WO2015087731A1 - 受信装置 - Google Patents
受信装置 Download PDFInfo
- Publication number
- WO2015087731A1 WO2015087731A1 PCT/JP2014/081730 JP2014081730W WO2015087731A1 WO 2015087731 A1 WO2015087731 A1 WO 2015087731A1 JP 2014081730 W JP2014081730 W JP 2014081730W WO 2015087731 A1 WO2015087731 A1 WO 2015087731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- received signal
- frequency
- signal
- interference wave
- signal level
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
- H04B1/1036—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/0848—Joint weighting
- H04B7/0857—Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/0874—Hybrid systems, i.e. switching and combining using subgroups of receive antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0238—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a receiving apparatus, and more particularly to a receiving apparatus that is resistant to burst-like jamming radio waves.
- An OFDM (Orthogonal Frequency-Division Multiplexing) modulated signal received by the antenna 601 is input to an AGC (Automatic Gain Control) unit 602 so that the output signal level becomes a predetermined value based on the gain adjustment signal from the loop filter 606. Gain is adjusted.
- the level-adjusted received signal that is the output of the AGC unit 602 is output to the frequency converter 603 and the detector 604.
- the detector 604 detects the level of the input signal and outputs it to the target value comparator 605. This signal is hereinafter referred to as a detection signal.
- the target value comparator 605 compares the input value with a preset target value, generates a gain adjustment signal such that the detection signal approaches the target value based on the result, and outputs the gain adjustment signal to the loop filter 606.
- the loop filter 606 extracts a low frequency component of the input signal and outputs it to the AGC unit 602. This loop filter is used for the purpose of suppressing oscillation.
- the frequency converter 603 converts the frequency of the input signal into an IF (Intermediate Frequency) band, applies a channel selection filter that passes the frequency band for one channel, and outputs the result to an ADC (Analog Digital Converter) unit 607.
- the ADC 607 converts the signal input from the frequency converter 603 into a digital signal and outputs the digital signal to an FFT (Fast Fourier Transform) unit 608.
- the sample rate at this time is determined by the OFDM parameters (number of FFT points, effective symbol length).
- the FFT unit 608 converts the input signal into a frequency domain signal and outputs it to the equalizer 609.
- the equalizer 609 performs equalization processing for correcting the amplitude and phase of the input signal, and outputs the equalization result to the determiner 610.
- the determiner 610 determines the input signal, attaches the error correction likelihood to the determination result, and outputs it to an FEC (Forward Error Correction) unit 611.
- the FEC unit 611 deinterleaves the input signal, and performs error correction of the signal based on the error correction likelihood with respect to the determination result.
- each system for processing received signals has an amplifier, an AGC circuit that performs automatic gain control with different response speeds, and an ADC, respectively.
- the digital signal processing apparatus that has received the signal that has passed through these systems selects the digital data with the lowest error rate from these systems.
- the received signal data with the lowest error rate can be obtained.
- the output of the system having an AGC circuit with a fast response speed is selected, and when the received signal has a modulation scheme with an amplitude component,
- a technique for selecting an output of a system including an AGC circuit with a slow response speed is disclosed.
- FIG. 7 is a diagram for explaining the adverse effects of interference waves in the receiving apparatus.
- FIG. 7A shows a power spectrum when an interference wave having a large level appears like a radar in the same band as the desired wave.
- FIG. 7b shows the reception level when such interference waves are mixed repeatedly and intermittently.
- FIG. 7c shows a graph of an ideal gain adjustment signal and a conventional gain adjustment signal. The ideal gain adjustment signal is controlled so that the intermodulation distortion of the analog element does not occur by immediately lowering the gain adjustment signal even if interference waves are mixed, and immediately when interference waves are not mixed.
- the gain adjustment signal is returned to the original so that sensitivity suppression does not occur in the analog element.
- the time constant of the loop filter is shortened so as to follow the gain adjustment signal at a high speed, oscillation may occur, and therefore the time constant cannot be shortened. Therefore, as indicated by the dotted line in FIG. 7c, both when the interference wave is mixed and when the interference wave is not mixed, both deviate from the ideal values. Since the gain adjustment control cannot follow at high speed in this way, the level of the received signal reaches the non-linear region of the analog element when an interference wave is mixed, causing intermodulation distortion in the frequency converter 603, resulting in degradation of transmission quality. Leads to.
- An object of the present invention is to perform error correction using a received signal adjusted with an optimum gain both when an interference wave is mixed and when no interference wave is mixed.
- the receiving apparatus of the present invention includes one or a plurality of antenna means for receiving a modulated signal, first and second system amplifying means for amplifying a received signal received by the antenna means, and a first system amplifying means.
- Level fluctuation detecting means for performing gain control, maximum received signal level extracting means for performing gain control of the second system amplifying means, frequency converting means for the first and second systems, and frequency of the interference wave of the second system
- An interference wave frequency detecting means for detecting, an interference wave frequency blocking means for cutting off the frequency of the interference wave, a plurality of demodulation means for demodulating signals in each system, and a noise amplitude calculating means for calculating noise amplitude in each system;
- Equalization means for correcting the amplitude and phase of the signal in each system, synthesis means for synthesizing the demodulation result of each system based on the noise amplitude calculation result of the noise amplitude calculation means of each system, and synthesis result of the synthesis means against An error correction likelihood correct
- the receiving apparatus is the above-described receiving apparatus, wherein the level fluctuation detecting means is a holding means for holding the received signal level of the first system, an average value of the received signal level held by the holding means, and a new value.
- the received signal level is compared with the received signal level to detect the received signal level fluctuation, and the first amplifying means receives the newly received signal when the received signal level fluctuation detected by the level fluctuation detecting means is below a predetermined value.
- the signal level is used for gain control, and when the received signal level fluctuation exceeds a predetermined value and there is a sudden level fluctuation, the received signal level immediately before the received signal level fluctuation exceeds the predetermined value is used for gain control. It is characterized by.
- the receiving apparatus of the present invention is the above-described receiving apparatus, wherein the maximum received signal level extracting means is a holding means for holding the received signal level of the second system, and the received signal level held by the holding means is newly received.
- the maximum received signal level is extracted from the received signal level, and the second amplifying means uses the result of the maximum received signal level extracting means for gain control.
- the present invention it is possible to perform error correction using the received signal adjusted with the optimum gain both when the interference wave is mixed and when the interference wave is not mixed.
- FIG. 1 is a block diagram of a receiving apparatus according to a first embodiment of the present invention.
- FIG. 3 is a block diagram of a nonlinear filter A of the receiving apparatus according to the first embodiment.
- FIG. 3 is a block diagram of a nonlinear filter B of the receiving apparatus according to the first embodiment.
- FIG. 9 is a block diagram of a receiving apparatus according to a second embodiment.
- FIG. 9 is a block diagram of a receiving apparatus according to Embodiment 3.
- FIG. 10 is a block diagram of a nonlinear filter 550 of the receiving apparatus according to the fourth embodiment.
- FIG. 1 is a block diagram for explaining a receiving apparatus according to Embodiment 1 of the present invention.
- This receiving apparatus includes a reception system A 11, a reception system B 12, ADCs 111 and 116, FFT units 112 and 119, equalizers 113 and 121, noise calculation units 114 and 120, a synthesis unit 115, a band stop filter 117, an interference wave
- the frequency detector 118, the determiner 122, the disappearance unit 123, and the FEC unit 124 are included.
- a signal received by the receiving antenna 101 of the receiving system A 11 is input to the AGC unit 102.
- the AGC unit 102 adjusts the gain of the input signal based on the gain adjustment signal input from the non-linear filter A 105 so that the reception signal level becomes a predetermined level, and the gain-adjusted reception signal is converted to the frequency converter 103.
- Input to the detector 104 The detector 104 detects the level of the input signal and outputs the detection result to the nonlinear filter A105.
- the frequency converter 103 performs down-conversion to IF band and channel selection filtering.
- the reception system B12 Similarly to the reception antenna 101 of the reception system A 11, the signal received from the reception antenna 106 of the reception system B 12 is input to the AGC unit 107.
- the AGC unit 107 adjusts the received signal to a predetermined level based on the gain adjustment signal input from the non-linear filter B 110 and outputs the received signal to the frequency converter 108 and the detector 109.
- the detector 109 detects the level of the input signal and outputs the signal to the nonlinear filter B110.
- the gain adjustment is made to follow only the level of the interference wave that is intermittently mixed. Therefore, the gain adjustment signal output from the nonlinear filter B110 is mixed with the interference wave by using the detection signal when the interference wave is mixed. Even at times, there is no intermodulation distortion caused by analog elements. If the direction of the interference source is known, the receiving antenna 106 may direct the sensitivity directivity null point toward the interference source. By doing so, the gain is not maximized for the signal source of the desired wave, but the ratio of the level of the interference wave to the desired wave is compressed, and the C / N is improved.
- the frequency converters 103 and 108 have the same configuration, and the same local signal can be given in common.
- the detectors 104 and 108 are RMS (Root Mean Square) type or logarithmic type power detectors, whose response time is larger than the reciprocal of the bandwidth of OFDM and shorter than the interference wave mixing interval (or mixing period).
- a signal that is not too long compared to the symbol length, that is, is not sensitive to the peak of the OFDM signal itself, but can detect an interference wave immediately and can follow the fluctuation of the desired wave is used.
- the response time (and the sample period of the ADC 301 described later) is preferably about 0.5 ms.
- the frequency-converted signal is input to the ADC 111 and converted into a digital signal.
- the signal converted into the digital signal is output to the FFT unit 112.
- the signal of each receiving system needs to be a complex signal composed of in-phase and quadrature components when input to the FFT unit 119, and analog or digital quadrature detection is performed before or after the ADC 111.
- the FFT unit 112 converts the input signal into a frequency domain signal and outputs the signal to the equalizer 113 and the noise calculation unit 114.
- the equalizer 113 corrects the amplitude and phase of the input signal and outputs the corrected signal to the synthesizer 115.
- the noise calculation unit 114 calculates the noise amplitude included in the input signal and outputs it to the synthesis unit 115.
- a noise calculation method for example, there is a method of estimating a noise amplitude using a pilot signal which is a known signal. That is, since the transmission path does not vary greatly in time for several symbols, the noise amplitude included in the received signal is calculated by subtracting two consecutive pilot signals.
- the noise amplitude is preferably calculated and output with the same frequency as that of, for example, an OFDM symbol.
- the frequency-converted signal is input to the ADC 116.
- the ADC 116 converts the input signal into a digital signal and outputs the digital signal to the band stop filter 117 and the interference wave frequency detector 118.
- the band stop filter 117 applies a filter that blocks the frequency of the interference wave to the signal input from the ADC 116 based on the signal indicating the interference wave frequency position input from the interference wave frequency detector 118 described later. If a frequency mixed with an excessive interference wave is removed and then output to the FFT unit 119, it can be expected that degradation of C / N due to the FFT is reduced.
- the interference wave frequency detector 118 performs frequency spectrum analysis on the input signal, recognizes the frequency at which the signal level exceeds the threshold set based on the average value of the signal level as the frequency mixed with the interference wave, A signal indicating the interference wave frequency and the amplitude of the interference wave is output to the band stop filter 117 and the disappearance unit 123.
- This frequency spectrum analysis is different from the FFT unit 12 or the like in that an appropriate window function is applied before the FFT processing or a larger number of points is used to widen the scanning range. That is, the output of the interference wave frequency detector 118 may be in time for the timing at which the determination result of the OFDM symbol corresponding to the time is processed by the erasure unit 123, and the operation and output period of the interference wave frequency detector 118 are OFDM. It does not have to coincide with the symbol period.
- the FFT unit 119 converts the input signal into a frequency domain signal and outputs the signal to the noise calculation unit 120 and the equalizer 121. Similar to the noise calculation unit 114, the noise calculation unit 120 calculates a noise amplitude from the input signal and outputs the noise amplitude to the synthesis unit 115.
- the equalizer 121 corrects the amplitude and phase of the input signal in the same manner as the equalizer 113 and outputs the corrected signal to the synthesis unit 115.
- the combining unit 115 combines the signals of the two reception systems based on the noise amplitude calculated by the noise calculation units 114 and 120 of each reception system, and outputs the combined signal to the determiner 122.
- a synthesis method there are a method of selecting a signal of a reception system with a small noise amplitude, a method of performing weighting on a signal of each reception system so as to increase as the noise amplitude is small, and the like. Combining is basically performed in units of OFDM symbols.
- the determiner 122 determines the input signal, attaches the error correction likelihood to the determination result, and outputs it to the erasure unit 123.
- the likelihood is calculated from the magnitude of the difference between the input signal and the determination result (EVM: Error Vector Magnitude) or the like.
- the disappearance unit 123 changes the error correction likelihood of the frequency subjected to interference based on the signal input from the interference wave frequency detector 118 according to the amplitude of the interference wave, and outputs the error correction likelihood to the FEC unit 124. For example, if the amplitude of the interference wave is large, the error correction likelihood is set to a small value or “0” (negative infinity for log likelihood), thereby correcting the error of the signal affected by the interference wave. Reduce the likelihood.
- the FEC unit 124 performs a deinterleave process on the input signal, and performs error correction based on the error correction likelihood on the determination result.
- FIG. 2 is a block diagram of the nonlinear filter A105 of the receiving apparatus according to the first embodiment.
- the ADC 201 converts the input signal into a digital signal and outputs the digital signal to the multistage shift register 202, subtracter 203, average calculator 204, and selector 206.
- the shift register unit 202 sequentially moves the input signal to the next register every time T 1 and outputs the value of each register to the average calculation unit 204.
- the average calculation unit 204 calculates an average value and outputs the calculation result to the subtracter 203.
- the subtractor 203 subtracts the average value of the current detection signal input from the ADC 201 and the previous detection signal (held by the shift register unit 202) input from the average calculation unit 204, and outputs the result to the threshold comparator 205. To do. This subtraction result represents how rapidly the current detection signal has changed with respect to the past.
- the threshold comparator 205 compares the preset threshold value with the input subtraction result, and if the threshold value is exceeded, a rapid level fluctuation has occurred.
- the flag output to the selector unit 206 is determined as “Hi”. If the threshold is not exceeded, it is determined that no interference wave is mixed, and the flag is set to “Lo”.
- the selector unit 206 selects and outputs one signal from the current detection signal input from the ADC 201 and the past detection signal input from the shift register unit 202 according to the flag input from the threshold comparator.
- FIG. 7 is a timing chart for explaining gain control of the receiving apparatus according to the related art and the first embodiment.
- the flag is “Lo”
- the current detection signal is output.
- the flag is “Hi”
- the detection signal before the flag becomes “Hi” is selected and output to the target value comparator 207.
- Symbol ABC shown in FIG. 7E indicates the symbol of the input signal from the shift register 202 of the selector 206 in FIG.
- the number of past detection signals that can be stored can be varied depending on the number of registers in the shift register unit 202, and the protection period can be changed.
- This protection period determined by the number of registers and time T 1 is preferably set longer than the interference wave mixing period.
- the target value comparator 207 compares the input value with a preset target value, generates a gain adjustment signal such that the detection signal approaches the target value based on the result, and outputs it to the loop filter 208.
- the loop filter 208 extracts a low frequency component of the input signal and outputs it to a DAC (Digital-to-Analog-Converter) unit 209.
- DAC Digital-to-Analog-Converter
- the loop filter 208 has the same time constant as that of the loop filter 605 in order to suppress oscillation.
- the DAC 209 converts the input digital signal into an analog signal and outputs the analog signal to the AGC unit 102.
- the nonlinear filter A105 uses the latest detection signal as a feedback signal when there is no interference wave and the detection signal immediately before receiving the interference when there is interference.
- FIG. 3 is a block diagram of the nonlinear filter B of the receiving apparatus according to the first embodiment.
- the input value is input to the ADC 301.
- the ADC 301 converts the input signal into a digital signal and outputs the digital signal to the shift register unit 302 and the maximum value search unit 303.
- the shift register unit 302 sequentially moves the input signal to the next register every time T 2 and outputs the value stored in each register to the maximum value search unit 303.
- the maximum value search unit 303 searches the maximum value of the input values and outputs it to the loop filter 304. Accordingly, it is possible to have a function of holding the maximum value of the input values by the number of registers of the prepared shift register 302.
- the nonlinear filter B110 always uses the detection signal when the interference wave is mixed.
- the time T 2 must be shorter than the interference wave mixing period, and the number of registers of the shift register 302 is It must be set so that the holding period due to is longer than the interval at which interference waves are mixed.
- the AGC 107 of the receiving system B can always be controlled to an optimum gain with respect to the level of the interference wave, and non-linear distortion of the analog element can be made difficult to occur.
- the loop filter 304 extracts a low frequency component of the input signal and outputs it to the DAC 305.
- the loop filter 304 also has the same time constant as the loop filters 208 and 605 because it aims to suppress oscillation.
- the DAC 305 converts the input digital signal into an analog signal and outputs the analog signal to the AGC unit 107.
- FIG. 4 is a block diagram of a receiving apparatus according to Embodiment 2 of the present invention.
- a signal received by the antenna 401 is input to the AGC unit 102 and the AGC unit 107. Subsequent processing is the same as that of the first embodiment, and is omitted.
- a signal received by one antenna is input to two independent gain adjustment units, and error correction is performed by using a signal whose gain is adjusted differently for each system as in the first embodiment. The same effects as in the embodiment can be obtained, and the number of antennas can be reduced.
- FIG. 5 is a block diagram for explaining the configuration of the receiving apparatus according to the third embodiment of the present invention.
- a signal received by the antenna 101 is input to the AGC unit 102.
- the configuration and operation from the AGC unit 102 to the FFT unit 124 are substantially the same as those in the first embodiment and the like except for the points described below, and a description thereof will be omitted.
- the receiving apparatus of this example includes an interference wave frequency detector 518 instead of the interference wave frequency detector 118.
- Interference wave frequency detector 518 detects the presence / absence of subcarriers that have undergone interference and their subcarrier frequencies in the OFDM symbol period from the signal converted into frequency domain signals by FFT section 112, and erase section 123. Output to.
- the interference frequency detector 518 exceeds the threshold set based on the average power of all subcarriers in the OFDM symbol for each subcarrier, or the subcarrier frequency detector 518 It is inspected whether the ratio or difference with the power (average power) exceeds a threshold value, and if any exceeds, it is determined that interference has occurred. In the case of receiving strong radar interference, the subcarrier may be completely destroyed, but this embodiment is effective even if it cannot be detected without omission.
- the erasure unit 123 sets the error correction likelihood of the frequency and time signal mixed with the interference wave based on the signal output from the interference wave frequency detector 118 to a fixed small value or “0” and outputs the error correction likelihood to the FEC unit 124.
- the FEC unit 124 performs a deinterleave process on the input signal, and performs error correction based on the error correction likelihood on the determination result.
- This deinterleaving process is a process that spans a plurality of OFDM symbols (that is, the interleaving length is larger than the number of demodulated bits from one OFDM symbol). Many radar oscillation periods are longer than OFDM symbols and typically span several symbols. If the interleaving is performed over a plurality of OFDM symbols longer than the interference wave mixing period, the error can be recovered.
- the gain of the AGC unit 102 does not follow the interference wave level and interference is mixed.
- the gain control during the non-period can maintain the optimum value.
- efficient error correction processing becomes possible by not using signals that have deteriorated due to the influence of interference waves, and code errors The rate can be reduced.
- FIG. 8 is a block diagram of the nonlinear filter 550 according to the fourth embodiment.
- the nonlinear filter 550 of this example is used in place of the nonlinear filter A105 of the first to third embodiments. Description of the configuration common to the nonlinear filter A105 is omitted.
- the threshold value comparator 205 determines that there is an interference wave and outputs “Hi”
- the selector 501 detects the output of the first stage of the shift register 202, that is, the detection that the self output at the previous sample timing.
- the signal is selected and “Lo” is output, the current detection signal from the ADC 201 is selected and output.
- the detection signal when no interference wave is mixed can be held only in the first stage of the shift register.
- the threshold comparator 502 determines whether or not the current detection signal from the ADC 201 exceeds a level at which the frequency converter 103 and the ADC 111 are saturated and the required C / N cannot be satisfied even when the gain of the AGC unit is minimized. And the corresponding logical values (“Hi” and “Lo”) are output.
- the AND unit 503 receives the logical value from the threshold comparator 205 and the logical value indicating the presence or absence of noise, and outputs a logical product of them.
- the noise presence / absence indicator is obtained by thresholding the noise amplitude calculated by the noise calculation unit 114 or the like at every OFDM symbol timing, or the C / N value derived therefrom. Since the calculated noise amplitude has a delay of one OFDM symbol or more, it is better to switch the threshold value with a delay according to the selection state of the selector described later. It is desirable that the noise presence / absence indicator is maintained at “Hi” (true) when there is noise exceeding a threshold value within an expected interference wave mixing period.
- the coefficient multiplier 504 multiplies the output of the loop filter 208 by a predetermined coefficient ⁇ and outputs the result to the selector 505. This coefficient is intended to be applied when the threshold value comparator 205 determines that there is an interference wave and a logical value indicating the presence of noise is input, and is usually a positive number less than 1.
- the selector 505 selects the input from the coefficient multiplier 504 when the output of the AND unit 503 is “Hi”, and selects the input from the loop filter 208 when the output is “Lo”, and outputs it to the selector 508. Even if the current detection signal from the noise ADC 20 exceeds the level at which the ADC 111 is saturated and the required C / N cannot be satisfied even if the gain of the AGC unit is minimized, a logical value (“Hi”) is determined. "And" Lo ").
- a D-FF (Flip Flop) 506 holds the signal from the threshold comparator 502 and outputs it to the AND unit 507.
- the AND unit 507 receives the signal from the threshold comparator 502 and the signal delayed by the D-FF 506 and outputs the logical product of these signals to the selector 508.
- the selector 508 selects 0 (minimum possible value) if the signal from the AND unit 507 is “Hi”, and selects the signal from the selector 505 if it is “Lo”, and outputs it to the DAC 207.
- the receiver when the interference wave is mixed, the receiver receives the level fluctuation of the received signal as shown in FIG. 7b.
- the desired wave undergoes a change along with a change in the propagation path, but the change is a gradual change compared to the interference wave mixing interval. Therefore, using a plurality of reception systems having independent gain adjustment functions, as shown in FIG. 7d, the gain of the reception system A is made to follow only the fluctuation of the desired wave, and the gain of the reception system B is made only to the level of the interference wave.
- the reception system A11 maintains the optimum gain even when the interference wave is not mixed by not making the gain follow the interference wave level.
- the receiving system B 12 performs control so as to follow the level of the interference wave so that non-linear distortion of the analog element does not occur even during the period in which the interference wave is mixed. Then, a demodulation process is performed on the gain-adjusted signal of each reception system, and the reception system is switched between a period in which interference waves are mixed and a period in which interference waves are not mixed.
- error correction can be performed using a signal adjusted with an optimum gain instantaneously by weighted synthesis of signals of each system.
- the receiving apparatus of the present invention can perform error correction using the received signal adjusted with the optimum gain both when the interference wave is mixed and when the interference wave is not mixed. .
- the present invention can be widely applied to wireless receivers, and in particular, OFDM, SC-FDE (Single-Carrier Modulation with Frequency Domain Equalization), DFT-Spread OFDM, etc. for performing frequency domain equalization on a desired wave, etc.
- This method is suitable for a wireless system that uses a white space frequency.
- reception system A 12: reception system B, 101: reception antenna, 102: AGC unit, 103: frequency converter, 104: detector, 105: nonlinear filter A, 106: reception antenna, 107: AGC unit, 108 : Frequency converter, 109: detector, 110: nonlinear filter B, 111: ADC, 112: FFT unit, 113: equalizer, 114: noise calculation unit, 115: synthesis unit, 116: ADC, 117: band stop Filter: 118: Interference wave frequency detector, 119: FFT section, 120: Noise calculation section, 121: Equalizer, 122: Determinator, 123: Disappearance section, 124: FEC section, 201: ADC, 202: Shift register unit, 203: Subtractor, 204: Average calculation unit, 205: Threshold comparator, 206: Selector unit, 207: Target value comparator, 208: Loop filter, 209: DAC, 301: ADC, 302: Shift
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Circuits Of Receivers In General (AREA)
- Noise Elimination (AREA)
- Error Detection And Correction (AREA)
- Radio Transmission System (AREA)
Abstract
干渉波が混入する時と干渉波が混入しない時の双方で最適な利得で調整された受信信号を得て、誤り訂正復号を行う受信装置が開示される。この受信装置は、アンテナ手段で受信した受信信号を増幅する第1および第2系統の増幅手段と、第1系統の増幅手段の利得制御を行うレベル変動検出手段と、第2系統の増幅手段の利得制御を行う最大受信信号レベル抽出手段と、第1および第2系統の周波数変換手段と、第2系統の干渉波の周波数を検出する干渉波周波数検出手段と、干渉波の周波数を遮断する干渉波周波数遮断手段と、各系統で信号の復調を行う複数の復調手段と、各系統で雑音振幅を算出する雑音振幅算出手段と、各系統で信号の振幅と位相を補正する等化手段と、各系統の雑音振幅算出手段の雑音振幅算出結果に基づいて、各系統の復調結果を合成する合成手段とを有する。
Description
本発明は、受信装置に関し、特にバースト状の妨害電波に耐性を有する受信装置に関する。
従来の受信装置の構成について図6を用いて説明する。
アンテナ601により受信されたOFDM(Orthogonal Frequency-Division Multiplexing)変調信号はAGC(Automatic Gain Control)部602に入力され、ループフィルタ606からの利得調整信号に基づいて出力信号レベルが所定値になるように利得が調整される。AGC部602の出力であるレベル調整された受信信号は、周波数変換器603と検波器604へと出力される。
検波器604は、入力された信号のレベルを検出して目標値比較器605に出力する。この信号を以下、検波信号と称する。
アンテナ601により受信されたOFDM(Orthogonal Frequency-Division Multiplexing)変調信号はAGC(Automatic Gain Control)部602に入力され、ループフィルタ606からの利得調整信号に基づいて出力信号レベルが所定値になるように利得が調整される。AGC部602の出力であるレベル調整された受信信号は、周波数変換器603と検波器604へと出力される。
検波器604は、入力された信号のレベルを検出して目標値比較器605に出力する。この信号を以下、検波信号と称する。
目標値比較器605は、入力された値と予め設定された目標値を比較し、その結果を基に検波信号が目標値に近づくような利得調整信号を生成してループフィルタ606へ出力する。ループフィルタ606は、入力された信号の低周波成分を抽出しAGC部602へ出力する。このループフィルタは発振を抑制する目的で用いられる。
周波数変換器603は、入力された信号の周波数をIF(Intermediate Frequency)帯に変換し、1チャンネル分の周波数帯域を通過させるチャンネル選択フィルタを施し、ADC(Analog Digital Converter)部607へ出力する。ADC607では周波数変換器603より入力された信号をデジタル信号に変換してFFT(Fast Fourier Transform)部608に出力する。このときのサンプルレートは、OFDMパラメータ(FFTポイントの数、有効シンボル長)により決まる。
周波数変換器603は、入力された信号の周波数をIF(Intermediate Frequency)帯に変換し、1チャンネル分の周波数帯域を通過させるチャンネル選択フィルタを施し、ADC(Analog Digital Converter)部607へ出力する。ADC607では周波数変換器603より入力された信号をデジタル信号に変換してFFT(Fast Fourier Transform)部608に出力する。このときのサンプルレートは、OFDMパラメータ(FFTポイントの数、有効シンボル長)により決まる。
FFT部608では入力された信号を周波数領域の信号に変換して等化器609に出力する。等化器609では入力された信号の振幅と位相を補正する等化処理を行い、等化結果を判定器610へ出力する。判定器610では入力された信号を判定して判定結果に誤り訂正尤度を付随し、FEC(Forward Error Correction)部611へ出力する。FEC部611では入力信号をデインターリーブ処理し、判定結果に対して誤り訂正尤度に基づいた信号の誤り訂正を行う。
また、他の先行技術としては、例えば、特許文献1に、受信信号処理のための各系統が、増幅器と、応答速度の異なる自動利得制御を行うAGC回路と、ADCとをそれぞれ保持し、それらの系統を経た信号を受け取ったデジタル信号処理装置は、これらの系統の中から最も誤り率の低いデジタルデータを選択する。このことにより、誤り率の最も低い受信信号データを得ることができる。たとえば、受信信号がフェージングなどのレベル変動の早い妨害を受けているときには、応答速度の速いAGC回路を具備する系統の出力を選択し、受信信号が振幅成分のある変調方式を取っているときには、応答速度の遅いAGC回路を具備する系統の出力を選択する技術が開示されている。
前述の従来技術の課題について図7を用いて説明する。図7は受信装置における干渉波の悪影響について説明するための図である。
図7のaは、希望波と同じ帯域内に、レーダーのようにレベルの大きい干渉波が現れた時の電力スペクトルを示している。図7のbは、そのような干渉波が断続的に繰り返し混入したときの受信レベルを示している。図6の従来構成の受信装置では、そのレベル変動に利得調整信号が高速で追従することが難しい。
図7cに、理想的な利得調整信号と従来方式の利得調整信号のグラフが示される。理想的な利得調整信号は干渉波が混入しても、即時に利得調整信号を下げることでアナログ素子の相互変調歪が生じないように制御し、その後干渉波が混入しなくなった時にも即時に利得調整信号を元に戻し、アナログ素子で感度抑圧が生じないようにするものである。
しかし、実現可能な受信装置では、利得調整信号を高速追従させようとしてループフィルタの時定数を短くすると、発振してしまう可能性があるため、時定数を短くすることができない。従って、図7cの点線で示す通り干渉波の混入した時と干渉波が混入しなくなった時、共に理想値から外れてしまう。このように利得調整制御が高速追従できないため、干渉波の混入したとき受信信号のレベルがアナログ素子の非線形領域に達し、周波数変換器603内で相互変調歪を発生させてしまい、伝送品質の劣化につながる。
図7のaは、希望波と同じ帯域内に、レーダーのようにレベルの大きい干渉波が現れた時の電力スペクトルを示している。図7のbは、そのような干渉波が断続的に繰り返し混入したときの受信レベルを示している。図6の従来構成の受信装置では、そのレベル変動に利得調整信号が高速で追従することが難しい。
図7cに、理想的な利得調整信号と従来方式の利得調整信号のグラフが示される。理想的な利得調整信号は干渉波が混入しても、即時に利得調整信号を下げることでアナログ素子の相互変調歪が生じないように制御し、その後干渉波が混入しなくなった時にも即時に利得調整信号を元に戻し、アナログ素子で感度抑圧が生じないようにするものである。
しかし、実現可能な受信装置では、利得調整信号を高速追従させようとしてループフィルタの時定数を短くすると、発振してしまう可能性があるため、時定数を短くすることができない。従って、図7cの点線で示す通り干渉波の混入した時と干渉波が混入しなくなった時、共に理想値から外れてしまう。このように利得調整制御が高速追従できないため、干渉波の混入したとき受信信号のレベルがアナログ素子の非線形領域に達し、周波数変換器603内で相互変調歪を発生させてしまい、伝送品質の劣化につながる。
本発明の目的は、干渉波が混入する時と干渉波が混入しない時のどちらにも最適な利得で調整された受信信号を用いて誤り訂正を行うことにある。
本発明の受信装置は、変調された信号を受信する1または複数のアンテナ手段と、アンテナ手段で受信した受信信号を増幅する第1および第2系統の増幅手段と、第1系統の増幅手段の利得制御を行うレベル変動検出手段と、第2系統の増幅手段の利得制御を行う最大受信信号レベル抽出手段と、第1および第2系統の周波数変換手段と、第2系統の干渉波の周波数を検出する干渉波周波数検出手段と、干渉波の周波数を遮断する干渉波周波数遮断手段と、各系統で信号の復調を行う複数の復調手段と、各系統で雑音振幅を算出する雑音振幅算出手段と、各系統で信号の振幅と位相を補正する等化手段と、各系統の雑音振幅算出手段の雑音振幅算出結果に基づいて、各系統の復調結果を合成する合成手段と、合成手段の合成結果に対して干渉波周波数検出結果に基づいて干渉波が混入した周波数の信号の誤り訂正尤度を低減させる誤り訂正尤度修正手段と、誤り訂正尤度修正手段によって得られた結果に基づいた誤り訂正手段とを有することを特徴とする。
また、本発明の受信装置は、上述の受信装置であって、レベル変動検出手段は第1系統の受信信号レベルを保持する保持手段と、保持手段で保持した受信信号レベルの平均値と新たに受信した受信信号レベルとを比較して受信信号のレベル変動を検出し、第1の増幅手段はレベル変動検出手段で検出した受信信号レベルの変動が所定値以下の場合には新たに受信した受信信号レベルを利得制御に用い、受信信号レベルの変動が所定値超で急激なレベル変動があった場合には受信信号レベルの変動が所定値超となる直前の受信信号レベルを利得制御に用いることを特徴とする。
また、本発明の受信装置は、上述の受信装置であって、最大受信信号レベル抽出手段は第2系統の受信信号レベルを保持する保持手段と、保持手段で保持した受信信号レベルと新たに受信した受信信号レベルから最大の受信信号レベルを抽出し、第2の増幅手段は最大受信信号レベル抽出手段の結果を利得制御に用いることを特徴とする。
本発明によれば、干渉波が混入する時と干渉波が混入しない時のどちらにも最適な利得で調整された受信信号を用いて誤り訂正を行うことができる。
以下、本発明の実施例について図面を用いて説明する。
図1は本発明の実施例1に係る受信装置を説明するためのブロック図である。この受信装置は、受信系統A 11、受信系統B 12、ADC111,116、FFT部112,119、等化器113,121、雑音算出部114,120、合成部115、バンドストップフィルタ117、干渉波周波数検出器118、判定器122、消失部123、FEC部124で構成されている。
まず、受信系統A 11について説明する。
受信系統A 11の受信アンテナ101にて受信された信号は、AGC部102に入力される。AGC部102は、入力された信号を非線形フィルタA105より入力された利得調整信号に基づいて受信信号レベルを所定のレベルになるよう利得を調整し、利得調整された受信信号を周波数変換器103と検波器104に入力する。検波器104は、入力された信号のレベルを検出し、検波結果を非線形フィルタA105に出力する。周波数変換器103は、IF帯へのダウンコンバートおよりチャンネル選択フィルタリングを行う。
受信系統A 11の受信アンテナ101にて受信された信号は、AGC部102に入力される。AGC部102は、入力された信号を非線形フィルタA105より入力された利得調整信号に基づいて受信信号レベルを所定のレベルになるよう利得を調整し、利得調整された受信信号を周波数変換器103と検波器104に入力する。検波器104は、入力された信号のレベルを検出し、検波結果を非線形フィルタA105に出力する。周波数変換器103は、IF帯へのダウンコンバートおよりチャンネル選択フィルタリングを行う。
次に、受信系統B 12について説明する。
受信系統A 11の受信アンテナ101と同様に、受信系統B 12の受信アンテナ106から受信された信号はAGC部107に入力される。AGC部107は、入力された信号を非線形フィルタB110より入力された利得調整信号に基づいて受信信号を所定のレベルに調整し、周波数変換器108と検波器109に出力する。検波器109は、入力された信号のレベルを検出し、信号を非線形フィルタB110に出力する。
受信系統A 11の受信アンテナ101と同様に、受信系統B 12の受信アンテナ106から受信された信号はAGC部107に入力される。AGC部107は、入力された信号を非線形フィルタB110より入力された利得調整信号に基づいて受信信号を所定のレベルに調整し、周波数変換器108と検波器109に出力する。検波器109は、入力された信号のレベルを検出し、信号を非線形フィルタB110に出力する。
受信系統Bでは断続的に混入する干渉波のレベルのみに利得調整を追従させるため、非線形フィルタB110から出力する利得調整信号は干渉波が混入している時の検波信号を用いることで干渉波混入時であっても、アナログ素子による相互変調歪が生じることはない。
受信アンテナ106は、干渉源の方向が判っていれば、感度指向性のヌル点を干渉源に向けるとよい。そのようにすると、希望波の信号源に対しては利得が最大ではなくなるが、希望波に対する干渉波のレベルの比が圧縮され、C/Nは改善する。
受信アンテナ106は、干渉源の方向が判っていれば、感度指向性のヌル点を干渉源に向けるとよい。そのようにすると、希望波の信号源に対しては利得が最大ではなくなるが、希望波に対する干渉波のレベルの比が圧縮され、C/Nは改善する。
周波数変換器103と108の構成は同じであり、同じ局部信号が共通に与えられうる。検波器104と108には、RMS(Root Mean Square)型或いは対数型の電力検出器で、応答時間が、OFDMの帯域幅の逆数より大きく、干渉波混入間隔(又は混入期間)より短く、OFDMシンボル長に比べ長すぎないもの、つまりOFDM信号自体のピークには敏感でないが、干渉波は直ちに検出でき、希望波の変動にも追従できるものが用いられる。例えば干渉波の混入間隔5 ms、希望波のフェージング周期を25 msとすると、応答時間(及び後述のADC301のサンプル周期)は0.5 ms程度が望ましい。
次に、各受信系統の周波数変換器103、108以降の処理について説明する。
受信系統A 11では周波数変換をされた信号をADC111に入力し、デジタル信号に変換する。デジタル信号に変換された信号はFFT部112に出力される。なお、各受信系統の信号は、FFT部119に入力される時には同相及び直交成分からなる複素信号になっている必要があり、ADC111の前又は後でアナログ又はデジタル直交検波が行われるものとする。
FFT部112では入力された信号を周波数領域の信号に変換し、等化器113と雑音算出部114へ出力する。等化器113では入力された信号の振幅と位相を補正して合成部115に出力する。
受信系統A 11では周波数変換をされた信号をADC111に入力し、デジタル信号に変換する。デジタル信号に変換された信号はFFT部112に出力される。なお、各受信系統の信号は、FFT部119に入力される時には同相及び直交成分からなる複素信号になっている必要があり、ADC111の前又は後でアナログ又はデジタル直交検波が行われるものとする。
FFT部112では入力された信号を周波数領域の信号に変換し、等化器113と雑音算出部114へ出力する。等化器113では入力された信号の振幅と位相を補正して合成部115に出力する。
雑音算出部114では入力された信号に含まれる雑音振幅を算出し、合成部115に出力する。雑音算出方法は、例えば、既知信号であるパイロット信号を用いて雑音振幅を推定する方法がある。すなわち、伝送路は数シンボルでは時間的に大きく変動しないため、連続する2シンボルのパイロット信号を減算することで受信信号に含まれる雑音振幅を算出する。その他にも受信点と理想受信点との距離の平均を用いる方法などもある。雑音振幅は、例えばOFDMシンボルと同じ頻度で算出され出力されることが望ましい。
受信系統B 12では周波数変換された信号をADC116に入力する。ADC116は、入力された信号をデジタル信号に変換し、バンドストップフィルタ117と干渉波周波数検出器118に出力する。バンドストップフィルタ117は、後述する干渉波周波数検出器118より入力された干渉波周波数位置を示す信号を基にADC116より入力された信号に対して干渉波の周波数を遮断するフィルタを適応する。過大な干渉波が混入した周波数を除去してからFFT部119に出力すると、FFTによるC/Nの劣化が低減されることが期待できる。
干渉波周波数検出器118は、入力された信号を周波数スペクトル分析し、信号レベルが信号レベルの平均値を基に設定したしきい値を超えた周波数を、干渉波が混入した周波数として認識し、干渉波周波数と干渉波の振幅を示す信号をバンドストップフィルタ117と消失部123に出力する。この周波数スペクトル分析は、FFT処理の前に適切な窓関数を施したり、走査範囲を広げるためにより大きなポイント数を用いたりする点で、FFT部12などとは異なる。つまり、干渉波周波数検出器118の出力は、それと時間的に対応するOFDMシンボルの判定結果が消失部123で処理されるタイミングに間に合えばよく、干渉波周波数検出器118の動作及び出力周期がOFDMシンボル周期と一致している必要はない。
FFT部119は、入力された信号を周波数領域の信号に変換して雑音算出部120と等化器121へ出力する。雑音算出部120は雑音算出部114と同様に、入力された信号から雑音振幅を算出し、合成部115へ出力する。
等化器121は、等化器113と同様に入力された信号の振幅と位相を補正して合成部115へ出力する。
合成部115は、各受信系統の雑音算出部114、120にて算出した雑音振幅に基づいて、二つの受信系統の信号を合成し、判定器122へ出力する。
合成方法として、雑音振幅の少ない受信系統の信号を選択する方法や、雑音振幅が小さいほど大きくなるような重みづけを各受信系統の信号に行って加算する方法などがある。合成は基本的にはOFDMシンボル単位で行われる。
合成部115は、各受信系統の雑音算出部114、120にて算出した雑音振幅に基づいて、二つの受信系統の信号を合成し、判定器122へ出力する。
合成方法として、雑音振幅の少ない受信系統の信号を選択する方法や、雑音振幅が小さいほど大きくなるような重みづけを各受信系統の信号に行って加算する方法などがある。合成は基本的にはOFDMシンボル単位で行われる。
判定器122は、入力された信号を判定して判定結果に誤り訂正尤度を付随し、消失部123へ出力する。尤度は、入力信号と判定結果との差の大きさ(EVM:Error Vector Magnitude)等から算出される。
消失部123は、干渉波周波数検出器118から入力された信号を基に、干渉を受けた周波数の誤り訂正尤度を干渉波の振幅に応じて変更し、FEC部124へ出力する。例えば、干渉波の振幅が大きい場合はその誤り訂正尤度を小さな値もしくは“0”(対数尤度であれば負の無限大)にすることで、干渉波により影響を受けた信号の誤り訂正尤度を下げる。
FEC部124は、入力された信号にデインターリーブ処理を行い、判定結果に対して誤り訂正尤度に基づいた誤り訂正を行う。
以上の回路を用いることで、干渉波が混入している時と干渉波が混入していない時、共に最適にレベル調整された信号を用いて誤り訂正を行うことができ、伝送性能を向上させることができる。なお、アンテナ
以上の回路を用いることで、干渉波が混入している時と干渉波が混入していない時、共に最適にレベル調整された信号を用いて誤り訂正を行うことができ、伝送性能を向上させることができる。なお、アンテナ
図2は、実施例1の受信装置の非線形フィルタA105のブロック図である。
非線形フィルタA105では、入力された信号をADC201がデジタル信号に変換し、多段のシフトレジスタ202と減算器203、平均算出部204、セレクタ部206に出力する。シフトレジスタ部202では入力された信号を時間T1ごとに順次、次のレジスタへ移動させ、各レジスタの値を平均算出部204へ出力する。
非線形フィルタA105では、入力された信号をADC201がデジタル信号に変換し、多段のシフトレジスタ202と減算器203、平均算出部204、セレクタ部206に出力する。シフトレジスタ部202では入力された信号を時間T1ごとに順次、次のレジスタへ移動させ、各レジスタの値を平均算出部204へ出力する。
平均算出部204では平均値を算出し、算出結果を減算器203へ出力する。減算器203ではADC201から入力された現在の検波信号と平均算出部204から入力された過去(シフトレジスタ部202で保持)の検波信号の平均値の減算を行い、しきい値比較器205へ出力する。この減算結果は現在の検波信号が過去に対してどの程度急激に変化したかを表している。
しきい値比較器205では予め設定されたしきい値と入力された減算結果を比較し、しきい値を超えた場合には急激なレベル変動が生じているため、干渉波が混入したものと判断してセレクタ部206に対して出力するフラグを“Hi”にする。しきい値を超えない場合は干渉波が混入していないものと判断してフラグを“Lo”にする。セレクタ部206ではしきい値比較器より入力されたフラグに従い、ADC201から入力された現在の検波信号とシフトレジスタ部202から入力された過去の検波信号から一つの信号を選択して出力する。
次に、セレクタ部206での選択基準について図7eで説明する。
図7は、従来技術と実施例1の受信装置の利得制御を説明するタイミングチャートである。
フラグが“Lo”の時は現在の検波信号を出力し、フラグが“Hi”の時はフラグが“Hi”になる前の検波信号を選択して目標値比較器207へ出力する。図7eに示す記号ABCは図2のセレクタ206のシフトレジスタ202からの入力信号の記号を示す。
図7は、従来技術と実施例1の受信装置の利得制御を説明するタイミングチャートである。
フラグが“Lo”の時は現在の検波信号を出力し、フラグが“Hi”の時はフラグが“Hi”になる前の検波信号を選択して目標値比較器207へ出力する。図7eに示す記号ABCは図2のセレクタ206のシフトレジスタ202からの入力信号の記号を示す。
これにより、干渉波が混入し検波信号が大きく変動した際、利得が干渉波レベルに追従しないような保護機能を持たせることができる。また、シフトレジスタ部202のレジスタ数により保存できる過去の検波信号数を可変することができ、保護できる期間を変えることができる。レジスタ数および時間T1(ADC201のサンプルレート)により決まるこの保護期間は、干渉波の混入期間より長く設定することが望ましい。
目標値比較器207では入力された値と予め設定された目標値を比較し、その結果を基に検波信号が目標値に近づくような利得調整信号を生成し、ループフィルタ208へ出力する。ループフィルタ208では入力された信号の低周波成分を抽出し、DAC(Digital to Analog Converter)部209へ出力する。
このループフィルタ208は発振の抑制を目的とするため、ループフィルタ605と同様の時定数である。DAC209では入力されたデジタル信号をアナログ信号に変換してAGC部102へ出力する。
このように、非線形フィルタA105は、妨害波がないときは最新の検波信号が、妨害があるときは妨害を受ける直前の検波信号をフィードバック信号とするものである。
このように、非線形フィルタA105は、妨害波がないときは最新の検波信号が、妨害があるときは妨害を受ける直前の検波信号をフィードバック信号とするものである。
図3は、実施例1の受信装置の非線形フィルタBのブロック図である。
非線形フィルタB110では、入力された値をADC301へ入力する。ADC301は、入力された信号をデジタル信号に変換し、シフトレジスタ部302と最大値検索部303に出力する。シフトレジスタ部302は、入力された信号を時間T2ごとに順次、次のレジスタへ移動させ、各レジスタに保存された値を最大値検索部303へ出力する。
非線形フィルタB110では、入力された値をADC301へ入力する。ADC301は、入力された信号をデジタル信号に変換し、シフトレジスタ部302と最大値検索部303に出力する。シフトレジスタ部302は、入力された信号を時間T2ごとに順次、次のレジスタへ移動させ、各レジスタに保存された値を最大値検索部303へ出力する。
最大値検索部303は、入力された値の最大値を検索し、ループフィルタ304へ出力する。これにより入力された値の最大値を用意されたシフトレジスタ302のレジスタ数だけ保持する機能を有することができる。
ここで、先に述べたように非線形フィルタB110では常に干渉波が混入していた時の検波信号を用いる。つまり、シフトレジスタ302のレジスタ内に干渉波混入時の検波信号が確実に存在している必要があり、時間T2は干渉波混入期間より短くなければならず、シフトレジスタ302のレジスタ数はそれによる保持期間が干渉波の混入する間隔より長くなるように設定しなければならない。更に、干渉波のレベル変動に良く追従させるため、可能であれば、干渉波の混入する間隔の2倍未満であることが好ましい。代表的な干渉源であるレーダーのほとんどは周期的に動作し、その周期は良く知られているので、このようにレジスタ数を設定することは容易である。例えば干渉波の混入期間50 usとすると、時間T2(ADC301のサンプルレート)は25 us程度とする。
受信系統BのAGC107は常に干渉波のレベルに対して最適な利得に制御することができ、アナログ素子の非線形歪を生じにくくすることができる。ループフィルタ304では入力された信号の低周波成分を抽出してDAC305へ出力する。このループフィルタ304も発振を抑制することを目的とするため、ループフィルタ208、605と同様の時定数である。DAC305では入力されたデジタル信号をアナログ信号に変換してAGC部107へ出力する。
図4は、本発明の実施例2に係る受信装置のブロック図である。
アンテナ401にて受信された信号はAGC部102とAGC部107へ入力される。以降の処理は第1の実施例と同様のため省略する。
一つのアンテナにて受信された信号を独立する二つの利得調整部へ入力し、第1の実施例と同様に系統ごとに異なる利得調整された信号を用いて誤り訂正を行うことで第1の実施例と同様の効果を得ることができ、更にアンテナの本数を減らすことができる。
アンテナ401にて受信された信号はAGC部102とAGC部107へ入力される。以降の処理は第1の実施例と同様のため省略する。
一つのアンテナにて受信された信号を独立する二つの利得調整部へ入力し、第1の実施例と同様に系統ごとに異なる利得調整された信号を用いて誤り訂正を行うことで第1の実施例と同様の効果を得ることができ、更にアンテナの本数を減らすことができる。
図5は本発明の実施例3に係る受信装置の構成を説明するためのブロック図である。
アンテナ101にて受信された信号はAGC部102へ入力される。AGC部102からFFT部124までの構成及び動作は、以下に述べる点を除き、実施例1等とほぼ同様であり、説明を省略する。
本例の受信装置は、干渉波周波数検出器118に代えて、干渉波周波数検出器518を備える。干渉波周波数検出器518は、FFT部112にて周波数領域の信号に変換された信号から、OFDMシンボル周期で、干渉を受けたサブキャリアの有無およびそのサブキャリア周波数を検知して、消失部123に出力する。干渉波周波数検出器518は、サブキャリア毎に、当該OFDMシンボルにおける全サブキャリアの平均電力を基に設定したしきい値を超えるか、或いは、過去の1乃至複数のOFDMシンボルにおける当該サブキャリアの電力(平均電力)との比や差がしきい値を越えるかを検査し、いずれかが超えていれば干渉を受けていると判断する。強力なレーダーの干渉を受けた場合、サブキャリアが全滅していることもあるが、それを漏れなく検出することができなくても、本実施例は効果がある。
アンテナ101にて受信された信号はAGC部102へ入力される。AGC部102からFFT部124までの構成及び動作は、以下に述べる点を除き、実施例1等とほぼ同様であり、説明を省略する。
本例の受信装置は、干渉波周波数検出器118に代えて、干渉波周波数検出器518を備える。干渉波周波数検出器518は、FFT部112にて周波数領域の信号に変換された信号から、OFDMシンボル周期で、干渉を受けたサブキャリアの有無およびそのサブキャリア周波数を検知して、消失部123に出力する。干渉波周波数検出器518は、サブキャリア毎に、当該OFDMシンボルにおける全サブキャリアの平均電力を基に設定したしきい値を超えるか、或いは、過去の1乃至複数のOFDMシンボルにおける当該サブキャリアの電力(平均電力)との比や差がしきい値を越えるかを検査し、いずれかが超えていれば干渉を受けていると判断する。強力なレーダーの干渉を受けた場合、サブキャリアが全滅していることもあるが、それを漏れなく検出することができなくても、本実施例は効果がある。
消失部123では干渉波周波数検出器118から出力された信号を元に干渉波が混入した周波数及び時間の信号の誤り訂正尤度を、固定の小さな値もしくは“0”にしてFEC部124へ出力する。
FEC部124は、入力された信号にデインターリーブ処理を行い、判定結果に対して誤り訂正尤度に基づいた誤り訂正を行う。このデインタリーブ処理は、複数のOFDMシンボルに跨るような処理である(つまり、インタリーブ長は1OFDMシンボルからの復調ビット数より大きい)。多くのレーダーの発振期間は、OFDMシンボルより長く、通常、数シンボルに亘る。インタリーブが、干渉波混入期間より長い複数のOFDMシンボルに亘るようにすると、誤りが回復できる。
FEC部124は、入力された信号にデインターリーブ処理を行い、判定結果に対して誤り訂正尤度に基づいた誤り訂正を行う。このデインタリーブ処理は、複数のOFDMシンボルに跨るような処理である(つまり、インタリーブ長は1OFDMシンボルからの復調ビット数より大きい)。多くのレーダーの発振期間は、OFDMシンボルより長く、通常、数シンボルに亘る。インタリーブが、干渉波混入期間より長い複数のOFDMシンボルに亘るようにすると、誤りが回復できる。
以上の処理により受信系統が一つの場合でも、干渉波が混入し受信信号レベルが大きく変動した場合であっても、AGC部102の利得が干渉波レベルに追従することなく、干渉が混入していない期間の利得制御は最適値を維持することが可能となる。
また、干渉波が混入している期間については、誤り訂正尤度を低減させることにより、干渉波の影響を受けて劣化した信号を用いないことで効率的な誤り訂正処理が可能となり、符号誤り率を低減することができる。
また、干渉波が混入している期間については、誤り訂正尤度を低減させることにより、干渉波の影響を受けて劣化した信号を用いないことで効率的な誤り訂正処理が可能となり、符号誤り率を低減することができる。
図8は、実施例4に係る非線形フィルタ550のブロック図である。本例の非線形フィルタ550は、実施例1乃至3の非線形フィルタA105に代えて使用される。非線形フィルタA105と共通の構成は説明を省略する。
セレクタ501は、しきい値比較器205が干渉波有と判断し“Hi”を出力している間、シフトレジスタ202の1段目の出力、すなわち前回のサンプルタイミング時に自己が出力していた検波信号を選択し、“Lo”を出力している間、ADC201からの現在の検波信号を選択して出力する。これにより、シフトレジスタの1段目だけで、干渉波が混入していない時の検波信号を保持し続けることができる。
セレクタ501は、しきい値比較器205が干渉波有と判断し“Hi”を出力している間、シフトレジスタ202の1段目の出力、すなわち前回のサンプルタイミング時に自己が出力していた検波信号を選択し、“Lo”を出力している間、ADC201からの現在の検波信号を選択して出力する。これにより、シフトレジスタの1段目だけで、干渉波が混入していない時の検波信号を保持し続けることができる。
しきい値比較器502は、ADC201からの現在の検波信号が、AGC部のゲインを最小にしたとしても周波数変換器103やADC111を飽和させ所要C/Nを満たせなくなるレベルを超えているか否かを判断し、それに応じた論理値(“Hi”と“Lo”)を出力する。
AND器503は、しきい値比較器205からの論理値と、雑音有無を示す論理値が入力され、それらの論理積を出力する。雑音有無標識は、雑音算出部114等がOFDMシンボルタイミング毎に算出する雑音振幅、或いはそれから導かれるC/N値をしきい値処理することで得られる。算出される雑音振幅には1OFDMシンボル以上の遅延があるため、後述のセレクタの選択状態に応じて、しきい値も遅延させて切り替えた方が良い。雑音有無標識は、想定される干渉波混入周期内にしきい値を越えた雑音があった場合に“Hi”(真)が保持されることが望ましい。
係数乗算器504は、ループフィルタ208の出力に所定の係数αを乗算して、セレクタ505に出力する。この係数は、しきい値比較器205が干渉波有と判断し且つ雑音有を示す論理値が入力された時に適用されることを意図しており、通常は1未満の正の数である。
セレクタ505は、AND器503の出力が“Hi”の時に係数乗算器504からの入力を、“Lo”の時にループフィルタ208からの入力を選択し、セレクタ508に出力する。雑音ADC20からの現在の検波信号が、AGC部のゲインを最小にしたとしてもADC111を飽和させ所要C/Nを満たせなくなるレベルを超えているか否かを判断し、それに応じた論理値(“Hi”と“Lo”)を出力する。
D-FF(Flip Flop)506は、クロックとしてOFDMシンボルタイミング信号が入力される都度、しきい値比較器502からの信号を保持して、AND器507に出力する。
AND器507は、しきい値比較器502からの信号と、D-FF506で遅延された信号とを入力され、それらの論理積をセレクタ508に出力する。
セレクタ508は、AND器507からの信号が“Hi”であれば0(とり得る最小値)を、“Lo”であればセレクタ505からの信号を選択し、DAC207に出力する。
AND器507は、しきい値比較器502からの信号と、D-FF506で遅延された信号とを入力され、それらの論理積をセレクタ508に出力する。
セレクタ508は、AND器507からの信号が“Hi”であれば0(とり得る最小値)を、“Lo”であればセレクタ505からの信号を選択し、DAC207に出力する。
このような構成にすると、しきい値比較器502の出力が“Hi”となったまま最初のOFDMシンボル境界に達したときにAGCのゲインが最小値に切り替わり、しきい値比較器502の出力が“Lo”に変わるとすぐさまループフィルタ208からの信号に戻る。
以上説明した実施例により、本発明の受信装置は、干渉波が混入した時には、受信機は図7bのような受信信号のレベル変動を受けることになる。希望波は伝搬路の変化に伴い変化を受けるが、その変化は干渉波の混入間隔に比べ緩やかな変動である。そこで独立の利得調整機能を有する複数の受信系統を用いて、図7dに示すように、受信系統Aの利得を希望波の変動のみに追従させ、受信系統Bの利得を干渉波のレベルのみに追従させる。つまり、受信系統A11は干渉波が混入した場合であっても、干渉波レベルに利得を追従させないことにより干渉波が混入しなくなった際にも最適な利得を維持する。逆に受信系統B 12は干渉波のレベルに追従するような制御を行うことで干渉波が混入している期間であってもアナログ素子の非線形歪が生じることがないような制御を行う。そして、各受信系統の利得調整された信号に対して復調処理を行い、干渉波が混入している期間と混入していない期間で受信系統を切替える。又は、各系統の信号を重み付け合成することで、瞬時において最適な利得で調整された信号を用いて誤り訂正を行うことができる。
さらに、上述の実施例により、本発明の受信装置は干渉波が混入する時と干渉波が混入しない時のどちらにも最適な利得で調整された受信信号を用いて誤り訂正を行うことができる。
本発明は無線受信装置に広く適用することができ、特にOFDM方式や、希望波に対して周波数領域等化を行うSC-FDE(Single-Carrier modulation with Frequency Domain Equalization)、DFT-Spread OFDM等の方式、またホワイトスペース周波数を利用する無線システムに好適である。
11:受信系統A、12:受信系統B、101:受信アンテナ、102:AGC部、103:周波数変換器、104:検波器、105:非線形フィルタA、106:受信アンテナ、107:AGC部、108:周波数変換器、109:検波器、110:非線形フィルタB、111:ADC、112:FFT部、113:等化器、114:雑音算出部、115:合成部、116:ADC、117:バンドストップフィルタ、118:干渉波周波数検出器、119:FFT部、120:雑音算出部、121:等化器、122:判定器、123:消失部、124:FEC部、
201:ADC、202:シフトレジスタ部、203:減算器、204:平均算出部、205:しきい値比較器、206:セレクタ部、207:目標値比較器、208:ループフィルタ、209:DAC、301:ADC、302:シフトレジスタ部、303:最大値検索部、304:ループフィルタ、305:DAC、
401:受信アンテナ、601:受信アンテナ、602:AGC部、603:周波数変換器、604:検波器、605:目標値比較器、606:ループフィルタ、607:ADC、608:FFT部、609:等化器、610:判定器、611:FEC部。
201:ADC、202:シフトレジスタ部、203:減算器、204:平均算出部、205:しきい値比較器、206:セレクタ部、207:目標値比較器、208:ループフィルタ、209:DAC、301:ADC、302:シフトレジスタ部、303:最大値検索部、304:ループフィルタ、305:DAC、
401:受信アンテナ、601:受信アンテナ、602:AGC部、603:周波数変換器、604:検波器、605:目標値比較器、606:ループフィルタ、607:ADC、608:FFT部、609:等化器、610:判定器、611:FEC部。
Claims (4)
- 変調された信号を受信する1または複数のアンテナ手段と、
前記アンテナ手段で受信した第1および第2系統の受信信号をそれぞれ可変の利得で増幅する第1および第2の増幅手段と、
前記第1の増幅手段の利得制御を行うレベル変動検出手段と、
前記第2の増幅手段の利得制御を行う最大受信信号レベル抽出手段と、
前記増幅された第1および第2系統の受信信号をそれぞれ周波数変換する第1および第2の周波数変換手段と、
前記第2系統の受信信号が含む干渉波の周波数を検出する干渉波周波数検出手段と、
前記第2系統の受信信号から、前記干渉波の周波数を遮断する干渉波周波数遮断手段と、
前記第1および第2系統の受信信号をそれぞれ復調する第1および第2の復調手段と、
前記第1および第2系統の受信信号から雑音振幅をそれぞれ算出する第1および第2の雑音振幅算出手段と、
前記第1および第2系統の受信信号を周波数領域で振幅と位相をそれぞれ補正する第1および第2の等化手段と、
第1および第2の雑音振幅算出手段が算出した雑音振幅に基づいて、前記各系統の復調結果を合成する合成手段と、
前記合成手段の合成結果に対して前記干渉波周波数検出結果に基づいて干渉波が混入した周波数の信号の誤り訂正尤度を低減させる誤り訂正尤度修正手段と、
前記誤り訂正尤度修正手段により修正された尤度を用いて誤り訂正復号を行う誤り訂正手段と、を有する受信装置。 - 請求項1に記載の受信装置において、
前記レベル変動検出手段は、
前記第1系統の受信信号レベルを保持する保持手段と、
前記保持手段で保持した受信信号レベルの平均値と新たに受信した受信信号レベルとを比較して受信信号のレベル変動を検出し、
前記第1の増幅手段は、前記レベル変動検出手段で検出した前記受信信号レベルの変動が所定値以下の場合には新たに受信した受信信号レベルを利得制御に用い、受信信号レベルの変動が所定値超で急激なレベル変動があった場合には受信信号レベルの変動が所定値超となる直前の受信信号レベルを利得制御に用いることを特徴とする受信装置。 - 請求項1または請求項2に記載の受信装置において、
前記最大受信信号レベル抽出手段は、
前記第2系統の受信信号レベルを保持する保持手段と、
前記保持手段により保持された過去の受信信号レベルと、新たに受信された受信信号レベルとから最大の受信信号レベルを抽出し、
前記第2の増幅手段は、前記最大受信信号レベル抽出手段の結果を利得制御に用いることを特徴とする受信装置。 - 請求項1または請求項2に記載の受信装置において、
前記第1および第2の等化手段の前に、前記第1および第2系統の受信信号をそれぞれ周波数領域信号に変換する第1および第2のFFT手段を設け、前記干渉波周波数遮断手段の第2のFFT手段より前段において前記干渉波の周波数を遮断することを特徴とする受信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015552397A JP5988527B2 (ja) | 2013-12-10 | 2014-12-01 | 受信装置 |
US15/169,913 US9461681B1 (en) | 2013-12-10 | 2016-06-01 | Receiver |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-254967 | 2013-12-10 | ||
JP2013254967 | 2013-12-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/169,913 Continuation US9461681B1 (en) | 2013-12-10 | 2016-06-01 | Receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087731A1 true WO2015087731A1 (ja) | 2015-06-18 |
Family
ID=53371040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081730 WO2015087731A1 (ja) | 2013-12-10 | 2014-12-01 | 受信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9461681B1 (ja) |
JP (1) | JP5988527B2 (ja) |
WO (1) | WO2015087731A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9917604B1 (en) * | 2016-03-24 | 2018-03-13 | Amazon Technologies, Inc. | Dynamic receive sensitivity |
JP2018148488A (ja) * | 2017-03-08 | 2018-09-20 | ソニーセミコンダクタソリューションズ株式会社 | 信号処理装置および方法 |
US10014904B1 (en) * | 2017-07-27 | 2018-07-03 | Saankhya Labs Pvt. Ltd. | System and method for mitigating co-channel interference in white space modems |
US11121785B2 (en) * | 2019-01-10 | 2021-09-14 | Exfo Inc. | Detection and tracking of interferers in a RF spectrum with multi-lane processing |
US11540234B2 (en) | 2019-12-05 | 2022-12-27 | Exfo Inc. | Automated narrow peak interference severity estimation |
WO2021203670A1 (zh) * | 2020-04-06 | 2021-10-14 | 华为技术有限公司 | 一种信号处理方法和接收机 |
DE102020118540A1 (de) * | 2020-07-14 | 2022-01-20 | Infineon Technologies Ag | Systeme, vorrichtungen und verfahren zur echtzeitstörungsdetektion |
EP4205285A1 (en) * | 2020-08-28 | 2023-07-05 | ISCO International, LLC | Method and system for polarization adjusting in time-division duplexing (tdd) or frequency-division duplexing (fdd) |
US11381267B1 (en) * | 2020-12-15 | 2022-07-05 | Silicon Laboratories Inc. | System, apparatus and method for cancelling tonal interference in an orthogonal frequency division multiplexing (OFDM) receiver |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05218890A (ja) * | 1992-02-04 | 1993-08-27 | Nec Eng Ltd | 干渉波除去フィルタ付き受信装置 |
JPH09130770A (ja) * | 1995-10-31 | 1997-05-16 | Miharu Tsushin Kk | Catv用前置増幅器 |
JP2008187589A (ja) * | 2007-01-31 | 2008-08-14 | National Institute Of Information & Communication Technology | 無線端末装置 |
WO2009072306A1 (ja) * | 2007-12-07 | 2009-06-11 | Panasonic Corporation | ダイバーシティ受信装置及びダイバーシティ受信方法 |
JP2011023870A (ja) * | 2009-07-14 | 2011-02-03 | Sharp Corp | 電子チューナおよび受信機 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004201066A (ja) | 2002-12-19 | 2004-07-15 | Hitachi Kokusai Electric Inc | 受信装置 |
JP4238210B2 (ja) * | 2004-12-28 | 2009-03-18 | アルプス電気株式会社 | ダイバーシティ受信装置 |
JP2006319608A (ja) | 2005-05-12 | 2006-11-24 | Matsushita Electric Ind Co Ltd | ダイバーシティ型受信装置、ダイバーシティ型受信装置を用いた受信方法および受信プログラム、ダイバーシティ型受信装置を用いた受信プログラムを格納した記録媒体 |
JP2010045706A (ja) | 2008-08-18 | 2010-02-25 | Panasonic Corp | ダイバーシティ受信装置とこれを用いた電子機器 |
JP2010130630A (ja) | 2008-12-01 | 2010-06-10 | Sumitomo Electric Ind Ltd | 受信機とその受信方法及び処理装置 |
-
2014
- 2014-12-01 JP JP2015552397A patent/JP5988527B2/ja active Active
- 2014-12-01 WO PCT/JP2014/081730 patent/WO2015087731A1/ja active Application Filing
-
2016
- 2016-06-01 US US15/169,913 patent/US9461681B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05218890A (ja) * | 1992-02-04 | 1993-08-27 | Nec Eng Ltd | 干渉波除去フィルタ付き受信装置 |
JPH09130770A (ja) * | 1995-10-31 | 1997-05-16 | Miharu Tsushin Kk | Catv用前置増幅器 |
JP2008187589A (ja) * | 2007-01-31 | 2008-08-14 | National Institute Of Information & Communication Technology | 無線端末装置 |
WO2009072306A1 (ja) * | 2007-12-07 | 2009-06-11 | Panasonic Corporation | ダイバーシティ受信装置及びダイバーシティ受信方法 |
JP2011023870A (ja) * | 2009-07-14 | 2011-02-03 | Sharp Corp | 電子チューナおよび受信機 |
Also Published As
Publication number | Publication date |
---|---|
JP5988527B2 (ja) | 2016-09-07 |
JPWO2015087731A1 (ja) | 2017-03-16 |
US20160277050A1 (en) | 2016-09-22 |
US9461681B1 (en) | 2016-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5988527B2 (ja) | 受信装置 | |
JP5783251B2 (ja) | 受信装置及び受信方法 | |
JP4749501B2 (ja) | Ofdm受信装置 | |
US20040229581A1 (en) | Diversity receiver and diversity receiving method | |
US9118514B2 (en) | Receiver and signal processing method | |
JP2008236704A (ja) | 無線通信装置 | |
JP4211802B2 (ja) | Ofdm受信装置及びその自動利得制御回路 | |
JP2004135120A (ja) | ダイバーシティ受信装置及びダイバーシティ受信方法 | |
JP2007142832A (ja) | 軟判定値補正方法,受信装置,プログラム | |
JP2001127732A (ja) | 受信装置 | |
JP2011228875A (ja) | 受信装置、および、プログラム | |
JP2008167116A (ja) | 受信装置および方法、並びにプログラム | |
JP2010226153A (ja) | 回線状況推定器 | |
JPWO2007032550A1 (ja) | 受信振幅補正回路及び受信振幅補正方法並びにそれを用いた受信機 | |
JP5908444B2 (ja) | 受信装置 | |
JP4126005B2 (ja) | 無線通信システムの自動利得制御回路 | |
JP5161623B2 (ja) | 波高率の高い信号に適した自動利得制御回路 | |
JP2005236666A (ja) | Ofdm復調装置 | |
JP2007027879A (ja) | 受信装置および受信方法 | |
WO2014132310A1 (ja) | 受信装置および復調方法 | |
JP5086193B2 (ja) | デジタル無線の受信装置 | |
JP2003318679A (ja) | 受信装置及び通信装置 | |
JP5574531B2 (ja) | 無線機 | |
JP2021093615A (ja) | 無線通信装置および受信装置 | |
CN118868833A (zh) | 一种数字域自动增益控制方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14868891 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015552397 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14868891 Country of ref document: EP Kind code of ref document: A1 |