装置は、排気管3の上流側に配置された上流触媒部10と、上流触媒部10よりも排気管3の下流側に配置された下流触媒部30と、上流触媒部10よりも上流からアンモニアを生成するための還元剤溶液を供給する還元剤溶液供給手段50とを備える。上流触媒部10および下流触媒部30は、それぞれアンモニアを吸着して排ガス中のNOxを還元するゼオライトからなるSCR触媒を含んでいる。上流触媒部10に含まれるSCR触媒の骨格密度Aが、下流触媒部30に含まれるSCR触媒の骨格密度Bよりも小さい(A<B)。

Description

排ガス浄化装置
 本発明は、排ガス浄化装置に関する。詳しくは、ディーゼルエンジン等の内燃機関から排出される排ガスを浄化する排ガス浄化装置に関する。
 なお、本国際出願は2013年12月9日に出願された日本国特許出願第2013-254478号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 一般に、内燃機関から排出される排ガスには、炭素を主成分とする粒子状物質(PM:Particulate Matter)、不燃成分からなるアッシュなどが含まれ、大気汚染の原因となることが知られている。そのため、粒子状物質の排出量については、排ガスに含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害成分とともに年々規制が強化されている。そこで、これらの粒子状物質を排ガスから捕集して除去するための技術が提案されている。
 例えば、上記粒子状物質を捕集するためのパティキュレートフィルタが内燃機関の排気通路内に設けられている。例えばディーゼルエンジンは、一定量の粒子状物質を排ガスとともに排出するため、ディーゼルパティキュレートフィルタ(Diesel Particulate Filter:DPF)が排気通路内に装着されている。かかるパティキュレートフィルタとしては、基材が多孔質からなる多数のセルから構成され、多数のセルの入口と出口を交互に閉塞した、ウォールフロー型と呼ばれる構造のものが知られている(特許文献1、2)。ウォールフロー型パティキュレートフィルタでは、セル入口から流入した排ガスは、仕切られた多孔質のセル隔壁を通過し、セル出口へと排出される。そして、排ガスが多孔質のセル隔壁を通過する間に、粒子状物質が隔壁内部の細孔内にトラップされる。
 また、近年ではさらなる浄化性能向上のために、上記フィルタにNOx浄化能を持たせることが検討されている。例えば、アンモニア等の還元作用により排ガス中のNOxを選択的に還元するSCR(Selective Catalytic Reduction)触媒を上記フィルタに設けたものが提案されている(特許文献3)。例えば、尿素添加式の排ガス浄化装置では、SCR触媒が担持されたフィルタの上流に尿素水を供給し、該尿素水が加水分解することでアンモニアが生成する。このアンモニアがSCR触媒に吸着し、吸着したアンモニアの還元作用により排ガス中のNOxが浄化される。SCR触媒としては、銅担持ゼオライトや鉄担持ゼオライト等のゼオライトが使用されている。
日本国特許出願公開2007-185571号公報 日本国特許出願公開2009-82915号公報 日本国特許出願公開2004-60494号公報
 ところで、本発明者は、上記ゼオライトからなるSCR触媒を備えた排ガス浄化装置において、SCR触媒を担持したフィルタ触媒と、SCR触媒および貴金属を担持したハニカム触媒とを組み合わせて使用することを検討している。この場合、SCR触媒を担持したフィルタ触媒を排気管の上流側に配置することで、排ガス中のPMを除去しつつNOxを浄化することができる。また、SCR触媒および貴金属を担持したハニカム触媒を排気管の下流側に配置することで、NOx浄化で余ったアンモニアが除去され、アンモニアの外部排出(スリップ)が抑制される。しかし、上流側のフィルタ触媒と下流側のハニカム触媒とでゼオライトからなるSCR触媒を用いた場合に、さらに、両方の触媒部で同種のゼオライトを採用すると、NOxの浄化率が低下し、所望のNOx浄化性能が得られない事象が散見された。本発明は上記課題を解決するものである。
 本発明によって提供される排ガス浄化装置は、内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化装置である。この排ガス浄化装置は、前記排気管の上流側に配置された上流触媒部と、前記上流触媒部よりも前記排気管の下流側に配置された下流触媒部と、前記上流触媒部よりも上流からアンモニアを生成するための還元剤溶液を供給する還元剤溶液供給手段とを備える。前記上流触媒部および前記下流触媒部は、それぞれアンモニアを吸着して排ガス中のNOxを還元するゼオライトからなるSCR触媒を含んでいる。そして、前記上流触媒部に含まれるSCR触媒の骨格密度Aが、前記下流触媒部に含まれるSCR触媒の骨格密度Bよりも小さい(A<B)。かかる排ガス浄化装置によると、従来に比して、NOxの浄化率が高く、NOx浄化性能がより良く向上した最適な排ガス浄化装置を実現することができる。
 ここに開示される排ガス浄化装置の好ましい一態様では、前記上流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Aと、前記下流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Bとの差が、0.1(T/1000Å)≦B-Aであり、好ましくは0.2(T/1000Å)≦B-Aである。このような骨格密度の差(B-A)の範囲内であると、上流側触媒部と下流側触媒部とでゼオライトの骨格密度に差を設けたことによる触媒性能向上効果がより適切に発揮され得る。
 ここに開示される排ガス浄化装置の好ましい一態様では、前記上流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Aと、前記下流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Bとの双方が、14(T/1000Å)以上17(T/1000Å)以下である。このような骨格密度の範囲内であると、耐熱性が高く、なおかつ反応性が高いSCR触媒とすることができる。したがって、触媒全体として高いNOx浄化性能を発揮し得るとともに、その浄化性能を良好に維持することができる。
 ここに開示される排ガス浄化装置の好ましい一態様では、前記上流触媒部に含まれるゼオライトからなるSCR触媒の平均細孔径と、前記下流触媒部に含まれるゼオライトからなるSCR触媒の平均細孔径との双方が、2Å以上7Å以下である。このような平均細孔径の範囲内であると、耐熱性が高く、なおかつ反応性が高いSCR触媒とすることができる。したがって、触媒全体として高いNOx浄化性能を発揮し得るとともに、その浄化性能を良好に維持することができる。
 ここに開示される排ガス浄化装置の好ましい一態様では、前記排気管の上流側に配置されたフィルタ触媒部と、前記フィルタ触媒部よりも前記排気管の下流側に配置された複数のハニカム触媒部とを備えている。そして、前記フィルタ触媒部として、前記上流触媒部が設けられており、前記複数のハニカム触媒部のうち前記排気管の最下流側に配置されたハニカム触媒部として、前記下流触媒部が設けられている。かかる構成によると、フィルタ触媒部において、排ガス中のPMを除去しつつNOxを浄化することができる。
 ここに開示される排ガス浄化装置の好ましい一態様では、前記最下流側に配置されたハニカム触媒部には、貴金属(例えば白金)が担持されている。かかる構成によると、貴金属を担持した下流触媒部が触媒として機能することで、NOx浄化で余ったアンモニアを除去することができる。したがって、該アンモニアの外部への排出(スリップ)を抑制することができる。
図1は、一実施形態に係る排ガス浄化装置を模式的に示す図である。 図2は、一実施形態に係るフィルタ触媒部を模式的に示す斜視図である。 図3は、一実施形態に係るフィルタ触媒部を模式的に示す断面図である。 図4は、一実施形態に係るハニカム触媒部を模式的に示す斜視図である。 図5は、各例のNOx浄化率を対比するグラフである。 図6は、NOx浄化率と尿素添加量との関係を示すグラフである。
 以下、本発明の好適な実施形態を図面に基づいて説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えばパティキュレートフィルタの自動車における配置に関するような一般的事項)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 図1に示すように、本実施形態に係る排ガス浄化装置100は、内燃機関としてのディーゼルエンジン1に適用されたものである。まず、ディーゼルエンジン1の構成を簡単に説明する。なお、以下に説明するディーゼルエンジン1は、本発明に係る内燃機関の一例に過ぎない。本発明に係る排ガス浄化装置は、以下に説明するディーゼルエンジン1以外の内燃機関(例えばガソリンエンジン等)にも適用することができる。
 ディーゼルエンジン1は、典型的には複数ある燃焼室2と、各燃焼室2に燃料を噴射する燃料噴射弁(図示せず)とを備えている。各燃焼室2は、吸気マニホルド4および排気マニホルド5と連通している。吸気マニホルド4は吸気ダクト6を介して、排気ターボチャージャ7のコンプレッサ7aの出口に接続されている。コンプレッサ7aの入口は、エアクリーナ9に接続されている。吸気ダクト6の周りには、吸気ダクト6内を流れる空気を冷却するための冷却装置(インタークーラー)6aが配置されている。排気マニホルド5は、排気ターボチャージャ7の排気タービン7bの入口に接続されている。排気タービン7bの出口は、排ガスが流通する排気通路(排気管)3に接続されている。排気マニホルド5と吸気マニホルド4とは、排ガス再循環通路(EGR通路)8を介して互いに連結されている。EGR通路8の周りには、EGR通路8内を流れるEGRガスを冷却するためのEGR冷却装置8aが配置されている。
<排ガス浄化装置>
 ここで開示される排ガス浄化装置100は、上記内燃機関1の排気通路(排気管)3に設けられている。排ガス浄化装置100は、上流側(図1の左側)から下流側(図1の右側)に向かって順に、還元剤溶液供給手段50、上流側フィルタ触媒部10、上流側ハニカム触媒部20、下流側ハニカム触媒部30を備え、上記排出される排ガスに含まれる窒素酸化物(NOx)を浄化する。燃焼室から排気された排ガスは、排気マニホルド5から排気管3を通じて上流側フィルタ触媒部10に導かれ、さらに上流側ハニカム触媒部20および下流側ハニカム触媒部30へと導かれる。
<還元剤溶液供給手段>
 還元剤溶液供給手段50は、フィルタ触媒部10よりも排気管3の上流側に配置されている。還元剤溶液供給手段50は、フィルタ触媒部10の排ガス流通方向における上流からアンモニアを生成するための還元剤溶液(ここでは尿素水)を供給する。この実施形態では、還元剤溶液供給手段50は、噴霧ノズル52とポンプ54とタンク56とを備えている。噴霧ノズル52は、ポンプ54を介してタンク56に接続されている。ポンプ54は、タンク56内の尿素水を噴霧ノズル52へ供給する。噴霧ノズル52へ供給された尿素水は、排気管3内に噴霧され、該排気管3内で上流から流れてくる排ガスとともに下流へと流されるとともに、加水分解してアンモニアを発生させる。このアンモニアが後述するフィルタ10、第1ハニカム触媒20および第2ハニカム触媒30のSCR触媒に吸着し、吸着したアンモニアの還元作用により排ガス中のNOxが浄化される。なお、還元剤溶液供給手段の数は1つに限らず2つ以上であってもよい。例えば、更なる還元剤溶液供給手段をフィルタ触媒部10と上流側ハニカム触媒部20との間に配置してもよい。
<上流側フィルタ触媒部>
 上流側フィルタ触媒部10は、還元剤溶液供給手段50よりも排気管3の下流側に配置されている。上流側フィルタ触媒部10は、排ガスに含まれる粒子状物質(PM)を捕集可能な多孔質フィルタであり、PMの通過不能な多数の細孔が設けられている。また、フィルタ触媒部10は、SCR(Selective Catalytic Reduction:選択的接触還元)触媒を担持することで、排ガス中の窒素酸化物(NO)を浄化するものとして構成されている。
 図2は、フィルタ触媒部10の斜視図であり、図3は上流側フィルタ触媒部10を軸方向に切断した断面の一部を拡大した模式図である。図3に示すように、フィルタ触媒部10は、ウォールフロー構造の基材と触媒層とを備えている。
 上流側フィルタ触媒部10の基材は、排ガス流入側の端部のみが開口した入側セル12と、該入側セル12に隣接し排ガス流出側の端部のみが開口した出側セル14と、入側セル12と出側セル14とを仕切る多孔質の隔壁16とを有している。基材には、例えば、コージェライト等のセラミックスまたは耐熱合金等からなる基材などを用いることができる。
 入側セル12は、排ガス流入側の端部のみが開口しており、出側セル14は、入側セル12に隣接し排ガス流出側の端部のみが開口している。この実施形態では、入側セル12は、排ガス流出側の端部が封止部15で目封じされており、出側セル14は、排ガス流入側の端部が封止部17で目封じされている。隣接する入側セル12と出側セル14との間には、隔壁16が形成されている。この隔壁16によって入側セル12と出側セル14とが仕切られている。隔壁16は、排ガスが通過可能な多孔質構造である。また、隔壁16の表面および/または内部には触媒層が形成されている。フィルタ触媒部10の触媒層には、ゼオライトからなるSCR触媒が含まれている。ゼオライトからなるSCR触媒は、排気管3内に噴霧された還元剤溶液(ここでは尿素水)由来のアンモニアを吸着して排ガス中のNOxを還元する。 
 この上流側フィルタ触媒部10は、基材の入側セル12から排ガスが流入する。入側セル12から流入した排ガスは、多孔質の隔壁16を通過して出側セル14に到達する。図3においては、入側セル12から流入した排ガスが隔壁16を通過して出側セル14に到達するルートを矢印で示している。このとき、隔壁16は多孔質構造を有しているので、排ガスがこの隔壁16を通過する間に、PMが隔壁16の表面や隔壁16の内部の細孔内に捕集される。また、隔壁16の表面および/または内部には、アンモニアを吸着したSCR触媒を含む触媒層が設けられているので、排ガスが隔壁16の内部および表面を通過する間に、排ガス中のNOxが浄化される。隔壁16を通過して出側セル14に到達した排ガスは、排ガス流出側の開口からフィルタ触媒部10の外部へと排出される。
<上流側ハニカム触媒部および下流側ハニカム触媒部>
 上流側ハニカム触媒部20は、図1に示すように、上流側フィルタ触媒部10よりも排気管3の下流側に配置されている。下流側ハニカム触媒部30は、上流側ハニカム触媒部20よりも排気管3の下流側(ここでは最下流側)に配置されている。上流側ハニカム触媒部20および下流側ハニカム触媒部30は、ストレートフロー構造の基材上に触媒層が形成されることによって構成されている。
 図4は、上流側ハニカム触媒部20および下流側ハニカム触媒部30の斜視図である。図4に示す構成の上流側ハニカム触媒部20および下流側ハニカム触媒部30では、基材としてハニカム構造を有した筒状部材が採用されている。なお、基材全体の外形は、円筒形状、楕円筒形状、多角筒形状などを採用することができる。上流側ハニカム触媒部20および下流側ハニカム触媒部30の基材には、従来公知の排ガス浄化触媒用基材を用いることができる。例えば、基材は、多孔質構造を有した耐熱性素材で構成されていると好ましい。かかる耐熱性素材としては、コージェライト、炭化ケイ素(シリコンカーバイド:SiC)、チタン酸アルミニウム、窒化ケイ素、ステンレス鋼などの耐熱性金属やその合金などが挙げられる。
 上流側ハニカム触媒部20および下流側ハニカム触媒部30の触媒層には、ゼオライトからなるSCR触媒が含まれている。このゼオライトからなるSCR触媒にアンモニアが吸着し、吸着したアンモニアの還元作用により排ガス中のNOxが浄化される。
 また、下流側ハニカム触媒部30の触媒層は、上流側ハニカム触媒部20の触媒層とは異なり、貴金属を含んでいる。具体的には、下流側ハニカム触媒部30の触媒層は、担体と、該担体に担持された貴金属とを含んでいる。担体としては、アルミナ(Al)、ジルコニア(ZrO)、これらの固溶体または複合酸化物など、従来この種の担体として用いられている物質を含有することができる。例えば、アルミナを含む担体であることが好ましい。該担体に担持される貴金属としては、NOx浄化で余ったアンモニアを除去し得る触媒機能(酸化触媒機能)を有するものが好ましい。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、銀(Ag)などの金属触媒粒子や、該金属触媒粒子を含んだ複合粒子などを好適に用いることができる。また、特に白金を用いることにより、NOx浄化で余ったアンモニアを効率よく除去できる。
 以下、上述した排ガス浄化装置100について、より詳細に説明する。
 ここで開示される排ガス浄化装置100は、排気管3の上流側に配置された上流側フィルタ触媒部(上流触媒部)10と、上流側フィルタ触媒部10よりも排気管3の下流側に配置された下流側ハニカム触媒部(下流触媒部)30と、上流側フィルタ触媒部10よりも上流からアンモニアを生成するための尿素水(還元剤溶液)を供給する還元剤溶液供給手段50とを備えている。上流側フィルタ触媒部10および下流側ハニカム触媒部30は、それぞれアンモニアを吸着して排ガス中のNOxを還元するゼオライトからなるSCR触媒を含んでいる。
 本発明者は、種々実験を行った結果、触媒部に含まれるゼオライトからなるSCR触媒の骨格密度を異ならせると、尿素水の供給量とNOx浄化率との関係に変化が生じることを見出した。具体的には、種々異なった骨格密度のゼオライトからなるSCR触媒を含む触媒を複数用意し、尿素の添加量を変えつつ各々の触媒のNOx浄化率を測定した。このうち、骨格密度が相対的に大きいSCR触媒を含む触媒と、骨格密度が相対的に小さいSCR触媒を含む触媒とについて、NOx浄化率測定を行った結果を図6に示す。図6のラインL1は、骨格密度が相対的に大きいSCR触媒を用いたときのNOx浄化率を、図6のラインL2は、骨格密度が相対的に小さいSCR触媒を用いたときのNOx浄化率を示している。
 図6に示すように、尿素水の添加量が比較的少ない領域R1では、骨格密度が相対的に大きいゼオライトの方が、骨格密度が相対的に小さいゼオライトよりもNOx浄化率が高い傾向がある。反対に、尿素水の添加量が比較的多い領域R2では、骨格密度が相対的に小さいゼオライトの方が、骨格密度が相対的に大きいゼオライトよりもNOx浄化率が高い傾向がある。これは、尿素水の添加量が比較的少ない領域R1では、骨格密度が相対的に大きいゼオライトを用いる方がNOx浄化に有利であり、一方、尿素水の添加量が比較的多い領域Bでは、骨格密度が相対的に小さいゼオライトを用いる方がNOx浄化に有利であることを意味している。
 ここで本発明者の知見によれば、各触媒部10、20、30に供給される尿素水の量は均一ではなく、還元剤溶液供給手段50から離れた下流側の触媒部ほど尿素水の供給量が低くなる傾向が見られる。特に貴金属(例えばPt)を含む下流側ハニカム触媒部30は、複数の触媒部10、20、30のうち排気管の最後段に配置する必要があるため、尿素水の供給量が低くなる傾向が見られる。そのため、下流側ハニカム触媒部30は、上流側フィルタ触媒部10に比べて尿素水の供給量が少なくなる傾向がある。したがって、尿素水の供給量が少ない下流側ハニカム触媒部30においてNOxを効率よく浄化するためには、骨格密度が相対的に大きいゼオライトを用いることが効果的である。一方、尿素水の供給量が多い上流側フィルタ触媒部10においてNOxを効率よく浄化するためには、骨格密度が相対的に小さいゼオライトを用いることが効果的である。
 以上のような知見から、本発明者は、上流側フィルタ触媒部10ではSCR触媒に骨格密度が相対的に小さいゼオライトを用い、下流側ハニカム触媒部30ではSCR触媒に骨格密度が相対的に大きいゼオライトを用いることとした。すなわち、ここで開示される排ガス浄化装置100は、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aが、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bよりも小さい(A<B)。ここで本明細書においてゼオライトからなるSCR触媒の骨格密度とは、ゼオライトの1000Åの大きさの中に含まれる、結晶中のTO四面体(T=Si、Al等)の数をいう。
 上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aとしては、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bよりも小さければよい。例えば、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aは、凡そ15.1T/1000Å以下(例えば14T/1000Å~15.1T/1000Å)であること適当であり、14.5T/1000Å以下であることが好ましい。また、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bとしては、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aよりも大きければよい。例えば、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bは、凡そ15.3T/1000Å以上(例えば15.3T/1000Å~17T/1000Å)であることが適当であり、16T/1000Å以上であることが好ましい。例えば、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aと、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bとが、0.1T/1000Å≦B-Aの関係を満足することが好ましく、0.2T/1000Å≦B-A≦3T/1000Åの関係を満足することがさらに好ましい。このような骨格密度の差(B-A)の範囲内であると、上流側フィルタ触媒部10および下流側ハニカム触媒部30の反応効率が大幅に高まるため、従来得ることができなかった高いNOx浄化性能を実現することができる。
 また、ここでは上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aと、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bとの双方が、凡そ14T/1000Å以上17T/1000Å以下であることが望ましい。上記SCR触媒の骨格密度A、Bが大きすぎると、SCR触媒の反応性が低下するため、NOx浄化率が低くなる傾向がある。一方、上記SCR触媒の骨格密度A、Bが小さすぎると、SCR触媒の耐熱性が低下するため、高温耐久後のNOx浄化性能が低くなるおそれがある。したがって、優れた反応性と高い耐熱性とを両立させる観点からは、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度Aと、下流側ハニカム触媒部30に含まれるSCR触媒の骨格密度Bとの双方が、凡そ14T/1000Å以上17T/1000Å以下であることが好ましく、凡そ15T/1000Å以上16T/1000Å以下であることがさらに好ましい。
 また、ここで開示される技術では、上流側フィルタ触媒部10に含まれるゼオライトからなるSCR触媒の平均細孔径と、下流側ハニカム触媒部30に含まれるゼオライトからなるSCR触媒の平均細孔径との双方が、2Å以上7Å以下であることが好ましい。ここで、ゼオライトの平均細孔径はガス吸着法(典型的には窒素吸着法)に基づいて測定するものとする。このようなゼオライトの平均細孔径の範囲内であると、全体として高いNOx浄化性能を発揮し得るとともに、その浄化性能を良好に維持することができる。
 上流側フィルタ触媒部10に含まれるSCR触媒の好適例として、骨格密度Aが14T/1000Å以上17T/1000Å以下であり、かつ、平均細孔径が2Å以上7Å以下の範囲であるもの、骨格密度Aが14T/1000Å以上16T/1000Å以下であり、かつ、平均細孔径が2Å以上6Å以下の範囲であるもの、骨格密度Aが14T/1000Å以上15.1T/1000Å以下であり、かつ、平均細孔径が3Å以上5Å以下の範囲であるもの、等が挙げられる。このようなSCR触媒の骨格密度Aおよび平均細孔径を両立して有することにより、上流側フィルタ触媒部10に含まれるSCR触媒の反応性および耐熱性が有効に改善され、上流側フィルタ触媒部10のNOx浄化性能および耐久性がより良く向上する。
 また、下流側ハニカム触媒部30に含まれるSCR触媒の好適例として、骨格密度Aが14T/1000Å以上17T/1000Å以下であり、かつ、平均細孔径が2Å以上7Å以下の範囲であるもの、骨格密度Aが15T/1000Å以上17T/1000Å以下であり、かつ、平均細孔径が3Å以上7Å以下の範囲であるもの、骨格密度Aが15.3T/1000Å以上17T/1000Å以下であり、かつ、平均細孔径が4Å以上6Å以下の範囲であるもの、等が挙げられる。このようなSCR触媒の骨格密度Bおよび平均細孔径を両立して有することにより、下流側ハニカム触媒部30に含まれるSCR触媒の反応性および耐熱性が有効に改善され、下流側ハニカム触媒部30のNOx浄化性能および耐久性がより良く向上する。
 上流側フィルタ触媒部10および下流側ハニカム触媒部30に含まれるSCR触媒の具体例としては、基本骨格を構成する元素として少なくともSiを含むゼオライトが挙げられる。また、骨格内にAlやPなどの陽イオンが置換されたゼオライトを用いてもよい。例えば、β型ゼオライト、シリコンアルミノリン酸塩(SAPO)系ゼオライト等が例示される。好適なゼオライトの構造を国際ゼオライト学会(IZA:International Zeolite Assoistion)が定めるコードで示すと、AEI、AFT、AFX、AST、BEA、BEC、CHA、EAB、ETR、GME、ITE、KFI、LEV、THO、PAU、UFIが挙げられる。これらの1種または2種以上を用いることが望ましい。
 さらに、Fe、CuおよびVなどの遷移金属をイオン交換したイオン交換ゼオライトを用いてもよい。例えば、Cuイオン交換SAPO系ゼオライトや、Feイオン交換β型ゼオライト等を好ましく用いることができる。これらのイオン交換ゼオライトは、骨格密度が14T/1000Å以上17T/1000Å以下の範囲内にあり、かつ、平均細孔径が2Å以上7Å以下の範囲内にあるため、該ゼオライトからなるSCR触媒を上流側フィルタ触媒部10および下流側ハニカム触媒部30に用いることによって、上流側フィルタ触媒部10および下流側ハニカム触媒部30のNOx浄化性能および耐久性(熱耐久性)をより良く向上させることができる。上記ゼオライトの骨格密度としては、例えば、Cuイオン交換SAPO系ゼオライトが約15.1T/1000Å、Feイオン交換β型ゼオライトが約15.3T/1000Åである。また、上記ゼオライトの平均細孔径としては、Cuイオン交換SAPO系ゼオライトが約3.7Å、Feイオン交換β型ゼオライトが約5.9Åである。
 なお、上流側フィルタ触媒部10と下流側ハニカム触媒部30との間に配置された上流側ハニカム触媒部20に含まれるゼオライトからなるSCR触媒の骨格密度としては特に限定されないが、下流側ハニカム触媒部30に含まれるゼオライトからなるSCR触媒の骨格密度よりも小さく、かつ、上流側フィルタ触媒部10に含まれるゼオライトからなるSCR触媒の骨格密度と同程度であることが好ましい。例えば、上流側ハニカム触媒部20に含まれるゼオライトからなるSCR触媒は、上流側フィルタ触媒部10に含まれるゼオライトからなるSCR触媒と質的に同一であってもよい。これにより、上流側ハニカム触媒部20に含まれるゼオライトからなるSCR触媒の反応性および耐熱性が有効に改善され、上流側ハニカム触媒部20のNOx浄化性能および耐久性がより良く向上する。
 以上、本発明の一実施形態に係る排ガス浄化装置100について説明したが、本発明は上記の実施形態に限定されない。
 例えば、上述した実施形態では、上流側ハニカム触媒部20および下流側ハニカム触媒部30からなる2つのハニカム触媒部を用いる場合を例示したが、ハニカム触媒部の数はこれに限定されない。例えば3つ以上のハニカム触媒部を備えていてもよい。この場合、複数(3つ以上)のハニカム触媒部のうち少なくとも排気管の最下流側(最後段)に配置されたハニカム触媒部に含まれるSCR触媒の骨格密度が、上流側フィルタ触媒部10に含まれるSCR触媒の骨格密度よりも大きければよい。このように骨格密度が異なるSCR触媒を上流側と下流側とで最適に配置させることで、各触媒部の反応効率を大幅に高めることができる。また、少なくとも排気管の最下流側(最後段)に配置されたハニカム触媒部にPt等の貴金属が担持されているとよい。排気管の最下流側に配置されたハニカム触媒部に貴金属を担持させることで、アンモニアの外部排出(スリップ)を適切に抑制することができる。
 以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。
<実施例1>
(1)上流側フィルタ触媒
 シリカ・アルミナ・燐から形成されるSAPO34をイオン交換水に分散させた後、酢酸銅を添加し、80℃で12時間攪拌し、ろ過、洗浄した。その後、200℃で5時間乾燥させ、Cuイオン交換ゼオライト(Cu担持量3質量%)を調製した。このCuイオン交換ゼオライト1000gとシリカゾル500gと純水1000gとを混合した後、ボールミルで1時間攪拌し、Cuイオン交換SAPO34スラリーを得た。得られたCuイオン交換SAPO34スラリーをウォールフロー型のセラミック基材(径160mm×長さ100mm)に塗布し、余分なスラリーを除去した後、100℃で乾燥、500℃で熱処理して上流側フィルタ触媒(上流側フィルタ触媒部10(図1参照))を作製した。得られた触媒のCuイオン交換SAPO34のコート量は、基材1L当たり100gであった。
(2)上流側ハニカム触媒
 シリカ・アルミナ・燐から形成されるSAPO34をイオン交換水に分散させた後、酢酸銅を添加し、80℃で12時間攪拌し、ろ過、洗浄した。その後、200℃で5時間乾燥させ、Cuイオン交換ゼオライト(Cu担持量3質量%)を調製した。このCuイオン交換ゼオライト1000gとシリカゾル500gと純水1000gとを混合した後、ボールミルで1時間攪拌し、Cuイオン交換SAPO34スラリーを得た。得られたCuイオン交換SAPO34スラリーをストレートフロー型のセラミック基材(径160mm×長さ100mm)に塗布し、余分なスラリーを除去した後、100℃で乾燥、500℃で熱処理して上流側ハニカム触媒(上流側ハニカム触媒部20(図1参照))を作製した。得られた上流側ハニカム触媒のCuイオン交換SAPO34のコート量は、基材1L当たり160gであった。
(3)下流側ハニカム触媒部
 シリカ・アルミナ比が25のβ型ゼオライトをイオン交換水に分散させた後、酢酸鉄を添加し、80℃で12時間攪拌し、ろ過、洗浄した。その後、200℃で5時間乾燥させ、Feイオン交換ゼオライト(Fe担持量2質量%)を調製した。このFeイオン交換ゼオライト1000gとシリカゾル500gと純水1000gとを混合した後、ボールミルで1時間攪拌し、Feイオン交換β型ゼオライトスラリーを得た。得られたFeイオン交換β型ゼオライトスラリーをストレートフロー型のセラミック基材(径160mm×長さ100mm)に塗布し、余分なスラリーを除去した後、100℃で乾燥、500℃で熱処理してFeイオン交換β型ゼオライトをコートしたハニカム触媒を得た。
 また、比表面積120m/gのγ-アルミナを純水に分散させた後、ジニトロジアミン白金を添加した。その後、100℃で6時間以上乾燥、500℃で1時間熱処理し、アPt担持アルミナ(Pt担持量:1質量%、以下、Pt/アルミナと称する。)を調製した。得られたPt/アルミナ1000gと、アルミナゾル200gと、純粋1000gとを混合した後、ボールミルで1時間攪拌し、Pt/アルミナスラリーを得た。得られたPt/アルミナスラリーを、上記Feイオン交換β型ゼオライトをコートしたハニカム触媒(基材)の排ガス流出側の端部から上流側に向かって基材の全長の1/5に当たる部分に塗布し、余分なスラリーを除去した後、100℃で乾燥、500℃で熱処理して下流側ハニカム触媒(下流側ハニカム触媒部30(図1参照))を作製した。得られた触媒のFeイオン交換β型ゼオライトのコート量は、基材1L当たり160gであった。また、Pt/アルミナのハニカム触媒1個当たりの塗布量は20gであり、Pt担持量はハニカム触媒1個当たりの0.2gであった。
 上記得られた上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒を2.0L直噴式ディーゼルエンジンの排気管に上流側からこの順で配置して実施例1に係る排ガス浄化装置を作製した。かかる排ガス浄化装置では、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒(Cuイオン交換SAPO34:骨格密度15.1T/1000Å、平均細孔径3.7Å)の骨格密度が、下流側ハニカム触媒に含まれるSCR触媒(Feイオン交換β型ゼオライト:骨格密度15.3T/1000Å、平均細孔径5.9Å)の骨格密度よりも小さい。
<実施例2>
 下流側ハニカム触媒に用いるSCR触媒をCuイオン交換β型ゼオライトに変更したこと以外は実施例1と同様にして排ガス浄化装置を作製した。具体的には、シリカ・アルミナ比が25のβ型ゼオライトをイオン交換水に分散させた後、酢酸銅を添加し、80℃で12時間攪拌し、ろ過、洗浄した。その後、200℃で5時間乾燥させ、Cuイオン交換β型ゼオライト(Cu担持量2質量%)を調製した。かかるCuイオン交換β型ゼオライトを用いて、実施例1と同様の手順で下流側ハニカム触媒を作製した。
<比較例1>
 上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に用いるSCR触媒を何れもCuイオン交換SAPO34(骨格密度15.1T/1000Å、平均細孔径3.7Å)に変更したこと以外は実施例1と同様にして排ガス浄化装置を作製した。
<比較例2>
 上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に用いるSCR触媒を何れもシリカ・アルミナ比が25のFeイオン交換β型ゼオライト(骨格密度15.3T/1000Å、平均細孔径5.9Å)に変更したこと以外は実施例1と同様にして排ガス浄化装置を作製した。
<比較例3>
 上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に用いるSCR触媒を何れもシリカ・アルミナ比が25のCuイオン交換Y型ゼオライト(骨格密度13.3T/1000Å、平均細孔径7.4Å)に変更したこと以外は実施例1と同様にして排ガス浄化装置を作製した。
<比較例4>
 上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に用いるSCR触媒を何れもシリカ・アルミナ比が25のCuイオン交換ZSM5ゼオライト(骨格密度18.4T/1000Å、平均細孔径4.6Å)に変更したこと以外は実施例1と同様にして排ガス浄化装置を作製した。
 各例の排ガス浄化装置について、耐久試験を行った。耐久試験は、700℃×20時間のエージング処理を10%水蒸気含有雰囲気下で実施することにより行った。また、上記耐久試験の前後(初期および700℃耐久後)におけるNOx浄化率を評価した。具体的には、各例の上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒を前述のように2.0L直噴式ディーゼルエンジンの排気管に取り付け、排ガスを流通させ、NOx浄化率を測定した。上流側フィルタ触媒よりも排気管の上流側にはインジェクタを設置し、該インジェクタからアンモニアを生成するための還元剤溶液としての尿素水を添加した。尿素水は、NOxに対するNHの当量比が1となるように調整した。ここでNOx浄化率(%)は、「(触媒入りガスのNOx濃度(ppm)-触媒出ガスのNOx濃度(ppm))/触媒入りガスのNOx濃度(ppm)」×100により算出した。結果を図5および表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図5および表1に示すように、上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒を何れもCuイオン交換Y型ゼオライト(骨格密度13.3T/1000Å)とした比較例3に係る排ガス浄化装置は、初期のNOx浄化率は高かったものの、700℃耐久後のNOx浄化率が著しく低下した。一方、上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒を何れもCuイオン交換ZSM5ゼオライト(骨格密度18.4T/1000Å)とした比較例3に係る排ガス浄化装置は、700℃耐久後のNOx浄化率は維持できていたものの、他の例に比べて初期のNOx浄化率が低下傾向であった。これに対し、上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒を何れもCuイオン交換SAPO34(骨格密度15.1T/1000Å)とした比較例1に係る排ガス浄化装置、および上流側フィルタ触媒、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒を何れもFeイオン交換β型ゼオライト(骨格密度15.3T/1000Å)とした比較例2に係る排ガス浄化装置は、比較例4に比べて初期のNOx浄化率が高く、なおかつ、比較例3に比べて700℃耐久後のNOx浄化率も大幅に改善されていた。
 さらに、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒(Cuイオン交換SAPO34:骨格密度15.1T/1000Å)の骨格密度を、下流側ハニカム触媒に含まれるSCR触媒(Feイオン交換β型ゼオライト:骨格密度15.3T/1000Å)の骨格密度よりも小さくした実施例1に係る排ガス浄化装置は、比較例1、2に比べて、初期のNOx浄化率が高く、700℃耐久後のNOx浄化率もさらに改善されていた。同様に、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒(Cuイオン交換SAPO34:骨格密度15.1T/1000Å)の骨格密度を、下流側ハニカム触媒に含まれるSCR触媒(Cuイオン交換β型ゼオライト:骨格密度15.3T/1000Å)の骨格密度よりも小さくした実施例2に係る排ガス浄化装置は、比較例1、2に比べて、初期のNOx浄化率が高く、700℃耐久後のNOx浄化率もさらに改善されていた。以上の結果から、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒の骨格密度を、下流側ハニカム触媒に含まれるSCR触媒の骨格密度よりも小さくすることによって、NOz浄化性能および耐久性が向上し得ることが確認された。また、実施例1および比較例1、2と、比較例3、4との対比から、上流側ハニカム触媒および下流側ハニカム触媒に含まれるSCR触媒の骨格密度としては、概ね14T/1000Å以上17T/1000Å以下にすることが好ましく、凡そ15T/1000Å以上16T/1000Å以下にすることがさらに好ましい。
 以上、排ガス浄化装置100について種々の改変例を例示したが、排ガス浄化装置100の構造は、上述した何れの実施形態にも限定されない。
 この排ガス浄化装置100は、例えば、ディーゼルエンジンなど、排気温度が比較的低い排ガス中の有害成分を浄化する装置として特に好適である。ただし、本発明に係る排ガス浄化装置100は、ディーゼルエンジンの排ガス中の有害成分を浄化する用途に限らず、他のエンジン(例えばガソリンエンジン)から排出された排ガス中の有害成分を浄化する種々の用途にて用いることができる。
 本発明によれば、高いNOx浄化性能を有する排ガス浄化装置を提供することができる。

Claims (6)

  1.  内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化装置であって、
     前記排気管の上流側に配置された上流触媒部と、
     前記上流触媒部よりも前記排気管の下流側に配置された下流触媒部と、
     前記上流触媒部よりも上流からアンモニアを生成するための還元剤溶液を供給する還元剤溶液供給手段と
    を備え、
     前記上流触媒部および前記下流触媒部は、それぞれアンモニアを吸着して排ガス中のNOxを還元するゼオライトからなるSCR触媒を含んでおり、
     前記上流触媒部に含まれるSCR触媒の骨格密度Aが、前記下流触媒部に含まれるSCR触媒の骨格密度Bよりも小さい(A<B)、排ガス浄化装置。
  2.  前記上流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Aと、前記下流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Bとの差が、0.1(T/1000Å)≦B-Aである、請求項1に記載の排ガス浄化装置。
  3.  前記上流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Aと、前記下流触媒部に含まれるゼオライトからなるSCR触媒の骨格密度Bとの双方が、14(T/1000Å)以上17(T/1000Å)以下である、請求項1または2に記載の排ガス浄化装置。
  4.  前記上流触媒部に含まれるゼオライトからなるSCR触媒の平均細孔径と、前記下流触媒部に含まれるゼオライトからなるSCR触媒の平均細孔径との双方が、2Å以上7Å以下である、請求項1~3の何れか一つに記載の排ガス浄化装置。
  5.  前記排気管の上流側に配置されたフィルタ触媒部と、
     前記フィルタ触媒部よりも前記排気管の下流側に配置された複数のハニカム触媒部と
    を備えており、
     前記フィルタ触媒部として、前記上流触媒部が設けられており、
     前記複数のハニカム触媒部のうち前記排気管の最下流側に配置されたハニカム触媒部として、前記下流触媒部が設けられている、請求項1~4の何れか一つに記載の排ガス浄化装置。
  6.  前記最下流側に配置されたハニカム触媒部には、貴金属が担持されている、請求項5に記載の排ガス浄化装置。
PCT/JP2014/082320 2013-12-09 2014-12-05 排ガス浄化装置 WO2015087817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14870259.0A EP3081284B1 (en) 2013-12-09 2014-12-05 Exhaust gas purification apparatus
JP2015552430A JP6453233B2 (ja) 2013-12-09 2014-12-05 排ガス浄化装置
US15/101,980 US9981223B2 (en) 2013-12-09 2014-12-05 Exhaust gas purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013254478 2013-12-09
JP2013-254478 2013-12-09

Publications (2)

Publication Number Publication Date
WO2015087817A1 true WO2015087817A1 (ja) 2015-06-18
WO2015087817A9 WO2015087817A9 (ja) 2016-04-07

Family

ID=53371122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082320 WO2015087817A1 (ja) 2013-12-09 2014-12-05 排ガス浄化装置

Country Status (4)

Country Link
US (1) US9981223B2 (ja)
EP (1) EP3081284B1 (ja)
JP (1) JP6453233B2 (ja)
WO (1) WO2015087817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923289A (zh) * 2016-08-25 2019-06-21 庄信万丰股份有限公司 降低硫酸化对于Cu-SCR的影响

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3607181T3 (pl) 2017-04-04 2024-05-27 Basf Corporation Układ wytwarzania amoniaku do kontroli emisji nox
EP3607179A4 (en) 2017-04-04 2020-10-21 BASF Corporation HYDROGEN REDUCING AGENTS FOR CATALYTIC POLLUTION REDUCTION
WO2018185666A1 (en) 2017-04-04 2018-10-11 Basf Corporation Integrated emissions control system
US11125133B2 (en) 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
KR102470847B1 (ko) 2017-04-04 2022-11-25 바스프 코포레이션 차량 내장식 암모니아 및 수소 생성
PL3607180T3 (pl) 2017-04-04 2023-05-15 Basf Corporation Wytwarzanie wodoru w pojeździe i zastosowanie w strumieniach spalin
US11420189B2 (en) * 2017-07-11 2022-08-23 Cataler Corporation Exhaust gas purification catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192810A (ja) * 1998-12-25 2000-07-11 Hino Motors Ltd 排ガス浄化装置
JP2002188429A (ja) * 2000-12-20 2002-07-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004060494A (ja) 2002-07-26 2004-02-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005007260A (ja) * 2003-06-18 2005-01-13 Babcock Hitachi Kk 排ガス浄化装置
JP2007185571A (ja) 2006-01-11 2007-07-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法
JP2009082915A (ja) 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2011041905A (ja) * 2009-08-21 2011-03-03 Mitsubishi Motors Corp 排ガス浄化装置
JP2013019390A (ja) * 2011-07-14 2013-01-31 Hino Motors Ltd 排ガス浄化装置
WO2013014467A1 (en) * 2011-07-28 2013-01-31 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0923710B1 (pt) * 2008-12-24 2019-11-26 Basf Corp sistema de tratamento de emissões para tratar uma corrente de gás de descarga do motor, e, método para tratar uma corrente de gás de descarga do motor.
US8516798B2 (en) * 2009-07-30 2013-08-27 Ford Global Technologies, Llc Methods and systems for control of an emission system with more than one SCR region
JP2011052611A (ja) * 2009-09-02 2011-03-17 Toyota Industries Corp 排気ガス浄化装置
US20110064632A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Staged Catalyst System and Method of Using the Same
GB2475740B (en) * 2009-11-30 2017-06-07 Johnson Matthey Plc Catalysts for treating transient NOx emissions
EP2495032A1 (de) 2011-03-03 2012-09-05 Umicore Ag & Co. Kg SCR-Katalysator mit verbesserter Kohlenwasserstoffresistenz
CN103702745B (zh) * 2011-05-31 2016-12-07 庄信万丰股份有限公司 双功能催化过滤器
KR20140044907A (ko) 2011-08-03 2014-04-15 존슨 맛쎄이 퍼블릭 리미티드 컴파니 압출된 허니컴 촉매
US20150020506A1 (en) * 2012-02-12 2015-01-22 Haldor Topsøe A/S Method and system for the removal of noxious compounds from engine exhaust gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192810A (ja) * 1998-12-25 2000-07-11 Hino Motors Ltd 排ガス浄化装置
JP2002188429A (ja) * 2000-12-20 2002-07-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004060494A (ja) 2002-07-26 2004-02-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005007260A (ja) * 2003-06-18 2005-01-13 Babcock Hitachi Kk 排ガス浄化装置
JP2007185571A (ja) 2006-01-11 2007-07-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法
JP2009082915A (ja) 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2011041905A (ja) * 2009-08-21 2011-03-03 Mitsubishi Motors Corp 排ガス浄化装置
JP2013019390A (ja) * 2011-07-14 2013-01-31 Hino Motors Ltd 排ガス浄化装置
WO2013014467A1 (en) * 2011-07-28 2013-01-31 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081284A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923289A (zh) * 2016-08-25 2019-06-21 庄信万丰股份有限公司 降低硫酸化对于Cu-SCR的影响

Also Published As

Publication number Publication date
EP3081284A1 (en) 2016-10-19
JP6453233B2 (ja) 2019-01-16
JPWO2015087817A1 (ja) 2017-03-16
US9981223B2 (en) 2018-05-29
EP3081284B1 (en) 2019-04-10
EP3081284A4 (en) 2016-12-07
WO2015087817A9 (ja) 2016-04-07
US20160310897A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
JP6453233B2 (ja) 排ガス浄化装置
EP3081777B2 (en) Exhaust gas purification material
RU2392456C2 (ru) Способ и устройство для очистки выхлопного газа
JP6755306B2 (ja) すす触媒とscr触媒を有する触媒フィルタ
JP6127046B2 (ja) 排ガスの処理のためのゾーン触媒フィルター
JP2009106913A (ja) 選択還元型触媒
JP2004084666A (ja) ディーゼルエンジンの排気ガスからのスス微粒子の除去
US7560079B2 (en) Exhaust gas-purifying apparatus
JP2019060250A (ja) 排ガス浄化用酸化触媒装置
JP2012036821A (ja) 内燃機関の排気ガス浄化装置
JP3269535B2 (ja) ディーゼルエンジン用排気ガス浄化触媒
JP7446541B1 (ja) 排ガス浄化用触媒
JP7150496B2 (ja) 排ガス浄化用触媒及び排ガス浄化システム
US10335736B2 (en) Exhaust gas purification material
JP6297322B2 (ja) パティキュレートフィルタ
JP7174516B2 (ja) 排ガス浄化用触媒
JP2018161618A (ja) 触媒付きパティキュレートフィルタの製造方法
WO2018123286A1 (ja) 排ガス浄化用触媒
WO2024029290A1 (ja) 排ガス処理用システム
WO2024150563A1 (ja) 排ガス浄化用触媒
JP2012217938A (ja) 排ガス浄化用触媒
JP2017148685A (ja) 排ガス浄化装置
JPWO2020221891A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15101980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014870259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870259

Country of ref document: EP