[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015085563A1 - 干扰协调方法、装置和系统 - Google Patents

干扰协调方法、装置和系统 Download PDF

Info

Publication number
WO2015085563A1
WO2015085563A1 PCT/CN2013/089331 CN2013089331W WO2015085563A1 WO 2015085563 A1 WO2015085563 A1 WO 2015085563A1 CN 2013089331 W CN2013089331 W CN 2013089331W WO 2015085563 A1 WO2015085563 A1 WO 2015085563A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
reference signal
uplink reference
management device
measurement value
Prior art date
Application number
PCT/CN2013/089331
Other languages
English (en)
French (fr)
Inventor
方志鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020167017764A priority Critical patent/KR101870275B1/ko
Priority to JP2016538654A priority patent/JP6263803B2/ja
Priority to CN201380003412.4A priority patent/CN103875219B/zh
Priority to PCT/CN2013/089331 priority patent/WO2015085563A1/zh
Priority to CA2932945A priority patent/CA2932945C/en
Priority to EP13898924.9A priority patent/EP3068179B1/en
Publication of WO2015085563A1 publication Critical patent/WO2015085563A1/zh
Priority to US15/179,634 priority patent/US10305649B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to interference coordination methods, apparatus, and systems. Background technique
  • LTE Long Term Evolution, Long term evolution
  • the OFDM Orthogonal Frequency Division Multiplexing
  • the LTE system has higher requirements on spectrum utilization. Therefore, the same-frequency networking method is introduced to improve spectrum utilization, but the problem of inter-cell interference is introduced. For example, if neighboring cells use the same spectrum resource in the overlapping area they cover, the overlapping area will produce severe ICI (Inter-Cell Interference). It can be seen that in the LTE communication system, the main interference affecting system performance comes from inter-cell interference.
  • Embodiments of the present invention provide an interference coordination method, apparatus, and system to reduce interference between cells.
  • a cell management apparatus configured to manage a first cell in a communication system, where the communication system includes a neighboring cell of the first cell and at least one of the first cells, and Each cell corresponds to a cell management device, the cell management device corresponding to the first cell is a first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is a second cell management device, where the device includes a first interface unit, configured to send configuration information of an uplink reference signal to the at least one second cell management device, where the configuration information is used to indicate a resource location where the uplink reference signal is located, so that at least one of the second cell management devices Each of the second cell management devices is configured to perform the first on the resource where the uplink reference signal is located according to the configuration information.
  • the uplink reference signal sent by the user equipment in the cell is measured to obtain a second measurement value, and the measurement unit is configured to send, according to the configuration information, the user equipment in the first cell on the resource where the uplink reference signal is located.
  • the uplink reference signal is measured to obtain a first measurement value;
  • the second interface unit is configured to send the first measurement value measured by the measurement unit to the interference coordination device, so that the interference coordination device is configured according to the first measurement
  • the value and the at least one of the second measurements coordinate downlink transmit power of the neighboring cells of the first cell and the at least one first cell.
  • the first interface unit is further configured to: receive the second measurement value that is sent by each second cell management device.
  • the second interface unit is further configured to: send the at least one second measurement value to the interference coordination device.
  • the method further includes: determining, by the interference determining unit, determining, according to the first measurement value and the at least one second measurement value, Interference information; the second interface unit is further configured to: send the interference information to the interference coordination device, so that the interference coordination device divides multiple cells in the communication system into at least one according to the interference information The cluster, the first cell and the neighboring cells of the at least one of the first cells belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the first measurement value includes receiving the uplink reference signal The reception quality RSRQ of the power RSRP or the uplink reference signal; and the second measurement value includes the received power RSRP of the uplink reference signal or the reception quality RSRQ of the uplink reference signal.
  • a cell management apparatus configured to manage a neighboring cell of a first cell in a communication system, where the communication system includes a neighboring cell of the first cell and at least one of the first cell a cell, and each cell corresponds to a cell management device, the cell management device corresponding to the first cell is a first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is a second cell management device,
  • the device includes: a first interface unit, configured to receive the first small The configuration information of the uplink reference signal sent by the area management device, the configuration information is used to indicate a resource location where the uplink reference signal is located, and the measurement unit is configured to use, according to the configuration information received by the first interface unit, Measure the uplink reference signal sent by the user equipment in the first cell by using the resource on which the uplink reference signal is located to obtain a second measurement value, where the second measurement value is used by the interference coordination device to coordinate the first cell and Downlink transmit power of at least one neighbor
  • the cell management apparatus further includes a second interface unit, where the second interface unit is configured to send the second measurement value to the interference Coordination device.
  • the first interface unit is further configured to send the second measurement value to the first cell management device, where the second measurement value is And being sent by the first cell management device to the interference coordination device, or the second measurement value is used by the first cell management device to determine interference information, so that the interference coordination device is configured according to the information And dividing a plurality of cells in the communication system into at least one cluster, where the first cell and the neighboring cells of the at least one of the first cells belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the second measurement value includes receiving the uplink reference signal Receive quality RSRQ of power RSRP or uplink reference signal.
  • a third aspect provides an interference coordination apparatus, configured to coordinate downlink transmit power of a plurality of cells in a communication system, where the multiple cells include a first cell and a neighboring cell of at least one of the first cells And each cell corresponds to one cell management device, the cell management device corresponding to the first cell is a first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is a second cell management device, where The device includes: an acquiring unit, configured to acquire a first measurement value and at least one second measurement value, where the first measurement value is that the first cell management device is in the first cell on a resource where an uplink reference signal is located The uplink reference signal sent by the user equipment At least one of the second measurement values obtained by the row measurement is that at least one of the second cell management devices measures an uplink reference signal sent by the user equipment in the first cell on a resource where the uplink reference signal is located. And a coordination unit, configured to coordinate downlink transmit power of the first cell and the neighboring cell of the at least one of the first cells according
  • the acquiring unit is specifically configured to: acquire the first measurement value and the at least one second measurement from a cell management device of the first cell And the acquiring unit is configured to: acquire the first measurement value from the cell management device of the first cell, and acquire at least one second measurement value from the at least one second cell management device.
  • the device further includes a receiving unit and a clustering unit, where the receiving unit is configured to receive the first Interference information sent by the cell management device of a cell; the clustering unit, configured to divide, according to the interference information received by the receiving unit, a plurality of cells in the communication system into at least one cluster, the first cell and at least The neighboring cells of one of the first cells belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the first measurement value includes receiving the uplink reference signal The reception quality RSRQ of the power RSRP or the uplink reference signal; and the second measurement value includes the received power RSRP of the uplink reference signal or the reception quality RSRQ of the uplink reference signal.
  • the fourth aspect provides an interference coordination system, where the system includes the first cell management apparatus according to any one of the foregoing first aspect or the first aspect, at least one of the foregoing second aspect or the second aspect.
  • the second cell management apparatus according to the implementation manner, and the interference coordination apparatus according to any one of the foregoing third or third aspect.
  • a fifth aspect provides an interference coordination method, where the method is applicable to a communication system, where the communication system includes a first cell and at least one neighboring cell of the first cell, and each cell corresponds to a cell management device, the cell management device corresponding to the first cell is a first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is a second cell management device, the method includes: The second cell management device sends configuration information of the uplink reference signal, where the configuration information is used to indicate a resource location where the uplink reference signal is located, so that each second cell management device is located at the uplink reference signal according to the configuration information.
  • the uplink reference signal sent by the user equipment is measured to obtain a first measurement value, and the measured first measurement value is sent to the interference coordination device, so that the interference coordination device is configured according to the first measurement value and at least one of the second Measuring a value of the downlink transmit function of the neighboring cell of the first cell and the at least one first cell rate.
  • the method further includes: receiving the second measurement value that is sent by each second cell management device.
  • the method further includes: transmitting, by the at least one of the second measurement values, the interference coordination device.
  • the method further includes: determining interference information according to the first measurement value and the at least one second measurement value; Transmitting the interference information to the interference coordination apparatus, so that the interference coordination apparatus divides, according to the information, a plurality of cells in the communication system into at least one cluster, the first cell and at least one The neighboring cells of the first cell belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the first measurement value includes receiving the uplink reference signal The reception quality RSRQ of the power RSRP or the uplink reference signal; and the second measurement value includes the received power RSRP of the uplink reference signal or the reception quality RSRQ of the uplink reference signal.
  • an interference coordination method is provided, where the method is applicable to a communication system,
  • the communication system includes a first cell and a neighboring cell of the at least one of the first cells, and each cell corresponds to a cell management device, and the cell management device corresponding to the first cell is a first cell management device, where the first The cell management device corresponding to the neighboring cell of the cell is the second cell management device, and the method includes: receiving configuration information of an uplink reference signal sent by the first cell management device, where the configuration information is used to indicate a resource where the uplink reference signal is located a second measurement value obtained by measuring an uplink reference signal sent by the user equipment in the first cell on the resource where the uplink reference signal is located, according to the received configuration information, where the second measurement value is determined by
  • the interference coordination device is configured to coordinate downlink transmit power of the first cell and the neighboring cell of the at least one of the first cells.
  • the method further includes: sending the second measurement value to the interference coordination device.
  • the method further includes: sending the second measurement value to the first cell management device, where the second measurement value is a cell management device is sent to the interference coordination device, or the second measurement value is used by the first cell management device to determine interference information, so that the interference coordination device is to be in the communication system according to the interference information.
  • the plurality of cells are divided into at least one cluster, and the first cell and the neighboring cells of the at least one of the first cells belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the second measurement value includes receiving the uplink reference signal Receive quality RSRQ of power RSRP or uplink reference signal.
  • a seventh aspect provides an interference coordination method, where the method is applicable to a communication system, where the communication system includes a first cell and at least one neighboring cell of the first cell, and each cell corresponds to one cell management device.
  • the cell management device corresponding to the first cell is a first cell management device
  • the cell management device corresponding to the neighboring cell of the first cell is a second cell management device
  • the method includes: acquiring a first measurement value and at least one a second measurement value, where the first measurement value is that the first cell management device is on the resource where the uplink reference signal is located, and the user equipment in the first cell
  • the at least one second measurement value is obtained by the at least one second measurement value sent by the at least one second cell management device to the user equipment in the first cell on the resource where the uplink reference signal is located
  • the acquiring the first measurement value and the at least one second measurement value including: acquiring the first measurement from a cell management device of the first cell And the at least one of the second measurement values; or acquiring the first measurement value from a cell management device of the first cell, and acquiring at least one of the second measurement values from at least one of the second cell management devices .
  • the method further includes: receiving interference information sent by the cell management apparatus of the first cell;
  • the interference information divides a plurality of cells in the communication system into at least one cluster, and the first cell and the neighboring cells of at least one of the first cells belong to the same cluster.
  • the uplink reference signal is a sounding reference signal
  • the resource where the uplink reference signal is located includes the uplink The time domain resource, frequency domain resource, or time-frequency resource where the reference signal is located.
  • the first measurement value includes receiving the uplink reference signal The reception quality RSRQ of the power RSRP or the uplink reference signal; and the second measurement value includes the received power RSRP of the uplink reference signal or the reception quality RSRQ of the uplink reference signal.
  • the embodiment of the present invention provides a cell management apparatus for managing a first cell, where the apparatus includes a first interface unit, configured to send configuration information of an uplink reference signal to the at least one second cell management apparatus, where the configuration information is used to indicate an uplink reference signal.
  • the location of the resource so that each second cell management device performs measurement on the uplink reference signal sent by the user equipment in the first cell on the resource where the uplink reference signal is located according to the configuration information to obtain a second measurement value;
  • the configuration information is used to measure the uplink reference signal sent by the user equipment in the first cell on the resource where the uplink reference signal is located, to obtain the first measurement value
  • the second interface unit is configured to send the first measurement value to the dry Disturbance coordination device.
  • the interference coordination device coordinates the downlink transmit power of the neighboring cells of the first cell and the at least one first cell according to the first measured value and the at least one second measured value. Therefore, the measurement value is obtained based on the uplink reference signal, and not only the interference of the neighboring cell to the edge UE of the local cell but also the interference of the neighboring cell to the non-edge UE of the local cell, and the measurement value based on the uplink reference signal is used to coordinate the cell.
  • the transmission power is issued to effectively reduce interference between cells.
  • FIG. 1 is a schematic block diagram of an interference coordination system according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a first cell management apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic block diagram of a second cell management apparatus according to an embodiment of the present invention
  • FIG. 4 is an interference coordination apparatus according to an embodiment of the present invention
  • Schematic block diagram
  • FIG. 5 is a schematic diagram of a communication network scenario applicable to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an interference coordination system deployment according to an embodiment of the present invention
  • FIG. 7 is a schematic block diagram of an interference coordination system deployment according to another embodiment of the present invention
  • FIG. 8 is a first cell according to another embodiment of the present invention
  • FIG. 9 is a schematic block diagram of a second cell management apparatus according to another embodiment of the present invention
  • FIG. 10 is a schematic block diagram of an interference coordination apparatus according to another embodiment of the present invention.
  • 11 is a flow chart of an interference coordination method according to an embodiment of the present invention.
  • Figure 12 is a flow chart of an interference coordination method in accordance with another embodiment of the present invention.
  • Figure 13 is a flow chart of an interference coordination method in accordance with another embodiment of the present invention.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE FDD Frequency Division Duplex
  • LTE TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • the UE may be referred to as a terminal, an MS (Mobile Station), a mobile terminal, or the like, and the user equipment may be a Radio Access Network (Radio Access Network).
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc.
  • the user device may also be portable, pocket, handheld, Computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
  • the base station may be a BTS (Base Transceiver Station) in GSM or CDMA, or an NB (NodeB, base station) in WCDMA or a BS (Base Station in UMTS), or an eNodeB in LTE.
  • BTS Base Transceiver Station
  • NB NodeB, base station
  • BS Base Station in UMTS
  • eNodeB eNodeB in LTE.
  • eNodeB evolved base station
  • connection between one component and another component may include wired and/or wireless connections.
  • the wired method may include, but is not limited to, a cable composed of various media such as an optical fiber, a conductive cable or a semiconductor line, or the like, or other forms such as an internal bus, a circuit, a backplane, and the like.
  • the wireless mode is a connection method capable of wireless communication, including but not limited to radio frequency, infrared, Bluetooth, and the like. There may be internal or external interfaces between the two components, which may be physical or logical interfaces.
  • the UE performs measurement reporting according to the measurement event configured on the network side, but each measurement event has its entry condition, so that all UEs in the cell do not perform measurement reporting.
  • the entry condition of the A3 event is that the neighbor cell measurement result is higher than the preset threshold value of the serving cell measurement result.
  • the central UE in the cell will not satisfy this entry condition, so that measurement reporting will not be performed.
  • the network performance is estimated by using the downlink channel information, the central UE is actually ignored by the neighboring area. It can be seen that in the estimation process of network performance, the accuracy of network performance evaluation can be further improved, thereby more effectively reducing inter-cell interference and providing a communication system. Service performance.
  • the measurement result of the uplink RS (reference signal) of the cell is used instead of the measurement result of the downlink RS of the UE to estimate the network performance, thereby determining the downlink transmit power of each cell.
  • the uplink RS measurement has advantages in stability and measurement accuracy with respect to the downlink RS measurement, and the central UE of each cell can transmit the uplink reference signal, so the neighboring cell of the cell can measure the uplink reference signal, thereby
  • the neighboring cell of the cell can measure the uplink reference signal, thereby
  • the subsequent network performance estimation not only the interference of the neighboring cell to the edge UE of the local cell but also the interference of the neighboring cell to the non-edge UE (the central UE) of the local cell may be considered, and the cell is coordinated based on the uplink RS.
  • the transmission power is issued to effectively reduce interference between cells.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • FIG. 1 is a schematic block diagram of an interference coordination system in accordance with an embodiment of the present invention.
  • the interference coordination system 100 of Figure 1 is used to coordinate downlink transmit power of multiple cells to reduce interference between cells.
  • the plurality of cells are included in the first cell and the neighboring cell of the first cell.
  • the first cell may be any one of the multiple cells, and the neighboring cells may be one or more.
  • the embodiment of the invention does not impose any limitation.
  • Each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is the first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is the second cell management device. It should be noted that, in the embodiment of the present invention, each cell management device may correspond to one or more cells.
  • the above interference coordination system 100 includes a plurality of cell management devices and interference coordination devices 103 with a plurality of cell management devices. Each management unit is configured to manage one of the plurality of cells above.
  • the first cell management apparatus 101 is shown, and at least one second cell management apparatus 102 corresponding to the neighboring areas of at least one first cell respectively.
  • the first cell management device 101 sends the configuration information of the uplink reference signal to the at least one second cell management device 102, where the configuration information is used to indicate the resource location where the uplink reference signal is located, and the resource in the first cell is located on the resource where the uplink reference signal is located.
  • the uplink reference signal sent by the UE is measured to obtain a first measurement value.
  • Each second cell management device 102 measures the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located to obtain a second measurement value.
  • the interference coordination device 103 coordinates the downlink transmission power of the neighboring cells of the first cell and the at least one first cell according to the first measurement value and the at least one second measurement value.
  • each cell management device obtains the measurement value based on the uplink reference signal sent by the UE, and can consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the cell, and the interference.
  • the coordinating device coordinates the issued transmit power between the cells by the measured values obtained based on the uplink reference signal, thereby effectively reducing inter-cell interference.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management device may separately send the respective measurement values to the interference coordination device 103, or may be uniformly sent to a certain cell management device (for example, the first cell management device), and then the cell management device. It is sent to the interference coordination device 103. Further, the measurement value sent to the interference coordination device 103 may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management apparatus may transmit the respective measurement values to the first cell management apparatus 101, process it by the first cell management apparatus 101, and transmit it to the interference coordination apparatus 103.
  • the interference coordination apparatus 103 can coordinate the downlink transmit power according to the measured value of each UE.
  • the interference coordinating device 103 may need to sort the measured values by itself, so that the modulation coding scheme (MCS) is calculated by inputting all the measured values of a certain UE.
  • MCS modulation coding scheme
  • the scheduling priority is thus determined to determine the optimal transmit power.
  • the embodiment of the present invention does not limit the manner in which each cell management device reports the measurement value, and may report it to the interference coordination device, or may report it to the interference coordination device through a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • system 100 can further expand its functionality.
  • each second cell management device 102 may be configured to send a second measurement value to the first cell management device, where the first cell management device may be configured to receive the second cell management device 102 Second measured value. Further, the first cell management device 101 transmits at least one second measurement value to the interference coordination device 103. The received second measurement value may be sent to the interference coordination device 103 according to the UE. The interference coordination device 103 further measures all the UEs The magnitude is the input and the MCS is calculated to determine the scheduling priority to determine the optimal transmit power.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring area can measure the corresponding resource.
  • the uplink reference signal sent by the UE is not limited to the uplink reference signal.
  • the measured values reported by the first cell management device may be schematically as shown in the following table:
  • the first cell management apparatus 101 may further determine interference information according to the first measurement value and the at least one second measurement value, where the interference information may be an SNR (Signal to Noise Ratio) or an SIR (Signal to Interference Ratio)
  • the interference information is transmitted to the interference coordination device 103.
  • the interference coordination device 103 receives the interference information sent by the cell management device of the first cell, and divides the multiple cells in the communication system into at least one cluster according to the interference information, and the interference coordination device 103 can be used to coordinate the multi-cell in units of clusters. Transmitting power, power coordination of a certain cluster including a first cell and a neighboring cell of at least one first cell.
  • the uplink RS may be an uplink SRS (Sounding Reference Signal)
  • the reference signal may be other uplink RSs.
  • the measured value may be RSRP (Reference Signal Receiving Power) and/or RSRQ (Reference Signal Receiving Quality) of the uplink SRS.
  • the measurement is performed based on the uplink reference signal, and the stability and the measurement accuracy are higher than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • the SRS configuration information at the cell level is schematically shown in the following table:
  • the cell management device of the first cell acquires the neighboring cell list information (including the identifier of the cell or the identifier of the base station where the cell is located), and when the cell management device is located on the main control board of the base station, The cell management device of the cell may send the cell-level SRS configuration information to the cell management device of the neighboring cell through the x2 interface.
  • the UE-level SRS configuration information is schematically shown in the following table:
  • the cell management device of the first cell acquires the neighboring cell list information (including the identifier of the cell or the identifier of the base station where the cell is located).
  • the cell management device of the serving cell may pass The x2 interface sends user-level SRS configuration information to the cell management device in the neighboring cell.
  • the SRS configuration information of the UE in the serving cell is changed, the neighboring cell needs to be reconfigured.
  • the UE in the serving cell deletes (exits the connection), the neighboring cell needs to be notified to delete the SRS configuration information of the user equipment.
  • the cell management apparatus 200 is configured to manage a first cell in the communication system, where the communication system includes a first cell and a neighboring cell of the at least one first cell, and each cell corresponds to one cell management device, and the cell management corresponding to the first cell
  • the device is a first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is Two cell management device. It should be understood that each cell management device may correspond to one or more cells, which is not limited by the embodiment of the present invention.
  • the cell management apparatus 200 of Fig. 2 is an example of the first cell management apparatus in the above-described interference coordination system, and a repetitive description will be omitted as appropriate.
  • the apparatus 200 includes a first interface unit 201, a measurement unit 202, and a second interface unit 203.
  • the first interface unit 201 is configured to send configuration information of an uplink reference signal to the at least one second cell management apparatus, where the configuration information is used to indicate a resource location where the uplink reference signal is located, so that each second of the at least one second cell management apparatus
  • the cell management device performs measurement on the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located according to the configuration information to obtain a second measurement value.
  • the measuring unit 202 is configured to measure, according to the configuration information, the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located, to obtain the first measurement value.
  • the second interface unit 203 is configured to send the first measurement value measured by the measurement unit 202 to the interference coordination device, so that the interference coordination device coordinates the first cell and the at least one first cell according to the first measurement value and the at least one second measurement value.
  • the downlink transmit power of the neighboring area.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device may send the respective measurement values to the first interface unit 201, process it by the measurement unit 202, and send it to the interference coordination device.
  • the interference coordination device For example, after the first cell management device sorts by the UE, it is sent to the interference coordination device, so that the interference coordination device can coordinate the downlink transmission power according to the measured value of each UE.
  • the interference coordination device it is also possible not to be processed by the measuring unit 202, and then the interference coordination device itself needs to sort the measured values, thereby using all of the UEs.
  • the measured value is the input, and the MCS is calculated to determine the scheduling priority to determine the optimal transmit power.
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the first interface unit 201 is further configured to receive a second measurement value sent by each second cell management device. Further, the second interface unit is further configured to send the at least one second measurement value received by the first interface unit 201 to the interference coordination device.
  • the first cell management apparatus further includes an interference determining unit 204, and the interference determining unit 204 is configured to determine interference information according to the first measured value and the at least one second measured value, where the interference information may be SNR, SIR, or the like.
  • the second interface unit 203 is further configured to send the interference information to the interference coordination device, so that the interference coordination device divides the multiple cells in the communication system into at least one cluster according to the interference information, and the neighboring region of the first cell and the at least one first cell Belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • FIG. 3 is a schematic block diagram of a cell management apparatus according to an embodiment of the present invention.
  • the cell management device 300 is for managing a neighboring cell of a first cell in a communication system.
  • the cell management apparatus 300 of Fig. 3 is an example of the second cell management apparatus in the above-described interference coordination system, and a repetitive description will be omitted as appropriate.
  • the apparatus 300 includes a first interface unit 301 and a measurement unit 302.
  • the communication system includes a first cell and a neighboring cell of the at least one first cell, and each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is a first cell management device, and the neighboring cell of the first cell corresponds to The cell management device is a second cell management device. It should be understood that each cell management device may correspond to one or more cells, which is not limited in this embodiment of the present invention.
  • the first interface unit 301 is configured to receive configuration information of an uplink reference signal sent by the first cell management device, where the configuration information is used to indicate a resource location where the uplink reference signal is located.
  • the measuring unit 302 is configured to perform uplink reference according to the configuration information received by the first interface unit 301. Measure the uplink reference signal sent by the UE in the first cell to obtain a second measurement value, where the second measurement value is used by the interference coordination device to coordinate the neighboring cell of the first cell and the at least one first cell. Downlink transmit power.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • the embodiment of the present invention does not limit the manner in which each d and the area management device reports the measured value, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the cell management apparatus 300 may further include a second interface unit 302, where the second interface unit 302 is configured to send the second measurement value to the interference coordination apparatus.
  • the first interface unit 301 is further configured to send the second measurement value to the first cell management device, where the second measurement value is sent by the first cell management device to the interference coordinated transposition.
  • the second measurement value is used by the first cell management apparatus to determine interference information, so that the interference coordination apparatus divides the multiple cells in the communication system into at least one cluster according to the interference information, the first cell and the at least one first cell. Neighbors belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring area can measure the corresponding resource.
  • the interference coordination device 400 is configured to coordinate downlink transmit power of multiple cells in a communication system, where multiple cells include a first cell and a neighboring cell of at least one first cell, and each cell corresponds to one cell management device
  • the cell management device corresponding to the first cell is the first cell management device
  • the cell management device corresponding to the neighboring cell of the first cell is the second cell management device. It should be understood that each cell management device may correspond to one or more cells, which is not limited by the embodiment of the present invention.
  • the interference coordination device 400 is an example of the interference coordination device in the above interference coordination system, and the repeated description will be appropriately omitted.
  • the apparatus 400 includes an acquisition unit 401 and a coordination unit 402.
  • the obtaining unit 401 is configured to obtain the first measurement value and the at least one second measurement value, where the first measurement value is an uplink reference signal sent by the first cell management apparatus to the UE in the first cell on the resource where the uplink reference signal is located.
  • the measured at least one second measurement value is obtained by the at least one second cell management device measuring the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located.
  • the coordinating unit 402 is configured to coordinate the downlink transmit power of the neighboring cells of the first cell and the at least one first cell according to the first measured value and the at least one second measured value.
  • each cell management device obtains the measurement value based on the uplink reference signal sent by the UE, and can consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the cell, and the interference.
  • the coordinating device coordinates the issued transmit power between the cells by the measured values obtained based on the uplink reference signal, thereby effectively reducing inter-cell interference.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the obtaining unit 401 may be specifically configured to acquire the first measurement from the first cell management device. And a value of at least one second measurement. Or the obtaining unit 401 is specifically configured to acquire the first measurement value from the first cell management device, and acquire the at least one second measurement value from the at least one second cell management device.
  • the apparatus 400 may further include a receiving unit 403 and a clustering unit 404.
  • the receiving unit 403 is configured to receive interference information sent by the first cell management device. Interference information includes, but is not limited to, SNR or SI.
  • the clustering unit 404 is configured to divide the plurality of cells in the communication system into at least one cluster according to the interference information received by the receiving unit 403, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • each base station of the communication network is interconnected with a coordinator, and the first cell management device and the at least one second cell management device are respectively located at respective base stations of the communication network.
  • the interference coordination device is located in the coordinator.
  • the base stations are connected through an x2 interface, that is, information is exchanged through the x2 interface.
  • the baseband processing unit BBUs of the base stations of the communication network are centrally placed (Cloud BB)
  • the first cell management device and the at least one second cell management device are respectively located in the centrally placed BBUs
  • the interference coordination devices are located in the centrally placed BBUs.
  • a BBU (first BBU).
  • the BBUs are connected through an interconnection interface.
  • the distributed base station is interconnected with the ECO through an IP backhaul line (Backhaul), and the cell management device of each cell is located in a base station corresponding to the cell.
  • Interference coordination devices are deployed in the ECO.
  • clustering units can be deployed in the ECO.
  • the downlink transmit power also referred to as CSPC scheduling
  • the two cell clusters are respectively small cells of the cell cluster 1 and a small part of the cell cluster 2 Area.
  • the BBUs of the base stations in the network are placed in a centralized manner and interconnected with the USU (Universal Switching Unit), and connected to the RRU through the optical fibers.
  • the cell management device of each cell is located in a BBU corresponding to the cell.
  • a BBU deployment interference coordination device is selected in the Cloud BB.
  • a clustering unit can be deployed in the BBU.
  • the scenario in Cloud BB also shows two cell clusters, which are cell cluster 3 and partial cells of cell cluster 2. That is to say, each cell in the cell cluster 2 can perform CSPC scheduling by the ECO and the BBU.
  • ECO can achieve large-scale (greater than a certain coverage area or number of cells), slow (such as 20ms-40ms) centralized scheduling, Cloud BB can achieve small-range, fast (such as lms-5ms) centralized scheduling.
  • the first cell and the neighboring cell of the first cell described in the embodiments of the present invention all belong to the same cluster.
  • the scenario diagram of FIG. 5 is only schematic.
  • the number of cells clustered, the number of cells included in each cluster, the number of base stations, the number of cells under one base station, and the number of BBUs are not
  • the type of the base station may be a macro base station, a micro base station, a pico base station, a femto base station, or a home base station, which is not limited in this embodiment of the present invention.
  • a schematic diagram of the interference coordination system is shown in Fig. 6, in which the ECO includes interference coordination means.
  • Each distributed base station is deployed with a cell management device.
  • the serving base stations of different cells may be the same or different.
  • the cell management device in the figure is deployed on the main control board.
  • the functions implemented by each unit in the cell management device are only a logical function division, and may be combined or integrated into one physical entity in actual implementation. They can be physically separate and distributed across different network devices or different locations on the same network device.
  • the cell management device may be deployed on the baseband board of the base station, or the units including the different functions included in the cell management device may be distributed at different locations of the base station.
  • the serving cell of a certain UE is the first cell
  • the serving base station of the first cell is the base station 1
  • the first cell has (M-1) neighboring cells
  • M is an integer greater than or equal to 2
  • the serving base stations of the neighboring cells are the base station 2, the base station 3, and the base station M, respectively.
  • the UE may be an edge UE or a non-edge UE.
  • the uplink RS is the above SRS as an example, and the present invention is not limited thereto.
  • the first cell management device 601-1 may be configured to measure the uplink RS of a certain UE in the local cell to obtain the first measurement value, and respectively correspond to the (M-1) neighboring cells through the x2 interface (M- 1)
  • the second cell management apparatus transmits uplink SRS configuration information of the UE.
  • the uplink SRS configuration information may include the SRS configuration information of the cell level and the SRS configuration information of the UE level, where the SRS configuration information of the cell level indicates the resources that all UEs of the first cell can use to send the uplink RS.
  • the user-level SRS configuration information indicates the resources used by a certain UE to send uplink RSs. Specifically, it may be a time domain resource or a frequency domain resource or a time-frequency resource.
  • Each of the second cell management apparatuses is configured to measure the uplink SRS sent by the UE on the corresponding resource according to the uplink SRS configuration information, and obtain the second measurement value (such as the RSRP of the uplink SRS), or may be sent to the first through the x2 interface.
  • the cell management device 601-1 is directly sent to the interference coordination device.
  • the first cell management device 601-1 is further configured to determine the interference information according to the first measurement value and the (M-1) second measurement values, and send the interference information to the interference coordination device 602.
  • the interference coordination device 602 is configured to determine downlink transmit power of the M cells according to the first measurement value and the M-1 second measurement values, and can also be used to cluster multiple cells in the communication system according to the interference information.
  • the schematic diagram of the interference coordination system is as shown in FIG. 7.
  • a certain BBU such as the baseband board of the BBU 1
  • the baseband may also be a dedicated baseband board
  • the interference coordination device 702 is deployed, and each BBU is deployed with a cell management device. Information exchange between the BBUs can be performed through the interconnection interface.
  • the interference coordination device 702 may be located on a common baseband board or a dedicated baseband board of the first BBU, and the cell management apparatus may be deployed on the main control board of the BBU or a common baseband board or a dedicated baseband board.
  • the serving base stations of different cells may be the same or different, that is, the BBUs of different cells may be the same or different.
  • the functions implemented by each unit in the cell management device are only one logical function division, and may be combined or integrated into one physical entity in actual implementation, or may be physically separated, distributed in different network devices or the same network device. In different locations.
  • the uplink RS configuration information may be exchanged by the base station or the main control board of the BBU, and the uplink RS of the UE may be measured by the baseband or the baseband board of the BBU.
  • the embodiments of the present invention are not limited thereto. Similarly, the specific embodiment may refer to the example in FIG. 6, and details are not described herein again.
  • the interface unit (including the first interface unit and the second interface) in the above embodiment may be an interface circuit.
  • the measuring unit may be a separately set processor, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by one of the base stations and executes the above. Track the function of the task creation unit.
  • the implementation of the interference determination unit, the acquisition unit, the clustering unit, and the coordination unit is the same as the selection unit.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • FIG. 8 is a schematic structural diagram of a cell management apparatus according to another embodiment of the present invention, the cell management The device 800 is used for the first cell in the communication system, and the communication system includes a first cell and a neighboring cell of the at least one first cell, and each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is A cell management device, the cell management device corresponding to the neighboring cell of the first cell is the second cell management device. It should be understood that each cell management device may correspond to one or more cells, which is not limited by the embodiment of the present invention.
  • the cell management apparatus 800 of FIG. 8 is an example of a cell management apparatus of the first cell in the interference coordination system, and includes a processor 801, a memory 802, and an interface circuit 803.
  • the processor 801 controls the operation of the device 800, which may be a CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • Memory 802 can include read only memory and random access memory and provides instructions and data to processor 801. Portions of memory 802 may also include non-volatile line random access memory.
  • the processor 801, the memory 802 and the interface circuit 803 are coupled together by a bus system 810, wherein the bus system 810 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 810 in the figure.
  • the functions involved in the centralized controller in the system for coordinating load balancing according to the embodiment of the present invention described above can be implemented by using the centralized controller 800 described above.
  • the processor 801 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in the form of software.
  • the processor 801 described above may be a general-purpose processor, including a CPU or an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor can be a microprocessor or the processor can be any conventional processor or the like.
  • the interface circuit 803 is configured to send, by the at least one second cell management device, configuration information of the uplink reference signal, where the configuration information is used to indicate a resource location where the uplink reference signal is located, such that each of the at least one second cell management device
  • the second cell management device performs measurement on the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located according to the configuration information to obtain a second measurement value.
  • the processor 801 is configured to measure, according to the configuration information, an uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located, to obtain a first measurement value.
  • the interface circuit 803 is further configured to send the first measurement value to the interference coordination device, so that the interference coordination device coordinates the downlink transmit power of the neighboring cell of the first cell and the at least one first cell according to the first measurement value and the at least one second measurement value.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device can transmit its respective measured value to the interface circuit 803, which is processed by the processor 801 and sent to the interference coordination device.
  • the first cell management apparatus sorts the UEs, it sends the interference to the interference coordination apparatus, so that the interference coordination apparatus can coordinate the downlink transmission power according to the measured value of each UE.
  • the processor may not be processed by the processor 801, and the interference coordination device itself needs to sort the measured values, so that the MCS is calculated by inputting all the measured values of a certain UE, thereby determining the scheduling priority to determine the optimal transmit power. .
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the interface circuit 803 is further configured to receive the second measurement value sent by each second cell management device. Further, the second interface unit is further configured to send the at least one second measurement value received by the interface circuit 803 to the interference coordination device.
  • the processor 801 is further configured to determine interference information according to the first measurement value and the at least one second measurement value, where the interference information may be SNR, SIR, or the like.
  • the interface circuit 803 is further configured to send the interference information to the interference coordination device, so that the interference coordination device divides the multiple cells in the communication system into at least one cluster, the first cell and the at least one first cell. Neighbors belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value may be RSRP and/or RSRQ of the uplink SRS. The measurement is based on the uplink reference signal, and the stability and measurement accuracy are higher than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher and more effective. Ground to reduce interference between cells.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • FIG. 9 is a schematic structural diagram of a cell management apparatus for managing a neighboring cell of a first cell in a communication system, where the communication system includes a first cell and at least one first cell, according to another embodiment of the present invention;
  • the neighboring cell, and each cell corresponds to one cell management device, the cell management device corresponding to the first cell is the first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is the second cell management device.
  • each cell management device may correspond to one or more cells, which is not limited by the embodiment of the present invention.
  • the cell management apparatus 900 of FIG. 9 is an example of a second cell management apparatus in the above-described interference coordination system, and the apparatus 900 includes a processor 901, a memory 902, and an interface circuit 903.
  • the processor 901 controls the operation of the device 900, which may be a CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • Memory 902 can include read only memory and random access memory and provides instructions and data to processor 901. A portion of memory 902 may also include non-volatile row random access memory.
  • bus system 910 The processor 901, the memory 902 and the interface circuit 903 are coupled together by a bus system 910, wherein the bus system 910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus system 910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 910 in the figure.
  • the functions involved in the centralized controller in the system for coordinating load balancing according to the embodiment of the present invention described above can be implemented by using the centralized controller 900 described above.
  • the processor 901 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 901 or an instruction in the form of software.
  • the processor 901 described above may be a general-purpose processor, including a CPU or an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor can be a microprocessor or the processor can be any conventional processor or the like.
  • the interface circuit 903 is configured to receive configuration information of an uplink reference signal sent by the first cell management device, where the configuration information is used to indicate a resource location where the uplink reference signal is located.
  • the processor 901 is configured to measure, according to the configuration information received by the interface circuit 903, the uplink reference signal sent by the UE in the first cell to obtain a second measurement value, where the uplink reference signal is located, The second measurement value is used by the interference coordination device to coordinate downlink transmit power of the first cell and the neighboring cell of the at least one first cell.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • the embodiment of the present invention does not limit the manner in which each d and the area management device reports the measured value, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the interface circuit 903 is further configured to send the second measurement value to the interference coordination device.
  • the interface circuit 903 is further configured to send the second measurement value to the first cell management device, where the second measurement value is sent by the first cell management device to the interference coordinated transposition, or The second measurement value is used by the first cell management apparatus to determine interference information, so that the interference coordination apparatus divides the multiple cells in the communication system into at least one cluster according to the interference information, and the neighboring area of the first cell and the at least one first cell Belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • 10 is a schematic structural diagram of an interference coordination apparatus for coordinating downlink transmission power of a plurality of cells in a communication system, where a plurality of cells include a first cell and a neighboring cell of the at least one first cell, and each cell corresponds to one cell management device, the cell management device corresponding to the first cell is the first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is the second cell Management device. It should be understood that each cell management device may correspond to one or more cells, which is not limited by the embodiment of the present invention.
  • the interference coordination apparatus 1000 of Fig. 10 is an example of an interference coordination apparatus in the above interference coordination system, and the apparatus 1000 includes a processor 1001, a memory 1002, an interface circuit 1003, and a transceiver.
  • the processor 1001 controls the operation of the device 1000, which may be a CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • Memory 1002 can include read only memory and random access memory and provides instructions and data to processor 1001. A portion of memory 1002 may also include non-volatile row random access memory.
  • bus system 1010 The processor 1001, the memory 1002, the interface circuit 1003 and the transceiver are coupled together by a bus system 1010, wherein the bus system 1010 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus system 1010 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1010 in the figure.
  • the functions involved in the centralized controller in the system for coordinating load balancing according to the embodiment of the present invention described above can be implemented by using the centralized controller 1000 described above.
  • the processor 1001 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in a form of software.
  • the processor 1001 may be a general-purpose processor, including a CPU or an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware group, a general-purpose processor, or a microprocessor. Or the processor can be any conventional processor or the like.
  • the processor 1001 is configured to obtain, by using the interface circuit 1003, a first measurement value and at least one second measurement value, where the first measurement value is that the first cell management device is on the resource where the uplink reference signal is located. And measuring, by the uplink reference signal sent by the UE in the cell, the at least one second measurement value is that the at least one second cell management device corresponding to the neighboring cells of the at least one first cell is on the resource where the uplink reference signal is located. The uplink reference signal sent by the UE in a cell is measured.
  • the processor 1001 is further configured to coordinate downlink transmit power of the neighboring cells of the first cell and the at least one first cell according to the first measured value and the at least one second measured value.
  • each cell management device obtains the measurement value based on the uplink reference signal sent by the UE, and can consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the cell, and the interference.
  • the coordinating device coordinates the issued transmit power between the cells by the measured values obtained based on the uplink reference signal, thereby effectively reducing inter-cell interference.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the processor 1001 is specifically configured to obtain, by using the interface circuit 1003, the first measurement value and the at least one second measurement value from the first cell management device.
  • the processor 1001 may be specifically configured to acquire the first measurement value from the first cell management device through the interface circuit 1003, and acquire the at least one second measurement value from the at least one second cell management device.
  • the transceiver 1004 is further configured to receive the interference information sent by the first cell management device.
  • Interference information includes, but is not limited to, SNR or SI.
  • the processor 1001 is configured to divide the plurality of cells in the communication system into at least one cluster according to the interference information received by the interface circuit 1003, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • FIG. 11 is a flow chart of an interference coordination method according to an embodiment of the present invention.
  • the method of Figure 11 can This is achieved by the above-described interference coordination system, and thus the repeated description is omitted as appropriate.
  • the method is applicable to a communication system, where the communication system includes a first cell and at least one neighboring cell of the first cell, and each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is a first cell management The device, the cell management device corresponding to the neighboring cell of the first cell is the second cell management device.
  • each cell management device may correspond to one or more cells.
  • the first cell management apparatus sends, to the at least one second cell management apparatus, configuration information of the uplink reference signal, where the configuration information is used to indicate a resource location where the uplink reference signal is located, and is in the first cell in the resource where the uplink reference signal is located.
  • the uplink reference signal sent by the UE is measured to obtain a first measurement value.
  • Each second cell management device measures, on a resource where the uplink reference signal is located, an uplink reference signal sent by the UE in the first cell to obtain a second measurement value.
  • the interference coordination device coordinates the downlink transmit power of the neighboring cell of the first cell and the at least one first cell according to the first measured value and the at least one second measured value.
  • each cell management device obtains the measurement value based on the uplink reference signal sent by the UE, and can consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the cell, and the interference.
  • the coordinating device coordinates the issued transmit power between the cells by the measured values obtained based on the uplink reference signal, thereby effectively reducing inter-cell interference.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device may send the respective measurement values to the first cell management device, process the first cell management device, and then send the interference to the interference coordination device. For example, after the first cell management device sorts by the UE, it is sent to the interference coordination device, so that the interference coordination device can coordinate the downlink transmission power according to the measured value of each UE.
  • the interference coordination device itself may need to sort the measured values, so that all the measured values of a certain UE are input, and the MCS is calculated, thereby determining the scheduling priority to determine the best. Transmit power.
  • the embodiment of the present invention does not limit the manner in which each cell management device reports the measured value. They may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • each second cell management device may send a second measurement value to the first cell management device, where the first cell management device may receive the second measurement value sent by each second cell management device. Further, the first cell management device transmits the at least one second measurement value to the interference coordination device. The received second measurement value may be collated by the UE and sent to the interference coordination device. The interference coordination device, in turn, inputs the MCS for all measurements of each UE to determine the scheduling priority to determine the optimal transmit power.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • the first cell management apparatus may further determine interference information according to the first measurement value and the at least one second measurement value, where the interference information may be SNR or SIR, etc., and send the interference information to interference coordination.
  • the interference coordination device receives the interference information sent by the cell management device of the first cell, and divides the multiple cells in the communication system into at least one cluster according to the interference information, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS. The measurement is based on the uplink reference signal, and the stability and measurement accuracy are higher than those based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of a plurality of BBUs that are placed in a centralized manner, and the interference coordination device is located in any one of the multiple BBUs, and the cell management device of each cell Located in the BBU corresponding to the cell.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of the distributed base station network, the communication system deploys a coordinator, each base station of the communication system is connected to the coordinator, and the interference coordination device is located in the coordinator. Or any base station of the communication system, the cell management device of each cell is located at a base station corresponding to the cell.
  • Figure 12 is a flow chart of an interference coordination method in accordance with one embodiment of the present invention.
  • the method of Fig. 12 can be implemented by the above-described first cell management apparatus, and thus the repeated description is omitted as appropriate.
  • the method is applicable to a communication system, the communication system comprising a first cell and at least one of the first The neighboring cell of the cell, and each cell corresponds to one cell management device, the cell management device corresponding to the first cell is the first cell management device, and the cell management device corresponding to the neighboring cell of the first cell is the second cell management device.
  • each cell management device may correspond to one or more cells.
  • the uplink reference signal sent by the UE in the first cell is measured on the resource where the uplink reference signal is located according to the configuration information, to obtain a first measurement value.
  • the measured first measurement value is sent to the interference coordination device, so that the interference coordination device coordinates the downlink transmit power of the neighboring cells of the first cell and the at least one first cell according to the first measurement value and the at least one second measurement value.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device may send the respective measurement values to the first cell management device, process the first cell management device, and then send the interference to the interference coordination device. For example, after the first cell management device sorts by the UE, it is sent to the interference coordination device, so that the interference coordination device can coordinate the downlink transmission power according to the measured value of each UE.
  • the interference coordination device itself may need to sort the measured values, so that all the measured values of a certain UE are input, and the MCS is calculated, thereby determining the scheduling priority to determine the best. Transmit power.
  • the embodiment of the present invention does not limit the manner in which each cell management device reports the measured value. They may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the second measurement value sent by each second cell management device may be received. Further, at least one second measurement value is sent to the interference coordination device. Or determining interference information according to the first measured value and the at least one second measured value, where the interference information may be SNR, SIR, or the like.
  • the interference information is transmitted to the interference coordination device, so that the interference coordination device divides the plurality of cells in the communication system into at least one cluster according to the interference information, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of a plurality of BBUs that are placed in a centralized manner, and the interference coordination device is located in any one of the multiple BBUs, and the cell management device of each cell Located in the BBU corresponding to the cell.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of the distributed base station network, the communication system deploys a coordinator, each base station of the communication system is connected to the coordinator, and the interference coordination device is located in the coordinator. Or any base station of the communication system, the cell management device of each cell is located at a base station corresponding to the cell.
  • Figure 13 is a flow diagram of an interference coordination method in accordance with one embodiment of the present invention.
  • the method of Fig. 13 can be implemented by the above-described second cell management apparatus, and thus the repeated description is omitted as appropriate.
  • the method is applicable to a communication system, where the communication system includes a first cell and at least one neighboring cell of the first cell, and each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is a first cell management device.
  • the device, the cell management device corresponding to the neighboring cell of the first cell is the second cell management device.
  • each cell management device may correspond to one or more cells.
  • the uplink reference signal sent by the UE in the first cell by using the resource where the uplink reference signal is located to obtain a second measurement value, where the second measurement value is used by the interference coordination device to coordinate Downlink transmit power of a cell and a neighboring cell of at least one first cell.
  • each cell management device obtains a measurement value based on the uplink reference signal sent by the UE, and may consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the local cell, so that The interference coordination apparatus coordinates the issuance transmission power between cells by the measurement value obtained based on the uplink reference signal, and can effectively reduce interference between cells.
  • the interference received by the non-edge UE is considered, the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device may transmit the respective measurement values to the first cell management device, process the first cell management device, and then send the interference to the interference coordination device.
  • the first cell management device sorts the UEs and then sends them to the interference coordination device, so that the interference coordination device can coordinate the downlink transmit power according to the measured value of each UE.
  • the interference coordination device itself may need to sort the measured values, so that all the measured values of a certain UE are input, and the MCS is calculated, thereby determining the scheduling priority to determine the best. Transmit power.
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the second measurement value may be sent to the interference coordination device.
  • the second measurement value is sent by the first cell management device to the interference coordination transposition, or the second measurement value is used by the first cell management device to determine the interference information. So that the interference coordinating device divides the plurality of cells in the communication system into at least one cluster according to the interference information, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiments of the present invention are not limited thereto.
  • the measured value may be RSRP and/or RSRQ of the uplink SRS. The measurement is performed based on the uplink reference signal, and the stability and the measurement accuracy are higher than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring cell can measure the uplink reference signal sent by the UE on the corresponding resource.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of a plurality of BBUs that are placed in a centralized manner, and the interference coordination device is located in any one of the multiple BBUs, and the cell management device of each cell Located in the BBU corresponding to the cell.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of the distributed base station network, the communication system deploys a coordinator, each base station of the communication system is connected to the coordinator, and the interference coordination device is located in the coordinator. Or any base station of the communication system, the cell management device of each cell is located at a base station corresponding to the cell.
  • FIG. 14 is a flow chart of an interference coordination method in accordance with an embodiment of the present invention.
  • the method of Fig. 13 can be realized by the above-described interference coordination means, and thus the repeated description is omitted as appropriate.
  • the method is applicable to a communication system, where the communication system includes a first cell and at least one neighboring cell of the first cell, and each cell corresponds to one cell management device, and the cell management device corresponding to the first cell is a first cell management device.
  • the device, the cell management device corresponding to the neighboring cell of the first cell is the second cell management device.
  • each cell management device may correspond to one or more cells.
  • the first measurement value is obtained by the first cell management device, and the uplink reference signal sent by the UE in the first cell is measured on the resource where the uplink reference signal is located.
  • the at least one second measurement value is obtained by the at least one second cell management device measuring the uplink reference signal sent by the UE in the first cell on the resource where the uplink reference signal is located.
  • Coordinate downlink transmit power of a neighboring cell of the first cell and the at least one first cell according to the first measured value and the at least one second measured value.
  • each cell management device obtains the measurement value based on the uplink reference signal sent by the UE, and can consider not only the interference of the neighboring cell to the edge UE of the local cell, but also the interference of the neighboring cell to the non-edge UE of the cell, and the interference.
  • Coordination device obtained by based on the uplink reference signal The measured values are used to coordinate the issuance of transmit power between cells, effectively reducing interference between cells.
  • the throughput gain of the weakly interfered UE in the cell and the near point can be improved, thereby improving the network capacity.
  • each cell management apparatus may separately send the respective measurement values to the interference coordination apparatus, or may be uniformly sent to a certain cell management apparatus (for example, the first cell management apparatus), and then sent by the cell management apparatus.
  • Interference coordination device may be an unprocessed value or a pre-processed value, such as a filtered value.
  • each cell management device may transmit the respective measurement values to the first cell management device, process the first cell management device, and then send the interference to the interference coordination device.
  • the first cell management device sorts the UEs and then sends them to the interference coordination device, so that the interference coordination device can coordinate the downlink transmit power according to the measured value of each UE.
  • the interference coordination device itself may need to sort the measured values, so that all the measured values of a certain UE are input, and the MCS is calculated, thereby determining the scheduling priority to determine the best. Transmit power.
  • the embodiment of the present invention does not limit the manner in which the measurement information is reported by each cell management device, and may be reported to the interference coordination device, or may be reported to the interference coordination device by a certain cell management device. In addition, it does not limit whether the reported measured values are processed.
  • the first measurement value and the at least one second measurement value may be obtained from the first cell management device. Or acquiring the first measurement value from the first cell management device, and acquiring the at least one second measurement value from the at least one second cell management device.
  • the interference information sent by the first cell management device may be received.
  • Interference information includes, but is not limited to, SNR or SI.
  • the plurality of cells in the communication system are divided into at least one cluster according to the received interference information, and the neighboring cells of the first cell and the at least one first cell belong to the same cluster.
  • the uplink RS may be an uplink SRS reference signal, or may be another uplink RS. It should be understood that the embodiment of the present invention is not limited thereto.
  • the measured value can be RSRP and/or RSRQ of the uplink SRS.
  • the measurement based on the uplink reference signal has higher stability and measurement accuracy than the measurement based on the downlink reference signal. Therefore, the accuracy of coordinating the transmission power of the multi-cell is higher, and the interference between cells is more effectively reduced.
  • the uplink reference signal configuration information may include a time domain resource, a frequency domain resource, or a time-frequency resource used by the UE to send the uplink reference signal.
  • the neighboring area can measure the corresponding resource.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of a plurality of BBUs that are placed in a centralized manner, and the interference coordination device is located in any one of the multiple BBUs, and the cell management device of each cell Located in the BBU corresponding to the cell.
  • the cell management device and the interference coordination device of each cell may be located in a communication system of the distributed base station network, the communication system deploys a coordinator, each base station of the communication system is connected to the coordinator, and the interference coordination device is located in the coordinator. Or any base station of the communication system, the cell management device of each cell is located at a base station corresponding to the cell.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or made as a standalone product When used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本发明实施例提供一种干扰协调方法、装置和系统,该装置包括:第一接口单元,用于向至少一个第二小区管理装置发送上行参考信号的配置信息,使得每个第二小区管理装置根据所述配置信息对所述第一小区内的用户设备发送的上行参考信号进行测量得到第二测量值;测量单元,用于根据所述配置信息对所述第一小区内的用户设备发送的上行参考信号进行测量,得到第一测量值;第二接口单元,用于将第一测量值发送给所述干扰协调装置,以便所述干扰协调装置协调所述第一小区和所述至少一个第一小区的邻区的下行发射功率。因此,干扰协调装置通过基于上行参考信号获得的测量值来协调小区间的发行发射功率,有效地降低小区间的干扰,还能够提升网络容量。

Description

干扰协调方法、 装置和系统 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及干扰协调方法、 装置和系统。 背景技术
随着移动通信与宽带无线接入技术的各自的发展, 两者的业务互相渗 透, 为了满足移动通信宽带化的需求并应对宽带通信移动化的挑战, 移动通 信技术引入了 LTE ( Long Term Evolution, 长期演进)通信系统。
在 LTE通信系统中, 由于采用了 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)技术, 使得各子信道之间正交, 从而较好的解 决了小区内干扰的问题。然而, LTE系统对频谱利用率有较高的要求, 因此, 引入了同频组网的方式来提高频谱利用率, 然而却引入了小区间干扰的问 题。 例如, 如果相邻小区在它们覆盖的重叠区域使用相同的频谱资源, 则该 重叠区域将产生严重的 ICI ( Inter-Cell Interference , 小区间干扰)。 可见, 在 LTE通信系统中, 影响系统性能的主要干扰来自小区间干扰。
因此, 如何降低小区间的干扰, 以提高系统的服务性能, 特别是小区边 缘区域的性能, 是 LTE系统亟待解决的重要问题。 发明内容
本发明实施例提供一种干扰协调方法、 装置和系统, 以降低小区间的干 扰。
第一方面, 提供了一种小区管理装置, 该小区管理装置用于管理通信系 统中的第一小区, 所述通信系统包括所述第一小区和至少一个所述第一小区 的邻区, 且每个小区对应于一个小区管理装置, 所述第一小区对应的小区管 理装置为第一小区管理装置, 所述第一小区的邻区对应的小区管理装置为第 二小区管理装置, 该装置包括第一接口单元, 用于向至少一个第二小区管理 装置发送上行参考信号的配置信息,所述配置信息用于指示所述上行参考信 号所在的资源位置,使得至少一个所述第二小区管理装置中的每个第二小区 管理装置根据所述配置信息,在所述上行参考信号所在的资源上对所述第一 小区内的用户设备发送的上行参考信号进行测量得到第二测量值; 测量单 元, 用于根据所述配置信息, 在所述上行参考信号所在的资源上对所述第一 小区内的用户设备发送的上行参考信号进行测量, 得到第一测量值; 第二接 口单元, 用于将所述测量单元测量得到的第一测量值发送给干扰协调装置, 以便所述干扰协调装置根据所述第一测量值和至少一个所述第二测量值协 调所述第一小区和所述至少一个第一小区的邻区的下行发射功率。
结合第一方面, 在第一方面的第一种实现方式中, 所述第一接口单元还 用于: 接收每个第二小区管理装置发送的所述第二测量值。
结合第一方面的第一种实现方式, 在第一方面的第二种实现方式中, 第 二接口单元还用于: 将至少一个所述第二测量值发送给所述干扰协调装置。
结合第一方面的第一种实现方式, 在第一方面的第三种实现方式中, 还 包括:干扰确定单元用于:根据所述第一测量值和至少一个所述第二测量值, 确定干扰信息; 所述第二接口单元还用于: 将所述干扰信息发送给所述干扰 协调装置, 以便所述干扰协调装置根据所述干扰信息将所述通信系统中的多 个小区分成至少一个簇, 所述第一小区和至少一个所述第一小区的邻区属于 同一个簇。
结合第一方面或第一方面的第一种至第三种实现方式中的任一种实现 方式, 在第一方面的第四种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第一方面或第一方面的第一种至第四种实现方式中的任一种实现 方式, 在第一方面的第五种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第一方面或第一方面的第一种至第五种实现方式中的任一种实现 方式, 在第一方面的第六种实现方式中, 所述第一测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ; 以及所述第二测量值 包括上行参考信号的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
第二方面, 提供了一种小区管理装置, 该小区管理装置用于管理通信系 统中的第一小区的邻区, 所述通信系统包括所述第一小区和至少一个所述第 一小区的邻区, 且每个小区对应于一个小区管理装置, 所述第一小区对应的 小区管理装置为第一小区管理装置,所述第一小区的邻区对应的小区管理装 置为第二小区管理装置, 该装置包括: 第一接口单元, 用于接收所述第一小 区管理装置发送的上行参考信号的配置信息,所述配置信息用于指示所述上 行参考信号所在的资源位置; 测量单元, 用于根据所述第一接口单元接收的 所述配置信息,在所述上行参考信号所在的资源上对所述第一小区内的用户 设备发送的上行参考信号进行测量得到第二测量值, 所述第二测量值由干扰 协调装置用于协调所述第一小区和至少一个所述第一小区的邻区的下行发 射功率。
结合第二方面, 在第二方面的第一种实现方式中, 所述小区管理装置还 包括第二接口单元, 所述第二接口单元, 用于将所述第二测量值发送给所述 干扰协调装置。
结合第二方面, 在第二方面的第二种实现方式中, 所述第一接口单元, 还用于将所述第二测量值发送给所述第一小区管理装置, 所述第二测量值由 所述第一小区管理装置发送给所述干扰协调装置,或者所述第二测量值由所 述第一小区管理装置用于确定干扰信息, 以便所述干扰协调装置根据所述干 4尤信息将所述通信系统中的多个小区分成至少一个簇, 所述第一小区和所述 至少一个所述第一小区的邻区属于同一个簇。
结合第二方面或第二方面的第一种至第二种实现方式中的任一种实现 方式, 在第二方面的第三种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第二方面或第二方面的第一种至第三种实现方式中的任一种实现 方式, 在第二方面的第四种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第二方面或第二方面的第一种至第四种实现方式中的任一种实现 方式, 在第二方面的第五种实现方式中, 所述第二测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
第三方面, 提供了一种干扰协调装置, 用于对通信系统中多个小区的下 行发射功率进行协调, 其中, 所述多个小区包括第一小区和至少一个所述第 一小区的邻区, 且每个小区对应于一个小区管理装置, 所述第一小区对应的 小区管理装置为第一小区管理装置,所述第一小区的邻区对应的小区管理装 置为第二小区管理装置, 该装置包括: 获取单元, 用于获取第一测量值和至 少一个第二测量值, 所述第一测量值是所述第一小区管理装置在上行参考信 号所在的资源上对所述第一小区内的用户设备发送的所述上行参考信号进 行测量得到的, 至少一个所述第二测量值是至少一个所述第二小区管理装置 在所述上行参考信号所在的资源上对所述第一小区内的用户设备发送的上 行参考信号进行测量得到的; 协调单元, 用于根据所述第一测量值和至少一 个所述第二测量值协调所述第一小区和至少一个所述第一小区的邻区的下 行发射功率。
结合第三方面, 在第三方面的第一种实现方式中, 所述获取单元具体用 于: 从所述第一小区的小区管理装置获取所述第一测量值和至少一个所述第 二测量值; 或者所述获取单元具体用于: 从所述第一小区的小区管理装置获 取所述第一测量值, 并从至少一个所述第二小区管理装置获取至少一个所述 第二测量值。
结合第三方面或第三方面的第一种实现方式,在第三方面的第二种实现 方式中, 所述装置还包括接收单元和分簇单元, 所述接收单元, 用于接收所 述第一小区的小区管理装置发送的干扰信息; 所述分簇单元, 用于根据所述 接收单元接收的所述干扰信息将通信系统中的多个小区分成至少一个簇, 所 述第一小区和至少一个所述第一小区的邻区属于同一个簇。
结合第三方面或第三方面的第一种至第二种实现方式中的任一种实现 方式, 在第三方面的第三种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第三方面或第三方面的第一种至第三种实现方式中的任一种实现 方式, 在第三方面的第四种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第三方面或第三方面的第一种至第四种实现方式中的任一种实现 方式, 在第三方面的第五种实现方式中, 所述第一测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ; 以及所述第二测量值 包括上行参考信号的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
第四方面, 提供了一种干扰协调系统, 该系统包括上述第一方面或第一 方面任一种实现方式所述的第一小区管理装置、至少一个上述第二方面或第 二方面任一种实现方式所述的第二小区管理装置和上述第三方面或第三方 面任一种实现方式所述的干扰协调装置。
第五方面, 提供了一种干扰协调方法, 该方法适用于通信系统中, 所述 通信系统包括第一小区和至少一个所述第一小区的邻区,且每个小区对应于 一个小区管理装置, 所述第一小区对应的小区管理装置为第一小区管理装 置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 该方法 包括: 向至少一个第二小区管理装置发送上行参考信号的配置信息, 所述配 置信息用于指示所述上行参考信号所在的资源位置,使得每个第二小区管理 装置根据所述配置信息,在所述上行参考信号所在的资源上对所述第一小区 内的用户设备发送的上行参考信号进行测量得到第二测量值; 根据所述配置 信息,在所述上行参考信号所在的资源上对所述第一小区内的用户设备发送 的上行参考信号进行测量, 得到第一测量值; 将测量得到的第一测量值发送 给干扰协调装置, 以便所述干扰协调装置根据所述第一测量值和至少一个所 述第二测量值协调所述第一小区和所述至少一个第一小区的邻区的下行发 射功率。
结合第五方面, 在第五方面的第一种实现方式中, 所述方法还包括: 接 收每个第二小区管理装置发送的所述第二测量值。
结合第五方面的第一种实现方式, 在第五方面的第二种实现方式中, 所 述方法还包括: 将至少一个所述第二测量值发送给所述干扰协调装置。
结合第五方面的第一种实现方式, 在第五方面的第三种实现方式中, 所 述方法还包括: 根据所述第一测量值和至少一个所述第二测量值, 确定干扰 信息; 将所述干扰信息发送给所述干扰协调装置, 以便所述干扰协调装置根 据所述干 4尤信息将所述通信系统中的多个小区分成至少一个簇,所述第一小 区和至少一个所述第一小区的邻区属于同一个簇。
结合第五方面或第五方面的第一种至第三种实现方式中的任一种实现 方式, 在第五方面的第四种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第五方面或第五方面的第一种至第四种实现方式中的任一种实现 方式, 在第五方面的第五种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第五方面或第五方面的第一种至第五种实现方式中的任一种实现 方式, 在第五方面的第六种实现方式中, 所述第一测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ; 以及所述第二测量值 包括上行参考信号的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
第六方面, 提供了一种干扰协调方法, 该方法适用于通信系统中, 所述 通信系统包括第一小区和至少一个所述第一小区的邻区,且每个小区对应于 一个小区管理装置, 所述第一小区对应的小区管理装置为第一小区管理装 置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 该方法 包括: 接收第一小区管理装置发送的上行参考信号的配置信息, 所述配置信 息用于指示所述上行参考信号所在的资源位置; 根据接收的所述配置信息, 在所述上行参考信号所在的资源上对所述第一小区内的用户设备发送的上 行参考信号进行测量得到第二测量值, 所述第二测量值由干扰协调装置用于 协调所述第一小区和至少一个所述第一小区的邻区的下行发射功率。
结合第六方面, 在第六方面的第一种实现方式中, 所述方法还包括: 将 所述第二测量值发送给所述干扰协调装置。
结合第六方面, 在第六方面的第二种实现方式中, 所述方法还包括: 将 所述第二测量值发送给所述第一小区管理装置, 所述第二测量值由所述第一 小区管理装置发送给所述干扰协调装置, 或者所述第二测量值由所述第一小 区管理装置用于确定干扰信息, 以便所述干扰协调装置根据所述干扰信息将 所述通信系统中的多个小区分成至少一个簇, 所述第一小区和所述至少一个 所述第一小区的邻区属于同一个簇。
结合第六方面或第六方面的第一种至第二种实现方式中的任一种实现 方式, 在第六方面的第三种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第六方面或第六方面的第一种至第三种实现方式中的任一种实现 方式, 在第六方面的第四种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第六方面或第六方面的第一种至第四种实现方式中的任一种实现 方式, 在第六方面的第五种实现方式中, 所述第二测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
第七方面, 提供了一种干扰协调方法, 该方法适用于通信系统中, 所述 通信系统包括第一小区和至少一个所述第一小区的邻区,且每个小区对应于 一个小区管理装置, 所述第一小区对应的小区管理装置为第一小区管理装 置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 该方法 包括: 获取第一测量值和至少一个第二测量值, 所述第一测量值是所述第一 小区管理装置在上行参考信号所在的资源上对所述第一小区内的用户设备 发送的所述上行参考信号进行测量得到的, 至少一个所述第二测量值是至少 一个所述第二小区管理装置在所述上行参考信号所在的资源上对所述第一 小区内的用户设备发送的上行参考信号进行测量得到的; 根据所述第一测量 值和至少一个所述第二测量值协调所述第一小区和至少一个所述第一小区 的邻区的下行发射功率。
结合第七方面, 在第七方面的第一种实现方式中, 所述获取第一测量值 和至少一个第二测量值, 包括: 从所述第一小区的小区管理装置获取所述第 一测量值和至少一个所述第二测量值; 或者从所述第一小区的小区管理装置 获取所述第一测量值, 并从至少一个所述第二小区管理装置获取至少一个所 述第二测量值。
结合第七方面或第七方面的第一种实现方式,在第七方面的第二种实现 方式中, 所述方法还包括: 接收所述第一小区的小区管理装置发送的干扰信 息; 根据接收的所述干扰信息将通信系统中的多个小区分成至少一个簇, 所 述第一小区和至少一个所述第一小区的邻区属于同一个簇。
结合第七方面或第七方面的第一种至第二种实现方式中的任一种实现 方式, 在第七方面的第三种实现方式中, 所述上行参考信号为探测参考信号
SRS。
结合第七方面或第七方面的第一种至第三种实现方式中的任一种实现 方式, 在第七方面的第四种实现方式中, 所述上行参考信号所在的资源包括 所述上行参考信号所在的时域资源、 频域资源或时频资源。
结合第七方面或第七方面的第一种至第四种实现方式中的任一种实现 方式, 在第七方面的第五种实现方式中, 所述第一测量值包括上行参考信号 的接收功率 RSRP或上行参考信号的接收质量 RSRQ; 以及所述第二测量值 包括上行参考信号的接收功率 RSRP或上行参考信号的接收质量 RSRQ。
本发明实施例提供了用于管理第一小区的小区管理装置, 该装置包括第 一接口单元用于向至少一个第二小区管理装置发送上行参考信号的配置信 息, 配置信息用于指示上行参考信号所在的资源位置, 使得每个第二小区管 理装置根据配置信息在上行参考信号所在的资源上对第一小区内的用户设 备发送的上行参考信号进行测量得到第二测量值; 测量单元用于根据配置信 息在上行参考信号所在的资源上对第一小区内的用户设备发送的上行参考 信号进行测量, 得到第一测量值; 第二接口单元用于将第一测量值发送给干 扰协调装置。 这样, 干扰协调装置根据第一测量值和至少一个第二测量值协 调第一小区和至少一个第一小区的邻区的下行发射功率。 因此, 基于上行参 考信号来获得测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可 以考虑到邻区对本小区的非边缘 UE的干扰, 基于上行参考信号获得的测量 值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的干扰协调系统的示意性框图;
图 2是本发明一个实施例的第一小区管理装置的示意性框图; 图 3是本发明一个实施例的第二小区管理装置的示意性框图; 图 4是本发明一个实施例的干扰协调装置的示意性框图;
图 5是可应用于本发明实施例的通信网络场景的示意图;
图 6是本发明一个实施例的干扰协调系统部署的示意性框图; 图 7是本发明另一个实施例的干扰协调系统部署的示意性框图; 图 8是本发明另一个实施例的第一小区管理装置的示意性框图; 图 9是本发明另一个实施例的第二小区管理装置的示意性框图; 图 10是本发明另一个实施例的干扰协调装置的示意性框图;
图 11是本发明一个实施例的干扰协调方法的流程图。
图 12是本发明另一个实施例的干扰协调方法的流程图。
图 13是本发明另一个实施例的干扰协调方法的流程图。
图 14是本发明另一个实施例的干扰协调方法的流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 应理解,本发明实施例的技术方案可以应用于各种通信系统,例如: GSM ( Global System for Mobile Communications, 全球移动通信) 系统、 CDMA ( Code Division Multiple Access ,码分多址)系统、 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址)系统、 GPRS ( General Packet Radio Service , 通用分组无线业务)、 LTE 系统、 LTE FDD ( Frequency Division Duplex, 频分双工) 系统、 LTE TDD ( Time Division Duplex, 时分双工)、 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统 ) 等。 应理解, 本发明对此并不限定。
在本发明实施例中, UE可称之为终端( Terminal )、 MS ( Mobile Station, 移动台)、 移动终端( Mobile Terminal )等, 该用户设备可以经 RAN ( Radio Access Network, 无线接入网)与一个或多个核心网进行通信, 例如, 用户 设备可以是移动电话(或称为 "蜂窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载 的移动装置, 它们与无线接入网交换语音和 /或数据。
基站可以是 GSM或 CDMA中的 BTS ( Base Transceiver Station,基站;), 也可以是 WCDMA中的 NB( NodeB ,基站)或者 UMTS中的 BS( Base Station, 基站;), 还可以是 LTE中的 eNodeB ( Evolutional Node B , 演进型基站;), 也 称为 eNB , 等等, 本发明并不限定。
在本发明实施例中,一个部件与另一部件之间(例如本发明的模块之间) 的连接,可包括有线和 /或无线方式的连接。有线方式可包括但不限于各种介 质构成的线缆, 如光纤、 导电线缆或半导体线路等; 或者包括其他形式, 如 内部总线、 电路、 背板等。 无线方式是能够实现无线通信的连接方式, 包括 但不限于射频、 红外线、 蓝牙等。 两个部件之间可存在内部或外部的接口, 所述接口可以是物理接口或逻辑接口。
目前, UE根据网络侧配置的测量事件进行测量上报, 但是每个测量事 件都有其进入条件, 从而导致小区中的所有 UE并非都会进行测量上报。 举 例而言, A3 事件的进入条件为邻小区测量结果高于服务小区测量结果的预 设门限值。 如此, 小区中的中心 UE将不会满足这个进入条件, 从而不会进 行测量上报。 如此, 在利用下行信道信息估计网络性能时, 实际上忽略了中 心 UE受到邻区的干尤。 可见, 在网络性能的估计过程中, 网络性能评估的 准确性可以进一步提高, 从而更加有效的降低小区间的干扰, 提供通信系统 的服务性能。
有鉴于此, 本发明以下实施例中, 利用小区上行 RS ( Reference Signal, 参考信号 ) 的测量结果代替 UE下行 RS的测量结果来估计网络性能, 从而 确定每个小区的下行发射功率。 上行 RS测量相对于下行 RS测量, 在稳定 性和测量精度上均有优势,且每个小区的中心 UE都可以发送上行参考信号, 因此该小区的邻区可以对该上行参考信号进行测量,从而在后续的网络性能 估计中, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 在下行上, 还可以 考虑到邻区对本小区的非边缘 UE (中心 UE )的干扰, 基于上行 RS来协调 小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由于考虑了非边 缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从 而提升网络容量。
下面结合附图, 论述利用上行 RS的测量结果进行干扰协调的实施例。 图 1是本发明一个实施例的干扰协调系统的示意性框图。 图 1的干扰协 调系统 100用于对多个小区的下行发射功率进行协调,以降低小区间的干扰。 为了论述方便, 令该多个小区包括第一小区和第一小区的邻区。 当然, 第一 小区可以是该多个小区中的任一小区, 其邻区可以为一个也可以为多个。 本 发明实施例不做任何限制。
每个小区对应于一个小区管理装置,第一小区对应的小区管理装置为第 一小区管理装置, 第一小区的邻区对应的小区管理装置为第二小区管理装 置。 应注意的是, 本发明实施例, 每个小区管理装置可以对应一个或多个小 区。
以上干扰协调系统 100包括多个小区管理装置以及与多个小区管理装置 干扰协调装置 103。 每个管理单元用于管理以上多个小区中的一个小区。 为 了便于描述, 图中示出了第一小区管理装置 101 , 至少一个第一小区的邻区 分别对应的至少一个第二小区管理装置 102。
第一小区管理装置 101向至少一个第二小区管理装置 102发送上行参考 信号的配置信息, 配置信息用于指示上行参考信号所在的资源位置, 在上行 参考信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测量, 得到第一测量值。
每个第二小区管理装置 102在上行参考信号所在的资源上对第一小区内 的 UE发送的上行参考信号进行测量得到第二测量值。 干扰协调装置 103根据第一测量值和至少一个第二测量值,协调第一小 区和至少一个第一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 干扰协调装置通过基于上行参考信号获得的 测量值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由 于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞 吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置 103, 也可以统一发送给某个小区管理装置(例如, 第一小区管理 装置), 而后由该小区管理装置发送给干扰协调装置 103。 另外, 发送给干扰 协调装置 103的测量值,可以是未经过处理的值,也可以是经过预处理的值, 例如经过滤波处理后的值。
此外,每个小区管理装置可以将各自的测量值发送给第一小区管理装置 101 , 由第一小区管理装置 101处理后发送给干扰协调装置 103。 例如, 由第 一小区管理装置 101按 UE进行整理后, 即针对特定 UE的所有测量值, 可 以包括某个边缘 UE的所有测量值或某个中心 UE的所有测量值, 再发送给 干扰协调装置 103, 如此干扰协调装置 103便可以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过第一小区管理装置处理, 那么干扰 协调装置 103 自己需要对测量值进行整理, 从而以某个 UE的全部测量值为 输入, 计算调制编码方案 (modulation coding scheme, MCS ), 从而确定调 度优先级, 以确定最佳发射功率。 总之, 本发明实施例不限制每个小区管理 装置上报测量值的方式, 可以各自上报给干扰协调装置, 也可以通过某个小 区管理装置上报给干扰协调装置。 另外, 也不限制上报的测量值是否经过处 理。
作为本发明的另一个实施例, 系统 100还可以进一步扩展其功能。
在可选的实施例中,每个第二小区管理装置 102可以用于向第一小区管 理装置发送第二测量值, 第一小区管理装置可以用于接收每个第二小区管理 装置 102发送的第二测量值。 进一步地, 第一小区管理装置 101将至少一个 第二测量值发送给干扰协调装置 103。 可以将接收到的第二测量值按 UE整 理后发送给干扰协调装置 103。 干扰协调装置 103进而以每个 UE的全部测 量值为输入, 计算 MCS , 从而确定调度优先级, 以确定最佳发射功率。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该
UE发送的上行参考信号。
具体地, 第一小区管理装置上报的测量值可以示意性地如下表所示:
Figure imgf000014_0001
可选地, 第一小区管理装置 101还可以根据第一测量值和至少一个第二 测量值确定干扰信息, 干扰信息可以是 SNR ( Signal to Noise Ratio, 信噪比) 或 SIR ( Signal to Interference Ratio, 信干比)等, 将该干扰信息发送给干扰 协调装置 103。 干扰协调装置 103接收第一小区的小区管理装发送的干扰信 息, 根据干扰信息将通信系统中的多个小区分成至少一个簇, 该干扰协调装 置 103可以用于以簇为单元来协调多小区的发射功率,对包括第一小区和至 少一个第一小区的邻区的某个簇进行功率协调。
可选地, 上行 RS可以为上行 SRS ( Sounding Reference Signal, 探测参 考信号)参考信号, 也可以是其它上行 RS , 应理解, 本发明实施例对此并 不限定。 另外, 测量值可以为上行 SRS的 RSRP ( Reference Signal Receiving Power,参考信号接收功率)和 /或 RSRQ ( Reference Signal Receiving Quality, 参考信号接收质量)。 基于上行参考信号来进行测量, 稳定性和测量精度均 高于基于下行参考信号的测量,因此,协调多小区的发射功率的准确度更高, 更有效地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
具体地, 小区级的 SRS配置信息示意性地如下列表格所示:
Figure imgf000015_0001
第一小区 (UE 的服务小区) 的小区管理装置获取邻区列表信息 (包括 小区的标识或所在基站的标识), 当小区管理装置位于基站的主控板时, 服 务小区的小区管理装置可以通过 x2接口将小区级 SRS配置信息发送给邻区 的小区管理装置。
UE级的 SRS配置信息示意性地如下列表格所示:
Figure imgf000016_0001
第一小区 (UE 的服务小区) 的小区管理装置获取邻区列表信息 (包括 小区的标识或所在基站的标识), 当小区管理装置位于基站的主控板时, 服 务小区的小区管理装置可以通过 x2接口将用户级 SRS配置信息发送给邻区 的小区管理装置。 当服务小区中 UE的 SRS配置信息发生改变时, 需要重新 给邻小区中进行配置, 服务小区中 UE删除(退出连接) 时, 也需要通知邻 小区中进行删除该用户设备的 SRS配置信息。
图 2是本发明一个实施例的小区管理装置的示意性框图。该小区管理装 置 200用于管理通信系统中的第一小区,通信系统包括第一小区和至少一个 第一小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区对应的小 区管理装置为第一小区管理装置, 第一小区的邻区对应的小区管理装置为第 二小区管理装置。 应理解, 每个小区管理装置可以对应一个或多个小区, 本 发明实施例对此并不限定。
图 2的小区管理装置 200是上述干扰协调系统中第一小区管理装置的一 个例子, 将适当省略重复的描述。 该装置 200包括第一接口单元 201、 测量 单元 202和第二接口单元 203。
第一接口单元 201用于向至少一个第二小区管理装置发送上行参考信号 的配置信息, 配置信息用于指示上行参考信号所在的资源位置, 使得至少一 个第二小区管理装置中的每个第二小区管理装置根据配置信息,在上行参考 信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测量得到第 二测量值。
测量单元 202用于根据配置信息,在上行参考信号所在的资源上对第一 小区内的 UE发送的上行参考信号进行测量, 得到第一测量值。
第二接口单元 203用于将测量单元 202测量得到的第一测量值发送给干 扰协调装置, 以便干扰协调装置根据第一测量值和至少一个第二测量值协调 第一小区和至少一个第一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外,每个小区管理装置可以将各自的测量值发送给第一接口单元 201 , 由测量单元 202处理后发送给干扰协调装置。 例如, 由第一小区管理装置按 UE进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可以根据每 个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过测量单元 202处 理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某个 UE的全部 测量值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳发射功率。 总之, 本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自 上报给干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地, 第一接口单元 201还可以用于接收每个第二小区管理装置发送 的第二测量值。 进一步地, 第二接口单元还用于将第一接口单元 201接收的 至少一个第二测量值发送给干扰协调装置。该第一小区管理装置还包括干扰 确定单元 204, 干扰确定单元 204用于根据第一测量值和至少一个第二测量 值, 确定干扰信息, 干扰信息可以是 SNR或 SIR等。 第二接口单元 203还 可以用于将干扰信息发送给干扰协调装置, 以便干扰协调装置根据干扰信息 将通信系统中的多个小区分成至少一个簇, 第一小区和至少一个第一小区的 邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
图 3是本发明一个实施例的小区管理装置的示意性框图。该小区管理装 置 300用于管理通信系统中第一小区的邻区。
图 3的小区管理装置 300是上述干扰协调系统中第二小区管理装置的一 个例子, 将适当省略重复的描述。 该装置 300包括第一接口单元 301和测量 单元 302。 通信系统包括第一小区和至少一个第一小区的邻区, 且每个小区 对应于一个小区管理装置, 第一小区对应的小区管理装置为第一小区管理装 置, 第一小区的邻区对应的小区管理装置为第二小区管理装置。 应理解, 每 个小区管理装置可以对应一个或多个小区, 本发明实施例对此并不限定。
第一接口单元 301用于接收第一小区管理装置发送的上行参考信号的配 置信息, 配置信息用于指示所述上行参考信号所在的资源位置。
测量单元 302用于根据第一接口单元 301接收的配置信息,在上行参考 信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测量得到第 二测量值, 所述第二测量值由干扰协调装置用于协调第一小区和至少一个第 一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
本发明实施例不限制每个 d、区管理装置上报测量值的方式, 可以各自上 报给干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另 外, 也不限制上报的测量值是否经过处理。
可选地, 在一种实现方式下, 小区管理装置 300还可以包括第二接口单 元 302, 第二接口单元 302用于将第二测量值发送给干扰协调装置。
可选地, 在另一种实现方式下, 第一接口单元 301还可以用于将第二测 量值发送给第一小区管理装置, 第二测量值由第一小区管理装置发送给干扰 协调转置, 或者第二测量值由所述第一小区管理装置用于确定干扰信息, 以 便干扰协调装置根据干扰信息将通信系统中的多个小区分成至少一个簇, 第 一小区和至少一个第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
图 4是本发明一个实施例的干扰协调装置的示意性框图。该干扰协调装 置 400用于对通信系统中多个小区的下行发射功率进行协调, 其中, 多个小 区包括第一小区和至少一个第一小区的邻区,且每个小区对应于一个小区管 理装置, 第一小区对应的小区管理装置为第一小区管理装置, 第一小区的邻 区对应的小区管理装置为第二小区管理装置。 应理解, 每个小区管理装置可 以对应一个或多个小区, 本发明实施例对此并不限定。
该干扰协调装置 400上述干扰协调系统中干扰协调装置的一个例子,将 适当省略重复的描述。 该装置 400包括获取单元 401和协调单元 402。
获取单元 401用于获取第一测量值和至少一个第二测量值, 第一测量值 是第一小区管理装置在上行参考信号所在的资源上对所述第一小区内的 UE 发送的上行参考信号进行测量得到的, 至少一个第二测量值是至少一个第二 小区管理装置在上行参考信号所在的资源上对第一小区内的 UE发送的上行 参考信号进行测量得到的。
协调单元 402用于根据第一测量值和至少一个第二测量值协调第一小区 和至少一个第一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 干扰协调装置通过基于上行参考信号获得的 测量值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由 于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞 吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
本发明实施例不限制每个小区管理装置上报测量值的方式,可以各自上 报给干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另 外, 也不限制上报的测量值是否经过处理。
可选地,获取单元 401可以具体用于从第一小区管理装置获取第一测量 值和至少一个第二测量值。或者获取单元 401可以具体用于从第一小区管理 装置获取第一测量值, 并从至少一个第二小区管理装置获取至少一个第二测 量值。
可选地, 装置 400还可以包括接收单元 403和分簇单元 404。 接收单元 403 用于接收第一小区管理装置发送的干扰信息。 干扰信息包括但不限于 SNR或 SI等。 分簇单元 404用于根据接收单元 403接收的干扰信息将通信 系统中的多个小区分成至少一个簇, 第一小区和至少一个第一小区的邻区属 于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
本发明实施例的技术方案可以应用于不同的场景, 下面示例性地描述了 本发明实施例可应用的场景图和系统的部署。
可选地, 当通信网络为分布式基站组网模式且部署协调器, 通信网络的 各个基站与协调器互连, 第一小区管理装置和至少一个第二小区管理装置分 别位于通信网络的各个基站、 干扰协调装置位于协调器。 可选地, 基站之间 通过 x2接口相连接, 即通过 x2接口交互信息。 或者当通信网络的各个基站 的基带处理单元 BBU集中放置(Cloud BB ), 第一小区管理装置和至少一个 第二小区管理装置分别位于集中放置的各个 BBU, 干扰协调装置位于集中 放置的 BBU中的某个 BBU (第一 BBU )。 可选地, BBU之间通过互联接口 相连接。
具体地,如图 5所示的网络场景,分布式基站通过 IP回程线路( Backhaul ) 与 ECO互联, 每个小区的小区管理装置位于与该小区对应的基站中。 ECO 中部署干扰协调装置, 可选地, 在 ECO 中可以部署分簇单元。 在该场景下 干扰协调装置协调的每个小区簇中多个小区间的下行发射功率 (也称为 CSPC调度),两个小区簇分别是小区簇 1的各个小区和小区簇 2中的部分小 区。 在另一种 Cloud BB的组网场景下, 将网络中基站的 BBU集中放置与 USU ( Universal Switching Unit, 通用交换单元 ) 互联, 并通过光纤与 RRU 连接。 每个小区的小区管理装置位于与该小区对应的 BBU。 在该 Cloud BB 中选择一个 BBU部署干扰协调装置, 可选地, 在该 BBU中可以部署分簇单 元。 在 Cloud BB的场景也示出两个小区簇, 分别是小区簇 3和小区簇 2的 部分小区。 也就是说, 小区簇 2中的各个小区可以由 ECO和 BBU共同进行 CSPC调度。 ECO可实现大范围(大于一定覆盖面积或小区数量)、慢速 (如 20ms-40ms ) 集中调度, Cloud BB可实现小范围、 快速 (如 lms-5ms )集中 调度。 本发明实施例描述的第一小区和第一小区的邻区都属于同一个簇。
应注意的是, 图 5的场景图仅仅是示意性的, 本发明实施例对小区分簇 的数目, 各个簇包括的小区数目、 基站的数目、 一个基站下的小区数目以及 BBU 的数目并不限定, 基站的类型可以是宏基站、 微基站、 微微基站、 毫 微微基站或家庭基站等, 本发明实施例对此也不作限定。
示例性地, 在协调器进行 CSPC调度的情况下, 干扰协调系统的示意图 如图 6所示, 在该图中, ECO包括干扰协调装置。 各个分布式基站部署有小 区管理装置。 需要说明的是, 不同小区的服务基站可以相同或不同。 还需要 说明的是图中的小区管理装置部署在主控板, 应理解, 小区管理装置中各个 单元实现的功能仅仅为一种逻辑功能划分, 实际实现时可以结合或者集成到 一个物理实体, 也可以是物理上分开的, 分布在不同的网络设备或同一网络 设备的不同位置中。 如小区管理装置可以部署在基站的基带板, 或者小区管 理装置包括的实现不同功能的单元分布在基站的不同位置。
为了方便理解, 这里将以不同小区对应的服务基站不同为例进行说明。 假设某个 UE的服务小区为第一小区, 第一小区的服务基站为基站 1 , 第一 小区具有(M-1 )个相邻小区, M为大于或等于 2的整数, (M-1 )个相邻小 区的服务基站分别是基站 2,基站 3, ... ... ,基站 M。 该 UE可以是边缘 UE, 也可以是非边缘 UE。 上行 RS以上行 SRS为例, 本发明对此并不限定。
第一小区管理装置 601-1可以用于测量本小区某个 UE的上行 RS获得 第一测量值,并通过 x2接口分别向与该(M-1 )个相邻小区——对应的(M-1 ) 个第二小区管理装置发送 UE的上行 SRS配置信息。 可选地, 该上行 SRS 配置信息可以包括小区级的 SRS配置信息和 UE级的 SRS配置信息, 小区 级的 SRS配置信息表示该第一小区的所有 UE发送上行 RS可采用的资源, 用户级的 SRS配置信息表示某个 UE发送上行 RS采用的资源。 具体地, 可 以是时域资源或频域资源或者时频资源。各个第二小区管理装置用于根据上 行 SRS配置信息在相应的资源上测量该 UE发送的上行 SRS获得第二测量 值(如上行 SRS的 RSRP ), 可选地, 可以通过 x2接口发送给第一小区管理 装置 601-1 , 或者直接发送给干扰协调装置。 第一小区管理装置 601-1还可 以用于根据第一测量值和(M-1 ) 个第二测量值确定干扰信息, 将干扰信息 发送给干扰协调装置 602。 干扰协调装置 602用于根据第一测量值和 M-1个 第二测量值确定这 M个小区的下行发射功率, 还可以用于根据干扰信息对 通信系统中的多个小区进行分簇。
示例性地,在 BBU进行 CSPC调度的情况下,如上述 Cloud BB的场景, 干扰协调系统的示意图如图 7所示, 在该图中, 某个 BBU, 如 BBU 1的基 带板, 可以是普通基带本也可以是专用基带板, 部署干扰协调装置 702, 各 个 BBU均部署有小区管理装置。 BBU之间可以通过互联接口进行信息交互。 可选地, 干扰协调装置 702可以均位于第一 BBU的普通基带板或专用基带 板, 小区管理装置可以部署在 BBU的主控板或普通基带板或专用基带板。
需要说明的是, 不同小区的服务基站可以相同或不同, 即不同小区的 BBU 可以相同或不同。 应理解, 小区管理装置中各个单元实现的功能仅仅 为一种逻辑功能划分, 实际实现时可以结合或者集成到一个物理实体, 也可 以是物理上分开的, 分布在不同的网络设备或同一网络设备的不同位置中。 例如,可以由基站或 BBU的主控板实现上行 RS配置信息的交互, 由基站或 BBU的基带板实现对 UE的上行 RS的测量。 应理解, 本发明实施例对此并 不限定。 类似地, 具体的实施例可以参考图 6的例子, 此处不再赘述。
需要说明的是, 以上实施例中的接口单元(包括第一接口单元和第二接 口)可以为接口电路。 测量单元可以为单独设立的处理器, 也可以集成在基 站的某一个处理器中实现, 此外, 也可以以程序代码的形式存储于基站的存 储器中, 由基站的某一个处理器调用并执行以上跟踪任务建立单元的功能。 干扰确定单元、 获取单元, 分簇单元和协调单元的实现同选择单元。 这里所 述的处理器可以是一个中央处理器(Central Processing Unit, CPU ), 或者是 特定集成电路 ( Application Specific Integrated Circuit, ASIC ), 或者是被配 置成实施本发明实施例的一个或多个集成电路。
图 8是本发明另一个实施例的小区管理装置的示意性结构图,该小区管 理装置 800用于通信系统中的第一小区,通信系统包括第一小区和至少一个 第一小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区对应的小 区管理装置为第一小区管理装置, 第一小区的邻区对应的小区管理装置为第 二小区管理装置。 应理解, 每个小区管理装置可以对应一个或多个小区, 本 发明实施例对此并不限定。
图 8的小区管理装置 800是上述干扰协调系统中第一小区的小区管理装 置的一个例子, 包括处理器 801 , 存储器 802和接口电路 803。 处理器 801 控制设备 800的操作,处理器可以是一个 CPU,或者是特定集成电路 ASIC, 或者是被配置成实施本发明实施例的一个或多个集成电路。存储器 802可以 包括只读存储器和随机存取存储器, 并向处理器 801提供指令和数据。 存储 器 802的一部分还可以包括非易失行随机存取存储器。 处理器 801 , 存储器 802和接口电路 803通过总线系统 810耦合在一起, 其中总线系统 810除包 括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清 楚说明起见, 在图中将各种总线都标为总线系统 810。
上述本发明实施例协调负载平衡的系统中集中控制器涉及的功能可以 应用上述的集中控制器 800来实现。 其中, 处理器 801可能是一种集成电路 芯片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处 理器 801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器 801可以是通用处理器, 包括 CPU或 NP等; 还可以是 DSP、 ASIC, FPGA 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可 以实现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在该实施例中,接口电路 803用于至少一个第二小区管理装置发送上行 参考信号的配置信息, 配置信息用于指示上行参考信号所在的资源位置, 使 得至少一个第二小区管理装置中的每个第二小区管理装置根据配置信息,在 上行参考信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测 量得到第二测量值。 处理器 801用于根据配置信息, 在上行参考信号所在的 资源上对第一小区内的 UE发送的上行参考信号进行测量,得到第一测量值。 接口电路 803还用于将第一测量值发送给干扰协调装置, 以便干扰协调装置 根据第一测量值和至少一个第二测量值协调第一小区和至少一个第一小区 的邻区的下行发射功率。 通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外, 每个小区管理装置可以将各自的测量值发送给接口电路 803, 由 处理器 801处理后发送给干扰协调装置。 例如, 由第一小区管理装置按 UE 进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过处理器 801处理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某个 UE的全部测量 值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳发射功率。 总之, 本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自上报给 干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地,接口电路 803还可以用于接收每个第二小区管理装置发送的第 二测量值。 进一步地, 第二接口单元还用于将接口电路 803接收的至少一个 第二测量值发送给干扰协调装置。处理器 801还可以用于根据第一测量值和 至少一个第二测量值, 确定干扰信息, 干扰信息可以是 SNR或 SIR等。 接 口电路 803还可以用于将干扰信息发送给干扰协调装置, 以便干扰协调装置 才艮据干 4尤信息将通信系统中的多个小区分成至少一个簇, 第一小区和至少一 个第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
图 9是本发明另一个实施例的小区管理装置的示意性结构图,该小区管 理装置 900用于管理通信系统中第一小区的邻区,通信系统包括第一小区和 至少一个第一小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区 对应的小区管理装置为第一小区管理装置, 第一小区的邻区对应的小区管理 装置为第二小区管理装置。 应理解, 每个小区管理装置可以对应一个或多个 小区, 本发明实施例对此并不限定。
图 9的小区管理装置 900是上述干扰协调系统中第二小区管理装置的一 个例子, 该装置 900包括处理器 901 , 存储器 902和接口电路 903。 处理器 901 控制设备 900 的操作, 处理器可以是一个 CPU, 或者是特定集成电路 ASIC, 或者是被配置成实施本发明实施例的一个或多个集成电路。 存储器 902可以包括只读存储器和随机存取存储器, 并向处理器 901提供指令和数 据。存储器 902的一部分还可以包括非易失行随机存取存储器。处理器 901 , 存储器 902和接口电路 903通过总线系统 910耦合在一起,其中总线系统 910 除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为 了清楚说明起见, 在图中将各种总线都标为总线系统 910。
上述本发明实施例协调负载平衡的系统中集中控制器涉及的功能可以 应用上述的集中控制器 900来实现。 其中, 处理器 901可能是一种集成电路 芯片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处 理器 901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器 901可以是通用处理器, 包括 CPU或 NP等; 还可以是 DSP、 ASIC, FPGA 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可 以实现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在该实施例中,接口电路 903用于接收第一小区管理装置发送的上行参 考信号的配置信息, 配置信息用于指示所述上行参考信号所在的资源位置。 处理器 901用于根据接口电路 903接收的配置信息,在上行参考信号所在的 资源上对第一小区内的 UE发送的上行参考信号进行测量得到第二测量值, 所述第二测量值由干扰协调装置用于协调第一小区和至少一个第一小区的 邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
本发明实施例不限制每个 d、区管理装置上报测量值的方式, 可以各自上 报给干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另 外, 也不限制上报的测量值是否经过处理。
可选地, 在一种实现方式下, 接口电路 903还可以用于将第二测量值发 送给干扰协调装置。
可选地, 在另一种实现方式下, 接口电路 903还可以用于将第二测量值 发送给第一小区管理装置, 第二测量值由第一小区管理装置发送给干扰协调 转置, 或者第二测量值由所述第一小区管理装置用于确定干扰信息, 以便干 扰协调装置根据干扰信息将通信系统中的多个小区分成至少一个簇, 第一小 区和至少一个第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。 图 10是本发明另一个实施例的干扰协调装置的示意性结构图, 该干扰 协调装置 1000用于对通信系统中多个小区的下行发射功率进行协调,其中, 多个小区包括第一小区和至少一个第一小区的邻区,且每个小区对应于一个 小区管理装置, 第一小区对应的小区管理装置为第一小区管理装置, 第一小 区的邻区对应的小区管理装置为第二小区管理装置。 应理解, 每个小区管理 装置可以对应一个或多个小区, 本发明实施例对此并不限定。
图 10的干扰协调装置 1000是上述干扰协调系统中干扰协调装置的一个 例子, 该装置 1000包括处理器 1001 , 存储器 1002、 接口电路 1003和收发 器。 处理器 1001控制设备 1000的操作, 处理器可以是一个 CPU, 或者是特 定集成电路 ASIC, 或者是被配置成实施本发明实施例的一个或多个集成电 路。 存储器 1002可以包括只读存储器和随机存取存储器, 并向处理器 1001 提供指令和数据。 存储器 1002的一部分还可以包括非易失行随机存取存储 器。 处理器 1001 , 存储器 1002, 接口电路 1003和收发器通过总线系统 1010 耦合在一起, 其中总线系统 1010除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清楚说明起见, 在图中将各种总线都标 为总线系统 1010。
上述本发明实施例协调负载平衡的系统中集中控制器涉及的功能可以 应用上述的集中控制器 1000来实现。 其中, 处理器 1001可能是一种集成电 路芯片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过 处理器 1001 中的硬件的集成逻辑电路或者软件形式的指令完成。 上述的处 理器 1001可以是通用处理器, 包括 CPU或 NP等; 还可以是 DSP、 ASIC, FPGA或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在该实施例中,处理器 1001用于通过接口电路 1003获取第一测量值和 至少一个第二测量值, 第一测量值是第一小区管理装置在上行参考信号所在 的资源上对所述第一小区内的 UE发送的上行参考信号进行测量得到的, 至 少一个第二测量值是至少一个第一小区的邻区分别对应的至少一个第二小 区管理装置在上行参考信号所在的资源上对第一小区内的 UE发送的上行参 考信号进行测量得到的。 处理器 1001还用于根据第一测量值和至少一个第 二测量值协调第一小区和至少一个第一小区的邻区的下行发射功率。 通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 干扰协调装置通过基于上行参考信号获得的 测量值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由 于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞 吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
本发明实施例不限制每个小区管理装置上报测量值的方式,可以各自上 报给干扰协调装置, 也可以通过某个小区管理装置上报给干扰协调装置。 另 外, 也不限制上报的测量值是否经过处理。
可选地, 处理器 1001可以具体用于通过接口电路 1003从第一小区管理 装置获取第一测量值和至少一个第二测量值。 或者处理器 1001 可以具体用 于通过接口电路 1003从第一小区管理装置获取第一测量值, 并从至少一个 第二小区管理装置获取至少一个第二测量值。
可选地, 收发器 1004还可以用于接收第一小区管理装置发送的干扰信 息。 干扰信息包括但不限于 SNR或 SI等。 处理器 1001用于根据接口电路 1003接收的干扰信息将通信系统中的多个小区分成至少一个簇,第一小区和 至少一个第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
图 11是本发明一个实施例的干扰协调方法的流程图。 图 11的方法可以 由上述的干扰协调系统来实现, 因此适当省略重复的描述。 该方法适用于通 信系统中, 通信系统包括第一小区和至少一个所述第一小区的邻区, 且每个 小区对应于一个小区管理装置, 第一小区对应的小区管理装置为第一小区管 理装置, 第一小区的邻区对应的小区管理装置为第二小区管理装置。 应注意 的是, 本发明实施例, 每个小区管理装置可以对应一个或多个小区。
1101 , 第一小区管理装置向至少一个第二小区管理装置发送上行参考信 号的配置信息, 配置信息用于指示上行参考信号所在的资源位置, 并在上行 参考信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测量, 得到第一测量值。
1102,每个第二小区管理装置在上行参考信号所在的资源上对第一小区 内的 UE发送的上行参考信号进行测量得到第二测量值。
1103, 干扰协调装置根据第一测量值和至少一个第二测量值, 协调第一 小区和至少一个第一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 干扰协调装置通过基于上行参考信号获得的 测量值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由 于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞 吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外, 每个小区管理装置可以将各自的测量值发送给第一小区管理装 置, 由第一小区管理装置处理后发送给干扰协调装置。 例如, 由第一小区管 理装置按 UE进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可 以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过第一小 区管理装置处理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某 个 UE的全部测量值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳 发射功率。总之,本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自上报给干扰协调装置,也可以通过某个小区管理装置上报给干扰协 调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地, 作为一个实施例, 每个第二小区管理装置可以向第一小区管理 装置发送第二测量值, 第一小区管理装置可以接收每个第二小区管理装置发 送的第二测量值。 进一步地, 第一小区管理装置将至少一个第二测量值发送 给干扰协调装置。 可以将接收到的第二测量值按 UE整理后发送给干扰协调 装置。 干扰协调装置进而以每个 UE的全部测量值为输入, 计算 MCS, 从而 确定调度优先级, 以确定最佳发射功率。
可选地, 作为另一个实施例, 上行参考信号配置信息可以包括 UE发送 上行参考信号采用的时域资源、 频域资源或时频资源。 这样, 邻区可以在相 应的资源上测量该 UE发送的上行参考信号。
可选地, 作为另一个实施例, 第一小区管理装置还可以根据第一测量值 和至少一个第二测量值确定干扰信息, 干扰信息可以是 SNR或 SIR等, 将 该干扰信息发送给干扰协调装置。干扰协调装置接收第一小区的小区管理装 发送的干扰信息, 根据干扰信息将通信系统中的多个小区分成至少一个簇, 第一小区和至少一个第一小区的邻区属于同一个簇。
可选地, 作为另一个实施例, 上行 RS可以为上行 SRS参考信号, 也可 以是其它上行 RS, 应理解, 本发明实施例对此并不限定。 另外, 测量值可 以为上行 SRS的 RSRP和 /或 RSRQ。 基于上行参考信号来进行测量, 稳定 性和测量精度均高于基于下行参考信号的测量, 因此, 协调多小区的发射功 率的准确度更高, 更有效地降低小区间的干扰。
应理解, 本发明实施例的技术方案可以应用于不同的场景。 可选地, 每 个小区的小区管理装置和干扰协调装置可以位于集中放置的多个 BBU组网 的通信系统中, 干扰协调装置位于多个 BBU中的任一 BBU, 每个小区的小 区管理装置位于与该小区对应的 BBU。 可选地, 每个小区的小区管理装置 和干扰协调装置可以位于分布式基站组网的通信系统中,通信系统部署协调 器, 通信系统的各个基站均与协调器连接, 干扰协调装置位于协调器或通信 系统的任一基站, 每个小区的小区管理装置位于与该小区对应的基站。
图 12是本发明一个实施例的干扰协调方法的流程图。 图 12的方法可以 由上述的第一小区管理装置来实现, 因此适当省略重复的描述。
该方法适用于通信系统中,通信系统包括第一小区和至少一个所述第一 小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区对应的小区管 理装置为第一小区管理装置, 第一小区的邻区对应的小区管理装置为第二小 区管理装置。 应注意的是, 本发明实施例, 每个小区管理装置可以对应一个 或多个小区。
1201 , 向至少一个第二小区管理装置发送上行参考信号的配置信息, 配 置信息用于指示上行参考信号所在的资源位置,使得至少一个第二小区管理 装置中的每个第二小区管理装置根据配置信息,在上行参考信号所在的资源 上对第一小区内的 UE发送的上行参考信号进行测量得到第二测量值。
1202, 根据配置信息, 在上行参考信号所在的资源上对第一小区内的 UE发送的上行参考信号进行测量, 得到第一测量值。
1203, 将测量得到的第一测量值发送给干扰协调装置, 以便干扰协调装 置根据第一测量值和至少一个第二测量值协调第一小区和至少一个第一小 区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外, 每个小区管理装置可以将各自的测量值发送给第一小区管理装 置, 由第一小区管理装置处理后发送给干扰协调装置。 例如, 由第一小区管 理装置按 UE进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可 以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过第一小 区管理装置处理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某 个 UE的全部测量值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳 发射功率。总之,本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自上报给干扰协调装置,也可以通过某个小区管理装置上报给干扰协 调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地, 作为另一个实施例, 可以接收每个第二小区管理装置发送的第 二测量值。 进一步地, 将至少一个第二测量值发送给所述干扰协调装置。 或 者, 根据第一测量值和至少一个第二测量值, 确定干扰信息, 干扰信息可以 是 SNR或 SIR等。 将干扰信息发送给干扰协调装置, 以便干扰协调装置根 据干扰信息将通信系统中的多个小区分成至少一个簇, 第一小区和至少一个 第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
应理解, 本发明实施例的技术方案可以应用于不同的场景。 可选地, 每 个小区的小区管理装置和干扰协调装置可以位于集中放置的多个 BBU组网 的通信系统中, 干扰协调装置位于多个 BBU中的任一 BBU, 每个小区的小 区管理装置位于与该小区对应的 BBU。 可选地, 每个小区的小区管理装置 和干扰协调装置可以位于分布式基站组网的通信系统中,通信系统部署协调 器, 通信系统的各个基站均与协调器连接, 干扰协调装置位于协调器或通信 系统的任一基站, 每个小区的小区管理装置位于与该小区对应的基站。
图 13是本发明一个实施例的干扰协调方法的流程图。 图 13的方法可以 由上述的第二小区管理装置来实现, 因此适当省略重复的描述。
该方法适用于通信系统中,通信系统包括第一小区和至少一个所述第一 小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区对应的小区管 理装置为第一小区管理装置, 第一小区的邻区对应的小区管理装置为第二小 区管理装置。 应注意的是, 本发明实施例, 每个小区管理装置可以对应一个 或多个小区。
1301 , 接收第一小区管理装置发送的上行参考信号的配置信息, 配置信 息用于指示所述上行参考信号所在的资源位置。
1302, 根据接收的配置信息, 在上行参考信号所在的资源上对第一小区 内的 UE发送的上行参考信号进行测量得到第二测量值, 所述第二测量值由 干扰协调装置用于协调第一小区和至少一个第一小区的邻区的下行发射功 率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 使得干扰协调装置通过基于上行参考信号获 得的测量值来协调小区间的发行发射功率, 能够有效地降低小区间的干扰。 此外, 由于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外, 每个小区管理装置可以将各自的测量值发送给第一小区管理装 置, 由第一小区管理装置处理后发送给干扰协调装置。 例如, 由第一小区管 理装置按 UE进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可 以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过第一小 区管理装置处理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某 个 UE的全部测量值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳 发射功率。总之,本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自上报给干扰协调装置,也可以通过某个小区管理装置上报给干扰协 调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地, 作为另一个实施例, 可以将第二测量值发送给干扰协调装置。 或者, 将第二测量值发送给第一小区管理装置, 第二测量值由第一小区管理 装置发送给干扰协调转置, 或者第二测量值由所述第一小区管理装置用于确 定干扰信息, 以便干扰协调装置根据干扰信息将通信系统中的多个小区分成 至少一个簇, 第一小区和至少一个第一小区的邻区属于同一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
应理解, 本发明实施例的技术方案可以应用于不同的场景。 可选地, 每 个小区的小区管理装置和干扰协调装置可以位于集中放置的多个 BBU组网 的通信系统中, 干扰协调装置位于多个 BBU中的任一 BBU, 每个小区的小 区管理装置位于与该小区对应的 BBU。 可选地, 每个小区的小区管理装置 和干扰协调装置可以位于分布式基站组网的通信系统中,通信系统部署协调 器, 通信系统的各个基站均与协调器连接, 干扰协调装置位于协调器或通信 系统的任一基站, 每个小区的小区管理装置位于与该小区对应的基站。
图 14是本发明一个实施例的干扰协调方法的流程图。 图 13的方法可以 由上述的干扰协调装置来实现, 因此适当省略重复的描述。
该方法适用于通信系统中,通信系统包括第一小区和至少一个所述第一 小区的邻区, 且每个小区对应于一个小区管理装置, 第一小区对应的小区管 理装置为第一小区管理装置, 第一小区的邻区对应的小区管理装置为第二小 区管理装置。 应注意的是, 本发明实施例, 每个小区管理装置可以对应一个 或多个小区。
1401 , 获取第一测量值和至少一个第二测量值, 第一测量值是第一小区 管理装置在上行参考信号所在的资源上对所述第一小区内的 UE发送的上行 参考信号进行测量得到的, 至少一个第二测量值是至少一个第二小区管理装 置在上行参考信号所在的资源上对第一小区内的 UE发送的上行参考信号进 行测量得到的。
1402,根据第一测量值和至少一个第二测量值协调第一小区和至少一个 第一小区的邻区的下行发射功率。
通过上述方案, 每个小区管理装置基于 UE发送的上行参考信号来获得 测量值, 不仅可以考虑邻区对本小区的边缘 UE的干扰, 还可以考虑到邻区 对本小区的非边缘 UE的干扰, 干扰协调装置通过基于上行参考信号获得的 测量值来协调小区间的发行发射功率, 有效地降低小区间的干扰。 此外, 由 于考虑了非边缘 UE受到的干扰, 可以提升小区中、 近点受弱干扰 UE的吞 吐率增益, 从而提升网络容量。
需要说明的是,每个小区管理装置可以分别将各自的测量值发送给干扰 协调装置,也可以统一发送给某个小区管理装置(例如,第一小区管理装置), 而后由该小区管理装置发送给干扰协调装置。 另外, 发送给干扰协调装置的 测量值, 可以是未经过处理的值, 也可以是经过预处理的值, 例如经过滤波 处理后的值。
此外, 每个小区管理装置可以将各自的测量值发送给第一小区管理装 置, 由第一小区管理装置处理后发送给干扰协调装置。 例如, 由第一小区管 理装置按 UE进行整理后, 再发送给干扰协调装置, 如此干扰协调装置便可 以根据每个 UE的测量值, 协调下行发射功率。 当然, 也可以不经过第一小 区管理装置处理, 那么干扰协调装置自己需要对测量值进行整理, 从而以某 个 UE的全部测量值为输入, 计算 MCS, 从而确定调度优先级, 以确定最佳 发射功率。总之,本发明实施例不限制每个小区管理装置上报测量值的方式, 可以各自上报给干扰协调装置,也可以通过某个小区管理装置上报给干扰协 调装置。 另外, 也不限制上报的测量值是否经过处理。
可选地, 作为一个实施例, 在步骤 1401 中, 可以从第一小区管理装置 获取第一测量值和至少一个第二测量值。或者从第一小区管理装置获取第一 测量值, 并从至少一个第二小区管理装置获取至少一个第二测量值。
可选地, 作为另一个实施例, 可以接收第一小区管理装置发送的干扰信 息。 干扰信息包括但不限于 SNR或 SI等。 根据接收的干扰信息将通信系统 中的多个小区分成至少一个簇, 第一小区和至少一个第一小区的邻区属于同 一个簇。
可选地, 上行 RS可以为上行 SRS参考信号, 也可以是其它上行 RS, 应理解,本发明实施例对此并不限定。另外,测量值可以为上行 SRS的 RSRP 和 /或 RSRQ。基于上行参考信号来进行测量, 稳定性和测量精度均高于基于 下行参考信号的测量, 因此, 协调多小区的发射功率的准确度更高, 更有效 地降低小区间的干扰。
可选地, 上行参考信号配置信息可以包括 UE发送上行参考信号采用的 时域资源、 频域资源或时频资源。 这样, 邻区可以在相应的资源上测量该 UE发送的上行参考信号。
应理解, 本发明实施例的技术方案可以应用于不同的场景。 可选地, 每 个小区的小区管理装置和干扰协调装置可以位于集中放置的多个 BBU组网 的通信系统中, 干扰协调装置位于多个 BBU中的任一 BBU, 每个小区的小 区管理装置位于与该小区对应的 BBU。 可选地, 每个小区的小区管理装置 和干扰协调装置可以位于分布式基站组网的通信系统中,通信系统部署协调 器, 通信系统的各个基站均与协调器连接, 干扰协调装置位于协调器或通信 系统的任一基站, 每个小区的小区管理装置位于与该小区对应的基站。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种小区管理装置, 其特征在于, 用于管理通信系统中的第一小区, 所述通信系统包括所述第一小区和至少一个所述第一小区的邻区,且每个小 区对应于一个小区管理装置, 所述第一小区对应的小区管理装置为第一小区 管理装置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 所述装置包括:
第一接口单元, 用于向至少一个第二小区管理装置发送上行参考信号的 配置信息, 所述配置信息用于指示所述上行参考信号所在的资源位置, 使得 每个第二小区管理装置根据所述配置信息,在所述上行参考信号所在的资源 上对所述第一小区内的用户设备发送的上行参考信号进行测量得到第二测 量值;
测量单元, 用于根据所述配置信息, 在所述上行参考信号所在的资源上 对所述第一小区内的用户设备发送的上行参考信号进行测量,得到第一测量 值;
第二接口单元, 用于将所述测量单元测量得到的第一测量值发送给干扰 协调装置, 以便所述干扰协调装置根据所述第一测量值和至少一个所述第二 测量值协调所述第一小区和所述至少一个第一小区的邻区的下行发射功率。
2、 如权利要求 1所述的装置, 其特征在于,
所述第一接口单元还用于: 接收每个第二小区管理装置发送的所述第二 测量值。
3、 如权利要求 2所述的装置, 其特征在于,
第二接口单元还用于: 将至少一个所述第二测量值发送给所述干扰协调 装置。
4、 如权利要求 2所述的装置, 其特征在于, 还包括:
干扰确定单元用于: 根据所述第一测量值和至少一个所述第二测量值, 确定干扰信息;
所述第二接口单元还用于: 将所述干扰信息发送给所述干扰协调装置, 以便所述干扰协调装置根据所述干扰信息将所述通信系统中的多个小区分 成至少一个簇, 所述第一小区和至少一个所述第一小区的邻区属于同一个 簇。
5、 如权利要求 1-4任一项所述的装置, 其特征在于, 所述上行参考信 号为探测参考信号 SRS。
6、 如权利要求 1-5任一项所述的装置, 其特征在于, 所述上行参考信 号所在的资源包括所述上行参考信号所在的时域资源、 频域资源或时频资 源。
7、 如权利要求 1-6任一项所述的装置, 其特征在于,
所述第一测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ; 以及
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
8、 一种小区管理装置, 其特征在于, 用于管理通信系统中的第一小区 的邻区, 所述通信系统包括所述第一小区和至少一个所述第一小区的邻区, 且每个小区对应于一个小区管理装置, 所述第一小区对应的小区管理装置为 第一小区管理装置, 所述第一小区的邻区对应的小区管理装置为第二小区管 理装置, 所述装置包括:
第一接口单元, 用于接收所述第一小区管理装置发送的上行参考信号的 配置信息, 所述配置信息用于指示所述上行参考信号所在的资源位置; 测量单元, 用于根据所述第一接口单元接收的所述配置信息, 在所述上 行参考信号所在的资源上对所述第一小区内的用户设备发送的上行参考信 号进行测量得到第二测量值, 所述第二测量值由干扰协调装置用于协调所述 第一小区和至少一个所述第一小区的邻区的下行发射功率。
9、 如权利要求 8所述的装置, 其特征在于, 所述小区管理装置还包括 第二接口单元,
所述第二接口单元, 用于将所述第二测量值发送给所述干扰协调装置。
10、 如权利要求 8所述的装置, 其特征在于,
所述第一接口单元,还用于将所述第二测量值发送给所述第一小区管理 装置, 所述第二测量值由所述第一小区管理装置发送给所述干扰协调装置, 或者所述第二测量值由所述第一小区管理装置用于确定干扰信息, 以便所述 干扰协调装置根据所述干扰信息将所述通信系统中的多个小区分成至少一 个簇, 所述第一小区和所述至少一个所述第一小区的邻区属于同一个簇。
11、如权利要求 8-10任一项所述的装置, 其特征在于, 所述上行参考信 号为探测参考信号 SRS。
12、如权利要求 8-11任一项所述的装置, 其特征在于, 所述上行参考信 号所在的资源包括所述上行参考信号所在的时域资源、 频域资源或时频资 源。
13、 如权利要求 1-12任一项所述的装置, 其特征在于,
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
14、 一种干扰协调装置, 其特征在于, 用于对通信系统中多个小区的下 行发射功率进行协调, 其中, 所述多个小区包括第一小区和至少一个所述第 一小区的邻区, 且每个小区对应于一个小区管理装置, 所述第一小区对应的 小区管理装置为第一小区管理装置,所述第一小区的邻区对应的小区管理装 置为第二小区管理装置, 所述装置包括:
获取单元, 用于获取第一测量值和至少一个第二测量值, 所述第一测量 值是所述第一小区管理装置在上行参考信号所在的资源上对所述第一小区 内的用户设备发送的所述上行参考信号进行测量得到的, 至少一个所述第二 测量值是至少一个所述第二小区管理装置在所述上行参考信号所在的资源 上对所述第一小区内的用户设备发送的上行参考信号进行测量得到的; 协调单元, 用于根据所述第一测量值和至少一个所述第二测量值协调所 述第一小区和至少一个所述第一小区的邻区的下行发射功率。
15、 如权利要求 14所述的装置, 其特征在于,
所述获取单元具体用于: 从所述第一小区的小区管理装置获取所述第一 测量值和至少一个所述第二测量值; 或者
所述获取单元具体用于: 从所述第一小区的小区管理装置获取所述第一 测量值, 并从至少一个所述第二小区管理装置获取至少一个所述第二测量 值。
16、 如权利要求 14或 15所述的装置, 其特征在于, 所述装置还包括接 收单元和分簇单元,
所述接收单元, 用于接收所述第一小区的小区管理装置发送的干扰信 息;
所述分簇单元, 用于根据所述接收单元接收的所述干扰信息将通信系统 中的多个小区分成至少一个簇, 所述第一小区和至少一个所述第一小区的邻 区属于同一个簇。
17、 如权利要求 14-16任一项所述的装置, 其特征在于, 所述上行参考 信号为探测参考信号 SRS。
18、 如权利要求 14-17任一项所述的装置, 其特征在于, 所述上行参考 信号所在的资源包括所述上行参考信号所在的时域资源、频域资源或时频资 源。
19、 如权利要求 14-18任一项所述的装置, 其特征在于,
所述第一测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ; 以及
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
20、 一种干扰协调系统, 其特征在于, 所述系统包括权利要求 1-7任一 所述的第一小区管理装置、 至少一个权利要求 8-13任一所述的第二小区管 理装置和权利要求 14-19任一所述的干扰协调装置。
21、 一种干扰协调方法, 所述方法适用于通信系统中, 所述通信系统包 括第一小区和至少一个所述第一小区的邻区,且每个小区对应于一个小区管 理装置, 所述第一小区对应的小区管理装置为第一小区管理装置, 所述第一 小区的邻区对应的小区管理装置为第二小区管理装置, 其特征在于, 所述方 法包括:
向至少一个第二小区管理装置发送上行参考信号的配置信息, 所述配置 信息用于指示所述上行参考信号所在的资源位置,使得每个第二小区管理装 置根据所述配置信息,在所述上行参考信号所在的资源上对所述第一小区内 的用户设备发送的上行参考信号进行测量得到第二测量值;
根据所述配置信息,在所述上行参考信号所在的资源上对所述第一小区 内的用户设备发送的上行参考信号进行测量, 得到第一测量值;
将测量得到的第一测量值发送给干扰协调装置, 以便所述干扰协调装置 根据所述第一测量值和至少一个所述第二测量值协调所述第一小区和所述 至少一个第一小区的邻区的下行发射功率。
22、 如权利要求 21所述的方法, 其特征在于, 所述方法还包括: 接收每个第二小区管理装置发送的所述第二测量值。
23、 如权利要求 22所述的方法, 其特征在于, 所述方法还包括: 将至少一个所述第二测量值发送给所述干扰协调装置。
24、 如权利要求 22所述的方法, 其特征在于, 所述方法还包括: 根据所述第一测量值和至少一个所述第二测量值, 确定干扰信息; 将所述干扰信息发送给所述干扰协调装置, 以便所述干扰协调装置根据 所述干 4尤信息将所述通信系统中的多个小区分成至少一个簇, 所述第一小区 和至少一个所述第一小区的邻区属于同一个簇。
25、 如权利要求 21-24任一项所述的方法, 其特征在于, 所述上行参考 信号为探测参考信号 SRS。
26、 如权利要求 21-25任一项所述的方法, 其特征在于, 所述上行参考 信号所在的资源包括所述上行参考信号所在的时域资源、频域资源或时频资 源。
27、 如权利要求 21-26任一项所述的方法, 其特征在于,
所述第一测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ; 以及
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
28、 一种干扰协调方法, 其特征在于, 所述方法适用于通信系统中, 所 述通信系统包括第一小区和至少一个所述第一小区的邻区,且每个小区对应 于一个小区管理装置,所述第一小区对应的小区管理装置为第一小区管理装 置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 所述方 法包括:
接收第一小区管理装置发送的上行参考信号的配置信息, 所述配置信息 用于指示所述上行参考信号所在的资源位置;
根据接收的所述配置信息,在所述上行参考信号所在的资源上对所述第 一小区内的用户设备发送的上行参考信号进行测量得到第二测量值, 所述第 二测量值由干扰协调装置用于协调所述第一小区和至少一个所述第一小区 的邻区的下行发射功率。
29、 如权利要求 28所述的方法, 其特征在于, 所述方法还包括: 将所述第二测量值发送给所述干扰协调装置。
30、 如权利要求 28所述的方法, 其特征在于, 所述方法还包括: 将所述第二测量值发送给所述第一小区管理装置, 所述第二测量值由所 述第一小区管理装置发送给所述干扰协调装置, 或者所述第二测量值由所述 第一小区管理装置用于确定干扰信息, 以便所述干扰协调装置根据所述干扰 信息将所述通信系统中的多个小区分成至少一个簇, 所述第一小区和所述至 少一个所述第一小区的邻区属于同一个簇。
31、 如权利要求 28-30任一项所述的方法, 其特征在于, 所述上行参考 信号为探测参考信号 SRS。
32、 如权利要求 28-31任一项所述的方法, 其特征在于, 所述上行参考 信号所在的资源包括所述上行参考信号所在的时域资源、频域资源或时频资 源。
33、 如权利要求 28-32任一项所述的方法, 其特征在于,
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
34、 一种干扰协调方法, 其特征在于, 该方法适用于通信系统中, 所述 通信系统包括第一小区和至少一个所述第一小区的邻区,且每个小区对应于 一个小区管理装置, 所述第一小区对应的小区管理装置为第一小区管理装 置, 所述第一小区的邻区对应的小区管理装置为第二小区管理装置, 所述方 法包括:
获取第一测量值和至少一个第二测量值, 所述第一测量值是所述第一小 区管理装置在上行参考信号所在的资源上对所述第一小区内的用户设备发 送的所述上行参考信号进行测量得到的, 至少一个所述第二测量值是至少一 个所述第二小区管理装置在所述上行参考信号所在的资源上对所述第一小 区内的用户设备发送的上行参考信号进行测量得到的;
根据所述第一测量值和至少一个所述第二测量值协调所述第一小区和 至少一个所述第一小区的邻区的下行发射功率。
35、 如权利要求 34所述的方法, 其特征在于, 所述获取第一测量值和 至少一个第二测量值, 包括:
从所述第一小区的小区管理装置获取所述第一测量值和至少一个所述 第二测量值; 或者
从所述第一小区的小区管理装置获取所述第一测量值, 并从至少一个所 述第二小区管理装置获取至少一个所述第二测量值。
36、 如权利要求 34或 35所述的方法, 其特征在于, 所述方法还包括: 接收所述第一小区的小区管理装置发送的干扰信息;
根据接收的所述干扰信息将通信系统中的多个小区分成至少一个簇, 所 述第一小区和至少一个所述第一小区的邻区属于同一个簇。
37、 如权利要求 34-36任一项所述的方法, 其特征在于, 所述上行参考 信号为探测参考信号 SRS。
38、 如权利要求 34-37任一项所述的方法, 其特征在于, 所述上行参考 信号所在的资源包括所述上行参考信号所在的时域资源、频域资源或时频资 源。
39、 如权利要求 34-38任一项所述的方法, 其特征在于,
所述第一测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ; 以及
所述第二测量值包括上行参考信号的接收功率 RSRP或上行参考信号的 接收质量 RSRQ。
PCT/CN2013/089331 2013-12-13 2013-12-13 干扰协调方法、装置和系统 WO2015085563A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167017764A KR101870275B1 (ko) 2013-12-13 2013-12-13 간섭 조정 방법, 장치, 및 시스템
JP2016538654A JP6263803B2 (ja) 2013-12-13 2013-12-13 干渉制御方法、干渉制御装置、および干渉制御システム
CN201380003412.4A CN103875219B (zh) 2013-12-13 2013-12-13 干扰协调方法、装置和系统
PCT/CN2013/089331 WO2015085563A1 (zh) 2013-12-13 2013-12-13 干扰协调方法、装置和系统
CA2932945A CA2932945C (en) 2013-12-13 2013-12-13 Interference coordination method, apparatus, and system
EP13898924.9A EP3068179B1 (en) 2013-12-13 2013-12-13 Interference coordination method, device and system
US15/179,634 US10305649B2 (en) 2013-12-13 2016-06-10 Interference coordination method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089331 WO2015085563A1 (zh) 2013-12-13 2013-12-13 干扰协调方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/179,634 Continuation US10305649B2 (en) 2013-12-13 2016-06-10 Interference coordination method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2015085563A1 true WO2015085563A1 (zh) 2015-06-18

Family

ID=50912428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089331 WO2015085563A1 (zh) 2013-12-13 2013-12-13 干扰协调方法、装置和系统

Country Status (7)

Country Link
US (1) US10305649B2 (zh)
EP (1) EP3068179B1 (zh)
JP (1) JP6263803B2 (zh)
KR (1) KR101870275B1 (zh)
CN (1) CN103875219B (zh)
CA (1) CA2932945C (zh)
WO (1) WO2015085563A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3086482B1 (en) * 2013-12-19 2019-08-07 LG Electronics Inc. Method for supporting reference signal transmission in multiple antenna-supporting wireless communication system, and apparatus therefor
CN104753702B (zh) * 2013-12-27 2018-11-20 华为技术有限公司 一种集群系统中的集群处理方法、装置及系统
FR3018656A1 (fr) * 2014-03-13 2015-09-18 Cassidian Sas Procede d'allocation de ressources et systeme mettant en oeuvre le procede
WO2016000268A1 (zh) * 2014-07-04 2016-01-07 富士通株式会社 干扰协调方法、装置和系统
KR102301826B1 (ko) * 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
CN106162727B (zh) * 2015-03-31 2019-08-27 北京邮电大学 用户设备建立连接的方法、小基站及宏基站
EP3324694B1 (en) * 2015-08-13 2024-01-17 Huawei Technologies Co., Ltd. Uplink reference signal transmission method, user terminal, and base station
CN107425948B (zh) * 2016-05-24 2020-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
WO2017202333A1 (zh) * 2016-05-24 2017-11-30 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
CN109150454B (zh) * 2017-06-16 2022-11-08 华为技术有限公司 传输信息的方法和装置
CN109391391B (zh) * 2017-08-08 2020-04-17 维沃移动通信有限公司 一种用于传输参考信号的方法及装置
WO2019032021A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) MEASUREMENT AND REPORT FOR CROSS-LINK INTERFERENCE MANAGEMENT BASED ON SIGNAL INTENSITY
US20190191317A1 (en) * 2017-12-14 2019-06-20 Skyriver Communications, Inc. Coordinated Interference Mitigation in Communication Systems
CN108541012B (zh) * 2018-03-21 2021-11-02 京信网络系统股份有限公司 用户间干扰估算方法、装置及系统
KR102273913B1 (ko) * 2018-08-20 2021-07-07 한양대학교 산학협력단 무선통신 시스템에서 단말 정보 수집장치의 상향링크 간섭제어 방법 및 장치
WO2020040531A1 (ko) * 2018-08-20 2020-02-27 한양대학교 산학협력단 무선통신 시스템에서 단말 정보 수집장치의 상향링크 간섭제어 방법 및 장치
CN112602346A (zh) * 2018-08-23 2021-04-02 上海诺基亚贝尔股份有限公司 终端设备之间的交叉链路干扰的检测
CN112586024A (zh) * 2018-08-24 2021-03-30 华为技术有限公司 数据传输方法和装置
WO2020068625A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Remote interference management reference signal
CN111200486B (zh) * 2018-11-19 2021-08-27 华为技术有限公司 无线通信的方法和装置
JP7107390B2 (ja) * 2018-12-06 2022-07-27 富士通株式会社 通信装置、通信方法、無線通信制御装置、基地局装置及び端末装置
JP7271684B2 (ja) 2019-02-03 2023-05-11 オッポ広東移動通信有限公司 干渉又は信号受信電力の測定の方法及び装置
WO2020200549A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Methods, infrastructure equipment and communications device
US11637669B2 (en) * 2019-11-25 2023-04-25 Qualcomm Incorporated Single frequency network transmission procedure based on sounding reference signals
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
WO2024136712A1 (en) * 2022-12-23 2024-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Inter-cell channel information acquisition
CN118828742A (zh) * 2023-04-18 2024-10-22 北京三星通信技术研究有限公司 无线通信系统中的节点及其执行的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395163A (zh) * 2011-06-30 2012-03-28 中兴通讯股份有限公司 协作多点传输系统中信息的交互方法及协作多点传输系统
CN102413477A (zh) * 2010-09-20 2012-04-11 大唐移动通信设备有限公司 一种小区间干扰协调的模拟方法及设备
CN103024751A (zh) * 2011-09-26 2013-04-03 华为技术有限公司 干扰控制方法和设备
CN103067927A (zh) * 2013-01-09 2013-04-24 上海大唐移动通信设备有限公司 一种小区间干扰的优化方法及装置
CN103297979A (zh) * 2012-02-29 2013-09-11 国际商业机器公司 实现干扰协调的方法和基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741437B (zh) * 2008-11-19 2013-05-22 中国移动通信集团公司 一种上行功率控制方法、系统及设备
US8938247B2 (en) * 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
KR101524752B1 (ko) 2009-10-23 2015-06-10 삼성전자주식회사 셀간 협력을 위한 통신 시스템
CN101945409B (zh) * 2010-09-03 2014-11-19 新邮通信设备有限公司 一种无线通信系统的相邻小区间的动态干扰协调方法及其装置
US20120071200A1 (en) * 2010-09-22 2012-03-22 Infineon Technologies Ag Method and device for selecting a serving base station, mobile communication network, base station, and method for determining transmission characteristics
US8743723B2 (en) * 2010-11-05 2014-06-03 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for applying almost blank subframe (ABS) patterns
CN102595436B (zh) * 2011-01-13 2015-05-27 华为技术有限公司 一种干扰检测方法、装置和系统
CN102170304A (zh) 2011-05-25 2011-08-31 北京工业大学 多小区基站协作干扰消除方法
KR101867314B1 (ko) 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
WO2013120265A1 (en) * 2012-02-16 2013-08-22 Qualcomm Incorporated Srs power control for coordinated scheduling in tdd heterogeneous networks
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
CN103391574A (zh) 2012-05-11 2013-11-13 中兴通讯股份有限公司 传输节点信息的配置及上报方法、网络侧设备及终端设备
US9332474B2 (en) * 2012-05-17 2016-05-03 Telefonaktiebolaget L M Ericsson Signaling support for multi sector deployment in cellular communications
JP6348503B2 (ja) * 2012-11-23 2018-06-27 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるスケジューリングを実行する方法及び装置
US20150073998A1 (en) 2013-09-09 2015-03-12 Apple Inc. Use of a Biometric Image in Online Commerce

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413477A (zh) * 2010-09-20 2012-04-11 大唐移动通信设备有限公司 一种小区间干扰协调的模拟方法及设备
CN102395163A (zh) * 2011-06-30 2012-03-28 中兴通讯股份有限公司 协作多点传输系统中信息的交互方法及协作多点传输系统
CN103024751A (zh) * 2011-09-26 2013-04-03 华为技术有限公司 干扰控制方法和设备
CN103297979A (zh) * 2012-02-29 2013-09-11 国际商业机器公司 实现干扰协调的方法和基站
CN103067927A (zh) * 2013-01-09 2013-04-24 上海大唐移动通信设备有限公司 一种小区间干扰的优化方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3068179A4 *

Also Published As

Publication number Publication date
JP6263803B2 (ja) 2018-01-24
CN103875219A (zh) 2014-06-18
JP2017505023A (ja) 2017-02-09
CN103875219B (zh) 2016-08-31
CA2932945C (en) 2021-02-23
EP3068179A1 (en) 2016-09-14
EP3068179B1 (en) 2021-02-03
KR20160093691A (ko) 2016-08-08
KR101870275B1 (ko) 2018-06-22
US20160285602A1 (en) 2016-09-29
EP3068179A4 (en) 2016-11-23
CA2932945A1 (en) 2015-06-18
US10305649B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2015085563A1 (zh) 干扰协调方法、装置和系统
US10165583B2 (en) Scheduling method, apparatus, and system
JP6204693B2 (ja) 無線基地局及び無線通信方法
WO2012171498A1 (zh) 干扰协调方法和基站
US9642135B2 (en) Method and apparatus for management of protected resource in a heterogeneous network
WO2022084955A1 (en) L1/l2-centric mobility - neighbour cell measurements
WO2013178102A1 (zh) 一种测量参数的指示方法及装置
US20110310758A1 (en) Method of Resource Assignment for Radio Communication System and Base Station Apparatus
CN103843392A (zh) 用于测量带宽配置的系统和方法
EP3573365B1 (en) Measurement parameter transmitting method and user equipment
EP2692081B1 (en) Selection of a secondary component carrier based on interference information
CN105916168B (zh) 干扰协调方法、装置和系统
CN102726084B (zh) 频率重用方法和设备
US20170093537A1 (en) A method, apparatus and system
WO2018177338A1 (zh) 一种测量参数发送方法及其装置
WO2021147106A1 (zh) 一种dmrs配置方法及装置
WO2014110766A1 (zh) 信道质量测量方法、用户设备以及基站
CN109644376A (zh) 处理信号的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2932945

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013898924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898924

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016538654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017764

Country of ref document: KR

Kind code of ref document: A