[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015083587A1 - 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
WO2015083587A1
WO2015083587A1 PCT/JP2014/081173 JP2014081173W WO2015083587A1 WO 2015083587 A1 WO2015083587 A1 WO 2015083587A1 JP 2014081173 W JP2014081173 W JP 2014081173W WO 2015083587 A1 WO2015083587 A1 WO 2015083587A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
semiconductor
bonding
adhesive layer
curing accelerator
Prior art date
Application number
PCT/JP2014/081173
Other languages
English (en)
French (fr)
Inventor
幸平 竹田
江南 俊夫
畠井 宗宏
さやか 脇岡
隆昌 河野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014559017A priority Critical patent/JPWO2015083587A1/ja
Publication of WO2015083587A1 publication Critical patent/WO2015083587A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8101Cleaning the bump connector, e.g. oxide removal step, desmearing
    • H01L2224/81011Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9221Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an adhesive for bonding semiconductors that is excellent in flux properties and connection reliability and has high storage stability.
  • the present invention also relates to a method for manufacturing a semiconductor device using the semiconductor bonding adhesive, and a semiconductor device manufactured using the semiconductor bonding adhesive.
  • flip-chip mounting is attracting attention and rapidly spreading as a method for mounting a semiconductor chip on a circuit board.
  • flip chip mounting a large number of bump electrodes made of solder or the like are directly bonded onto the circuit board at a time, so the mounting area can be reduced compared to conventional wire bonding methods, electrical characteristics are good, and mold sealing is not required And so on.
  • the present inventors paid attention to a flux activator contained in a paste-like or film-like adhesive in order to improve connection reliability.
  • the flux activator functions to remove the oxide film on the solder surface of the bump electrode provided on the semiconductor chip and to wet and spread the solder to the bonded portion made of a metal such as copper, thereby bonding them. If the effect of the flux activator (flux property) is insufficient, the solder shape of the joint portion becomes distorted and the connection reliability is lowered. On the other hand, improvement in connection reliability can be expected by increasing the flux property.
  • the present inventors examined using an organic acid having excellent flux properties as a flux activator. However, organic acids have the disadvantage of reducing the storage stability of paste-like or film-like adhesives, and pastes or film-like adhesives containing organic acids have increased viscosity over time. The effect of wetting and spreading the solder may be reduced.
  • An object of this invention is to provide the adhesive for semiconductor joining which is excellent in flux property and connection reliability, and has high storage stability.
  • Another object of the present invention is to provide a semiconductor device manufacturing method using the semiconductor bonding adhesive, and a semiconductor device manufactured using the semiconductor bonding adhesive.
  • the present invention is an adhesive for semiconductor bonding containing an epoxy compound, a curing agent, a curing accelerator and a flux activator, wherein the curing accelerator includes an amine compound, and the flux activator is an organic acid flux activator.
  • the amount of the curing accelerator is 2 to 20 parts by weight and the amount of the flux activator is 100 parts by weight with respect to 100 parts by weight of the total of the epoxy group-containing components contained in the semiconductor bonding adhesive. It is a semiconductor bonding adhesive having a curing accelerator content of 40 to 500 parts by weight. The present invention is described in detail below.
  • the present inventors use an amine compound as a curing accelerator in a semiconductor bonding adhesive containing an epoxy compound, a curing agent, a curing accelerator, and a flux activator, regardless of the form of a paste, a film, and the like, and By using an organic acid flux activator as the flux activator and adjusting the blending amount of the curing accelerator to a specific range, it is excellent in flux properties and connection reliability, but also has high storage stability.
  • the present inventors have found that it can be used as an adhesive and have completed the present invention.
  • the flux property means a function of removing an oxide film on the surface of the solder, spreading the solder to a bonded portion made of a metal such as copper, and bonding the solder.
  • the form of the adhesive for semiconductor bonding of the present invention is not particularly limited, and may be a paste or a film.
  • the adhesive for semiconductor bonding of the present invention contains an epoxy compound.
  • the epoxy compound is not particularly limited.
  • bisphenol type epoxy compounds such as bisphenol A type, bisphenol F type, bisphenol AD type, and bisphenol S type
  • phenol novolac Type novolak type epoxy compound such as cresol novolak type, resorcinol type epoxy compound, aromatic epoxy compound such as trisphenolmethane triglycidyl ether, naphthalene type epoxy compound, fluorene type epoxy compound, dicyclopentadiene type epoxy compound, polyether modified Examples include epoxy compounds, benzophenone-type epoxy compounds, aniline-type epoxy compounds, NBR-modified epoxy compounds, CTBN-modified epoxy compounds, and hydrogenated products thereof. Among these, an aniline type epoxy compound is preferable because quick curability is easily obtained. These epoxy compounds may be used independently and may use 2 or more types together.
  • aniline type epoxy compounds commercially available products include, for example, EP-3900S, EP-3950S (manufactured by ADEKA) and the like.
  • the adhesive for semiconductor bonding of this invention may contain the episulfide compound in addition to the said epoxy compound.
  • the episulfide compound is not particularly limited as long as it has an episulfide group, and examples thereof include compounds in which the oxygen atom of the epoxy group of the epoxy compound is substituted with a sulfur atom.
  • Specific examples of the episulfide compound include bisphenol type episulfide compounds (compounds in which the oxygen atom of the epoxy group of the bisphenol type epoxy compound is substituted with a sulfur atom), hydrogenated bisphenol type episulfide compounds, dicyclopentadiene type episulfide compounds, and biphenyl.
  • Type episulfide compound phenol novolac type episulfide compound, fluorene type episulfide compound, polyether modified episulfide compound, butadiene modified episulfide compound, triazine episulfide compound, naphthalene type episulfide compound and the like. Of these, naphthalene type episulfide compounds are preferred. These episulfide compounds may be used alone or in combination of two or more. The substitution from oxygen atoms to sulfur atoms may be in at least a part of the epoxy group, or the oxygen atoms of all epoxy groups may be substituted with sulfur atoms.
  • examples of commercially available products include YL-7007 (hydrogenated bisphenol A type episulfide compound, manufactured by Mitsubishi Chemical Corporation).
  • the said episulfide compound is easily synthesize
  • the epoxy compound is not particularly limited, and examples thereof include an epoxy resin having a softening point of 150 ° C. or lower, an epoxy resin that is liquid or crystalline solid at room temperature, and the like. . More specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin and the like can be mentioned. These epoxy compounds may be used independently and may use 2 or more types together.
  • the epoxy resin which has a polycyclic hydrocarbon skeleton in a principal chain is also preferable.
  • an epoxy resin having the above-mentioned polycyclic hydrocarbon skeleton in the main chain it can be made a cured product that is rigid and has excellent mechanical strength and heat resistance because it inhibits the movement of the molecule. Since it becomes low, it can be set as the hardened
  • the epoxy resin having the polycyclic hydrocarbon skeleton in the main chain is not particularly limited, and examples thereof include dicyclopentadiene type epoxy resins such as dicyclopentadiene dioxide and phenol novolac epoxy resins having a dicyclopentadiene skeleton, and 1-glycidyl.
  • Naphthalene 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidylnaphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene 1,2,5,6-tetraglycidylnaphthalene and other naphthalene type epoxy resins, tetrahydroxyphenylethane type epoxy resins, tetrakis (glycidyloxyphenyl) ethane, 3,4-epoxy-6-methylcyclohexylmethyl-3, - epoxy-6-methylcyclohexane carbonate, and the like.
  • These epoxy resins having a polycyclic hydrocarbon skeleton in the main chain may be used alone or in combination of two or more. Of these, dicyclopentadiene dioxide is preferable.
  • the adhesive for semiconductor bonding of the present invention when the adhesive for semiconductor bonding of the present invention is in the form of a film, the adhesive for semiconductor bonding of the present invention further includes a polymer compound having a functional group capable of reacting with the epoxy compound (hereinafter simply referred to as a polymer compound). May be included).
  • the polymer compound serves as a film forming component.
  • cured material of the adhesive agent for semiconductor joining has toughness by containing the said high molecular compound, and can express the outstanding impact resistance.
  • the said high molecular compound is not specifically limited, For example, the high molecular compound etc. which have an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group etc. are mentioned.
  • the adhesive for semiconductor bonding of the present invention may further contain a polymer compound having an epoxy group.
  • the cured product of the adhesive for semiconductor bonding has excellent mechanical strength, heat resistance and moisture resistance derived from the epoxy compound, and the polymer having the epoxy group.
  • the excellent toughness derived from the compound high joint reliability and connection reliability can be expressed.
  • the polymer compound having an epoxy group is not particularly limited as long as it is a polymer compound having an epoxy group at the terminal and / or side chain (pendant position).
  • the adhesive for semiconductor bonding of the present invention contains a curing agent, and further contains a curing accelerator for the purpose of adjusting the curing speed and the physical properties of the cured product.
  • the said hardening accelerator contains an amine compound (henceforth an amine type hardening accelerator). Since the adhesive for semiconductor bonding of the present invention contains the amine compound, it has high storage stability even if it contains an organic acid flux activator as described later. In addition, even if it contains the said amine compound, when it does not contain an organic acid flux activator, the storage stability of the adhesive for semiconductor joining falls. That is, by including both the amine compound and the organic acid flux activator, the semiconductor bonding adhesive of the present invention has high storage stability.
  • the amine-based curing accelerator is not particularly limited as long as it is an amine compound that acts as a curing accelerator for the epoxy compound, and examples thereof include dicyandiamide, modified aliphatic amine, amine adduct, microcapsule type amine, and imidazole. . These amine type hardening accelerators may be used independently and may use 2 or more types together.
  • the amine-based curing accelerator is not particularly limited as long as it is an amine compound that acts as a curing accelerator for the epoxy compound, and examples thereof include imidazole-based curing accelerators and tertiary amine-based curing accelerators. Of these, imidazole curing accelerators are preferable. Since the imidazole-based curing accelerator can easily control the reaction system, it is easy to adjust the curing speed and the physical properties of the cured product.
  • the imidazole curing accelerator is not particularly limited.
  • 1-cyanoethyl-2-phenylimidazole in which the 1-position of imidazole is protected with a cyanoethyl group, or an imidazole compound in which basicity is protected with isocyanuric acid (trade name “2MA- OK ”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), liquid imidazole (trade name“ FUJICURE 7000 ”, manufactured by T & K TOKA), 2-ethyl-4-methylimidazole, 1-methylimidazole, 1-cyanoethyl-2-ethyl-4- Methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl
  • the lower limit of the blending amount of the curing accelerator is 2 parts by weight and the upper limit is 20 parts by weight with respect to a total of 100 parts by weight of the components having an epoxy group contained in the semiconductor bonding adhesive. Parts, and a preferred upper limit is 15 parts by weight, and a more preferred upper limit is 10 parts by weight.
  • the sum total of the component which has an epoxy group contained in the adhesive agent for semiconductor joining means the sum total of the component which has epoxy groups, such as the high molecular compound which has an epoxy compound mentioned above, and an epoxy group, for example.
  • the blending amount of the curing accelerator is such that the lower limit with respect to 100 parts by weight of the flux activator is 40 parts by weight, the upper limit is 500 parts by weight, the preferred lower limit is 50 parts by weight, and the preferred upper limit is 200 parts by weight.
  • the said hardening accelerator contains an amine compound
  • the said hardening agent and the said hardening accelerator may contain the non-amine compound further.
  • the non-amine compound is called a non-amine curing agent
  • the curing accelerator contains a non-amine compound
  • the non-amine compound is called a non-amine curing accelerator.
  • the non-amine curing agent is not particularly limited, and examples thereof include an acid anhydride curing agent, a phenol curing agent, and a cationic catalyst curing agent. Of these, acid anhydride curing agents are preferred. Since the acid anhydride-based curing agent has a high curing rate, the use of the acid anhydride-based curing agent can increase the rapid curability of the adhesive for semiconductor bonding and effectively suppress voids.
  • the acid anhydride curing agent is not particularly limited.
  • phthalic acid anhydride trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bisanhydro trimellitate, glycerol tris.
  • Anhydrotrimellitate methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methylnadic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 5- ( 2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, dodecenyl succinic anhydride, polyazeline acid anhydride , Polydodecanedioic anhydride Chlorendic anhydride, and the like.
  • These acid anhydride curing agents may be used alone or in combination of two or more.
  • curing agent is not specifically limited,
  • the preferable minimum with respect to the total amount of the epoxy group contained in the adhesive agent for semiconductor joining is 60 equivalent, and a preferable upper limit is 110 equivalent.
  • the blending amount of the non-amine curing accelerator is not particularly limited.
  • a preferable lower limit with respect to a total of 100 parts by weight of the curing agent contained in the semiconductor bonding adhesive is 1 part by weight,
  • a preferred upper limit is 20 parts by weight.
  • a combination of the curing agent and the curing accelerator may be used.
  • a combination of the curing agent and the curing accelerator a combination of the non-amine curing agent and the amine curing accelerator is more preferable, and a combination of the acid anhydride curing agent and the imidazole curing accelerator. Is particularly preferred.
  • the acid anhydride curing agent and the imidazole curing accelerator in combination, a cured product having excellent heat resistance can be obtained.
  • the adhesive for semiconductor bonding of the present invention contains a flux activator.
  • the flux activator is an organic acid flux activator. Since the adhesive for semiconductor bonding of the present invention contains the organic acid flux activator, it has excellent flux properties, and the connection reliability of the bonded portion is improved.
  • the organic acid flux activator is not particularly limited, and examples thereof include carboxylic acids such as glutaric acid and succinic acid. These organic acid flux activators may be used alone or in combination of two or more.
  • the blending amount of the organic acid flux activator is not particularly limited, but a preferable lower limit with respect to a total of 100 parts by weight of the components having an epoxy group contained in the adhesive for semiconductor bonding is 0.5 parts by weight, and a preferable upper limit is 15 parts by weight. It is. If the blending amount is less than 0.5 part by weight, the flux property of the adhesive for semiconductor bonding is lowered, so that the solder shape of the bonded part may be distorted, and the connection reliability cannot be sufficiently improved. There is. When the blending amount exceeds 15 parts by weight, the storage stability of the adhesive for semiconductor bonding may be lowered, and when time passes, the viscosity may increase or the effect of wetting and spreading the solder may be reduced. is there. A more preferred lower limit of the amount is 1.0 part by weight, and a more preferred upper limit is 10 parts by weight.
  • the adhesive for semiconductor bonding of the present invention may contain an inorganic filler as necessary.
  • an inorganic filler By using the said inorganic filler, the mechanical strength and heat resistance of hardened
  • the inorganic filler is not particularly limited, and examples thereof include inorganic fillers made of silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, magnesium oxide, zinc oxide and the like. Of these, spherical silica is preferred because of its excellent fluidity.
  • the compounding quantity of the said inorganic filler is not specifically limited, The preferable minimum in the adhesive agent for semiconductor joining is 20 weight%, and a preferable upper limit is 70 weight%.
  • the adhesive for semiconductor bonding of the present invention is a general resin such as an epoxy resin having a (meth) acryloyl group, an acrylic resin, a polyfunctional (meth) acrylate compound, polyimide, polyamide, or phenoxy resin, if necessary. And may contain additives such as a silane coupling agent, a titanium coupling agent, a thickener, an antifoaming agent, and rubber particles.
  • the thickness of the adhesive layer made of the adhesive for semiconductor bonding of the present invention is not particularly limited, and is 50 to 150% with respect to the height of the bump electrode. Although a preferable lower limit is 5 ⁇ m, a preferable upper limit is 100 ⁇ m.
  • the film is a support type film having a base material if it has an adhesive layer made of the adhesive for semiconductor bonding of the present invention.
  • it may be a non-support type film having no base material.
  • the said base material is not specifically limited, For example, the film etc. which consist of a polyethylene terephthalate (PET), a polycarbonate, polymethyl methacrylate, a polyethylene naphthalate, a polybutylene terephthalate, polyethylene, a polypropylene etc. are mentioned. Especially, the film which consists of PET is preferable.
  • the thickness of the said base material is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 200 micrometers, A more preferable minimum is 10 micrometers and a more preferable upper limit is 50 micrometers.
  • the film is adhesive or non-adhesive between the base material and the adhesive layer comprising the adhesive for semiconductor bonding of the present invention.
  • the bump electrode protective layer even when the thickness of the adhesive layer made of the adhesive for semiconductor bonding of the present invention is thinner than the height of the bump electrode, the semiconductor is provided on the wafer having the bump electrode on the surface. Deformation, damage, etc. of the bump electrode can be suppressed in a laminating process for bonding a film having an adhesive layer made of a bonding adhesive, a back grinding process for grinding a wafer from the back surface, and the like.
  • the bump electrode protective layer is not particularly limited, and examples of the non-adhesive bump electrode protective layer include polyolefin resins such as polyethylene (PE) and polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), Transparent containing polyvinyl chloride (PVC), polyalkyl (meth) acrylate, polyvinyl butyral (PVB), polyvinyl alcohol, polyvinyl acetal, polyurethane (PU), polytetrafluoroethylene (PTFE) and copolymers thereof Examples thereof include a layer, a layer having a network structure, and a layer having holes.
  • PE polyethylene
  • PP polypropylene
  • EVA ethylene-vinyl acetate copolymer
  • PVC polyvinyl chloride
  • PVB polyalkyl (meth) acrylate
  • PVB polyvinyl butyral
  • PU polyurethane
  • PTFE polytetrafluoroethylene
  • an acrylic adhesive layer As said adhesive bump electrode protective layer, an acrylic adhesive layer, a urethane adhesive layer, a silicone adhesive layer etc. are mentioned, for example. Of these, a polyethylene (PE) layer, an ethylene-vinyl acetate copolymer (EVA) layer, an acrylic pressure-sensitive adhesive layer, and a urethane pressure-sensitive adhesive layer are preferable.
  • PE polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • acrylic pressure-sensitive adhesive layer As said adhesive bump electrode protective layer, an acrylic adhesive layer, a urethane adhesive layer, a silicone adhesive layer etc.
  • the thickness of the bump electrode protective layer is not particularly limited, but a preferable lower limit is 5 ⁇ m, a preferable upper limit is 100 ⁇ m, a more preferable lower limit is 10 ⁇ m, and a more preferable upper limit is 50 ⁇ m.
  • the method for producing the paste is not particularly limited.
  • an epoxy compound, a curing agent, a curing accelerator, a flux activator, and blended as necessary Examples include a method of stirring and mixing each material to be mixed using a homodisper, a planetary stirrer or the like.
  • the method for producing the film is not particularly limited.
  • an epoxy compound, a curing agent, a curing accelerator, a flux activator, and, if necessary, blended A method in which an adhesive solution is prepared by stirring and mixing each material to be mixed with an appropriate solvent using a homodisper, and the adhesive solution is applied on a substrate and dried to form an adhesive layer. Examples include a method in which an adhesive solution is applied onto a film with a release agent and dried to form an adhesive layer, and then the adhesive layer and a substrate are bonded together.
  • the adhesive for semiconductor bonding of the present invention is used, for example, when a semiconductor chip is mounted on a circuit board, and is suitably used for flip chip mounting, regardless of the form of paste, film or the like. Specifically, for example, after bonding a film having an adhesive layer made of the adhesive for semiconductor bonding of the present invention on a circuit board, the semiconductor chip can be mounted on the circuit board by thermocompression bonding.
  • a semiconductor device can be manufactured through a process of mounting by pressure bonding.
  • the adhesive comprising the adhesive for semiconductor bonding of the present invention on the wiring surface having the bump electrode on the both sides and the surface having the bump electrode opposite to the wiring surface of the wafer having wiring on one side
  • An adhesive layer may be provided by laminating a film having a layer.
  • the wafer is not particularly limited, and examples thereof include a wafer made of a semiconductor such as silicon or gallium arsenide and having bump electrodes made of gold, copper, silver-tin solder, aluminum, nickel or the like on the surface. Since the adhesive for semiconductor bonding of the present invention is excellent in flux properties and improves the connection reliability of the bonded portion, it is particularly preferably used when the bump electrode contains solder.
  • the method of bonding the film having the adhesive layer made of the semiconductor bonding adhesive of the present invention to the surface having the bump electrode of the wafer is not particularly limited. For example, the vacuum laminator is applied to the surface of the wafer having the bump electrode. And the like, and the like.
  • vacuum laminator for example, trade name “MVLP-500 / 600II” manufactured by Meiki Seisakusho, trade name “V130” manufactured by Nichigo Morton, trade name “ATM-812M” manufactured by Takatori, etc. can be used. .
  • the semiconductor chip can be mounted on the circuit board by thermocompression bonding.
  • a semiconductor device comprising: a step of applying and forming an adhesive layer; and a step of mounting a semiconductor chip having a bump electrode on the surface by thermocompression bonding to the circuit board or another semiconductor chip via the adhesive layer
  • This manufacturing method is also one aspect of the present invention.
  • the semiconductor chip having the bump electrode on the surface can be obtained, for example, by dicing the wafer having the bump electrode on the surface described above by dicing.
  • the method for applying the paste comprising the semiconductor bonding adhesive of the present invention to the circuit board or other semiconductor chip is not particularly limited, and examples thereof include an application method using a dispenser.
  • a semiconductor device manufactured using the semiconductor bonding adhesive of the present invention is also one aspect of the present invention.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in flux property and connection reliability, and can provide the adhesive for semiconductor joining with high storage stability. Moreover, according to this invention, the manufacturing method of the semiconductor device using this adhesive agent for semiconductor bonding and the semiconductor device manufactured using this adhesive agent for semiconductor bonding can be provided.
  • Example 1 to 18, Comparative Examples 1 to 20 Manufacture of adhesive paste or film for semiconductor bonding
  • each material was stirred and mixed using a planetary stirrer according to the composition shown in Table 1 or 2 to obtain an adhesive paste for semiconductor bonding.
  • each material was mixed with methyl ethyl ketone (MEK) according to the composition shown in Table 3 or 4, and stirred and mixed using a homodisper to prepare an adhesive solution.
  • MEK methyl ethyl ketone
  • This adhesive solution is applied to a polyethylene terephthalate film (A31, manufactured by Teijin DuPont, 50 ⁇ m thick) as a base material so that the thickness after drying is 35 ⁇ m, and dried at 100 ° C. for 5 minutes to form an adhesive layer To obtain an adhesive film for semiconductor bonding. Until use, the surface of the obtained adhesive layer was protected with a PET film with a release agent. Each material is shown below.
  • Epoxy compound / 828 EL bisphenol A liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • ⁇ 1004AF Bisphenol A solid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • Non-amine curing agent / YH306 anhydride curing agent, manufactured by Mitsubishi Chemical Corporation
  • Amine-based curing accelerator 2MZA imidazole-based curing accelerator, manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • MY-H amine adduct curing accelerator, manufactured by Ajinomoto Fine Techno Co., Ltd.
  • F7000 Imidazole-based curing accelerator, manufactured by T & KTOKA
  • Inorganic filler sica filler SE-1050 (average particle size 0.25 ⁇ m, manufactured by Admatechs) SE-2050 (average particle size 0.5 ⁇ m, manufactured by Admatechs)
  • the adhesive paste for semiconductor bonding obtained in Examples 1 to 9 and Comparative Examples 1 to 10 has a discharge pressure of 0.4 MPa and a gap between the substrate and the needle of 200 ⁇ m. It apply
  • a semiconductor chip separated in advance by dicing is pressure-bonded to a substrate on which a semiconductor bonding adhesive paste has been dispensed using a bonding apparatus (FC-3000, manufactured by Toray Engineering) at 40 N and a temperature of 240 ° C. for 10 seconds. And it mounted on the board
  • FC-3000 manufactured by Toray Engineering
  • the PET film with a release agent for protecting the adhesive layer of the adhesive films for semiconductor bonding obtained in Examples 10 to 18 and Comparative Examples 11 to 20 was peeled off, and a vacuum laminator (trade name “ATM-812M”, manufactured by Takatori Co., Ltd.) ), An adhesive film for semiconductor bonding was bonded to the surface of the wafer having the bump electrodes.
  • a dicing tape (trade name “PE tape # 6318-B”, manufactured by Sekisui Chemical Co., Ltd.) was bonded to the surface of the wafer where the adhesive film for semiconductor bonding was not bonded, and mounted on a dicing frame. Subsequently, the base material of the adhesive film for semiconductor bonding was peeled off leaving only the adhesive layer.
  • the wafer is diced into a chip size of 7.3 mm ⁇ 7.3 mm together with the adhesive layer at a feeding speed of 50 mm / second to form an adhesive layer.
  • the semiconductor chip was divided.
  • the obtained semiconductor chip having the adhesive layer was pressure-bonded for 10 seconds at 40 N at a temperature of 240 ° C. using a bonding apparatus (FC-3000, manufactured by Toray Engineering), and mounted on the substrate.
  • the adhesive layer was completely cured by heating for a time to obtain a semiconductor device.
  • connection reliability (flux)
  • the semiconductor devices obtained in Examples 1 to 18 and Comparative Examples 1 to 20 were subjected to cross-sectional polishing using a polishing machine, and the state of electrode bonding was observed using a microscope.
  • the case where there was no biting of the adhesive between the upper and lower electrodes and the electrode joined state was good, and the case where the biting of the adhesive was between the upper and lower electrodes and the upper and lower electrodes were not joined at all were marked as x. .
  • melt viscosity of the adhesive layer for semiconductor bonding obtained in Examples 1 to 18 and Comparative Examples 1 to 20 or the adhesive layer of the film was measured using a rotary rheometer (VAR-100, manufactured by Rheologica). Was measured at a temperature rising rate of 5 ° C./min and a frequency of 1 Hz at 30 to 160 ° C. to determine the minimum melt viscosity (A).
  • the minimum melt viscosity (B) of the adhesive layer of the adhesive paste stored for 1 day to 5 days at room temperature (25 ° C.) or the adhesive film stored for 1 day to 10 days at room temperature (25 ° C.) is similarly measured.
  • the time required for B to exceed 1.2 times that of A (1.2 times (melting) viscosity increase time) was measured.
  • wetting stability The wetting stability of the adhesive paste for semiconductor bonding or film obtained in Examples 1 to 18 and Comparative Examples 1 to 20 was determined. Immediately after producing the adhesive paste, the adhesive film stored from 1 day to 10 days at room temperature (25 ° C.) immediately after producing the adhesive paste or adhesive film stored at room temperature (25 ° C.) from 1 day to 5 days later The semiconductor device was manufactured as described above, and in the bonding process, whether or not the solder was sufficiently wet was observed, and the time until the solder was not sufficiently wet was measured.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in flux property and connection reliability, and can provide the adhesive for semiconductor joining with high storage stability. Moreover, according to this invention, the manufacturing method of the semiconductor device using this adhesive agent for semiconductor bonding and the semiconductor device manufactured using this adhesive agent for semiconductor bonding can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Wire Bonding (AREA)

Abstract

本発明は、フラックス性及び接続信頼性に優れ、かつ、貯蔵安定性の高い半導体接合用接着剤を提供することを目的とする。また、本発明は、該半導体接合用接着剤を用いた半導体装置の製造方法、及び、該半導体接合用接着剤を用いて製造された半導体装置を提供することを目的とする。本発明は、エポキシ化合物、硬化剤、硬化促進剤及びフラックス活性剤を含有する半導体接合用接着剤であって、前記硬化促進剤がアミン化合物を含み、前記フラックス活性剤が有機酸フラックス活性剤であり、前記半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計100重量部に対して前記硬化促進剤の配合量が2~20重量部かつ前記フラックス活性剤100重量部に対して前記硬化促進剤の配合量が40~500重量部である半導体接合用接着剤である。

Description

半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置
本発明は、フラックス性及び接続信頼性に優れ、かつ、貯蔵安定性の高い半導体接合用接着剤に関する。また、本発明は、該半導体接合用接着剤を用いた半導体装置の製造方法、及び、該半導体接合用接着剤を用いて製造された半導体装置に関する。
半導体装置の小型化及び高密度化に伴い、半導体チップを回路基板に実装する方法としてフリップチップ実装が注目され急速に広まってきている。フリップチップ実装は、はんだ等からなる多数のバンプ電極を回路基板上に直接一括で接合するため、従来のワイヤーボンディング方式に比べ、実装面積を小さくできる、電気的特性が良好、モールド封止が不要等の利点を有している。
フリップチップ実装においては、接合部分の接続信頼性を確保することが求められている。
そこで、近年、半導体ウエハ又は半導体チップ表面或いは回路基板上に、ペースト状接着剤(NCP)又はフィルム状接着剤(NCF)を供給した後、半導体チップを加熱及び/又は加圧ボンディングする方法等のいわゆる先塗布型のフリップチップ実装が提案されている(例えば、特許文献1)。また、半導体ウエハを薄化するバックグラインド工程で使用されるバックグラインドテープと、NCFとを一体化したBG-NCFフィルムも提案されている(例えば、特許文献2)。
しかしながら、半導体ウエハ又は半導体チップ表面或いは回路基板上に供給されるペースト状又はフィルム状接着剤には、更なる接続信頼性が求められている。
特開2009-260230号公報 特開2008-16624号公報
本発明者らは、接続信頼性の向上のため、ペースト状又はフィルム状接着剤に含まれるフラックス活性剤に着目した。フラックス活性剤は、半導体チップに設けられたバンプ電極のはんだ表面の酸化被膜を除去し、銅等の金属からなる被接合部に対してはんだを濡れ広がらせ、接合させる働きをする。フラックス活性剤の効果(フラックス性)が不充分であると、接合部分のはんだ形状がいびつとなり、接続信頼性が低下する。一方、フラックス性を高めることにより、接続信頼性の向上が期待できる。
本発明者らは、フラックス活性剤として、フラックス性に優れた有機酸を用いることを検討した。しかしながら、有機酸には、ペースト状又はフィルム状接着剤の貯蔵安定性を低下させるという欠点があり、有機酸を含有するペースト状又はフィルム状接着剤は、時間が経過すると、粘度が上昇したり、はんだを濡れ広がらせる効果が低減したりすることがあった。
本発明は、フラックス性及び接続信頼性に優れ、かつ、貯蔵安定性の高い半導体接合用接着剤を提供することを目的とする。また、本発明は、該半導体接合用接着剤を用いた半導体装置の製造方法、及び、該半導体接合用接着剤を用いて製造された半導体装置を提供することを目的とする。
本発明は、エポキシ化合物、硬化剤、硬化促進剤及びフラックス活性剤を含有する半導体接合用接着剤であって、前記硬化促進剤がアミン化合物を含み、前記フラックス活性剤が有機酸フラックス活性剤であり、前記半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計100重量部に対して前記硬化促進剤の配合量が2~20重量部かつ前記フラックス活性剤100重量部に対して前記硬化促進剤の配合量が40~500重量部である半導体接合用接着剤である。
以下、本発明を詳述する。
本発明者らは、ペースト、フィルム等の形態によらず、エポキシ化合物、硬化剤、硬化促進剤及びフラックス活性剤を含有する半導体接合用接着剤において、硬化促進剤としてアミン化合物を用い、かつ、フラックス活性剤として有機酸フラックス活性剤を用い、硬化促進剤の配合量を特定範囲に調整することにより、フラックス性及び接続信頼性に優れるものでありながら、高い貯蔵安定性をも有する半導体接合用接着剤とすることができることを見出し、本発明を完成させるに至った。
本明細書中、フラックス性とは、はんだ表面の酸化被膜を除去し、銅等の金属からなる被接合部に対してはんだを濡れ広がらせ、接合させる機能を意味する。
本発明の半導体接合用接着剤の形態は特に限定されず、ペーストであってもよいし、フィルムであってもよい。
本発明の半導体接合用接着剤は、エポキシ化合物を含有する。本発明の半導体接合用接着剤がペースト形態である場合、上記エポキシ化合物は特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型等のビスフェノール型エポキシ化合物、フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ化合物、レゾルシノール型エポキシ化合物、トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ポリエーテル変性エポキシ化合物、ベンゾフェノン型エポキシ化合物、アニリン型エポキシ化合物、NBR変性エポキシ化合物、CTBN変性エポキシ化合物、及び、これらの水添化物等が挙げられる。なかでも、速硬化性が得られやすいことから、アニリン型エポキシ化合物が好ましい。これらのエポキシ化合物は、単独で用いてもよく、2種以上を併用してもよい。
上記アニリン型エポキシ化合物のうち、市販品として、例えば、EP-3900S、EP-3950S(ADEKA社製)等が挙げられる。
本発明の半導体接合用接着剤がペースト形態である場合、本発明の半導体接合用接着剤は、上記エポキシ化合物に加えてエピスルフィド化合物を含有していてもよい。上記エピスルフィド化合物は、エピスルフィド基を有していれば特に限定されず、例えば、エポキシ化合物のエポキシ基の酸素原子を硫黄原子に置換した化合物が挙げられる。
上記エピスルフィド化合物として、具体的には例えば、ビスフェノール型エピスルフィド化合物(ビスフェノール型エポキシ化合物のエポキシ基の酸素原子を硫黄原子に置換した化合物)、水添ビスフェノール型エピスルフィド化合物、ジシクロペンタジエン型エピスルフィド化合物、ビフェニル型エピスルフィド化合物、フェノールノボラック型エピスルフィド化合物、フルオレン型エピスルフィド化合物、ポリエーテル変性エピスルフィド化合物、ブタジエン変性エピスルフィド化合物、トリアジンエピスルフィド化合物、ナフタレン型エピスルフィド化合物等が挙げられる。なかでも、ナフタレン型エピスルフィド化合物が好ましい。これらのエピスルフィド化合物は、単独で用いてもよく、2種以上を併用してもよい。
なお、酸素原子から硫黄原子への置換は、エポキシ基の少なくとも一部におけるものであってもよく、すべてのエポキシ基の酸素原子が硫黄原子に置換されていてもよい。
上記エピスルフィド化合物のうち、市販品として、例えば、YL-7007(水添ビスフェノールA型エピスルフィド化合物、三菱化学社製)等が挙げられる。また、上記エピスルフィド化合物は、例えば、チオシアン酸カリウム、チオ尿素等の硫化剤を使用して、エポキシ化合物から容易に合成される。
本発明の半導体接合用接着剤がフィルム形態である場合、上記エポキシ化合物は特に限定されず、例えば、軟化点が150℃以下のエポキシ樹脂、常温で液体又は結晶性固体のエポキシ樹脂等が挙げられる。より具体的には例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ化合物は、単独で用いてもよく、2種以上を併用してもよい。
また、上記エポキシ化合物としては、多環式炭化水素骨格を主鎖に有するエポキシ樹脂も好ましい。上記多環式炭化水素骨格を主鎖に有するエポキシ樹脂を用いることにより、剛直で分子の運動が阻害されるため機械的強度及び耐熱性に優れた硬化物とすることができ、また、吸水性が低くなるため耐湿性に優れた硬化物とすることができる。
上記多環式炭化水素骨格を主鎖に有するエポキシ樹脂は特に限定されず、例えば、ジシクロペンタジエンジオキシド、ジシクロペンタジエン骨格を有するフェノールノボラックエポキシ樹脂等のジシクロペンタジエン型エポキシ樹脂、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリジジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、1,2,5,6-テトラグリシジルナフタレン等のナフタレン型エポキシ樹脂、テトラヒドロキシフェニルエタン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタン、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボネート等が挙げられる。これらの多環式炭化水素骨格を主鎖に有するエポキシ樹脂は、単独で用いてもよく、2種類以上を併用してもよい。なかでも、ジシクロペンタジエンジオキシドが好ましい。
本発明の半導体接合用接着剤がフィルム形態である場合、本発明の半導体接合用接着剤は、更に、上記エポキシ化合物と反応可能な官能基を有する高分子化合物(以下、単に、高分子化合物ともいう)を含有してもよい。上記高分子化合物は、造膜成分としての役割を果たす。また、上記高分子化合物を含有することで、半導体接合用接着剤の硬化物は靭性をもち、優れた耐衝撃性を発現することができる。
上記高分子化合物は特に限定されず、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基等を有する高分子化合物等が挙げられる。
本発明の半導体接合用接着剤がフィルム形態である場合、本発明の半導体接合用接着剤は、更に、エポキシ基を有する高分子化合物を含有してもよい。上記エポキシ基を有する高分子化合物を含有することで、半導体接合用接着剤の硬化物は、上記エポキシ化合物に由来する優れた機械的強度、耐熱性及び耐湿性と、上記エポキシ基を有する高分子化合物に由来する優れた靭性とを兼備することにより、高い接合信頼性及び接続信頼性を発現することができる。
上記エポキシ基を有する高分子化合物は、末端及び/又は側鎖(ペンダント位)にエポキシ基を有する高分子化合物であれば特に限定されず、例えば、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフェノール型高分子量エポキシ樹脂、エポキシ基含有フェノキシ樹脂、エポキシ基含有アクリル樹脂、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられる。
本発明の半導体接合用接着剤は、硬化剤を含有し、硬化速度や硬化物の物性等を調整する目的で、更に、硬化促進剤を含有する。
上記硬化促進剤は、アミン化合物(以下、アミン系硬化促進剤ともいう)を含有する。本発明の半導体接合用接着剤は、上記アミン化合物を含有するため、後述するような有機酸フラックス活性剤を含有していても高い貯蔵安定性を有するものとなる。なお、上記アミン化合物を含有していても、有機酸フラックス活性剤を含有しない場合には半導体接合用接着剤の貯蔵安定性は低下する。即ち、上記アミン化合物と有機酸フラックス活性剤とをともに含有することで、本発明の半導体接合用接着剤は高い貯蔵安定性を有するものとなる。
上記アミン系硬化促進剤は、上記エポキシ化合物の硬化促進剤として作用するアミン化合物であれば特に限定されず、例えば、ジシアンジアミド、変性脂肪族アミン、アミンアダクト、マイクロカプセル型アミン及びイミダゾール等が挙げられる。これらのアミン系硬化促進剤は単独で用いてもよく、2種類以上を併用してもよい。
上記アミン系硬化促進剤は、上記エポキシ化合物の硬化促進剤として作用するアミン化合物であれば特に限定されず、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤等が挙げられる。なかでも、イミダゾール系硬化促進剤が好ましい。イミダゾール系硬化促進剤は、反応系を制御しやすいので、硬化速度や硬化物の物性等を調整しやすい。
上記イミダゾール系硬化促進剤は特に限定されず、例えば、イミダゾールの1位をシアノエチル基で保護した1-シアノエチル-2-フェニルイミダゾール、イソシアヌル酸で塩基性を保護したイミダゾール系化合物(商品名「2MA-OK」、四国化成工業社製)、液状イミダゾール(商品名「FUJICURE 7000」、T&K TOKA社製)、2-エチル-4-メチルイミダゾール、1―メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-ベンジル-2-エチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ-(シアノエトキシメチル)イミダゾール、1,8-ジアザビシクロ(5.4.0)ウンデセン-7等のイミダゾール化合物、及び、これらの誘導体等が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。
また、上記硬化促進剤の配合量は、半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計100重量部に対する下限が2重量部、上限が20重量部であり、好ましい下限は3重量部、好ましい上限は15重量部であり、より好ましい上限は10重量部である。このような範囲の配合量とすることで、後述するような有機酸フラックス活性剤を含有していても半導体接合用接着剤の貯蔵安定性がより高くなる。
なお、半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計とは、例えば、上述したエポキシ化合物、エポキシ基を有する高分子化合物等のエポキシ基を有する成分の合計を意味する。
また、上記硬化促進剤の配合量は、フラックス活性剤100重量部に対する下限が40重量部、上限が500重量部であり、好ましい下限が50重量部、好ましい上限が200重量部である。このような範囲の配合量とすることで、後述するような有機酸フラックス活性剤を含有していても半導体接合用接着剤の貯蔵安定性がより高くなる。
上記硬化剤及び上記硬化促進剤は、上記硬化促進剤がアミン化合物を含有していれば、更に、非アミン化合物を含有していてもよい。
上記硬化剤が非アミン化合物を含有する場合、該非アミン化合物を非アミン系硬化剤といい、上記硬化促進剤が非アミン化合物を含有する場合、該非アミン化合物を非アミン系硬化促進剤という。
上記非アミン系硬化剤は特に限定されず、例えば、酸無水物系硬化剤、フェノール系硬化剤、カチオン系触媒型硬化剤等が挙げられる。なかでも、酸無水物系硬化剤が好ましい。酸無水物系硬化剤は硬化速度が速いため、酸無水物系硬化剤を用いることにより、半導体接合用接着剤の速硬化性を高め、ボイドを効果的に抑制することができる。
上記酸無水物系硬化剤は特に限定されず、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリスアンヒドロトリメリテート、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸-無水マレイン酸付加物、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリドデカン二酸無水物、クロレンド酸無水物等が挙げられる。これらの酸無水物系硬化剤は、単独で用いてもよく、2種以上を併用してもよい。
上記非アミン系硬化剤の配合量は特に限定されず、半導体接合用接着剤中に含まれるエポキシ基の総量に対する好ましい下限が60当量、好ましい上限が110当量である。
上記非アミン系硬化促進剤の配合量は特に限定されず、上記アミン系硬化促進剤と同様に、半導体接合用接着剤中に含まれる硬化剤の合計100重量部に対する好ましい下限が1重量部、好ましい上限が20重量部である。
上記硬化剤と上記硬化促進剤とを組み合わせて使用してもよい。上記硬化剤と上記硬化促進剤との組み合わせとして、上記非アミン系硬化剤と上記アミン系硬化促進剤との組み合わせがより好ましく、上記酸無水物系硬化剤と上記イミダゾール系硬化促進剤との組み合わせが特に好ましい。上記酸無水物系硬化剤と上記イミダゾール系硬化促進剤とを併用することで、耐熱性に優れた硬化物を得ることができる。
本発明の半導体接合用接着剤は、フラックス活性剤を含有する。
上記フラックス活性剤は、有機酸フラックス活性剤である。本発明の半導体接合用接着剤は、上記有機酸フラックス活性剤を含有するため、フラックス性に優れたものとなり、接合部分の接続信頼性が向上する。
上記有機酸フラックス活性剤は特に限定されないが、例えば、グルタル酸、コハク酸等のカルボン酸等が挙げられる。これらの有機酸フラックス活性剤は、単独で用いてもよく、2種以上を併用してもよい。
上記有機酸フラックス活性剤の配合量は特に限定されないが、半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計100重量部に対する好ましい下限が0.5重量部、好ましい上限が15重量部である。配合量が0.5重量部未満であると、半導体接合用接着剤のフラックス性が低下するため、接合部分のはんだ形状がいびつとなることがあり、接続信頼性を充分に高めることができないことがある。配合量が15重量部を超えると、半導体接合用接着剤の貯蔵安定性が低下することがあり、時間が経過すると、粘度が上昇したり、はんだを濡れ広がらせる効果が低減したりすることがある。配合量のより好ましい下限は1.0重量部、より好ましい上限は10重量部である。
本発明の半導体接合用接着剤は、必要に応じて、無機フィラーを含有してもよい。上記無機フィラーを用いることにより、硬化物の機械的強度及び耐熱性を高めることができ、また、硬化物の線膨張係数を低下させて、接合信頼性を高めることができる。
上記無機フィラーは特に限定されず、例えば、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化珪素、炭化珪素、酸化マグネシウム、酸化亜鉛等からなる無機フィラーが挙げられる。なかでも、流動性に優れることから、球状シリカが好ましい。
上記無機フィラーの配合量は特に限定されないが、半導体接合用接着剤中の好ましい下限が20重量%、好ましい上限が70重量%である。
また、本発明の半導体接合用接着剤は、必要に応じて、(メタ)アクリロイル基を有するエポキシ樹脂、アクリル樹脂、多官能(メタ)アクリレート化合物、ポリイミド、ポリアミド、フェノキシ樹脂等の一般的な樹脂を含有してもよく、シランカップリング剤、チタンカップリング剤、増粘剤、消泡剤、ゴム粒子等の添加剤を含有してもよい。
本発明の半導体接合用接着剤がフィルム形態である場合、本発明の半導体接合用接着剤からなる接着剤層の厚みは特に限定されず、バンプ電極の高さに対して50~150%であることが好ましいが、好ましい下限は5μm、好ましい上限は100μmである。
本発明の半導体接合用接着剤がフィルム形態である場合、該フィルムは、本発明の半導体接合用接着剤からなる接着剤層を有していれば、基材を有するサポートタイプのフィルムであってもよいし、基材を有さないノンサポートタイプのフィルムであってもよい。
上記基材は特に限定されず、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン等からなるフィルム等が挙げられる。なかでも、PETからなるフィルムが好ましい。
上記基材の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は200μmであり、より好ましい下限は10μm、より好ましい上限は50μmである。
また、本発明の半導体接合用接着剤がフィルム形態である場合、該フィルムは、上記基材と本発明の半導体接合用接着剤からなる接着剤層との間に、粘着性又は非粘着性のバンプ電極保護層を有していてもよい。
上記バンプ電極保護層を設けることにより、本発明の半導体接合用接着剤からなる接着剤層の厚みがバンプ電極の高さに対して薄い場合であっても、表面にバンプ電極を有するウエハに半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせるラミネート工程、ウエハを裏面から研削するバックグラインド工程等における、バンプ電極の変形、損傷等を抑制することができる。
上記バンプ電極保護層は特に限定されず、上記非粘着性のバンプ電極保護層として、例えば、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン系樹脂、エチレン-酢酸ビニル共重合体(EVA)、ポリ塩化ビニル(PVC)、ポリアルキル(メタ)アクリレート、ポリビニルブチラール(PVB)、ポリビニルアルコール、ポリビニルアセタール、ポリウレタン(PU)、ポリテトラフルオロエチレン(PTFE)及びこれらの共重合体等を含有する透明な層、網目状構造を有する層、孔が開けられた層等が挙げられる。上記粘着性のバンプ電極保護層として、例えば、アクリル粘着剤層、ウレタン粘着剤層、シリコーン粘着剤層等が挙げられる。なかでも、ポリエチレン(PE)層、エチレン-酢酸ビニル共重合体(EVA)層、アクリル粘着剤層、ウレタン粘着剤層が好ましい。
上記バンプ電極保護層の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は100μmであり、より好ましい下限は10μm、より好ましい上限は50μmである。
本発明の半導体接合用接着剤がペースト形態である場合、該ペーストを製造する方法は特に限定されず、例えば、エポキシ化合物、硬化剤、硬化促進剤、フラックス活性剤、及び、必要に応じて配合される各材料を、ホモディスパー、遊星攪拌機等を用いて攪拌混合する方法等が挙げられる。
本発明の半導体接合用接着剤がフィルム形態である場合、該フィルムを製造する方法は特に限定されず、例えば、エポキシ化合物、硬化剤、硬化促進剤、フラックス活性剤、及び、必要に応じて配合される各材料を、ホモディスパーを用いて適当な溶媒とともに攪拌混合して接着剤溶液を調製し、接着剤溶液を基材上に塗工し、乾燥させて接着剤層を形成する方法、接着剤溶液を離型剤付きフィルム上に塗工し、乾燥させて接着剤層を形成した後、接着剤層と基材とを貼り合わせる方法等が挙げられる。
本発明の半導体接合用接着剤は、ペースト、フィルム等の形態によらず、例えば、半導体チップを回路基板に実装する際に使用され、なかでも、フリップチップ実装に好適に使用される。
具体的には、例えば、回路基板上に本発明の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせた後、半導体チップを回路基板に熱圧着により実装することができる。
また、例えば、表面にバンプ電極を有するウエハの上記バンプ電極を有する面に、本発明の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせて接着剤層を設ける工程と、上記ウエハを上記接着剤層ごとダイシングして、上記接着剤層を有する半導体チップに分割する工程と、上記接着剤層を有する半導体チップを、上記接着剤層を介して回路基板又は他の半導体チップに熱圧着により実装する工程とを経て半導体装置を製造することができる。両面にバンプ電極を有し、片面に配線を有するウエハの上記バンプ電極を有する配線面又は上記配線面とは逆の上記バンプ電極を有する面に、本発明の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせて接着剤層を設けてもよい。これらの半導体装置の製造方法もまた、本発明の1つである。
上記ウエハは特に限定されず、例えば、シリコン、ガリウム砒素等の半導体からなり、金、銅、銀-錫はんだ、アルミニウム、ニッケル等からなるバンプ電極を表面に有するウエハが挙げられる。本発明の半導体接合用接着剤は、フラックス性に優れ、接合部分の接続信頼性が向上するものであることから、上記バンプ電極がはんだを含む場合に特に好適に使用される。
上記ウエハのバンプ電極を有する面に、本発明の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせる方法は特に限定されず、例えば、上記ウエハのバンプ電極を有する面に、真空ラミネーター等を用いてフィルムを貼り合わせる方法等が挙げられる。真空ラミネーターとして、例えば、名機製作所社製の商品名「MVLP―500/600II」、ニチゴーモートン社製の商品名「V130」、タカトリ社製の商品名「ATM-812M」等を用いることができる。
また、例えば、回路基板上に本発明の半導体接合用接着剤からなるペーストを供給した後、半導体チップを回路基板に熱圧着により実装することができる。表面にバンプ電極を有する半導体チップを回路基板又は他の半導体チップに実装する半導体装置の製造方法であって、上記回路基板又は他の半導体チップに、本発明の半導体接合用接着剤からなるペーストを塗布して接着剤層を形成する工程と、上記表面にバンプ電極を有する半導体チップを、上記接着剤層を介して上記回路基板又は他の半導体チップに熱圧着により実装する工程とを有する半導体装置の製造方法もまた、本発明の1つである。
上記表面にバンプ電極を有する半導体チップは、例えば、上述した表面にバンプ電極を有するウエハをダイシングにより個片化することで得られる。上記回路基板又は他の半導体チップに、本発明の半導体接合用接着剤からなるペーストを塗布する方法は特に限定されず、例えば、ディスペンサを用いた塗布方法等が挙げられる
本発明の半導体接合用接着剤を用いて製造された半導体装置もまた、本発明の1つである。
本発明によれば、フラックス性及び接続信頼性に優れ、かつ、貯蔵安定性の高い半導体接合用接着剤を提供することができる。また、本発明によれば、該半導体接合用接着剤を用いた半導体装置の製造方法、及び、該半導体接合用接着剤を用いて製造された半導体装置を提供することができる。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1~18、比較例1~20)
(半導体接合用接着ペースト又はフィルムの製造)
実施例1~9、比較例1~10では、表1又は2に示した組成に従って各材料を遊星攪拌機を用いて攪拌混合して半導体接合用接着ペーストを得た。
実施例10~18、比較例11~20では、表3又は4に示した組成に従って各材料をメチルエチルケトン(MEK)と混合し、ホモディスパーを用いて攪拌混合して接着剤溶液を調製した。この接着剤溶液を、乾燥後の厚みが35μmとなるように基材としてのポリエチレンテレフタレートフィルム(A31、帝人デュポン社製、厚み50μm)に塗工し、100℃で5分間乾燥させて接着剤層を形成して、半導体接合用接着フィルムを得た。使用時まで、得られた接着剤層の表面を離型剤付PETフィルムで保護した。
各材料を以下に示した。
(1)エポキシ化合物
・828EL(ビスフェノールA液状エポキシ樹脂、三菱化学社製)
・1004AF(ビスフェノールA固形エポキシ樹脂、三菱化学社製)
(2)エポキシ基を有する高分子化合物(エポキシ基含有フェノキシ樹脂)
・YP-50(フェノキシ樹脂、新日鉄化学社製)
(3)硬化剤及び硬化促進剤
(i)非アミン系硬化剤
・YH306(酸無水物系硬化剤、三菱化学社製)
(ii)アミン系硬化促進剤
・2MZA(イミダゾール系硬化促進剤、四国化成工業社製)
・MY-H(アミンアダクト硬化促進剤、味の素ファインテクノ社製)
・F7000(イミダゾール系硬化促進剤、T&KTOKA社製)
(4)有機酸フラックス活性剤
・アジピン酸(和光純薬工業社製)
・グルタル酸(和光純薬工業社製)
(5)無機フィラー(シリカフィラー)
・SE-1050(平均粒子径0.25μm、アドマテックス社製)
・SE-2050(平均粒子径0.5μm、アドマテックス社製)
(半導体接合用接着ペーストを用いた半導体装置の作製)
はんだからなるバンプ電極を有する半導体ウエハ(WALTS-TEG MB50-0101JY、はんだの溶融温度235℃、ウォルツ社製)をダイシングにより個片化した半導体チップ、及び、Ni/Au電極を有する基板(WALTS-KIT MB50-0101JY、ウォルツ社製)を用意した。
実施例1~9、比較例1~10で得られた半導体接合用接着ペーストをディスペンサ装置(SHOT MASTER300、武蔵エンジニアリング社製)を用いて、吐出圧0.4MPa、基板とニードルとのギャップ200μmの条件で基板に塗布した。次いで、予めダイシングにより個片化された半導体チップを、半導体接合用接着ペーストがディスペンスされた基板に対してボンディング装置(FC-3000、東レエンジニアリング製)を用いて40N、温度240℃で10秒間圧着して基板上に実装し、更に、170℃オーブンで1時間加熱して接着剤層を完全硬化させ、半導体装置を得た。
(半導体接合用接着フィルムを用いた半導体装置の作製)
はんだからなるバンプ電極を有する半導体ウエハ(WALTS-TEG MB50-0101JY、はんだの溶融温度235℃、ウォルツ社製)、及び、Ni/Au電極を有する基板(WALTS-KIT MB50-0101JY、ウォルツ社製)を用意した。
実施例10~18、比較例11~20で得られた半導体接合用接着フィルムの接着剤層を保護する離型剤付PETフィルムを剥がし、真空ラミネーター(商品名「ATM-812M」、タカトリ社製)を用いて、ウエハのバンプ電極を有する面に、半導体接合用接着フィルムを貼り合わせた。ウエハの半導体接合用接着フィルムが貼り合わされていない側の表面にダイシングテープ(商品名「PEテープ♯6318-B」、積水化学工業社製)を貼り合わせ、ダイシングフレームにマウントした。次いで、接着剤層のみを残して半導体接合用接着フィルムの基材を剥離した。
次いで、ダイシング装置(商品名「DFD651」、ディスコ社製)を用いて、送り速度50mm/秒で、ウエハを接着剤層ごと7.3mm×7.3mmのチップサイズにダイシングして、接着剤層を有する半導体チップに分割した。得られた接着剤層を有する半導体チップを、ボンディング装置(FC-3000、東レエンジニアリング製)を用いて40N、温度240℃で10秒間圧着して基板上に実装し、更に、170℃オーブンで1時間加熱して接着剤層を完全硬化させ、半導体装置を得た。
<評価>
実施例及び比較例で得られた半導体接合用接着ペースト又はフィルム、及び、半導体装置について、以下の評価を行った。結果を表1~4に示した。
(1)接続信頼性(フラックス性)
実施例1~18、比較例1~20で得られた半導体装置について、研磨機を用いて断面研磨し、マイクロスコープを用いて電極接合の状態を観察した。上下電極間に接着剤の噛み込みが無く、電極接合状態が良好であった場合を○、上下電極間に接着剤の噛み込みがあり、上下電極が全く接合していなかった場合を×とした。
(2)貯蔵安定性
実施例1~18、比較例1~20で得られた半導体接合用接着ペースト又はフィルムの接着剤層の溶融粘度を、回転式レオメーター(VAR-100、レオロジカ社製)を用いて、昇温速度5℃/分、周波数1Hzで30~160℃で測定し、最低溶融粘度(A)を求めた。室温(25℃)にて1日後から5日後にかけて保管した接着ペースト又は室温(25℃)にて1日後から10日後にかけて保管した接着フィルムの接着剤層の最低溶融粘度(B)を同様に測定し、BがAに対し1.2倍を超えるまでに要した時間(1.2倍(溶融)粘度上昇時間)を測定した。
(3)濡れ安定性
実施例1~18、比較例1~20で得られた半導体接合用接着ペースト又はフィルムの濡れ安定性を求めた。接着ペーストを作製した直後から室温(25℃)にて1日後から5日後にかけて保管した接着ペースト又は接着フィルムを作製した直後から室温(25℃)にて1日後から10日後にかけて保管した接着フィルムを用いて上記のように半導体装置を製造し、ボンディング工程において、はんだが充分に濡れるか否かを観察し、はんだが充分に濡れなくなるまでの時間を測定した。
(4)硬化性
実施例1~18、比較例1~20で得られた半導体接合用接着ペースト又はフィルムの硬化性を求めた。接着ペースト又はフィルムを190℃2時間加熱し、硬化した場合を○、硬化不良であった場合を×とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
本発明によれば、フラックス性及び接続信頼性に優れ、かつ、貯蔵安定性の高い半導体接合用接着剤を提供することができる。また、本発明によれば、該半導体接合用接着剤を用いた半導体装置の製造方法、及び、該半導体接合用接着剤を用いて製造された半導体装置を提供することができる。

Claims (5)

  1. エポキシ化合物、硬化剤、硬化促進剤及びフラックス活性剤を含有する半導体接合用接着剤であって、
    前記硬化促進剤がアミン化合物を含み、
    前記フラックス活性剤が有機酸フラックス活性剤であり、
    前記半導体接合用接着剤中に含まれるエポキシ基を有する成分の合計100重量部に対して前記硬化促進剤の配合量が2~20重量部かつ前記フラックス活性剤100重量部に対して前記硬化促進剤の配合量が40~500重量部である
    ことを特徴とする半導体接合用接着剤。
  2. 表面にバンプ電極を有するウエハの前記バンプ電極を有する面に、請求項1記載の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせて接着剤層を設ける工程と、
    前記ウエハを前記接着剤層ごとダイシングして、前記接着剤層を有する半導体チップに分割する工程と、
    前記接着剤層を有する半導体チップを、前記接着剤層を介して回路基板又は他の半導体チップに熱圧着により実装する工程とを有する
    ことを特徴とする半導体装置の製造方法。
  3. 両面にバンプ電極を有し、片面に配線を有するウエハの前記バンプ電極を有する配線面又は前記配線面とは逆の前記バンプ電極を有する面に、請求項1記載の半導体接合用接着剤からなる接着剤層を有するフィルムを貼り合わせて接着剤層を設ける工程と、
    前記ウエハを前記接着剤層ごとダイシングして、前記接着剤層を有する半導体チップに分割する工程と、
    前記接着剤層を有する半導体チップを、前記接着剤層を介して回路基板又は他の半導体チップに熱圧着により実装する工程とを有する
    ことを特徴とする半導体装置の製造方法。
  4. 表面にバンプ電極を有する半導体チップを回路基板又は他の半導体チップに実装する半導体装置の製造方法であって、
    前記回路基板又は他の半導体チップに、請求項1記載の半導体接合用接着剤からなるペーストを塗布して接着剤層を形成する工程と、
    前記表面にバンプ電極を有する半導体チップを、前記接着剤層を介して前記回路基板又は他の半導体チップに熱圧着により実装する工程とを有する
    ことを特徴とする半導体装置の製造方法。
  5. 請求項1記載の半導体接合用接着剤を用いて製造されたことを特徴とする半導体装置。
PCT/JP2014/081173 2013-12-06 2014-11-26 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置 WO2015083587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559017A JPWO2015083587A1 (ja) 2013-12-06 2014-11-26 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-253232 2013-12-06
JP2013253231 2013-12-06
JP2013253232 2013-12-06
JP2013-253231 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015083587A1 true WO2015083587A1 (ja) 2015-06-11

Family

ID=53273350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081173 WO2015083587A1 (ja) 2013-12-06 2014-11-26 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置

Country Status (3)

Country Link
JP (1) JPWO2015083587A1 (ja)
TW (1) TW201527471A (ja)
WO (1) WO2015083587A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029993A1 (ja) * 2015-08-19 2017-02-23 積水化学工業株式会社 導電材料及び接続構造体
KR20190012391A (ko) * 2017-07-27 2019-02-11 덕산하이메탈(주) 솔더 범프를 이용한 칩 본딩용 비전도성 페이스트 조성물
JP2022515514A (ja) * 2018-12-27 2022-02-18 ドゥーサン コーポレイション 半導体パッケージ用非導電性接着フィルム及びこれを用いる半導体パッケージの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158719A (ja) * 2011-02-02 2012-08-23 Hitachi Chemical Co Ltd 半導体封止充てん用エポキシ樹脂組成物並びにそれを用いた半導体装置及び半導体装置の製造方法
JP2013030766A (ja) * 2011-06-22 2013-02-07 Nitto Denko Corp 積層フィルム及びその使用
JP2013155363A (ja) * 2012-02-01 2013-08-15 Shin-Etsu Chemical Co Ltd 液状エポキシ樹脂組成物及び半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158719A (ja) * 2011-02-02 2012-08-23 Hitachi Chemical Co Ltd 半導体封止充てん用エポキシ樹脂組成物並びにそれを用いた半導体装置及び半導体装置の製造方法
JP2013030766A (ja) * 2011-06-22 2013-02-07 Nitto Denko Corp 積層フィルム及びその使用
JP2013155363A (ja) * 2012-02-01 2013-08-15 Shin-Etsu Chemical Co Ltd 液状エポキシ樹脂組成物及び半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029993A1 (ja) * 2015-08-19 2017-02-23 積水化学工業株式会社 導電材料及び接続構造体
JPWO2017029993A1 (ja) * 2015-08-19 2018-05-31 積水化学工業株式会社 導電材料及び接続構造体
KR20190012391A (ko) * 2017-07-27 2019-02-11 덕산하이메탈(주) 솔더 범프를 이용한 칩 본딩용 비전도성 페이스트 조성물
KR102004825B1 (ko) * 2017-07-27 2019-07-29 덕산하이메탈 주식회사 솔더 범프를 이용한 칩 본딩용 비전도성 페이스트 조성물
JP2022515514A (ja) * 2018-12-27 2022-02-18 ドゥーサン コーポレイション 半導体パッケージ用非導電性接着フィルム及びこれを用いる半導体パッケージの製造方法
JP7442533B2 (ja) 2018-12-27 2024-03-04 ドゥーサン コーポレイション 半導体パッケージ用非導電性接着フィルム及びこれを用いる半導体パッケージの製造方法

Also Published As

Publication number Publication date
TW201527471A (zh) 2015-07-16
JPWO2015083587A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5908306B2 (ja) 半導体接合用接着剤及び半導体接合用接着フィルム
JP2013004872A (ja) 半導体装置の製造方法、フィルム状接着剤及び接着剤シート
US10062625B2 (en) Underfill material and method for manufacturing semiconductor device using the same
JPWO2011129272A1 (ja) 半導体装置
TW201413840A (zh) 半導體裝置之製造方法及覆晶構裝用接著劑
WO2019102719A1 (ja) フィルム状半導体封止材
TWI629335B (zh) Semiconductor adhesive
TWI748105B (zh) 半導體用膜狀接著劑、半導體裝置的製造方法及半導體裝置
JP2005307037A (ja) フィルム状エポキシ樹脂組成物
JP5592762B2 (ja) 半導体加工用接着シート及び半導体チップの実装方法
WO2015083587A1 (ja) 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置
JP2016201418A (ja) 半導体接合用接着フィルム及び半導体装置の製造方法
JP5754072B2 (ja) 粘接着剤組成物、回路部材接続用粘接着剤シート及び半導体装置の製造方法
TW201945423A (zh) 底部填充材、及使用其之半導體裝置之製造方法
TWI807135B (zh) 半導體用膜狀接著劑、半導體裝置及其製造方法
TW201529795A (zh) 接著膜、切晶黏晶膜、半導體裝置之製造方法及半導體裝置
JP5392017B2 (ja) 接着剤組成物、接着用シート、ダイシング・ダイアタッチフィルム及び半導体装置
TW201517181A (zh) 半導體裝置之製造方法
JP5989397B2 (ja) 半導体装置の製造方法及び半導体接合用接着剤
JP4844229B2 (ja) 半導体装置およびその製造方法ならびに電子機器
JP2018203974A (ja) 半導体加工用テープ
TW201517180A (zh) 半導體裝置之製造方法
JP5592820B2 (ja) 半導体チップ実装体の製造方法、積層シート及び半導体チップ実装体
JP2016108419A (ja) 半導体接合用フィルム状接着剤
JPWO2019167460A1 (ja) 半導体用接着剤及びそれを用いた半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868396

Country of ref document: EP

Kind code of ref document: A1