WO2015085486A1 - 用于安防的微波感应探测方法及装置 - Google Patents
用于安防的微波感应探测方法及装置 Download PDFInfo
- Publication number
- WO2015085486A1 WO2015085486A1 PCT/CN2013/088975 CN2013088975W WO2015085486A1 WO 2015085486 A1 WO2015085486 A1 WO 2015085486A1 CN 2013088975 W CN2013088975 W CN 2013088975W WO 2015085486 A1 WO2015085486 A1 WO 2015085486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- intermediate frequency
- signal
- alarm
- peak value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/185—Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/56—Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/886—Radar or analogous systems specially adapted for specific applications for alarm systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/22—Electrical actuation
- G08B13/24—Electrical actuation by interference with electromagnetic field distribution
- G08B13/2491—Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field
Definitions
- the present invention relates to the field of microwave sensor application technologies, and more particularly to a microwave induction detecting method and apparatus for security.
- the technical problem to be solved by the present invention is to provide a microwave sensing detection method capable of discriminating effective human intrusion behavior against the defect that the prior art microwave induction detector has a high false alarm rate.
- the technical solution adopted by the present invention to solve the technical problem is to construct a microwave induction detecting method for security, using a microwave induction detecting device Determining whether there is an intrusion behavior in the arming area and making a corresponding alarm, the microwave sensing detecting method includes the following steps:
- step S2 determining whether there is a moving object in the arming area, if yes, proceeding to step S3, otherwise returning to step S1;
- step S3 determining whether the moving object has an intrusion behavior, if yes, proceeding to step S4, otherwise returning to step S1;
- step S5 determining whether the intruder has left, if yes, proceeding to step S6, otherwise returning to step S4;
- step S6 determining whether the action of leaving is valid, if yes, proceeding to step S7, otherwise returning to step S4;
- the step S1 includes the operation of transmitting a pulsed microwave signal or a continuous wave microwave signal to the arming area using the Doppler probe (1) while receiving the arming area by using the Doppler probe (1)
- the step S2 includes the following operations: sampling the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S using the Doppler probe (1), and recording the wave of the intermediate frequency signal using an intelligent control module (3) a peak, the peak value a and the predetermined first threshold value a 1 peak comparison, if a is greater than a 1, the process proceeds to step S3, the otherwise returns to step S1.
- the step S3 includes the following operations: sampling the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S using the Doppler probe (1), and recording the intermediate frequency signal using the intelligent control module (3) Wave peak A, at the same time, grouping the intermediate frequency signals in chronological order, and calculating an average value of the peak values of each set of intermediate frequency signals, if the first peak is continuously detected if it is within a predetermined first delay time
- the peak value of the intermediate frequency signal of the threshold, and the average value of the frequency is in the interval [f 1 , f 2 ], and the average value of the peak value of the peak of the grouped intermediate frequency signal continues to rise, and then the intrusion behavior of the moving object is determined, and the process proceeds to step S4. Otherwise, it returns to step S1.
- the step S5 includes the following operations: using the Doppler probe (1) to sample the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S and recording the peak value A of the intermediate frequency signal, the wave
- the peak value A is compared with the predetermined second peak threshold A 2 . If A is smaller than A 2 and the frequency average value is in the interval [f 1 , f 2 ], the process proceeds to step S6, otherwise the process returns to step S4.
- the step S6 includes the following steps: sampling the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S using the Doppler probe (1), and recording the peak value of the intermediate frequency signal using the intelligent control module A, at the same time, grouping the intermediate frequency signals in chronological order, and calculating an average value of peak values of each group of intermediate frequency signals, if an intermediate frequency smaller than the second peak threshold is continuously detected within a predetermined second delay time If the signal wave peak value and the average value of the peak value of the group intermediate frequency signal wave continues to decrease, the process proceeds to step S7, otherwise returns to step S4.
- the invention also provides a microwave induction detecting device for security, which is used for intelligent detection and alarm in the field of security defense, and the microwave induction detecting device comprises:
- an intelligent control module (3) for determining whether the arming area satisfies an alarm condition according to an amplitude of the intermediate frequency signal, a trend of change, and an interval in which the average frequency of the intermediate frequency signal is located;
- the microwave induction detecting device further includes a remote transmission module (5) connected to the intelligent control module (3) for implementing remote client control and alarm.
- the microwave induction detecting device further includes an extended function interface (6) connected to the intelligent control module (3), and a personal authentication unit (61) detachably connected to the extended function interface (6), the imaging unit (62) and a storage unit (63).
- the number of the Doppler probes (1) is plural and each has a different detection angle.
- the invention introduces an anti-interference judgment link method for the microwave sensor detector, avoids frequent false positives caused by non-human effective intrusion behavior, and improves the reliability of the microwave sensor detector; meanwhile, since the present invention is applicable to the existing
- the technical improvement can be realized only by writing the program to the single-chip microcomputer, without adding additional hardware devices, and avoiding the integration of other types of sensing technologies, such as the complexity brought by the three-detection, and reducing the installation cost.
- FIG. 1 is a block diagram showing the hardware structure of a first embodiment of the microwave induction detecting apparatus of the present invention
- 3A is a waveform diagram of a probe signal in a completely stationary state detected by the first embodiment of the microwave induction detecting device of the present invention
- 3B is a waveform diagram of a probe signal when a person in motion is detected in the first embodiment of the microwave induction detecting device of the present invention
- 3C is a waveform diagram of a probe signal when a person in the range of arming detected by the first embodiment of the microwave induction detecting device of the present invention changes from motion to motion;
- FIG. 3D is a waveform diagram of a probe signal detected by the first embodiment of the microwave induction detecting device of the present invention with micro-motion detected within the arming range;
- 3E is a waveform diagram of a probe signal when a person in the armed range is detected to leave the detection range according to the first embodiment of the microwave induction detecting device of the present invention
- FIG. 4 is a block diagram showing the hardware structure of a second embodiment of the microwave induction detecting apparatus of the present invention.
- FIG. 5 is a block diagram showing the hardware structure of a third embodiment of the microwave induction detecting apparatus of the present invention.
- Figure 6 is a schematic view showing the installation of the fourth embodiment of the microwave induction detecting device of the present invention.
- the microwave induction detecting device comprises a Doppler probe 1, a receiving module 2, an intelligent control module 3 and an alarm 4, which are electrically connected in sequence, and the Doppler probe 1 includes an oscillator 11 for generating a microwave signal.
- An antenna 12 that emits and receives microwave signals in a certain area, a receiver 13 that receives microwave signals received by the antenna 12, a mixer 14 that compares the frequency of the signal from the oscillator 11 and the frequency of the signal received by the receiver 13, and filters the high frequency.
- the low-pass filter 15 of the clutter, the operational amplifier 16 that amplifies the intermediate frequency signal, and the signal generator 17 that issues the alarm signal are respectively connected to the oscillator 11 and the receiver 13, and the outputs of the oscillator 11 and the receiver 13 are respectively connected to the input terminals of the mixer 14, and the output terminals of the mixer 14 are sequentially passed.
- the low pass filter 15 and the operational amplifier 16 are connected to the input of the signal generator 17, and the output of the signal generator 17 sends an alarm command signal to the receiving module 2.
- the oscillator 11 Based on the above structure, the oscillator 11 generates a microwave signal for detection, which may be a continuous wave microwave signal or a pulsed microwave signal, which is transmitted through the antenna 12 to the arming area, and the microwave will reflect after encountering the object.
- the receiver 13 inputs the reflected wave received by the antenna 12 to the mixer 14, and the mixer 14 mixes the received reflected wave signal with the original transmitted signal of the oscillator 11 to calculate the frequency difference between the original signal and the received signal.
- the operational amplifier 16 After filtering the noise signal in the mixed wave signal, the operational amplifier 16 amplifies the frequency difference to determine whether the transmitting frequency is the same as the receiving frequency, thereby determining whether there is a moving object in the arming area; further, the present invention simultaneously adopts the intermediate frequency. Signal amplitude to determine whether there is a moving object in the arming area, and whether the moving object has intrusion behavior,
- the specific signal processing and detection methods of the microwave induction detecting apparatus of the present invention are described in detail below.
- FIG. 2 is a flow chart showing the operation of the embodiment of the microwave sensing detection method of the present invention. Includes the following steps:
- the Doppler probe 1 Initializing the single-chip microcomputer in the intelligent control module 3, and then supplying power to the Doppler probe 1, the Doppler probe 1 enters a working state, and transmits a pulsed microwave signal or a continuous wave microwave signal to the arming area and receives the reflected object by the detected object.
- step S2 determining whether there is a moving object in the arming area, if yes, proceeding to step S3, otherwise returning to step S1; the Doppler probe 1 sampling the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S , and recording said intermediate frequency signal peak value a, the peak value of a first peak a and a predetermined threshold value a 1, if a is greater than a 1, the process proceeds to step S3, the otherwise returns to step S1, in the present embodiment, it is assumed
- the A 1 is 2V; generally speaking, the IF signal is kept in the noise range when there is no moving object in the probe detection range. When there is an object moving, the wave peak will change according to the distance of the moving object from the probe and the movement amplitude.
- a first peak may be preset larger than the noise threshold value range A 1, upon detecting a peak value greater than the first threshold value A 1 of the peak, it is determined that began moving object within a predetermined radius region of the arm;
- step S3 Perform anti-interference judgment, that is, whether the moving object has an intrusion behavior, if yes, proceed to step S4, otherwise return to step S1; the Doppler probe 1 performs the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S Sampling and recording the peak value A of the intermediate frequency signal, and simultaneously grouping the intermediate frequency signals in chronological order, and calculating an average value of the peak values of each set of intermediate frequency signals, if the duration is within a first preset delay time Detecting an intermediate frequency signal peak value greater than a predetermined first peak threshold, and the frequency average is in the interval [f 1 , f 2 ], and the average value of the peak value of the grouped intermediate frequency signal exhibits a continuous upward trend, and the moving object has an intrusion The behavior proceeds to step S4, otherwise returns to step S1.
- Human movement speed is usually limited to a specific interval, which can clearly distinguish non-human activities, such as insect flight or curtain shake.
- the receiving frequency is equal to the quotient of the observer moving speed and the moving speed of the transmitting source multiplied by the transmitting frequency. Therefore, the corresponding frequency interval of human activity can be inferred from the relative speeds of the two, and amplified by the operational amplifier 16.
- the average frequency is about 10 Hz-35 Hz, thereby eliminating the possibility of non-human activity; further, by analyzing the peak value of the group IF signal, if the peak value of the wave is rising, it is determined that the human body is continuously approaching the detector. That is, the intrusion behavior, thereby eliminating the false positives caused by other behaviors of the human body, greatly improving the reliability of the present invention in practical applications;
- the intelligent control module 3 issues an alarm command to trigger the alarm 4 to cause the alarm 4 to issue an alarm
- step S5. determining whether the intruder leaves, if yes, proceeding to step S6, otherwise returning to step S4; the Doppler probe 1 samples the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S and recording the intermediate frequency signal The peak value A is compared with the second peak threshold A 2 . If A is smaller than A 2 and the frequency average is in the interval [f 1 , f 2 ], the process proceeds to step S6, otherwise, the process returns to step S4.
- a 2 is 1.5V; and the principle employed in the above process S2, S3 same, the practical application, will set the value of a 2 is slightly smaller than a 1 that is less than the range of the warning alarm range, the program determines whether the mobile When the object exits the warning range and confirms that the moving object is an active human body by the receiving frequency, the process proceeds to step S6; otherwise, if a plurality of peaks larger than the preset value (1.5V) appear during the analysis or the peak value of the sampling wave is less than 300 or The group average is not a continuous downward trend and the alarm 4 will continue to respond.
- step S6 determining whether the leaving action is valid, if yes, proceeding to step S7, otherwise returning to step S4; the Doppler probe 1 samples the frequency-converted intermediate frequency signal at a predetermined sampling frequency f S and recording the intermediate frequency signal At the same time, the intermediate frequency signals are grouped in chronological order, and the average value of the peak values of each group of intermediate frequency signals is calculated, and if the second peak threshold is continuously detected within the second preset delay time The intermediate frequency signal peak value, and the average value of the peak value of the group intermediate frequency signal shows a continuous downward trend, then proceeds to step S7, otherwise returns to step S4; by analyzing the peak value of the group intermediate frequency signal, if the peak value of the packet is decreasing, the intrusion is determined.
- the predetermined peak thresholds A 1 and A 2 may be adjusted according to actual needs, thereby changing the arming radius to be adjustable within 0.3-18 meters; on the other hand, the monitoring of the arming area may select a pulsed microwave signal or Continuous wave microwave signal, and adjust the sampling frequency according to security requirements, to achieve the purpose of reducing power consumption.
- the first preset delay time in this embodiment is 1 s
- the frequency range of the intermediate frequency signals of different Doppler probes is also different, for example, a 2.4 GHz Doppler probe, corresponding human motion.
- the frequency of the generated intermediate frequency signal is 1 Hz-8 Hz; the Doppler probe of 5.8 GHz, the frequency range of the intermediate frequency signal corresponding to human motion is 5.5 Hz-20 Hz; the Doppler probe of 24 GHz, the corresponding intermediate frequency signal generated by human motion
- the frequency range is 15 Hz-80 Hz; in this embodiment, the 10.525 GHz Doppler probe is used, and the frequency of the intermediate frequency signal generated by the corresponding human motion is 10 Hz-35 Hz, that is, in this embodiment, if in this period
- the presence of a microwave signal having a magnitude greater than a predetermined first peak threshold A 1 and a frequency between 10 Hz and 35 Hz indicates that the moving object is an active human body, and the microwave Doppler probe of the other corresponding frequency band is also
- Figure 3A It is a waveform diagram of a probe signal in the first embodiment of the microwave induction detecting device of the present invention that detects a completely stationary state within the arming range.
- the intermediate frequency signal of the waveform diagram is maintained within the noise range, that is, the probe does not generate the detection signal, and the microwave sensing device is in a stationary state.
- Figure 3B It is a waveform diagram of a probe signal when a person in motion is detected in the first embodiment of the microwave induction detecting device of the present invention.
- the amplitude of the IF signal fluctuations processed by the frequency conversion is far beyond the noise range, so that the probe generates a detection signal and triggers further actions of the subsequent modules.
- Figure 3C It is a waveform diagram of a probe signal when the first embodiment of the microwave induction detecting device of the present invention detects that the person within the armed range changes from motion to motion. It can be clearly observed in the oscilloscope that the amplitude of the corresponding detection signal fluctuation caused by the decrease in the speed of the human motion is reduced, thereby demonstrating that the present invention has an ability to effectively distribute the presence or absence of a moving object in the area.
- FIG. 3D is a waveform diagram of a probe signal detected by the first embodiment of the microwave induction detecting device of the present invention with micro-motion detected within the arming range.
- the micro-motion in the present invention, refers to small environmental changes caused by non-humans, such as swinging of leaves, swaying of curtains, etc., since the speed of motion is not within the detection range, the amplitude of the signal fluctuation is much smaller than that of The probe signal fluctuation caused by human activities, so the method can effectively identify human activities and non-human interference activities, thereby reducing the false positive rate.
- Figure 3E It is a probe signal waveform diagram of the first embodiment of the microwave induction detecting device of the present invention when a person within the armed range is detected to leave the detection range.
- the distance between the Doppler probe and the moving object is inversely proportional to the resonance amplitude of the probe signal, so the amplitude of the detection signal displayed on the oscilloscope is decreasing.
- the spatial motion trend of the moving object can be effectively determined.
- the remote transmission module 5 is newly added and electrically connected to the intelligent control module 3.
- the remote transmission module 5 can be wired or wirelessly transmitted.
- the remote client terminal issues a switch command of the alarm system and transmits the alarm signal to the client in real time.
- the remote transmission module 5 can adopt the communication modules of TCP/IP, 3G, Wi-Fi, GSM, GPRS, CDMA, etc. in the prior art, and the communication mode is optional.
- the remote client terminal includes a smart phone, a desktop computer, and a notebook. Computers, tablets, etc., only require the installation of a specific client application, without the need to add additional hardware devices, the compatibility is greatly enhanced, and the installation is convenient.
- FIG. 5 is a block diagram showing the hardware structure of a third embodiment of the microwave induction detecting device of the present invention.
- This third embodiment is modified on the basis of the second embodiment, incorporating the function expansion interface 6, and the personal authentication unit 61, the imaging unit 62, and the storage unit 63 connected thereto.
- the function expansion interface 6 is not limited to connecting the above three functional components, and can also add functions according to the needs of specific users.
- the personal authentication unit 61 includes fingerprint authentication, eyeball authentication, voice authentication, password authentication, etc., to cancel the false alarm action caused by the legitimate visitor; the camera unit 62 is configured to lock the target when the alarm is triggered or after the moving target enters the arming area.
- the image capturing unit can adopt a charge coupled component (Charge Networked monitoring products such as Coupled device, CCD), or IPCamera modules.
- the storage unit 63 belongs to an SD memory card (Secure Digital Memory) Card), Multimedia Card (MMC), XD Image Card (Extreme Digital-Picture Card) And CF card (Compact Flash Card, CF Any of the storage devices such as card) can also be stored on the cloud platform of the Internet.
- the dynamic or static image is stored in the storage unit 63 to provide reliable evidence for future judicial forensics, or to send the dynamic or static image to the client through the remote transmission unit. Determine whether to activate and deactivate the alarm device according to the actual situation.
- FIG. 6 is a schematic view showing the installation of the fourth embodiment of the microwave induction detecting device of the present invention.
- the adjustable detection angle is 0° to 140°, so that it is not sufficient for a specific security application, for example, a gate has both The windows of the room, the doors and windows are installed at different angles of the room, and each door and window may become a way for the intruder to enter the arming area.
- multiple Doppler probes can be combined into one security system, each probe monitoring a certain radius distance in a certain direction or angle to form a three-dimensional protection system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Radar Systems Or Details Thereof (AREA)
- Burglar Alarm Systems (AREA)
Abstract
一种微波感应探测方法及装置,涉及微波传感器应用技术领域。该方法通过微波感应探测装置,利用多普勒效应并分析接收信号波峰值与频率以判断是否有人对布防区域形成入侵行为,进而启动报警动作。该方法通过为微波传感探测器引入防干扰判断环节的方法,避免了非人体有效入侵行为所造成的频繁误报,提高了微波传感探测器的可靠性;同时,由于该方法对现有技术的改进可仅由将程序写入单片机来实现,无需额外添加硬件设备,避免了集成其他类型传感技术带来的复杂性,减小了安装成本。
Description
本发明涉及微波传感器应用技术领域,更具体地说,涉及一种用于安防的微波感应探测方法及装置。
随着微波半导体技术的规模化应用,微波技术的物理实现不仅十分简单、廉价,而且体积甚小,因此在安防领域,多普勒微波传感器已广泛应用于市场,其主动性探测技术避免了红外探头的耐候性差,有盲区距离近等缺点,且由于微波传感器输出信号中比红外含有更多的速度,强度等信息便于开发人员在软件上做更多的处理来提高报警器的抗干扰和防漏报的能力。微波入侵探测器的主要缺点是安装要求较高,如果安装不当,微波信号就会穿透装安装有窗户的墙壁而导致频繁的误报,如树叶、沙尘、雨、雪以及小动物等,无法判别人类的有效入侵行为。
本发明要解决的技术问题在于,针对现有技术微波感应探测器误报率过高的缺陷,提供一种能够判别人类有效入侵行为的微波感应探测方法。
本发明的目的还在于提供一种能够判别人类有效入侵行为的微波感应探测装置。
本发明解决其技术问题所采用的技术方案是,构造一种用于安防的微波感应探测方法,利用微波感应探测装置
判断布防区域是否存在入侵行为并做出相应警报,该微波感应探测方法包括以下步骤:
S1:使用多普勒探头(1)实时探测布防区域;
S2:判断所述布防区域内有无运动物体,若有则进入步骤S3,否则返回步骤S1;
S3:判断所述运动物体是否存在入侵行为,若是则进入步骤S4,否则返回步骤S1;
S4:触发报警器(4),使所述报警器(4)发出警报;
S5:判断入侵者是否离开,若是则进入步骤S6,否则返回步骤S4;
S6:判断离开的动作是否有效,若是则进入步骤S7,否则返回步骤S4;
S7:关闭报警器(4),返回步骤S1。
所述步骤S1包括以下操作:使用所述多普勒探头(1)向所述布防区域发射脉冲微波信号或连续波微波信号,同时使用所述多普勒探头(1)接收由所述布防区域内的物体反射回来的脉冲微波信号或连续波微波信号。
所述步骤S2包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并使用智能控制模块(3)记录所述中频信号的波峰值A,将所述波峰值A与预定的第一波峰阈值A
1比较,若A大于A1,则进入步骤S3,否则返回步骤S1。
所述步骤S3包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并使用所述智能控制模块(3)记录所述中频信号的波峰值A,
同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在预定的第一延迟时间内持续探测到大于所述第一波峰阈值的中频信号波峰值,而频率平均值处于区间[f1,f2]
中, 且分组中频信号波峰值的平均值呈现持续上升趋势,则判断所述运动物体存在入侵行为,进入步骤S4,否则返回步骤S1。
所述步骤S5包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,将所述波峰值A与预定的第二波峰阈值A
2比较,若A小于A2,且频率平均值处于区间[f1,f2]中,则进入步骤S6,否则返回步骤S4。
所述步骤S6包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并使用所述智能控制模块记录所述中频信号的波峰值A,
同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在预定的第二延迟时间内持续探测到小于所述第二波峰阈值的中频信号波峰值,且分组中频信号波峰值的平均值呈现持续下降趋势,则进入步骤S7,否则返回步骤S4。
本发明还提供一种用于安防的微波感应探测装置,用于安全防卫领域的智能探测和报警,该微波感应探测装置包括:
用于在布防区域内探测到移动目标时发送探测信号的多普勒探头(1);
用于接收多普勒探头(1)探测信号的接收模块(2);
用于根据中频信号幅值大小、变化趋势以及所述中频信号频率平均值所处区间判别布防区域是否满足报警条件的智能控制模块(3);以及
用于在智能控制模块(3)判断所述布防区域存在入侵行为时发出报警信号的报警器(4)。
所述微波感应探测装置还包括与所述智能控制模块(3)连接,用于实现远程客户端控制与报警的远程传输模块(5)。
所述微波感应探测装置还包括与所述智能控制模块(3)连接的扩展功能接口(6),以及与所述扩展功能接口(6)可分离地连接的个人认证单元(61),摄像单元(62)和存储单元(63)。
所述多普勒探头(1)的数量为多个,且分别具有不同的探测角度。
本发明通过为微波传感探测器引入防干扰判断环节的方法,避免了非人体有效入侵行为所造成的频繁误报,提高了微波传感探测器的可靠性;同时,由于本发明对现有技术的改进可仅由将程序写入单片机来实现,无需额外添加硬件设备,避免了集成其他类型传感技术,如三鉴探测所带来的复杂性,减小了安装成本。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 是本发明微波感应探测装置第一实施例的硬件结构框图;
图 2 是本发明微波感应探测方法实施例的工作流程图;
图 3A 是本发明微波感应探测装置第一实施例探测到布防范围内处于完全静止状态下的探头信号波形图;
图 3B 是本发明微波感应探测装置第一实施例探测到布防范围内有人运动时的探头信号波形图;
图 3C 是本发明微波感应探测装置第一实施例探测到布防范围内的人由运动变为不动时的探头信号波形图;
图 3D 是本发明微波感应探测装置第一实施例探测到布防范围内有微动的探头信号波形图;
图 3E 是本发明微波感应探测装置第一实施例探测到布防范围内的人离开探测范围时的探头信号波形图;
图 4 是本发明微波感应探测装置第二实施例的硬件结构框图;
图 5 是本发明微波感应探测装置第三实施例的硬件结构框图;
图 6 是本发明微波感应探测装置第四实施例的安装示意图。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1是 本发明微波感应探测装置第一实施例的硬件结构框图
。参见图1所示,微波感应探测装置包括依次电性连接的多普勒探头1,接收模块2,智能控制模块3以及报警器4,所述多普勒探头1包括产生微波信号的振荡器11,在一定的区域发出和接收微波信号的天线12,接收天线12收到的微波信号的接收器13,比较振荡器11发出信号频率和接收器13接收信号频率的混频器14,过滤高频杂波的低通滤波器15,放大中频信号的运算放大器16以及发出报警信号的信号发生器17。天线12的输入端和输出端分别与振荡器11和接收器13相连,振荡器11和接收器13的输出端分别与混频器14的输入端相连接,混频器14的输出端依次经过低通滤波器15、运算放大器16与信号发生器17的输入端相连接,信号发生器17的输出端向接收模块2发出报警指令信号。基于上述结构,振荡器11产生探测用微波信号,所述微波信号可以是连续波微波信号,也可以是脉冲微波信号,通过天线12向布防区域内发射,微波在遇到物体后会发生反射,接收器13将天线12接收到的反射波输入混频器14,混频器14将接受的反射波信号和振荡器11的原始发射信号进行混合计算原始信号跟接收信号的频率差值,频率器15将混合波信号中的噪声信号过滤后,由运算放大器16将频率差值放大,判断发射频率跟接收频率是否相同,从而判断布防区域内是否有运动物体;进一步的,本发明同时采用根据中频信号幅值来判别布防区域内是否存在运动物体,以及运动物体是否有入侵行为,
以下详细说明本发明微波感应探测装置的具体信号处理和探测方法。
图2是 本发明微波感应探测方法实施例的工作流程图 。包括以下步骤:
S1.对智能控制模块3中的单片机进行初始化,然后向多普勒探头1提供电源,多普勒探头1进入工作状态,向布防区域发射脉冲微波信号或连续波微波信号并接收由探测物体反射的该脉冲微波信号或连续波微波信号;
S2.判断所述布防区域内有无运动物体,若有则进入步骤S3,否则返回步骤S1;所述多普勒探头1以预定的采样频率f
S对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,将所述波峰值A与预定的第一波峰阈值A1比较,若A大于A1,则进入步骤S3,否则返回步骤S1,在本实施例中,设定A1为2V;一般来说,探头探测范围内无运动物体时中频信号维持在噪声范围内,当有物体运动时,波峰值会根据运动物体离探头的远近及运动幅度的变化而不断变换,通常情况下运动物体离探头越近波峰值越大,物体运动得越快频率越高。可以预先设定一个大于噪声范围的第一波峰阈值A
1,一旦探测到大于所述第一波峰阈值A1的波峰值,则判定布防区域的预设半径内开始出现运动物体;
S3.
进行防干扰判断,即所述运动物体是否存在入侵行为,若是则进入步骤S4,否则返回步骤S1;所述多普勒探头1以预定的采样频率fS对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,
同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在第一预设延迟时间内持续探测到大于预定的第一波峰阈值的中频信号波峰值,而频率平均值在区间[f1,f2],
且分组中频信号波峰值的平均值呈现持续上升趋势,则所述运动物体存在入侵行为,进入步骤S4,否则返回步骤S1。人类的移动速度通常局限在一个特定的区间,这样可以明显区分非人类活动,如昆虫的飞行或是窗帘的抖动。根据多普勒效应的定义,接收频率等于观察者移动速度与发射源移动速度之商乘以发射频率,因此,由二者相对速度可以推断出人类活动的对应频率区间,经运算放大器16放大后,其频率平均值约10Hz-35Hz,由此排除非人类活动可能性;更进一步地,通过对分组中频信号波峰值进行分析,若其波峰值呈上升趋势,则判定人体正在持续接近探测器,即入侵行为,从而排除了人体其他行为所造成的误报,极大提高了本发明在实际应用中的可靠性;
S4.智能控制模块3发出警报指令触发报警器4,使所述报警器4发出警报;
S5.
判断入侵者是否离开,若是则进入步骤S6,否则返回步骤S4;所述多普勒探头1以预定的采样频率fS对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,将所述波峰值A与第二波峰阈值A2比较,若A小于A2,且频率平均值在区间[f1,f2]
中,则进入步骤S6,否则返回步骤S4,本实施例中,A2为1.5V;在上述过程采用原理与S2、S3相同,实际应用中,会将A2值设定的比A1略小,即警戒范围小于报警范围,程序判定移动物体退出警戒范围,且通过接收频率确认该移动物体是活动人体时,进入步骤S6;
否则,若分析期间出现多个大于预设值(1.5V)的波峰值时或采样波峰值小于300个或分组平均值不是持续下降趋势,报警器4都会持续响应。
S6.
判断离开的动作是否有效,若是则进入步骤S7,否则返回步骤S4;所述多普勒探头1以预定的采样频率fS对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在第二预设延迟时间内持续探测到小于第二波峰阈值的中频信号波峰值,且分组中频信号波峰值的平均值呈现持续下降趋势,则进入步骤S7,否则返回步骤S4;通过对分组中频信号波峰值进行分析,若其波峰值呈下降趋势,则判定入侵者正在持续远离探测器,即有效的离开动作,从而排除了入侵者无效离开动作所造成的漏报,如在布防范围内多次折返,否则,若分析期间出现多个大于预设值(1.5V)的波峰值时或采样波峰值小于300个或分组平均值不是持续下降趋势,报警器4都会持续响应;
S7.关闭报警器4,返回步骤S1。
在上述方法流程中,可根据实际需要调整预定波峰阈值A1与A2,从而改变布防半径,使其在 0.3-18
米内可调;另一方面,对布防区域的监测可选择脉冲微波信号或者连续波微波信号,并根据安防需求调整采样频率,达到减小功耗的目的。
这里需要说明的是,本实施例中的第一预设延迟时间为1s,且不同型号多普勒探头的中频信号的频率范围也不相同,例如2.4GHz的多普勒探头,对应的人体运动产生的中频信号的频率为1Hz-8Hz;5.8GHz的多普勒探头,对应人体运动产生的中频信号的频率范围为5.5Hz-20Hz;24GHz的多普勒探头,对应的人体运动产生的中频信号的频率范围为15Hz-80Hz;本实施例中采用10.525GHz多普勒探头,其对应的人体运动产生的中频信号的频率为10Hz-35Hz,也就是说,本实施例中,若在该时段内持续存在幅度值大于预定的第一波峰阈值A
1,且频率又在10Hz-35Hz之间的微波信号,则说明上述运动物体为有效人体活动,同样的用其它相应频段的微波多普勒探头来做相同的人体运动判定也在本发明的保护范围内。
图 3A
是本发明微波感应探测装置第一实施例探测到布防范围内处于完全静止状态下的探头信号波形图。当没有运动物体接近时,所述波形图的中频信号维持在噪声范围内,即探头不产生探测信号,微波感应装置处于静止状态。
图 3B
是本发明微波感应探测装置第一实施例探测到布防范围内有人运动时的探头信号波形图。经变频处理的中频信号波动幅值远超噪声范围,从而使探头产生探测信号,触发后续模块的进一步动作。
图 3C
是本发明微波感应探测装置第一实施例探测到布防范围内的人由运动变为不动时的探头信号波形图。可以在示波器中明显地观察到由人运动速度降低导致的对应探测信号波动幅值减小的现象,从而证明本发明具有可以有效区分布防区域内是否存在移动物体的能力。
图 3D 是本发明微波感应探测装置第一实施例探测到布防范围内有微动的探头信号波形图。
所述微动,在本发明中指的主要是由非人类造成的细小环境变化,如树叶的摆动,窗帘的摇曳等,由于其运动速度对应频率不在探测范围内,因此其信号波动幅度远小于由人类活动所造成的探头信号波动,因此该方法能有效识别人类活动与非人类干扰活动,从而减少误报率。
图 3E
是本发明微波感应探测装置第一实施例探测到布防范围内的人离开探测范围时的探头信号波形图。虽然运动物体保持一定的运动速度,但由于
多普勒探头和运动物体之间的距离,与探头信号的谐振幅度成反比例关系,因此示波器上显示的探测信号幅度呈下降趋势。结合对差频信号的分析,可以有效判定移动物体的空间运动趋势。
图4为 本发明微波感应探测装置第二实施例的硬件结构框图
,该第二实施例的模块组成架构与第一实施例相同,主要差别在于新增远程传输模块5并与智能控制模块3电性连接,该远程传输模块5可以采用有线或者无线传输的方式,由远程客户终端发出报警系统的开关指令,以及将报警信号实时传递至客户端。所述远程传输模块5可采用现有技术中的TCP/IP、3G、Wi-Fi、GSM、GPRS、CDMA等通信模块,通信方式可选,所述远程客户终端包括智能手机,台式电脑,笔记本电脑,平板电脑等,只要求安装特定的客户端应用即可,无需额外添加相应的硬件设备,兼容性大大增强,安装使用方便。
图5为 本发明微波感应探测装置第三实施例的硬件结构框图
,该第三实施例是在第二实施例的基础上进行修改,加入了功能扩展接口6,以及与之相连接的个人认证单元61、摄像单元62和存储单元63。功能扩展接口6不仅限于连接上述三个功能组件,还可根据具体用户的需要增加功能。个人认证单元61包括指纹认证、眼球认证、声音认证、密码认证等,用以解除合法访问者所引起的误报动作;摄像单元62用于在触发警报时,或移动目标进入布防区域后锁定目标并拍摄其动态或静态影像,所述影像拍摄单元可采用电荷耦合元件(Charge
Coupled device, CCD),或者IPCamera模块等网络化监控产品。存储单元63 属于SD存储卡(Secure Digital Memory
Card)、多媒体卡(Multimedia Card, MMC)、XD图像卡(Extreme Digital-Picture Card)
以及CF卡(Compact Flash Card, CF
card)等存储设备中的任意一种,也可以储存于互联网的云端平台。所述拍摄单元对运动目标进行拍摄后,将动态或者静态影像存储至存储单元63之中,为日后司法取证提供可靠证据,或者是将动态或者静态影像通过远程传输单元发送至客户端,由客户根据实际情况决定是否启动以及关闭报警装置。
图6为 本发明微波感应探测装置第四实施例的安装示意图
。由于本发明装置中多普勒探头的天线是具有方向性的,其可调整探测张角为0°~140°,因此特定的安保应用场合来说是不足够的,比如,一个同时具有门和窗户的房间,其门和窗户安装在房间的不同角度上,而每个门和窗户都可能成为入侵者进入布防区域的途径。为此,可以将多个多普勒探头组成一个安防系统,每个探头在一定的方向或角度内监控一定的半径距离,以此组成一个立体防护体系。对于与人体运动速度相仿的运动物体,如体积较大的家养宠物犬,无法通过本发明方法的防干扰程序判断,因此,在安装时可以考虑将探头置于1.5m的高度,以此避免上述非有效人体活动,或者是未成年儿童造成的误报。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。
Claims (10)
- 一种用于安防的微波感应探测方法,利用微波感应探测装置判断布防区域是否存在入侵行为并做出相应警报,其特征在于,所述微波感应探测方法包括以下步骤:S1:使用多普勒探头(1)实时探测布防区域;S2:判断所述布防区域内有无运动物体,若有则进入步骤S3,否则返回步骤S1;S3:判断所述运动物体是否存在入侵行为,若是则进入步骤S4,否则返回步骤S1;S4:触发报警器(4),使所述报警器(4)发出警报;S5:判断入侵者是否离开,若是则进入步骤S6,否则返回步骤S4;S6:判断离开的动作是否有效,若是则进入步骤S7,否则返回步骤S4;S7:关闭报警器(4),返回步骤S1。
- 根据权利要求1所述的方法,其特征在于,所述步骤S1包括以下操作:使用所述多普勒探头(1)向所述布防区域发射脉冲微波信号或连续波微波信号,同时使用所述多普勒探头(1)接收由所述布防区域内的物体反射回来的脉冲微波信号或连续波微波信号。
- 根据权利要求1所述的方法,其特征在于,所述步骤S2包括以下操作:使用所述多普勒探头(1)以预定的采样频率f S对经变频处理的中频信号进行采样,并使用智能控制模块(3)记录所述中频信号的波峰值A,将所述波峰值A与预定的第一波峰阈值A1比较,若A大于A1,则进入步骤S3,否则返回步骤S1。
- 根据权利要求1所述的方法,其特征在于,所述步骤S3包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并使用所述智能控制模块(3)记录所述中频信号的波峰值A, 同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在预定的第一延迟时间内持续探测到大于所述第一波峰阈值的中频信号波峰值,而频率平均值处于区间[f1,f2]中, 且分组中频信号波峰值的平均值呈现持续上升趋势,则判断所述运动物体存在入侵行为,进入步骤S4,否则返回步骤S1。
- 根据权利要求1所述的方法,其特征在于,所述步骤S5包括以下操作:使用所述多普勒探头(1)以预定的采样频率f S对经变频处理的中频信号进行采样,并记录所述中频信号的波峰值A,将所述波峰值A与预定的第二波峰阈值A2比较,若A小于A2,且频率平均值处于区间[f1,f2]中,则进入步骤S6,否则返回步骤S4。
- 根据权利要求1所述的方法,其特征在于,所述步骤S6包括以下操作:使用所述多普勒探头(1)以预定的采样频率fS对经变频处理的中频信号进行采样,并使用所述智能控制模块记录所述中频信号的波峰值A,同时,按照时间顺序对所述中频信号进行分组,并计算得出每组中频信号波峰值的平均值,若在预定的第二延迟时间内持续探测到小于所述第二波峰阈值的中频信号波峰值,且分组中频信号波峰值的平均值呈现持续下降趋势,则进入步骤S7,否则返回步骤S4。
- 一种微波感应探测装置,用于安全防卫领域的智能探测和报警,其特征在于, 该微波感应探测装置包括:用于在布防区域内探测到移动目标时发送探测信号的多普勒探头(1);用于接收多普勒探头(1)探测信号的接收模块(2);用于根据中频信号幅值大小、变化趋势以及所述中频信号频率平均值所处区间判别布防区域是否满足报警条件的智能控制模块(3);以及用于在智能控制模块(3)判断所述布防区域存在入侵行为时发出报警信号的报警器(4)。
- 根据权利要求7所述的微波感应探测装置,其特征在于,所述微波感应探测装置还包括与所述智能控制模块(3)连接,用于实现远程客户端控制与报警的远程传输模块(5)。
- 根据权利要求8所述的微波感应探测装置,其特征在于,所述微波感应探测装置还包括与所述智能控制模块(3)连接的扩展功能接口(6),以及与所述扩展功能接口(6)可分离地连接的个人认证单元(61),摄像单元(62)和存储单元(63)。
- 根据权利要求7所述的微波感应探测装置,其特征在于,所述多普勒探头(1)的数量为多个,且分别具有不同的探测角度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088975 WO2015085486A1 (zh) | 2013-12-10 | 2013-12-10 | 用于安防的微波感应探测方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088975 WO2015085486A1 (zh) | 2013-12-10 | 2013-12-10 | 用于安防的微波感应探测方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015085486A1 true WO2015085486A1 (zh) | 2015-06-18 |
Family
ID=53370456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/088975 WO2015085486A1 (zh) | 2013-12-10 | 2013-12-10 | 用于安防的微波感应探测方法及装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015085486A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109031220A (zh) * | 2018-07-23 | 2018-12-18 | 惠州市华阳光电技术有限公司 | 一种雷达抗干扰滤波方法及其电路 |
CN109961600A (zh) * | 2017-12-22 | 2019-07-02 | 中核核电运行管理有限公司 | 一种快速移动布防入侵探测的方法及系统 |
CN111665483A (zh) * | 2020-05-07 | 2020-09-15 | 隔空(上海)智能科技有限公司 | 多普勒雷达的运动目标检测方法 |
CN113640898A (zh) * | 2021-08-16 | 2021-11-12 | 浙江乾行信息技术股份有限公司 | 一种室内隐私区域用人员定位系统 |
CN114257466A (zh) * | 2021-12-20 | 2022-03-29 | 黄冈师范学院 | 一种多频率协作的智能家居控制方法 |
CN116324520A (zh) * | 2022-11-11 | 2023-06-23 | 武汉领普科技有限公司 | 光通器及包括其的微波感应装置、方法、系统及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080036595A1 (en) * | 2006-08-11 | 2008-02-14 | Trident Security Concepts, Llc | Self-contained security system |
CN101151552A (zh) * | 2006-01-06 | 2008-03-26 | 松下电工株式会社 | 移动对象检测设备 |
CN201047971Y (zh) * | 2006-12-29 | 2008-04-16 | 童建明 | 电力架空线防护报警装置 |
CA2639435A1 (en) * | 2007-09-26 | 2009-03-26 | Honeywell International Inc. | Direction of travel motion detector with automatic gain control |
US20090224913A1 (en) * | 2007-09-26 | 2009-09-10 | Honeywell International, Inc. | Direction of travel motion sensor |
CN101900835A (zh) * | 2009-05-27 | 2010-12-01 | 霍尼韦尔国际公司 | 自适应微波安防传感器 |
CN103258400A (zh) * | 2013-04-22 | 2013-08-21 | 常州工学院 | 毫米波无线传感周界防入侵系统及其方法 |
-
2013
- 2013-12-10 WO PCT/CN2013/088975 patent/WO2015085486A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101151552A (zh) * | 2006-01-06 | 2008-03-26 | 松下电工株式会社 | 移动对象检测设备 |
US20080036595A1 (en) * | 2006-08-11 | 2008-02-14 | Trident Security Concepts, Llc | Self-contained security system |
CN201047971Y (zh) * | 2006-12-29 | 2008-04-16 | 童建明 | 电力架空线防护报警装置 |
CA2639435A1 (en) * | 2007-09-26 | 2009-03-26 | Honeywell International Inc. | Direction of travel motion detector with automatic gain control |
US20090224913A1 (en) * | 2007-09-26 | 2009-09-10 | Honeywell International, Inc. | Direction of travel motion sensor |
CN101900835A (zh) * | 2009-05-27 | 2010-12-01 | 霍尼韦尔国际公司 | 自适应微波安防传感器 |
CN103258400A (zh) * | 2013-04-22 | 2013-08-21 | 常州工学院 | 毫米波无线传感周界防入侵系统及其方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109961600A (zh) * | 2017-12-22 | 2019-07-02 | 中核核电运行管理有限公司 | 一种快速移动布防入侵探测的方法及系统 |
CN109031220A (zh) * | 2018-07-23 | 2018-12-18 | 惠州市华阳光电技术有限公司 | 一种雷达抗干扰滤波方法及其电路 |
CN111665483A (zh) * | 2020-05-07 | 2020-09-15 | 隔空(上海)智能科技有限公司 | 多普勒雷达的运动目标检测方法 |
CN111665483B (zh) * | 2020-05-07 | 2023-08-15 | 隔空(上海)智能科技有限公司 | 多普勒雷达的运动目标检测方法 |
CN113640898A (zh) * | 2021-08-16 | 2021-11-12 | 浙江乾行信息技术股份有限公司 | 一种室内隐私区域用人员定位系统 |
CN113640898B (zh) * | 2021-08-16 | 2024-01-30 | 浙江乾行信息技术股份有限公司 | 一种室内隐私区域用人员定位系统 |
CN114257466A (zh) * | 2021-12-20 | 2022-03-29 | 黄冈师范学院 | 一种多频率协作的智能家居控制方法 |
CN116324520A (zh) * | 2022-11-11 | 2023-06-23 | 武汉领普科技有限公司 | 光通器及包括其的微波感应装置、方法、系统及存储介质 |
CN116324520B (zh) * | 2022-11-11 | 2024-04-19 | 武汉领普科技有限公司 | 光通器及包括其的微波感应装置、方法、系统及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015085486A1 (zh) | 用于安防的微波感应探测方法及装置 | |
Surantha et al. | Design of smart home security system using object recognition and PIR sensor | |
CN104700543B (zh) | 用于安防的微波感应探测方法及装置 | |
CN203773681U (zh) | 配电房安全防范系统 | |
US20150279181A1 (en) | Security monitoring apparatus and method using correlation coefficient variation pattern of sound field spectrum | |
WO2012119253A1 (en) | Area monitoring method and system | |
CN203931100U (zh) | 检测人体跌倒的终端 | |
CN203882422U (zh) | 智能安防系统 | |
CN106205025A (zh) | 一种智能化安防管理系统 | |
MX2007013013A (es) | Sistema y metodo de verificacion de humanos a base de videos. | |
WO2017146313A1 (ko) | 사물인터넷과 광대역 레이더 센싱 기술을 이용한 가정용 인텔리전트 스마트 모니터링시스템 | |
KR20150114373A (ko) | 음장 스펙트럼의 상관계수의 변화 패턴을 이용한 보안 감시 장치 및 그것의 보안 감시 방법 | |
CN109754579A (zh) | 一种专用于园区的智能安防控制系统及方法 | |
CA2840664C (en) | Apparatus and method for rapid human detection with pet immunity | |
CN203299946U (zh) | 一种通过互联网实现的家庭防盗监测装置 | |
Qiang | Engineering design of electronic fence system based on intelligent monitoring and wireless local area network | |
CN106297172A (zh) | 一种基于移动互联网的机器人报警方法 | |
CN105890770B (zh) | 基于热释电技术的人体状态检测装置的人体状态检测方法 | |
CN116013009A (zh) | 基于物联网的智能门窗报警方法、系统及可读存储介质 | |
KR101142213B1 (ko) | 침입 감지기 | |
CN108898787A (zh) | 一种基于物联网的家庭安防系统 | |
CN205334673U (zh) | 一种物联网智能云终端 | |
JPH09138894A (ja) | 防犯防災装置 | |
KR20180110821A (ko) | 출입구 감시 장치 | |
CN207946900U (zh) | 一种物联网多源事件融合处理的防盗报警系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13899220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13899220 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13899220 Country of ref document: EP Kind code of ref document: A1 |