[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015083326A1 - 溶融Zn合金めっき鋼板およびその製造方法 - Google Patents

溶融Zn合金めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015083326A1
WO2015083326A1 PCT/JP2014/005717 JP2014005717W WO2015083326A1 WO 2015083326 A1 WO2015083326 A1 WO 2015083326A1 JP 2014005717 W JP2014005717 W JP 2014005717W WO 2015083326 A1 WO2015083326 A1 WO 2015083326A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
hot
dip
plating layer
steel sheet
Prior art date
Application number
PCT/JP2014/005717
Other languages
English (en)
French (fr)
Inventor
厚雄 清水
雅典 松野
山本 雅也
博文 武津
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to AU2014358647A priority Critical patent/AU2014358647A1/en
Priority to KR1020167013545A priority patent/KR101666123B1/ko
Priority to MX2016006898A priority patent/MX2016006898A/es
Priority to US15/037,489 priority patent/US20160281201A1/en
Priority to CN201480065801.4A priority patent/CN105992834B/zh
Priority to RU2016121851A priority patent/RU2615750C1/ru
Priority to BR112016011651A priority patent/BR112016011651A2/pt
Priority to CA2932525A priority patent/CA2932525C/en
Priority to EP14868634.8A priority patent/EP3078759A4/en
Publication of WO2015083326A1 publication Critical patent/WO2015083326A1/ja
Priority to US15/606,254 priority patent/US10125414B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids

Definitions

  • the present invention relates to a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance and a method for producing the same.
  • a hot-dip Zn alloy plated steel sheet in which a hot-dip Zn alloy plated layer containing Al and Mg is formed on the surface of a base steel sheet is known.
  • the composition of the plated layer of the hot-dip Zn alloy-plated steel sheet is, for example, Al: 4.0 to 15.0 mass%, Mg: 1.0 to 4.0 mass%, Ti: 0.002 to 0.1 mass%, B: 0.001 to 0.045% by mass, balance: Zn and some containing inevitable impurities
  • This hot-dip Zn alloy-plated steel sheet has a plating layer composed of a metal structure in which [primary Al] and [Zn single phase] are mixed in a base of [Al / Zn / Zn 2 Mg ternary eutectic structure]. It has sufficient corrosion resistance and surface appearance as an industrial product.
  • the aforementioned hot-dip Zn alloy-plated steel sheet can be continuously manufactured by the following steps. First, after immersing the base steel plate (steel strip) passed through the furnace in a molten Zn alloy plating bath, for example, by passing it through a gas wiping device, the molten metal adhering to the surface of the base steel plate becomes a predetermined amount. Adjust to. Next, the molten metal is cooled by passing the steel strip to which a predetermined amount of molten metal is attached through an air jet cooler and an air-water cooling region, and a molten Zn alloy plating layer is formed. Furthermore, the hot-dip Zn alloy-plated steel sheet is obtained by passing the steel strip on which the hot-dip Zn alloy plating layer is formed through the water quench zone and bringing cooling water into contact therewith.
  • the surface of the plating layer may change black over time. Since the hot-dip Zn alloy-plated steel sheet, in which the black change has progressed, has a black-gray appearance that has lost its metallic luster and impairs the aesthetic appearance, a method for suppressing the black change has been demanded.
  • Patent Document 1 a method of adjusting the temperature of the plating layer surface in the water quench zone has been proposed (see, for example, Patent Document 1).
  • the black change of the plating layer surface is prevented by making the temperature of the plating layer surface at the time of making it contact with cooling water in a water quench zone below 105 degreeC.
  • an easily oxidizable element (rare earth element, Y, Zr or Si) is added to the plating bath and the temperature of the plating layer surface is set to 105 to 300 ° C. , Preventing the black change of the plating layer surface.
  • Patent Document 1 since it was necessary to cool the surface of the plating layer to a predetermined temperature before passing through the water quench zone, the production of the hot-dip Zn alloy-plated steel sheet may be limited. For example, in the case of a plated steel plate having a large plate thickness, it is necessary to slow down the feed rate of the plated steel plate to cool the plated steel plate to a predetermined temperature, and thus productivity has been reduced. Moreover, when an easily oxidizable element is blended in the plating bath, the easily oxidizable element is liable to become dross, and the concentration control of the easily oxidizable element is complicated, so that the manufacturing process becomes complicated.
  • An object of the present invention is to provide a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance and a method for producing the same, which can be produced without reducing productivity and without complicated management of plating bath components. .
  • the present inventors have found that the above problem can be solved by reducing the ratio of Zn (OH) 2 on the surface of the plating layer, and have further studied and completed the present invention.
  • the present invention relates to the following hot-dip Zn alloy-plated steel sheets.
  • S [Zn] is an area indicated by a peak centered at about 1022 eV derived from metal Zn in the intensity profile of XPS analysis of the surface of the molten Zn alloy plating layer.
  • S [Zn (OH) 2 ] is an area indicated by a peak centered at about 1023 eV derived from Zn (OH) 2 in the XPS analysis strength profile of the surface of the molten Zn alloy plating layer.
  • the molten Zn alloy plating layer includes Al: 1.0 to 22.0% by mass, Mg: 0.1 to 10.0% by mass, and the balance: Zn and inevitable impurities.
  • the hot-dip Zn alloy plating layer is formed of the group consisting of Si: 0.001 to 2.0 mass%, Ti: 0.001 to 0.1 mass%, and B: 0.001 to 0.045 mass%.
  • the present invention also relates to a method for producing the following hot-dip Zn alloy-plated steel sheet.
  • the aqueous solution containing the water-soluble corrosion inhibitor is represented by the following formula (2):
  • Z 0 is, the molten Zn alloy plated steel sheet, a corrosion current density shown in 0.5M NaCl aqueous solution not containing the water-soluble corrosion inhibitor.
  • Z 1 is a corrosion current density that the hot-dip Zn alloy-plated steel sheet shows in an aqueous solution in which NaCl is dissolved in an aqueous solution containing the water-soluble corrosion inhibitor to a final concentration of 0.5M.
  • a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance can be easily produced with high productivity.
  • FIG. 1A is a graph showing an example of a polarization curve of a hot-dip Zn alloy plated steel sheet in a 0.5 M NaCl aqueous solution not containing a water-soluble corrosion inhibitor.
  • FIG. 1B is a graph showing an example of a polarization curve of a hot-dip Zn alloy-plated steel sheet in a 0.5 M NaCl aqueous solution containing a water-soluble corrosion inhibitor.
  • FIG. 2A is a diagram illustrating an example of a method in which a cooling aqueous solution is brought into contact with the surface of a molten Zn alloy plating layer by a spray method.
  • FIG. 1A is a graph showing an example of a polarization curve of a hot-dip Zn alloy plated steel sheet in a 0.5 M NaCl aqueous solution not containing a water-soluble corrosion inhibitor.
  • FIG. 1B is a graph showing an example of a polarization curve of a hot-dip Zn alloy-
  • 2B is a diagram showing an example of a method in which a cooling aqueous solution is brought into contact with the surface of the molten Zn alloy plating layer by an immersion method.
  • 3A and 3B show the strength of chemical bond energy corresponding to the 2p orbital of Zn on the plating layer surface when water is used as cooling water, a water film is temporarily formed, and the molten Zn alloy plating layer is cooled. It is a profile.
  • 4A and 4B show the strength of the chemical bond energy corresponding to the Al 2p orbital on the plating layer surface when water is used as cooling water, a water film is temporarily formed, and the molten Zn alloy plating layer is cooled. It is a profile.
  • 5A and 5B show the strength of chemical bond energy corresponding to the 2p orbital of Mg on the surface of the plating layer when water is used as cooling water, a water film is temporarily formed, and the molten Zn alloy plating layer is cooled. It is a profile. It is an intensity
  • . 8A to 8D are intensity profiles of chemical bond energies corresponding to 2p orbitals of Zn on the surface of the plating layer. It is a schematic diagram which shows the structure of a part of manufacturing line of a hot-dip Zn alloy plating steel plate.
  • a method for producing a hot-dip Zn alloy-plated steel sheet includes: (1) forming a hot-dip Zn alloy plating layer (hereinafter also referred to as “plating layer”) on the surface of a base steel sheet. 1 step, and (2) a second step of bringing the predetermined aqueous solution into contact with the surface of the plating layer and cooling the base steel plate and the plating layer heated by the formation of the plating layer.
  • plating layer a hot-dip Zn alloy plating layer
  • the manufacturing method of the present invention is characterized in that after forming a molten Zn alloy plating layer, a predetermined cooling aqueous solution is brought into contact with the surface of the plating layer to suppress black change of the plating layer.
  • a predetermined cooling aqueous solution is brought into contact with the surface of the plating layer to suppress black change of the plating layer.
  • the base steel plate is immersed in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on the surface of the base steel plate.
  • the base steel plate is immersed in a molten Zn alloy plating bath, and a predetermined amount of molten metal is adhered to the surface of the base steel plate by using gas wiping or the like.
  • the type of the base steel plate is not particularly limited.
  • a steel plate made of low carbon steel, medium carbon steel, high carbon steel, alloy steel, or the like can be used as the base steel plate.
  • a steel sheet for deep drawing made of low carbon Ti-added steel, low carbon Nb-added steel, or the like is preferable as the base steel sheet.
  • the composition of the plating bath is appropriately selected according to the composition of the molten Zn alloy plating layer to be formed.
  • the plating bath contains Al: 1.0 to 22.0% by mass, Mg: 0.1 to 10.0% by mass, the balance: Zn and inevitable impurities.
  • the plating bath is one or more selected from the group consisting of Si: 0.001 to 2.0 mass%, Ti: 0.001 to 0.1 mass%, and B: 0.001 to 0.045 mass%. May further be included.
  • hot dip Zn alloy plating examples include hot dip Zn-0.18 wt% Al-0.09 wt% Sb alloy plating, hot dip Zn-0.18 wt% Al-0.06 wt% Sb alloy plating, hot dip Zn- 0.18% by mass Al alloy plating, molten Zn-1% by mass Al-1% by mass Mg alloy plating, molten Zn-1.5% by mass Al-1.5% by mass Mg alloy plating, molten Zn-2.5% % Al-3 mass% Mg alloy plating, hot-dip Zn-2.5 mass% Al-3 mass% Mg-0.4 mass% Si alloy plating, hot-melt Zn-3.5 mass% Al-3 mass% Mg alloy plating , Molten Zn-4 mass% Al-0.75 mass% Mg alloy plating, molten Zn-6 mass% Al-3 mass% Mg-0.05 mass% Ti-0.003 mass% B alloy plating, molten Zn- 6 mass% Al-3 mass% Mg-0.02 mass% Si-0.05 mass%
  • the black change of the plating layer can be suppressed by adding Si, but when the plated steel sheet is manufactured by the manufacturing method according to the present invention, Si is not added. However, the black change of the plating layer can be suppressed.
  • the adhesion amount of the molten Zn alloy plating layer is not particularly limited.
  • the adhesion amount of the plating layer is about 60 to 500 g / m 2 .
  • the molten metal adhering to the surface of the base steel sheet is cooled to 100 ° C. or more and below the freezing point of the plating layer, and the molten metal is solidified, so that the composition almost the same as the component composition of the plating bath on the surface of the base steel sheet A plated steel sheet on which a plating layer is formed is obtained.
  • prescribed aqueous solution is made to contact the surface of a hot-dip Zn alloy plating layer, and the base-material steel plate and plating layer which were heated up by formation of the hot-dip Zn alloy plating layer are cooled.
  • the second step is preferably performed as a water quench (water cooling) step.
  • the temperature of the surface of the molten Zn alloy plating layer is about 100 ° C. or more and below the freezing point of the plating layer.
  • the cooling aqueous solution is an aqueous solution containing a water-soluble corrosion inhibitor so as to satisfy the following formula (3).
  • the following formula (3) indicates that the corrosion current density reduction rate of the cooling aqueous solution is 20% or more.
  • Z 0 is, molten Zn alloy plated steel sheet, a corrosion current density shown in 0.5M NaCl aqueous solution containing no water-soluble corrosion inhibitor.
  • Z 1 is a corrosion current density exhibited in an aqueous solution in which NaCl is dissolved in an aqueous solution (cooling aqueous solution) containing a water-soluble corrosion inhibitor so that the final concentration becomes 0.5 M.
  • the corrosion current densities Z 0 and Z 1 used in the above formula (3) are values obtained by Tafel extrapolation from the polarization curve.
  • the polarization curve is measured using an electrochemical measurement system (HZ-3000; Hokuto Denko Co., Ltd.).
  • the corrosion current is calculated using software (data analysis software) attached to the electrochemical measurement system.
  • FIG. 1A is a graph showing an example of a polarization curve of a hot-dip Zn alloy-plated steel sheet in a 0.5 M NaCl aqueous solution not containing a water-soluble corrosion inhibitor.
  • FIG. 1A is a graph showing an example of a polarization curve of a hot-dip Zn alloy-plated steel sheet in a 0.5 M NaCl aqueous solution not containing a water-soluble corrosion inhibitor.
  • 1B is a graph showing an example of a polarization curve of a hot-dip Zn alloy-plated steel sheet in a 0.5 M NaCl aqueous solution containing a water-soluble corrosion inhibitor.
  • the corrosion current density in the 0.5M NaCl aqueous solution containing the water-soluble corrosion inhibitor is 20% or more smaller than the corrosion current density shown in the 0.5M NaCl aqueous solution not containing the water-soluble corrosion inhibitor.
  • the method for preparing an aqueous solution (cooling aqueous solution) containing a water-soluble corrosion inhibitor is not particularly limited.
  • a water-soluble corrosion inhibitor that can reduce the corrosion current density and, if necessary, a dissolution accelerator may be dissolved in water (solvent).
  • the type of the water-soluble corrosion inhibitor is not particularly limited as long as it can reduce the corrosion current density.
  • water-soluble corrosion inhibitors include V compounds, Si compounds, Cr compounds, and the like.
  • suitable V compounds include acetylacetone vanadyl, vanadium acetylacetonate, vanadium oxysulfate, vanadium pentoxide, ammonium vanadate.
  • suitable Si compounds include sodium silicate.
  • suitable Cr compounds include ammonium chromate and potassium chromate.
  • the addition amount of the dissolution accelerator is not particularly limited. For example, 90 to 130 parts by mass of a dissolution accelerator may be added to 100 parts by mass of the water-soluble corrosion inhibitor. When the addition amount of the dissolution accelerator is too small, the water-soluble corrosion inhibitor may not be sufficiently dissolved. On the other hand, when the addition amount of the dissolution accelerator is excessive, the effect is saturated, which is disadvantageous in terms of cost.
  • dissolution accelerator examples include 2-aminoethanol, tetraethylammonium hydroxide, ethylenediamine, 2,2'-iminodiethanol, and 1-amino-2-propanol.
  • the method for bringing the cooling aqueous solution into contact with the surface of the molten Zn alloy plating layer is not particularly limited.
  • Examples of the method of bringing the cooling aqueous solution into contact with the surface of the molten Zn alloy plating layer include a spray method and an immersion method.
  • FIG. 2 is a diagram showing an example of a method for bringing a cooling aqueous solution into contact with the surface of the molten Zn alloy plating layer.
  • FIG. 2A is a diagram illustrating an example of a method in which a cooling aqueous solution is brought into contact with the surface of a molten Zn alloy plating layer by a spray method.
  • FIG. 2B is a diagram showing an example of a method in which a cooling aqueous solution is brought into contact with the surface of the molten Zn alloy plating layer by an immersion method.
  • the spray-type cooling device 100 includes a plurality of spray nozzles 110, a squeezing roll 120 disposed on the downstream side in the feed direction of the steel strip S from the spray nozzle 110, and a casing 130 that covers these. And have.
  • the spray nozzle 110 is arranged on both surfaces of the steel strip S.
  • the steel strip S is cooled by supplying a cooling aqueous solution from the spray nozzle 110 inside the housing 130 so that a water film is temporarily formed on the surface of the plating layer. Then, the cooling aqueous solution is removed by the squeeze roll 120.
  • the immersion type cooling device 200 includes an immersion rod 210 in which a cooling aqueous solution is stored, an immersion roll 220 disposed inside the immersion rod 210, and a steel strip S from the immersion roll 220. And a squeeze roll 230 for removing excess cooling aqueous solution adhering to the steel strip S.
  • the steel strip S is cooled by contacting with the cooling aqueous solution after being put into the immersion trough 210. Thereafter, the steel strip S is turned up by the rotating dipping roll 220 and pulled upward. Then, the cooling aqueous solution is removed by the squeeze roll 230.
  • “Temporarily forming a water film” refers to a state in which a water film in contact with the surface of the hot-dip Zn alloy-plated steel sheet is observed for 1 second or longer. At this time, the surface temperature of the hot-dip Zn alloy-plated steel sheet immediately before the water film was formed with cooling water was estimated to be about 160 ° C.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week. Then, when the surface of the hot-dip Zn alloy-plated steel sheet was observed visually after one week storage, the surface of the hot-dip Zn alloy-plated steel sheet was generally undergoing a black change, and more particularly the black change compared to the surroundings. The dark part which progressed was observed.
  • FIGS. 3 to 5 are graphs showing the results of XPS analysis of the hot-dip Zn alloy-plated steel sheet immediately after the production with respect to the normal part and the dark part.
  • FIG. 3A is an intensity profile of chemical bond energy corresponding to the 2p orbital of Zn in the normal part.
  • FIG. 3B is an intensity profile of chemical bond energy corresponding to 2p orbital of Zn in the dark part.
  • FIG. 4A is an intensity profile of chemical bond energy corresponding to the Al 2p orbit of the normal part.
  • FIG. 4B is an intensity profile of chemical bond energy corresponding to the 2p orbit of Al in the dark part.
  • FIG. 5A is an intensity profile of chemical bond energy corresponding to the normal portion Mg 2p orbit.
  • FIG. 5B is an intensity profile of chemical bond energy corresponding to 2p orbits of Mg in the dark part.
  • the formation state of the dark part that is, the progress rate of the black change is affected by the bonding state of Zn
  • the dark part that is, the black change is caused by the increase of the abundance ratio of Zn (OH) 2. It was thought to be promoted.
  • the present inventors made a hot-dip Zn alloy-plated steel sheet by bringing factory water (cooling water) into contact with the surface of the hot-dip Zn alloy plating layer without forming a water film with an air-water cooling device.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week.
  • the surface gloss of the hot-dip Zn alloy-plated steel sheet was uniform, and no dark portion was observed.
  • the degree of gloss on the surface of the plating layer was almost the same as that of a normal part in a hot-dip Zn alloy-plated steel sheet produced by temporarily forming a water film.
  • FIG. 6 is an intensity profile of chemical bond energy corresponding to the 2p orbital of Zn. Note that the strength profiles of Al and Mg are omitted. As shown in FIG. 6, a peak of about 1022 eV derived from metal Zn and a peak of 1023 eV derived from Zn (OH) 2 were observed even when cooling water was contacted without forming a water film. It was. Moreover, it was found from the intensity ratio of Zn and Zn (OH) 2 that Zn was present more than Zn (OH) 2 . From this, it was estimated that the formation of Zn (OH) 2 was not promoted when the formation of a water film did not occur even when the cooling water contacted.
  • the inventors of the present invention regarding the black change of the plated layer of the hot-dip Zn alloy-plated steel sheet, 1) that Zn (OH) 2 is generated on the surface of the plated layer by forming a water film in the cooling step, And 2) It has been found that black change is likely to occur in a region where Zn (OH) 2 is generated in the surface of the plating layer. Therefore, the present inventors have inferred the mechanism of the black change of the plating layer as follows.
  • Zn is partially eluted from the oxide film on the surface of the plating layer or the Zn phase of the plating layer.
  • Zn 2+ eluted in the cooling water combines with OH ⁇ in the cooling water to become Zn (OH) 2 on the surface of the plating layer.
  • Zn (OH) 2 As time passes, a part of Zn (OH) 2 on the surface of the plating layer becomes ZnO by a dehydration reaction.
  • ZnO 1-X is the color center and is visually black.
  • the present inventors use an aqueous solution of V compound (corrosion current density reduction rate: 20% or more) instead of factory water, and temporarily spray the surface of the plating layer by a spray-type water quench zone. A water film was formed to produce a hot-dip Zn alloy-plated steel sheet. At this time, the surface temperature of the hot-dip Zn alloy-plated steel sheet immediately before coming into contact with the cooling aqueous solution was estimated to be about 160 ° C.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week.
  • room temperature 20 ° C., relative humidity 60% room temperature 20 ° C., relative humidity 60%
  • the surface gloss of the hot-dip Zn alloy-plated steel sheet was almost uniform, and formation of dark portions was not recognized.
  • this hot-dip Zn alloy-plated steel sheet had a higher surface gloss than a normal part in a hot-dip Zn alloy-plated steel sheet produced by temporarily forming a water film using factory water.
  • FIG. 7 is an intensity profile of chemical bond energy corresponding to the 2p orbital of Zn in the normal part when this cooling aqueous solution is used. Note that the strength profiles of Al and Mg are omitted. As shown in FIG. 7, even when this cooling aqueous solution was used, a peak of about 1022 eV derived from metal Zn and a peak of about 1023 eV derived from Zn (OH) 2 were observed. Moreover, it turned out that Zn exists more than Zn (OH) 2 from the intensity ratio of Zn and Zn (OH) 2 . Therefore, when an aqueous solution of V compound (corrosion current density reduction rate: 20% or more) is used, the formation of Zn (OH) 2 is accelerated even when a temporary water film is formed. It was estimated not to be.
  • V compound corrosion current density reduction rate: 20% or more
  • the above formula (4) represents the peak area centered at about 1022 eV derived from metal Zn and the peak area centered at about 1023 eV derived from Zn (OH) 2 in the intensity profile measured by XPS analysis.
  • the ratio of the area of the peak centered at about 1023 eV derived from Zn (OH) 2 to the total (hereinafter referred to as “Zn (OH) 2 ratio”) is 40% or less.
  • FIG. 8 is an intensity profile of chemical bond energy corresponding to 2p orbitals of Zn on the surface of the plated layer of the hot-dip Zn alloy-plated steel sheet.
  • 8A is an intensity profile with a Zn (OH) 2 ratio of about 80%
  • FIG. 8B is an intensity profile with a Zn (OH) 2 ratio of about 45%
  • FIG. 8C shows Zn (OH) 2 2 ratio is the intensity profile of about 15%
  • Figure 8D Zn (OH) 2 ratio is the intensity profile of about 10%.
  • the dotted line is the base line
  • the broken line is the intensity profile derived from metal Zn (peak centered at about 1022 eV)
  • the solid line is the intensity profile derived from Zn (OH) 2 (peak centered at about 1023 eV). is there.
  • the Zn (OH) 2 ratio is 40% or less as shown in FIGS.
  • XPS analysis of the plated layer surface of the hot-dip Zn alloy-plated steel sheet is performed using an XPS analyzer (AXIS Nova; Kratos Group PLC.).
  • AXIS Nova AXIS Nova; Kratos Group PLC.
  • the peak area centered at about 1022 eV derived from metal Zn and the peak area centered at about 1023 eV derived from Zn (OH) 2 are obtained using the software (Vision 2) attached to the XPS analyzer. Is calculated.
  • the peak position derived from metal Zn is exactly 1021.6 eV, and the peak position derived from Zn (OH) 2 is exactly 1023.3 eV, but these values are obtained by XPS analysis. Changes may occur due to characteristics, sample contamination, sample charging, and the like. However, those skilled in the art can distinguish peaks derived from metal Zn and peaks derived from Zn (OH) 2 .
  • FIG. 9 is a schematic view of a part of a production line 300 for a hot-dip Zn alloy plated steel sheet.
  • the production line 300 can continuously produce hot-dip Zn alloy-plated steel sheets by forming a plating layer on the surface of a base steel sheet (steel strip).
  • the production line 300 can also produce a chemical conversion treatment plated steel plate continuously by further forming a chemical conversion treatment film on the surface of a plating layer as needed.
  • the production line 300 includes a furnace 310, a plating bath 320, an air jet cooler 340, an air / water cooling zone 350, a water quench zone 360, a skin pass mill 370, and a tension leveler 380.
  • the steel strip S fed out from a feeding reel (not shown) is heated in the furnace 310 through a predetermined process.
  • the molten steel adheres to both surfaces of the steel strip S by immersing the heated steel strip S in the plating bath 320.
  • excess molten metal is removed by a wiping device having the wiping nozzle 330, and a predetermined amount of molten metal is adhered to the surface of the steel strip S.
  • the steel strip S to which a predetermined amount of molten metal adheres is cooled to below the freezing point of the molten metal by the air jet cooler 340 and the air / water cooling zone 350.
  • the air jet cooler 340 is a facility for cooling the steel strip S by gas blowing.
  • the air-water cooling zone 350 is a facility intended to cool the steel strip S by spraying a mist-like fluid (for example, cooling water) and gas. Thereby, the molten metal is solidified and a molten Zn alloy plating layer is formed on the surface of the steel strip S.
  • a mist-like fluid for example, cooling water
  • the hot-dip Zn alloy plated steel sheet cooled to a predetermined temperature is further cooled in the water quench zone 360.
  • the water quench zone 360 is equipment for the purpose of cooling the steel strip S by contact with a large amount of cooling water compared to the air-water cooling zone 350, and the amount by which a water film is temporarily formed on the surface of the plating layer. Supply water.
  • the water quench zone 360 seven rows of 10 flat spray nozzles arranged at intervals of 150 mm in the width direction of the steel strip S are arranged in the feed direction of the base steel plate S.
  • an aqueous solution containing a water-soluble corrosion inhibitor corrosion current density reduction rate: 20% or more
  • the steel strip S is cooled in the water quench zone 360 while being supplied with a cooling aqueous solution in such an amount that a water film is temporarily formed on the surface of the plating layer.
  • a cooling aqueous solution for example, the water temperature of the cooling aqueous solution is about 20 ° C.
  • the water pressure is about 2.5 kgf / cm 2
  • the amount of water is about 150 m 3 / h.
  • “Temporarily forming a water film” refers to a state in which a water film in contact with the hot-dip Zn alloy-plated steel sheet is observed for about 1 second or more visually.
  • the water-cooled hot-dip Zn alloy-plated steel sheet is temper-rolled by a skin pass mill 370, straightened by a tension leveler 380, and wound around a tension reel 390.
  • a predetermined chemical conversion treatment solution is applied by the roll coater 400 to the surface of the hot dip Zn alloy plated steel plate corrected by the tension leveler 380.
  • the hot-dip Zn alloy plated steel sheet that has been subjected to the chemical conversion treatment is dried and cooled in the drying zone 410 and the air cooling zone 420 and then wound around the tension reel 390.
  • the hot-dip Zn alloy-plated steel sheet according to the present invention is excellent in blackening resistance and can be easily manufactured with high productivity. Moreover, the manufacturing method of the hot-dip Zn alloy-plated steel sheet according to the present invention can produce a hot-dip Zn alloy-plated steel sheet having excellent blackening resistance by simply bringing a predetermined cooling aqueous solution into contact with the surface of the hot-dip Zn alloy plating layer. It can be manufactured easily.
  • Hot-dip Zn alloy-plated steel sheet A hot-dip Zn alloy-plated steel sheet was manufactured using a production line 300 shown in FIG.
  • As the base steel plate (steel strip) S a hot-rolled steel strip having a thickness of 2.3 mm was prepared.
  • the base steel plate was plated with the plating bath composition and plating conditions shown in Table 1 to produce 14 types of hot-dip Zn alloy plated steel plates having different plating layer compositions.
  • the composition of the plating bath and the composition of the plating layer are almost the same.
  • the temperature of the steel sheet (plated layer surface) immediately before passing through the water quench zone 360 is changed to 80 ° C., 150 ° C. or 300 ° C. by changing the cooling conditions in the air jet cooler 340. Adjusted as follows.
  • any one of the aqueous solutions shown in Table 2 and Table 3 was used as a cooling aqueous solution.
  • Each cooling aqueous solution is prepared by dissolving the water-soluble corrosion inhibitor shown in Table 2 and Table 3 in pH 7.6 water and a dissolution accelerator if necessary at a predetermined ratio, and then adjusting the water temperature to 20 ° C. Was prepared.
  • each cooling aqueous solution supplied from the water quench zone 360 were water pressure: 2.5 kgf / cm 2 and water amount: 150 m 3 / h.
  • Tables 2 and 3 also show the corrosion current density reduction rate of each cooling water solution.
  • the corrosion current density reduction rate is a value calculated by the above equation (3) (see FIGS. 1A and 1B).
  • the corrosion current density is a value obtained by Tafel extrapolation from the polarization curve.
  • the corrosion current density reduction rate of the cooling aqueous solutions No. 10 to 36 is 20% or more, and the corrosion current density reduction rate of the cooling aqueous solutions No. 1 to 9 and 37 to 42 is less than 20%.
  • Optical conditions d / 8 ° method (double beam optical system) Field of view: 2 degree field of view Measurement method: Reflected light measurement Standard light: C Color system: CIELAB Measurement wavelength: 380 to 780 nm Measurement wavelength interval: 5 nm Spectrometer: Diffraction grating 1200 / mm Lighting: Halogen lamp (voltage 12V, power 50W, rated life 2000 hours) Measurement area: 7.25mm ⁇ Detection element: Photomultiplier tube (R928; Hamamatsu Photonics Co., Ltd.) Reflectance: 0-150% Measurement temperature: 23 ° C Standard plate: white
  • Example 2 14 types of hot-dip Zn alloy plated steel sheets with different plating layer compositions were produced by forming a plating layer on the base steel sheet with the plating bath composition (Nos. 1 to 14) and plating conditions shown in Table 1. did.
  • the water quench zone 360 was cooled using 42 types of cooling aqueous solutions shown in Tables 2 and 3. Further, each test piece was subjected to chemical conversion treatment under the following chemical conversion treatment conditions A to C. Subsequently, the blackening resistance when the gloss deterioration accelerating treatment was performed in the same manner as in Experiment 1 was measured.
  • Zinchrome 3387N (chromium concentration 10 g / L, Nippon Parkerizing Co., Ltd.) was used as the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid was applied by a spray ringer roll method so that the chromium adhesion amount was 10 mg / m 2 .
  • the chemical conversion treatment condition B an aqueous solution containing magnesium phosphate 50 g / L, potassium titanium fluoride 10 g / L, and organic acid 3 g / L was used as the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid was applied by a roll coating method so that the metal component adhesion amount was 50 mg / m 2 .
  • chemical conversion treatment condition C an aqueous solution containing 20 g / L of urethane resin, 3 g / L of ammonium dihydrogen phosphate, and 1 g / L of vanadium pentoxide was used as the chemical conversion treatment liquid.
  • the chemical conversion solution was applied by a roll coating method so that the dry film thickness was 2 ⁇ m.
  • the relationship between the type of the cooling water solution used and the temperature of the steel sheet (plated layer surface) immediately before cooling in the water quench zone 360, and the evaluation results of the Zn (OH) 2 ratio and the black change degree, 8 to Table 11 show.
  • the Zn (OH) 2 ratio is the measured value when the chemical conversion treatment is not performed (the same values as in Tables 4 to 7). ).
  • black change can be sufficiently suppressed by cooling with an aqueous solution having a corrosion current density reduction rate of 20% or more regardless of the type of chemical conversion treatment.
  • the hot-dip Zn alloy-plated steel sheet obtained by the production method of the present invention is excellent in blackening resistance, it is useful as a plated steel sheet used for, for example, building roofing materials, exterior materials, home appliances, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 溶融Zn合金めっき鋼板は、鋼板と、前記鋼板の表面に配置された溶融Zn合金めっき層と、を有する。前記溶融Zn合金めっき層は、全面において以下の式(1)を満たす。 式(1)において、S[Zn]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、金属Znに由来する約1022eVを中心とするピークが示す面積である。S[Zn(OH)]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、Zn(OH)に由来する約1023eVを中心とするピークが示す面積である。

Description

溶融Zn合金めっき鋼板およびその製造方法
 本発明は、耐黒変性に優れる溶融Zn合金めっき鋼板およびその製造方法に関する。
 耐食性に優れるめっき鋼板として、基材鋼板の表面に、AlおよびMgを含む溶融Zn合金めっき層が形成された溶融Zn合金めっき鋼板が知られている。溶融Zn合金めっき鋼板のめっき層の組成としては、例えばAl:4.0~15.0質量%、Mg:1.0~4.0質量%、Ti:0.002~0.1質量%、B:0.001~0.045質量%、残部:Znおよび不可避不純物を含むものがある。この溶融Zn合金めっき鋼板は、[Al/Zn/ZnMgの三元共晶組織]の素地中に[初晶Al]および[Zn単相]が混在した金属組織からなるめっき層を有しており、工業製品として十分な耐食性と表面外観を有している。
 前述の溶融Zn合金めっき鋼板は、以下の工程により連続的に製造されうる。まず、炉を通した基材鋼板(鋼帯)を溶融Zn合金めっき浴に浸漬した後、例えば、ガスワイピング装置に通すことで、基材鋼板の表面に付着した溶融金属を所定量となるように調整する。次いで、所定量の溶融金属が付着した鋼帯を、エアジェットクーラーおよび気水冷却領域に通すことで、溶融金属を冷却して、溶融Zn合金めっき層が形成される。さらに、溶融Zn合金めっき層が形成された鋼帯をウォータークエンチ帯域に通して、冷却水を接触させることにより、溶融Zn合金めっき鋼板を得る。
 しかしながら、このように製造された溶融Zn合金めっき鋼板は、経時的にめっき層表面が黒変化してしまう場合があった。黒変化が進行した溶融Zn合金めっき鋼板は、金属光沢を失った黒灰色の外観となり美観を損ねるため、黒変化の抑制手法が求められていた。
 このような黒変化を防止する方法として、ウォータークエンチ帯域におけるめっき層表面の温度を調整する方法が提案されている(例えば、特許文献1参照)。特許文献1の発明では、ウォータークエンチ帯域で冷却水に接触させる際のめっき層表面の温度を105℃未満にすることで、めっき層表面の黒変化を防止している。また、めっき層表面の温度を105℃未満にする代わりに、めっき浴に易酸化元素(希土類元素、Y、ZrまたはSi)を配合するとともにめっき層表面の温度を105~300℃にすることでも、めっき層表面の黒変化を防止している。
特開2002-226958号公報
 特許文献1の発明では、ウォータークエンチ帯域に通す前にめっき層表面を所定の温度まで冷却する必要があったため、溶融Zn合金めっき鋼板の生産が制限される場合があった。たとえば、板厚が厚いめっき鋼板では、めっき鋼板の送り速度を遅くしてめっき鋼板を所定の温度まで冷却する必要があるため、生産性が低下してしまっていた。また、易酸化元素をめっき浴に配合する場合は、易酸化元素がドロスになりやすく、易酸化元素の濃度管理が煩雑であるため、製造工程が煩雑になるという問題があった。
 本発明の目的は、生産性を低下させることなく、かつ煩雑なめっき浴の成分管理を行うことなく製造されうる、耐黒変性に優れる溶融Zn合金めっき鋼板およびその製造方法を提供することである。
 本発明者らは、めっき層表面におけるZn(OH)の比率を低減させることで、上記課題を解決することができることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の溶融Zn合金めっき鋼板に関する。
 [1]鋼板と、前記鋼板の表面に配置された溶融Zn合金めっき層と、を有し、前記溶融Zn合金めっき層は、全面において以下の式(1)を満たす、溶融Zn合金めっき鋼板。
Figure JPOXMLDOC01-appb-M000001
 [式(1)において、S[Zn]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、金属Znに由来する約1022eVを中心とするピークが示す面積である。S[Zn(OH)]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、Zn(OH)に由来する約1023eVを中心とするピークが示す面積である。]
 [2]前記溶融Zn合金めっき層は、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含む、[1]に記載の溶融Zn合金めっき鋼板。
 [3]前記溶融Zn合金めっき層は、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%からなる群から選ばれる1種以上をさらに含む、[2]に記載の溶融Zn合金めっき鋼板。
 また、本発明は、以下の溶融Zn合金めっき鋼板の製造方法に関する。
 [4]基材鋼板を溶融Zn合金めっき浴に浸漬して、前記基材鋼板の表面に溶融Zn合金めっき層を形成する工程と、水溶性腐食抑制剤を含む水溶液を、前記溶融Zn合金めっき層の表面に接触させて、前記溶融Zn合金めっき層の形成により昇温した前記基材鋼板および前記溶融Zn合金めっき層を冷却する工程と、を有し、前記水溶液を前記溶融Zn合金めっき層の表面に接触させる時の、前記溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下であり、前記水溶性腐食抑制剤を含む水溶液は、以下の式(2)を満たす、溶融Zn合金めっき鋼板の製造方法。
Figure JPOXMLDOC01-appb-M000002
 [式(2)において、Zは、前記溶融Zn合金めっき鋼板が、前記水溶性腐食抑制剤を含まない0.5M NaCl水溶液中において示す腐食電流密度である。Zは、前記溶融Zn合金めっき鋼板が、前記水溶性腐食抑制剤を含む水溶液に終濃度が0.5MとなるようにNaClを溶解させた水溶液中において示す腐食電流密度である。]
 本発明によれば、耐黒変性に優れる溶融Zn合金めっき鋼板を、高い生産性で容易に製造することができる。
図1Aは、水溶性腐食抑制剤を含まない0.5M NaCl水溶液中の溶融Zn合金めっき鋼板の分極曲線の一例を示すグラフである。図1Bは、水溶性腐食抑制剤を含む0.5M NaCl水溶液中の溶融Zn合金めっき鋼板の分極曲線の一例を示すグラフである。 図2Aは、スプレー方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。図2Bは、浸漬方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。 図3A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合の、めっき層表面におけるZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 図4A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合の、めっき層表面におけるAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 図5A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合の、めっき層表面におけるMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 冷却水として水を使用し、水膜を形成させることなく、溶融Zn合金めっき層を冷却した場合の、めっき層表面におけるZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 5+を含有する冷却水溶液を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合の、めっき層表面におけるZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 図8A~Dは、めっき層表面におけるZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 溶融Zn合金めっき鋼板の製造ラインの一部の構成を示す模式図である。
 (本発明に係る溶融Zn合金めっき鋼板の製造方法)
 本発明に係る溶融Zn合金めっき鋼板(以下「めっき鋼板」ともいう)の製造方法は、(1)基材鋼板の表面に溶融Zn合金めっき層(以下「めっき層」ともいう)を形成する第1工程と、(2)所定の水溶液をめっき層の表面に接触させて、めっき層の形成により昇温した基材鋼板およびめっき層を冷却する第2工程と、を有する。
 本発明の製造方法は、溶融Zn合金めっき層を形成した後に、所定の冷却水溶液をめっき層表面に接触させることで、めっき層の黒変化を抑制することを特徴の一つとする。以下、各工程について説明する。
 (1)第1工程
 第1工程では、基材鋼板を溶融Zn合金めっき浴に浸漬して、基材鋼板の表面に溶融Zn合金めっき層を形成する。
 まず、溶融Zn合金めっき浴に基材鋼板を浸漬し、ガスワイピングなどを用いることによって、所定量の溶融金属を基材鋼板の表面に付着させる。
 基材鋼板の種類は、特に限定されない。たとえば、基材鋼板としては、低炭素鋼や中炭素鋼、高炭素鋼、合金鋼などからなる鋼板を使用することができる。良好なプレス成形性が必要とされる場合は、低炭素Ti添加鋼、低炭素Nb添加鋼などからなる深絞り用鋼板が基材鋼板として好ましい。また、P、Si、Mnなどを添加した高強度鋼板を用いてもよい。
 めっき浴の組成は、形成する溶融Zn合金めっき層の組成に応じて適宜選択される。たとえば、めっき浴は、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含む。また、めっき浴は、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%からなる群から選ばれる1種以上をさらに含んでいてもよい。溶融Zn合金めっきの例には、溶融Zn-0.18質量%Al-0.09質量%Sb合金めっき、溶融Zn-0.18質量%Al-0.06質量%Sb合金めっき、溶融Zn-0.18質量%Al合金めっき、溶融Zn-1質量%Al-1質量%Mg合金めっき、溶融Zn-1.5質量%Al-1.5質量%Mg合金めっき、溶融Zn-2.5質量%Al-3質量%Mg合金めっき、溶融Zn-2.5質量%Al-3質量%Mg-0.4質量%Si合金めっき、溶融Zn-3.5質量%Al-3質量%Mg合金めっき、溶融Zn-4質量%Al-0.75質量%Mg合金めっき、溶融Zn-6質量%Al-3質量%Mg-0.05質量%Ti-0.003質量%B合金めっき、溶融Zn-6質量%Al-3質量%Mg-0.02質量%Si-0.05質量%Ti-0.003質量%B合金めっき、溶融Zn-11質量%Al-3質量%Mg合金めっき、溶融Zn-11質量%Al-3質量%Mg-0.2質量%Si合金めっき、溶融Zn-55質量%Al-1.6質量%Si合金めっき、などが含まれる。特許文献1に記載されているように、Siを添加することでめっき層の黒変化を抑制することができるが、本発明に係る製造方法によりめっき鋼板を製造する場合は、Siを添加しなくてもめっき層の黒変化を抑制することができる。
 溶融Zn合金めっき層の付着量は、特に限定されない。たとえば、めっき層の付着量は、60~500g/m程度である。
 次いで、基材鋼板の表面に付着した溶融金属を100℃以上、かつめっき層の凝固点以下まで冷却し、溶融金属を凝固させることで、基材鋼板の表面にめっき浴の成分組成とほぼ同じ組成のめっき層が形成されためっき鋼板を得る。
 (2)第2工程
 第2工程では、所定の冷却水溶液を溶融Zn合金めっき層の表面に接触させて、溶融Zn合金めっき層の形成により昇温した基材鋼板およびめっき層を冷却する。生産性の観点からは、第2工程は、ウォータークエンチ(水冷)工程として行われることが好ましい。この場合、冷却水溶液を溶融Zn合金めっき層の表面に接触させる時の、溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下程度である。
 冷却水溶液は、以下の式(3)を満たすように水溶性腐食抑制剤を含む水溶液である。以下の式(3)は、冷却水溶液の腐食電流密度低減率が20%以上であることを示している。
Figure JPOXMLDOC01-appb-M000003
 [式(3)において、Zは、溶融Zn合金めっき鋼板が、水溶性腐食抑制剤を含まない0.5M NaCl水溶液中において示す腐食電流密度である。Zは、溶融Zn合金めっき鋼板が、水溶性腐食抑制剤を含む水溶液(冷却水溶液)に終濃度が0.5MとなるようにNaClを溶解させた水溶液中において示す腐食電流密度である。]
 なお、上記のとおり、冷却水溶液の腐食電流密度を測定するときには、冷却水溶液に終濃度が0.5MとなるようにNaClを添加するが、冷却水溶液を用いて溶融Zn合金めっき鋼板を冷却するときには、冷却水溶液にNaClを添加しないでそのまま使用する。
 上記式(3)において使用する腐食電流密度Z,Zは、分極曲線よりターフェル外挿法により求められる値である。分極曲線の測定は、電気化学測定システム(HZ-3000;北斗電工株式会社)を用いて行われる。また、腐食電流は、上記電気化学測定システムに付属のソフトウェア(データ解析ソフト)を用いて算出される。図1Aは、水溶性腐食抑制剤を含まない0.5M NaCl水溶液中の溶融Zn合金めっき鋼板の分極曲線の一例を示すグラフである。図1Bは、水溶性腐食抑制剤を含む0.5M NaCl水溶液中の溶融Zn合金めっき鋼板の分極曲線の一例を示すグラフである。このように、水溶性腐食抑制剤を含む0.5M NaCl水溶液中の腐食電流密度は、水溶性腐食抑制剤を含まない0.5M NaCl水溶液中において示す腐食電流密度よりも20%以上小さい。
 水溶性腐食抑制剤を含む水溶液(冷却水溶液)を調製する方法は、特に限定されない。たとえば、腐食電流密度を低減させうる水溶性腐食抑制剤と、必要に応じて溶解促進剤とを水(溶媒)に溶解させればよい。水溶性腐食抑制剤の種類は、腐食電流密度を低減させうるものであれば特に限定されない。水溶性腐食抑制剤の例には、V化合物やSi化合物、Cr化合物などが含まれる。好適なV化合物の例には、アセチルアセトンバナジル、バナジウムアセチルアセトネート、オキシ硫酸バナジウム、五酸化バナジウム、バナジン酸アンモニウムが含まれる。また、好適なSi化合物の例には、ケイ酸ナトリウムが含まれる。さらに、好適なCr化合物の例には、クロム酸アンモニウム、クロム酸カリウムが含まれる。これらの水溶性腐食抑制剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。水溶性腐食抑制剤の添加量は、上記式(3)を満たすように選択される。
 溶解促進剤も添加する場合、溶解促進剤の添加量は、特に限定されない。たとえば、水溶性腐食抑制剤100質量部に対して、溶解促進剤90~130質量部を添加すればよい。溶解促進剤の添加量が過少量の場合、水溶性腐食抑制剤を十分に溶解させることができないことがある。一方、溶解促進剤の添加量が過剰量の場合、効果が飽和してしまい、費用的に不利である。
 溶解促進剤の例には、2-アミノエタノール、テトラエチルアンモニウムヒドロキシド、エチレンジアミン、2,2’-イミノジエタノール、1-アミノ-2-プロパノールが含まれる。
 冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法は、特に限定されない。冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の例には、スプレー方式、浸漬方式が含まれる。
 図2は、冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の例を示す図である。図2Aは、スプレー方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。図2Bは、浸漬方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。
 図2Aに示されるように、スプレー方式の冷却装置100は、複数のスプレーノズル110と、スプレーノズル110より鋼帯Sの送り方向下流側に配置された絞りロール120と、これらを覆う筐体130とを有する。スプレーノズル110は、鋼帯Sの両面に配置されている。鋼帯Sは、筐体130の内部で、めっき層の表面に一時的に水膜が形成されるように冷却水溶液がスプレーノズル110から供給されることで冷却される。そして、絞りロール120で冷却水溶液が除去される。
 また、図2Bに示されるように、浸漬方式の冷却装置200は、冷却水溶液が貯留された浸漬漕210と、浸漬漕210の内部に配置された浸漬ロール220と、浸漬ロール220より鋼帯Sの送り方向下流側に配置され、鋼帯Sに付着した余分な冷却水溶液を除去する絞りロール230とを有する。鋼帯Sは、浸漬漕210に投入された後、冷却水溶液と接触することで冷却される。この後、鋼帯Sは、回転する浸漬ロール220によって方向転換して上方へ向かって引き上げられる。そして、絞りロール230で冷却水溶液が除去される。
 以上の手順により、耐黒変性に優れる溶融Zn合金めっき鋼板を製造することができる。
 本発明に係る製造方法により、溶融Zn合金めっき鋼板のめっき層表面における経時的な黒変化を抑制できる理由は定かではない。以下、溶融Zn合金めっき層における黒変化発生の推察されるメカニズムを説明した後に、本発明に係る製造方法による黒変化抑制の推察されるメカニズムを説明する。しかしながら、黒変化抑制のメカニズムは、これらの仮説に限定されるものではない。
 (黒変化発生のメカニズム)
 まず、めっき層表面の黒変化の発生および黒変化の抑制の推察されるメカニズムに至るまでの過程を説明する。本発明者らは、基材鋼板の表面に、Al:6質量%、Mg:3質量%、Si:0.024質量%、Ti:0.05質量%、B:0.003質量%およびZn:残部のめっき組成の溶融Zn合金めっき層を形成し、次いでスプレー方式のウォータークエンチ帯域により冷却水(工場内用水;pH7.6、20℃)による水膜を一時的に形成させることで、溶融Zn合金めっき鋼板を作製した。なお、「一時的に水膜が形成される」とは、目視で1秒以上、溶融Zn合金めっき鋼板の表面に接触している水膜が観察される状態をいう。このとき、冷却水により水膜が形成される直前の溶融Zn合金めっき鋼板の表面温度は、160℃程度と推測された。
 作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管後の溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の表面は、全体的に黒変化が進行しており、さらに周囲と比較して特に黒変化が進行した暗部が観察された。
 また、作製直後の溶融Zn合金めっき鋼板のめっき層表面における無作為に選択した30箇所の部位について、XPS分析法(X-ray Photoelectron Spectroscopy)により、Zn、AlおよびMgの化学結合状態を分析した。その後、分析を行った溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管後の溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の一部において暗部の形成が観察された。そこで、暗部が形成された部位と、暗部の形成が認められなかった部位(通常部)について、溶融Zn合金めっき鋼板作製直後のXPS分析の結果を比較した。
 図3~図5は、通常部と暗部に関して、作製直後の溶融Zn合金めっき鋼板におけるXPS分析の結果を示すグラフである。図3Aは、通常部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図3Bは、暗部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図4Aは、通常部のAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図4Bは、暗部のAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図5Aは、通常部のMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図5Bは、暗部のMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。
 図3Aに示されるように、通常部におけるZnの分析では、金属Znに由来する約1022eVのピークと、金属Znに由来するピークより強度の弱い、Zn(OH)に由来する約1023eVのピークとが観察された。この分析結果から、通常部において、Znは、金属Znとして存在するだけでなく水酸化物(Zn(OH))としても存在することがわかる。なお、ZnとZn(OH)の強度比から、通常部では、ZnがZn(OH)より多く存在していることがわかる。
 一方、図3Bに示されるように、暗部におけるZnの分析でも、金属Znに由来する約1022eVのピークと、金属Znに由来するピークより強度の強い、Zn(OH)に由来する約1023eVのピークとが観察された。この分析結果から、暗部において、Znは、通常部と同様に、金属Znとして存在するだけでなく水酸化物(Zn(OH))としても存在することがわかる。なお、ZnとZn(OH)の強度比から、暗部では、Zn(OH)がZnより多く存在していることがわかる。
 図4Aおよび図4Bに示されるように、通常部および暗部におけるAlの分析では、金属Alに由来する約72eVのピークと、金属Alに由来するピークより強度の弱い、Alに由来する約74eVのピークとがそれぞれ観察された。この分析結果から、通常部および暗部において、Alは、金属Alおよび酸化物(Al)として存在することがわかる。なお、通常部および暗部のいずれの場合であっても、AlがAlよりも多く、通常部および暗部で存在比率に大きな変化はなかった。
 図5Aおよび図5Bに示されるように、通常部および暗部におけるMgの分析では、金属Mg、Mg(OH)およびMgOに由来する約49~50eVのピークが観察された。この分析結果から、通常部および暗部において、Mgは、金属Mg、酸化物(MgO)および水酸化物(Mg(OH))として存在することがわかる。なお、通常部および暗部における金属Mg、Mg(OH)およびMgOの存在比率に大きな変化はなかった。
 これらの結果より、暗部の形成、すなわち黒変化の進行速度にはZnの結合状態が影響を及ぼしており、Zn(OH)の存在比率の増加に起因して暗部が形成、すなわち黒変化が促進されると考えられた。
 次いで、本発明者らは、気水冷却装置により工場内用水(冷却水)を溶融Zn合金めっき層の表面に、水膜を形成させることなく接触させて、溶融Zn合金めっき鋼板を作製した。作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管した溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の表面光沢は均一であり、暗部の形成は認められなかった。また、めっき層表面の光沢の程度は、一時的に水膜を形成して作製した溶融Zn合金めっき鋼板における通常部とほぼ同等であった。
 次に、水膜を形成させることなく作製した直後の溶融Zn合金めっき鋼板のめっき層表面を、XPS分析にて分析した。図6は、Znの2p軌道に対応する化学結合エネルギーの強度プロファイルである。なお、AlおよびMgの強度プロファイルは、省略する。図6に示されるように、水膜を形成させることなく冷却水を接触させた場合でも、金属Znに由来する約1022eVのピークと、Zn(OH)に由来する1023eVのピークとが観察された。また、ZnおよびZn(OH)の強度比から、ZnがZn(OH)より多く存在していることがわかった。このことから、冷却水が接触した場合でも、水膜の形成が起こらない場合、Zn(OH)の生成は促進されないものと推定された。
 これらの結果より、Zn(OH)の生成には、冷却工程における水膜の形成が影響を及ぼしていることが示唆された。水膜が形成されない場合には、Zn(OH)が生成されにくいため、黒変化が抑制されると推察される。
 上述したように、本発明者らは、溶融Zn合金めっき鋼板のめっき層の黒変化について、1)冷却工程における水膜の形成によってめっき層の表面にZn(OH)が生成されること、および2)めっき層の表面のなかでも、Zn(OH)が生成された領域で黒変化が生じやすいこと、を見出した。そこで、本発明者らは、めっき層の黒変化の機構について、以下のように推察した。
 まず、高温(例えば100℃以上)のめっき層表面に冷却水が接触すると、めっき層表面の酸化皮膜またはめっき層のZn相から、Znが部分的に溶出する。
 Zn→Zn2++2e
 また、冷却水では、溶存酸素の一部が還元されて、OHが生成される。
 1/2O+HO+2e→2OH
 冷却水に溶出したZn2+は、冷却水中のOHと結合してめっき層表面でZn(OH)となる。
 Zn2++2OH→Zn(OH)
 そして、時間を経るとともに、めっき層表面のZn(OH)の一部は、脱水反応によりZnOとなる。
 Zn(OH)→ZnO+H
 次いで、ZnOの一部は、めっき層のAlやMgなどによってOが奪われて、ZnO1-Xとなる。このZnO1-Xが色中心となって、目視では黒色を呈する。
 (黒変化抑制のメカニズム)
 次いで、本発明者らは、工場内用水の代わりに、V化合物の水溶液(腐食電流密度低減率:20%以上)を使用し、スプレー方式のウォータークエンチ帯域によりめっき層の表面に、一時的に水膜を形成させ、溶融Zn合金めっき鋼板を作製した。このとき、冷却水溶液に接触する直前の溶融Zn合金めっき鋼板の表面温度は、160℃程度と推定された。
 作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。1週間保管した後の溶融Zn合金めっき鋼板を目視により観察したところ、溶融Zn合金めっき鋼板の表面光沢は、ほぼ均一であり、暗部の形成は認められなかった。また、この溶融Zn合金めっき鋼板は、工場内用水を用いて水膜を一時的に形成させて作製した溶融Zn合金めっき鋼板における通常部と比較して、高い表面光沢を有していた。
 次に、この冷却水溶液を用いて、一時的に水膜を形成させて作製した直後の溶融Zn合金めっき鋼板のめっき層表面を、XPS分析にて分析した。図7は、この冷却水溶液を使用した場合の通常部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。なお、AlおよびMgの強度プロファイルは、省略する。図7に示されるように、この冷却水溶液を使用した場合でも、金属Znに由来する約1022eVのピークと、Zn(OH)に由来する約1023eVのピークとが観察された。また、ZnとZn(OH)との強度比から、ZnがZn(OH)より多く存在していることがわかった。このことから、V化合物の水溶液(腐食電流密度低減率:20%以上)を使用した場合には、一時的な水膜が形成された場合であっても、Zn(OH)の生成は促進されないものと推定された。
 冷却水として腐食電流密度低減率が20%以上の水溶液を用いた場合、上記のZn(OH)の生成に関与する一連の反応の進行速度が低下する。よって、Zn(OH)の生成が抑えられ、結果的にめっき層の黒変化が抑制されると考えられる。
 (本発明に係る溶融Zn合金めっき鋼板)
 本発明に係る製造方法で製造された溶融Zn合金めっき鋼板(本発明に係る溶融Zn合金めっき鋼板)では、溶融Zn合金めっき層の表面におけるZn(OH)の量が少ない。したがって、溶融Zn合金めっき層は、全面において以下の式(4)を満たしている。
Figure JPOXMLDOC01-appb-M000004
 [式(4)において、S[Zn]は、溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、金属Znに由来する約1022eVを中心とするピークが示す面積である。S[Zn(OH)]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、Zn(OH)に由来する約1023eVを中心とするピークが示す面積である。]
 上記式(4)は、XPS分析で測定される強度プロファイルにおける、金属Znに由来する約1022eVを中心とするピークの面積およびZn(OH)に由来する約1023eVを中心とするピークの面積の合計に対する、Zn(OH)に由来する約1023eVを中心とするピークの面積の割合(以下「Zn(OH)比率」という)が、40%以下であることを示している。
 図8は、溶融Zn合金めっき鋼板のめっき層表面における、Znの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図8Aは、Zn(OH)比率が約80%である強度プロファイルであり、図8Bは、Zn(OH)比率が約45%である強度プロファイルであり、図8Cは、Zn(OH)比率が約15%である強度プロファイルであり、図8Dは、Zn(OH)比率が約10%である強度プロファイルである。点線はベースラインであり、破線は金属Znに由来する強度プロファイル(約1022eVを中心とするピーク)であり、実線はZn(OH)に由来する強度プロファイル(約1023eVを中心とするピーク)である。本発明に係る溶融Zn合金めっき鋼板では、めっき層表面の全面において、図8C,Dに示されるようにZn(OH)比率が40%以下となる。
 溶融Zn合金めっき鋼板のめっき層表面のXPS分析は、XPS分析装置(AXIS Nova;Kratos Group PLC.)を用いて行われる。また、金属Znに由来する約1022eVを中心とするピークの面積およびZn(OH)に由来する約1023eVを中心とするピークの面積は、上記XPS分析装置に付属のソフトウェア(Vision 2)を用いて算出される。
 なお、金属Znに由来するピーク位置は、正確には1021.6eVであり、Zn(OH)に由来するピーク位置は、正確には1023.3eVであるが、これらの値は、XPS分析の特性や、試料の汚れ、試料の帯電などにより変化することがある。しかしながら、当業者であれば、金属Znに由来するピークおよびZn(OH)に由来するピークを識別することは可能である。
 (製造ライン)
 前述した本発明の溶融Zn合金めっき鋼板の製造方法は、例えば、以下のような製造ラインで実施されうる。
 図9は、溶融Zn合金めっき鋼板の製造ライン300の一部の模式図である。製造ライン300は、基材鋼板(鋼帯)の表面にめっき層を形成して、溶融Zn合金めっき鋼板を連続的に製造することができる。また、製造ライン300は、必要に応じてめっき層の表面に化成処理皮膜をさらに形成して、化成処理めっき鋼板を連続的に製造することもできる。
 図9に示されるように、製造ライン300は、炉310、めっき浴320、エアジェットクーラー340、気水冷却帯域350、ウォータークエンチ帯域360、スキンパスミル370およびテンションレベラー380を有する。
 図外の繰り出しリールから繰り出された鋼帯Sは、所定の工程を経て炉310内で加熱される。加熱された鋼帯Sをめっき浴320に浸漬することで、溶融金属が鋼帯Sの両面に付着する。次いで、ワイピングノズル330を有するワイピング装置により過剰な溶融金属を取り除いて、所定量の溶融金属を鋼帯Sの表面に付着させる。
 所定量の溶融金属が付着した鋼帯Sは、エアジェットクーラー340や気水冷却帯域350により溶融金属の凝固点以下まで冷却される。エアジェットクーラー340は、気体の吹き付けによる鋼帯Sの冷却を目的とした設備である。また、気水冷却帯域350は、霧状にした流体(例えば、冷却水)および気体の吹き付けによる鋼帯Sの冷却を目的とした設備である。これにより、溶融金属が凝固し、溶融Zn合金めっき層が鋼帯Sの表面に形成される。なお、気水冷却帯域350によって鋼帯Sが冷却されるときに、めっき層の表面に水膜が形成されることはない。冷却後の温度は、特に限定されず、例えば100~250℃である。
 所定の温度まで冷却された溶融Zn合金めっき鋼板は、ウォータークエンチ帯域360でさらに冷却される。ウォータークエンチ帯域360は、気水冷却帯域350と比較して大量の冷却水の接触による鋼帯Sの冷却を目的とした設備であり、めっき層の表面に一時的に水膜が形成される量の水を供給する。たとえば、ウォータークエンチ帯域360には、フラットスプレーノズルを鋼帯Sの幅方向に150mm間隔で10本配置したヘッダーが、基材鋼板Sの送り方向に7列配置されている。ウォータークエンチ帯域360では、水溶性腐食抑制剤を含む水溶液(腐食電流密度低減率:20%以上)が冷却水溶液として使用される。鋼帯Sは、ウォータークエンチ帯域360の中で、めっき層の表面に一時的に水膜が形成されるような量の冷却水溶液を供給されながら、冷却される。たとえば、冷却水溶液の水温は20℃程度であり、水圧は2.5kgf/cm程度であり、水量は150m/h程度である。なお、「一時的に水膜が形成される」とは、目視で約1秒以上、溶融Zn合金めっき鋼板と接触している水膜が観察される状態をいう。
 水冷された溶融Zn合金めっき鋼板は、スキンパスミル370で調質圧延され、テンションレベラー380で平坦に矯正された後、テンションリール390に巻き取られる。
 めっき層の表面にさらに化成処理皮膜を形成する場合は、テンションレベラー380で矯正された溶融Zn合金めっき鋼板の表面に、ロールコーター400で所定の化成処理液を塗布する。化成処理を施された溶融Zn合金めっき鋼板は、乾燥帯域410およびエア冷却帯域420で乾燥および冷却された後、テンションリール390に巻き取られる。
 以上のように、本発明に係る溶融Zn合金めっき鋼板は、耐黒変性に優れており、かつ高い生産性で容易に製造されうる。また、本発明に係る溶融Zn合金めっき鋼板の製造方法は、所定の冷却水溶液を溶融Zn合金めっき層の表面に接触させるだけで、耐黒変性に優れる溶融Zn合金めっき鋼板を、高い生産性で容易に製造することができる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
 (実験1)
 実験1では、水溶性腐食抑制剤を含む冷却水を用いて溶融Zn合金めっき鋼板を冷却した場合における、溶融Zn合金めっき層の耐黒変性について調べた。
 1.溶融Zn合金めっき鋼板の製造
 図9に示される製造ライン300を用いて、溶融Zn合金めっき鋼板を製造した。基材鋼板(鋼帯)Sとして、板厚2.3mmの熱延鋼帯を準備した。表1に示すめっき浴組成およびめっき条件で基材鋼板にめっきを施して、めっき層の組成が互いに異なる14種類の溶融Zn合金めっき鋼板を製造した。なお、めっき浴の組成とめっき層の組成はほぼ同一である。
Figure JPOXMLDOC01-appb-T000001
 溶融Zn合金めっき鋼板を製造する際に、エアジェットクーラー340における冷却条件を変化させて、ウォータークエンチ帯域360に通す直前の鋼板(めっき層表面)の温度を80℃、150℃または300℃となるように調整した。ウォータークエンチ帯域360では、表2および表3に示されるいずれかの水溶液を冷却水溶液として使用した。各冷却水溶液は、pH7.6の水に表2および表3に示される水溶性腐食抑制剤と、必要に応じて溶解促進剤を所定の比率で溶解させた後、水温を20℃に調整することで調製した。No.42の冷却水溶液は、水溶性腐食抑制剤および溶解促進剤を含まないpH7.6の水である。ウォータークエンチ帯域360におけるスプレー装置は、フラットスプレーノズルを幅方向に150mm間隔で10本配置したヘッダーを、基材鋼板Sの送り方向に7列配置したものを使用した。ウォータークエンチ帯域360から供給した各冷却水溶液の条件は、水圧:2.5kgf/cm、水量:150m/hとした。
 表2および表3には、各冷却水溶液の腐食電流密度低減率も示す。腐食電流密度低減率は、上記式(3)により算出された値である(図1A,B参照)。腐食電流密度は、分極曲線よりターフェル外挿法により求められた値である。No.10~36の冷却水溶液の腐食電流密度低減率は、20%以上であり、No.1~9,37~42の冷却水溶液の腐食電流密度低減率は、20%未満である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 2.溶融Zn合金めっき鋼板の評価
 (1)めっき層表面のZn(OH)比率の測定
 各溶融Zn合金めっき鋼板について、XPS分析装置(AXIS Nova;Kratos Group PLC.)を用いて、めっき層表面のZn(OH)比率を測定した。Zn(OH)比率は、XPS分析装置に付属のソフトウェア(Vision 2)を用いて算出した。
 (2)光沢劣化促進処理
 製造した各溶融Zn合金めっき鋼板から試験片を切り出した。各試験片を恒温恒湿機(LHU-113;エスペック株式会社)内に置き、温度60℃、相対湿度90%で光沢劣化の促進処理を40時間行った。
 (3)黒変化度の測定
 各溶融Zn合金めっき鋼板について、光沢劣化促進処理の前後におけるめっき層表面の明度(L値)を測定した。めっき層表面の明度(L値)は、分光型色差計(TC-1800;有限会社東京電色)を用いて、JIS K 5600に準拠した分光反射測定法で測定した。測定条件を以下に示す。
 光学条件:d/8°法(ダブルビーム光学系)
 視野:2度視野
 測定方法:反射光測定
 標準光:C
 表色系:CIELAB
 測定波長:380~780nm
 測定波長間隔:5nm
 分光器:回折格子 1200/mm
 照明:ハロゲンランプ(電圧12V、電力50W、定格寿命2000時間)
 測定面積:7.25mmφ
 検出素子:光電子増倍管(R928;浜松ホトニクス株式会社)
 反射率:0-150%
 測定温度:23℃
 標準板:白色
 各めっき鋼板について、光沢劣化促進処理の前後のL値の差(ΔL)が0.5未満の場合は「○」、0.5以上であって3未満の場合は「△」、3以上の場合は「×」と評価した。なお、評価が「○」のめっき鋼板は、耐黒変性を有すると判断することができる。
 (4)評価結果
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、Zn(OH)比率および黒変化度の評価結果との関係を、表4~表7に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4~表7に示されるように、腐食電流密度低減率が20%以上の水溶液を用いて冷却した場合は、めっき層表面のZn(OH)比率が40%以下となり、耐黒変性が良好であった。一方、腐食電流密度低減率が20%未満の水溶液を用いて冷却した場合は、めっき層表面のZn(OH)比率が40%超となり、黒変化を十分に抑制することができなかった。
 以上の結果から、腐食電流密度低減率が20%以上の水溶液を用いて冷却することで、めっき層表面のZn(OH)比率が40%以下となること、およびめっき層表面のZn(OH)比率が40%以下のめっき鋼板は、耐黒変性に優れることがわかる。
 (実験2)
 実験2では、表1に示すめっき浴組成(No.1~14)およびめっき条件で基材鋼板にめっき層を形成して、めっき層の組成が互いに異なる14種類の溶融Zn合金めっき鋼板を製造した。溶融Zn合金めっき鋼板を製造する際には、ウォータークエンチ帯域360において、表2および表3に示される42種類の冷却水溶液を使用して冷却した。さらに、各試験片に、下記の化成処理条件A~Cの条件で化成処理を施した。続いて、実験1と同様に光沢劣化促進処理した場合の耐黒変性について測定した。
 化成処理条件Aでは、化成処理液として、ジンクロム3387N(クロム濃度10g/L、日本パーカライジング株式会社)を使用した。化成処理液をスプレーリンガーロール方式で、クロム付着量が10mg/mとなるように塗布した。
 化成処理条件Bでは、化成処理液として、リン酸マグネシウム50g/L、フッ化チタンカリウム10g/L、有機酸3g/Lを含む水溶液を使用した。化成処理液をロールコート方式で、金属成分付着量が50mg/mとなるように塗布した。
 化成処理条件Cでは、化成処理液として、ウレタン樹脂20g/L、リン酸二水素アンモニウム3g/L、五酸化バナジウム1g/Lを含む水溶液を使用した。化成処理液をロールコート方式で、乾燥膜厚が2μmとなるように塗布した。
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、Zn(OH)比率および黒変化度の評価結果との関係を、表8~表11に示す。なお、化成処理後にZn(OH)比率を正確に測定することは困難であるため、Zn(OH)比率は、化成処理をしていない場合の測定値(表4~表7と同じ値)である。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表8~表11に示されるように、腐食電流密度低減率が20%以上の水溶液を用いて冷却した場合は、化成処理を施していても、耐黒変性が良好であった。一方、腐食電流密度低減率が20%未満の水溶液を用いて冷却した場合は、化成処理を施していても、黒変化を十分に抑制することができなかった。
 以上の結果から、腐食電流密度低減率が20%以上の水溶液を用いて冷却することで、化成処理の種類に関わらず、黒変化を十分に抑制できることがわかる。
 本出願は、2013年12月3日出願の特願2013-250143に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の製造方法により得られる溶融Zn合金めっき鋼板は、耐黒変性に優れているため、例えば建築物の屋根材や外装材、家電製品、自動車などに使用されるめっき鋼板として有用である。
 100,200 冷却装置
 110 スプレーノズル
 120,230 絞りロール
 130 筐体
 210 浸漬漕
 220 浸漬ロール
 300 製造ライン
 310 炉
 320 めっき浴
 330 ワイピングノズル
 340 エアジェットクーラー
 350 気水冷却帯域
 360 ウォータークエンチ帯域
 370 スキンパスミル
 380 テンションレベラー
 390 テンションリール
 400 ロールコーター
 410 乾燥帯域
 420 エア冷却帯域
 S 鋼帯

Claims (4)

  1.  鋼板と、
     前記鋼板の表面に配置された溶融Zn合金めっき層と、を有し、
     前記溶融Zn合金めっき層は、全面において以下の式(1)を満たす、
     溶融Zn合金めっき鋼板。
    Figure JPOXMLDOC01-appb-M000005
     [式(1)において、S[Zn]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、金属Znに由来する約1022eVを中心とするピークが示す面積である。S[Zn(OH)]は、前記溶融Zn合金めっき層の表面のXPS分析の強度プロファイルにおいて、Zn(OH)に由来する約1023eVを中心とするピークが示す面積である。]
  2.  前記溶融Zn合金めっき層は、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含む、請求項1に記載の溶融Zn合金めっき鋼板。
  3.  前記溶融Zn合金めっき層は、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%からなる群から選ばれる1種以上をさらに含む、請求項2に記載の溶融Zn合金めっき鋼板。
  4.  基材鋼板を溶融Zn合金めっき浴に浸漬して、前記基材鋼板の表面に溶融Zn合金めっき層を形成する工程と、
     水溶性腐食抑制剤を含む水溶液を、前記溶融Zn合金めっき層の表面に接触させて、前記溶融Zn合金めっき層の形成により昇温した前記基材鋼板および前記溶融Zn合金めっき層を冷却する工程と、を有し、
     前記水溶液を前記溶融Zn合金めっき層の表面に接触させる時の、前記溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下であり、
     前記水溶性腐食抑制剤を含む水溶液は、以下の式(2)を満たす、
     溶融Zn合金めっき鋼板の製造方法。
    Figure JPOXMLDOC01-appb-M000006
     [式(2)において、Zは、前記溶融Zn合金めっき鋼板が、前記水溶性腐食抑制剤を含まない0.5M NaCl水溶液中において示す腐食電流密度である。Zは、前記溶融Zn合金めっき鋼板が、前記水溶性腐食抑制剤を含む水溶液に終濃度が0.5MとなるようにNaClを溶解させた水溶液中において示す腐食電流密度である。]
PCT/JP2014/005717 2013-12-03 2014-11-13 溶融Zn合金めっき鋼板およびその製造方法 WO2015083326A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2014358647A AU2014358647A1 (en) 2013-12-03 2014-11-13 Hot-dip Zn-alloy-plated steel sheet and method for producing same
KR1020167013545A KR101666123B1 (ko) 2013-12-03 2014-11-13 용융 Zn 합금 도금 강판 및 그 제조 방법
MX2016006898A MX2016006898A (es) 2013-12-03 2014-11-13 Lamina de acero enchapada en aleacion de zn por inmersion en caliente y metodo para producir la misma.
US15/037,489 US20160281201A1 (en) 2013-12-03 2014-11-13 Hot-dip zn-alloy-plated steel sheet and method for producing same
CN201480065801.4A CN105992834B (zh) 2013-12-03 2014-11-13 热浸镀Zn合金钢板的制造方法
RU2016121851A RU2615750C1 (ru) 2013-12-03 2014-11-13 Покрытый погружением в расплав цинкового сплава стальной лист и способ его изготовления
BR112016011651A BR112016011651A2 (pt) 2013-12-03 2014-11-13 Lâmina de aço galvanizada por liga de zn banhada a quente e método para produzir a mesma
CA2932525A CA2932525C (en) 2013-12-03 2014-11-13 Hot-dip zn-alloy-plated steel sheet and method for producing same
EP14868634.8A EP3078759A4 (en) 2013-12-03 2014-11-13 Hot-dip zn-alloy-plated steel sheet and method for producing same
US15/606,254 US10125414B2 (en) 2013-12-03 2017-05-26 Method of producing hot-dip Zn alloy-plated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-250143 2013-12-03
JP2013250143A JP5748829B2 (ja) 2013-12-03 2013-12-03 溶融Zn合金めっき鋼板およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/037,489 A-371-Of-International US20160281201A1 (en) 2013-12-03 2014-11-13 Hot-dip zn-alloy-plated steel sheet and method for producing same
US15/606,254 Division US10125414B2 (en) 2013-12-03 2017-05-26 Method of producing hot-dip Zn alloy-plated steel sheet

Publications (1)

Publication Number Publication Date
WO2015083326A1 true WO2015083326A1 (ja) 2015-06-11

Family

ID=53273113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005717 WO2015083326A1 (ja) 2013-12-03 2014-11-13 溶融Zn合金めっき鋼板およびその製造方法

Country Status (13)

Country Link
US (2) US20160281201A1 (ja)
EP (1) EP3078759A4 (ja)
JP (1) JP5748829B2 (ja)
KR (1) KR101666123B1 (ja)
CN (1) CN105992834B (ja)
AU (1) AU2014358647A1 (ja)
BR (1) BR112016011651A2 (ja)
CA (1) CA2932525C (ja)
MX (1) MX2016006898A (ja)
MY (1) MY165137A (ja)
RU (1) RU2615750C1 (ja)
TW (1) TWI613323B (ja)
WO (1) WO2015083326A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031465B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
KR102031466B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
WO2022153840A1 (ja) * 2021-01-14 2022-07-21 日本製鉄株式会社 自動車構造部材用めっき鋼板
CN113025939B (zh) * 2021-02-25 2021-12-21 首钢集团有限公司 一种锌铝镁镀层钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238952A (ja) * 1985-04-13 1986-10-24 Nippon Steel Corp 溶融メツキ鋼板のスパングルレス化方法
JPS63297576A (ja) * 1987-05-29 1988-12-05 Nisshin Steel Co Ltd 耐黒変性に優れた溶融めっき鋼板の製造方法
JPH06336664A (ja) * 1993-05-27 1994-12-06 Kobe Steel Ltd スポット溶接性に優れた亜鉛−アルミニウム系めっき 鋼板の製造方法
JP2002226958A (ja) 2001-02-02 2002-08-14 Nisshin Steel Co Ltd 光沢保持性の良好な溶融Zn基めっき鋼板およびその製造法
JP2008169470A (ja) * 2006-12-13 2008-07-24 Jfe Steel Kk 平板部耐食性、耐黒変性およびプレス成形後の外観と耐食性に優れた表面処理亜鉛系めっき鋼板、並びに亜鉛系めっき鋼板用水系表面処理液
JP5356616B1 (ja) * 2012-11-27 2013-12-04 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307312B2 (ja) * 1998-01-06 2002-07-24 住友金属工業株式会社 耐低温チッピング性、加工性に優れた合金化溶融亜鉛めっき鋼板の製造方法
KR20020041029A (ko) * 2000-11-25 2002-06-01 이구택 내식성이 우수한 용융아연합금계 도금강판
US6677058B1 (en) * 2002-07-31 2004-01-13 Nisshin Steel Co., Ltd. Hot-dip Zn plated steel sheet excellent in luster-retaining property and method of producing the same
JP4546848B2 (ja) 2004-09-28 2010-09-22 新日本製鐵株式会社 ヘアライン外観を有する高耐食性Zn系合金めっき鋼材
RU2379374C2 (ru) * 2005-09-01 2010-01-20 Ниппон Стил Корпорейшн СТАЛЬНОЙ МАТЕРИАЛ, ПОКРЫТЫЙ Zn-Al-СПЛАВОМ СПОСОБОМ ГОРЯЧЕГО ОКУНАНИЯ, С ОТЛИЧНОЙ ОБРАБАТЫВАЕМОСТЬЮ СГИБАНИЕМ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ
JP6022433B2 (ja) * 2013-12-03 2016-11-09 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238952A (ja) * 1985-04-13 1986-10-24 Nippon Steel Corp 溶融メツキ鋼板のスパングルレス化方法
JPS63297576A (ja) * 1987-05-29 1988-12-05 Nisshin Steel Co Ltd 耐黒変性に優れた溶融めっき鋼板の製造方法
JPH06336664A (ja) * 1993-05-27 1994-12-06 Kobe Steel Ltd スポット溶接性に優れた亜鉛−アルミニウム系めっき 鋼板の製造方法
JP2002226958A (ja) 2001-02-02 2002-08-14 Nisshin Steel Co Ltd 光沢保持性の良好な溶融Zn基めっき鋼板およびその製造法
JP2008169470A (ja) * 2006-12-13 2008-07-24 Jfe Steel Kk 平板部耐食性、耐黒変性およびプレス成形後の外観と耐食性に優れた表面処理亜鉛系めっき鋼板、並びに亜鉛系めっき鋼板用水系表面処理液
JP5356616B1 (ja) * 2012-11-27 2013-12-04 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法

Also Published As

Publication number Publication date
US20160281201A1 (en) 2016-09-29
CA2932525C (en) 2016-10-11
MX2016006898A (es) 2016-08-17
CA2932525A1 (en) 2015-06-11
CN105992834A (zh) 2016-10-05
EP3078759A4 (en) 2017-08-30
TWI613323B (zh) 2018-02-01
BR112016011651A2 (pt) 2017-08-08
KR101666123B1 (ko) 2016-10-13
EP3078759A1 (en) 2016-10-12
RU2615750C1 (ru) 2017-04-11
MY165137A (en) 2018-02-28
US20170260614A1 (en) 2017-09-14
TW201522709A (zh) 2015-06-16
AU2014358647A1 (en) 2016-06-16
CN105992834B (zh) 2018-06-19
JP5748829B2 (ja) 2015-07-15
US10125414B2 (en) 2018-11-13
JP2015108167A (ja) 2015-06-11
KR20160064239A (ko) 2016-06-07

Similar Documents

Publication Publication Date Title
JP5356616B1 (ja) 溶融Zn合金めっき鋼板の製造方法
JP5748829B2 (ja) 溶融Zn合金めっき鋼板およびその製造方法
US10053753B2 (en) Aluminum-zinc plated steel sheet and method for producing the same
US20190040512A1 (en) Method of producing hot-dip zn-alloy-plated steel sheet
JP2018159107A (ja) 溶融Zn合金めっき鋼板の製造方法
US11987887B2 (en) Method for passivating metallic substances
JP2018159108A (ja) 溶融Zn合金めっき鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037489

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167013545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006898

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2932525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IDP00201603741

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014868634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014868634

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011651

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014358647

Country of ref document: AU

Date of ref document: 20141113

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016121851

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016011651

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160523