[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015080204A1 - Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery and nonaqueous rechargeable battery using same - Google Patents

Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery and nonaqueous rechargeable battery using same Download PDF

Info

Publication number
WO2015080204A1
WO2015080204A1 PCT/JP2014/081388 JP2014081388W WO2015080204A1 WO 2015080204 A1 WO2015080204 A1 WO 2015080204A1 JP 2014081388 W JP2014081388 W JP 2014081388W WO 2015080204 A1 WO2015080204 A1 WO 2015080204A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
less
negative electrode
composite
secondary battery
Prior art date
Application number
PCT/JP2014/081388
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 齋藤
布施 亨
山田 俊介
哲 赤坂
大悟 長山
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2015550991A priority Critical patent/JP6432520B2/en
Publication of WO2015080204A1 publication Critical patent/WO2015080204A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material for a non-aqueous secondary battery negative electrode used in a non-aqueous secondary battery, a negative electrode formed using the carbon material, and a non-aqueous secondary battery including the negative electrode.
  • a nonaqueous secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte solution in which lithium salts such as LiPF 6 and LiBF 4 are dissolved has been developed and put into practical use.
  • Patent Document 1 proposes a method for producing Si composite carbon particles by firing a mixture of a fine powder of a Si compound, graphite, and a pitch of carbonaceous material precursor.
  • Patent Document 2 it is proposed to use different materials (metal oxide and carbon material) having different equilibrium potentials by performing different electrochemical reduction reactions as active materials.
  • Patent Documents 3 and 4 propose non-aqueous secondary batteries containing Si composite carbon particles made of Si compound and graphite powder and graphite particles. It has been reported in these documents that a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be provided thereby.
  • JP 2003-238992 A Japanese Patent Laid-Open No. 11-135106 JP 2012-124114 A International Publication No. 2012-018035
  • Patent Document 1 Si composite carbon particles obtained by combining graphite and Si compound fine powder with a carbonaceous material composed of carbon.
  • the Si compound fine powder expands and contracts, the conductive path of the Si composite carbon particles is cut off, resulting in a problem that cycle characteristics are reduced.
  • the Si composite carbon particles have not reached the practical level of non-aqueous secondary batteries.
  • Patent Document 2 structural destruction of a metal oxide can be prevented beforehand by mixing a metal oxide capable of inserting and extracting lithium with a carbon material. It is described that a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be obtained.
  • the metal oxide is not a composite particle with carbon, it is not possible to suppress the destruction of the electrode due to the swelling of the metal oxide, and the carbon material is not specially specified. Therefore, it must be said that the technique of Patent Document 2 requires further improvement in order to obtain a battery having the high cycle characteristics required recently.
  • Patent Documents 3 and 4 describe that, according to the technique described in the document, mixing of Si composite carbon particles and graphite particles improves cycle characteristics and suppresses battery swelling.
  • the carbon material used for mixing has a large amount of gas generation due to side reactions with the non-aqueous electrolyte solution, and therefore the increase in loss cannot be sufficiently suppressed.
  • SEI Solid Electrolyte Interface
  • the present invention solves the above-mentioned problems of the prior art and is obtained by using the carbon material for a non-aqueous secondary battery negative electrode that provides a non-aqueous secondary battery having high capacity, excellent cycle characteristics, and low initial loss.
  • An object of the present invention is to provide a non-aqueous secondary battery negative electrode and a non-aqueous secondary battery including the negative electrode.
  • Si composite carbon particle (A) a composite carbon particle (A) containing silicon element (hereinafter sometimes referred to as Si composite carbon particle (A)) and a non-aqueous electrolyte solution.
  • Si composite carbon particle (A) a composite carbon particle (B) containing graphite particles (C) are combined.
  • B composite graphite particle (B)
  • the carbon material for a nonaqueous secondary battery negative electrode of the present invention exhibits excellent battery characteristics
  • the following mechanism can be considered.
  • the Si composite carbon particles (A) it is possible to have a high capacity derived from Si.
  • the composite graphite particles (B) enter between the Si composite carbon particles (A)
  • the expansion of the Si composite carbon particles (A) during charging is alleviated. It is considered that the resulting path cut is suppressed and the cycle characteristics are improved.
  • the polymer that is hardly soluble in the non-aqueous electrolyte solution of the composite graphite particles (B) reduces gas generation by reducing the contact between the graphite particles and the non-aqueous electrolyte solution and suppressing side reactions. It is thought to reduce loss. Moreover, it is thought that the additive consumption in electrolyte solution is suppressed by suppressing a side reaction, As a result, it is thought that the cycling characteristics improvement effect of electrolyte solution additive is accelerated
  • the gist of the present invention is as follows. (1) Composite carbon particles containing silicon element (A), and (2) Composite graphite particles (B) in which a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined. It exists in the carbon material for non-aqueous secondary battery negative electrodes containing.
  • another gist of the present invention resides in a negative electrode for a non-aqueous secondary battery formed using the carbon material for a negative electrode for a non-aqueous secondary battery.
  • another gist of the present invention resides in a non-aqueous secondary battery that includes a positive electrode, a negative electrode, and an electrolyte, and the negative electrode is the negative electrode for a non-aqueous secondary battery.
  • non-aqueous secondary battery negative electrode carbon material having excellent stability, high capacity, small initial loss, and excellent cycle characteristics, and a non-aqueous secondary battery using the same. it can.
  • the carbon material for a non-aqueous secondary battery negative electrode of the present invention contains Si composite carbon particles (A) and composite graphite particles (B).
  • the Si composite carbon particles (A) contain silicon element, and the composite graphite particles (B). Is characterized in that a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
  • Si composite carbon particles (A) and the composite graphite particles (B) used in the present invention will be described.
  • Si composite carbon particles (A) The Si composite carbon particles (A) in the present invention will be described below.
  • the Si composite carbon particle (A) of the present invention is not particularly limited as long as it is a carbon material containing at least a silicon element, and a known material may be used.
  • Si composite carbon particles disclosed in JP2012-043546A, JP2005-243508A, JP2008-027897A, JP2008-186732A, and the like can be used in the present invention. Below, it describes about Si composite carbon particle (A) from which the effect of this invention is improved further.
  • the Si composite carbon particles (A) preferably have the following characteristics.
  • the volume-based average particle diameter (d50) of Si composite carbon particles (A) is usually 1 ⁇ m or more, preferably 4 ⁇ m or more, more preferably 7 ⁇ m or more, and usually 50 ⁇ m or less.
  • the thickness is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 25 ⁇ m or less. If the average particle diameter d50 is too large, the total number of particles decreases and the proportion of the composite graphite particles (B) existing between the particles decreases, so that particle deformation cannot be sufficiently suppressed in the press at the time of preparing the negative electrode.
  • non-aqueous secondary battery hereinafter also referred to as “non-aqueous secondary battery” or “battery”
  • the average particle size d50 is too small, the specific surface area increases, so that the decomposition of the electrolyte increases and the initial efficiency tends to decrease.
  • the measuring method of average particle diameter d50 is as follows. 0.01 g of a sample is suspended in 10 mL of a 0.2% by mass aqueous solution of polyoxyethylene sorbitan monolaurate, which is a surfactant, and introduced into a commercially available laser diffraction / scattering particle size distribution analyzer, and ultrasonic waves of 28 kHz are used. Is measured as a volume-based median diameter in a measuring apparatus after being irradiated for 1 minute at an output of 60 W, and is defined as a volume-based average particle diameter d50 in the present invention.
  • the aspect ratio of the Si composite carbon particles (A) is usually 1 or more, preferably 1.3 or more, more preferably 1.4 or more, and still more preferably 1.5. As described above, it is usually 4 or less, preferably 3 or less, more preferably 2.5 or less, and further preferably 2 or less.
  • the aspect ratio is determined by grinding a resin embedding or electrode plate of particles perpendicularly to a flat plate, taking a cross-sectional photograph thereof, extracting 50 or more particles at random, and extracting the longest diameter of the particles (on the flat plate). It can be measured by measuring the parallel direction) and the shortest diameter (perpendicular to the flat plate) by image analysis and taking the average of the longest diameter / shortest diameter. Since particles embedded in a resin or made into an electrode plate usually tend to have the thickness direction of the particles aligned perpendicular to a flat plate, the above-mentioned method can obtain the longest and shortest diameters characteristic of the particles. I can do it.
  • the circularity of the Si composite carbon particles (A) is usually 0.85 or more, preferably 0.88 or more, more preferably 0.89 or more, and still more preferably 0. .90 or more.
  • the circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less.
  • the spherical shape in this specification can also be expressed in the range of the circularity.
  • the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
  • the circularity is defined by the following formula (1).
  • a theoretical sphere is obtained.
  • Circularity (perimeter of equivalent circle having the same area as the particle projection shape) / (actual circumference of particle projection shape)
  • a flow type particle image analyzer for example, FPIA manufactured by Sysmex Industrial Co.
  • polyoxyethylene (20) monolaurate is used as a surfactant
  • ion-exchanged water is used as a dispersion medium.
  • the degree of circularity is calculated by the equivalent circle diameter.
  • the equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the photographed particle image
  • the circularity is the circumference of the equivalent particle as a molecule and the circumference of the photographed particle projection image.
  • the ratio is the denominator.
  • the circularity of particles having a measured equivalent diameter in the range of 10 to 40 ⁇ m is averaged to obtain the circularity in the present invention.
  • the interplanar spacing (d 002 ) of the 002 plane by the X-ray wide angle diffraction method of the Si composite carbon particles (A) is usually 0.337 nm or less, preferably 0.336 nm or less.
  • the lower limit is 0.3354 nm, which is the theoretical value of graphite.
  • the crystallite size (Lc) of the Si composite carbon particles (A) is usually in the range of 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease.
  • the Raman R value is less than this range, the crystallinity of the particle surface becomes too high, the number of Li insertion sites decreases, and the rapid charge / discharge characteristics of the nonaqueous secondary battery tend to be reduced. On the other hand, if it exceeds this range, the crystallinity of the particle surface will be disturbed, the reactivity with the electrolyte will increase, and the charge / discharge efficiency will tend to decrease and the gas generation will increase.
  • the Raman spectrum can be measured with a Raman spectrometer. Specifically, the sample particles are naturally dropped into the measurement cell to fill the sample, and the measurement cell is rotated in a plane perpendicular to the laser beam while irradiating the measurement cell with an argon ion laser beam. Measure.
  • the Si composite carbon particle (A) has a surface functional group amount O / C value represented by the following formula (2) of usually 0.1% or more. , Preferably 1% or more, more preferably 2% or more, while usually 30% or less, preferably 20% or less, more preferably 15% or less. If the surface functional group amount O / C value is too small, the desolvation reactivity of the Li ion and the electrolyte solvent on the negative electrode active material surface tends to decrease, and the large current charge / discharge characteristics of the nonaqueous secondary battery tend to decrease. When O / C is too large, the reactivity with the electrolytic solution increases, and the charge / discharge efficiency tends to decrease.
  • O / C value (%) ⁇ (O atom concentration determined based on peak area of O1s spectrum in X-ray photoelectron spectroscopy (XPS) analysis) / (C atom concentration determined based on peak area of C1s spectrum in XPS analysis) ⁇ ⁇ 100
  • the surface functional group amount O / C value in the present invention can be measured using X-ray photoelectron spectroscopy (XPS) as follows.
  • the object to be measured is placed on a sample stage so that the surface is flat, and aluminum K ⁇ rays are used as an X-ray source. ) Spectrum.
  • the obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively.
  • the obtained ratio of the atomic concentration of O and C, O / C (O atomic concentration / C atomic concentration), expressed as a percentage, is defined as the surface functional group amount of the sample (Si composite carbon particles (A)). .
  • SA BET specific surface area (SA) of Si composite carbon particles
  • A About the specific surface area measured by BET method of Si composite carbon particle (A), it is 0.1 m ⁇ 2 > / g or more normally, Preferably it is 0.7 m ⁇ 2 > / g or more, More preferably, it is 1 m ⁇ 2 > / g or more.
  • it is 40 m ⁇ 2 > / g or less normally, Preferably it is 30 m ⁇ 2 > / g or less, More preferably, it is 20 m ⁇ 2 > / g or less, More preferably, it is 18 m ⁇ 2 > / g or less, Most preferably, it is 17 m ⁇ 2 > / g or less.
  • the BET specific surface area is measured by a BET one-point method using a specific surface area measuring device by a nitrogen gas adsorption flow method.
  • the tap density of Si composite carbon particles (A) is usually 0.5 g / cm 3 or more, preferably 0.6 g / cm 3 or more, more preferably 0. .8g / cm 3 or more, more preferably 0.85 g / cm 3 or more, particularly preferably 0.9 g / cm 3 or more and usually less than 1.3 g / cm 3, preferably 1.2 g / cm 3 or less Yes, more preferably 1.1 g / cm 3 or less.
  • the tap density is too low, the high-speed charge / discharge characteristics of the non-aqueous secondary battery are inferior.
  • the tap density is too high, the cycle characteristics may be deteriorated due to the disconnection of the conductive path due to the decrease in particle contactability.
  • the tap density is measured by dropping a sample (Si composite carbon particles (A)) through a sieve having a mesh size of 300 ⁇ m through a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 using a powder density measuring device. Then, after the cell is fully filled, a tap having a stroke length of 10 mm is performed 1000 times, and the density is defined as the density obtained from the volume at that time and the weight of the sample.
  • DBP oil absorption of Si composite carbon particles (A)
  • the DBP (dibutyl phthalate) oil absorption of Si composite carbon particles (A) is usually 65 ml / 100 g or less, preferably 62 ml / 100 g or less, more preferably 60 ml / 100 g or less, more preferably 57 ml / 100 g or less. Moreover, it is 30 ml / 100g or more normally, Preferably it is 40 ml / 100g or more, More preferably, it is 50 ml / 100g or more.
  • the DBP oil absorption is too large, it tends to cause streaking during the application of the slurry containing the carbon material of the present invention when forming the negative electrode, and if it is too small, there is almost no pore structure in the particles. There is a possibility that it has not, and there is a tendency for the reaction surface to decrease.
  • the DBP oil absorption amount in the present invention is defined by measured values when 40 g of a measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the set torque is 500 N ⁇ m in accordance with JIS K6217.
  • an absorption meter (S-500) from Asahi Research Institute can be used.
  • the press load is a press load when an electrode plate is prepared using particles, and is used as an index of particle hardness. Negative electrodes made using hard particles tend to have a higher press load, while negative electrodes made using soft particles tend to have a lower press load.
  • the value of the press load (Pa) of the Si composite carbon particles (A) is usually 500 kg / 5 cm or more, preferably 800 kg / 5 cm or more, more preferably 1000 kg / 5 cm or more, still more preferably 1200 kg / 5 cm or more, particularly preferably 1400 kg. / 5 cm or more, most preferably 1500 kg / 5 cm or more, usually 4000 kg / 5 cm or less, preferably 3000 kg / 5 cm or less, more preferably 2500 kg / 5 cm or less, more preferably 2300 kg / 5 cm or less, particularly preferably 2200 kg / 5 cm or less, Most preferably, it is 2000 kg / 5 cm or less.
  • the press load is a linear pressure (kg / 5 cm) required to form Si composite carbon particles (A) on a current collector by rolling so that the density is 1.35 g / cm 3. ).
  • the measuring method of press load is as follows. With respect to 100% by mass of the Si composite carbon material (A), 1.5% by mass of styrene-butadiene rubber as a binder, 1% by mass of sodium carboxymethylcellulose as a thickener, and 102.5% by mass of a dispersion medium Water is added to form a slurry, which is applied onto a current collector and dried. This electrode is adjusted so that the width of the active material layer is 5 cm (the coating width may be adjusted at the time of application), and roll-pressed so that the density of the active material layer becomes the above value, It can be measured by measuring the stress at the time of pressing.
  • Si, SiOx, SiNx, SiCx, SiZxOy (Z C, N) and the like, and these are collectively referred to as Si compounds in the present invention.
  • Si and SiOx are preferred.
  • the general formula SiOx is obtained using Si dioxide (SiO 2 ) and metal Si (Si) as raw materials, and the value of x is usually 0 ⁇ x ⁇ 2, preferably 0.2 or more and 1.8 or less. More preferably, it is 0.4 or more and 1.6 or less, More preferably, it is 0.6 or more and 1.4 or less. Within this range, the non-aqueous secondary battery has a high capacity, and at the same time, the irreversible capacity due to the combination of Li and oxygen can be reduced.
  • an aspect of the silicon element in the Si composite carbon particles (A) in the present invention an aspect of Si compound particles in which an Si compound is formed into particles is preferable.
  • the content of silicon element in the Si composite carbon particles (A) in the present invention is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 2% with respect to the Si composite carbon particles (A). It is at least 5% by mass, more preferably at least 5% by mass, particularly preferably at least 10% by mass. Moreover, it is 99 mass% or less normally, Preferably it is 50 mass% or less, More preferably, it is 30 mass% or less, More preferably, it is 25 mass% or less, Most preferably, it is 20 mass% or less. This range is preferable in that a non-aqueous secondary battery having a sufficient capacity can be obtained.
  • the measuring method of content of the silicon element in Si composite carbon particle (A) is as follows. After completely melting the sample with alkali, the sample is dissolved and fixed in water, measured with an inductively coupled plasma emission analyzer (Horiba, Ltd., ULTIMA2C), and the amount of silicon element is calculated from the calibration curve. Thereafter, the silicon element content in the Si composite carbon particles (A) can be calculated by dividing the silicon element amount by the weight of the Si composite carbon particles (A).
  • the abundance ratio of silicon element calculated by the following measurement method in the Si composite carbon particles (A) used in the present invention is usually 0.8. 2 or more, preferably 0.3 or more, more preferably 0.4 or more, further preferably 0.5 or more, particularly preferably 0.6 or more, and usually 1.5 or less, preferably 1.2. Below, more preferably 1.0 or less. The higher this value, the more silicon element present inside the Si composite carbon particles (A) compared to the silicon element present outside the Si composite carbon particles (A), and the negative electrode was formed. At this time, there is a tendency that a decrease in charge / discharge efficiency due to the disconnection of the conductive path between particles can be suppressed.
  • the abundance ratio of silicon element in the Si composite carbon particles (A) is calculated as follows. First, a coating film of Si composite carbon particles (A) or Si composite carbon particles (A) is embedded in a resin to produce a thin piece of resin, and a cross section of the particle is cut out by focused ion beam (FIB) or ion milling. Then, it observes by observation methods, such as particle
  • the accelerating voltage when observing the cross section of one Si composite carbon particle (A) with an SEM (scanning electron microscope) is preferably 1 kV or more, more preferably 2 kV or more, and further preferably 3 kV or more. 10 kV or less, more preferably 8 kV or less, still more preferably 5 kV or less.
  • the imaging magnification is usually 500 times or more, more preferably 1000 times or more, still more preferably 2000 times or more, and usually 10000 times or less. If it is said range, the whole image of 1 particle
  • the resolution is 200 dpi (ppi) or more, preferably 256 dpi (ppi) or more.
  • the number of pixels is preferably evaluated at 800 pixels or more.
  • the graphite and silicon elements are identified by the energy dispersion type (EDX) and the wavelength dispersion type (WDX).
  • one Si composite carbon particle (A) particle is extracted, and the area (a) of the Si compound in the particle is calculated.
  • the shrinking process is repeated on the particle, and a figure with an area of 70% of the extracted 1 particle is extracted.
  • the area (b) of the silicon element present is calculated.
  • the value closest to 70% in the value of 70% ⁇ 3% is 70% in the present invention.
  • the extraction of one particle, the calculation of the area, the binarization process, and the reduction process can be performed using general image processing software. Examples of such software include “Image J” and “Image-Pro plus”. Etc.
  • the value obtained by dividing the area (b) calculated above by the area (a) is measured with arbitrary three particles, and the value obtained by averaging the values of these three particles is the silicon element in the Si composite carbon particles (A).
  • the abundance ratio is the value obtained by dividing the area (b) calculated above by the area (a)
  • Si composite carbon particles (A) The aspect of the Si composite carbon particles (A) described above is not particularly limited as long as it is a carbon material containing a silicon element.
  • Si compound particles dispersed in a granulated body made of a carbon material (B) Si compound particles are attached or coated on the outer periphery of the carbon material serving as a nucleus, (C) Si compound particles dispersed inside a spheroidized carbon material, (D) A carbonaceous material attached or coated on the outer periphery of the Si compound particles as the core, (E) A combination of these may be used.
  • non-aqueous secondary batteries tend to exhibit high capacity and high cycle characteristics, and tend to exhibit high initial efficiency by inhibiting side reactions by preventing contact with the electrolyte.
  • a material in which Si compound particles are dispersed inside a spheroidized carbon material is preferable. At this time, it is preferable that at least one of the Si compound particles is in contact with the carbon material from the viewpoint of suppressing an increase in irreversible capacity.
  • adheresion refers to a state in which Si compound particles are attached to, adhered to, or combined with the surface of a carbon material, and these states are, for example, a field emission scanning electron microscope-energy dispersive type. This can be confirmed by observing the cross section of the particle using a technique such as X-ray (SEM-EDX) analysis or X-ray photoelectron spectroscopy (XPS) analysis.
  • SEM-EDX X-ray
  • XPS X-ray photoelectron spectroscopy
  • Si composite carbon particles (A) are not particularly limited as long as they are Si composite carbon particles in which a silicon element and a carbon material are combined.
  • Si composite carbon particles (A) can be produced using a carbon material, Si compound particles, and an organic compound that becomes a carbonaceous material.
  • the carbon material used as a raw material is not particularly limited, but when producing the Si composite carbon particles (A) of (a) or (c) above, graphite particles such as natural graphite, artificial graphite, or the like Examples thereof include a fired material made of a material selected from the group consisting of coal-based coke, petroleum-based coke, furnace black, acetylene black, and pitch-based carbon fiber having slightly lower crystallinity. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the production areas of scaly graphite which is natural graphite, are Madagascar, China, Brazil, Ukraine, Canada, etc., and the production area of scaly graphite is mainly Sri Lanka.
  • the main producers of soil graphite are the Korean Peninsula, China and Mexico.
  • scaly graphite and scaly graphite have advantages such as high graphite crystallinity and low impurity content, and therefore can be preferably used in the present invention.
  • Visual methods for confirming that graphite is scaly include particle surface observation with a scanning electron microscope, embedding particles in a resin to produce a thin piece of resin, and cutting out the particle cross section, or coating consisting of particles Examples of the method include a method of observing a particle cross section with a scanning electron microscope after preparing a cross section of a coating film with a cross section polisher and cutting out the particle cross section.
  • Scaly graphite and scaly graphite have natural graphite that is highly purified so that the crystallinity of graphite is almost completely crystallized, and artificially formed graphite. Natural graphite is soft and folded. It is preferable in that it is easy to fabricate the structure.
  • Si composite carbon particles (A) from the viewpoint of maintaining the shape as the core of the particles, for example, graphite particles obtained by spheroidizing by applying mechanical stress to flaky graphite or the like and graphite and carbonaceous material It is preferable to use graphite particles obtained by mixing and granulating an organic compound.
  • the carbon material used as a raw material in the present invention preferably has the following physical properties.
  • the volume-based average particle diameter (d50) of the carbon material used as a raw material is not particularly limited, but is usually 1 ⁇ m or more and 120 ⁇ m or less, preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 90 ⁇ m or less. If the average particle diameter d50 of the carbon material used as a raw material is too large, the particle diameter of the Si composite carbon particles (A) becomes large, and the negative electrode active material mixed with the Si composite carbon particles (A) is applied in a slurry form. In this process, streaks or irregularities due to large particles may occur. If the flat body particle size d50 is too small, it is difficult to form a composite, and it may be difficult to produce the Si composite carbon particles (A).
  • the tap density of the carbon material used as a raw material is usually less than 0.1 g / cm 3 or more 1.0 g / cm 3, preferably 0.13 g / cm 3 or more 0.8 g / cm 3 or less, more preferably 0 .15 g / cm 3 or more and 0.6 g / cm 3 or less.
  • minute voids are easily formed in the Si composite carbon particles (A), and thus the destruction of the Si composite carbon particles (A) due to the expansion and contraction of the Si compound particles can be suppressed.
  • BET specific surface area of the carbon material used as a raw material is usually 1 m 2 / g or more 40 m 2 / g or less, preferably less 2m 2 / g or more 35m 2 / g, 3m 2 / g or more 30 m 2 / g The following is more preferable.
  • the specific surface area of the carbon material used as a raw material is reflected in the specific surface area of the Si composite carbon particles (A), and the battery capacity due to an increase in the irreversible capacity of the Si composite carbon particles (A) by being 40 m 2 / g or less. Can be prevented.
  • the interplanar spacing (d 002 ) of the 002 plane according to the X-ray wide angle diffraction method of the carbon material used as a raw material is usually 0.337 nm or less. Meanwhile d 002 is usually 0.334nm more.
  • the carbon material used as a raw material has an Lc of 90 nm or more, preferably 95 nm or more by X-ray wide angle diffraction.
  • the interplanar spacing (d 002 ) of the 002 plane is 0.337 nm or less, it indicates that the carbon material used as a raw material has high crystallinity, and provides a high capacity non-aqueous secondary battery (A) Can be obtained.
  • Lc is 90 nm or more, Si composite carbon particles (A) exhibiting high crystallinity and having a high capacity for the nonaqueous secondary battery can be obtained.
  • Si compound particle grains As a Si compound particle
  • the volume average particle diameter (d50) of the Si compound particles used as a raw material is usually 0.005 ⁇ m or more, preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and further preferably 0.03 ⁇ m, from the viewpoint of cycle life. These are usually 10 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the average particle diameter (d50) is within the above range, volume expansion associated with charge / discharge of the nonaqueous secondary battery is reduced, and good cycle characteristics can be obtained while maintaining the charge / discharge capacity.
  • the specific surface area by the BET method of the Si compound particles used as a raw material is usually 0.5 m 2 / g or more and 120 m 2 / g or less, and preferably 1 m 2 / g or more and 100 m 2 / g or less. It is preferable that the specific surface area is within the above range because the charge / discharge efficiency and discharge capacity of the non-aqueous secondary battery are high, lithium is taken in and out quickly during high-speed charge / discharge, and the rate characteristics are excellent.
  • the oxygen distribution state in the Si compound particles may be present in the vicinity of the surface, in the particle, or uniformly in the particle, but is preferably present in the vicinity of the surface. It is preferable for the oxygen content of the particles to be in the above-mentioned range because the volume expansion associated with charge / discharge is suppressed due to strong bonding between Si and O, and the cycle characteristics of the nonaqueous secondary battery are excellent.
  • the crystallite size of the Si compound particles used as a raw material is not particularly limited, but is usually 0.05 nm or more, preferably 1 nm or more in the (111) plane crystallite size calculated from XRD. It is 100 nm or less, and preferably 50 nm or less. It is preferable that the crystallite size of the particles is in the above range because the reaction between Si and Li ions proceeds rapidly and is excellent in battery input / output.
  • the Si compound particles in the Si composite carbon particles (A) preferably have the same properties as the physical properties of the Si compound particles used as a raw material.
  • a carbon material described in the following (a) or (b) is preferable.
  • A Coal heavy oil, DC heavy oil, cracked heavy oil, aromatic hydrocarbon, N ring compound, S ring compound, polyphenylene, organic synthetic polymer, natural polymer, thermoplastic resin and Carbonizable organic substance selected from the group consisting of thermosetting resins
  • b Carbonized organic substance dissolved in low molecular organic solvent
  • coal-based heavy oil coal tar pitch from soft pitch to hard pitch, dry distillation liquefied oil and the like are preferable
  • DC heavy oil atmospheric residual oil, vacuum residual oil, etc.
  • the cracked petroleum heavy oil is preferably ethylene tar produced as a by-product during thermal decomposition of crude oil, naphtha, etc.
  • aromatic hydrocarbon acenaphthylene, decacyclene, anthracene, phenanthrene and the like are preferable
  • N-ring compound phenazine, acridine and the like are preferable
  • S ring compound thiophene, bithiophene and the like are preferable
  • polyphenylene, biphenyl, terphenyl and the like are preferable
  • nitrogen-containing polymers such as polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, polyacrylonitrile, polypyrrole, polyallylamine, polyvinylamine, polyethyleneimine, urethane resin, urea resin, etc.
  • Polythiophene, polystyrene, polymethacrylic acid and the like are preferable,
  • the natural polymer polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan, saccharose and the like are preferable,
  • the thermoplastic resin polyphenylene sulfide, polyphenylene oxide and the like are preferable,
  • the thermosetting resin furfuryl alcohol resin, phenol-formaldehyde resin, imide resin and the like are preferable.
  • the carbonizable organic substance may be a carbide such as a solution dissolved in a low molecular organic solvent such as benzene, toluene, xylene, quinoline, n-hexane or the like.
  • these may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations.
  • Si composite carbon particle (A) As a carbonaceous material in Si composite carbon particle (A), a thing (amorphous thing) whose graphite crystallinity is lower than a graphite particle is preferable. Specifically, what shows the following physical properties is preferable.
  • the interplanar spacing (d 002 ) of the (002) plane of the carbonaceous material powder by X-ray wide angle diffraction method is usually 0.340 nm or more, preferably 0.342 nm or more. Moreover, it is less than 0.380 nm normally, Preferably it is 0.370 nm or less, More preferably, it is 0.360 nm or less. If the d 002 value is too large, it indicates that the crystallinity is low, and the cycle characteristics of the non-aqueous secondary battery tend to deteriorate. If the d 002 value is too small, the effect of combining carbonaceous materials is obtained. hard.
  • the crystallite size (Lc (002)) of the carbonaceous material obtained by X-ray diffraction based on the Gakushin method of the carbonaceous material powder is usually 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more. Moreover, it is 300 nm or less normally, Preferably it is 200 nm or less, More preferably, it is 100 nm or less. If the crystallite size is too large, the cycle characteristics of the non-aqueous secondary battery tend to decrease.If the crystallite size is too small, the charge / discharge reactivity decreases, resulting in increased gas generation and high current during high-temperature storage. There is a risk of deterioration of charge / discharge characteristics.
  • the Si composite carbon particles (A) described above are not particularly limited as long as they are Si composite carbon particles in which a silicon element and a carbon material are combined.
  • the following methods (i) to (iii) are used. Can be manufactured by.
  • Si compound carbon particles (A) in which Si compound particles are dispersed in the granulated body made of carbon material (A) and (b) Si compound particles are attached or coated on the outer periphery of the carbon material that becomes the nucleus.
  • Si composite carbon particle (A) the method of mixing and granulating the carbon compound, Si compound particle
  • Si composite carbon particles (A) can be produced by a method including at least these steps (1) to (2).
  • steps (1) and (2) will be described.
  • Step of mixing Si compound particles, carbon material, and organic compound that becomes carbonaceous material Mixing Si compound particles, carbon material, and organic compound that becomes carbonaceous material, and if a mixture can be obtained, in order to prepare the raw materials in particular
  • a method of mixing an organic compound that becomes a carbonaceous material after mixing a carbon material with Si compound particles A method of mixing Si compound particles after mixing an organic compound that becomes a carbonaceous material with a carbon material, A method of mixing a carbon material after mixing an organic compound that becomes a carbonaceous material into Si compound particles, Examples thereof include a method of mixing Si compound particles, a carbon material, and an organic compound to be a carbonaceous material at a time.
  • the carbonaceous material is adhered to the surface and / or inside of the carbon material by mechanical treatment.
  • the mechanical treatment here is not particularly limited.
  • the method of mixing an organic compound that becomes a carbonaceous material after mixing a carbon material with Si compound particles mixes the Si compound particles and the carbon material in a powder state, so that the dispersibility is good. It is preferable in that it is.
  • Specific examples of the mixing method in the method of mixing the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material include a powder mixing method, a melt mixing method, and a solution mixing method.
  • the mixing temperature in these methods is usually from room temperature to 300 ° C., and can be appropriately determined depending on the type of organic compound that becomes a carbonaceous material.
  • the mixing time is usually 10 minutes or more and 1 hour or less.
  • the solvent used in the solution mixing method with the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material can be appropriately selected from water or an organic solvent in which the organic compound is dissolved or dispersed. Two or more different solvents may be mixed and used.
  • drying time can be suitably determined according to the kind of solvent used, it is normally 1 hour or more and 24 hours or less. Vacuum drying can be selected as appropriate.
  • Batch-type mixing devices include high-speed mixers, homogenizers, ultrasonic homogenizers, mixers with a structure in which two frame types rotate and revolve, dissolvers that are high-speed, high-shear mixers, and butterfly mixers for high viscosity.
  • a trimix type apparatus having a three axis, a so-called bead mill type apparatus having a rotating disk and a dispersion medium in a container, and the like are used.
  • a device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works) Etc.
  • a container having a plurality of pavement or sawtooth paddles fixed to the shaft and arranged in multiple phases, the inner wall surface of which is the outermost line of rotation of the paddle (External heating type) apparatus having a structure preferably formed in a cylindrical shape substantially (for example, a Redige mixer manufactured by Redige Co., Ltd., a flow share mixer manufactured by Taiyo Koki Co., Ltd., and Tsukishima Kikai Co., Ltd.)
  • a pipeline mixer or a continuous bead mill may be used.
  • the mixing ratio of the Si compound particles with respect to the total of the Si compound particles, the carbon material, and the organic compound as the carbonaceous material is usually 1% by mass or more, preferably 1.5% by mass or more, more preferably 2% by mass or more, and still more preferably. Is 2.5% by mass or more. Moreover, it is 50 mass% or less normally, Preferably it is 40 mass% or less, More preferably, it is 30 mass% or less, More preferably, it is 20 mass% or less.
  • the volume expansion accompanying charging / discharging will become large in a non-aqueous secondary battery, and there exists a tendency for capacity deterioration to become remarkable.
  • there are too few Si compound particles there exists a tendency for sufficient capacity
  • the mixing ratio of the carbon material to the total of the Si compound particles, the carbon material, and the organic compound as the carbonaceous material is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass. That's it. Moreover, it is 95 mass% or less normally, Preferably it is 90 mass% or less, More preferably, it is 85 mass% or less, More preferably, it is 80 mass% or less. If the carbon material is too much, the amount of voids formed by the carbon material increases, and it tends to be difficult to increase the electrode density. Moreover, when there are too few carbon materials, the space
  • the mixing ratio of the organic compound that becomes the carbonaceous material to the total of the organic compound that becomes the Si compound particles, the carbon material and the carbonaceous material is usually 1% by mass or more, preferably 1.5% with respect to the total mass of the carbon material and the Si compound particles. It is at least 2 mass%, more preferably at least 2.5 mass%. Moreover, it is 60 mass% or less normally, Preferably it is 50 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less.
  • Step of firing the mixture obtained in (1) the mixture containing the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material obtained in the step (1) is fired.
  • the atmosphere at the time of firing is a non-oxidizing atmosphere, and preferably, firing is performed in a non-oxidizing atmosphere by circulating nitrogen, argon, carbon dioxide, ammonia, hydrogen, or the like.
  • the reason for firing in a non-oxidizing atmosphere is that it is necessary to prevent oxidation of Si compound particles, carbon materials, and organic compounds that become carbonaceous materials.
  • the firing temperature varies depending on the firing atmosphere and the organic compound that becomes the carbonaceous material, but as an example, the firing temperature is usually 500 ° C. or higher, preferably 800 ° C. or higher, more preferably 850 ° C. or higher, under a nitrogen circulation atmosphere. Further, it is usually at most 3000 ° C., preferably 2000 ° C. or less, more preferably 1500 ° C. or less, even if it is high. If the firing temperature is too low, carbonization does not proceed sufficiently, and the irreversible capacity at the beginning of charge / discharge of the non-aqueous secondary battery may increase, and the reduction rate of the Si compound decreases, so the firing time is increased. Need arises. However, the reduction rate can be increased even at a low temperature by setting the firing atmosphere to a stronger reducing atmosphere such as a hydrogen atmosphere.
  • the carbonized organic compound carbide will reach a crystal structure equivalent to the crystal structure of the raw material carbon material in the mixture, making it difficult to obtain the coating effect, and vaporizing the silicon element. This tends to reduce the yield and increase the manufacturing cost.
  • the heat history temperature condition, the temperature rise rate, the cooling rate, the heat treatment time, etc. are set as appropriate. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.
  • the reactor used for this process may be a batch type or a continuous type, and may be one or more.
  • the furnace used for firing is not particularly limited as long as the above requirements are satisfied.
  • a reactor such as a shuttle furnace, a tunnel furnace, a lead hammer furnace, a rotary kiln, an autoclave, a coker (heat treatment tank for coke production), a Tamman furnace, The Atchison furnace can be mentioned.
  • the heating method high-frequency induction heating, direct resistance heating, indirect resistance heating, direct combustion heating, radiant heat heating, or the like can be used. During the treatment, stirring may be performed as necessary.
  • the composite carbon material that has undergone the above steps is subjected to powder processing such as pulverization, crushing, and classification to obtain Si composite carbon particles (A).
  • the coarse pulverizer includes a shearing mill, jaw crusher, impact crusher, cone crusher, etc.
  • the intermediate pulverizer includes roll crusher, hammer mill, etc.
  • the pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.
  • Si composite carbon particles (A) can be produced by the production method as described above. However, Si composite carbon particle (A) is not limited to what was manufactured with the said manufacturing method.
  • Method (ii) Examples of the method for producing the Si composite carbon particles (A) in which the Si compound particles are dispersed inside the spheroidized carbon material described above are, for example, mixing the carbon material and the Si compound particles, and then spherical An example is a method of encapsulating Si compound particles inside Si composite carbon particles by performing a chemical treatment.
  • the carbon material as a raw material in the method (ii), the Si compound particles, and the organic compound that becomes the carbonaceous material used in the step (3) described later are not particularly limited, and the method (i) and The same can be used.
  • a preferable production method includes the following steps. (1) Step of mixing and fixing carbon material and Si compound particles (2) Step of applying spheroidizing treatment to those obtained in (1) These steps will be described below.
  • the mixing ratio of Si compound particles to the total of Si compound particles and carbon material is usually 1% by mass or more, preferably 3% by mass or more, more preferably 5%. It is at least 7% by mass, more preferably at least 7% by mass, particularly preferably at least 10% by mass. Moreover, it is 95 mass% or less normally, Preferably it is 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, Most preferably, it is 40 mass% or less, Most preferably, it is 35 mass% or less. This range is preferable in that a sufficient capacity can be obtained in the non-aqueous secondary battery.
  • the method of mixing and fixing the carbon material and the Si compound particles there is no particular limitation on the method of mixing and fixing the carbon material and the Si compound particles.
  • a Si slurry in which Si compound particles are dispersed in a solvent is used and mixed with a carbon material so that the wet Si compound particles are not dried. Since such Si slurry suppresses aggregation of Si compound particles, it is preferable because the Si compound particles are easily fixed on the surface of the carbon material.
  • Examples of the dispersion solvent for the Si compound particles include a nonpolar compound having an aromatic ring and an aprotic polar solvent.
  • the type of the nonpolar compound having an aromatic ring is not particularly limited, but reacts with the Si compound. It is more preferable if it does not have the property.
  • aromatic compounds such as benzene, toluene, xylene, cumene, and methylnaphthalene that are liquid at room temperature
  • alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, methylcyclohexene, and bicyclohexyl
  • petrochemicals such as light oil and heavy oil Residual oil in coal chemistry.
  • xylene is preferred, methylnaphthalene is more preferred, and heavy oil is more preferred because of its high boiling point.
  • heat generation tends to occur when the pulverization efficiency is increased.
  • a solvent having a low boiling point may volatilize and become a high concentration.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • DMF N dimethylformamide
  • the mixing ratio of the Si compound particles and the dispersion solvent is a ratio of usually 10% by mass or more, preferably 20% by mass or more, usually 50% by mass or less, preferably 40% by mass or less as the ratio of the Si compound particles in the resulting mixture. It is.
  • the mixing ratio of the dispersion solvent is too high, the cost tends to increase, and if the mixing ratio of the dispersion solvent is too low, uniform dispersion of the Si compound particles tends to be difficult.
  • the Si compound particles are uniformly dispersed on the surface of the carbon material.
  • the dispersion solvent used in wet pulverizing the Si compound particles may be added excessively during mixing.
  • the solid content of the Si compound particles is usually 10% or more, preferably 15% or more, more preferably 20% or more. Usually, it is 90% or less, preferably 85% or less, more preferably 80% or less. If the ratio of the solid content is too large, the fluidity of the slurry is lost, and the Si compound particles tend to be difficult to disperse in the carbon material. If the ratio is too small, the process tends to be difficult to handle.
  • the Si compound particles can be immobilized on the carbon material by evaporating and removing the dispersion solvent using an evaporator, a dryer, or the like.
  • the mixture may be mixed and fixed while evaporating the dispersion solvent while heating in a high-speed stirrer without adding an excessive dispersion solvent.
  • a buffer material such as resin or pitch can be used, and it is preferable to use the resin among them.
  • This resin is considered not only to play a role of immobilizing the Si compound particles to the carbon material but also to prevent the Si compound particles from being detached from the carbon material during the spheronization process.
  • the resin that can be used as the buffer material in the step (1) is not particularly limited, but may be a resin corresponding to the above-described organic compound that becomes a carbonaceous material, preferably polystyrene, polymethacrylic acid, Polyacrylonitrile is mentioned. Polyacrylonitrile can be particularly preferably used because it has a large amount of residual carbon during firing and a relatively high decomposition temperature.
  • the decomposition temperature of the resin can be measured in an inert gas atmosphere by differential scanning calorimetry (DSC).
  • the decomposition temperature of the resin is preferably 50 ° C. or higher, more preferably 75 ° C. or higher, and still more preferably 100 ° C. or higher. When the decomposition temperature is too high, there is no particular problem. However, when the decomposition temperature is too low, there is a possibility of decomposition in the drying step described below.
  • the buffer material may be used in a state where it is dispersed in a solvent or in a dry state, but when a solvent is used, the same solvent as the dispersion solvent of the Si compound particles can be used.
  • Mixing is usually performed under normal pressure, but if desired, it can also be performed under reduced pressure or under pressure. Mixing can be carried out either batchwise or continuously. In any case, mixing efficiency can be improved by using a combination of an apparatus suitable for rough mixing and an apparatus suitable for fine mixing. Moreover, you may utilize the apparatus which performs mixing and fixation (drying) simultaneously. Drying can usually be carried out under reduced pressure or under pressure, and preferably dried under reduced pressure.
  • the drying time is usually 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer, more preferably 30 minutes or longer, and usually 5 hours or shorter, preferably 3 hours or shorter, more preferably 1 hour or shorter. . If the time is too long, the cost increases. If the time is too short, uniform drying tends to be difficult.
  • the drying temperature is preferably a time that can realize the above time although it varies depending on the solvent. Moreover, it is preferable that it is below the temperature which resin does not modify
  • a mixer with a structure in which two frame molds rotate and revolve; a blade such as a dissolver that is a high-speed high-shear mixer and a butterfly mixer for high viscosity is placed in the tank.
  • a so-called bead mill type apparatus having a rotating disk and a dispersion solvent body in a container is used.
  • a device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works
  • KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works
  • it has a container in which a single inner shaft and a plurality of pavement or sawtooth paddles fixed to the shaft are arranged in different phases, and the inner wall surface is the outermost line of rotation of the paddle
  • Example heat type apparatus having a structure preferably formed in a cylindrical shape e.g., Redige mixer manufactured by Redige Co., Ltd., flow share mixer manufactured by Taiyo Kiko Co., Ltd., Tsukishima Machine Co., Ltd.
  • Si composite carbon particles (A) in which Si compound particles are present can be produced.
  • the above structure is obtained by using, for example, a Si composite carbon particle (A) using a technique such as field emission scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis, X-ray photoelectron spectroscopy (XPS) analysis, or the like. This can be confirmed by observing the cross section of the particles.
  • SEM-EDX field emission scanning electron microscope-energy dispersive X-ray
  • XPS X-ray photoelectron spectroscopy
  • the Si composite carbon particles (A) a composite in which Si compound particles are immobilized on the surface of the carbon material before being folded obtained in the step (1) (hereinafter referred to as the composite material)
  • the composite material a composite in which Si compound particles are immobilized on the surface of the carbon material before being folded obtained in the step (1)
  • the spheroidizing treatment is performed.
  • the Si compound particles within a predetermined range are present in the gaps in the folded structure as described later. It is preferable to set conditions appropriately.
  • the spheronization process is basically a process using mechanical energy (mechanical action such as impact compression, friction and shear force), and specifically, a process using a hybridization system is preferable.
  • the system has a rotor having a large number of blades that apply mechanical actions such as impact compression, friction and shearing force, and a large air flow is generated by the rotation of the rotor, and thus obtained in step (1) above.
  • a large centrifugal force is applied to the carbon material in the composite, the carbon materials in the composite obtained in the step (1), and the carbon material, the wall and the blade in the composite obtained in the (1) step.
  • the carbon material in the composite obtained in the step (1) can be neatly folded.
  • a rotor having a large number of blades installed in a casing As an apparatus used for the spheroidization treatment, for example, a rotor having a large number of blades installed in a casing, and the rotor is rotated at a high speed, whereby the composite obtained in the step (1) introduced into the interior is used.
  • a device for applying a mechanical action such as impact compression, friction, shearing force, etc. to the carbon material and performing a surface treatment can be used.
  • dry ball mill dry ball mill, wet bead mill, planetary ball mill, vibrating ball mill, mechano-fusion system, Agromaster (Hosokawa Micron Corporation), hybridization system, Micros, Miraro (manufactured by Nara Machinery Co., Ltd.), CF mill (Ube) And theta composer (manufactured by Deoksugaku Kogyo Co., Ltd.).
  • Preferred examples of the apparatus include a dry ball mill, a wet bead mill, a planetary ball mill, a vibration ball mill, a mechano-fusion system, an agromaster (Hosokawa Micron ( Co., Ltd.), hybridization system, Micros, Miraro (manufactured by Nara Machinery Co., Ltd.), CF mill (manufactured by Ube Industries, Ltd.), theta composer (manufactured by Tokuju Kosakusho Co., Ltd.), pulperizer and the like.
  • a hybridization system manufactured by Nara Machinery Co., Ltd. is particularly preferable.
  • the carbon material in the composite obtained in the step (1) to be subjected to the spheronization treatment may have already been subjected to a certain spheronization treatment under the conditions of the conventional method. Moreover, you may give a mechanical action repeatedly by circulating the composite_body
  • a spheronization process is performed using such an apparatus.
  • the rotation speed of the rotor is usually 2000 rpm or more and 8000 rpm or less, preferably 4000 rpm or more and 7000 rpm or less, and usually in a range of 1 minute or more and 60 minutes or less. Then, the spheronization process is performed.
  • the process of forming a sphere is weak, and the tapping density of the resulting Si composite carbon particles (A) may not be sufficiently increased. This may increase the effect, and the particles may collapse to reduce the tapping density. Further, if the spheroidizing time is too short, the particle size is sufficiently reduced and a high tapping density cannot be achieved. On the other hand, if it is too long, the carbon material in the composite obtained in the step (1) is used. May be shattered.
  • the obtained Si composite carbon particles (A) may be subjected to classification treatment.
  • classification treatment When the obtained Si composite carbon particles (A) are not within the specified physical property range of the present invention, the desired physical properties are obtained by repeated (usually 2 to 10 times, preferably 2 to 5 times) classification treatment. Can range. Examples of the classification include dry (aerodynamic classification, sieving), wet classification, and the like, but dry classification, particularly aerodynamic classification is preferable from the viewpoint of cost and productivity.
  • the Si composite carbon particles (A) are obtained as in the above step (2).
  • (A) preferably contains a carbonaceous material, and as a more specific embodiment, it is more preferable that at least a part of the surface thereof is coated with the carbonaceous material (hereinafter, such Si composite carbon particles ( A) is also referred to as a carbonaceous material-coated Si composite carbon particle).
  • the carbonaceous material-coated Si composite carbon particles are described separately from the Si composite carbon particles (A) for convenience, but in this specification, the carbonaceous material-coated Si composite carbon particles are also referred to as Si composite carbon particles (A). ) To be interpreted.
  • an organic compound that becomes a carbonaceous material is used as a coating raw material for the above-described Si composite carbon particles (A), and these are mixed and fired to obtain carbonaceous material-coated Si composite carbon particles.
  • an amorphous material is obtained as a carbonaceous material.
  • a heat treatment is usually performed at 2000 ° C. or higher, preferably 2500 ° C. or higher and usually 3200 ° C. or lower, a graphite material is obtained as a carbonaceous material.
  • the amorphous material is carbon with low crystallinity, and the graphite material is carbon with high crystallinity.
  • the above-described Si composite carbon particles (A) are used as a core material, an organic compound that becomes a carbonaceous material is used as a coating material, and these are mixed and fired to obtain carbonaceous material-coated Si composite carbon particles.
  • the coating layer may contain Si compound particles and carbon fine particles.
  • the shape of the carbon fine particles is not particularly limited, and may be any of granular, spherical, chain-like, needle-like, fibrous, plate-like, and scale-like shapes.
  • the carbon fine particles are not particularly limited, but examples thereof include coal fine powder, vapor phase carbon powder, carbon black, ketjen black, and carbon nanofiber. Among these, carbon black is particularly preferable. Carbon black has the advantage that non-aqueous secondary batteries have high input / output characteristics even at low temperatures, and at the same time are inexpensive and easily available.
  • the average particle diameter d50 of the carbon fine particles is usually 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.05 ⁇ m or more, more preferably 0.07 ⁇ m or more, further preferably 0.1 ⁇ m or more, preferably 8 ⁇ m or less. More preferably, it is 5 micrometers or less, More preferably, it is 1 micrometer or less.
  • the primary particle size is 3 nm or more and 500 nm or less, but the primary particle size is preferably 3 nm or more, more preferably 15 nm or more, further preferably 30 nm or more, particularly preferably 40 nm or more, preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, particularly preferably 70 nm or less. is there.
  • the primary particle size of the carbon fine particles can be measured by observation with an electron microscope such as SEM or a laser diffraction particle size distribution analyzer.
  • the carbonaceous material-covered Si composite carbon particles exhibit the same physical properties as the Si composite carbon particles (A) described above, but the preferred physical properties of the carbonaceous material-coated Si composite carbon particles that vary depending on the coating treatment are described below.
  • the interplanar spacing (d 002 ) of the (002) plane of the carbonaceous material-coated Si composite carbon particles by X-ray wide angle diffraction method is usually 0.336 nm or more, preferably 0.337 nm or more, more preferably 0.340 nm or more, and still more preferably. 0.342 nm or more. Moreover, it is less than 0.380 nm normally, Preferably it is 0.370 nm or less, More preferably, it is 0.360 nm or less. If the d 002 value is too large, it indicates that the crystallinity is low, and the cycle characteristics of the non-aqueous secondary battery tend to deteriorate. If the d 002 value is too small, the effect of combining carbonaceous materials is obtained. hard.
  • the carbonaceous material-coated Si composite carbon particles contain an amorphous material or a graphite material, and among them, the amorphous carbonaceous material is contained from the point of acceptability of lithium ions. preferable.
  • the content of the amorphous carbonaceous material is usually 0.5% by mass or more and 30% by mass or less, preferably 1% by mass or more and 25% by mass or less, more preferably 2% by mass or more and 20% by mass or less. When this content is too large, the amorphous material portion of the negative electrode material increases, and the reversible capacity when the battery is assembled tends to be small. On the other hand, if the content is too small, the amorphous Si compound carbon particles (A) that are the core are not uniformly coated and strong granulation is not performed, and the particle size becomes too small when pulverized after firing. Tend.
  • the content (coverage) of the amorphous substance derived from the organic compound finally obtained is based on the amount of the Si composite carbon particles (A) to be used, the amount of the organic compound that becomes the carbonaceous material, and JIS K 2270. It can be calculated by the following formula (4) based on the residual carbon ratio measured by the micro method.
  • Method (ii) may include a pulverization process, a particle size classification process, and a mixing process with another negative electrode active material, in addition to the carbonaceous material coating process described above.
  • Method (iii) Examples of the method for producing the Si composite carbon particles (A) in which the carbon compound is attached to or coated on the outer periphery of the Si compound particles as the nucleus described above (solid phase reaction, liquid phase reaction, sputtering, chemical vapor deposition, etc.) The method using is mentioned.
  • the solid phase reaction is a method of synthesizing composite particles by weighing and mixing solid raw materials such as powders so as to have a predetermined composition and then performing a heat treatment.
  • a method in which an Si compound particle and an organic compound that becomes a carbonaceous material are brought into contact with each other at a high temperature to cause a reaction is applicable.
  • the contact between the Si compound particles and the carbonaceous organic compound in the solid phase reaction step is performed under an oxygen-free (low oxygen) environment at a high temperature of 1000 ° C. or higher, and thus an apparatus capable of setting such an environment.
  • the process can be performed using a high-frequency induction heating furnace, a graphite furnace, an electric furnace, or the like.
  • the temperature conditions in the solid phase reaction step are not particularly limited, but are usually higher than the melting temperature of the Si compound particles, preferably 10 ° C. or higher, more preferably 30 ° C. higher than the melting temperature of the Si compound particles. It is.
  • the specific temperature is usually 1420 ° C. or higher, preferably 1430 ° C. or higher, more preferably 1450 ° C.
  • the oxygen-free (low oxygen) environment is preferably performed under an inert atmosphere such as argon and under reduced pressure (vacuum).
  • the pressure is usually 2000 Pa or less, preferably 1000 Pa or less. More preferably, it is 500 Pa or less.
  • the treatment time is usually 0.1 hour or longer, preferably 0.5 hour or longer, more preferably 1 hour or longer, and usually 3 hours or shorter, preferably 2.5 hours or shorter, more preferably 2 hours or shorter.
  • Method (iii) may include a pulverization process, a particle size classification process, and a mixing process with another negative electrode active material, in addition to the above-described solid phase reaction process.
  • Examples of the coarse pulverizer used in the pulverization process include a jaw crusher, an impact crusher, and a cone crusher.
  • Examples of the intermediate pulverizer include a roll crusher and a hammer mill.
  • Examples of the fine pulverizer include a ball mill, A vibration mill, a pin mill, a stirring mill, a jet mill, etc. are mentioned.
  • a ball mill, a vibration mill, and the like are preferable from the viewpoint of processing speed because of a short grinding time.
  • the pulverization speed is appropriately set depending on the type and size of the apparatus.
  • it is usually 50 rpm or more, preferably 100 rpm or more, more preferably 150 rpm or more, and further preferably 200 rpm or more.
  • it is 2500 rpm or less normally, Preferably it is 2300 rpm or less, More preferably, it is 2000 rpm or less. If the speed is too high, control of the particle size tends to be difficult, and if the speed is too low, the processing speed tends to be slow.
  • the pulverization time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 1 minute 30 seconds or longer, and further preferably 2 minutes or longer. Moreover, it is usually 3 hours or less, preferably 2.5 hours or less, more preferably 2 hours or less. If the pulverization time is too short, particle size control tends to be difficult, and if the pulverization time is too long, the productivity of the Si composite carbon particles (A) tends to decrease.
  • the grinding speed is usually 50 rpm or more, preferably 100 rpm or more, more preferably 150 rpm or more, and further preferably 200 rpm or more. Moreover, it is 2500 rpm or less normally, Preferably it is 2300 rpm or less, More preferably, it is 2000 rpm or less. If the speed is too high, control of the particle size tends to be difficult, and if the speed is too low, the processing speed tends to be slow.
  • the pulverization time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 1 minute 30 seconds or longer, and further preferably 2 minutes or longer. Moreover, it is usually 3 hours or less, preferably 2.5 hours or less, more preferably 2 hours or less. If the pulverization time is too short, the particle size control tends to be difficult, and if the pulverization time is too long, the productivity tends to decrease.
  • the opening is usually 53 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 38 ⁇ m or less so as to have the above particle diameter.
  • a rotary sieving, a shaking sieving, a rotating sieving, a vibrating sieving, etc. can be used
  • dry airflow classification Gravity classifier, inertial force classifier, centrifugal classifier (classifier, cyclone, etc.) can be used
  • wet sieving a mechanical wet classifier, a hydraulic classifier, a sedimentation classifier, a centrifugal wet classifier or the like can be used.
  • the composite graphite particles (B) in the present invention will be described below.
  • the composite graphite particles (B) are composite particles in which a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
  • poorly soluble in a non-aqueous electrolyte means that the polymer is immersed in a solvent in which ethyl carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 for 24 hours and then dried before and after immersion.
  • the reduction rate (rate dissolved in the solvent) is 10% by mass or less.
  • composite of a polymer and graphite particles (C) means that the polymer is attached to, adhered to, and combined with the surface of the graphite particles (C), and the pores of the graphite particles (C).
  • a state in which a polymer is attached inside is shown.
  • the cross section of a particle is analyzed by using a technique such as a field emission scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis or X-ray photoelectron spectroscopy (XPS) analysis. This can be confirmed by observation.
  • SEM-EDX field emission scanning electron microscope-energy dispersive X-ray
  • XPS X-ray photoelectron spectroscopy
  • the composite graphite particles (B) of the present invention are not particularly limited as long as a polymer that is hardly soluble in the non-aqueous electrolyte described below is combined with the graphite particles (C), but the composite graphite particles (B) are as follows. It is preferable to have the following characteristics.
  • volume-based average particle diameter (d50) of composite graphite particles (B) is usually 1 ⁇ m or more, preferably 4 ⁇ m or more, more preferably 7 ⁇ m or more, and usually 50 ⁇ m or less. Preferably it is 40 micrometers or less, More preferably, it is 30 micrometers or less, More preferably, it is 25 micrometers or less. If the average particle size d50 is too large, the total number of particles decreases and the proportion of Si composite carbon particles (A) existing between the particles decreases.
  • the effect of suppressing the conduction path breakage in the non-aqueous secondary battery is reduced, and the cycle characteristics are reduced. It tends to cause a decline.
  • the average particle size d50 is too small, the specific surface area increases, so that the decomposition of the electrolyte increases and the initial efficiency tends to decrease.
  • the aspect ratio of the composite graphite particles (B) is usually 1 or more, preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more, Usually, it is 4 or less, preferably 3 or less, more preferably 2.5 or less, and still more preferably 2 or less.
  • the particles tend to be aligned in the direction parallel to the current collector when used as an electrode, so that there are not enough continuous voids in the thickness direction of the electrode, and lithium ion mobility in the thickness direction.
  • the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced.
  • Circularity of the composite graphite particles (B) The circularity of the composite graphite particles (B) is usually 0.88 or more, preferably 0.89 or more, more preferably 0.90 or more, and still more preferably 0.92. That's it.
  • the circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less.
  • the spherical shape in this specification can also be expressed in the range of the circularity.
  • the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
  • the interplanar spacing (d 002 ) of the composite graphite particles (B) by the X-ray wide angle diffraction method is usually 0.337 nm or less, preferably 0.336 nm or less.
  • the lower limit value of 0.3354 nm is a theoretical value of graphite.
  • the crystallite size (Lc) of the composite graphite particles (B) is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease.
  • the composite graphite particles (B) have a surface functional group amount O / C value represented by the above formula (2) of usually 2% or more, preferably 3 %, More preferably 4%, while usually 30% or less, preferably 20% or less, more preferably 15% or less.
  • this surface functional group amount O / C value is too small, it indicates that the polymer is unevenly distributed and the coating is insufficient, the effect of preventing contact with the electrolyte is poor, and the initial efficiency and cycle characteristics of the non-aqueous secondary battery are reduced. There is a tendency for the amount of gas to increase. On the other hand, if the surface functional group amount O / C value is too large, it indicates an excessive coating state of the polymer, which causes an increase in resistance and tends to deteriorate the input / output characteristics.
  • SA BET specific surface area of composite graphite particles
  • the specific surface area of the composite graphite particles (B) measured by the BET method is usually 0.1 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1 m 2 / g or more, and further preferably 2 m 2. / G or more, particularly preferably 3 m 2 / g or more.
  • the specific surface area of the composite graphite particles (B) usually tends to be smaller than the specific surface area of the graphite particles before being combined with the polymer.
  • the specific surface area is too small, the number of sites where lithium ions enter and exit is small, and the high-speed charge / discharge characteristics and output characteristics are inferior. On the other hand, if the specific surface area is too large, the active material becomes excessively active with respect to the electrolyte solution Therefore, there is a tendency that a high capacity battery cannot be manufactured.
  • the BET specific surface area is measured by a BET one-point method using a specific surface area measuring device by a nitrogen gas adsorption flow method.
  • the tap density of the composite graphite particles (B) is usually preferably 0.5 g / cm 3 or more, preferably 0.6 g / cm 3 or more, and more preferably 0.7 g / cm 3 or more. More preferred. Further, usually 1.5 g / cm 3 or less and 1.2 g / cm 3 or less are preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the non-aqueous secondary battery is inferior in high-speed charge / discharge characteristics, and if the tap density is too high, the cycle characteristics may be deteriorated due to a reduction in the effect of suppressing the conduction path breakage.
  • the tap density of the composite graphite particles (B) usually tends to be the same as or smaller than the tap density of the graphite particles before being combined with the polymer.
  • a sample (composite graphite particle (B)) is dropped through a sieve having a mesh size of 300 ⁇ m through a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 using a powder density measuring device. After the cell is fully filled, a tap with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
  • DBP oil absorption of composite graphite particles (B)
  • the DBP (dibutyl phthalate) oil absorption of composite graphite particles (B) is usually 65 ml / 100 g or less, preferably 60 ml / 100 g or less, more preferably 55 ml / 100 g or less. More preferably, it is 53 ml / 100 g or less. Moreover, it is 30 ml / 100g or more normally, Preferably it is 40 ml / 100g or more.
  • the DBP oil absorption is too large, it tends to cause streaking during the application of the slurry containing the carbon material of the present invention when forming the negative electrode, and if it is too small, there is almost no pore structure in the particles.
  • the reaction area with the electrolytic solution tends to be short.
  • the press load (Pb) of the composite graphite particles (B) is usually 10 kg / 5 cm or more, preferably 100 kg / 5 cm or more, more preferably 150 kg / 5 cm or more, still more preferably 200 kg / 5 cm or more, and usually 800 kg / 5 cm or less.
  • it is 600 kg / 5 cm or less, More preferably, it is 500 kg / 5 cm or less, More preferably, it is 400 kg / 5 cm or less, Most preferably, it is 350 kg / 5 cm or less.
  • the composite graphite particles (B) in the present invention are not particularly limited as long as they are composite particles in which at least the graphite particles (C) and a polymer that is hardly soluble in a non-aqueous electrolyte solution are combined, but preferably graphite particles (C ) In the form of spherical composite particles in which a polymer that is hardly soluble in a non-aqueous electrolyte is attached or attached.
  • the manufacturing method is not specifically limited, For example, the following three methods are mentioned.
  • ⁇ Method (i)> In the method (i), a polymer that is hardly soluble in a non-aqueous electrolyte is dissolved in an organic solvent or water, or a mixed solvent of organic solvent / water, and the solution is mixed with graphite particles (C), and then heated and / or It is a method having a step of drying by reduced pressure.
  • the solvent to be used is not particularly limited as long as a poorly soluble polymer dissolves in the non-aqueous electrolyte, but preferable examples include water, ethyl methyl ketone, toluene, acetone, methyl isobutyl ketone, ethanol, methanol, and the like. It is done. Among these, water, ethyl methyl ketone, acetone, methyl isobutyl ketone, ethanol, and methanol are more preferable because of cost and ease of drying.
  • the concentration of the polymer in a solution obtained by dissolving a polymer that is hardly soluble in a non-aqueous electrolyte solution in a solvent is usually 70% by mass or less, preferably 60% by mass or less, and preferably 50% by mass or less. It is more preferable. When it deviates from this range, the polymer solution does not sufficiently permeate into the pores of the graphite particles (C), and the contained polymer is present non-uniformly, and the effect tends to be difficult to be obtained.
  • About the said drying (heating) temperature it is 300 degrees C or less normally, and 250 degrees C or less is preferable. Moreover, it is 50 degreeC or more normally, and 100 degreeC or more is preferable.
  • the pressure is usually 0 MPa or less and ⁇ 0.2 MPa or more in gauge pressure notation. If it is this range, it can dry comparatively efficiently.
  • the pressure is preferably ⁇ 0.03 MPa or less, and preferably ⁇ 0.15 MPa or more.
  • the method (ii) for producing the composite graphite particles (B) is based on the fact that a polymer that is hardly soluble in the non-aqueous electrolyte has an adsorptivity to the surface of the graphite particles (C).
  • the graphite particles (C) are placed in a solution of a poorly soluble polymer and stirred, and after removing the poorly soluble polymer solution from the excess nonaqueous electrolyte by filtration, the graphite particles and the nonaqueous electrolyte are dried.
  • This is a method having a step of combining a hardly soluble polymer with a polymer. Furthermore, it is preferable to heat-treat after drying.
  • a method for measuring the solution concentration of a polymer that is sparingly soluble in the non-aqueous electrolyte solution for example, in the case of an aqueous solution, a method of measuring with a moisture meter such as Sartorius moisture meter MA45, and in the case of an organic solvent solution, the solution is made of an aluminum cup.
  • Method (iii) is a mechanochemical treatment of a powder obtained by mixing graphite particles (C) and a polymer powder that is sparingly soluble in a non-aqueous electrolyte solution, whereby polymer particles that are sparingly soluble in a non-aqueous electrolyte solution are formed on the graphite particle surface. It is a method of compounding.
  • Preferable apparatuses used for mechanochemical treatment include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechanofusion system (manufactured by Hosokawa Micron Corporation), and the like. Of these, the mechanofusion system is preferred.
  • the method (i) is more preferable in terms of simplicity.
  • the content of the polymer hardly soluble in the non-aqueous electrolyte solution in the composite graphite particles (B) is usually 0.01% by mass or more, preferably 0.05% by mass or more, as a blending ratio with respect to the graphite particles (C). More preferably, it is 0.1 mass% or more, More preferably, it is 0.2 mass% or more, Most preferably, it is 0.3 mass% or more.
  • the content of the polymer that is hardly soluble in the non-aqueous electrolyte solution in the composite graphite particles (B) is, as a general rule, when the solution containing the polymer that is hardly soluble in the non-aqueous electrolyte solution is dried at the time of manufacture.
  • the amount of the slightly soluble polymer added to the liquid is, for example, filtered, and when the poorly soluble polymer is removed from the non-aqueous electrolyte not attached to the composite graphite particles (B), It can be calculated from the weight loss in the TG-DTA analysis or the amount of the polymer hardly soluble in the non-aqueous electrolyte contained in the filtrate.
  • the above confirmation may be performed when the composite graphite particles (B) are manufactured, or may be detected from a product manufactured as a negative electrode or a battery.
  • the polymer that is sparingly soluble in the non-aqueous electrolyte may be any polymer that is sparingly soluble in the non-aqueous electrolyte and can be combined with the graphite particles, but is a polymer having an ionic group. It is preferable.
  • the definition of “slightly soluble” is as described above.
  • the ionic group is a group capable of generating an anion or cation in water.
  • Specific examples include carboxylic acid groups, sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, and salts thereof.
  • the salt include lithium salt, sodium salt, potassium salt and the like. Among these, a sulfonic acid group and a lithium salt or a sodium salt thereof are preferable from the viewpoint of the initial irreversible capacity in the case of a non-aqueous secondary battery.
  • the polymer having the ionic group hardly swells in the non-aqueous electrolyte and has high adsorptivity to the graphite particles.
  • the weight average molecular weight of the polymer that is hardly soluble in the non-aqueous electrolyte is not particularly limited, but is usually 500 or more, preferably 1000 or more, more preferably 2000 or more, and further preferably 2500 or more.
  • the weight average molecular weight is usually 1,000,000 or less, preferably 500,000 or less, more preferably 300,000 or less, and still more preferably 200,000 or less.
  • the weight average molecular weight is a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC) using a solvent as tetrahydrofuran (THF), or the solvent is aqueous or N, N-dimethylformamide. It is a weight average molecular weight in terms of standard polyethylene glycol measured by GPC of (DMF) or dimethyl sulfoxide (DMSO).
  • the polymer that is hardly soluble in the non-aqueous electrolyte used in the present invention preferably has a functional group that acts and adsorbs on a functional group present on the basal surface or surface of the graphite particles.
  • the functional group that acts and adsorbs on the basal surface of the graphite particle include an aromatic ring group, and the functional group that acts and adsorbs on the functional group present on the surface of the graphite particle includes an amino group.
  • the ⁇ -conjugated structure is an unsaturated cyclic structure having a structure in which atoms having ⁇ electrons are arranged in a ring, satisfying the Hückel rule, and ⁇ electrons are delocalized on the ring.
  • the ring has a planar structure.
  • Examples of the monomer compound constituting the polymer having an aromatic ring group include furan, pyrrole, imidazole, thiophene, phosphole, pyrazole, oxazole, isoxazole, thiazole, and monocyclic six-membered benzene.
  • a compound having a benzene ring and a compound having a naphthalene ring are preferable from the viewpoint of suppressing the generation of gas when a non-aqueous secondary battery is used.
  • Examples of the monomer serving as the structural unit constituting the polymer having an aromatic ring group include a monomer having an ionic group and a monomer having an aromatic ring. Moreover, the monomer which has both an ionic group and an aromatic ring may be sufficient.
  • the polymer having an aromatic ring group may be a copolymer of a monomer having an ionic group and no aromatic ring and a monomer having an aromatic ring and no ionic group.
  • a polymer of a monomer having both an ionic group and an aromatic ring may be used. Further, it may be a mixture of a monomer polymer having an ionic group and a monomer polymer having an aromatic ring.
  • Examples of the monomer having an ionic group and an aromatic ring include styrene sulfonic acid, naphthalene carboxylic acid, naphthalene sulfonic acid, vinyl naphthalene carboxylic acid, vinyl naphthalene sulfonic acid, vinyl aminonaphthalene, anthracene carboxylic acid, vinyl anthracene carboxylic acid. , Anthracene sulfonic acid, vinyl anthracene sulfonic acid, vinyl aminoanthracene, aniline, aniline sulfonic acid, vinyl benzoate and salts thereof.
  • sodium styrenesulfonate, lithium styrenesulfonate, sodium naphthalenesulfonate, and lithium naphthalenesulfonate are preferable.
  • examples of the monomer having an ionic group and not having an aromatic ring include vinyl sulfonic acid, lithium vinyl sulfonate, sodium vinyl sulfonate, acrylic acid, sodium acrylate, lithium acrylate, etc., methacrylic acid
  • examples of the monomer having an aromatic ring and not having an ionic group include styrene, benzyl acrylate, and benzyl methacrylate.
  • polymers containing structural units derived from such monomers include styrene-vinyl sulfonic acid copolymers, styrene-vinyl sulfonic acid copolymers, styrene-vinyl sulfonic acid copolymers, polystyrene sulfonic acid.
  • Styrene-styrene sulfonic acid copolymer polyvinyl benzoic acid, styrene-vinyl benzoic acid copolymer, polyvinyl benzocyclobutene, vinyl benzocyclobutene-styrene sulfonic acid copolymer, vinyl benzocyclobutene-vinyl sulfonic acid copolymer Polymer, vinyl benzocyclobutene-acrylic acid copolymer, vinyl benzocyclobutene-methacrylic acid copolymer, polyvinyl naphthalene carboxylic acid, polyvinyl naphthalene sulfonic acid, polyvinyl amino naphthalene, polyvinyl naphthalene sulfonic acid, vinyl naphthalene -Acrylic acid copolymer, vinyl naphthalene-methacrylic acid copolymer, vinyl naphthalene-viny
  • polystyrene sulfonic acid polyvinyl benzocyclobutene, polyvinyl naphthalene carboxylic acid, polyvinyl naphthalene sulfonic acid, polyvinyl amino naphthalene, polyvinyl naphthalene sulfonic acid, naphthalene sulfonic acid formalin condensate, polyvinyl anthracene sulfone Acid, polyvinylaminoanthracene, polyvinylanthracenecarboxylic acid, polyvinylanthracenesulfonic acid, anthracenesulfonic acid formalin condensate, and salts thereof are more preferable, among which polystyrenesulfonic acid, polyvinylbenzocyclobutene, naphthalenesulfonic acid formalin condensate, and these Lithium salt and sodium salt are highly adsorbable on the active
  • polymer having an aromatic ring group described above a commercially available polymer may be used, or the polymer may be synthesized by a known method. In addition, in this invention, it can be used individually by 1 type or in combination of 2 or more types.
  • the polymer having an amino group which is one of the preferred embodiments of the polymer that is hardly soluble in the non-aqueous electrolyte used in the present invention, the amino group acts on the functional group on the surface of the graphite particles (C), and the graphite particles ( The surface activity of C) is suppressed.
  • the amino group improves the adsorptivity between the surface of the graphite particles (C) and the polymer, so that the decomposition of the electrolytic solution is suppressed and further excellent battery cycle characteristics are exhibited.
  • the amino group in the polymer having an amino group is not particularly limited, and examples thereof include a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • a primary amino group, a secondary amino group, and a tertiary amino group are preferable, and a primary amino group and a secondary amino group are particularly preferable in terms of high adhesiveness or reactivity with the active material surface functional group.
  • the polymer having an amino group is preferably at least one of an amine homopolymer and a copolymer containing an ethylenically unsaturated group. Specifically, it is preferably at least one of homopolymers and copolymers of vinylamine, allylamine or derivatives thereof.
  • a polymer having an amino group a homopolymer of vinylamine, allylamine or a derivative thereof, a copolymer of any two or more of the above vinylamine, allylamine or a derivative thereof, or the above vinylamine, allylamine or a derivative thereof Any one or more of them and one or more copolymers of other components can be used.
  • maleic acid, acrylamide, sulfur dioxide, phosphorus oxide, sulfur oxide, organic acid, boron compound, etc. may be used as other components.
  • copolymer containing other components include diallylamine-maleic acid copolymer, diallylamine-sulfur dioxide copolymer, and the like.
  • the polymer having an amino group is preferably vinylamine, allylamine, N-alkyl-substituted allylamine (such as N-methylallylamine), N, N-dialkyl-substituted allylamine (N) from the viewpoint of initial charge / discharge efficiency of the non-aqueous secondary battery.
  • N-dimethylallylamine, etc. or diallylamine homopolymers or copolymers, more preferably polyvinylamine, polyallylamine, poly-N-methylallylamine, poly-N, N-dimethylallylamine, polydiallylamine, poly-N-methyl Diallylamine, polydiallylamine-sulfur dioxide copolymer, most preferably polyvinylamine, polyallylamine or polydiallylamine-sulfonyl copolymer.
  • the polymer having an amino group may be in the form of a salt such as acetate, hydrochloride, sulfate, amidosulfate or ammonium salt.
  • the amine moiety may be modified such as partially ureated or partially carbonylated.
  • the polymer that is hardly soluble in the non-aqueous electrolyte may be a mixture of two or more kinds of polymers, and the mixture of the polymer having an aromatic ring group and the polymer having an amino group described above is a graphite particle.
  • C It is preferable because of its high adsorptivity to the surface, lithium ion conductivity, and productivity.
  • the composite graphite particles (B) used in the present invention may further contain other polymers in addition to the above-mentioned polymer that is hardly soluble in the non-aqueous electrolyte solution, and particularly have a lithium ion coordinating group. It preferably contains a polymer.
  • the lithium ion coordinating group is defined as a group having a non-conjugated electron pair, and is not particularly limited as long as it is such a group, but an oxyalkylene group, a sulfonyl group, a sulfo group And at least one selected from the group consisting of a boron-containing functional group, a carbonyl group, a carbonate group, a phosphorus-containing functional group, an amide group, and an ester group.
  • the polymer having a lithium ion coordinating group preferably has a structure of an oxyalkylene group or a sulfonyl group from the viewpoint of high coordination and conductivity of lithium ions.
  • lithium ion coordinating groups can be expected to promote desolvation from the solvent with respect to lithium ions solvated with the electrolyte. Thereby, reductive decomposition of the electrolytic solution is suppressed, and the initial charge / discharge efficiency of the non-aqueous secondary battery can be improved. Further, the lithium ion coordinating group promotes the diffusion of lithium ions in the film of the graphite particles on which a film made of an organic compound is formed, and thus it is possible to suppress an increase in negative electrode resistance.
  • a polymer that is hardly soluble in the above non-aqueous electrolyte may have a lithium ion coordinating group. That is, a polymer that is hardly soluble in a non-aqueous electrolyte (a polymer having an aromatic ring group or a polymer having an amino group) has a monomer unit used for a polymer having a lithium ion coordination group, which will be described below. May be.
  • the composition ratio of the polymer having a lithium ion coordinating group to the polymer that is hardly soluble in the non-aqueous electrolyte is a polymer that is hardly soluble in a sufficient amount of the non-aqueous electrolyte.
  • a preferred embodiment of the polymer having a lithium ion coordinating group is represented by the following structural formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a glycidyl group or an epoxy group.
  • AO is an oxyalkylene group having 2 to 5 carbon atoms.
  • n is an integer from 1 to 50.
  • the glycidyl group is a functional group represented by the following structural formula (2)
  • the epoxy group is a functional group represented by the following structural formula (3).
  • the alkyl group in the structural formula (1) may be linear or branched, and examples thereof include alkyl groups having 1 to 20 carbon atoms. From the viewpoint of suppressing an increase in negative electrode resistance, an alkyl group having 1 to 15 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is particularly preferable.
  • Examples of the aryl group in the structural formula (1) include an unsubstituted or alkyl group-substituted phenyl group. From the viewpoint of availability of materials, a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms is preferable, and an unsubstituted phenyl group is particularly preferable.
  • Examples of the aralkyl group in the structural formula (1) include an unsubstituted or alkyl group-substituted benzyl group. From the viewpoint of easy availability of the material, a benzyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms is preferable, and an unsubstituted benzyl group is particularly preferable.
  • R 1 and R 2 are preferably a hydrogen atom, an alkyl group, an epoxy group, or a glycidyl group, more preferably an alkyl group, from the viewpoint of the initial charge / discharge efficiency of the nonaqueous secondary battery.
  • AO in the structural formula (1) is an oxyalkylene group having 2 to 5 carbon atoms, and is preferably an oxyethylene group or an oxypropylene group from the viewpoint of suppressing an increase in negative electrode resistance.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyalkylene group having 2 to 5 carbon atoms.
  • R 1 and R 2 are each independently an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyalkylene group having 2 to 5 carbon atoms.
  • R 1 and R 2 are each independently an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyethylene group or an oxypropylene group.
  • R 1 and R 2 are both glycidyl groups, and AO is a combination of oxyethylene groups or oxypropylene groups.
  • n represents the number of oxyalkylene groups, and is preferably an integer of 1 to 25 from the viewpoint of suppressing increase in negative electrode resistance.
  • n is 2 or more, a plurality of AOs may be the same as or different from each other.
  • polymer having a lithium ion coordinating group examples include polyoxyethylene glycol diglycidyl ether, polyoxypropylene glycol diglycidyl ether, butoxypolyethylene glycol glycidyl ether and the like.
  • the weight average molecular weight of the polymer having a lithium ion coordinating group is not particularly limited, but is usually 50 or more, preferably 150 or more, more preferably 300 or more, and further preferably 350 or more. On the other hand, the weight average molecular weight is usually 1 million or less, preferably 500,000 or less, more preferably 10,000 or less, and still more preferably 5000 or less.
  • the polymer which has a lithium ion coordination group can be used individually or in combination of 2 or more types.
  • graphite particles (C) contained in the composite graphite particles (B) used in the present invention either natural graphite or artificial graphite may be used.
  • graphite those with few impurities are preferable, and they are used after being subjected to various purification treatments as necessary.
  • the shape of the graphite particles (C) is not particularly limited, and may be appropriately selected from spherical, flaky, fibrous, amorphous particles, particles obtained by collecting or bonding a plurality of particles non-parallelly, and the like.
  • One preferred embodiment of the present invention is spherical.
  • Examples of the natural graphite include scaly graphite, scaly graphite, and soil graphite.
  • the production area of the scaly graphite is mainly Sri Lanka, the production area of the scaly graphite is Madagascar, China, Brazil, Ukraine, Canada, etc., and the main production area of the soil graphite is the Korean Peninsula, China, Mexico, etc. It is.
  • soil graphite generally has a small particle size and low purity.
  • scaly graphite and scaly graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
  • the artificial graphite includes graphite particles such as coke, needle coke, and high-density carbon material produced by heat-treating pitch raw materials.
  • artificial graphite include coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, Organic substances such as polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin are usually baked at a temperature in the range of 2500 ° C to 3200 ° C. And graphitized ones.
  • graphite particles (C) used in the present invention natural graphite, artificial graphite, coke powder, needle coke powder, and powders of graphitized materials such as resin can be used as described above.
  • natural graphite is preferable from the viewpoints of the high discharge capacity of the non-aqueous secondary battery and the ease of production.
  • the composite graphite particles (B) are preferably spherical from the viewpoint of suppressing swelling when the electrode is used as an electrode and improving the packing density.
  • spheroidized graphite particles (C) can be used.
  • a method of performing the spheroidization process will be described, but the method is not limited to this method.
  • an apparatus used for the spheroidizing treatment for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including interaction between graphite particles, mainly to impact force, to particles can be used. .
  • the rotor has a rotor with a large number of blades installed inside the casing, and the rotor rotates at a high speed, so that the graphite particles (C) introduced into the casing have impact compression, friction, shearing force, etc.
  • An apparatus that provides a mechanical action and performs surface treatment is preferred.
  • Preferable apparatuses that give mechanical action to graphite particles include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron (manufactured by Earth Technica), a CF mill (manufactured by Ube Industries), and a mechanofusion system (Hosokawa Micron) And theta composer (manufactured by Deoksugaku Kosakusha).
  • a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
  • the peripheral speed of the rotating rotor is usually 30 m / second or more and 100 m / second or less, preferably 40 m / second or more and 100 m / second or less, and 50 m / second or more and 100 m / second or less. It is more preferable to set it to 2 seconds or less.
  • the treatment that gives mechanical action to the graphite particles can be performed simply by passing the graphite, but it is preferable to circulate or stay the graphite in the apparatus for 30 seconds or more, and to treat the inside of the apparatus for 1 minute or more. More preferably, the treatment is performed by circulation or retention.
  • graphite particles coated with carbonaceous material (C) As the graphite particles (C) contained in the composite graphite particles (B) used in the present invention, those appropriately selected from the graphite particles described in the section of the Si composite carbon particles (A) described above are preferably used. Moreover, as graphite particle
  • Graphite particles (C) coated with a carbonaceous material can be obtained.
  • the firing temperature is usually 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 900 ° C. or higher, usually 2000 ° C. or lower, preferably 1500 ° C. or lower, more preferably 1200 ° C. or lower, amorphous carbon is obtained as a carbonaceous material.
  • a heat treatment is usually performed at 2000 ° C. or higher, preferably 2500 ° C. or higher, and usually 3200 ° C. or lower, a graphitized product is obtained as a carbonaceous material.
  • the content of the carbonaceous material in the graphite particles (C) coated with the carbonaceous material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.3% or more as a ratio to the core material.
  • the content is 0.7% by mass or more, and the content is usually 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, particularly preferably 7% by mass or less, and most preferably. Is 5% by mass or less.
  • the content of the carbonaceous material can be calculated by the following formula (4) from the mass of the graphite particles, the amount of the organic compound that becomes the carbonaceous material, and the residual carbon ratio measured by a micro method based on JIS K 2270. it can.
  • the carbon material for a non-aqueous secondary battery negative electrode according to the present invention contains the Si composite carbon particles (A) and the composite graphite particles (B) described above, thereby ensuring the flow path of the electrolyte when the electrode plate is formed. It is possible to achieve a negative electrode structure in which particles are in contact with each other, and a non-aqueous secondary battery with high capacity and low loss and excellent cycle characteristics can be obtained.
  • the value of is usually greater than 1, preferably 3 or more, more preferably 5 or more, more preferably 5.5 or more, particularly preferably 5.8 or more, most preferably 6 or more, usually 30 or less, preferably 25 or less. More preferably, it is 20 or less, More preferably, it is 15 or less, Especially preferably, it is 10 or less, Most preferably, it is 8 or less.
  • the value of the press load of the carbon material for non-aqueous secondary battery negative electrode of the present invention is usually 200 kg / 5 cm or more, preferably 300 kg / 5 cm or more, more preferably 400 kg / 5 cm or more, more preferably 500 kg / 5 cm or more, particularly preferably 550 kg / 5 cm or more, most preferably 600 kg / 5 cm or more, and usually 3000 kg / 5 cm or less, preferably 2000 kg / 5 cm or less, more preferably 1700 kg / 5 cm or less. More preferably, it is 1500 kg / 5 cm or less, particularly preferably 1000 kg / 5 cm, most preferably 900 kg / 5 cm or less.
  • the value of the press load is too large, it will be difficult to press the electrode to the desired density, and it will not be possible to press to the target density.
  • the electrode tends to expand during electrode thermal drying or charge / discharge.
  • the particle deformation cannot be sufficiently suppressed in the press at the time of producing the negative electrode, so that the ability to secure the flow path of the electrolytic solution is lowered, and the input / output characteristics tend to be lowered.
  • the surface spacing (d 002 ) of the 002 plane by the X-ray wide angle diffraction method of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 0. It is 337 nm or less, preferably 0.336 nm or less. If the d002 value is too large, it indicates that the graphite crystallinity is low, and the initial irreversible capacity may increase when a non-aqueous secondary battery is used. On the other hand, since the theoretical value of the interplanar spacing of the 002 plane of graphite is 0.3354 nm, the d value is usually 0.3354 nm or more.
  • the crystallite size (Lc) of the carbon material for a nonaqueous secondary battery negative electrode of the present invention is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease.
  • the lower limit of Lc is the theoretical value of graphite.
  • the average particle diameter d50 of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 25 ⁇ m or less, and particularly preferably 22 ⁇ m or less. It is 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, further preferably 5 ⁇ m, and particularly preferably 7 ⁇ m or more.
  • the average particle diameter d50 is too small, the specific surface area becomes large, so that the decomposition of the electrolytic solution increases and the initial efficiency of the non-aqueous secondary battery tends to decrease. If the average particle diameter d50 is too large, the rapid charge / discharge characteristics are reduced. It tends to cause a decline.
  • the aspect ratio of the carbon material for nonaqueous secondary battery negative electrode of the present invention is usually 1 or more, preferably 1.3 or more, more preferably 1.4 or more. More preferably, it is 1.5 or more, usually 4 or less, preferably 3 or less, more preferably 2.5 or less, and still more preferably 2 or less.
  • the particles tend to be aligned in the direction parallel to the current collector when used as an electrode, so that there are not enough continuous voids in the thickness direction of the electrode, and lithium ion mobility in the thickness direction.
  • the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced.
  • BET specific surface area (SA) of carbon material for negative electrode of non-aqueous secondary battery The specific surface area according to the BET method of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 0.5 m 2 / g or more, preferably 1 m 2 / g or more, more preferably 3 m 2 / g or more, still more preferably 5 m 2. / G or more, particularly preferably 8 m 2 / g or more.
  • it is 30 m ⁇ 2 > / g or less normally, Preferably it is 20 m ⁇ 2 > / g or less, More preferably, it is 18 m ⁇ 2 > / g or less, More preferably, it is 16 m ⁇ 2 > / g or less, Most preferably, it is 14 m ⁇ 2 > / g or less.
  • the specific surface area is too large, the reactivity between the portion exposed to the electrolyte and the electrolyte when used as the negative electrode active material is increased, which tends to cause a decrease in initial efficiency and an increase in the amount of gas generated, making it difficult to obtain a preferable battery. Tend. When the specific surface area is too small, there are few sites where lithium ions enter and exit, and the high-speed charge / discharge characteristics and output characteristics tend to be inferior.
  • (G) Circularity of carbon material for non-aqueous secondary battery negative electrode The circularity of the carbon material for non-aqueous secondary battery negative electrode of the present invention is usually 0.85 or more, preferably 0.88 or more, more preferably 0.8. 89 or more, more preferably 0.90 or more.
  • the circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less. If the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
  • the Raman R value (as defined above) of the carbon material for nonaqueous secondary battery negative electrode of the present invention is usually 1 or less, preferably 0. 8 or less, more preferably 0.6 or less, still more preferably 0.5 or less, usually 0.05 or more, preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.25 or more. is there. If the Raman R value is less than this range, the crystallinity of the particle surface becomes too high, the number of Li insertion sites decreases, and the rapid charge / discharge characteristics of the nonaqueous secondary battery tend to be reduced. On the other hand, if it exceeds this range, the crystallinity of the particle surface will be disturbed, the reactivity with the electrolyte will increase, and the charge / discharge efficiency will tend to decrease and the gas generation will increase.
  • a tap density of nonaqueous secondary battery negative electrode carbon material of the tap density the invention of a nonaqueous secondary battery negative electrode carbon material is usually 0.6 g / cm 3 or higher, preferably 0.7 g / cm 3 or more, More preferably, it is 0.8 g / cm 3 or more, and further preferably 0.9 g / cm 3 or more. On the other hand, it is usually 1.8 g / cm 3 or less, preferably 1.5 g / cm 3 or less, more preferably 1. 3 g / cm 3 or less, more preferably 1.2 g / cm 3 or less.
  • the tap density is smaller than the above range, sufficient continuous voids are not secured in the electrode, and the mobility of lithium ions in the electrolyte held in the voids is reduced, so that the rapid charge / discharge characteristics of the non-aqueous secondary battery Tends to decrease.
  • the mass ratio of the composite graphite particles (B) to the total amount of the Si composite carbon particles (A) and the composite graphite particles (B) is not particularly limited, but is 0 mass. %, Preferably 1% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, particularly preferably 30% by mass or more, and usually 90% by mass or less, preferably 80% by mass or less, More preferably, it is 70 mass% or less.
  • the mixing method is not particularly limited as long as the Si composite carbon particles (A) and the composite graphite particles (B) are uniformly mixed.
  • a mixer with a structure in which two frame molds rotate and revolve a single blade, such as a dissolver that is a high-speed high-shear mixer or a butterfly mixer for high viscosity, stirs and disperses in a tank Structured device; so-called kneader-type device having a structure in which a stirring blade such as a sigma type rotates along the side surface of a semi-cylindrical mixing tank; a trimix type device with three stirring blades; rotating in a container A so-called bead mill type apparatus having a disk and a dispersion medium is used.
  • a device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works
  • KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works
  • it has a container in which a single inner shaft and a plurality of pavement or sawtooth paddles fixed to the shaft are arranged in different phases, and the inner wall surface is the outermost line of rotation of the paddle
  • Example heat type apparatus having a structure preferably formed in a cylindrical shape e.g., Redige mixer manufactured by Redige Co., Ltd., flow share mixer manufactured by Taiyo Kiko Co., Ltd., Tsukishima Machine Co., Ltd.
  • the carbon material for a non-aqueous secondary battery negative electrode of the present invention is suitably used as a negative electrode material for a non-aqueous secondary battery by using Si composite carbon particles (A) and composite graphite particles (B) in any composition and combination. Although it can be used, it may be used as a negative electrode material for a non-aqueous secondary battery, preferably a non-aqueous secondary battery, by mixing with one or two or more other materials not corresponding to these.
  • the mixing amount of the other materials with respect to the total amount of the carbon material for the nonaqueous secondary battery negative electrode is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, Preferably it is 60 mass% or more, Most preferably, it is 70 mass% or more. Moreover, it is 90 mass% or less normally, Preferably it is the range of 80 mass% or less.
  • materials selected from natural graphite, artificial graphite, amorphous carbon-coated graphite, amorphous carbon, metal particles, and metal compounds can be used. Any of these materials may be used alone, or two or more of these materials may be used in any combination and composition.
  • the natural graphite for example, highly purified scaly graphite particles or scaly graphite can be used.
  • the volume-based average particle diameter of natural graphite is usually 8 ⁇ m or more, preferably 12 ⁇ m or more, and usually 60 ⁇ m or less, preferably 40 ⁇ m or less.
  • the natural graphite has a BET specific surface area of generally 3.5 m 2 / g or more, preferably 4.5 m 2 / g or more, and usually 8 m 2 / g or less, preferably 6 m 2 / g or less.
  • Examples of the artificial graphite include particles obtained by graphitizing a carbon material.
  • particles obtained by firing and graphitizing single graphite precursor particles while being powdered can be used.
  • amorphous carbon-coated graphite for example, natural graphite or artificial graphite coated with an amorphous carbon precursor and fired particles, or natural graphite or artificial graphite coated with amorphous carbon by CVD are used. be able to.
  • amorphous carbon for example, particles obtained by firing a bulk mesophase, or particles obtained by firing an infusible carbonizable pitch or the like can be used.
  • rotary mixers cylindrical mixers, twin cylindrical mixers, double cone mixers, regular cubic mixers, vertical mixers
  • a fixed mixer a spiral mixer, a ribbon mixer, a Muller mixer, a Helical Flyt mixer, a Pugmill mixer, a fluidized mixer, or the like can be used.
  • the metal particles include Fe, Co, Sb, Bi, Pb, Ni, Ag, Si, Sn, As, Al, Zr, Cr, P, S, V, Mn, Nb, Mo, Cu, Zn,
  • a metal selected from the group consisting of Ge, In, Ti and the like or a compound thereof is preferable.
  • an alloy composed of two or more kinds of metals may be used, and the metal particles may be alloy particles formed of two or more kinds of metal elements.
  • a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn, and W or a compound thereof is preferable.
  • metal compound examples include metal oxides, metal nitrides, and metal carbides.
  • alloy which consists of 2 or more types of metals.
  • Si compounds are preferred.
  • the Si compound the same compound as the Si compound in the Si composite carbon particles (A) can be used.
  • the present invention also relates to a negative electrode for a non-aqueous secondary battery formed using the carbon material for a non-aqueous secondary battery negative electrode of the present invention, and a specific example thereof includes a negative electrode for a lithium ion secondary battery. .
  • the negative electrode for a non-aqueous secondary battery of the present invention includes a current collector and an active material layer formed on the current collector, and the active material layer is a carbon material for a non-aqueous secondary battery negative electrode of the present invention. It contains.
  • the active material layer preferably further contains a binder.
  • the binder is not particularly limited, but a binder having an olefinically unsaturated bond in the molecule is preferable.
  • Specific examples include styrene-butadiene rubber, styrene / isoprene / styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene / propylene / diene copolymer.
  • styrene-butadiene rubber is preferred because of its availability.
  • the mechanical strength of the negative electrode plate can be increased by using a binder having an olefinically unsaturated bond in the molecule and the carbon material for a nonaqueous secondary battery negative electrode of the present invention in combination.
  • a binder having an olefinically unsaturated bond in the molecule and the carbon material for a nonaqueous secondary battery negative electrode of the present invention in combination.
  • the binder having an olefinically unsaturated bond in the molecule preferably has a large molecular weight and / or a large proportion of unsaturated bonds.
  • the weight average molecular weight of the binder can usually be 10,000 or more, and can usually be 1,000,000 or less. If it is this range, both mechanical strength and flexibility can be controlled to a favorable range.
  • the weight average molecular weight is preferably 50,000 or more, and preferably 300,000 or less.
  • the number of moles of olefinically unsaturated bonds per gram of the total binder can be usually 2.5 ⁇ 10 ⁇ 7 mol or more, and usually 5 ⁇ It can be 10 ⁇ 6 mol or less. If it is this range, the intensity
  • the number of moles is preferably 8 ⁇ 10 ⁇ 7 moles or more, and preferably 1 ⁇ 10 ⁇ 6 moles or less.
  • the degree of unsaturation can usually be 15% or more and 90% or less.
  • the degree of unsaturation is preferably 20% or more, more preferably 40% or more, and preferably 80% or less.
  • the degree of unsaturation represents the ratio (%) of the double bond to the repeating unit of the polymer.
  • a binder having no olefinically unsaturated bond can also be used.
  • a binder having an olefinically unsaturated bond in the molecule and a binder having no olefinically unsaturated bond in the molecule improvement in coating property can be expected.
  • the mixing ratio of the binder having no olefinically unsaturated bond in the molecule is to suppress the strength of the active material layer from being lowered.
  • it can be 150 mass% or less, Preferably it is 120 mass% or less.
  • binder having no olefinically unsaturated bond in the molecule examples include thickening polysaccharides such as methylcellulose, carboxymethylcellulose, starch, carrageenan, pullulan, guar gum, xanthan gum (xanthan gum); Polyethers such as polyethylene oxide and polypropylene oxide; Vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral; Polyacids such as polyacrylic acid and polymethacrylic acid or metal salts thereof; Fluorine-containing polymers such as polyvinylidene fluoride; Examples thereof include alkane polymers such as polyethylene and polypropylene, and copolymers thereof.
  • thickening polysaccharides such as methylcellulose, carboxymethylcellulose, starch, carrageenan, pullulan, guar gum, xanthan gum (xanthan gum); Polyethers such as polyethylene oxide and polypropylene oxide; Vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral; Polyacid
  • a conductive additive may be contained in order to improve the conductivity of the negative electrode.
  • the conductive aid is not particularly limited, and examples thereof include carbon black such as acetylene black, ketjen black, and furnace black, fine powder made of Cu, Ni having an average particle size of 1 ⁇ m or less, or an alloy thereof.
  • the addition amount of the conductive additive is 10 parts by mass or less with respect to 100 parts by mass of the carbon material for a nonaqueous secondary battery negative electrode of the present invention.
  • the negative electrode for a non-aqueous secondary battery of the present invention is a slurry obtained by dispersing the carbon material for a non-aqueous secondary battery negative electrode of the present invention and optionally a binder and / or a conductive additive in a dispersion medium. It can be formed by coating and drying.
  • a dispersion medium an organic solvent such as alcohol or water can be used.
  • the current collector to which the slurry is applied is not particularly limited, and a known current collector can be used. Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil.
  • the thickness of the current collector can be usually 4 ⁇ m or more, and can usually be 30 ⁇ m or less.
  • the thickness is preferably 6 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the thickness of the active material layer obtained by applying and drying the slurry is usually 5 ⁇ m or more from the viewpoint of practicality as a negative electrode and sufficient lithium ion occlusion / release function for high-density current values. In addition, it can usually be 200 ⁇ m or less. Preferably it is 20 micrometers or more, More preferably, it is 30 micrometers or more, Preferably it is 100 micrometers or less, More preferably, it is 75 micrometers or less.
  • the thickness of the active material layer may be adjusted to a thickness in the above range by pressing after applying the slurry and drying.
  • the density of the carbon material for the non-aqueous secondary battery negative electrode in the active material layer varies depending on the application. However, in applications in which input / output characteristics such as in-vehicle applications and power tool applications are emphasized, the density is usually 1.1 g / cm 3 or more 1 .65 g / cm 3 or less.
  • the density is preferably 1.2 g / cm 3 or more, more preferably 1.25 g / cm 3 or more.
  • Density is preferably 1.55 g / cm 3 or more, more preferably 1.65 g / cm 3 or more, and particularly preferably 1.7 g / cm 3 or more.
  • Non-aqueous secondary battery The basic configuration of the nonaqueous secondary battery according to the present invention can be the same as, for example, a known lithium ion secondary battery, and usually includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte.
  • the negative electrode is a negative electrode for a non-aqueous secondary battery according to the present invention described above.
  • the positive electrode can include a current collector and an active material layer formed on the current collector.
  • the active material layer preferably contains a binder in addition to the positive electrode active material.
  • the positive electrode active material examples include metal chalcogen compounds that can occlude and release alkali metal cations such as lithium ions during charge and discharge. Of these, metal chalcogen compounds capable of inserting and extracting lithium ions are preferred.
  • metal chalcogen compounds include transition metal oxides such as vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, and tungsten oxide; Transition metal sulfides such as vanadium sulfide, molybdenum sulfide, titanium sulfide, CuS; Phosphorus-sulfur compounds of transition metals such as NiPS 3 and FePS 3 ; Selenium compounds of transition metals such as VSe 2 and NbSe 3 ; Complex oxides of transition metals such as Fe 0.25 V 0.75 S 2 , Na 0.1 CrS 2 ; Examples thereof include composite sulfides of transition metals such as LiCoS 2 and LiNiS 2 .
  • transition metal oxides such as vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, and tungsten oxide
  • Transition metal sulfides such as vanadium sulfide, molybdenum sulfide,
  • V 2 O 5 , V 5 O 13 , VO 2 , Cr 2 O 5 , MnO 2 , TiO 2 , MoV 2 O 8 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , TiS 2 , V 2 S 5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like are preferable, and LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and their transitions
  • a lithium transition metal composite oxide in which a part of the metal is substituted with another metal is particularly preferable.
  • These positive electrode active materials may be used alone or in combination.
  • the binder for the positive electrode is not particularly limited, and a known binder can be arbitrarily selected and used.
  • examples include inorganic compounds such as silicate and water glass, and resins having no unsaturated bond such as Teflon (registered trademark) and polyvinylidene fluoride.
  • resins having no unsaturated bond such as Teflon (registered trademark) and polyvinylidene fluoride.
  • a resin having no unsaturated bond is preferable because it is difficult to decompose during the oxidation reaction.
  • the weight average molecular weight of the binder can usually be 10,000 or more, and can usually be 3 million or less.
  • the weight average molecular weight is preferably 100,000 or more, and preferably 1,000,000 or less.
  • a conductive additive may be contained in order to improve the conductivity of the positive electrode.
  • the conductive auxiliary agent is not particularly limited, and examples thereof include carbon powders such as acetylene black, carbon black, and graphite, and various metal fibers, powders, and foils.
  • the positive electrode in the same manner as the above-described negative electrode manufacturing method, is dispersed in a dispersion medium with an active material and, optionally, a binder and / or a conductive auxiliary agent, and this is applied to the surface of the current collector. Can be formed.
  • the current collector of the positive electrode is not particularly limited, and examples thereof include aluminum, nickel, stainless steel (SUS), and the like.
  • the electrolyte (sometimes referred to as “electrolyte”) is not particularly limited, and a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in a non-aqueous solvent, or an organic polymer compound or the like is added to the non-aqueous electrolyte. By doing so, a gel-like, rubber-like, or solid sheet-like shape can be mentioned.
  • the non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, and a known non-aqueous solvent can be used.
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate
  • Cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate
  • Chain ethers such as 1,2-dimethoxyethane
  • Cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3-dioxolane
  • Chain esters such as methyl formate, methyl acetate and methyl propionate
  • cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone.
  • the non-aqueous solvent may be used alone or in combination of two or more.
  • a mixed solvent a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferable from the balance of conductivity and viscosity, and the cyclic carbonate is preferably ethylene carbonate.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited, and a known lithium salt can be used.
  • halides such as LiCl and LiBr; Perhalogenates such as LiClO 4 , LiBrO 4 , LiClO 4 ;
  • Inorganic lithium salts such as inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 ;
  • Perfluoroalkanesulfonates such as LiCF 3 SO 3 , LiC 4 F 9 SO 3 ;
  • Fluorine-containing organic lithium salts such as perfluoroalkanesulfonic acid imide salts such as Li trifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi) can be used.
  • LiClO 4 , LiPF 6 , and LiBF 4 are preferable.
  • Lithium salts may be used alone or in combination of two or more.
  • concentration of the lithium salt in the nonaqueous electrolytic solution can be in the range of 0.5 mol / L to 2.0 mol / L.
  • organic polymer compound When the organic polymer compound is included in the non-aqueous electrolyte solution described above and used in the form of a gel, rubber, or solid sheet, specific examples of the organic polymer compound include polyethylene oxide, polypropylene oxide, and the like.
  • the non-aqueous electrolyte solution described above may further contain a film forming agent.
  • the film forming agent include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate, and methyl phenyl carbonate; Alkene sulfides such as ethylene sulfide and propylene sulfide; Sultone compounds such as 1,3-propane sultone, 1,4-butane sultone;
  • the acid anhydride include maleic acid anhydride and succinic acid anhydride.
  • an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added to the non-aqueous electrolyte.
  • the total content of the additives is the total amount of the non-aqueous electrolyte so as not to adversely affect other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics.
  • it can be 10% by mass or less, in particular, 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • a polymer solid electrolyte that is a conductor of an alkali metal cation such as lithium ion can also be used.
  • polymer solid electrolyte examples include those obtained by dissolving a Li salt in the above-described polyether polymer compound, and polymers in which the terminal hydroxyl group of the polyether is substituted with an alkoxide.
  • a porous separator such as a porous membrane or a nonwoven fabric can usually be interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte is impregnated into the porous separator. It is convenient to use it.
  • a material for the separator polyolefin such as polyethylene and polypropylene, polyethersulfone, and the like are used, and polyolefin is preferable.
  • the form of the non-aqueous secondary battery is not particularly limited, for example, a cylinder type in which a sheet electrode and a separator are spiraled; Inside-out cylinder type that combines pellet electrode and separator; The coin type etc. which laminated
  • the battery can be used in an arbitrary shape and size such as a coin shape, a cylindrical shape, and a square shape.
  • the procedure for assembling the non-aqueous secondary battery is not particularly limited, and can be assembled by an appropriate procedure according to the structure of the battery.
  • a negative electrode can be placed on an outer case, an electrolyte and a separator can be provided thereon, and a positive electrode can be placed so as to face the negative electrode, and can be caulked together with a gasket and a sealing plate to form a battery.
  • the measuring method of the average particle diameter d50 is as follows.
  • a commercially available laser diffraction / scattering particle size is prepared by suspending 0.01 g of a sample in 10 mL of a 0.2 mass% aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant.
  • the sample was introduced into the distribution measuring apparatus “LA-920 manufactured by HORIBA” and irradiated with ultrasonic waves of 28 kHz at an output of 60 W for 1 minute, and then the volume-based median diameter in the measuring apparatus was measured. Defined.
  • the BET specific surface area (SA) was measured by a BET 1-point method by a nitrogen gas adsorption flow method using a specific surface area measuring device “AMS8000” manufactured by Okura Riken. Specifically, 0.4 g of a sample is filled in a cell, heated to 350 ° C., pretreated, cooled to liquid nitrogen temperature, and saturated adsorption of 30% nitrogen and 70% He gas is performed. The amount of gas desorbed by heating to room temperature was measured. From the obtained results, the specific surface area was calculated by a normal BET method.
  • ⁇ Raman R value> The sample to be measured was filled by naturally dropping into the measurement cell, and measurement was performed while rotating the measurement cell in a plane perpendicular to the laser beam while irradiating the measurement cell with an argon ion laser beam.
  • the measurement conditions of the Raman spectrum are shown below.
  • ⁇ Tap density> The method for measuring the tap density is as follows. Using a powder density measuring device, a sample was dropped into a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 through a sieve having an opening of 300 ⁇ m, and the cell was fully filled. The density obtained from the volume and the mass of the sample was defined as the tap density.
  • the DBP oil absorption amount is defined by measured values when 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the set torque is 500 N ⁇ m, in accordance with JIS K6217.
  • an absorption meter (S-500) from Asahi Research Institute was used.
  • Si content of composite carbon particles was determined as follows. The composite carbon particles were completely melted with an alkali, then dissolved and fixed in water, measured with an inductively coupled plasma emission spectrometer (HORIBA, Ltd. ULTIMA2C), and the amount of Si was calculated from a calibration curve. Thereafter, the Si content of the composite carbon particles was calculated by dividing the Si amount by the weight of the composite carbon particles.
  • the cross-sectional structure of the composite carbon particles was measured as follows.
  • the electrode plate prepared in ⁇ Preparation of Electrode Sheet> described later was processed with a cross section polisher (JEOL IB-09020CP) to obtain an electrode plate cross section.
  • JEOL IB-09020CP cross section polisher
  • mapping of graphite and Si was performed using EDX.
  • the SEM acquisition conditions were an acceleration voltage of 3 kV and a magnification of 2000 times, and an image in a range where one particle could be acquired at a resolution of 256 dpi was obtained.
  • Cycle durability was measured by the following measuring method using a laminate type non-aqueous secondary battery manufactured by the following non-aqueous secondary battery manufacturing method.
  • an electrode plate having an active material layer with an active material layer density of 1.6 ⁇ 0.03 g / cm 3 was produced. Specifically, 20.00 ⁇ 0.02 g of a negative electrode material, 20.00 ⁇ 0.02 g of a 1% by mass aqueous solution of carboxymethylcellulose sodium salt (0.200 g in terms of solid content), and styrene having a weight average molecular weight of 270,000 -Aqueous dispersion of butadiene rubber 0.75 ⁇ 0.05 g (0.3 g in terms of solid content) was added, stirred for 5 minutes with a hybrid mixer manufactured by Keyence, and defoamed for 30 seconds to obtain a slurry.
  • This slurry was applied to a width of 5 cm using a doctor blade so that the negative electrode material was 12.0 ⁇ 0.3 mg / cm 2 on a 18 ⁇ m-thick copper foil as a current collector, and air-dried at room temperature. Went. Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to be 1.60 ⁇ 0.03 g / cm 3 to obtain an electrode sheet.
  • Lithium nickel manganese cobaltate LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • PVdF polyvinylidene fluoride
  • the obtained slurry was applied to an aluminum foil having a thickness of 15 ⁇ m, dried, and rolled with a press, and the positive electrode active material layer had a width of 30 mm, a length of 40 mm, and an uncoated portion for current collection.
  • a positive electrode was cut out into a shape.
  • the density of the positive electrode active material layer was 2.6 g / cm 3 .
  • an electrode sheet produced by the above-described method was cut out into a shape having a width of 32 mm as a size of the negative electrode active material layer, a length of 42 mm, and an uncoated portion as a current collector tab welded portion. .
  • the density of the negative electrode active material layer was 1.35 g / cm 3 .
  • the positive electrode and the negative electrode were arranged so that the active material surfaces face each other, and a porous polyethylene sheet separator was sandwiched between the electrodes. At this time, the positive electrode active material surface was faced so as not to deviate from the negative electrode active material surface.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium phosphate
  • Si composite carbon particles (A), composite graphite particles (B-1) and composite graphite particles (B-2) were prepared as follows.
  • Si slurry (I) was prepared by crushing polycrystalline Si (manufactured by Wako) having a d50 of 30 ⁇ m together with NMP (N-methyl-2-pyrrolidone) with a bead mill (Ashizawa Finetech) to d50: 0.2 ⁇ m. . 500 g (solid content 40%) of this Si slurry (I) was charged into 750 g of NMP in which 60 g of polyacrylonitrile was uniformly dissolved, and mixed with a mixing stirrer. Next, 1000 g of scaly natural graphite (d50: 45 ⁇ m) was added and mixed to obtain slurry (II) in which polyacrylonitrile, Si, and graphite were uniformly dispersed.
  • the slurry (II) was appropriately dried under reduced pressure for 3 hours at 150 ° C., which is lower than the thermal decomposition temperature of polyacrylonitrile, so that the polyacrylonitrile is not denatured.
  • the decomposition temperature of polyacrylonitrile was 270 degree
  • the obtained lump was crushed with a hammer mill (MF10 manufactured by IKA) at a rotation speed of 6000 rpm, and then charged into a hybridization system (manufactured by Nara Machinery Co., Ltd.). Circulation or retention was performed to spheroidize, Si particles were encapsulated in scaly natural graphite, and heat treatment was performed at 1000 ° C. for 1 hour in a nitrogen atmosphere to obtain Si composite carbon particles (E).
  • Coal tar pitch was mixed with Si composite carbon particles (E) so that the coverage after firing was 7.5%, and kneaded and dispersed by a biaxial kneader.
  • the obtained dispersion was introduced into a firing furnace and fired at 1000 ° C. for 1 hour in a nitrogen atmosphere.
  • the fired lump is crushed using the mill described above under the condition of 3000 rpm, and then classified with a vibrating screen having an opening of 45 ⁇ m to obtain Si composite carbon particles (A) coated with amorphous carbon. (Si content is 8.2% by mass).
  • the Si composite carbon particles (A) had a structure in which flaky graphite was folded, and Si compound particles were present in the gaps in the folded structure. It was. Moreover, it was observed that there is a portion where the Si compound particles and the scaly graphite are in contact.
  • Composite graphite particles (B-1) The scaly natural graphite having a d50 of 100 ⁇ m was spheroidized by a mechanical action for 3 minutes at a rotor peripheral speed of 85 m / sec using a hybridization system NHS-1 manufactured by Nara Machinery Co., Ltd. This sample was treated by classification to obtain spherical graphite particles (C-1) having a d50 of 15.7 ⁇ m.
  • Composite graphite particles (B-2) The scaly natural graphite having a d50 of 100 ⁇ m was spheroidized by a mechanical action for 3 minutes at a rotor peripheral speed of 85 m / sec using a hybridization system NHS-1 manufactured by Nara Machinery Co., Ltd. This sample was treated by classification to obtain spherical graphite particles (C-1) having a d50 of 15.7 ⁇ m. The obtained spheroidized graphite particles (C-1) and coal tar pitch as an amorphous carbon precursor are mixed, subjected to heat treatment at 1300 ° C. in an inert gas, and then the fired product is crushed and classified.
  • C-2 a multi-layer structure carbon material in which spheroidized graphite particles and amorphous carbon were combined was obtained. From the residual carbon ratio, it was confirmed that the mass ratio of spheroidized graphite particles to amorphous carbon (spheroidized graphite particles: amorphous carbon) was 1: 0.03 in the obtained multilayer carbon material. It was done.
  • MCMB MCMB6-28 manufactured by Osaka Gas Chemical Co., Ltd. was used as mesocarbon microbeads (MCMB).
  • Example 1 A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 1 except that the composite graphite particles (B-1) were changed to MCMB.
  • Example 3 A carbon material for a nonaqueous secondary battery negative electrode was obtained in the same manner as in Example 2 except that the composite graphite particles (B-1) were changed to composite graphite particles (B-2).
  • Example 2 A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 2 except that the composite graphite particles (B-1) were changed to MCMB.
  • a carbon material for a negative electrode was obtained.
  • Example 5 A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 4 except that the composite graphite particles (B-1) were changed to composite graphite particles (B-2).
  • Example 3 A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 4 except that the composite graphite particles (B-1) were changed to MCMB.
  • MCMB was used as a carbon material for a non-aqueous secondary battery negative electrode.
  • Si composite graphite particles (A) were used as a carbon material for a non-aqueous secondary battery negative electrode.
  • the non-aqueous secondary battery negative electrode carbon materials (Examples 1 to 5) containing the Si composite carbon particles (A) and the composite graphite particles (B) are non-aqueous secondary materials made of a single material. Compared with the carbon material for battery negative electrodes (Comparative Examples 4 to 7), the balance between the initial discharge capacity and the initial efficiency is excellent.
  • the carbon for non-aqueous secondary battery negative electrode made of composite graphite particles (B) alone compared to the carbon material for non-aqueous secondary battery negative electrode made of MCMB single material Comparative Example 6
  • the carbon material for non-aqueous secondary battery negative electrode Comparative Examples 4 and 5
  • the carbon material for non-aqueous secondary battery negative electrode Comparative Examples 1 to 3
  • the carbon materials for non-aqueous secondary battery negative electrodes (Examples 1 to 5) containing Si composite carbon particles (A) and composite graphite particles (B) are higher.
  • non-aqueous secondary battery negative electrode carbon material of the present invention it is possible to provide a non-aqueous secondary battery that is balanced at a high initial discharge capacity, initial efficiency, and discharge capacity retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 Provided is a carbon material for negative electrode of nonaqueous rechargeable battery that provides a nonaqueous rechargeable battery having low initial loss, high capacity and excellent cycle properties. The present invention pertains to a carbon material for electrode of nonaqueous rechargeable battery, including: (1) composite carbon particles (A) containing elemental silicon; and (2) noncrystalline composite graphite particles (B) obtained by compounding graphite particles (C) with a polymer which has poor solubility in the nonaqueous electrolyte.

Description

非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
 本発明は、非水系二次電池に用いる非水系二次電池負極用炭素材と、その炭素材を用いて形成された負極と、その負極を備える非水系二次電池に関するものである。 The present invention relates to a carbon material for a non-aqueous secondary battery negative electrode used in a non-aqueous secondary battery, a negative electrode formed using the carbon material, and a non-aqueous secondary battery including the negative electrode.
 リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFおよびLiBFなどのリチウム塩を溶解させた非水系電解液からなる非水系二次電池が開発され、実用に供されている。 A nonaqueous secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte solution in which lithium salts such as LiPF 6 and LiBF 4 are dissolved has been developed and put into practical use.
 この電池の負極材としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛や、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が前記負極材として用いられている。 Various types of negative electrode materials have been proposed for this battery. From the viewpoint of high capacity and excellent discharge potential flatness, artificial graphite obtained by graphitization of natural graphite, coke, etc. Graphite carbon materials such as graphitized mesophase pitch and graphitized carbon fiber are used as the negative electrode material.
 一方、昨今非水系二次電池、とりわけリチウムイオン二次電池の用途展開が図られ、従来のノート型パソコンや、移動通信機器、携帯型カメラ、携帯型ゲーム機等向け用途に加え、電動工具、電気自動車向け等の用途も開発されている。その結果、従来にも増した急速充放電特性を有するとともに、高容量であり、かつ、高サイクル特性を併せ持つリチウムイオン二次電池が望まれている。 On the other hand, the application development of non-aqueous secondary batteries, especially lithium ion secondary batteries, has been attempted recently. In addition to conventional notebook PCs, mobile communication devices, portable cameras, portable game machines, etc., electric tools, Applications for electric vehicles are also being developed. As a result, there is a demand for a lithium ion secondary battery that has a rapid charge / discharge characteristic that has been increased as compared with the prior art, a high capacity, and a high cycle characteristic.
 そこで、極板中の炭素材料の充填率を高め放電容量を向上させるために、性質の異なる黒鉛粒子を混合した炭素材料が用いられている。 Therefore, in order to increase the filling rate of the carbon material in the electrode plate and improve the discharge capacity, a carbon material mixed with graphite particles having different properties is used.
 しかしながら、このように高容量を望まれているのに対して、炭素中心の負極では、炭素の理論容量が372mAhであるため、これ以上の容量を望むことが不可能である。そこで、様々な理論容量の高い物質、特に金属粒子の負極への適用が検討されてきている。 However, while a high capacity is desired in this way, a carbon-centered negative electrode has a theoretical capacity of 372 mAh, so it is impossible to desire a capacity higher than this. Therefore, application of various high capacity materials, particularly metal particles to the negative electrode has been studied.
 例えば、特許文献1では、Si化合物の微粉末と黒鉛と炭素質物前駆体であるピッチ等との混合物を焼成しSi複合炭素粒子を製造する方法が提案されている。 For example, Patent Document 1 proposes a method for producing Si composite carbon particles by firing a mixture of a fine powder of a Si compound, graphite, and a pitch of carbonaceous material precursor.
 また、特許文献2では、活物質として異なる電気化学的還元反応を行い、異なる平衡電位を持つ2種類の材料(金属酸化物と炭素材料)を混合して用いることが提案されている。 In Patent Document 2, it is proposed to use different materials (metal oxide and carbon material) having different equilibrium potentials by performing different electrochemical reduction reactions as active materials.
 さらに特許文献3、4では、Si化合物と黒鉛粉末からなるSi複合炭素粒子と黒鉛粒子を含有する非水系二次電池が提案されている。このことにより、高容量で且つサイクル特性の優れた非水系二次電池が提供できると、これらの文献にて報告されている。 Further, Patent Documents 3 and 4 propose non-aqueous secondary batteries containing Si composite carbon particles made of Si compound and graphite powder and graphite particles. It has been reported in these documents that a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be provided thereby.
特開2003-223892号公報JP 2003-238992 A 特開平11-135106号公報Japanese Patent Laid-Open No. 11-135106 特開2012-124114号公報JP 2012-124114 A 国際公開第2012-018035号International Publication No. 2012-018035
 しかし、本発明者らの検討によると、特許文献1に記載の技術は、黒鉛とSi化合物微粉末を炭素からなる炭素質物で複合化して得られたSi複合炭素粒子であるが、充放電時のSi化合物微粉末の膨張収縮に伴い、Si複合炭素粒子の導電パスが切れてしまうことにより、サイクル特性が低減するといった問題がある。その結果このSi複合炭素粒子は非水系二次電池の実用レベルには至っていない。 However, according to the study by the present inventors, the technique described in Patent Document 1 is Si composite carbon particles obtained by combining graphite and Si compound fine powder with a carbonaceous material composed of carbon. As the Si compound fine powder expands and contracts, the conductive path of the Si composite carbon particles is cut off, resulting in a problem that cycle characteristics are reduced. As a result, the Si composite carbon particles have not reached the practical level of non-aqueous secondary batteries.
 一方、特許文献2には、同文献に記載の技術によれば、リチウムを吸蔵、放出可能な金属酸化物と炭素材料を混合させることで、金属酸化物の構造破壊を未然に防ぐことができ、高容量で優れたサイクル特性を持つ非水系二次電池が得られることが記載されている。しかしながら、金属酸化物が炭素との複合粒子でないため、金属酸化物の膨れによる電極の破壊を抑制することはできず、また炭素材料も特段の規定がない。そのため特許文献2の技術には、昨今求められる高いサイクル特性を有する電池を得るためにさらなる改善が必要と言わざるを得ない。 On the other hand, according to the technique described in Patent Document 2, structural destruction of a metal oxide can be prevented beforehand by mixing a metal oxide capable of inserting and extracting lithium with a carbon material. It is described that a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be obtained. However, since the metal oxide is not a composite particle with carbon, it is not possible to suppress the destruction of the electrode due to the swelling of the metal oxide, and the carbon material is not specially specified. Therefore, it must be said that the technique of Patent Document 2 requires further improvement in order to obtain a battery having the high cycle characteristics required recently.
 また、特許文献3、4には、同文献に記載の技術によれば、Si複合炭素粒子と黒鉛粒子を混合させることで、サイクル特性が向上し、電池膨れを抑制できることが記載されている。しかしながら、混合に用いる炭素材料は非水系電解液との副反応によるガス発生が多く、そのためロスの増加を十分に抑制できるものでない。 Patent Documents 3 and 4 describe that, according to the technique described in the document, mixing of Si composite carbon particles and graphite particles improves cycle characteristics and suppresses battery swelling. However, the carbon material used for mixing has a large amount of gas generation due to side reactions with the non-aqueous electrolyte solution, and therefore the increase in loss cannot be sufficiently suppressed.
 ロスの増加に関しては、ガス発生により活物質層に空隙が形成されるために、Si化合物の膨張を促進し、それに伴いSi化合物の膨張収縮に伴うSEI(Solid Electrolyte Interface)と呼ばれる保護被膜の再形成時のロスがより大きくなることが、一つの要因として考えられる。 Regarding the increase in loss, since voids are formed in the active material layer due to gas generation, the expansion of the Si compound is promoted, and as a result, a protective coating called SEI (Solid Electrolyte Interface) associated with the expansion and contraction of the Si compound is regenerated. One factor is considered to be a larger loss during formation.
 本発明は上記従来技術の問題点を解決し、高容量で且つサイクル特性に優れ、初期ロスが少ない非水系二次電池を与える非水系二次電池負極用炭素材、当該炭素材を用いて得られる非水系二次電池用負極、及び当該負極を備える非水系二次電池を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art and is obtained by using the carbon material for a non-aqueous secondary battery negative electrode that provides a non-aqueous secondary battery having high capacity, excellent cycle characteristics, and low initial loss. An object of the present invention is to provide a non-aqueous secondary battery negative electrode and a non-aqueous secondary battery including the negative electrode.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、珪素元素を含む複合炭素粒子(A)(以下、Si複合炭素粒子(A)と呼ぶことがある)と、非水系電解液に難溶性のポリマー(本明細書では単にポリマーともいう)と黒鉛粒子(C)とが複合化された複合黒鉛粒子(B)(以下、複合黒鉛粒子(B)と呼ぶことがある)とを混合することで、高容量でサイクル特性に優れ、初期ロスが少ない非水系二次電池負極用炭素材が作成できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed a composite carbon particle (A) containing silicon element (hereinafter sometimes referred to as Si composite carbon particle (A)) and a non-aqueous electrolyte solution. Mixing a poorly soluble polymer (also referred to simply as a polymer in this specification) and a composite graphite particle (B) (hereinafter sometimes referred to as composite graphite particle (B)) in which graphite particles (C) are combined. Thus, it was found that a carbon material for a negative electrode of a non-aqueous secondary battery having a high capacity, excellent cycle characteristics, and low initial loss can be produced.
 本発明の非水系二次電池負極用炭素材(以下、本発明の炭素材と呼ぶことがある)が優れた電池特性を示すメカニズムは明らかとなっていないが、例えば、以下のメカニズムが考えられる。Si複合炭素粒子(A)を用いることで、Si由来の高い容量を有することが可能となる。また、Si複合炭素粒子(A)の粒子間に、複合黒鉛粒子(B)が入り込むことにより、充電時におけるSi複合炭素粒子(A)の膨張が緩和されるため、充放電時の膨張収縮に起因するパス切れが抑制されサイクル特性が向上すると考えられる。また、複合黒鉛粒子(B)が有する非水系電解液に難溶性のポリマーは、黒鉛粒子と非水系電解液との接触を低減し、副反応を抑制することにより、ガス発生を低減し、そのためロスを低減すると考えられる。また副反応を抑制することで電解液中の添加剤消費を抑えると考えられ、その結果、電解液添加剤のサイクル特性向上効果を促進すると考えられる。 Although the mechanism by which the carbon material for a nonaqueous secondary battery negative electrode of the present invention (hereinafter sometimes referred to as the carbon material of the present invention) exhibits excellent battery characteristics has not been clarified, for example, the following mechanism can be considered. . By using the Si composite carbon particles (A), it is possible to have a high capacity derived from Si. Further, since the composite graphite particles (B) enter between the Si composite carbon particles (A), the expansion of the Si composite carbon particles (A) during charging is alleviated. It is considered that the resulting path cut is suppressed and the cycle characteristics are improved. In addition, the polymer that is hardly soluble in the non-aqueous electrolyte solution of the composite graphite particles (B) reduces gas generation by reducing the contact between the graphite particles and the non-aqueous electrolyte solution and suppressing side reactions. It is thought to reduce loss. Moreover, it is thought that the additive consumption in electrolyte solution is suppressed by suppressing a side reaction, As a result, it is thought that the cycling characteristics improvement effect of electrolyte solution additive is accelerated | stimulated.
 即ち、本発明の要旨は、
 (1)珪素元素を含む複合炭素粒子(A)、及び
 (2)非水系電解液に難溶性のポリマーと黒鉛粒子(C)とが複合化された複合黒鉛粒子(B)
を含む非水系二次電池負極用炭素材に存する。
That is, the gist of the present invention is as follows.
(1) Composite carbon particles containing silicon element (A), and (2) Composite graphite particles (B) in which a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
It exists in the carbon material for non-aqueous secondary battery negative electrodes containing.
 また、本発明の他の要旨は、上記非水系二次電池負極用炭素材を用いて形成される、非水系二次電池用負極に存する。 Further, another gist of the present invention resides in a negative electrode for a non-aqueous secondary battery formed using the carbon material for a negative electrode for a non-aqueous secondary battery.
 また、本発明の他の要旨は、正極及び負極、並びに、電解質を備えると共に、該負極が上記非水系二次電池用負極である、非水系二次電池に存する。 Further, another gist of the present invention resides in a non-aqueous secondary battery that includes a positive electrode, a negative electrode, and an electrolyte, and the negative electrode is the negative electrode for a non-aqueous secondary battery.
 本発明によれば、安定性に優れ、高容量で、初期ロスが小さく、サイクル特性に優れた非水系二次電池負極用炭素材、及びそれを用いた非水系二次電池を提供することができる。 According to the present invention, it is possible to provide a non-aqueous secondary battery negative electrode carbon material having excellent stability, high capacity, small initial loss, and excellent cycle characteristics, and a non-aqueous secondary battery using the same. it can.
 以下、本発明の内容を詳細に述べる。なお、以下に記載する本発明の構成の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。 Hereinafter, the contents of the present invention will be described in detail. In addition, description of the structure of this invention described below is an example (representative example) of the embodiment of this invention, and this invention is not specified to these forms, unless the summary is exceeded.
 本発明の非水系二次電池負極用炭素材はSi複合炭素粒子(A)及び複合黒鉛粒子(B)を含有し、Si複合炭素粒子(A)は珪素元素を含み、複合黒鉛粒子(B)は非水系電解液に難溶性のポリマーと黒鉛粒子(C)とが複合化されていることを特徴とする。 The carbon material for a non-aqueous secondary battery negative electrode of the present invention contains Si composite carbon particles (A) and composite graphite particles (B). The Si composite carbon particles (A) contain silicon element, and the composite graphite particles (B). Is characterized in that a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
 以下、本発明に用いるSi複合炭素粒子(A)と、複合黒鉛粒子(B)について説明する。 Hereinafter, the Si composite carbon particles (A) and the composite graphite particles (B) used in the present invention will be described.
 [Si複合炭素粒子(A)]
 本発明におけるSi複合炭素粒子(A)について以下に説明する。
 本発明のSi複合炭素粒子(A)は少なくとも珪素元素を含む炭素材料であれば特に限定されず、公知の材料を用いてもよい。例えば、特開2012-043546号公報、特開2005-243508号公報、特開2008-027897号公報、特開2008-186732号公報などに開示されているSi複合炭素粒子が本発明において使用できる。以下では、本発明の効果がより一層向上されるSi複合炭素粒子(A)について記載する。
[Si composite carbon particles (A)]
The Si composite carbon particles (A) in the present invention will be described below.
The Si composite carbon particle (A) of the present invention is not particularly limited as long as it is a carbon material containing at least a silicon element, and a known material may be used. For example, Si composite carbon particles disclosed in JP2012-043546A, JP2005-243508A, JP2008-027897A, JP2008-186732A, and the like can be used in the present invention. Below, it describes about Si composite carbon particle (A) from which the effect of this invention is improved further.
 (Si複合炭素粒子(A)の特性)
 Si複合炭素粒子(A)は以下のような特性を持つことが好ましい。
(Characteristics of Si composite carbon particles (A))
The Si composite carbon particles (A) preferably have the following characteristics.
 (a)Si複合炭素粒子(A)の体積基準平均粒径(d50)
 Si複合炭素粒子(A)の体積基準平均粒径(d50)(以下、平均粒径d50ともいう)は、通常1μm以上、好ましくは4μm以上、より好ましくは7μm以上であり、また、通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下である。平均粒径d50が大きすぎると、総粒子が少なくなり複合黒鉛粒子(B)の粒子間への存在割合が低下するため、負極作成時のプレスにおいて粒子変形を十分に抑制できなくなる。その結果、電解液の流路確保能が低下し、本発明の炭素材を用いて得られる非水系二次電池(以下、「非水系二次電池」、「電池」とも呼ぶ)の入出力特性の低下を招く傾向がある。一方、平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、初期効率が低下する傾向がある。
(A) Volume-based average particle diameter (d50) of Si composite carbon particles (A)
The volume-based average particle diameter (d50) (hereinafter also referred to as average particle diameter d50) of the Si composite carbon particles (A) is usually 1 μm or more, preferably 4 μm or more, more preferably 7 μm or more, and usually 50 μm or less. The thickness is preferably 40 μm or less, more preferably 30 μm or less, and still more preferably 25 μm or less. If the average particle diameter d50 is too large, the total number of particles decreases and the proportion of the composite graphite particles (B) existing between the particles decreases, so that particle deformation cannot be sufficiently suppressed in the press at the time of preparing the negative electrode. As a result, the ability to secure the flow path of the electrolyte decreases, and the input / output characteristics of the non-aqueous secondary battery (hereinafter also referred to as “non-aqueous secondary battery” or “battery”) obtained using the carbon material of the present invention. There is a tendency to lead to a decline. On the other hand, if the average particle size d50 is too small, the specific surface area increases, so that the decomposition of the electrolyte increases and the initial efficiency tends to decrease.
 なお平均粒径d50の測定方法は以下の通りである。界面活性剤であるポリオキシエチレンソルビタンモノラウレートの0.2質量%水溶液10mLに、試料0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。 In addition, the measuring method of average particle diameter d50 is as follows. 0.01 g of a sample is suspended in 10 mL of a 0.2% by mass aqueous solution of polyoxyethylene sorbitan monolaurate, which is a surfactant, and introduced into a commercially available laser diffraction / scattering particle size distribution analyzer, and ultrasonic waves of 28 kHz are used. Is measured as a volume-based median diameter in a measuring apparatus after being irradiated for 1 minute at an output of 60 W, and is defined as a volume-based average particle diameter d50 in the present invention.
 (b)Si複合炭素粒子(A)のアスペクト比
 Si複合炭素粒子(A)のアスペクト比は、通常1以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
(B) Aspect ratio of Si composite carbon particles (A) The aspect ratio of the Si composite carbon particles (A) is usually 1 or more, preferably 1.3 or more, more preferably 1.4 or more, and still more preferably 1.5. As described above, it is usually 4 or less, preferably 3 or less, more preferably 2.5 or less, and further preferably 2 or less.
 アスペクト比が大きすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。アスペクト比は、粒子の樹脂包埋物又は極板を平板に対して垂直に研磨して、その断面写真を撮影し、ランダムに50個以上の粒子を抽出して、粒子の最長径(平板に対して平行方向)と最短径(平板に対して垂直方向)を画像解析により測定し、最長径/最短径の平均を取ることによって測定することができる。樹脂包埋又は極板化した粒子は、通常は平板に対して粒子の厚み方向が垂直に並ぶ傾向があることから、上記の方法より、粒子に特徴的な最長径と最短径を得ることが出来る。 If the aspect ratio is too large, the particles tend to be aligned in the direction parallel to the current collector when used as an electrode, so that there are not enough continuous voids in the thickness direction of the electrode, and lithium ion mobility in the thickness direction. However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. The aspect ratio is determined by grinding a resin embedding or electrode plate of particles perpendicularly to a flat plate, taking a cross-sectional photograph thereof, extracting 50 or more particles at random, and extracting the longest diameter of the particles (on the flat plate). It can be measured by measuring the parallel direction) and the shortest diameter (perpendicular to the flat plate) by image analysis and taking the average of the longest diameter / shortest diameter. Since particles embedded in a resin or made into an electrode plate usually tend to have the thickness direction of the particles aligned perpendicular to a flat plate, the above-mentioned method can obtain the longest and shortest diameters characteristic of the particles. I can do it.
 (c)Si複合炭素粒子(A)の円形度
 Si複合炭素粒子(A)の円形度は、通常0.85以上、好ましくは0.88以上、より好ましくは0.89以上、更に好ましくは0.90以上である。また円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。なお、本明細書における球状を上記円形度の範囲にて表現することもできる。
(C) Circularity of Si composite carbon particles (A) The circularity of the Si composite carbon particles (A) is usually 0.85 or more, preferably 0.88 or more, more preferably 0.89 or more, and still more preferably 0. .90 or more. The circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less. In addition, the spherical shape in this specification can also be expressed in the range of the circularity.
 円形度が小さすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。円形度が大きすぎると導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。 If the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
 なお、円形度は下記式(1)で定義され、円形度が1のときに理論的真球となる。
 式(1)
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
The circularity is defined by the following formula (1). When the circularity is 1, a theoretical sphere is obtained.
Formula (1)
Circularity = (perimeter of equivalent circle having the same area as the particle projection shape) / (actual circumference of particle projection shape)
 円形度の値は、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用し、分散媒としてイオン交換水を使用し、円相当径による円形度の算出を行うことで求められる。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が10~40μmの範囲の粒子の円形度を平均し、本発明における円形度を求める。 For the circularity value, a flow type particle image analyzer (for example, FPIA manufactured by Sysmex Industrial Co.) is used, polyoxyethylene (20) monolaurate is used as a surfactant, and ion-exchanged water is used as a dispersion medium. The degree of circularity is calculated by the equivalent circle diameter. The equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the photographed particle image, and the circularity is the circumference of the equivalent particle as a molecule and the circumference of the photographed particle projection image. The ratio is the denominator. The circularity of particles having a measured equivalent diameter in the range of 10 to 40 μm is averaged to obtain the circularity in the present invention.
 (d)Si複合炭素粒子(A)の面間隔(d002)及び結晶子サイズ(Lc)
 Si複合炭素粒子(A)のX線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d値が大きすぎると結晶性が低下し、非水系二次電池の放電容量が低下する傾向がある。一方、下限値は黒鉛の理論値である0.3354nmである。
(D) Interplanar spacing (d 002 ) and crystallite size (Lc) of Si composite carbon particles (A)
The interplanar spacing (d 002 ) of the 002 plane by the X-ray wide angle diffraction method of the Si composite carbon particles (A) is usually 0.337 nm or less, preferably 0.336 nm or less. When the d value is too large, the crystallinity is lowered, and the discharge capacity of the nonaqueous secondary battery tends to be lowered. On the other hand, the lower limit is 0.3354 nm, which is the theoretical value of graphite.
 また、Si複合炭素粒子(A)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電池の放電容量が低下する傾向がある。 The crystallite size (Lc) of the Si composite carbon particles (A) is usually in the range of 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease.
 (e)Si複合炭素粒子(A)のラマンR値
 Si複合炭素粒子(A)のラマンR値は、Si複合炭素粒子(A)のラマンスペクトルにおいて、1580cm-1付近の最大ピークPの強度Iと、1360cm-1付近の最大ピークPの強度Iとを測定し、その強度比R(R=I/I)を算出して定義する。その値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎてLi挿入サイト数が減り、非水系二次電池の急速充放電特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(E) Si Raman R value of the Raman R value Si composite carbon particles (A) of the composite carbon particles (A), in the Raman spectrum of Si composite carbon particles (A), the intensity of the maximum peak P A around 1580 cm -1 I A and the intensity I B of the maximum peak P B near 1360 cm −1 are measured, and the intensity ratio R (R = I B / I A ) is calculated and defined. The value is usually 1 or less, preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.5 or less, and usually 0.05 or more, preferably 0.1 or more, more preferably 0. 2 or more, more preferably 0.25 or more. If the Raman R value is less than this range, the crystallinity of the particle surface becomes too high, the number of Li insertion sites decreases, and the rapid charge / discharge characteristics of the nonaqueous secondary battery tend to be reduced. On the other hand, if it exceeds this range, the crystallinity of the particle surface will be disturbed, the reactivity with the electrolyte will increase, and the charge / discharge efficiency will tend to decrease and the gas generation will increase.
 ラマンスペクトルはラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。 The Raman spectrum can be measured with a Raman spectrometer. Specifically, the sample particles are naturally dropped into the measurement cell to fill the sample, and the measurement cell is rotated in a plane perpendicular to the laser beam while irradiating the measurement cell with an argon ion laser beam. Measure.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 (f)Si複合炭素粒子(A)の表面官能基量
 Si複合炭素粒子(A)は、下記式(2)で表される表面官能基量O/C値が通常0.1%以上であり、好ましくは1%以上、より好ましくは2%以上、一方通常30%以下、好ましくは20%以下、より好ましくは15%以下である。この表面官能基量O/C値が小さすぎると、負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が低下し、非水系二次電池の大電流充放電特性が低下する傾向があり、O/Cが大きすぎると、電解液との反応性が増し、充放電効率の低下を招く傾向がある。
(F) Surface functional group amount of Si composite carbon particle (A) The Si composite carbon particle (A) has a surface functional group amount O / C value represented by the following formula (2) of usually 0.1% or more. , Preferably 1% or more, more preferably 2% or more, while usually 30% or less, preferably 20% or less, more preferably 15% or less. If the surface functional group amount O / C value is too small, the desolvation reactivity of the Li ion and the electrolyte solvent on the negative electrode active material surface tends to decrease, and the large current charge / discharge characteristics of the nonaqueous secondary battery tend to decrease. When O / C is too large, the reactivity with the electrolytic solution increases, and the charge / discharge efficiency tends to decrease.
 式(2)
O/C値(%)
={(X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度)/(XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度)}×100
Formula (2)
O / C value (%)
= {(O atom concentration determined based on peak area of O1s spectrum in X-ray photoelectron spectroscopy (XPS) analysis) / (C atom concentration determined based on peak area of C1s spectrum in XPS analysis)} × 100
 本発明における表面官能基量O/C値はX線光電子分光法(XPS)を用いて以下のように測定することができる。 The surface functional group amount O / C value in the present invention can be measured using X-ray photoelectron spectroscopy (XPS) as follows.
 X線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280~300eV)とO1s(525~545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度の比O/C(O原子濃度/C原子濃度)を百分率で表示したものを、試料(Si複合炭素粒子(A))の表面官能基量と定義する。 Using an X-ray photoelectron spectrometer, the object to be measured is placed on a sample stage so that the surface is flat, and aluminum Kα rays are used as an X-ray source. ) Spectrum. The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively. The obtained ratio of the atomic concentration of O and C, O / C (O atomic concentration / C atomic concentration), expressed as a percentage, is defined as the surface functional group amount of the sample (Si composite carbon particles (A)). .
 (g)Si複合炭素粒子(A)のBET比表面積(SA)
 Si複合炭素粒子(A)のBET法で測定した比表面積については、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上である。また、通常40m/g以下、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは18m/g以下、特に好ましくは17m/g以下である。
(G) BET specific surface area (SA) of Si composite carbon particles (A)
About the specific surface area measured by BET method of Si composite carbon particle (A), it is 0.1 m < 2 > / g or more normally, Preferably it is 0.7 m < 2 > / g or more, More preferably, it is 1 m < 2 > / g or more. Moreover, it is 40 m < 2 > / g or less normally, Preferably it is 30 m < 2 > / g or less, More preferably, it is 20 m < 2 > / g or less, More preferably, it is 18 m < 2 > / g or less, Most preferably, it is 17 m < 2 > / g or less.
 比表面積が小さすぎると、リチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣り、一方、比表面積が大きすぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量の非水系二次電池を製造できない傾向がある。 If the specific surface area is too small, the number of sites where lithium ions enter and exit is small, and the high-speed charge / discharge characteristics and output characteristics are inferior. On the other hand, if the specific surface area is too large, the active material becomes excessively active with respect to the electrolyte solution, Therefore, there is a tendency that a high-capacity non-aqueous secondary battery cannot be manufactured.
 なおBET比表面積は、比表面積測定装置を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。 The BET specific surface area is measured by a BET one-point method using a specific surface area measuring device by a nitrogen gas adsorption flow method.
 (h)Si複合炭素粒子(A)のタップ密度
 Si複合炭素粒子(A)のタップ密度は、通常0.5g/cm以上であり、好ましくは0.6g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは0.85g/cm以上、特に好ましくは0.9g/cm以上、通常1.3g/cm以下であり、好ましくは1.2g/cm以下であり、より好ましくは1.1g/cm以下である。タップ密度が低すぎると、非水系二次電池の高速充放電特性に劣り、タップ密度が高すぎると、粒子接触性の低下による導電パス切れにより、サイクル特性の低下を招く場合がある。
(H) Tap density of Si composite carbon particles (A) The tap density of Si composite carbon particles (A) is usually 0.5 g / cm 3 or more, preferably 0.6 g / cm 3 or more, more preferably 0. .8g / cm 3 or more, more preferably 0.85 g / cm 3 or more, particularly preferably 0.9 g / cm 3 or more and usually less than 1.3 g / cm 3, preferably 1.2 g / cm 3 or less Yes, more preferably 1.1 g / cm 3 or less. When the tap density is too low, the high-speed charge / discharge characteristics of the non-aqueous secondary battery are inferior. When the tap density is too high, the cycle characteristics may be deteriorated due to the disconnection of the conductive path due to the decrease in particle contactability.
 本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、試料(Si複合炭素粒子(A))を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度として定義する。 In the present invention, the tap density is measured by dropping a sample (Si composite carbon particles (A)) through a sieve having a mesh size of 300 μm through a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 using a powder density measuring device. Then, after the cell is fully filled, a tap having a stroke length of 10 mm is performed 1000 times, and the density is defined as the density obtained from the volume at that time and the weight of the sample.
 (i)Si複合炭素粒子(A)のDBP吸油量
 Si複合炭素粒子(A)のDBP(フタル酸ジブチル)吸油量は、通常65ml/100g以下、好ましくは62ml/100g以下、より好ましくは60ml/100g以下、更に好ましくは57ml/100g以下である。また、通常30ml/100g以上、好ましくは40ml/100g以上、より好ましくは50ml/100g以上である。DBP吸油量が大きすぎると、負極を形成する際の、本発明の炭素材を含むスラリーの塗布時のスジ引きなどを引き起こしやすい傾向があり、小さすぎると、粒子内の細孔構造が殆ど存在していない可能性があり、反応面が少なくなる傾向がある。
(I) DBP oil absorption of Si composite carbon particles (A) The DBP (dibutyl phthalate) oil absorption of Si composite carbon particles (A) is usually 65 ml / 100 g or less, preferably 62 ml / 100 g or less, more preferably 60 ml / 100 g or less, more preferably 57 ml / 100 g or less. Moreover, it is 30 ml / 100g or more normally, Preferably it is 40 ml / 100g or more, More preferably, it is 50 ml / 100g or more. If the DBP oil absorption is too large, it tends to cause streaking during the application of the slurry containing the carbon material of the present invention when forming the negative electrode, and if it is too small, there is almost no pore structure in the particles. There is a possibility that it has not, and there is a tendency for the reaction surface to decrease.
 なお、本発明におけるDBP吸油量は、JIS K6217に準拠し、測定材料を40g投入し、滴下速度4ml/min、回転数125rpm、設定トルクは500N・mとしたときの測定値によって定義される。測定には、あさひ総研の吸収量測定器(S-500)等を用いることができる。 In addition, the DBP oil absorption amount in the present invention is defined by measured values when 40 g of a measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the set torque is 500 N · m in accordance with JIS K6217. For the measurement, an absorption meter (S-500) from Asahi Research Institute can be used.
 (j)Si複合炭素粒子(A)のプレス荷重(Pa)
 本発明においてプレス荷重とは、粒子を用いて極板を作成する時のプレス荷重のことであり、粒子硬さの指標として用いる。硬い粒子を用いて作製された負極は、プレス荷重が大きくなる傾向があり、一方柔らかい粒子を用いて作製された負極はプレス荷重が小さくなる傾向がある。
(J) Press load (Pa) of Si composite carbon particles (A)
In the present invention, the press load is a press load when an electrode plate is prepared using particles, and is used as an index of particle hardness. Negative electrodes made using hard particles tend to have a higher press load, while negative electrodes made using soft particles tend to have a lower press load.
 Si複合炭素粒子(A)のプレス荷重(Pa)の値は、通常500kg/5cm以上、好ましくは800kg/5cm以上、より好ましくは1000kg/5cm以上、更に好ましくは1200kg/5cm以上、特に好ましくは1400kg/5cm以上、最も好ましくは1500kg/5cm以上、また通常4000kg/5cm以下、好ましくは3000kg/5cm以下、より好ましくは2500kg/5cm以下、更に好ましくは2300kg/5cm以下、特に好ましくは2200kg/5cm以下、最も好ましくは2000kg/5cm以下である。 The value of the press load (Pa) of the Si composite carbon particles (A) is usually 500 kg / 5 cm or more, preferably 800 kg / 5 cm or more, more preferably 1000 kg / 5 cm or more, still more preferably 1200 kg / 5 cm or more, particularly preferably 1400 kg. / 5 cm or more, most preferably 1500 kg / 5 cm or more, usually 4000 kg / 5 cm or less, preferably 3000 kg / 5 cm or less, more preferably 2500 kg / 5 cm or less, more preferably 2300 kg / 5 cm or less, particularly preferably 2200 kg / 5 cm or less, Most preferably, it is 2000 kg / 5 cm or less.
 プレス荷重(Pa)の値が大きすぎる場合、非水系二次電池の充放電時の導電パス切れ抑制効果が低くなり、サイクル特性が低下する傾向があり、また小さすぎる場合、過度な粒子変形により電解液の流路が潰れ、入出力特性の低下を招く傾向がある。 When the value of the press load (Pa) is too large, the effect of suppressing the conduction path breakage during charging / discharging of the non-aqueous secondary battery is low, and the cycle characteristics tend to be deteriorated. There is a tendency that the flow path of the electrolytic solution is crushed and the input / output characteristics are deteriorated.
 なお、本発明においてプレス荷重は、集電体上にSi複合炭素粒子(A)を、その密度が1.35g/cmになるよう圧延して形成するのに必要な線圧(kg/5cm)と定義する。 In the present invention, the press load is a linear pressure (kg / 5 cm) required to form Si composite carbon particles (A) on a current collector by rolling so that the density is 1.35 g / cm 3. ).
 プレス荷重の測定方法は、以下の通りである。Si複合炭素材(A)100質量%に対して、バインダとして1.5質量%のスチレン・ブタジエンゴムと、増粘剤として1質量%のカルボキシメチルセルロースナトリウムと、分散媒として102.5質量%の水とを加えてスラリーとし、これを集電体上に塗布、乾燥する。この電極を、活物質層の幅が5cmとなるように調整し(塗布の際に塗布幅を調整してもよい)、活物質層の密度が上記の値になるようにロールプレスし、このプレスした際の応力を計測することで測定することができる。 The measuring method of press load is as follows. With respect to 100% by mass of the Si composite carbon material (A), 1.5% by mass of styrene-butadiene rubber as a binder, 1% by mass of sodium carboxymethylcellulose as a thickener, and 102.5% by mass of a dispersion medium Water is added to form a slurry, which is applied onto a current collector and dried. This electrode is adjusted so that the width of the active material layer is 5 cm (the coating width may be adjusted at the time of application), and roll-pressed so that the density of the active material layer becomes the above value, It can be measured by measuring the stress at the time of pressing.
 (k)Si複合炭素粒子(A)中の珪素元素の態様
 本発明におけるSi複合炭素粒子(A)中に含有される珪素元素の態様としては、Si,SiOx,SiNx,SiCx、SiZxOy(Z=C、N)などが挙げられ、本発明ではこれらを総称してSi化合物と呼ぶ。中でも好ましくはSi及びSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0<x<2であり、好ましくは0.2以上1.8以下、より好ましくは0.4以上1.6以下、更に好ましくは0.6以上1.4以下である。この範囲であれば、非水系二次電池が高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
(K) Aspect of silicon element in Si composite carbon particle (A) As an aspect of silicon element contained in the Si composite carbon particle (A) in the present invention, Si, SiOx, SiNx, SiCx, SiZxOy (Z = C, N) and the like, and these are collectively referred to as Si compounds in the present invention. Of these, Si and SiOx are preferred. The general formula SiOx is obtained using Si dioxide (SiO 2 ) and metal Si (Si) as raw materials, and the value of x is usually 0 <x <2, preferably 0.2 or more and 1.8 or less. More preferably, it is 0.4 or more and 1.6 or less, More preferably, it is 0.6 or more and 1.4 or less. Within this range, the non-aqueous secondary battery has a high capacity, and at the same time, the irreversible capacity due to the combination of Li and oxygen can be reduced.
 本発明におけるSi複合炭素粒子(A)中の珪素元素の態様としては、Si化合物を粒子状にしたSi化合物粒子の態様が好ましい。 As an aspect of the silicon element in the Si composite carbon particles (A) in the present invention, an aspect of Si compound particles in which an Si compound is formed into particles is preferable.
 また、本発明におけるSi複合炭素粒子(A)中の珪素元素の含有量は、Si複合炭素粒子(A)に対して通常0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上、特に好ましくは10質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは20質量%以下である。この範囲であると、十分な容量の非水系二次電池を得ることが可能となる点で好ましい。 Further, the content of silicon element in the Si composite carbon particles (A) in the present invention is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 2% with respect to the Si composite carbon particles (A). It is at least 5% by mass, more preferably at least 5% by mass, particularly preferably at least 10% by mass. Moreover, it is 99 mass% or less normally, Preferably it is 50 mass% or less, More preferably, it is 30 mass% or less, More preferably, it is 25 mass% or less, Most preferably, it is 20 mass% or less. This range is preferable in that a non-aqueous secondary battery having a sufficient capacity can be obtained.
 なお、Si複合炭素粒子(A)中の珪素元素の含有量の測定方法は、以下の通りである。試料をアルカリで完全に溶融した後、水で溶解、定容し、誘導結合プラズマ発光分析装置(堀場製作所 ULTIMA2C)にて測定を行い、検量線から珪素元素量を算出する。その後、珪素元素量をSi複合炭素粒子(A)の重量で割ることで、Si複合炭素粒子(A)中の珪素元素の含有量を算出することができる。 In addition, the measuring method of content of the silicon element in Si composite carbon particle (A) is as follows. After completely melting the sample with alkali, the sample is dissolved and fixed in water, measured with an inductively coupled plasma emission analyzer (Horiba, Ltd., ULTIMA2C), and the amount of silicon element is calculated from the calibration curve. Thereafter, the silicon element content in the Si composite carbon particles (A) can be calculated by dividing the silicon element amount by the weight of the Si composite carbon particles (A).
 (l)Si複合炭素粒子(A)における珪素元素の存在比率
 本発明に使用されるSi複合炭素粒子(A)における、以下の測定方法にて算出される珪素元素の存在比率は、通常0.2以上であり、好ましくは0.3以上、より好ましくは0.4以上、さらに好ましく0.5以上、特に好ましくは0.6以上であり、また、通常1.5以下、好ましくは1.2以下、より好ましくは1.0以下である。この数値が高いほど、Si複合炭素粒子(A)の外部に存在する珪素元素に比べて、Si複合炭素粒子(A)の内部に存在する珪素元素が多くなる可能性があり、負極を形成した際、粒子間の導電パス切れによる充放電効率の減少が抑制できる傾向がある。
(L) Abundance ratio of silicon element in Si composite carbon particles (A) The abundance ratio of silicon element calculated by the following measurement method in the Si composite carbon particles (A) used in the present invention is usually 0.8. 2 or more, preferably 0.3 or more, more preferably 0.4 or more, further preferably 0.5 or more, particularly preferably 0.6 or more, and usually 1.5 or less, preferably 1.2. Below, more preferably 1.0 or less. The higher this value, the more silicon element present inside the Si composite carbon particles (A) compared to the silicon element present outside the Si composite carbon particles (A), and the negative electrode was formed. At this time, there is a tendency that a decrease in charge / discharge efficiency due to the disconnection of the conductive path between particles can be suppressed.
 Si複合炭素粒子(A)中の珪素元素の存在比率は次のように算出する。まず、Si複合炭素粒子(A)の塗布膜、あるいはSi複合炭素粒子(A)を樹脂等に包埋させて樹脂の薄片を作製し、集束イオンビーム(FIB)やイオンミリングにより粒子断面を切り出した後、SEM(走査電子顕微鏡)による粒子断面観察等の観察方法にて観察する。 The abundance ratio of silicon element in the Si composite carbon particles (A) is calculated as follows. First, a coating film of Si composite carbon particles (A) or Si composite carbon particles (A) is embedded in a resin to produce a thin piece of resin, and a cross section of the particle is cut out by focused ion beam (FIB) or ion milling. Then, it observes by observation methods, such as particle | grain cross-section observation by SEM (scanning electron microscope).
 SEM(走査型電子顕微鏡)にて該Si複合炭素粒子(A)1粒子の断面を観察する際の加速電圧は好ましくは通常1kV以上、より好ましくは2kV以上、更に好ましくは3kV以上であり、通常10kV以下、より好ましくは8kV以下、更に好ましくは5kV以下である。この範囲であれば、SEMの画像において反射二次電子像の違いにより、黒鉛粒子とSi化合物の識別が容易となる。また、撮像倍率は通常500倍以上、より好ましくは1000倍以上、更に好ましくは2000倍以上であり、通常10000倍以下である。上記の範囲であれば、Si複合炭素粒子(A)の1粒子の全体像が取得可能である。解像度は200dpi(ppi)以上、好ましくは256dpi(ppi)以上である。また、画素数は800ピクセル以上で評価することが好ましい。次に像の観察をしながらエネルギー分散型(EDX)及び波長分散型(WDX)にて、黒鉛及び珪素元素の識別を行う。 The accelerating voltage when observing the cross section of one Si composite carbon particle (A) with an SEM (scanning electron microscope) is preferably 1 kV or more, more preferably 2 kV or more, and further preferably 3 kV or more. 10 kV or less, more preferably 8 kV or less, still more preferably 5 kV or less. Within this range, the graphite particles and the Si compound can be easily identified due to the difference in the reflected secondary electron image in the SEM image. The imaging magnification is usually 500 times or more, more preferably 1000 times or more, still more preferably 2000 times or more, and usually 10000 times or less. If it is said range, the whole image of 1 particle | grains of Si composite carbon particle (A) is acquirable. The resolution is 200 dpi (ppi) or more, preferably 256 dpi (ppi) or more. The number of pixels is preferably evaluated at 800 pixels or more. Next, while observing the image, the graphite and silicon elements are identified by the energy dispersion type (EDX) and the wavelength dispersion type (WDX).
 取得した像のうちSi複合炭素粒子(A)1粒子を抽出し、その粒子内のSi化合物の面積(a)を算出する。次に、抽出した1粒子と該1粒子以外の背景を2値化処理した後、粒子に対して収縮処理を繰り返し、抽出した1粒子の面積が70%の図形を抽出し、その図形内に存在する珪素元素の面積(b)を算出する。なお、縮小処理を繰り返し実施した際の面積において、正確に70%の値を示すことができない場合は、70%±3%の値において、70%に最も近い値を、本発明における70%の図形とする。上記、1粒子の抽出・面積の算出・2値化処理・縮小処理は、一般的な画像処理ソフトウェアを使用することで可能であり、当該ソフトウェアとして例えば、「Image J」「Image-Pro plus」などが挙げられる。 In the acquired image, one Si composite carbon particle (A) particle is extracted, and the area (a) of the Si compound in the particle is calculated. Next, after binarizing the extracted 1 particle and the background other than the 1 particle, the shrinking process is repeated on the particle, and a figure with an area of 70% of the extracted 1 particle is extracted. The area (b) of the silicon element present is calculated. In addition, in the area when the reduction process is repeatedly performed, when the value of 70% cannot be accurately shown, the value closest to 70% in the value of 70% ± 3% is 70% in the present invention. A figure. The extraction of one particle, the calculation of the area, the binarization process, and the reduction process can be performed using general image processing software. Examples of such software include “Image J” and “Image-Pro plus”. Etc.
 上記で算出した面積(b)を面積(a)で割った値を任意の3粒子にて測定し、それら3粒子の値を平均化した値を該Si複合炭素粒子(A)中の珪素元素の存在比率とする。 The value obtained by dividing the area (b) calculated above by the area (a) is measured with arbitrary three particles, and the value obtained by averaging the values of these three particles is the silicon element in the Si composite carbon particles (A). The abundance ratio.
 (Si複合炭素粒子(A)の態様)
 以上説明したSi複合炭素粒子(A)の態様としては、珪素元素が含有された炭素材料であれば特に制限されないが、例えば、
(イ)炭素材料からなる造粒体の中にSi化合物粒子が分散したもの、
(ロ)核となる炭素材料の外周にSi化合物粒子が添着又は被覆しているもの、
(ハ)球形化処理された炭素材料の内部にSi化合物粒子が分散したもの、
(ニ)核となるSi化合物粒子の外周に炭素質物が添着又は被覆したもの、
(ホ)これらを組み合わせた態様
等が挙げられる。
(Aspect of Si composite carbon particles (A))
The aspect of the Si composite carbon particles (A) described above is not particularly limited as long as it is a carbon material containing a silicon element.
(I) Si compound particles dispersed in a granulated body made of a carbon material,
(B) Si compound particles are attached or coated on the outer periphery of the carbon material serving as a nucleus,
(C) Si compound particles dispersed inside a spheroidized carbon material,
(D) A carbonaceous material attached or coated on the outer periphery of the Si compound particles as the core,
(E) A combination of these may be used.
 Si複合炭素粒子(A)の内部にSi化合物粒子が内包されることにより、Si化合物の充放電に伴う体積膨張による応力を緩和することで粒子破壊、及びそれに伴う導電パス切れを抑制して、非水系二次電池が高容量、高サイクル特性を示す傾向がある点や、電解液との接触を防いで副反応を抑制することで高初期効率を示す傾向がある点などから、(ハ)球形化処理された炭素材料の内部にSi化合物粒子が分散したものが好ましい。また、この時、Si化合物粒子のうち少なくとも1粒子が炭素材料と接触していることが、不可逆容量の増加を抑制できる点から好ましい。 By encapsulating Si compound particles inside the Si composite carbon particles (A), by suppressing the stress due to volume expansion associated with charge and discharge of the Si compound, particle breakage and the accompanying conduction path interruption are suppressed, (C) Because non-aqueous secondary batteries tend to exhibit high capacity and high cycle characteristics, and tend to exhibit high initial efficiency by inhibiting side reactions by preventing contact with the electrolyte. A material in which Si compound particles are dispersed inside a spheroidized carbon material is preferable. At this time, it is preferable that at least one of the Si compound particles is in contact with the carbon material from the viewpoint of suppressing an increase in irreversible capacity.
 なお本明細書において、上記添着とは、炭素材料の表面にSi化合物粒子が添着、付着、複合化した状態等を表し、これらの状態は、例えば、電界放射型走査型電子顕微鏡-エネルギー分散型X線(SEM-EDX)分析、X線光電子分光法(XPS)分析等の手法を用いて粒子断面を観察することにより確認することができる。 In the present specification, the term “adhesion” refers to a state in which Si compound particles are attached to, adhered to, or combined with the surface of a carbon material, and these states are, for example, a field emission scanning electron microscope-energy dispersive type. This can be confirmed by observing the cross section of the particle using a technique such as X-ray (SEM-EDX) analysis or X-ray photoelectron spectroscopy (XPS) analysis.
 <Si複合炭素粒子(A)の製造方法>
 (Si複合炭素粒子(A)の原料)
 上述したSi複合炭素粒子(A)は、珪素元素と炭素材料が複合化したSi複合炭素粒子であれば、その原料は特に限定されない。例えば炭素材料、Si化合物粒子、及び炭素質物となる有機化合物を用いてSi複合炭素粒子(A)を製造することができる。
<Method for producing Si composite carbon particles (A)>
(Raw material for Si composite carbon particles (A))
The Si composite carbon particles (A) described above are not particularly limited as long as they are Si composite carbon particles in which a silicon element and a carbon material are combined. For example, Si composite carbon particles (A) can be produced using a carbon material, Si compound particles, and an organic compound that becomes a carbonaceous material.
 ・炭素材料
 原料として使用する炭素材料は、特に限定されないが、上記(イ)や(ハ)のSi複合炭素粒子(A)を製造する場合、天然黒鉛、人造黒鉛等の黒鉛粒子、又は、これらよりもやや結晶性の低い石炭系コークス、石油系コークス、ファーネスブラック、アセチレンブラック及びピッチ系炭素繊維からなる群から選ばれる材料の焼成物等が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Carbon material The carbon material used as a raw material is not particularly limited, but when producing the Si composite carbon particles (A) of (a) or (c) above, graphite particles such as natural graphite, artificial graphite, or the like Examples thereof include a fired material made of a material selected from the group consisting of coal-based coke, petroleum-based coke, furnace black, acetylene black, and pitch-based carbon fiber having slightly lower crystallinity. These may be used individually by 1 type and may be used in combination of 2 or more type.
 これらの中でも天然黒鉛は、その性状によって、鱗片状黒鉛(FlakeGraphite)、鱗状黒鉛(CrystalLine(Vein) Graphite)、土壌黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項、および「HANDBOOKOF CARBON,GRAPHITE, DIAMOND AND FULLERENES」(NoyesPubLications発行)参照)。黒鉛結晶性(黒鉛化度)は、鱗状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高いので、これらの黒鉛を用いることが好ましい。 Among these, natural graphite is classified into flake graphite (FlakeGraphite), scaly graphite (CrystalLine (Vein) Graphite), and soil graphite (Amorphous Graphite) (“Powder and Particle Process Technology Assembly” ) Graphite section of Industrial Technology Center, published in 1974, and "HANDBOOKOK CARBON, GRAPHITE, DIAMOND AND AND FULLLENES" (issued by Noyes PubLications)). Graphite crystallinity (degree of graphitization) is the highest at 100% for scaly graphite, followed by 99.9% for scaly graphite. Therefore, it is preferable to use these graphites.
 天然黒鉛である鱗片状黒鉛の産地は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等であり、鱗状黒鉛の産地は、主にスリランカである。土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。 The production areas of scaly graphite, which is natural graphite, are Madagascar, China, Brazil, Ukraine, Canada, etc., and the production area of scaly graphite is mainly Sri Lanka. The main producers of soil graphite are the Korean Peninsula, China and Mexico.
 これらの天然黒鉛の中で、鱗片状黒鉛や鱗状黒鉛は、黒鉛結晶性が高く不純物量が低い等の長所があるため、本発明において好ましく使用することができる。黒鉛が鱗片状であることを確認するための視覚的手法としては、走査電子顕微鏡による粒子表面観察、粒子を樹脂に包埋させて樹脂の薄片を作製し粒子断面を切り出す、あるいは粒子からなる塗布膜についてクロスセクションポリッシャーによる塗布膜断面を作製し粒子断面を切り出した後、走査電子顕微鏡による粒子断面を観察する方法などが挙げられる。 Among these natural graphites, scaly graphite and scaly graphite have advantages such as high graphite crystallinity and low impurity content, and therefore can be preferably used in the present invention. Visual methods for confirming that graphite is scaly include particle surface observation with a scanning electron microscope, embedding particles in a resin to produce a thin piece of resin, and cutting out the particle cross section, or coating consisting of particles Examples of the method include a method of observing a particle cross section with a scanning electron microscope after preparing a cross section of a coating film with a cross section polisher and cutting out the particle cross section.
 鱗片状黒鉛や鱗状黒鉛は、黒鉛の結晶性が完全に近い結晶を示すように高純度化した天然黒鉛と、人工的に形成した黒鉛とがあり、天然黒鉛であることが、やわらかく、折り畳まれた構造を作製しやすいという点で好ましい。 Scaly graphite and scaly graphite have natural graphite that is highly purified so that the crystallinity of graphite is almost completely crystallized, and artificially formed graphite. Natural graphite is soft and folded. It is preferable in that it is easy to fabricate the structure.
 また、(ロ)のSi複合炭素粒子(A)を製造する場合、粒子の核として形を保てる点から例えば鱗片状黒鉛などに機械的応力を加え球形化処理した黒鉛粒子や、黒鉛と炭素質物となる有機化合物を混合し造粒した黒鉛粒子を用いることが好ましい。 In addition, when producing (B) Si composite carbon particles (A), from the viewpoint of maintaining the shape as the core of the particles, for example, graphite particles obtained by spheroidizing by applying mechanical stress to flaky graphite or the like and graphite and carbonaceous material It is preferable to use graphite particles obtained by mixing and granulating an organic compound.
 なお本発明における原料として使用する炭素材料は以下の物性を示すものが好ましい。 The carbon material used as a raw material in the present invention preferably has the following physical properties.
 原料として使用する炭素材料の体積基準平均粒径(d50)は、特に制限はないが、通常1μm以上120μm以下であり、好ましくは3μm以上100μm以下、より好ましくは5μm以上90μm以下である。原料として使用する炭素材料の平均粒子径d50が大きすぎると、Si複合炭素粒子(A)の粒径が大きくなり、該Si複合炭素粒子(A)を混合した負極用活物質をスラリー状で塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることがある。平体粒径d50が小さすぎると、複合化が難しくなり、Si複合炭素粒子(A)を製造することが困難となる場合がある。 The volume-based average particle diameter (d50) of the carbon material used as a raw material is not particularly limited, but is usually 1 μm or more and 120 μm or less, preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 90 μm or less. If the average particle diameter d50 of the carbon material used as a raw material is too large, the particle diameter of the Si composite carbon particles (A) becomes large, and the negative electrode active material mixed with the Si composite carbon particles (A) is applied in a slurry form. In this process, streaks or irregularities due to large particles may occur. If the flat body particle size d50 is too small, it is difficult to form a composite, and it may be difficult to produce the Si composite carbon particles (A).
 原料として使用する炭素材料のタップ密度は、通常0.1g/cm以上1.0g/cm以下であり、好ましくは0.13g/cm以上0.8g/cm以下、より好ましくは0.15g/cm以上0.6g/cm以下である。 タップ密度が上記範囲内であると、Si複合炭素粒子(A)内に、微小な空隙が形成されやすくなるため、Si化合物粒子の膨張収縮によるSi複合炭素粒子(A)の破壊を抑制できる。 The tap density of the carbon material used as a raw material is usually less than 0.1 g / cm 3 or more 1.0 g / cm 3, preferably 0.13 g / cm 3 or more 0.8 g / cm 3 or less, more preferably 0 .15 g / cm 3 or more and 0.6 g / cm 3 or less. When the tap density is within the above range, minute voids are easily formed in the Si composite carbon particles (A), and thus the destruction of the Si composite carbon particles (A) due to the expansion and contraction of the Si compound particles can be suppressed.
 原料として使用する炭素材料のBET法による比表面積は通常1m/g以上40m/g以下、2m/g以上35m/g以下であることが好ましく、3m/g以上30m/g以下であることがより好ましい。原料として使用する炭素材料の比表面積は、Si複合炭素粒子(A)の比表面積に反映され、40m/g以下とすることで該Si複合炭素粒子(A)の不可逆容量の増加による電池容量の減少を防ぐことができる。 BET specific surface area of the carbon material used as a raw material is usually 1 m 2 / g or more 40 m 2 / g or less, preferably less 2m 2 / g or more 35m 2 / g, 3m 2 / g or more 30 m 2 / g The following is more preferable. The specific surface area of the carbon material used as a raw material is reflected in the specific surface area of the Si composite carbon particles (A), and the battery capacity due to an increase in the irreversible capacity of the Si composite carbon particles (A) by being 40 m 2 / g or less. Can be prevented.
 原料として使用する炭素材料のX線広角回折法による002面の面間隔(d002)は通常0.337nm以下である。一方d002は通常0.334nm以上である。また、原料として使用する炭素材料のX線広角回折法によるLcは90nm以上、好ましくは95nm以上である。002面の面間隔(d002)が0.337nm以下であると、原料として使用する炭素材料の結晶性が高いことを示し、高容量の非水系二次電池を与えるSi複合炭素粒子(A)を得ることができる。また、Lcが90nm以上である場合にも、結晶性が高いことを示し、非水系二次電池が高容量となるSi複合炭素粒子(A)を得ることができる。 The interplanar spacing (d 002 ) of the 002 plane according to the X-ray wide angle diffraction method of the carbon material used as a raw material is usually 0.337 nm or less. Meanwhile d 002 is usually 0.334nm more. The carbon material used as a raw material has an Lc of 90 nm or more, preferably 95 nm or more by X-ray wide angle diffraction. When the interplanar spacing (d 002 ) of the 002 plane is 0.337 nm or less, it indicates that the carbon material used as a raw material has high crystallinity, and provides a high capacity non-aqueous secondary battery (A) Can be obtained. In addition, when Lc is 90 nm or more, Si composite carbon particles (A) exhibiting high crystallinity and having a high capacity for the nonaqueous secondary battery can be obtained.
 ・Si化合物粒子
 本発明におけるSi複合炭素粒子(A)の原料として使用するSi化合物粒子としては、以下の物性を示すものが好ましい。
-Si compound particle | grains As a Si compound particle | grain used as a raw material of Si composite carbon particle (A) in this invention, what shows the following physical properties is preferable.
 原料として使用するSi化合物粒子の体積平均粒子径(d50)は、サイクル寿命の観点から、通常0.005μm以上、好ましくは0.01μm以上、より好ましくは0.02μm以上、更に好ましくは0.03μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が前記範囲内であると、非水系二次電池の充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。 The volume average particle diameter (d50) of the Si compound particles used as a raw material is usually 0.005 μm or more, preferably 0.01 μm or more, more preferably 0.02 μm or more, and further preferably 0.03 μm, from the viewpoint of cycle life. These are usually 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less. When the average particle diameter (d50) is within the above range, volume expansion associated with charge / discharge of the nonaqueous secondary battery is reduced, and good cycle characteristics can be obtained while maintaining the charge / discharge capacity.
 原料として使用するSi化合物粒子のBET法による比表面積は通常0.5m/g以上120m/g以下であり、1m/g以上100m/g以下であることが好ましい。比表面積が前記範囲内であると、非水系二次電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。 The specific surface area by the BET method of the Si compound particles used as a raw material is usually 0.5 m 2 / g or more and 120 m 2 / g or less, and preferably 1 m 2 / g or more and 100 m 2 / g or less. It is preferable that the specific surface area is within the above range because the charge / discharge efficiency and discharge capacity of the non-aqueous secondary battery are high, lithium is taken in and out quickly during high-speed charge / discharge, and the rate characteristics are excellent.
 原料として使用するSi化合物粒子の含有酸素量には、特に制限はないが、通常0.01質量%以上12質量%以下であり、0.05質量%以上10質量%以下であることが好ましい。 Although there is no restriction | limiting in particular in the oxygen content of Si compound particle | grains used as a raw material, Usually, it is 0.01 mass% or more and 12 mass% or less, and it is preferable that it is 0.05 mass% or more and 10 mass% or less.
 Si化合物粒子内の酸素分布状態については、表面近傍に存在、粒子内部に存在、または粒子内に一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。該粒子の含有酸素量が前記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、非水系二次電池のサイクル特性に優れるので好ましい。 The oxygen distribution state in the Si compound particles may be present in the vicinity of the surface, in the particle, or uniformly in the particle, but is preferably present in the vicinity of the surface. It is preferable for the oxygen content of the particles to be in the above-mentioned range because the volume expansion associated with charge / discharge is suppressed due to strong bonding between Si and O, and the cycle characteristics of the nonaqueous secondary battery are excellent.
 原料として使用するSi化合物粒子の結晶子サイズには、特に制限はないが、通常、XRDより算出される(111)面の結晶子サイズにおいて通常0.05nm以上、好ましくは1nm以上であり、通常100nm以下であり、50nm以下であることが好ましい。該粒子の結晶子サイズが前記範囲内であると、SiとLiイオンの反応が迅速に進み、電池の入出力に優れるので好ましい。 The crystallite size of the Si compound particles used as a raw material is not particularly limited, but is usually 0.05 nm or more, preferably 1 nm or more in the (111) plane crystallite size calculated from XRD. It is 100 nm or less, and preferably 50 nm or less. It is preferable that the crystallite size of the particles is in the above range because the reaction between Si and Li ions proceeds rapidly and is excellent in battery input / output.
 なお、Si複合炭素粒子(A)中のSi化合物粒子は、原料となるSi化合物粒子の物性と同様の性質を持つことが好ましい。 Note that the Si compound particles in the Si composite carbon particles (A) preferably have the same properties as the physical properties of the Si compound particles used as a raw material.
 ・炭素質物となる有機化合物
 本発明におけるSi複合炭素粒子(A)の原料として使用する炭素質物となる有機化合物としては、以下の(a)又は(b)に記載の炭素材が好ましい。
-Organic compound used as carbonaceous material As an organic compound used as a carbonaceous material used as a raw material of Si composite carbon particles (A) in the present invention, a carbon material described in the following (a) or (b) is preferable.
 (a)石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機物
 (b)炭化可能な有機物を低分子有機溶媒に溶解させたもの
(A) Coal heavy oil, DC heavy oil, cracked heavy oil, aromatic hydrocarbon, N ring compound, S ring compound, polyphenylene, organic synthetic polymer, natural polymer, thermoplastic resin and Carbonizable organic substance selected from the group consisting of thermosetting resins (b) Carbonized organic substance dissolved in low molecular organic solvent
 前記石炭系重質油としては、軟ピッチから硬ピッチまでのコールタールピッチ、乾留液化油等が好ましく、
前記直流系重質油としては、常圧残油、減圧残油等が好ましく、
前記分解系石油重質油としては、原油、ナフサ等の熱分解時に副生するエチレンタール等が好ましく、
前記芳香族炭化水素としては、アセナフチレン、デカシクレン、アントラセン、フェナントレン等が好ましく、
前記N環化合物としては、フェナジン、アクリジン等が好ましく、
前記S環化合物としては、チオフェン、ビチオフェン等が好ましく、
前記ポリフェニレンとしては、ビフェニル、テルフェニル等が好ましく、
前記有機合成高分子としては、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、ポリアクリロニトリル、ポリピロール、ポリアリルアミン、ポリビニルアミン、ポリエチレンイミン、ウレタン樹脂、尿素樹脂等の窒素含有高分子、ポリチオフェン、ポリスチレン、ポリメタクリル酸等が好ましく、
前記天然高分子としては、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロース等の多糖類等が好ましく、
前記熱可塑性樹脂としては、ポリフェニレンサルファイド、ポリフェニレンオキシド等が好ましく、
前記熱硬化性樹脂としては、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等が好ましい。
As the coal-based heavy oil, coal tar pitch from soft pitch to hard pitch, dry distillation liquefied oil and the like are preferable,
As the DC heavy oil, atmospheric residual oil, vacuum residual oil, etc. are preferable,
The cracked petroleum heavy oil is preferably ethylene tar produced as a by-product during thermal decomposition of crude oil, naphtha, etc.
As the aromatic hydrocarbon, acenaphthylene, decacyclene, anthracene, phenanthrene and the like are preferable,
As the N-ring compound, phenazine, acridine and the like are preferable,
As the S ring compound, thiophene, bithiophene and the like are preferable,
As the polyphenylene, biphenyl, terphenyl and the like are preferable,
As the organic synthetic polymer, nitrogen-containing polymers such as polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, polyacrylonitrile, polypyrrole, polyallylamine, polyvinylamine, polyethyleneimine, urethane resin, urea resin, etc. , Polythiophene, polystyrene, polymethacrylic acid and the like are preferable,
As the natural polymer, polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan, saccharose and the like are preferable,
As the thermoplastic resin, polyphenylene sulfide, polyphenylene oxide and the like are preferable,
As the thermosetting resin, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin and the like are preferable.
 また、炭化可能な有機物は、ベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液等の炭化物であってもよい。 Further, the carbonizable organic substance may be a carbide such as a solution dissolved in a low molecular organic solvent such as benzene, toluene, xylene, quinoline, n-hexane or the like.
 また、これらは1種を単独で用いても、2種以上を任意の組み合わせで併用してもよい。 Moreover, these may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations.
 なお、Si複合炭素粒子(A)中における炭素質物としては、黒鉛粒子よりも黒鉛結晶性が低いもの(非晶質物)が好ましい。具体的には、以下の物性を示すものが好ましい。 In addition, as a carbonaceous material in Si composite carbon particle (A), a thing (amorphous thing) whose graphite crystallinity is lower than a graphite particle is preferable. Specifically, what shows the following physical properties is preferable.
 炭素質物の粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.340nm以上、好ましくは0.342nm以上である。また、通常0.380nm未満、好ましくは0.370nm以下、より好ましくは0.360nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、非水系二次電池のサイクル特性が低下する傾向があり、d002値が小さすぎると炭素質物を複合化させた効果が得られ難い。 The interplanar spacing (d 002 ) of the (002) plane of the carbonaceous material powder by X-ray wide angle diffraction method is usually 0.340 nm or more, preferably 0.342 nm or more. Moreover, it is less than 0.380 nm normally, Preferably it is 0.370 nm or less, More preferably, it is 0.360 nm or less. If the d 002 value is too large, it indicates that the crystallinity is low, and the cycle characteristics of the non-aqueous secondary battery tend to deteriorate. If the d 002 value is too small, the effect of combining carbonaceous materials is obtained. hard.
 炭素質物の粉末の学振法によるX線回折法で求めた炭素質物の結晶子サイズ(Lc(002))は、通常5nm以上、好ましくは10nm以上、より好ましくは20nm以上である。また通常300nm以下、好ましくは200nm以下、より好ましくは100nm以下である。結晶子サイズが大きすぎると、非水系二次電池のサイクル特性が低下する傾向があり、結晶子サイズが小さすぎると、充放電反応性が低下して、高温保存時のガス発生増加や大電流充放電特性低下の虞がある。 The crystallite size (Lc (002)) of the carbonaceous material obtained by X-ray diffraction based on the Gakushin method of the carbonaceous material powder is usually 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more. Moreover, it is 300 nm or less normally, Preferably it is 200 nm or less, More preferably, it is 100 nm or less. If the crystallite size is too large, the cycle characteristics of the non-aqueous secondary battery tend to decrease.If the crystallite size is too small, the charge / discharge reactivity decreases, resulting in increased gas generation and high current during high-temperature storage. There is a risk of deterioration of charge / discharge characteristics.
 <製造方法の種類>
 上述したSi複合炭素粒子(A)は、珪素元素と炭素材料とが複合化したSi複合炭素粒子であれば、その製造方法は特に限定されないが、例えば以下の手法(i)~手法(iii)によって製造することができる。
<Type of manufacturing method>
The Si composite carbon particles (A) described above are not particularly limited as long as they are Si composite carbon particles in which a silicon element and a carbon material are combined. For example, the following methods (i) to (iii) are used. Can be manufactured by.
 (手法(i))
 上述した(イ)炭素材料からなる造粒体の中にSi化合物粒子が分散したSi複合炭素粒子(A)や(ロ)核となる炭素材料の外周にSi化合物粒子が添着又は被覆しているSi複合炭素粒子(A)を製造するには、例えば、炭素材料、Si化合物粒子、炭素質物となる有機化合物を混合し、造粒する手法が挙げられる。
(Method (i))
(B) Si compound carbon particles (A) in which Si compound particles are dispersed in the granulated body made of carbon material (A) and (b) Si compound particles are attached or coated on the outer periphery of the carbon material that becomes the nucleus. In order to manufacture Si composite carbon particle (A), the method of mixing and granulating the carbon compound, Si compound particle | grains, and the organic compound used as a carbonaceous material is mentioned, for example.
 その手法における具体的な工程としては、
(1)Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合する工程、及び
(2)(1)で得られた混合物を焼成する工程、が挙げられる。これら(1)~(2)工程を少なくとも含む方法によってSi複合炭素粒子(A)を製造することができる。以下、(1)及び(2)の工程について説明する。
As a concrete process in the method,
(1) A step of mixing Si compound particles, a carbon material, and an organic compound to be a carbonaceous material, and (2) a step of firing the mixture obtained in (1). Si composite carbon particles (A) can be produced by a method including at least these steps (1) to (2). Hereinafter, the steps (1) and (2) will be described.
 (1)Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合する工程
 Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合し、混合物を得られれば特に原料を仕込む順序に制限はないが、例えば、
Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法、
炭素材料に炭素質物となる有機化合物を混合した後にSi化合物粒子を混合する方法、
Si化合物粒子に炭素質物となる有機化合物を混合した後に炭素材料を混合する方法、
Si化合物粒子、炭素材料および炭素質物となる有機化合物を一度に混合する方法等の方法が挙げられる。
(1) Step of mixing Si compound particles, carbon material, and organic compound that becomes carbonaceous material Mixing Si compound particles, carbon material, and organic compound that becomes carbonaceous material, and if a mixture can be obtained, in order to prepare the raw materials in particular There is no limit, but for example
A method of mixing an organic compound that becomes a carbonaceous material after mixing a carbon material with Si compound particles,
A method of mixing Si compound particles after mixing an organic compound that becomes a carbonaceous material with a carbon material,
A method of mixing a carbon material after mixing an organic compound that becomes a carbonaceous material into Si compound particles,
Examples thereof include a method of mixing Si compound particles, a carbon material, and an organic compound to be a carbonaceous material at a time.
 Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法において、炭素材料に、Si化合物粒子を、機械的処理により炭素材料の表面および/または内部に付着させてから炭素質物となる有機化合物を混合してもよい。ここでいう機械的処理は、特に限定されないが、例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)などによる処理が挙げられる。 In the method of mixing an organic compound that becomes a carbonaceous material after mixing a carbon material with Si compound particles, the carbonaceous material is adhered to the surface and / or inside of the carbon material by mechanical treatment. You may mix the organic compound which becomes. The mechanical treatment here is not particularly limited. For example, a dry ball mill, a wet bead mill, a planetary ball mill, a vibrating ball mill, a mechano-fusion system, an agromaster (Hosokawa Micron Corporation), a hybridization system, a micros, a mirror ( (Nara Machinery Co., Ltd.) and the like.
 上記した混合方法の中でも、Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法が、Si化合物粒子、炭素材料をそれぞれ粉体の状態で混合させるため、分散性が良好であるという点で好ましい。 Among the mixing methods described above, the method of mixing an organic compound that becomes a carbonaceous material after mixing a carbon material with Si compound particles mixes the Si compound particles and the carbon material in a powder state, so that the dispersibility is good. It is preferable in that it is.
 Si化合物粒子、炭素材料および炭素質物となる有機化合物を混合する方法における具体的な混合方法としては、例えば粉末混合法、溶融混合法、溶液混合法等が挙げられる。 Specific examples of the mixing method in the method of mixing the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material include a powder mixing method, a melt mixing method, and a solution mixing method.
 これらの方法における混合温度は通常は常温以上300℃以下であり、炭素質物となる有機化合物の種類により適宜決定することができる。また混合時間は、通常10分以上1時間以下である。また、Si化合物粒子、炭素材料および炭素質物となる有機化合物との溶液混合法に用いる溶媒には、該有機化合物を溶解または分散する水又は有機溶媒の中から、適宜選択することができる。異なる2種以上の溶媒を混合して用いてもよい。 The mixing temperature in these methods is usually from room temperature to 300 ° C., and can be appropriately determined depending on the type of organic compound that becomes a carbonaceous material. The mixing time is usually 10 minutes or more and 1 hour or less. In addition, the solvent used in the solution mixing method with the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material can be appropriately selected from water or an organic solvent in which the organic compound is dissolved or dispersed. Two or more different solvents may be mixed and used.
 Si化合物粒子、炭素材料および炭素質物となる有機化合物の溶液混合法を用いた場合は、通常40℃以上300℃以下の範囲で乾燥させる。乾燥時間は、用いた溶媒の種類に応じて適宜決めることができるが、通常1時間以上24時間以下である。適宜減圧乾燥を選択することができる。 When using a solution mixing method of Si compound particles, a carbon material, and an organic compound that becomes a carbonaceous material, it is usually dried in the range of 40 ° C. to 300 ° C. Although drying time can be suitably determined according to the kind of solvent used, it is normally 1 hour or more and 24 hours or less. Vacuum drying can be selected as appropriate.
 Si化合物粒子、炭素材料および炭素質物となる有機化合物を混合する際、通常は常圧下で行うが、所望ならば、減圧下又は加圧下に行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。 When mixing the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material, it is usually performed under normal pressure, but may be performed under reduced pressure or under pressure if desired. Mixing can be carried out either batchwise or continuously. In any case, mixing efficiency can be improved by using a combination of an apparatus suitable for rough mixing and an apparatus suitable for fine mixing.
 回分方式の混合装置としては、ハイスピードミキサー、ホモジナイザー、超音波ホモジナイザー、2本の枠型が自転しつつ公転する構造の混合機、高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置、半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置、撹拌翼を3軸にしたトリミックスタイプの装置、容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。 Batch-type mixing devices include high-speed mixers, homogenizers, ultrasonic homogenizers, mixers with a structure in which two frame types rotate and revolve, dissolvers that are high-speed, high-shear mixers, and butterfly mixers for high viscosity. An apparatus having a structure in which one blade stirs and disperses in a tank, a so-called kneader type apparatus having a structure in which a stirring blade such as a sigma type rotates along the side surface of a semi-cylindrical mixing tank, and a stirring blade A trimix type apparatus having a three axis, a so-called bead mill type apparatus having a rotating disk and a dispersion medium in a container, and the like are used.
 またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX-Kなど)、更には内部一本のシャフトとシャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。 It also has a container with a paddle that is rotated by a shaft, and the inner wall surface of the container is formed substantially along the outermost line of rotation of the paddle, preferably in a long twin cylinder shape, and the paddle has side surfaces facing each other. A device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works) Etc.), and a container having a plurality of pavement or sawtooth paddles fixed to the shaft and arranged in multiple phases, the inner wall surface of which is the outermost line of rotation of the paddle (External heating type) apparatus having a structure preferably formed in a cylindrical shape substantially (for example, a Redige mixer manufactured by Redige Co., Ltd., a flow share mixer manufactured by Taiyo Koki Co., Ltd., and Tsukishima Kikai Co., Ltd.) DT dryers, etc.) can also be used.
 連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。 In order to perform mixing in a continuous mode, a pipeline mixer or a continuous bead mill may be used.
 Si化合物粒子、炭素材料、および炭素質物となる有機化合物の合計に対するSi化合物粒子の混合割合は、通常1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上、更に好ましくは2.5質量%以上である。また、通常50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。Si化合物粒子が多すぎると、非水系二次電池において充放電に伴う体積膨張が大きくなり、容量劣化が顕著になる傾向がある。また、Si化合物粒子が少なすぎると、十分な容量が得られない傾向がある。 The mixing ratio of the Si compound particles with respect to the total of the Si compound particles, the carbon material, and the organic compound as the carbonaceous material is usually 1% by mass or more, preferably 1.5% by mass or more, more preferably 2% by mass or more, and still more preferably. Is 2.5% by mass or more. Moreover, it is 50 mass% or less normally, Preferably it is 40 mass% or less, More preferably, it is 30 mass% or less, More preferably, it is 20 mass% or less. When there are too many Si compound particles, the volume expansion accompanying charging / discharging will become large in a non-aqueous secondary battery, and there exists a tendency for capacity deterioration to become remarkable. Moreover, when there are too few Si compound particles, there exists a tendency for sufficient capacity | capacitance not to be obtained.
 Si化合物粒子、炭素材料および炭素質物となる有機化合物の合計に対する炭素材料の混合割合は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。また、通常95質量%以下、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。炭素材料が多すぎると、炭素材料が形成する空隙量が多くなり、電極密度を上げることが困難となる傾向がある。また、炭素材料が少なすぎると、体積膨張を抑制する空隙を形成できず、かつ導電パスを取りにくくなり、サイクル特性を向上させる効果が十分得られない傾向がある。 The mixing ratio of the carbon material to the total of the Si compound particles, the carbon material, and the organic compound as the carbonaceous material is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass. That's it. Moreover, it is 95 mass% or less normally, Preferably it is 90 mass% or less, More preferably, it is 85 mass% or less, More preferably, it is 80 mass% or less. If the carbon material is too much, the amount of voids formed by the carbon material increases, and it tends to be difficult to increase the electrode density. Moreover, when there are too few carbon materials, the space | gap which suppresses volume expansion cannot be formed, it becomes difficult to take a conductive path, and there exists a tendency for the effect which improves cycling characteristics not to be fully acquired.
 Si化合物粒子、炭素材料および炭素質物となる有機化合物の合計に対する炭素質物となる有機化合物の混合割合は、炭素材料及びSi化合物粒子の合計質量に対して通常1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上、更に好ましくは2.5質量%以上である。また、通常60質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。炭素質物となる有機化合物が多すぎると焼成過程において活物質同士の凝集が生じやすくなる傾向がある。また、炭素質物となる有機化合物が少なすぎると、還元反応の進行や活物質の凝集抑制において十分な効果が得られない傾向がある。 The mixing ratio of the organic compound that becomes the carbonaceous material to the total of the organic compound that becomes the Si compound particles, the carbon material and the carbonaceous material is usually 1% by mass or more, preferably 1.5% with respect to the total mass of the carbon material and the Si compound particles. It is at least 2 mass%, more preferably at least 2.5 mass%. Moreover, it is 60 mass% or less normally, Preferably it is 50 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less. When there are too many organic compounds used as a carbonaceous material, there exists a tendency for active material to aggregate easily in a baking process. Moreover, when there are too few organic compounds used as a carbonaceous material, there exists a tendency for sufficient effect not to be acquired in progress of a reductive reaction, or aggregation suppression of an active material.
 (2)(1)で得られた混合物を焼成する工程
 本工程では、(1)工程で得られた、Si化合物粒子、炭素材料および炭素質物となる有機化合物とを含む混合物を焼成する。
(2) Step of firing the mixture obtained in (1) In this step, the mixture containing the Si compound particles, the carbon material, and the organic compound that becomes the carbonaceous material obtained in the step (1) is fired.
 焼成する際の雰囲気は、非酸化性雰囲気であり、好ましくは窒素、アルゴン、二酸化炭素、アンモニア、水素などを流通させ非酸化性雰囲気にて焼成する。 The atmosphere at the time of firing is a non-oxidizing atmosphere, and preferably, firing is performed in a non-oxidizing atmosphere by circulating nitrogen, argon, carbon dioxide, ammonia, hydrogen, or the like.
 このように非酸化性雰囲気で焼成するのは、Si化合物粒子、炭素材料、炭素質物となる有機化合物の酸化を防ぐ必要があるからである。 The reason for firing in a non-oxidizing atmosphere is that it is necessary to prevent oxidation of Si compound particles, carbon materials, and organic compounds that become carbonaceous materials.
 焼成温度は焼成雰囲気及び炭素質物となる有機化合物により異なるが、一例として窒素流通雰囲気下であれば通常は500℃以上、好ましくは800℃以上、より好ましくは850℃以上である。また、通常は高くても3000℃以下、好ましくは2000℃以下であり、1500℃以下がより好ましい。焼成温度が低すぎると炭化が十分に進行せず、非水系二次電池の充放電初期の不可逆容量が増大する虞があり、またSi化合物の還元速度が低下するため、焼成時間をより長くとる必要が生じる。ただし、還元速度については、焼成雰囲気を水素雰囲気などのより強い還元雰囲気にすることで、低温でも速めることが可能である。 The firing temperature varies depending on the firing atmosphere and the organic compound that becomes the carbonaceous material, but as an example, the firing temperature is usually 500 ° C. or higher, preferably 800 ° C. or higher, more preferably 850 ° C. or higher, under a nitrogen circulation atmosphere. Further, it is usually at most 3000 ° C., preferably 2000 ° C. or less, more preferably 1500 ° C. or less, even if it is high. If the firing temperature is too low, carbonization does not proceed sufficiently, and the irreversible capacity at the beginning of charge / discharge of the non-aqueous secondary battery may increase, and the reduction rate of the Si compound decreases, so the firing time is increased. Need arises. However, the reduction rate can be increased even at a low temperature by setting the firing atmosphere to a stronger reducing atmosphere such as a hydrogen atmosphere.
 一方で焼成温度が高すぎると、炭素質物となる有機化合物の炭化物が、混合物中の原料炭素材の結晶構造と同等の結晶構造に達し、被覆の効果が得難くなることや、珪素元素が気化することによる収率の低下、及び製造コストアップとなる傾向がある。 On the other hand, if the firing temperature is too high, the carbonized organic compound carbide will reach a crystal structure equivalent to the crystal structure of the raw material carbon material in the mixture, making it difficult to obtain the coating effect, and vaporizing the silicon element. This tends to reduce the yield and increase the manufacturing cost.
 焼成処理条件において、熱履歴温度条件、昇温速度、冷却速度、熱処理時間等は、適宜設定する。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。 In the firing treatment conditions, the heat history temperature condition, the temperature rise rate, the cooling rate, the heat treatment time, etc. are set as appropriate. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.
 なお、本工程に用いる反応機は回分式でも連続式でも、また一基でも複数基でもよい。焼成に使用する炉は上記要件を満たせば特に、制約はないが、例えば、シャトル炉、トンネル炉、リードハンマー炉、ロータリーキルン、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)、タンマン炉、アチソン炉が挙げられる。加熱方式も、高周波誘導加熱、直接式抵抗加熱、間接式抵抗加熱、直接燃焼加熱、輻射熱加熱等を用いることができる。処理時には、必要に応じて攪拌を行なってもよい。 In addition, the reactor used for this process may be a batch type or a continuous type, and may be one or more. The furnace used for firing is not particularly limited as long as the above requirements are satisfied. For example, a reactor such as a shuttle furnace, a tunnel furnace, a lead hammer furnace, a rotary kiln, an autoclave, a coker (heat treatment tank for coke production), a Tamman furnace, The Atchison furnace can be mentioned. As the heating method, high-frequency induction heating, direct resistance heating, indirect resistance heating, direct combustion heating, radiant heat heating, or the like can be used. During the treatment, stirring may be performed as necessary.
 ・その他の工程
 上記工程を経た複合炭素材に対しては、粉砕、解砕、分級処理等の粉体加工を実施し、Si複合炭素粒子(A)を得る。
Other Steps The composite carbon material that has undergone the above steps is subjected to powder processing such as pulverization, crushing, and classification to obtain Si composite carbon particles (A).
 粉砕や解砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。 There are no particular restrictions on the apparatus used for pulverization and pulverization, for example, the coarse pulverizer includes a shearing mill, jaw crusher, impact crusher, cone crusher, etc., and the intermediate pulverizer includes roll crusher, hammer mill, etc. Examples of the pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.
 分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができ、また、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。 There is no particular limitation on the apparatus used for classification, but for example, in the case of dry sieving, a rotary sieving, a swaying sieving, a rotating sieving, a vibrating sieving, etc. can be used. In this case, gravity classifier, inertial classifier, centrifugal classifier (classifier, cyclone, etc.) can be used, wet sieving, mechanical wet classifier, hydraulic classifier, sedimentation classifier A centrifugal wet classifier or the like can be used.
 上述のような製造方法により、Si複合炭素粒子(A)が製造できる。ただし、Si複合炭素粒子(A)は、上記製造方法で製造されたものに限定されない。 Si composite carbon particles (A) can be produced by the production method as described above. However, Si composite carbon particle (A) is not limited to what was manufactured with the said manufacturing method.
 (手法(ii))
 上述した(ハ)球形化処理された炭素材料の内部にSi化合物粒子が分散したSi複合炭素粒子(A)を製造する方法としては、例えば、炭素材料とSi化合物粒子を混合し、その後、球形化処理を施すことでSi複合炭素粒子の内側にSi化合物粒子を内包する方法が挙げられる。なお、手法(ii)における原料としての炭素材料、Si化合物粒子、及び後述する工程(3)にて使用される炭素質物となる有機化合物は、特に限定されるものでなく、手法(i)と同じものを用いることができる。
(Method (ii))
Examples of the method for producing the Si composite carbon particles (A) in which the Si compound particles are dispersed inside the spheroidized carbon material described above are, for example, mixing the carbon material and the Si compound particles, and then spherical An example is a method of encapsulating Si compound particles inside Si composite carbon particles by performing a chemical treatment. In addition, the carbon material as a raw material in the method (ii), the Si compound particles, and the organic compound that becomes the carbonaceous material used in the step (3) described later are not particularly limited, and the method (i) and The same can be used.
 好ましい製造方法として、以下の工程を含むものが挙げられる。
(1)炭素材料とSi化合物粒子を混合、固定化する工程
(2)(1)で得られたものに対して球形化処理を施す工程
以下、これら各工程について説明する。
A preferable production method includes the following steps.
(1) Step of mixing and fixing carbon material and Si compound particles (2) Step of applying spheroidizing treatment to those obtained in (1) These steps will be described below.
 (1)炭素材料とSi化合物粒子を混合、固定化する工程
 Si化合物粒子と炭素材料の合計に対するSi化合物粒子の混合割合は、通常1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、特に好ましくは10質量%以上である。また、通常95質量%以下、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下、特に好ましくは40質量%以下、最も好ましくは35質量%以下である。この範囲であると、非水系二次電池において十分な容量を得ることが可能となる点で好ましい。
(1) Step of mixing and fixing carbon material and Si compound particles The mixing ratio of Si compound particles to the total of Si compound particles and carbon material is usually 1% by mass or more, preferably 3% by mass or more, more preferably 5%. It is at least 7% by mass, more preferably at least 7% by mass, particularly preferably at least 10% by mass. Moreover, it is 95 mass% or less normally, Preferably it is 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, Most preferably, it is 40 mass% or less, Most preferably, it is 35 mass% or less. This range is preferable in that a sufficient capacity can be obtained in the non-aqueous secondary battery.
 炭素材料とSi化合物粒子を混合、固定化する方法については特に制限はない。例えば、Si化合物粒子を溶媒に分散させたSiスラリーを用いて、湿潤しているSi化合物粒子を乾燥させないように炭素材料と混合させる方法が挙げられる。このようなSiスラリーは、Si化合物粒子の凝集を抑制するので、炭素材料の表面にSi化合物粒子を固定化しやすくなり好ましい。 There is no particular limitation on the method of mixing and fixing the carbon material and the Si compound particles. For example, there is a method in which a Si slurry in which Si compound particles are dispersed in a solvent is used and mixed with a carbon material so that the wet Si compound particles are not dried. Since such Si slurry suppresses aggregation of Si compound particles, it is preferable because the Si compound particles are easily fixed on the surface of the carbon material.
 Si化合物粒子の分散溶媒としては、芳香環を有した非極性化合物や非プロトン性の極性溶媒が挙げられ、芳香環を有した非極性化合物の種類としては特に制限はないが、Si化合物と反応性を持たないものであればより好ましい。例えば、ベンゼン、トルエン、キシレン、クメン、メチルナフタレンなどの常温で液体の芳香族化合物、シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類、軽油、重質油といった石油化学、石炭化学での残渣油が挙げられる。これらの中でも、キシレンが好ましく、メチルナフタレンがより好ましく、重質油が、沸点が高いという理由で更に好ましい。湿式粉砕では粉砕効率を上げようとすると発熱しやすくなる。沸点が低い溶媒では揮発して高濃度になってしまう恐れがある。一方、非プロトン性の極性溶媒としては、NMP(N―メチルー2―ピロリドン)、GBL(γブチロラクトン)、DMF(NNジメチルホルムアミド)など水だけでなく有機溶媒を溶かすようなものが好ましく、中でも分解しにくく、沸点が高いという点においてNMP(N―メチルー2―ピロリドン)が好ましい。 Examples of the dispersion solvent for the Si compound particles include a nonpolar compound having an aromatic ring and an aprotic polar solvent. The type of the nonpolar compound having an aromatic ring is not particularly limited, but reacts with the Si compound. It is more preferable if it does not have the property. For example, aromatic compounds such as benzene, toluene, xylene, cumene, and methylnaphthalene that are liquid at room temperature, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, methylcyclohexene, and bicyclohexyl, petrochemicals such as light oil and heavy oil Residual oil in coal chemistry. Among these, xylene is preferred, methylnaphthalene is more preferred, and heavy oil is more preferred because of its high boiling point. In wet pulverization, heat generation tends to occur when the pulverization efficiency is increased. A solvent having a low boiling point may volatilize and become a high concentration. On the other hand, as the aprotic polar solvent, NMP (N-methyl-2-pyrrolidone), GBL (γ-butyrolactone), DMF (NN dimethylformamide) and the like which dissolve not only water but also organic solvents are preferable. NMP (N-methyl-2-pyrrolidone) is preferred because it is difficult to resist and has a high boiling point.
 Si化合物粒子と分散溶媒の混合割合は、得られる混合物中のSi化合物粒子の割合として通常10質量%以上、好ましくは20質量%以上、通常50質量%以下、好ましくは40質量%以下となる割合である。 The mixing ratio of the Si compound particles and the dispersion solvent is a ratio of usually 10% by mass or more, preferably 20% by mass or more, usually 50% by mass or less, preferably 40% by mass or less as the ratio of the Si compound particles in the resulting mixture. It is.
 分散溶媒の混合割合が高すぎるとコスト増になる傾向があり、分散溶媒の混合割合が低すぎるとSi化合物粒子の均一な分散が困難になる傾向がある。 If the mixing ratio of the dispersion solvent is too high, the cost tends to increase, and if the mixing ratio of the dispersion solvent is too low, uniform dispersion of the Si compound particles tends to be difficult.
 Si化合物粒子は炭素材料の表面に均一に分散させることが好ましく、そのためにSi化合物粒子を湿式粉砕する際に用いた分散溶媒を混合時に過剰に加えてもよい。本明細書では、炭素材料にSi化合物粒子を混合する際にスラリーとして混合する場合、Si化合物粒子の固形分としては、通常10%以上、好ましくは15%以上、より好ましくは20%以上であり、通常90%以下、好ましくは85%以下、より好ましくは80%以下である。この固形分の割合が多すぎるとスラリーの流動性がなくなり、Si化合物粒子が炭素材料に分散しにくい傾向があり、少なすぎると工程上扱いづらくなる傾向がある。 It is preferable that the Si compound particles are uniformly dispersed on the surface of the carbon material. For this purpose, the dispersion solvent used in wet pulverizing the Si compound particles may be added excessively during mixing. In the present specification, when mixing the Si compound particles into the carbon material as a slurry, the solid content of the Si compound particles is usually 10% or more, preferably 15% or more, more preferably 20% or more. Usually, it is 90% or less, preferably 85% or less, more preferably 80% or less. If the ratio of the solid content is too large, the fluidity of the slurry is lost, and the Si compound particles tend to be difficult to disperse in the carbon material. If the ratio is too small, the process tends to be difficult to handle.
 そして、混合した後、エバポレーター、乾燥機等を用いて分散溶媒を蒸発除去・乾燥させることで炭素材料上にSi化合物粒子を固定化することができる。 Then, after mixing, the Si compound particles can be immobilized on the carbon material by evaporating and removing the dispersion solvent using an evaporator, a dryer, or the like.
 または、過剰の分散溶媒を加えることなく、そのまま高速撹拌機中で加温しながら分散溶媒を蒸発させながら混合、固定化してもよい。この際、炭素材料にSi化合物粒子を固定化させるために、樹脂やピッチ等の緩衝材を使うことができ、なかでも樹脂を使うことが好ましい。この樹脂は、炭素材料へのSi化合物粒子の固定化の役割を担うだけでなく、球形化工程時に炭素材料からSi化合物粒子が脱離することを防ぐ役割を担うと考えられる。なお、緩衝材を加える場合は、この段階で加えてもよいし、Si化合物粒子の湿式粉砕時に添加してもよい。 Alternatively, the mixture may be mixed and fixed while evaporating the dispersion solvent while heating in a high-speed stirrer without adding an excessive dispersion solvent. At this time, in order to immobilize the Si compound particles on the carbon material, a buffer material such as resin or pitch can be used, and it is preferable to use the resin among them. This resin is considered not only to play a role of immobilizing the Si compound particles to the carbon material but also to prevent the Si compound particles from being detached from the carbon material during the spheronization process. In addition, when adding a buffering material, you may add at this stage and may add at the time of the wet grinding | pulverization of Si compound particle | grains.
 なお、本(1)工程の緩衝材として用いることができる樹脂は、特に制限はないが、上述した炭素質物となる有機化合物に該当する樹脂であってもよく、好ましくはポリスチレン、ポリメタクリル酸、ポリアクリロニトリルが挙げられる。焼成時の残炭量が多く、分解温度が比較的高い点からポリアクリロニトリルが特に好ましく用いることができる。なお、樹脂の分解温度は示差走査熱量分析(DSC)にて不活性ガス雰囲気下で測定することが可能である。樹脂の分解温度は好ましくは50℃以上、より好ましくは75℃以上、更に好ましくは100℃以上である。分解温度が高すぎる際は特に問題ないが、低すぎる場合は以下記載の乾燥工程で分解する可能性がある。 In addition, the resin that can be used as the buffer material in the step (1) is not particularly limited, but may be a resin corresponding to the above-described organic compound that becomes a carbonaceous material, preferably polystyrene, polymethacrylic acid, Polyacrylonitrile is mentioned. Polyacrylonitrile can be particularly preferably used because it has a large amount of residual carbon during firing and a relatively high decomposition temperature. The decomposition temperature of the resin can be measured in an inert gas atmosphere by differential scanning calorimetry (DSC). The decomposition temperature of the resin is preferably 50 ° C. or higher, more preferably 75 ° C. or higher, and still more preferably 100 ° C. or higher. When the decomposition temperature is too high, there is no particular problem. However, when the decomposition temperature is too low, there is a possibility of decomposition in the drying step described below.
 緩衝材は溶媒に分散した状態、乾燥した状態のどちらで用いてもよいが、溶媒を用いる場合は、Si化合物粒子の分散溶媒と同じ溶媒を用いることができる。 The buffer material may be used in a state where it is dispersed in a solvent or in a dry state, but when a solvent is used, the same solvent as the dispersion solvent of the Si compound particles can be used.
 混合は通常は常圧下で行うが、所望ならば、減圧下又は加圧下で行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。また、混合・固定化(乾燥)を同時に行う装置を利用してもよい。乾燥は通常は減圧下又は加圧下で行うこともでき、好ましくは減圧にて乾燥させる。 Mixing is usually performed under normal pressure, but if desired, it can also be performed under reduced pressure or under pressure. Mixing can be carried out either batchwise or continuously. In any case, mixing efficiency can be improved by using a combination of an apparatus suitable for rough mixing and an apparatus suitable for fine mixing. Moreover, you may utilize the apparatus which performs mixing and fixation (drying) simultaneously. Drying can usually be carried out under reduced pressure or under pressure, and preferably dried under reduced pressure.
 乾燥時間は、通常5分以上、好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上であり、通常5時間以下、好ましくは3時間以下、より好ましくは1時間以下である。時間が長すぎるとコスト増につながり、短すぎると均一な乾燥が困難になる傾向がある。 The drying time is usually 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer, more preferably 30 minutes or longer, and usually 5 hours or shorter, preferably 3 hours or shorter, more preferably 1 hour or shorter. . If the time is too long, the cost increases. If the time is too short, uniform drying tends to be difficult.
 乾燥温度は、溶媒によって異なるが上記時間を実現できる時間であることが好ましい。また、樹脂が変性しない温度以下であることが好ましい。 The drying temperature is preferably a time that can realize the above time although it varies depending on the solvent. Moreover, it is preferable that it is below the temperature which resin does not modify | denature.
 回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散溶媒体を有するいわゆるビーズミル型式の装置などが用いられる。 As a batch-type mixing device, a mixer with a structure in which two frame molds rotate and revolve; a blade such as a dissolver that is a high-speed high-shear mixer and a butterfly mixer for high viscosity is placed in the tank. A device having a structure for stirring and dispersing; a so-called kneader-type device having a structure in which a stirring blade such as a sigma type rotates along the side surface of a semi-cylindrical mixing tank; a trimix type device having three stirring blades A so-called bead mill type apparatus having a rotating disk and a dispersion solvent body in a container is used.
 またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX-Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。また、超音波分散等の手段で均質化することも可能である。 It also has a container with a paddle that is rotated by a shaft, and the inner wall surface of the container is formed substantially along the outermost line of rotation of the paddle, preferably in a long twin cylinder shape, and the paddle has side surfaces facing each other. A device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works) Furthermore, it has a container in which a single inner shaft and a plurality of pavement or sawtooth paddles fixed to the shaft are arranged in different phases, and the inner wall surface is the outermost line of rotation of the paddle (External heat type) apparatus having a structure preferably formed in a cylindrical shape (e.g., Redige mixer manufactured by Redige Co., Ltd., flow share mixer manufactured by Taiyo Kiko Co., Ltd., Tsukishima Machine Co., Ltd.) Of DT dryers, etc.) can also be used. In order to perform mixing in a continuous manner, a pipeline mixer, a continuous bead mill, or the like may be used. It is also possible to homogenize by means such as ultrasonic dispersion.
 (2)(1)で得られたものに対して球形化処理を施す工程
 本(2)工程を経ることにより、炭素材料が折り畳まれた構造が観察され、且つ該折り畳まれた構造内の間隙にSi化合物粒子が存在するSi複合炭素粒子(A)を製造することができる。なお、前記の構造は、例えば、電界放射型走査型電子顕微鏡-エネルギー分散型X線(SEM-EDX)分析、X線光電子分光法(XPS)分析等の手法を用いSi複合炭素粒子(A)の粒子断面を観察することにより確認することができる。
(2) A step of spheroidizing the product obtained in (1) Through this step (2), a structure in which a carbon material is folded is observed, and a gap in the folded structure is observed. Si composite carbon particles (A) in which Si compound particles are present can be produced. Note that the above structure is obtained by using, for example, a Si composite carbon particle (A) using a technique such as field emission scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis, X-ray photoelectron spectroscopy (XPS) analysis, or the like. This can be confirmed by observing the cross section of the particles.
 つまり、Si複合炭素粒子(A)を得るための製造方法において好ましいのは、上記(1)工程で得られた折り畳まれる前の炭素材料の表面にSi化合物粒子が固定化された複合体(以下では、複合体ともいう)に対し球形化処理を施すことであるが、特に本発明では所定の範囲内のSi化合物粒子を折り畳まれた構造内の間隙に存在させるように、後述するような製造条件を適宜設定することが好ましい。 That is, in the production method for obtaining the Si composite carbon particles (A), a composite in which Si compound particles are immobilized on the surface of the carbon material before being folded obtained in the step (1) (hereinafter referred to as the composite material) In the present invention, the spheroidizing treatment is performed. In particular, in the present invention, the Si compound particles within a predetermined range are present in the gaps in the folded structure as described later. It is preferable to set conditions appropriately.
 なお、球形化処理は、基本的には力学的エネルギー(衝撃圧縮、摩擦及びせん断力等の機械的作用)を利用した処理であり、具体的にはハイブリダイゼーションシステムを用いた処理が好ましい。該システムは、衝撃圧縮、摩擦及びせん断力等の機械的作用を加える多数のブレードを有するローターを有し、ローターの回転により、大きな気流が発生し、それにより上記(1)工程で得られた複合体中の炭素材料に大きな遠心力がかかり、上記(1)工程で得られた複合体中の炭素材料同士、および上記(1)工程で得られた複合体中の炭素材料と壁およびブレードに衝突することによって、上記(1)工程で得られた複合体中の炭素材料を綺麗に折りたたむことができる。 The spheronization process is basically a process using mechanical energy (mechanical action such as impact compression, friction and shear force), and specifically, a process using a hybridization system is preferable. The system has a rotor having a large number of blades that apply mechanical actions such as impact compression, friction and shearing force, and a large air flow is generated by the rotation of the rotor, and thus obtained in step (1) above. A large centrifugal force is applied to the carbon material in the composite, the carbon materials in the composite obtained in the step (1), and the carbon material, the wall and the blade in the composite obtained in the (1) step. The carbon material in the composite obtained in the step (1) can be neatly folded.
 球形化処理に用いる装置としては、例えばケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された上記(1)工程で得られた複合体中の炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置等を用いることができる。例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)、CFミル(宇部興産社製)、シータコンポーザ(徳寿工作所社製)等といった装置が挙げられるが、好ましい装置として、例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)、CFミル(宇部興産社製)、シータコンポーザ(徳寿工作所社製)、パルペライザー等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが特に好ましい。 As an apparatus used for the spheroidization treatment, for example, a rotor having a large number of blades installed in a casing, and the rotor is rotated at a high speed, whereby the composite obtained in the step (1) introduced into the interior is used. A device for applying a mechanical action such as impact compression, friction, shearing force, etc. to the carbon material and performing a surface treatment can be used. For example, dry ball mill, wet bead mill, planetary ball mill, vibrating ball mill, mechano-fusion system, Agromaster (Hosokawa Micron Corporation), hybridization system, Micros, Miraro (manufactured by Nara Machinery Co., Ltd.), CF mill (Ube) And theta composer (manufactured by Deoksugaku Kogyo Co., Ltd.). Preferred examples of the apparatus include a dry ball mill, a wet bead mill, a planetary ball mill, a vibration ball mill, a mechano-fusion system, an agromaster (Hosokawa Micron ( Co., Ltd.), hybridization system, Micros, Miraro (manufactured by Nara Machinery Co., Ltd.), CF mill (manufactured by Ube Industries, Ltd.), theta composer (manufactured by Tokuju Kosakusho Co., Ltd.), pulperizer and the like. Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is particularly preferable.
 なお、球形化処理に付する上記(1)工程で得られた複合体中の炭素材料は、すでに従来法の条件で一定の球形化処理を受けたものであってもよい。また、上記(1)工程で得られた複合体を循環又は本工程を複数回経ることによって機械的作用を繰り返して与えてもよい。 Note that the carbon material in the composite obtained in the step (1) to be subjected to the spheronization treatment may have already been subjected to a certain spheronization treatment under the conditions of the conventional method. Moreover, you may give a mechanical action repeatedly by circulating the composite_body | complex obtained at the said (1) process, or passing through this process in multiple times.
 このような装置を使用して球形化処理を行うが、この処理の際には、ローターの回転数を通常2000rpm以上8000rpm以下、好ましくは4000rpm以上7000rpm以下として、通常1分以上60分以下の範囲で、球形化処理を行う。 A spheronization process is performed using such an apparatus. In this process, the rotation speed of the rotor is usually 2000 rpm or more and 8000 rpm or less, preferably 4000 rpm or more and 7000 rpm or less, and usually in a range of 1 minute or more and 60 minutes or less. Then, the spheronization process is performed.
 なお、ローターの回転数が小さすぎると球状になる処理が弱く、得られるSi複合炭素粒子(A)のタッピング密度が十分に上昇しない可能性があり、一方大きすぎると球状になる処理よりも粉砕される効果が強くなり、粒子が崩壊してタッピング密度が低下してしまう可能性がある。さらに球形化処理時間が短すぎると粒径を十分に小さくしつつ、かつ高いタッピング密度を達成することができず、一方長すぎると、上記(1)工程で得られた複合体中の炭素材料が粉々になってしまう可能性がある。 In addition, if the number of rotations of the rotor is too small, the process of forming a sphere is weak, and the tapping density of the resulting Si composite carbon particles (A) may not be sufficiently increased. This may increase the effect, and the particles may collapse to reduce the tapping density. Further, if the spheroidizing time is too short, the particle size is sufficiently reduced and a high tapping density cannot be achieved. On the other hand, if it is too long, the carbon material in the composite obtained in the step (1) is used. May be shattered.
 得られたSi複合炭素粒子(A)に対しては分級処理を行ってもよい。なお、得られたSi複合炭素粒子(A)が本発明の規定の物性範囲にない場合には、繰り返し(通常2~10回、好ましくは2~5回)分級処理することによって、所望の物性範囲にすることができる。分級には、乾式(気力分級、篩)、湿式分級等が挙げられるが、乾式分級、特に気力分級がコストや生産性の面から好ましい。 The obtained Si composite carbon particles (A) may be subjected to classification treatment. When the obtained Si composite carbon particles (A) are not within the specified physical property range of the present invention, the desired physical properties are obtained by repeated (usually 2 to 10 times, preferably 2 to 5 times) classification treatment. Can range. Examples of the classification include dry (aerodynamic classification, sieving), wet classification, and the like, but dry classification, particularly aerodynamic classification is preferable from the viewpoint of cost and productivity.
 (3)(2)で得られたSi複合炭素粒子(A)に炭素質物を被覆する工程
 上記工程(2)のようにしてSi複合炭素粒子(A)が得られるが、当該Si複合炭素粒子(A)は、炭素質物を含有することが好ましく、より具体的な態様として、炭素質物でその表面の少なくとも一部が被覆されていることがより好ましい(以下、このようなSi複合炭素粒子(A)を炭素質物被覆Si複合炭素粒子ともいう)。なお、本明細書では炭素質物被覆Si複合炭素粒子は、便宜上Si複合炭素粒子(A)と区別して記載しているが、本明細書では炭素質物被覆Si複合炭素粒子もSi複合炭素粒子(A)に含まれて解釈されるものとする。
(3) The step of coating the Si composite carbon particles (A) obtained in (2) with a carbonaceous material The Si composite carbon particles (A) are obtained as in the above step (2). (A) preferably contains a carbonaceous material, and as a more specific embodiment, it is more preferable that at least a part of the surface thereof is coated with the carbonaceous material (hereinafter, such Si composite carbon particles ( A) is also referred to as a carbonaceous material-coated Si composite carbon particle). In the present specification, the carbonaceous material-coated Si composite carbon particles are described separately from the Si composite carbon particles (A) for convenience, but in this specification, the carbonaceous material-coated Si composite carbon particles are also referred to as Si composite carbon particles (A). ) To be interpreted.
 被覆処理においては、上述したSi複合炭素粒子(A)に対して、炭素質物となる有機化合物を被覆原料として用い、これらを混合、焼成することで、炭素質物被覆Si複合炭素粒子が得られる。 In the coating treatment, an organic compound that becomes a carbonaceous material is used as a coating raw material for the above-described Si composite carbon particles (A), and these are mixed and fired to obtain carbonaceous material-coated Si composite carbon particles.
 焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると炭素質物として非晶質物が得られ、通常2000℃以上、好ましくは2500℃以上、通常3200℃以下で熱処理を行うと炭素質物として黒鉛質物が得られる。前記非晶質物とは結晶性の低い炭素であり、前記黒鉛質物とは結晶性の高い炭素である。 When the firing temperature is usually 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 900 ° C. or higher, usually 2000 ° C. or lower, preferably 1500 ° C. or lower, more preferably 1200 ° C. or lower, an amorphous material is obtained as a carbonaceous material. When a heat treatment is usually performed at 2000 ° C. or higher, preferably 2500 ° C. or higher and usually 3200 ° C. or lower, a graphite material is obtained as a carbonaceous material. The amorphous material is carbon with low crystallinity, and the graphite material is carbon with high crystallinity.
 被覆処理においては、上述したSi複合炭素粒子(A)を芯材とし、炭素質物となる有機化合物を被覆原料として用い、これらを混合、焼成することで炭素質物被覆Si複合炭素粒子が得られる。当該被覆層の中に、Si化合物粒子や炭素微粒子が含まれてもよい。炭素微粒子の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等の何れであってもよい。 In the coating treatment, the above-described Si composite carbon particles (A) are used as a core material, an organic compound that becomes a carbonaceous material is used as a coating material, and these are mixed and fired to obtain carbonaceous material-coated Si composite carbon particles. The coating layer may contain Si compound particles and carbon fine particles. The shape of the carbon fine particles is not particularly limited, and may be any of granular, spherical, chain-like, needle-like, fibrous, plate-like, and scale-like shapes.
 具体的に、炭素微粒子は特に限定されないが、その例として石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、カーボンナノファイバー等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、非水系二次電池が低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。 Specifically, the carbon fine particles are not particularly limited, but examples thereof include coal fine powder, vapor phase carbon powder, carbon black, ketjen black, and carbon nanofiber. Among these, carbon black is particularly preferable. Carbon black has the advantage that non-aqueous secondary batteries have high input / output characteristics even at low temperatures, and at the same time are inexpensive and easily available.
 炭素微粒子の平均粒子径d50は、通常0.01μm以上、10μm以下、好ましくは0.05μm以上、より好ましくは0.07μm以上であり、更に好ましくは0.1μm以上であり、好ましくは8μm以下、より好ましくは5μm以下、更に好ましくは1μm以下である。 The average particle diameter d50 of the carbon fine particles is usually 0.01 μm or more and 10 μm or less, preferably 0.05 μm or more, more preferably 0.07 μm or more, further preferably 0.1 μm or more, preferably 8 μm or less. More preferably, it is 5 micrometers or less, More preferably, it is 1 micrometer or less.
 炭素微粒子が、1次粒子が集合・凝集した2次構造を有する場合、1次粒径が3nm以上500nm以下であればその他の物性や種類は特に限定されないが、1次粒径は、好ましくは3nm以上、より好ましくは15nm以上であり、更に好ましくは30nm以上であり、特に好ましくは40nm以上であり、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。炭素微粒子の1次粒径は、SEM等の電子顕微鏡観察やレーザー回折式粒度分布計などによって測定することができる。 When the carbon fine particles have a secondary structure in which primary particles are aggregated and aggregated, other physical properties and types are not particularly limited as long as the primary particle size is 3 nm or more and 500 nm or less, but the primary particle size is preferably 3 nm or more, more preferably 15 nm or more, further preferably 30 nm or more, particularly preferably 40 nm or more, preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, particularly preferably 70 nm or less. is there. The primary particle size of the carbon fine particles can be measured by observation with an electron microscope such as SEM or a laser diffraction particle size distribution analyzer.
 (炭素質物被覆Si複合炭素粒子の物性)
 炭素質物被覆Si複合炭素粒子は上述したSi複合炭素粒子(A)と同じ物性を示すものであるが、とりわけ被覆処理により変化する炭素質物被覆Si複合炭素粒子の好ましい物性を以下に記載する。
(Physical properties of carbonaceous material-coated Si composite carbon particles)
The carbonaceous material-covered Si composite carbon particles exhibit the same physical properties as the Si composite carbon particles (A) described above, but the preferred physical properties of the carbonaceous material-coated Si composite carbon particles that vary depending on the coating treatment are described below.
 ・(002)面の面間隔(d002
 炭素質物被覆Si複合炭素粒子のX線広角回折法による(002)面の面間隔(d002)は通常0.336nm以上、好ましくは0.337nm以上、より好ましくは0.340nm以上、更に好ましくは0.342nm以上である。また、通常0.380nm未満、好ましくは0.370nm以下、より好ましくは0.360nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、非水系二次電池のサイクル特性が低下する傾向があり、d002値が小さすぎると炭素質物を複合化させた効果が得られ難い。
-(002) plane spacing (d 002 )
The interplanar spacing (d 002 ) of the (002) plane of the carbonaceous material-coated Si composite carbon particles by X-ray wide angle diffraction method is usually 0.336 nm or more, preferably 0.337 nm or more, more preferably 0.340 nm or more, and still more preferably. 0.342 nm or more. Moreover, it is less than 0.380 nm normally, Preferably it is 0.370 nm or less, More preferably, it is 0.360 nm or less. If the d 002 value is too large, it indicates that the crystallinity is low, and the cycle characteristics of the non-aqueous secondary battery tend to deteriorate. If the d 002 value is too small, the effect of combining carbonaceous materials is obtained. hard.
 ・含有量
 炭素質物被覆Si複合炭素粒子は、非晶質物又は黒鉛質物を含有しているものであるが、この中でも非晶質炭素質物が含有されていることがリチウムイオンの受入性の点から好ましい。非晶質炭素質物の含有量は、通常0.5質量%以上30質量%以下、好ましくは1質量%以上25質量%以下、より好ましくは2質量%以上20質量%以下である。この含有量が大きすぎると負極材の非晶質物部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。一方含有量が小さすぎると、核となるSi複合炭素粒子(A)に対して非晶質物が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
-Content The carbonaceous material-coated Si composite carbon particles contain an amorphous material or a graphite material, and among them, the amorphous carbonaceous material is contained from the point of acceptability of lithium ions. preferable. The content of the amorphous carbonaceous material is usually 0.5% by mass or more and 30% by mass or less, preferably 1% by mass or more and 25% by mass or less, more preferably 2% by mass or more and 20% by mass or less. When this content is too large, the amorphous material portion of the negative electrode material increases, and the reversible capacity when the battery is assembled tends to be small. On the other hand, if the content is too small, the amorphous Si compound carbon particles (A) that are the core are not uniformly coated and strong granulation is not performed, and the particle size becomes too small when pulverized after firing. Tend.
 なお、最終的に得られる有機化合物由来の非晶質物の含有量(被覆率)は、用いるSi複合炭素粒子(A)の量と、炭素質物となる有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式(4)で算出することができる。 In addition, the content (coverage) of the amorphous substance derived from the organic compound finally obtained is based on the amount of the Si composite carbon particles (A) to be used, the amount of the organic compound that becomes the carbonaceous material, and JIS K 2270. It can be calculated by the following formula (4) based on the residual carbon ratio measured by the micro method.
 式(4)
炭素質物の含有量(質量%)
=(炭素質物となる有機化合物の質量×残炭率×100)/{試料(Si複合炭素粒子(A))に含有される黒鉛粒子とSi化合物粒子の合計の質量+(炭素質物となる有機化合物の質量×残炭率)}
Formula (4)
Carbonaceous material content (% by mass)
= (Mass of organic compound to be carbonaceous material × residual carbon ratio × 100) / {total mass of graphite particles and Si compound particles contained in sample (Si composite carbon particles (A)) + (organic to be carbonaceous material) Compound mass x residual carbon ratio)}
 手法(ii)には、前述した炭素質物の被覆工程のほか、粉砕処理工程、粒径の分級処理工程、他の負極活物質との混合工程が含まれてもよい。 Method (ii) may include a pulverization process, a particle size classification process, and a mixing process with another negative electrode active material, in addition to the carbonaceous material coating process described above.
 (手法(iii))
 上述した(ニ)核となるSi化合物粒子の外周に炭素質物が添着又は被覆したSi複合炭素粒子(A)を製造する方法としては、例えば、固相反応、液相反応、スパッタ、化学蒸着などを用いた手法が挙げられる。
(Method (iii))
Examples of the method for producing the Si composite carbon particles (A) in which the carbon compound is attached to or coated on the outer periphery of the Si compound particles as the nucleus described above (solid phase reaction, liquid phase reaction, sputtering, chemical vapor deposition, etc.) The method using is mentioned.
 ここでは、固相反応を利用した合成方法について説明する。固相反応とは、粉末状等の固体原料を所定の組成となるように秤量、混合した後、加熱処理を行って複合粒子を合成する方法である。本発明におけるSi複合炭素粒子(A)については、例えばSi化合物粒子及び炭素質物となる有機化合物を、高温下で接触させて反応させる方法がこれに該当する。 Here, a synthesis method using a solid phase reaction will be described. The solid phase reaction is a method of synthesizing composite particles by weighing and mixing solid raw materials such as powders so as to have a predetermined composition and then performing a heat treatment. With respect to the Si composite carbon particles (A) in the present invention, for example, a method in which an Si compound particle and an organic compound that becomes a carbonaceous material are brought into contact with each other at a high temperature to cause a reaction is applicable.
 固相反応工程におけるSi化合物粒子及び炭素質物となる有機化合物の接触は、無酸素(低酸素)環境下、1000℃以上の高温下で行われるものであるため、そのような環境を設定できる装置、例えば高周波誘導加熱炉、黒鉛炉、電気炉等を用いて当該工程を行うことができる。固相反応工程における温度条件は特に限定されないが、通常Si化合物粒子の溶融温度以上、好ましくはSi化合物粒子の溶融温度より10℃以上、より好ましくはSi化合物粒子の溶融温度より30℃以上高い温度である。具体的な温度としては、通常1420℃以上、好ましくは1430℃以上、より好ましくは1450℃以上であり、通常2000℃以下、好ましくは1900℃以下、より好ましくは1800℃以下である。また、無酸素(低酸素)環境としては、アルゴンなどの不活性雰囲気下、減圧(真空)下で行うことが好ましく、減圧(真空)下で行う場合、圧力は通常2000Pa以下、好ましくは1000Pa以下、より好ましくは500Pa以下である。さらに処理時間は通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、また通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。 The contact between the Si compound particles and the carbonaceous organic compound in the solid phase reaction step is performed under an oxygen-free (low oxygen) environment at a high temperature of 1000 ° C. or higher, and thus an apparatus capable of setting such an environment. For example, the process can be performed using a high-frequency induction heating furnace, a graphite furnace, an electric furnace, or the like. The temperature conditions in the solid phase reaction step are not particularly limited, but are usually higher than the melting temperature of the Si compound particles, preferably 10 ° C. or higher, more preferably 30 ° C. higher than the melting temperature of the Si compound particles. It is. The specific temperature is usually 1420 ° C. or higher, preferably 1430 ° C. or higher, more preferably 1450 ° C. or higher, and usually 2000 ° C. or lower, preferably 1900 ° C. or lower, more preferably 1800 ° C. or lower. The oxygen-free (low oxygen) environment is preferably performed under an inert atmosphere such as argon and under reduced pressure (vacuum). When performed under reduced pressure (vacuum), the pressure is usually 2000 Pa or less, preferably 1000 Pa or less. More preferably, it is 500 Pa or less. Further, the treatment time is usually 0.1 hour or longer, preferably 0.5 hour or longer, more preferably 1 hour or longer, and usually 3 hours or shorter, preferably 2.5 hours or shorter, more preferably 2 hours or shorter.
 手法(iii)には、前述した固相反応工程のほか、粉砕処理工程、粒径の分級処理工程、他の負極活物質との混合工程が含まれてもよい。 Method (iii) may include a pulverization process, a particle size classification process, and a mixing process with another negative electrode active material, in addition to the above-described solid phase reaction process.
 粉砕処理工程に使用する粗粉砕機としては、ジョークラッシャー、衝撃式クラッシャー、コ-ンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。 Examples of the coarse pulverizer used in the pulverization process include a jaw crusher, an impact crusher, and a cone crusher. Examples of the intermediate pulverizer include a roll crusher and a hammer mill. Examples of the fine pulverizer include a ball mill, A vibration mill, a pin mill, a stirring mill, a jet mill, etc. are mentioned.
 これらの中でも、ボールミル、振動ミル等が、粉砕時間が短く、処理速度の観点から好ましい。 Among these, a ball mill, a vibration mill, and the like are preferable from the viewpoint of processing speed because of a short grinding time.
 粉砕速度は、装置の種類、大きさによって適宜設定するものであるが、例えば、ボールミルの場合、通常50rpm以上、好ましくは100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。 The pulverization speed is appropriately set depending on the type and size of the apparatus. For example, in the case of a ball mill, it is usually 50 rpm or more, preferably 100 rpm or more, more preferably 150 rpm or more, and further preferably 200 rpm or more. Moreover, it is 2500 rpm or less normally, Preferably it is 2300 rpm or less, More preferably, it is 2000 rpm or less. If the speed is too high, control of the particle size tends to be difficult, and if the speed is too low, the processing speed tends to be slow.
 粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、Si複合炭素粒子(A)の生産性が低下する傾向がある。 The pulverization time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 1 minute 30 seconds or longer, and further preferably 2 minutes or longer. Moreover, it is usually 3 hours or less, preferably 2.5 hours or less, more preferably 2 hours or less. If the pulverization time is too short, particle size control tends to be difficult, and if the pulverization time is too long, the productivity of the Si composite carbon particles (A) tends to decrease.
 振動ミルの場合、粉砕速度は、通常50rpm以上、好ましくは100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。 In the case of a vibration mill, the grinding speed is usually 50 rpm or more, preferably 100 rpm or more, more preferably 150 rpm or more, and further preferably 200 rpm or more. Moreover, it is 2500 rpm or less normally, Preferably it is 2300 rpm or less, More preferably, it is 2000 rpm or less. If the speed is too high, control of the particle size tends to be difficult, and if the speed is too low, the processing speed tends to be slow.
 粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。 The pulverization time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 1 minute 30 seconds or longer, and further preferably 2 minutes or longer. Moreover, it is usually 3 hours or less, preferably 2.5 hours or less, more preferably 2 hours or less. If the pulverization time is too short, the particle size control tends to be difficult, and if the pulverization time is too long, the productivity tends to decrease.
 分級処理工程の分級処理条件としては、上記粒径になるように、目開きが、通常53μm以下、好ましくは45μm以下、より好ましくは38μm以下である。 As the classification treatment condition of the classification treatment step, the opening is usually 53 μm or less, preferably 45 μm or less, more preferably 38 μm or less so as to have the above particle diameter.
 分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、
乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、
湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
There is no particular limitation on the apparatus used for the classification treatment, for example, in the case of dry sieving: a rotary sieving, a shaking sieving, a rotating sieving, a vibrating sieving, etc. can be used,
For dry airflow classification: Gravity classifier, inertial force classifier, centrifugal classifier (classifier, cyclone, etc.) can be used,
In the case of wet sieving: a mechanical wet classifier, a hydraulic classifier, a sedimentation classifier, a centrifugal wet classifier or the like can be used.
 以上説明した手法(i)~(iii)の中でも、珪素元素を球形化処理した黒鉛内部に内包することにより、極板の膨れと粒子の破壊を抑制でき、また電解液と珪素元素との反応性を抑制できる点から手法(ii)がより好ましい。 Among the above-described methods (i) to (iii), by encapsulating silicon element in the spheroidized graphite, electrode plate swelling and particle destruction can be suppressed, and the reaction between the electrolyte and silicon element can be suppressed. The method (ii) is more preferable from the viewpoint of suppressing the property.
 [複合黒鉛粒子(B)]
 本発明における複合黒鉛粒子(B)について以下に説明する。
 前記複合黒鉛粒子(B)は少なくとも非水系電解液に難溶性のポリマーと黒鉛粒子(C)とが複合化された複合粒子である。
[Composite graphite particles (B)]
The composite graphite particles (B) in the present invention will be described below.
The composite graphite particles (B) are composite particles in which a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
 なお、本明細書において、非水系電解液に難溶性とは、ポリマーをエチルカーボネートとエチルメチルカーボネートとを3:7の体積比で混合した溶媒に24時間浸漬した場合に、浸漬前後の乾燥重量減少率(前記溶媒に溶解した割合)が10質量%以下であること、とする。 In the present specification, poorly soluble in a non-aqueous electrolyte means that the polymer is immersed in a solvent in which ethyl carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 for 24 hours and then dried before and after immersion. The reduction rate (rate dissolved in the solvent) is 10% by mass or less.
 また、「ポリマーと黒鉛粒子(C)とが複合化された」の複合化とは、黒鉛粒子(C)の表面にポリマーが添着、付着、複合化した状態、黒鉛粒子(C)の細孔内にポリマーが付着している状態等を表す。このような状態を観察するには、例えば、電界放射型走査型電子顕微鏡-エネルギー分散型X線(SEM-EDX)分析、X線光電子分光法(XPS)分析等の手法を用いて粒子断面を観察することにより確認することができる。 Further, “composite of a polymer and graphite particles (C)” means that the polymer is attached to, adhered to, and combined with the surface of the graphite particles (C), and the pores of the graphite particles (C). A state in which a polymer is attached inside is shown. In order to observe such a state, for example, the cross section of a particle is analyzed by using a technique such as a field emission scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis or X-ray photoelectron spectroscopy (XPS) analysis. This can be confirmed by observation.
 (複合黒鉛粒子(B)の特性)
 本発明の複合黒鉛粒子(B)は、以下に記載の非水系電解液に難溶性のポリマーが黒鉛粒子(C)と複合化していれば特に制限はないが、複合黒鉛粒子(B)は以下のような特性を持つことが好ましい。
(Characteristics of composite graphite particles (B))
The composite graphite particles (B) of the present invention are not particularly limited as long as a polymer that is hardly soluble in the non-aqueous electrolyte described below is combined with the graphite particles (C), but the composite graphite particles (B) are as follows. It is preferable to have the following characteristics.
 (a)複合黒鉛粒子(B)の体積基準平均粒径(d50)
 複合黒鉛粒子(B)の体積基準平均粒径(d50)(以下、平均粒径d50ともいう)は、通常1μm以上、好ましくは4μm以上、より好ましくは7μm以上であり、また、通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下である。平均粒径d50が大きすぎると、総粒子が少なくなりSi複合炭素粒子(A)の粒子間への存在割合が低下するため、非水系二次電池における導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。一方、平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、初期効率が低下する傾向がある。
(A) Volume-based average particle diameter (d50) of composite graphite particles (B)
The volume-based average particle diameter (d50) (hereinafter also referred to as average particle diameter d50) of the composite graphite particles (B) is usually 1 μm or more, preferably 4 μm or more, more preferably 7 μm or more, and usually 50 μm or less. Preferably it is 40 micrometers or less, More preferably, it is 30 micrometers or less, More preferably, it is 25 micrometers or less. If the average particle size d50 is too large, the total number of particles decreases and the proportion of Si composite carbon particles (A) existing between the particles decreases. Therefore, the effect of suppressing the conduction path breakage in the non-aqueous secondary battery is reduced, and the cycle characteristics are reduced. It tends to cause a decline. On the other hand, if the average particle size d50 is too small, the specific surface area increases, so that the decomposition of the electrolyte increases and the initial efficiency tends to decrease.
 (b)複合黒鉛粒子(B)のアスペクト比
 複合黒鉛粒子(B)のアスペクト比は、通常1以上、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.7以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
(B) Aspect ratio of composite graphite particles (B) The aspect ratio of the composite graphite particles (B) is usually 1 or more, preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more, Usually, it is 4 or less, preferably 3 or less, more preferably 2.5 or less, and still more preferably 2 or less.
 アスペクト比が大きすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。 If the aspect ratio is too large, the particles tend to be aligned in the direction parallel to the current collector when used as an electrode, so that there are not enough continuous voids in the thickness direction of the electrode, and lithium ion mobility in the thickness direction. However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced.
 (c)複合黒鉛粒子(B)の円形度
 複合黒鉛粒子(B)の円形度は、通常0.88以上、好ましくは0.89以上、より好ましくは0.90以上、更に好ましくは0.92以上である。また円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。なお、本明細書における球状を上記円形度の範囲にて表現することもできる。
(C) Circularity of the composite graphite particles (B) The circularity of the composite graphite particles (B) is usually 0.88 or more, preferably 0.89 or more, more preferably 0.90 or more, and still more preferably 0.92. That's it. The circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less. In addition, the spherical shape in this specification can also be expressed in the range of the circularity.
 円形度が小さすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。円形度が大きすぎると導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。 If the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
 (d)複合黒鉛粒子(B)の面間隔(d002
 複合黒鉛粒子(B)の、X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d値が大きすぎると結晶性が低下し、非水系二次電池の放電容量が低下する傾向がある。一方、下限値である0.3354nmは黒鉛の理論値である。
(D) Interplanar spacing of composite graphite particles (B) (d 002 )
The interplanar spacing (d 002 ) of the composite graphite particles (B) by the X-ray wide angle diffraction method is usually 0.337 nm or less, preferably 0.336 nm or less. When the d value is too large, the crystallinity is lowered, and the discharge capacity of the nonaqueous secondary battery tends to be lowered. On the other hand, the lower limit value of 0.3354 nm is a theoretical value of graphite.
 また、複合黒鉛粒子(B)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電池の放電容量が低下する傾向がある。 The crystallite size (Lc) of the composite graphite particles (B) is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease.
 (e)複合黒鉛粒子(B)の表面官能基量
 複合黒鉛粒子(B)は、上記式(2)で表される表面官能基量O/C値が通常2%以上であり、好ましくは3%、より好ましくは4%、一方通常30%以下、好ましくは20%以下、より好ましくは15%以下である。
(E) Surface functional group amount of composite graphite particles (B) The composite graphite particles (B) have a surface functional group amount O / C value represented by the above formula (2) of usually 2% or more, preferably 3 %, More preferably 4%, while usually 30% or less, preferably 20% or less, more preferably 15% or less.
 この表面官能基量O/C値が小さすぎると、ポリマー偏在、被覆不足であることを示しており、電解液接触防止効果が乏しくなり、非水系二次電池の初期効率・サイクル特性が低下、ガス量が増大する傾向がある。一方、表面官能基量O/C値が大きすぎると、ポリマーの過剰被覆状態を示しており、抵抗の増大を招き、入出力特性が低下する傾向がある。 If this surface functional group amount O / C value is too small, it indicates that the polymer is unevenly distributed and the coating is insufficient, the effect of preventing contact with the electrolyte is poor, and the initial efficiency and cycle characteristics of the non-aqueous secondary battery are reduced. There is a tendency for the amount of gas to increase. On the other hand, if the surface functional group amount O / C value is too large, it indicates an excessive coating state of the polymer, which causes an increase in resistance and tends to deteriorate the input / output characteristics.
 (f)複合黒鉛粒子(B)のBET比表面積(SA)
 複合黒鉛粒子(B)のBET法で測定した比表面積については、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上、更に好ましくは2m/g以上、特に好ましくは3m/g以上である。また、通常20m/g以下、好ましくは15m/g以下、より好ましくは12m/g以下、更に好ましくは11m/g以下、特に好ましくは8m/g以下である。また、複合黒鉛粒子(B)の比表面積は、通常、ポリマーと複合化する前の黒鉛粒子の比表面積より小さくなる傾向がある。
(F) BET specific surface area (SA) of composite graphite particles (B)
The specific surface area of the composite graphite particles (B) measured by the BET method is usually 0.1 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1 m 2 / g or more, and further preferably 2 m 2. / G or more, particularly preferably 3 m 2 / g or more. Moreover, it is 20 m < 2 > / g or less normally, Preferably it is 15 m < 2 > / g or less, More preferably, it is 12 m < 2 > / g or less, More preferably, it is 11 m < 2 > / g or less, Most preferably, it is 8 m < 2 > / g or less. Further, the specific surface area of the composite graphite particles (B) usually tends to be smaller than the specific surface area of the graphite particles before being combined with the polymer.
 比表面積が小さすぎると、リチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣り、一方、比表面積が大きすぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池を製造できない傾向がある。 If the specific surface area is too small, the number of sites where lithium ions enter and exit is small, and the high-speed charge / discharge characteristics and output characteristics are inferior. On the other hand, if the specific surface area is too large, the active material becomes excessively active with respect to the electrolyte solution Therefore, there is a tendency that a high capacity battery cannot be manufactured.
 なおBET比表面積は、比表面積測定装置を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。 The BET specific surface area is measured by a BET one-point method using a specific surface area measuring device by a nitrogen gas adsorption flow method.
 (g)複合黒鉛粒子(B)のタップ密度
 複合黒鉛粒子(B)のタップ密度は、通常0.5g/cm以上、0.6g/cm以上が好ましく、0.7g/cm以上がより好ましい。また、通常1.5g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、非水系二次電池が高速充放電特性に劣り、タップ密度が高すぎると、導電パス切れ抑制効果の低減によりサイクル特性の低下を招く場合がある。
(G) Tap density of composite graphite particles (B) The tap density of the composite graphite particles (B) is usually preferably 0.5 g / cm 3 or more, preferably 0.6 g / cm 3 or more, and more preferably 0.7 g / cm 3 or more. More preferred. Further, usually 1.5 g / cm 3 or less and 1.2 g / cm 3 or less are preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the non-aqueous secondary battery is inferior in high-speed charge / discharge characteristics, and if the tap density is too high, the cycle characteristics may be deteriorated due to a reduction in the effect of suppressing the conduction path breakage.
 また、複合黒鉛粒子(B)のタップ密度は、通常、ポリマーと複合化される前の黒鉛粒子のタップ密度と同程度またはそれより小さくなる傾向がある。 Also, the tap density of the composite graphite particles (B) usually tends to be the same as or smaller than the tap density of the graphite particles before being combined with the polymer.
 本発明において、タップ密度については、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、試料(複合黒鉛粒子(B))を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。 In the present invention, for the tap density, a sample (composite graphite particle (B)) is dropped through a sieve having a mesh size of 300 μm through a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 using a powder density measuring device. After the cell is fully filled, a tap with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
 (h)複合黒鉛粒子(B)のDBP吸油量
 複合黒鉛粒子(B)のDBP(フタル酸ジブチル)吸油量は、通常65ml/100g以下、好ましくは60ml/100g以下、より好ましくは55ml/100g以下、更に好ましくは53ml/100g以下である。また、通常30ml/100g以上、好ましくは40ml/100g以上である。DBP吸油量が大きすぎると、負極を形成する際の、本発明の炭素材を含むスラリーの塗布時のスジ引きなどを引き起こしやすい傾向があり、小さすぎると、粒子内の細孔構造が殆ど存在していない可能性があり、電解液との反応面積がすくなくなる傾向がある。
(H) DBP oil absorption of composite graphite particles (B) The DBP (dibutyl phthalate) oil absorption of composite graphite particles (B) is usually 65 ml / 100 g or less, preferably 60 ml / 100 g or less, more preferably 55 ml / 100 g or less. More preferably, it is 53 ml / 100 g or less. Moreover, it is 30 ml / 100g or more normally, Preferably it is 40 ml / 100g or more. If the DBP oil absorption is too large, it tends to cause streaking during the application of the slurry containing the carbon material of the present invention when forming the negative electrode, and if it is too small, there is almost no pore structure in the particles. The reaction area with the electrolytic solution tends to be short.
 (i)複合黒鉛粒子(B)のプレス荷重(Pb)
 複合黒鉛粒子(B)のプレス荷重(Pb)は、通常10kg/5cm以上、好ましくは100kg/5cm以上、より好ましくは150kg/5cm以上、更に好ましくは200kg/5cm以上、また通常800kg/5cm以下、好ましくは600kg/5cm以下、より好ましくは500kg/5cm以下、更に好ましくは400kg/5cm以下、特に好ましくは350kg/5cm以下である。
(I) Press load (Pb) of composite graphite particles (B)
The press load (Pb) of the composite graphite particles (B) is usually 10 kg / 5 cm or more, preferably 100 kg / 5 cm or more, more preferably 150 kg / 5 cm or more, still more preferably 200 kg / 5 cm or more, and usually 800 kg / 5 cm or less. Preferably it is 600 kg / 5 cm or less, More preferably, it is 500 kg / 5 cm or less, More preferably, it is 400 kg / 5 cm or less, Most preferably, it is 350 kg / 5 cm or less.
 複合黒鉛粒子(B)のプレス荷重(Pb)が大きすぎる場合、Si複合炭素粒子(A)の膨張を緩和する効果が低減するため、導電パス切れ抑制効果が低くなり、非水系二次電池のサイクル特性が低下する傾向があり、また小さすぎる場合、過度な粒子変形により電解液の流路が潰れ、入出力特性の低下を招く傾向がある。 When the press load (Pb) of the composite graphite particles (B) is too large, the effect of relaxing the expansion of the Si composite carbon particles (A) is reduced. If the cycle characteristics tend to be reduced, and if the cycle characteristics are too small, the flow path of the electrolyte solution is crushed due to excessive particle deformation, and the input / output characteristics tend to be reduced.
 [複合黒鉛粒子(B)の製造方法]
 本発明における複合黒鉛粒子(B)は、少なくとも黒鉛粒子(C)と非水系電解液に難溶性のポリマーとが複合化されている複合粒子であれば特に限定されないが、好ましくは黒鉛粒子(C)の表面に非水系電解液に難溶性のポリマーが付着若しくは添着された球状の複合粒子である。その製造方法は特に限定されないが、例えば以下の3つの手法が挙げられる。
[Production method of composite graphite particles (B)]
The composite graphite particles (B) in the present invention are not particularly limited as long as they are composite particles in which at least the graphite particles (C) and a polymer that is hardly soluble in a non-aqueous electrolyte solution are combined, but preferably graphite particles (C ) In the form of spherical composite particles in which a polymer that is hardly soluble in a non-aqueous electrolyte is attached or attached. Although the manufacturing method is not specifically limited, For example, the following three methods are mentioned.
 <手法(i)>
 手法(i)は、非水系電解液に難溶性のポリマーを有機溶媒あるいは水、もしくは有機溶媒/水の混合溶媒に溶解させ、その溶液を黒鉛粒子(C)と混合した後、加熱及び/又は減圧によって乾燥する工程を有する方法である。
<Method (i)>
In the method (i), a polymer that is hardly soluble in a non-aqueous electrolyte is dissolved in an organic solvent or water, or a mixed solvent of organic solvent / water, and the solution is mixed with graphite particles (C), and then heated and / or It is a method having a step of drying by reduced pressure.
 なお、使用する溶媒は、非水系電解液に難溶性のポリマーが溶解すれば、特に限定されないが、好ましい例としては水やエチルメチルケトン、トルエン、アセトン、メチルイソブチルケトン、エタノール、メタノール等が挙げられる。中でも水、エチルメチルケトン、アセトン、メチルイソブチルケトン、エタノール、メタノールがコストや乾燥のし易さからより好ましい。 The solvent to be used is not particularly limited as long as a poorly soluble polymer dissolves in the non-aqueous electrolyte, but preferable examples include water, ethyl methyl ketone, toluene, acetone, methyl isobutyl ketone, ethanol, methanol, and the like. It is done. Among these, water, ethyl methyl ketone, acetone, methyl isobutyl ketone, ethanol, and methanol are more preferable because of cost and ease of drying.
 非水系電解液に難溶性のポリマーを溶媒に溶解させて得られる溶液中の前記ポリマーの濃度は、通常70質量%以下であり、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。この範囲から外れると、黒鉛粒子(C)の細孔にポリマー溶液が十分に浸透せず、含有されたポリマーが不均一に存在し、効果が出にくい傾向がある。上記乾燥(加熱)温度については、通常300℃以下であり、250℃以下が好ましい。また、通常50℃以上であり、100℃以上が好ましい。この温度以上では、ポリマーが一部分解したり、黒鉛粒子(C)とポリマーの相互作用が弱くなり、比表面積の低減・サイクル特性の向上・充電速度の短縮等の効果が低減してしまう傾向がある。一方で、この温度以下では十分な速度で溶媒が乾燥しないという理由で、溶媒残存による電池性能が低下する傾向がある。 The concentration of the polymer in a solution obtained by dissolving a polymer that is hardly soluble in a non-aqueous electrolyte solution in a solvent is usually 70% by mass or less, preferably 60% by mass or less, and preferably 50% by mass or less. It is more preferable. When it deviates from this range, the polymer solution does not sufficiently permeate into the pores of the graphite particles (C), and the contained polymer is present non-uniformly, and the effect tends to be difficult to be obtained. About the said drying (heating) temperature, it is 300 degrees C or less normally, and 250 degrees C or less is preferable. Moreover, it is 50 degreeC or more normally, and 100 degreeC or more is preferable. Above this temperature, there is a tendency that the polymer is partially decomposed or the interaction between the graphite particles (C) and the polymer becomes weak, and the effects such as reduction of specific surface area, improvement of cycle characteristics, shortening of charging speed, etc. are reduced. is there. On the other hand, the battery performance due to residual solvent tends to decrease because the solvent does not dry at a sufficient rate below this temperature.
 また、黒鉛粒子(C)とポリマーの溶液について減圧により乾燥を行なう場合、圧力は、ゲージ圧表記で通常0MPa以下、-0.2MPa以上である。この範囲であれば、比較的効率よく乾燥を行うことができる。圧力は、好ましくは-0.03MPa以下であり、また、好ましくは-0.15MPa以上である。 Further, when the graphite particle (C) and polymer solution is dried under reduced pressure, the pressure is usually 0 MPa or less and −0.2 MPa or more in gauge pressure notation. If it is this range, it can dry comparatively efficiently. The pressure is preferably −0.03 MPa or less, and preferably −0.15 MPa or more.
 <手法(ii)>
 また、複合黒鉛粒子(B)を製造するための手法(ii)は、非水系電解液に難溶性のポリマーが黒鉛粒子(C)表面への吸着性を有することを利用し、非水系電解液に難溶性のポリマーの溶液中に黒鉛粒子(C)を入れて攪拌し、ろ過により余分な非水系電解液に難溶性のポリマー溶液を除去した後、乾燥することにより黒鉛粒子と非水系電解液に難溶性のポリマーとを複合化させる工程を有する方法である。更に乾燥後、加熱処理をすることが好ましい。
<Method (ii)>
In addition, the method (ii) for producing the composite graphite particles (B) is based on the fact that a polymer that is hardly soluble in the non-aqueous electrolyte has an adsorptivity to the surface of the graphite particles (C). The graphite particles (C) are placed in a solution of a poorly soluble polymer and stirred, and after removing the poorly soluble polymer solution from the excess nonaqueous electrolyte by filtration, the graphite particles and the nonaqueous electrolyte are dried. This is a method having a step of combining a hardly soluble polymer with a polymer. Furthermore, it is preferable to heat-treat after drying.
 上記非水系電解液に難溶性のポリマーの溶液濃度の測定方法としては、水溶液である場合は例えばザルトリウス水分計MA45などの水分計で測定する方法、有機溶媒溶液である場合は、溶液をアルミカップ等の容器に入れて真空乾燥機中で溶媒を飛ばす操作前後の重量差によって元の濃度を算出する方法等が挙げられる。 As a method for measuring the solution concentration of a polymer that is sparingly soluble in the non-aqueous electrolyte solution, for example, in the case of an aqueous solution, a method of measuring with a moisture meter such as Sartorius moisture meter MA45, and in the case of an organic solvent solution, the solution is made of an aluminum cup. For example, a method of calculating the original concentration based on a weight difference before and after the operation in which the solvent is blown off in a vacuum dryer in a container such as the like.
 <手法(iii)>
 手法(iii)は、黒鉛粒子(C)と非水系電解液に難溶性のポリマー粉末とを混合した粉末をメカノケミカル処理することにより、黒鉛粒子表面に非水系電解液に難溶性のポリマー粒子を複合化する方法である。メカノケミカル処理に用いる好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)等が挙げられる。これらの中で、メカノフュージョンシステムが好ましい。
<Method (iii)>
Method (iii) is a mechanochemical treatment of a powder obtained by mixing graphite particles (C) and a polymer powder that is sparingly soluble in a non-aqueous electrolyte solution, whereby polymer particles that are sparingly soluble in a non-aqueous electrolyte solution are formed on the graphite particle surface. It is a method of compounding. Preferable apparatuses used for mechanochemical treatment include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechanofusion system (manufactured by Hosokawa Micron Corporation), and the like. Of these, the mechanofusion system is preferred.
 手法(i)~(iii)では、簡便さという点で手法(i)がより好ましい。 Among the methods (i) to (iii), the method (i) is more preferable in terms of simplicity.
 (複合黒鉛粒子(B)における非水系電解液に難溶性のポリマーの含有量)
 複合黒鉛粒子(B)における非水系電解液に難溶性のポリマーの含有量は、黒鉛粒子(C)に対する配合割合として、通常0.01質量%以上であり、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、特に好ましくは0.3質量%以上である。また通常10質量%以下であり、5質量%以下が好ましく、2質量%以下がより好ましく、1.5質量%以下が更に好ましく、1質量%以下が特に好ましく、0.6質量%以下が最も好ましい。非水系電解液に難溶性のポリマーの含有量が多すぎると、非水系二次電池の充放電容量の低下、電荷移動抵抗の上昇により入出力特性の低下を招く傾向があり、非水系電解液に難溶性のポリマーの含有量が少なすぎると、電解液の副反応抑制効果に乏しく、初期充放電効率の低下、サイクル特性の低下を招く傾向がある。
(Content of polymer hardly soluble in non-aqueous electrolyte solution in composite graphite particles (B))
The content of the polymer hardly soluble in the non-aqueous electrolyte solution in the composite graphite particles (B) is usually 0.01% by mass or more, preferably 0.05% by mass or more, as a blending ratio with respect to the graphite particles (C). More preferably, it is 0.1 mass% or more, More preferably, it is 0.2 mass% or more, Most preferably, it is 0.3 mass% or more. Moreover, it is 10 mass% or less normally, 5 mass% or less is preferable, 2 mass% or less is more preferable, 1.5 mass% or less is further more preferable, 1 mass% or less is especially preferable, and 0.6 mass% or less is the most. preferable. If the content of the polymer that is hardly soluble in the non-aqueous electrolyte is too large, the charge / discharge capacity of the non-aqueous secondary battery tends to decrease, and the input / output characteristics tend to decrease due to the increase in charge transfer resistance. When the content of the hardly soluble polymer is too small, the side reaction reaction suppressing effect of the electrolyte solution is poor, and the initial charge / discharge efficiency and the cycle characteristics tend to be lowered.
 複合黒鉛粒子(B)における非水系電解液に難溶性のポリマーの含有量は、製造時に非水系電解液に難溶性のポリマーを含んだ溶液を乾燥させた場合、原則として製造時における非水系電解液に難溶性のポリマーの添加量とするが、例えば、濾過を行ない複合黒鉛粒子(B)に付着していない非水系電解液に難溶性のポリマーを除いた場合は、得られた炭素材料のTG-DTA分析における重量減少、又は濾液に含まれる非水系電解液に難溶性のポリマーの量から算出することができる。 The content of the polymer that is hardly soluble in the non-aqueous electrolyte solution in the composite graphite particles (B) is, as a general rule, when the solution containing the polymer that is hardly soluble in the non-aqueous electrolyte solution is dried at the time of manufacture. The amount of the slightly soluble polymer added to the liquid is, for example, filtered, and when the poorly soluble polymer is removed from the non-aqueous electrolyte not attached to the composite graphite particles (B), It can be calculated from the weight loss in the TG-DTA analysis or the amount of the polymer hardly soluble in the non-aqueous electrolyte contained in the filtrate.
 上述の確認は、複合黒鉛粒子(B)が製造された時点で行ってもよいし、負極、電池として製造された製品から検出してもよい。 The above confirmation may be performed when the composite graphite particles (B) are manufactured, or may be detected from a product manufactured as a negative electrode or a battery.
 ・非水系電解液に難溶性のポリマー
 次に本発明における複合黒鉛粒子(B)の構成成分である非水系電解液に難溶性のポリマーについて説明する。
-Slightly soluble polymer in non-aqueous electrolyte Next, the poorly soluble polymer in the non-aqueous electrolyte that is a component of the composite graphite particles (B) in the present invention will be described.
 非水系電解液に難溶性のポリマーは、非水系電解液に難溶性であり、黒鉛粒子と複合化できるものであればどのようなポリマーを用いてもよいが、イオン性基を有するポリマーであることが好ましい。なお、「難溶性」の定義は上記で行ったとおりである。 The polymer that is sparingly soluble in the non-aqueous electrolyte may be any polymer that is sparingly soluble in the non-aqueous electrolyte and can be combined with the graphite particles, but is a polymer having an ionic group. It is preferable. The definition of “slightly soluble” is as described above.
 本発明でいう前記イオン性基とは、水中でアニオン又はカチオンを生じうる基である。 In the present invention, the ionic group is a group capable of generating an anion or cation in water.
 具体的には、カルボン酸基、スルホン酸基、リン酸基、ホスホン酸基及びこれらの塩が挙げられる。前記塩としては、リチウム塩、ナトリウム塩、カリウム塩等が挙げられる。これらの中でも、非水系二次電池とした場合の初期不可逆容量の観点から、スルホン酸基及びそのリチウム塩もしくはナトリウム塩が好ましい。 Specific examples include carboxylic acid groups, sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, and salts thereof. Examples of the salt include lithium salt, sodium salt, potassium salt and the like. Among these, a sulfonic acid group and a lithium salt or a sodium salt thereof are preferable from the viewpoint of the initial irreversible capacity in the case of a non-aqueous secondary battery.
 前記イオン性基を有するポリマーは、非水系電解液中への膨潤がほとんどなく、且つ黒鉛粒子への高い吸着性を有する。 The polymer having the ionic group hardly swells in the non-aqueous electrolyte and has high adsorptivity to the graphite particles.
 非水系電解液に難溶性のポリマーの重量平均分子量は特に制限されないが、通常500以上、好ましくは1000以上、より好ましくは2000以上、更に好ましくは2500以上である。一方前記重量平均分子量は、通常100万以下、好ましくは50万以下、より好ましくは30万以下、更に好ましくは20万以下である。 The weight average molecular weight of the polymer that is hardly soluble in the non-aqueous electrolyte is not particularly limited, but is usually 500 or more, preferably 1000 or more, more preferably 2000 or more, and further preferably 2500 or more. On the other hand, the weight average molecular weight is usually 1,000,000 or less, preferably 500,000 or less, more preferably 300,000 or less, and still more preferably 200,000 or less.
 なお、本明細書において重量平均分子量とは、溶媒をテトラヒドロフラン(THF)としたゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリスチレン換算の重量平均分子量あるいは、溶媒が水系あるいはN,N-ジメチルホルムアミド(DMF)あるいはジメチルスルホキシド(DMSO)のGPCにより測定した標準ポリエチレングリコール換算の重量平均分子量である。 In this specification, the weight average molecular weight is a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC) using a solvent as tetrahydrofuran (THF), or the solvent is aqueous or N, N-dimethylformamide. It is a weight average molecular weight in terms of standard polyethylene glycol measured by GPC of (DMF) or dimethyl sulfoxide (DMSO).
 また、本発明に使用される非水系電解液に難溶性のポリマーは、黒鉛粒子のベーサル面や表面に存在する官能基に対し作用・吸着する官能基を持つことが好ましい。黒鉛粒子のベーサル面に対し作用・吸着する官能基としては芳香環基が挙げられ、黒鉛粒子の表面に存在する官能基に対し作用・吸着する官能基としてはアミノ基が挙げられる。 The polymer that is hardly soluble in the non-aqueous electrolyte used in the present invention preferably has a functional group that acts and adsorbs on a functional group present on the basal surface or surface of the graphite particles. Examples of the functional group that acts and adsorbs on the basal surface of the graphite particle include an aromatic ring group, and the functional group that acts and adsorbs on the functional group present on the surface of the graphite particle includes an amino group.
 以下、本発明に用いる非水系電解液に難溶性のポリマーの好ましい態様として、芳香環基を有するポリマー、アミノ基を有するポリマーについて説明する。 Hereinafter, a polymer having an aromatic ring group and a polymer having an amino group will be described as preferred embodiments of the polymer that is hardly soluble in the non-aqueous electrolyte solution used in the present invention.
 (1.芳香環基を有するポリマー)
 前記非水系電解液に難溶性のポリマーの好ましい態様の1つである芳香環基を有するポリマーは、芳香環のπ共役構造が黒鉛粒子(C)のベーサル面とπ―π相互作用によって吸着されるため、黒鉛粒子(C)のベーサル面を効果的に被覆するものと考えられる。それゆえ前記ポリマーは、黒鉛粒子(C)のベーサル面と非水系電解液との反応及びガスの発生を効果的に抑制し、負極抵抗の上昇を抑制することが可能であると考えられる。
(1. Polymer having an aromatic ring group)
In the polymer having an aromatic ring group, which is one of the preferred embodiments of the polymer that is hardly soluble in the non-aqueous electrolyte, the π-conjugated structure of the aromatic ring is adsorbed by π-π interaction with the basal surface of the graphite particles (C). Therefore, it is considered that the basal surface of the graphite particles (C) is effectively covered. Therefore, it is considered that the polymer can effectively suppress the reaction between the basal surface of the graphite particles (C) and the non-aqueous electrolyte and the generation of gas, and suppress the increase in negative electrode resistance.
 なお、本明細書において、前記π共役構造とは、π電子を持つ原子が環状に並んだ構造を持つ不飽和環状構造であって、ヒュッケル則を満たし、π電子が環上で非局在化し、環が平面構造をとっているものである。 In the present specification, the π-conjugated structure is an unsaturated cyclic structure having a structure in which atoms having π electrons are arranged in a ring, satisfying the Hückel rule, and π electrons are delocalized on the ring. The ring has a planar structure.
 芳香環基を有するポリマーを構成するモノマー化合物としては、単環の5員環であるフラン、ピロール、イミダゾール、チオフェン、ホスホール、ピラゾール、オキサゾール、イソオキサゾール、チアゾール、単環の6員環であるベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、二環の5員環+6員環であるベンゾフラン、イソベンゾフラン、インドール、イソインドール、ベンゾチオフェン、ベンゾホスホール、ベンゾイミダゾール、プリン、インダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾチアゾール、二環の6員環+6員環であるナフタレン、キノリン、イソキノリン、キノキサリン、キナゾリン、シンノリン、多環のアントラセン、ピレン等の骨格を有する環状化合物が挙げられる。 Examples of the monomer compound constituting the polymer having an aromatic ring group include furan, pyrrole, imidazole, thiophene, phosphole, pyrazole, oxazole, isoxazole, thiazole, and monocyclic six-membered benzene. , Pyridine, pyrazine, pyrimidine, pyridazine, triazine, bicyclic 5-membered ring + 6-membered ring benzofuran, isobenzofuran, indole, isoindole, benzothiophene, benzophosphole, benzimidazole, purine, indazole, benzoxazole, benzo Examples thereof include cyclic compounds having a skeleton such as isoxazole, benzothiazole, bicyclic 6-membered ring + 6-membered ring naphthalene, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, polycyclic anthracene and pyrene.
 これらの中でも、非水系二次電池とした場合にガスの発生を抑制する観点から、ベンゼン環を有する化合物及びナフタレン環を有する化合物が好ましい。 Among these, a compound having a benzene ring and a compound having a naphthalene ring are preferable from the viewpoint of suppressing the generation of gas when a non-aqueous secondary battery is used.
 このような芳香環基を有するポリマーを構成する構造単位となるモノマーとしては、イオン性基を有するモノマーと芳香環を有するモノマーが挙げられる。また、イオン性基と芳香環とを共に有するモノマーであってもよい。 Examples of the monomer serving as the structural unit constituting the polymer having an aromatic ring group include a monomer having an ionic group and a monomer having an aromatic ring. Moreover, the monomer which has both an ionic group and an aromatic ring may be sufficient.
 この場合、芳香環基を有するポリマーは、イオン性基を有し芳香環を有さないモノマーと、芳香環を有しイオン性基を有さないモノマーとの共重合体であってもよいし、イオン性基と芳香環を共に有するモノマーの重合体であってもよい。また、イオン性基を有するモノマーの重合体と芳香環を有するモノマーの重合体の混合物であってもよい。 In this case, the polymer having an aromatic ring group may be a copolymer of a monomer having an ionic group and no aromatic ring and a monomer having an aromatic ring and no ionic group. A polymer of a monomer having both an ionic group and an aromatic ring may be used. Further, it may be a mixture of a monomer polymer having an ionic group and a monomer polymer having an aromatic ring.
 前記イオン性基と芳香環とを有するモノマーの例としては、スチレンスルホン酸、ナフタレンカルボン酸、ナフタレンスルホン酸、ビニルナフタレンカルボン酸、ビニルナフタレンスルホン酸、ビニルアミノナフタレン、アントラセンカルボン酸、ビニルアントラセンカルボン酸、アントラセンスルホン酸、ビニルアントラセンスルホン酸、ビニルアミノアントラセン、アニリン、アニリンスルホン酸、安息香酸ビニル及びこれらの塩等が挙げられる。 Examples of the monomer having an ionic group and an aromatic ring include styrene sulfonic acid, naphthalene carboxylic acid, naphthalene sulfonic acid, vinyl naphthalene carboxylic acid, vinyl naphthalene sulfonic acid, vinyl aminonaphthalene, anthracene carboxylic acid, vinyl anthracene carboxylic acid. , Anthracene sulfonic acid, vinyl anthracene sulfonic acid, vinyl aminoanthracene, aniline, aniline sulfonic acid, vinyl benzoate and salts thereof.
 これらの中でも、スチレンスルホン酸ナトリウム、スチレンスルホン酸リチウム、ナフタレンスルホン酸ナトリウム、ナフタレンスルホン酸リチウムが好ましい。 Among these, sodium styrenesulfonate, lithium styrenesulfonate, sodium naphthalenesulfonate, and lithium naphthalenesulfonate are preferable.
 更に、前記イオン性基を有し、芳香環を有さないモノマーの例としては、ビニルスルホン酸、ビニルスルホン酸リチウム、ビニルスルホン酸ナトリウム、アクリル酸、アクリル酸ナトリウム、アクリル酸リチウム等、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸リチウム等が挙げられ、前記芳香環を有し、イオン性基を有さないモノマーの例としては、スチレン、ベンジルアクリレート、ベンジルメタクリレート等が挙げられる。 Furthermore, examples of the monomer having an ionic group and not having an aromatic ring include vinyl sulfonic acid, lithium vinyl sulfonate, sodium vinyl sulfonate, acrylic acid, sodium acrylate, lithium acrylate, etc., methacrylic acid Examples of the monomer having an aromatic ring and not having an ionic group include styrene, benzyl acrylate, and benzyl methacrylate.
 このようなモノマーに由来する構造単位を含むポリマーの具体的な例としては、スチレン-ビニルスルホン酸共重合体、スチレン-ビニルスルホン酸共重合体、スチレン-ビニルスルホン酸共重合体、ポリスチレンスルホン酸、スチレン-スチレンスルホン酸共重合体、ポリビニル安息香酸、スチレン-ビニル安息香酸共重合体、ポリビニルベンゾシクロブテン、ビニルベンゾシクロブテン-スチレンスルホン酸共重合体、ビニルベンゾシクロブテン-ビニルスルホン酸共重合体、ビニルベンゾシクロブテン-アクリル酸共重合体、ビニルベンゾシクロブテン-メタクリル酸共重合体、ポリビニルナフタレンカルボン酸、ポリビニルナフタレンスルホン酸、ポリビニルアミノナフタレン、ポリビニルナフタレンスルホン酸、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-メタクリル酸共重合体、ビニルナフタレン-ビニルスルホン酸共重合体、ビニルナフタレン-スチレンスルホン酸共重合体、ビニルナフタレンスルホン酸-スチレンスルホン酸共重合体、ビニルナフタレンカルボン酸-スチレンスルホン酸共重合体、ビニルナフタレンスルホン酸-スチレンスルホン酸共重合体、ナフタレンスルホン酸ホルマリン縮合物、ポリビニルアントラセン-カルボン酸、ポリビニルアントラセンスルホン酸、ポリビニルアミノアントラセン、ポリビニルアントラセンカルボン酸、ポリビニルアントラセンスルホン酸、ポリビニルアミノアントラセン、ビニルアントラセン-アクリル酸共重合体、ビニルナフタレン-メタクリル酸共重合体、ビニルアントラセン-ビニルスルホン酸共重合体、ビニルアントラセン-スチレンスルホン酸共重合体、ビニルアントラセンスルホン酸-スチレンスルホン酸共重合体、ビニルアントラセンカルボン酸-スチレンスルホン酸共重合体、ビニルアントラセンスルホン酸-スチレンスルホン酸共重合体、アントラセンスルホン酸ホルマリン縮合物、及びこれらの塩が挙げられる。 Specific examples of polymers containing structural units derived from such monomers include styrene-vinyl sulfonic acid copolymers, styrene-vinyl sulfonic acid copolymers, styrene-vinyl sulfonic acid copolymers, polystyrene sulfonic acid. Styrene-styrene sulfonic acid copolymer, polyvinyl benzoic acid, styrene-vinyl benzoic acid copolymer, polyvinyl benzocyclobutene, vinyl benzocyclobutene-styrene sulfonic acid copolymer, vinyl benzocyclobutene-vinyl sulfonic acid copolymer Polymer, vinyl benzocyclobutene-acrylic acid copolymer, vinyl benzocyclobutene-methacrylic acid copolymer, polyvinyl naphthalene carboxylic acid, polyvinyl naphthalene sulfonic acid, polyvinyl amino naphthalene, polyvinyl naphthalene sulfonic acid, vinyl naphthalene -Acrylic acid copolymer, vinyl naphthalene-methacrylic acid copolymer, vinyl naphthalene-vinyl sulfonic acid copolymer, vinyl naphthalene-styrene sulfonic acid copolymer, vinyl naphthalene sulfonic acid-styrene sulfonic acid copolymer, vinyl naphthalene Carboxylic acid-styrenesulfonic acid copolymer, vinylnaphthalenesulfonic acid-styrenesulfonic acid copolymer, naphthalenesulfonic acid formalin condensate, polyvinylanthracene-carboxylic acid, polyvinylanthracenesulfonic acid, polyvinylaminoanthracene, polyvinylanthracenecarboxylic acid, polyvinyl Anthracenesulfonic acid, polyvinylaminoanthracene, vinylanthracene-acrylic acid copolymer, vinylnaphthalene-methacrylic acid copolymer, vinylanthracene-vinyls Phosphonic acid copolymer, vinylanthracene-styrenesulfonic acid copolymer, vinylanthracenesulfonic acid-styrenesulfonic acid copolymer, vinylanthracenecarboxylic acid-styrenesulfonic acid copolymer, vinylanthracenesulfonic acid-styrenesulfonic acid copolymer Examples include coalesces, anthracene sulfonic acid formalin condensates, and salts thereof.
 ガスの発生を効果的に抑制する観点から、ポリスチレンスルホン酸、ポリビニルベンゾシクロブテン、ポリビニルナフタレンカルボン酸、ポリビニルナフタレンスルホン酸、ポリビニルアミノナフタレン、ポリビニルナフタレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合物、ポリビニルアントラセンスルホン酸、ポリビニルアミノアントラセン、ポリビニルアントラセンカルボン酸、ポリビニルアントラセンスルホン酸、アントラセンスルホン酸ホルマリン縮合物、及びこれら塩がより好ましく、中でもポリスチレンスルホン酸、ポリビニルベンゾシクロブテン、ナフタレンスルホン酸ホルマリン縮合物、及びこれらのリチウム塩、ナトリウム塩が活物質表面、特に黒鉛ベーサル面への吸着性が高く、電解液への溶出も少ないため特に好ましい。 From the viewpoint of effectively suppressing gas generation, polystyrene sulfonic acid, polyvinyl benzocyclobutene, polyvinyl naphthalene carboxylic acid, polyvinyl naphthalene sulfonic acid, polyvinyl amino naphthalene, polyvinyl naphthalene sulfonic acid, naphthalene sulfonic acid formalin condensate, polyvinyl anthracene sulfone Acid, polyvinylaminoanthracene, polyvinylanthracenecarboxylic acid, polyvinylanthracenesulfonic acid, anthracenesulfonic acid formalin condensate, and salts thereof are more preferable, among which polystyrenesulfonic acid, polyvinylbenzocyclobutene, naphthalenesulfonic acid formalin condensate, and these Lithium salt and sodium salt are highly adsorbable on the active material surface, especially the graphite basal surface, and there is little elution into the electrolyte. Preferred.
 以上説明した芳香環基を有するポリマーは、市販されているものを使用してもよいし、公知の方法により合成することもできる。なお、本発明において1種単独で又は2種以上を組み合わせて使用することができる。 As the polymer having an aromatic ring group described above, a commercially available polymer may be used, or the polymer may be synthesized by a known method. In addition, in this invention, it can be used individually by 1 type or in combination of 2 or more types.
 (2.アミノ基を有するポリマー)
 本発明に使用される非水系電解液に難溶性のポリマーの好ましい態様の1つであるアミノ基を有するポリマーは、アミノ基が黒鉛粒子(C)の表面の官能基と作用し、黒鉛粒子(C)の表面の活性を抑制する。また、アミノ基は黒鉛粒子(C)の表面とポリマーとの吸着性を向上することから、電解液の分解が抑制されて、さらに優れた電池のサイクル特性が発揮されるなどの効果も奏される。
(2. Polymer having amino group)
The polymer having an amino group which is one of the preferred embodiments of the polymer that is hardly soluble in the non-aqueous electrolyte used in the present invention, the amino group acts on the functional group on the surface of the graphite particles (C), and the graphite particles ( The surface activity of C) is suppressed. In addition, the amino group improves the adsorptivity between the surface of the graphite particles (C) and the polymer, so that the decomposition of the electrolytic solution is suppressed and further excellent battery cycle characteristics are exhibited. The
 前記アミノ基を有するポリマーにおけるアミノ基は、特に制限はないが、その例として、一級アミノ基、二級アミノ基、三級アミノ基、四級アンモニウム基が挙げられる。 The amino group in the polymer having an amino group is not particularly limited, and examples thereof include a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
 これらの中でも一級アミノ基、二級アミノ基、三級アミノ基が好ましく、活物質表面官能基との接着性、または反応性が高い点で、一級アミノ基、二級アミノ基が特に好ましい。 Among these, a primary amino group, a secondary amino group, and a tertiary amino group are preferable, and a primary amino group and a secondary amino group are particularly preferable in terms of high adhesiveness or reactivity with the active material surface functional group.
 以下、アミノ基を有するポリマーについて説明をする。
 アミノ基を有するポリマーは、エチレン性不飽和基を含有したアミンのホモポリマー及びコポリマーの少なくともいずれか一方であることが好ましい。具体的には、ビニルアミン、アリルアミン又はそれらの誘導体のホモポリマー及びコポリマーの少なくともいずれか一方であることが好ましい。
Hereinafter, the polymer having an amino group will be described.
The polymer having an amino group is preferably at least one of an amine homopolymer and a copolymer containing an ethylenically unsaturated group. Specifically, it is preferably at least one of homopolymers and copolymers of vinylamine, allylamine or derivatives thereof.
 アミノ基を有するポリマーとして、ビニルアミン、アリルアミン若しくはそれらの誘導体のいずれかのホモポリマー、上記のビニルアミン、アリルアミン若しくはそれらの誘導体のいずれか2種以上のコポリマー、又は上記のビニルアミン、アリルアミン若しくはそれらの誘導体のいずれか1種以上と他成分の1種以上のコポリマー等を使用することができる。 As a polymer having an amino group, a homopolymer of vinylamine, allylamine or a derivative thereof, a copolymer of any two or more of the above vinylamine, allylamine or a derivative thereof, or the above vinylamine, allylamine or a derivative thereof Any one or more of them and one or more copolymers of other components can be used.
 さらに、他成分として、マレイン酸、アクリルアミド、二酸化硫黄、リン酸化物、硫黄酸化物、有機酸、ホウ素化合物等を使用してもよい。他成分を含むコポリマーとしては例えば、ジアリルアミン-マレイン酸コポリマー、ジアリリルアミン-二酸化硫黄コポリマー等が挙げられる。 Furthermore, maleic acid, acrylamide, sulfur dioxide, phosphorus oxide, sulfur oxide, organic acid, boron compound, etc. may be used as other components. Examples of the copolymer containing other components include diallylamine-maleic acid copolymer, diallylamine-sulfur dioxide copolymer, and the like.
 アミノ基を有するポリマーは、非水系二次電池の初期充放電効率の点から、好ましくは、ビニルアミン、アリルアミン、N-アルキル置換アリルアミン(N-メチルアリルアミン等)、N,N-ジアルキル置換アリルアミン(N,N-ジメチルアリルアミン等)又はジアリルアミンのホモリマー又はコポリマーであり、より好ましくは、ポリビニルアミン、ポリアリルアミン、ポリ-N-メチルアリルアミン、ポリ-N,N-ジメチルアリルアミン、ポリジアリルアミン、ポリ-N-メチルジアリルアミン、ポリジアリルアミン-二酸化硫黄共重合体であり、最も好ましくはポリビニルアミン、ポリアリルアミン又はポリジアリルアミン-スルホニル共重合体である。 The polymer having an amino group is preferably vinylamine, allylamine, N-alkyl-substituted allylamine (such as N-methylallylamine), N, N-dialkyl-substituted allylamine (N) from the viewpoint of initial charge / discharge efficiency of the non-aqueous secondary battery. , N-dimethylallylamine, etc.) or diallylamine homopolymers or copolymers, more preferably polyvinylamine, polyallylamine, poly-N-methylallylamine, poly-N, N-dimethylallylamine, polydiallylamine, poly-N-methyl Diallylamine, polydiallylamine-sulfur dioxide copolymer, most preferably polyvinylamine, polyallylamine or polydiallylamine-sulfonyl copolymer.
 アミノ基を有するポリマーは、酢酸塩、塩酸塩、硫酸塩、アミド硫酸塩、アンモニウム塩等の塩の形態であってもよい。また、アミン部分が部分尿素化、部分カルボニル化等、変性されたものであってもよい。 The polymer having an amino group may be in the form of a salt such as acetate, hydrochloride, sulfate, amidosulfate or ammonium salt. The amine moiety may be modified such as partially ureated or partially carbonylated.
 本発明においては、非水系電解液に難溶性のポリマーは、二種類以上のポリマーの混合物であってもよく、以上説明した芳香環基を有するポリマーとアミノ基を有するポリマーの混合物が、黒鉛粒子(C)表面への高い吸着性と、リチウムイオン伝導性、生産性を担保できる理由から好ましい。 In the present invention, the polymer that is hardly soluble in the non-aqueous electrolyte may be a mixture of two or more kinds of polymers, and the mixture of the polymer having an aromatic ring group and the polymer having an amino group described above is a graphite particle. (C) It is preferable because of its high adsorptivity to the surface, lithium ion conductivity, and productivity.
 以上説明した非水系電解液に難溶性のポリマーは、黒鉛粒子の表面を少量で効率的に位置選択的に被覆可能であることから、ポリビニルアミン、ポリアリルアミン、ポリ-N-メチルアリルアミン、ポリ-N,N-ジメチルアリルアミン、ポリジアリルアミン、ポリN-メチルジアリルアミン、ジアリルアミン-二酸化硫黄共重合体、ポリスチレンスルホン酸、スチレンスルホン酸-マレイン酸共重合体、ナフタレンスルホン酸ホルマリン縮合物、ベンジルメタクリレート-スチレンスルホン酸共重合体、エチレングリコールモノフェニルエーテルアクリレート-スチレンスルホン酸共重合体、プロピルフェニルエーテルメタクリレート-スチレンスルホン酸共重合体、又はそれらの塩であることが好ましい。 Since the polymer that is hardly soluble in the non-aqueous electrolyte described above can efficiently and selectively coat the surface of the graphite particles with a small amount, polyvinylamine, polyallylamine, poly-N-methylallylamine, poly- N, N-dimethylallylamine, polydiallylamine, polyN-methyldiallylamine, diallylamine-sulfur dioxide copolymer, polystyrene sulfonic acid, styrene sulfonic acid-maleic acid copolymer, naphthalene sulfonic acid formalin condensate, benzyl methacrylate-styrene sulfone It is preferably an acid copolymer, an ethylene glycol monophenyl ether acrylate-styrene sulfonic acid copolymer, a propyl phenyl ether methacrylate-styrene sulfonic acid copolymer, or a salt thereof.
 (3.その他のポリマー)
 また、本発明に使用される複合黒鉛粒子(B)は上記の非水系電解液に難溶なポリマーに加え、更にその他のポリマーを含有していてもよく、特にリチウムイオン配位性基を有するポリマーを含有していることが好ましい。リチウムイオン配位性基は、非共役電子対を持っている基と定義されるものであり、そのような基である限り特に限定されるものではないが、オキシアルキレン基、スルホニル基、スルホ基、含ホウ素官能基、カルボニル基、カーボネート基、含リン官能基、アミド基、及びエステル基からなる群より選択される少なくとも1種であることが好ましい。また、前記リチウムイオン配位性基を有するポリマーは、リチウムイオンの配位性、伝導性の高さからオキシアルキレン基やスルホニル基の構造を持つことがより好ましい。
(3. Other polymers)
The composite graphite particles (B) used in the present invention may further contain other polymers in addition to the above-mentioned polymer that is hardly soluble in the non-aqueous electrolyte solution, and particularly have a lithium ion coordinating group. It preferably contains a polymer. The lithium ion coordinating group is defined as a group having a non-conjugated electron pair, and is not particularly limited as long as it is such a group, but an oxyalkylene group, a sulfonyl group, a sulfo group And at least one selected from the group consisting of a boron-containing functional group, a carbonyl group, a carbonate group, a phosphorus-containing functional group, an amide group, and an ester group. In addition, the polymer having a lithium ion coordinating group preferably has a structure of an oxyalkylene group or a sulfonyl group from the viewpoint of high coordination and conductivity of lithium ions.
 これらリチウムイオン配位性基は、電解液と溶媒和したリチウムイオンに対して、溶媒からの脱溶媒和を促進する効果が期待できる。これによって、電解液の還元分解が抑制され、非水系二次電池の初期充放電効率を改善することができる。また、リチウムイオン配位性基は有機化合物からなる被膜が形成された黒鉛粒子の被膜内におけるリチウムイオンの拡散を促進することから、負極抵抗の上昇を抑制することが可能である。 These lithium ion coordinating groups can be expected to promote desolvation from the solvent with respect to lithium ions solvated with the electrolyte. Thereby, reductive decomposition of the electrolytic solution is suppressed, and the initial charge / discharge efficiency of the non-aqueous secondary battery can be improved. Further, the lithium ion coordinating group promotes the diffusion of lithium ions in the film of the graphite particles on which a film made of an organic compound is formed, and thus it is possible to suppress an increase in negative electrode resistance.
 なお、本発明では上記の非水系電解液に難溶なポリマーがリチウムイオン配位性基を有していてもよい。すなわち、非水系電解液に難溶なポリマー(芳香環基を有するポリマーやアミノ基を有するポリマー)は、以下に説明する、リチウムイオン配位性基を有するポリマーに使用されるモノマーの単位を有してもよい。 In the present invention, a polymer that is hardly soluble in the above non-aqueous electrolyte may have a lithium ion coordinating group. That is, a polymer that is hardly soluble in a non-aqueous electrolyte (a polymer having an aromatic ring group or a polymer having an amino group) has a monomer unit used for a polymer having a lithium ion coordination group, which will be described below. May be.
 以下、リチウムイオン配位性基を有するポリマーについて説明をする。
 本発明に使用される複合黒鉛粒子(B)におけるリチウムイオン配位性基を有するポリマーの非水系電解液に難溶性のポリマーに対する組成割合は、十分な量の非水系電解液に難溶性のポリマーが黒鉛粒子(C)に作用し、且つ負極抵抗増加を抑制できることから通常1質量%以上300質量%以下であり、好ましくは2質量%以上150質量%以下であり、より好ましくは3質量%以上100質量%以下であり、更に好ましくは4質量%以上50質量%以下であり、特に好ましくは5質量%以上40質量%以下である。
Hereinafter, a polymer having a lithium ion coordination group will be described.
In the composite graphite particles (B) used in the present invention, the composition ratio of the polymer having a lithium ion coordinating group to the polymer that is hardly soluble in the non-aqueous electrolyte is a polymer that is hardly soluble in a sufficient amount of the non-aqueous electrolyte. Is 1 mass% to 300 mass%, preferably 2 mass% to 150 mass%, and more preferably 3 mass% or more, because it acts on the graphite particles (C) and can suppress an increase in negative electrode resistance. It is 100 mass% or less, More preferably, it is 4 to 50 mass%, Most preferably, it is 5 to 40 mass%.
 リチウムイオン配位性基を有するポリマーの好ましい一態様は、下記構造式(1)で表される。 A preferred embodiment of the polymer having a lithium ion coordinating group is represented by the following structural formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ独立して、水素原子、アルキル基、アリール基、アラルキル基、グリシジル基またはエポキシ基である。また、AOは炭素数2~5のオキシアルキレン基であり、nは1~50の整数である。) Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a glycidyl group or an epoxy group. AO is an oxyalkylene group having 2 to 5 carbon atoms. And n is an integer from 1 to 50.)
 なお、グリシジル基は下記構造式(2)で表される官能基であり、エポキシ基は下記構造式(3)で表される官能基である。 The glycidyl group is a functional group represented by the following structural formula (2), and the epoxy group is a functional group represented by the following structural formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記構造式(1)におけるアルキル基は、直鎖状であっても、分岐鎖状であってもよく、その例としては炭素数1~20のアルキル基が挙げられる。負極抵抗の増加抑制の点から、好ましくは、炭素数1~15のアルキル基であり、特に好ましくは、炭素数1~10のアルキル基である。 The alkyl group in the structural formula (1) may be linear or branched, and examples thereof include alkyl groups having 1 to 20 carbon atoms. From the viewpoint of suppressing an increase in negative electrode resistance, an alkyl group having 1 to 15 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is particularly preferable.
 上記構造式(1)におけるアリール基としては、例えば、非置換又はアルキル基置換のフェニル基が挙げられる。材料の入手し易さの点から、好ましくは、非置換又は炭素数1~4のアルキル基で置換されたフェニル基であり、特に好ましくは非置換のフェニル基である。 Examples of the aryl group in the structural formula (1) include an unsubstituted or alkyl group-substituted phenyl group. From the viewpoint of availability of materials, a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms is preferable, and an unsubstituted phenyl group is particularly preferable.
 上記構造式(1)におけるアラルキル基としては、例えば、非置換又はアルキル基置換のベンジル基が挙げられる。材料の入手し易さの点から、好ましくは、非置換又は炭素数1~4のアルキル基で置換されたベンジル基であり、特に好ましくは非置換のベンジル基である。 Examples of the aralkyl group in the structural formula (1) include an unsubstituted or alkyl group-substituted benzyl group. From the viewpoint of easy availability of the material, a benzyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms is preferable, and an unsubstituted benzyl group is particularly preferable.
 上記構造式(1)におけるR及びRは、非水系二次電池の初期充放電効率の点から、水素原子、アルキル基、エポキシ基、グリシジル基であることが好ましく、より好ましくは、アルキル基、エポキシ基、グリシジル基であり、さらに好ましくはグリシジル基である。 In the structural formula (1), R 1 and R 2 are preferably a hydrogen atom, an alkyl group, an epoxy group, or a glycidyl group, more preferably an alkyl group, from the viewpoint of the initial charge / discharge efficiency of the nonaqueous secondary battery. Group, an epoxy group and a glycidyl group, more preferably a glycidyl group.
 上記構造式(1)におけるAOは、炭素数2~5のオキシアルキレン基であり、負極抵抗の増加抑制の点から、好ましくはオキシエチレン基又はオキシプロピレン基である。 AO in the structural formula (1) is an oxyalkylene group having 2 to 5 carbon atoms, and is preferably an oxyethylene group or an oxypropylene group from the viewpoint of suppressing an increase in negative electrode resistance.
 R及びRとAOの好ましい組み合わせとしては、R及びRがそれぞれ独立して水素原子、アルキル基、エポキシ基、またはグリシジル基であり、AOが炭素数2~5のオキシアルキレン基であるのが好ましい。より好ましくはR及びRがそれぞれ独立してアルキル基、エポキシ基、またはグリシジル基であり、AOが炭素数2~5のオキシアルキレン基である。更に好ましくはR及びRがそれぞれ独立してアルキル基、エポキシ基、またはグリシジル基であり、AOがオキシエチレン基又はオキシプロピレン基である。最も好ましいのはR及びRがともにグリシジル基であり、AOがオキシエチレン基又はオキシプロピレン基の組み合わせである。 As a preferable combination of R 1 and R 2 and AO, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyalkylene group having 2 to 5 carbon atoms. Preferably there is. More preferably, R 1 and R 2 are each independently an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyalkylene group having 2 to 5 carbon atoms. More preferably, R 1 and R 2 are each independently an alkyl group, an epoxy group, or a glycidyl group, and AO is an oxyethylene group or an oxypropylene group. Most preferably, R 1 and R 2 are both glycidyl groups, and AO is a combination of oxyethylene groups or oxypropylene groups.
 上記構造式(1)におけるnは、オキシアルキレン基の数を表し、負極抵抗の増加抑制の点から、好ましくは、1~25の整数である。なお、nが2以上の場合、複数存在するAOは互いに同一であっても異なっていてもよい。 In the structural formula (1), n represents the number of oxyalkylene groups, and is preferably an integer of 1 to 25 from the viewpoint of suppressing increase in negative electrode resistance. When n is 2 or more, a plurality of AOs may be the same as or different from each other.
 リチウムイオン配位性基を有するポリマーとしては、具体的には、ポリオキシエチレングリコールジグリシジルエーテル、ポリオキシプロピレングリコールジグリシジルエーテル、ブトキシポリエチレングリコールグリシジルエーテル等が挙げられる。 Specific examples of the polymer having a lithium ion coordinating group include polyoxyethylene glycol diglycidyl ether, polyoxypropylene glycol diglycidyl ether, butoxypolyethylene glycol glycidyl ether and the like.
 リチウムイオン配位性基を有するポリマーの重量平均分子量は特に制限されないが、通常50以上、好ましくは150以上、より好ましくは300以上、更に好ましくは350以上である。一方前記重量平均分子量は、通常100万以下、好ましくは50万以下、より好ましくは1万以下、更に好ましくは5000以下である。 The weight average molecular weight of the polymer having a lithium ion coordinating group is not particularly limited, but is usually 50 or more, preferably 150 or more, more preferably 300 or more, and further preferably 350 or more. On the other hand, the weight average molecular weight is usually 1 million or less, preferably 500,000 or less, more preferably 10,000 or less, and still more preferably 5000 or less.
 なお、リチウムイオン配位性基を有するポリマーは、単独、又は2種以上を組み合わせて使用することができる。 In addition, the polymer which has a lithium ion coordination group can be used individually or in combination of 2 or more types.
 ・黒鉛粒子(C)
 本発明に使用される複合黒鉛粒子(B)が含有する黒鉛粒子(C)としては、天然黒鉛、人造黒鉛の何れを用いてもよい。黒鉛としては、不純物の少ないものが好ましく、必要に応じて種々の精製処理を施して用いる。
・ Graphite particles (C)
As the graphite particles (C) contained in the composite graphite particles (B) used in the present invention, either natural graphite or artificial graphite may be used. As graphite, those with few impurities are preferable, and they are used after being subjected to various purification treatments as necessary.
 黒鉛粒子(C)の形状は特に制限されず、球状、薄片状、繊維状、不定形粒子、複数の粒子が非平行に集合又は結合させてなる粒子などから適宜選択して用いることができる。本発明の好ましい態様の一つとしては、球状である。 The shape of the graphite particles (C) is not particularly limited, and may be appropriately selected from spherical, flaky, fibrous, amorphous particles, particles obtained by collecting or bonding a plurality of particles non-parallelly, and the like. One preferred embodiment of the present invention is spherical.
 前記天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。前記鱗状黒鉛の産地は、主にスリランカであり、前記鱗片状黒鉛の産地は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等であり、前記土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。 Examples of the natural graphite include scaly graphite, scaly graphite, and soil graphite. The production area of the scaly graphite is mainly Sri Lanka, the production area of the scaly graphite is Madagascar, China, Brazil, Ukraine, Canada, etc., and the main production area of the soil graphite is the Korean Peninsula, China, Mexico, etc. It is.
 これらの天然黒鉛の中で、土壌黒鉛は一般に粒径が小さいうえ、純度が低い。これに対して、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く不純物量が低い等の長所があるため、本発明において好ましく使用することができる。 Among these natural graphites, soil graphite generally has a small particle size and low purity. On the other hand, scaly graphite and scaly graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
 また上記人造黒鉛としては、ピッチ原料を高温熱処理して製造した、コークス、ニードルコークス、高密度炭素材料等の黒鉛質粒子が挙げられる。 The artificial graphite includes graphite particles such as coke, needle coke, and high-density carbon material produced by heat-treating pitch raw materials.
 人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂などの有機物を、通常2500℃以上3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。 Specific examples of artificial graphite include coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, Organic substances such as polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin are usually baked at a temperature in the range of 2500 ° C to 3200 ° C. And graphitized ones.
 本発明に用いる黒鉛粒子(C)としては、上述したように天然黒鉛、人造黒鉛、並びにコークス粉、ニードルコークス粉、及び樹脂等の黒鉛化物の粉体等を用いることができる。これらのうち、天然黒鉛が非水系二次電池の放電容量の高さ、製造の容易性といった面から好ましい。 As the graphite particles (C) used in the present invention, natural graphite, artificial graphite, coke powder, needle coke powder, and powders of graphitized materials such as resin can be used as described above. Of these, natural graphite is preferable from the viewpoints of the high discharge capacity of the non-aqueous secondary battery and the ease of production.
 (球形化処理された黒鉛粒子(C))
 複合黒鉛粒子(B)は、電極にした際の膨れの抑制や充填密度を向上できる点から、球状であることが好ましい。このような複合黒鉛粒子(B)を得るには、例えば、球形化処理された黒鉛粒子(C)を用いることが挙げられる。以下に、球形化処理を行う方法について記載するが、この方法に限定されるものではない。
(Sphericalized graphite particles (C))
The composite graphite particles (B) are preferably spherical from the viewpoint of suppressing swelling when the electrode is used as an electrode and improving the packing density. In order to obtain such composite graphite particles (B), for example, spheroidized graphite particles (C) can be used. Hereinafter, a method of performing the spheroidization process will be described, but the method is not limited to this method.
 球形化処理に用いる装置としては、例えば、衝撃力を主体に、黒鉛粒子の粒子間の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。 As an apparatus used for the spheroidizing treatment, for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including interaction between graphite particles, mainly to impact force, to particles can be used. .
 具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された黒鉛粒子(C)に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、黒鉛を循環させることによって機械的作用を繰り返し与える機構を有するものであることが好ましい。 Specifically, it has a rotor with a large number of blades installed inside the casing, and the rotor rotates at a high speed, so that the graphite particles (C) introduced into the casing have impact compression, friction, shearing force, etc. An apparatus that provides a mechanical action and performs surface treatment is preferred. Moreover, it is preferable to have a mechanism that repeatedly gives mechanical action by circulating graphite.
 黒鉛粒子に機械的作用を与える好ましい装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。 Preferable apparatuses that give mechanical action to graphite particles include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron (manufactured by Earth Technica), a CF mill (manufactured by Ube Industries), and a mechanofusion system (Hosokawa Micron) And theta composer (manufactured by Deoksugaku Kosakusha). Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
 前記装置を用いて処理する場合、例えば、回転するローターの周速度は通常30m/秒以上100m/秒以下であり、40m/秒以上100m/秒以下にすることが好ましく、50m/秒以上100m/秒以下にすることがより好ましい。また、黒鉛粒子に機械的作用を与える処理は、単に黒鉛を通過させるだけでも可能であるが、黒鉛を30秒以上装置内を循環又は滞留させて処理することが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。 When processing using the apparatus, for example, the peripheral speed of the rotating rotor is usually 30 m / second or more and 100 m / second or less, preferably 40 m / second or more and 100 m / second or less, and 50 m / second or more and 100 m / second or less. It is more preferable to set it to 2 seconds or less. Further, the treatment that gives mechanical action to the graphite particles can be performed simply by passing the graphite, but it is preferable to circulate or stay the graphite in the apparatus for 30 seconds or more, and to treat the inside of the apparatus for 1 minute or more. More preferably, the treatment is performed by circulation or retention.
 (炭素質物で被覆された黒鉛粒子(C))
 本発明に使用される複合黒鉛粒子(B)が含有する黒鉛粒子(C)としては、上述したSi複合炭素粒子(A)の項に記載の黒鉛粒子から適宜選択したものを用いることが好ましい。また、黒鉛粒子(C)としては、炭素質物でその表面の少なくとも一部が被覆されたものを用いてもよい。
(Graphite particles coated with carbonaceous material (C))
As the graphite particles (C) contained in the composite graphite particles (B) used in the present invention, those appropriately selected from the graphite particles described in the section of the Si composite carbon particles (A) described above are preferably used. Moreover, as graphite particle | grains (C), you may use what coat | covered at least one part of the surface with the carbonaceous material.
 被覆処理においては、特に限定されないが、例えば、上述した黒鉛粒子を芯材とし、上述した炭素質物となる有機化合物を被覆原料として用い、これらを混合又は被覆した後、これらを焼成することで、炭素質物で被覆された黒鉛粒子(C)を得ることができる。 In the coating treatment, although not particularly limited, for example, using the above-described graphite particles as a core material, using the organic compound that becomes the carbonaceous material described above as a coating raw material, after mixing or coating these, by firing these, Graphite particles (C) coated with a carbonaceous material can be obtained.
 焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると炭素質物として非晶質炭素が得られ、通常2000℃以上、好ましくは2500℃以上、通常3200℃以下で熱処理を行うと炭素質物として黒鉛化物が得られる。 When the firing temperature is usually 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 900 ° C. or higher, usually 2000 ° C. or lower, preferably 1500 ° C. or lower, more preferably 1200 ° C. or lower, amorphous carbon is obtained as a carbonaceous material. When a heat treatment is usually performed at 2000 ° C. or higher, preferably 2500 ° C. or higher, and usually 3200 ° C. or lower, a graphitized product is obtained as a carbonaceous material.
 (非晶質物の含有量)
 炭素質物で被覆された黒鉛粒子(C)における炭素質物の含有量は、芯材に対する割合として、通常0.01質量%以上、好ましくは0.1質量%以上、更に好ましくは0.3%以上、特に好ましくは0.7質量%以上であり、また前記含有量は、通常20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下、最も好ましくは5質量%以下である。
(Amorphous content)
The content of the carbonaceous material in the graphite particles (C) coated with the carbonaceous material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.3% or more as a ratio to the core material. In particular, the content is 0.7% by mass or more, and the content is usually 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, particularly preferably 7% by mass or less, and most preferably. Is 5% by mass or less.
 含有量が多すぎると、非水系二次電池において高容量を達成する為に十分な圧力で圧延を行った場合に、炭素材にダメージが与えられて材料破壊が起こり、初期サイクル時の充放電不可逆容量の増大、初期効率の低下を招く傾向がある。 If the content is too high, the carbon material will be damaged and material destruction will occur when rolling at a sufficient pressure to achieve high capacity in non-aqueous secondary batteries, and charge and discharge during the initial cycle will occur. There is a tendency to increase the irreversible capacity and decrease the initial efficiency.
 一方、含有量が小さすぎると、被覆による効果が得られにくくなる傾向がある。すなわち、電池において電解液との副反応を十分に抑制できず、初期サイクル時の充放電不可逆容量の増大、初期効率の低下を招く傾向がある。 On the other hand, if the content is too small, the effect of coating tends to be difficult to obtain. That is, the side reaction with the electrolyte in the battery cannot be sufficiently suppressed, and the charge / discharge irreversible capacity during the initial cycle tends to increase and the initial efficiency tends to decrease.
 なお、炭素質物の含有量は、黒鉛粒子の質量、炭素質物となる有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式(4)で算出することができる。 The content of the carbonaceous material can be calculated by the following formula (4) from the mass of the graphite particles, the amount of the organic compound that becomes the carbonaceous material, and the residual carbon ratio measured by a micro method based on JIS K 2270. it can.
 式(4)
炭素質物の含有量(質量%)
=(炭素質物となる有機化合物の質量×残炭率×100)/{黒鉛粒子の質量+(炭素質物となる有機化合物の質量×残炭率)}
Formula (4)
Carbonaceous material content (% by mass)
= (Mass of organic compound to be carbonaceous material x residual carbon ratio x 100) / {mass of graphite particles + (mass of organic compound to be carbonaceous material x residual carbon ratio)}
 [非水系二次電池負極用炭素材]
 本発明の非水系二次電池負極用炭素材は、以上説明したSi複合炭素粒子(A)及び複合黒鉛粒子(B)を含有することによって、極板にしたときに電解液の流路確保と粒子同士の接触性を両立した負極構造を達成することが可能となり、高容量且つ、ロスが少なくサイクル特性に優れた非水系二次電池が得られる。
[Carbon material for negative electrode of non-aqueous secondary battery]
The carbon material for a non-aqueous secondary battery negative electrode according to the present invention contains the Si composite carbon particles (A) and the composite graphite particles (B) described above, thereby ensuring the flow path of the electrolyte when the electrode plate is formed. It is possible to achieve a negative electrode structure in which particles are in contact with each other, and a non-aqueous secondary battery with high capacity and low loss and excellent cycle characteristics can be obtained.
 以下に本発明の非水系二次電池負極用炭素材の好ましい特性について記載する。なお、本発明の炭素材の各種特性は、それを構成するSi複合炭素粒子(A)及び複合黒鉛粒子(B)、ならびに存在する場合は後述するその他の材料の、対応する特性の値を加重平均することで、おおよそ予測可能である。 Hereinafter, preferred characteristics of the carbon material for a non-aqueous secondary battery negative electrode of the present invention will be described. In addition, various characteristics of the carbon material of the present invention are weighted by values of corresponding characteristics of the Si composite carbon particles (A) and composite graphite particles (B) constituting the carbon material, and other materials described later when present. By averaging, it is roughly predictable.
 (a)Si複合炭素粒子(A)のプレス荷重(Pa)と複合黒鉛粒子(B)のプレス荷重(Pb)の比(Pa/Pb)
 本発明の非水系二次電池負極用炭素材におけるSi複合炭素粒子(A)のプレス荷重(Pa)の値と複合黒鉛粒子(B)のプレス荷重(Pb)の値の比(Pa/Pb)の値は、通常1より大きく、好ましくは3以上、より好ましくは5以上、更に好ましくは5.5以上、特に好ましくは5.8以上、最も好ましくは6以上、通常30以下、好ましくは25以下、より好ましくは20以下、更に好ましくは15以下、特に好ましくは10以下、最も好ましくは8以下である。
(A) Ratio (Pa / Pb) of press load (Pa) of Si composite carbon particles (A) and press load (Pb) of composite graphite particles (B)
Ratio of the press load (Pa) value of the Si composite carbon particles (A) and the press load (Pb) of the composite graphite particles (B) in the carbon material for a nonaqueous secondary battery negative electrode of the present invention (Pa / Pb) The value of is usually greater than 1, preferably 3 or more, more preferably 5 or more, more preferably 5.5 or more, particularly preferably 5.8 or more, most preferably 6 or more, usually 30 or less, preferably 25 or less. More preferably, it is 20 or less, More preferably, it is 15 or less, Especially preferably, it is 10 or less, Most preferably, it is 8 or less.
 (Pa/Pb)の値が大きすぎる場合、負極作成時に大きな力が必要となり、その結果、活物質の破壊が生じ、非水系二次電池の不可逆容量やサイクル特性が劣化することがある。 When the value of (Pa / Pb) is too large, a large force is required at the time of producing the negative electrode. As a result, the active material is destroyed, and the irreversible capacity and cycle characteristics of the nonaqueous secondary battery may be deteriorated.
 (b)非水系二次電池負極用炭素材のプレス荷重
 本発明の非水系二次電池負極用炭素材のプレス荷重の値は、通常200kg/5cm以上、好ましくは300kg/5cm以上、より好ましくは400kg/5cm以上、更に好ましくは500kg/5cm以上、特に好ましくは550kg/5cm以上、最も好ましくは600kg/5cm以上、また通常3000kg/5cm以下、好ましくは2000kg/5cm以下、より好ましくは1700kg/5cm以下、更に好ましくは1500kg/5cm以下、特に好ましくは1000kg/5cm、最も好ましくは900kg/5cm以下である。
(B) Press load of carbon material for non-aqueous secondary battery negative electrode The value of the press load of the carbon material for non-aqueous secondary battery negative electrode of the present invention is usually 200 kg / 5 cm or more, preferably 300 kg / 5 cm or more, more preferably 400 kg / 5 cm or more, more preferably 500 kg / 5 cm or more, particularly preferably 550 kg / 5 cm or more, most preferably 600 kg / 5 cm or more, and usually 3000 kg / 5 cm or less, preferably 2000 kg / 5 cm or less, more preferably 1700 kg / 5 cm or less. More preferably, it is 1500 kg / 5 cm or less, particularly preferably 1000 kg / 5 cm, most preferably 900 kg / 5 cm or less.
 プレス荷重の値が大きすぎる場合、電極のプレスが非常に困難となり目的の密度までプレス出来なくなるだけでなく、プレスによる粒子破壊により電解液との副反応が増大することによる電池の初期効率の低下や、プレス時に電極へ大きな残存応力が生じることによって電極熱乾燥時や充放電時に電極が膨張する傾向がある。また、小さすぎる場合、負極作成時のプレスにおいて粒子変形を十分に抑制できなくなるため、電解液の流路確保能が低下し、入出力特性の低下を招く傾向がある。 If the value of the press load is too large, it will be difficult to press the electrode to the desired density, and it will not be possible to press to the target density. In addition, since a large residual stress is generated in the electrode during pressing, the electrode tends to expand during electrode thermal drying or charge / discharge. On the other hand, if it is too small, the particle deformation cannot be sufficiently suppressed in the press at the time of producing the negative electrode, so that the ability to secure the flow path of the electrolytic solution is lowered, and the input / output characteristics tend to be lowered.
 (c)非水系二次電池負極用炭素材のX線パラメータ
 本発明の非水系二次電池負極用炭素材の、X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d002値が大きすぎるということは黒鉛結晶性が低いことを示し、非水系二次電池とした場合に初期不可逆容量が増加する場合がある。一方、黒鉛の002面の面間隔の理論値は0.3354nmであるため、前記d値は通常0.3354nm以上である。
(C) X-ray parameter of carbon material for non-aqueous secondary battery negative electrode The surface spacing (d 002 ) of the 002 plane by the X-ray wide angle diffraction method of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 0. It is 337 nm or less, preferably 0.336 nm or less. If the d002 value is too large, it indicates that the graphite crystallinity is low, and the initial irreversible capacity may increase when a non-aqueous secondary battery is used. On the other hand, since the theoretical value of the interplanar spacing of the 002 plane of graphite is 0.3354 nm, the d value is usually 0.3354 nm or more.
 また、本発明の非水系二次電池負極用炭素材の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電池の放電容量が低下する傾向がある。なお、Lcの下限は黒鉛の理論値である。 In addition, the crystallite size (Lc) of the carbon material for a nonaqueous secondary battery negative electrode of the present invention is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. Below this range, the crystallinity decreases and the discharge capacity of the battery tends to decrease. The lower limit of Lc is the theoretical value of graphite.
 (d)非水系二次電池負極用炭素材の体積基準平均粒径(d50)
 本発明の非水系二次電池負極用炭素材の平均粒径d50は通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下であり、特に好ましくは22μm以下であり、通常1μm以上、好ましくは3μm以上、より好ましくは4μm以上、更に好ましくは5μm、特に好ましくは7μm以上である。平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、非水系二次電池の初期効率が低下する傾向があり、平均粒径d50が大きすぎると急速充放電特性の低下を招く傾向がある。
(D) Volume-based average particle diameter of carbon material for negative electrode of non-aqueous secondary battery (d50)
The average particle diameter d50 of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less, still more preferably 25 μm or less, and particularly preferably 22 μm or less. It is 1 μm or more, preferably 3 μm or more, more preferably 4 μm or more, further preferably 5 μm, and particularly preferably 7 μm or more. If the average particle diameter d50 is too small, the specific surface area becomes large, so that the decomposition of the electrolytic solution increases and the initial efficiency of the non-aqueous secondary battery tends to decrease. If the average particle diameter d50 is too large, the rapid charge / discharge characteristics are reduced. It tends to cause a decline.
 (e)非水系二次電池負極用炭素材のアスペクト比
 本発明の非水系二次電池負極用炭素材のアスペクト比は、通常1以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
(E) Aspect ratio of carbon material for nonaqueous secondary battery negative electrode The aspect ratio of the carbon material for nonaqueous secondary battery negative electrode of the present invention is usually 1 or more, preferably 1.3 or more, more preferably 1.4 or more. More preferably, it is 1.5 or more, usually 4 or less, preferably 3 or less, more preferably 2.5 or less, and still more preferably 2 or less.
 アスペクト比が大きすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。 If the aspect ratio is too large, the particles tend to be aligned in the direction parallel to the current collector when used as an electrode, so that there are not enough continuous voids in the thickness direction of the electrode, and lithium ion mobility in the thickness direction. However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced.
 (f)非水系二次電池負極用炭素材のBET比表面積(SA)
 本発明の非水系二次電池負極用炭素材のBET法による比表面積は通常0.5m/g以上、好ましくは1m/g以上、より好ましくは3m/g以上、更に好ましくは5m/g以上、特に好ましくは8m/g以上である。また、通常30m/g以下、好ましくは20m/g以下、より好ましくは18m/g以下、更に好ましくは16m/g以下、特に好ましくは14m/g以下である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、初期効率の低下、ガス発生量の増大を招きやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎるとリチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣る傾向がある。
(F) BET specific surface area (SA) of carbon material for negative electrode of non-aqueous secondary battery
The specific surface area according to the BET method of the carbon material for a non-aqueous secondary battery negative electrode of the present invention is usually 0.5 m 2 / g or more, preferably 1 m 2 / g or more, more preferably 3 m 2 / g or more, still more preferably 5 m 2. / G or more, particularly preferably 8 m 2 / g or more. Moreover, it is 30 m < 2 > / g or less normally, Preferably it is 20 m < 2 > / g or less, More preferably, it is 18 m < 2 > / g or less, More preferably, it is 16 m < 2 > / g or less, Most preferably, it is 14 m < 2 > / g or less. If the specific surface area is too large, the reactivity between the portion exposed to the electrolyte and the electrolyte when used as the negative electrode active material is increased, which tends to cause a decrease in initial efficiency and an increase in the amount of gas generated, making it difficult to obtain a preferable battery. Tend. When the specific surface area is too small, there are few sites where lithium ions enter and exit, and the high-speed charge / discharge characteristics and output characteristics tend to be inferior.
 (g)非水系二次電池負極用炭素材の円形度
 本発明の非水系二次電池負極用炭素材の円形度は、通常0.85以上、好ましくは0.88以上、より好ましくは0.89以上、更に好ましくは0.90以上である。また、円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。円形度が小さすぎると、電極とした際に粒子が集電体と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、非水系二次電池の急速充放電特性の低下を招く傾向がある。円形度が大きすぎると導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。
(G) Circularity of carbon material for non-aqueous secondary battery negative electrode The circularity of the carbon material for non-aqueous secondary battery negative electrode of the present invention is usually 0.85 or more, preferably 0.88 or more, more preferably 0.8. 89 or more, more preferably 0.90 or more. The circularity is usually 1 or less, preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.97 or less. If the circularity is too small, particles tend to be aligned in parallel with the current collector when used as an electrode, so that there is not enough continuous void in the thickness direction of the electrode, and lithium ion mobility in the thickness direction However, the rapid charge / discharge characteristics of the non-aqueous secondary battery tend to be reduced. If the circularity is too large, there is a tendency that the effect of suppressing the conduction path breakage is reduced and the cycle characteristics are lowered.
 (h)非水系二次電池負極用炭素材のラマンR値
 本発明の非水系二次電池負極用炭素材のラマンR値(定義は上述の通りである)は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎてLi挿入サイト数が減り、非水系二次電池の急速充放電特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(H) Raman R value of carbon material for nonaqueous secondary battery negative electrode The Raman R value (as defined above) of the carbon material for nonaqueous secondary battery negative electrode of the present invention is usually 1 or less, preferably 0. 8 or less, more preferably 0.6 or less, still more preferably 0.5 or less, usually 0.05 or more, preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.25 or more. is there. If the Raman R value is less than this range, the crystallinity of the particle surface becomes too high, the number of Li insertion sites decreases, and the rapid charge / discharge characteristics of the nonaqueous secondary battery tend to be reduced. On the other hand, if it exceeds this range, the crystallinity of the particle surface will be disturbed, the reactivity with the electrolyte will increase, and the charge / discharge efficiency will tend to decrease and the gas generation will increase.
 (i)非水系二次電池負極用炭素材のタップ密度
 本発明の非水系二次電池負極用炭素材のタップ密度は通常0.6g/cm以上、好ましくは0.7g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは0.9g/cm以上であり、一方、通常1.8g/cm以下、好ましくは1.5g/cm以下、より好ましくは1.3g/cm以下であり、更に好ましくは1.2g/cm以下である。
(I) a tap density of nonaqueous secondary battery negative electrode carbon material of the tap density the invention of a nonaqueous secondary battery negative electrode carbon material is usually 0.6 g / cm 3 or higher, preferably 0.7 g / cm 3 or more, More preferably, it is 0.8 g / cm 3 or more, and further preferably 0.9 g / cm 3 or more. On the other hand, it is usually 1.8 g / cm 3 or less, preferably 1.5 g / cm 3 or less, more preferably 1. 3 g / cm 3 or less, more preferably 1.2 g / cm 3 or less.
 タップ密度が上記範囲より小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のリチウムイオンの移動性が落ちることで、非水系二次電池の急速充放電特性が低下する傾向がある。 If the tap density is smaller than the above range, sufficient continuous voids are not secured in the electrode, and the mobility of lithium ions in the electrolyte held in the voids is reduced, so that the rapid charge / discharge characteristics of the non-aqueous secondary battery Tends to decrease.
 (Si複合炭素粒子(A)及び複合黒鉛粒子(B)の質量割合)
 本発明の非水系二次電池負極用炭素材において、Si複合炭素粒子(A)及び複合黒鉛粒子(B)の総量に対する複合黒鉛粒子(B)の質量割合は、特に制限はないが、0質量%より大きく、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、特に好ましくは30質量%以上であり、通常90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下である。
(Mass ratio of Si composite carbon particles (A) and composite graphite particles (B))
In the nonaqueous secondary battery negative electrode carbon material of the present invention, the mass ratio of the composite graphite particles (B) to the total amount of the Si composite carbon particles (A) and the composite graphite particles (B) is not particularly limited, but is 0 mass. %, Preferably 1% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, particularly preferably 30% by mass or more, and usually 90% by mass or less, preferably 80% by mass or less, More preferably, it is 70 mass% or less.
 Si複合炭素粒子(A)及び複合黒鉛粒子(B)の総量に対するSi複合炭素粒子(A)の割合が多すぎると、非水系二次電池の初期効率の低下、極板強度の低下を招く傾向がある。また、複合炭素粒子(A)の割合が少なすぎると、容量の低下を招く傾向がある。 When the ratio of the Si composite carbon particles (A) to the total amount of the Si composite carbon particles (A) and the composite graphite particles (B) is too large, the initial efficiency of the non-aqueous secondary battery is decreased and the strength of the electrode plate is decreased. There is. Moreover, when there is too little ratio of composite carbon particle (A), there exists a tendency which causes the fall of a capacity | capacitance.
 なお、本発明の炭素材を得るにあたって、Si複合炭素粒子(A)及び複合黒鉛粒子(B)が均一に混合されればこれらの混合方法は特に制限はないが、例えば、回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。 In obtaining the carbon material of the present invention, the mixing method is not particularly limited as long as the Si composite carbon particles (A) and the composite graphite particles (B) are uniformly mixed. As a mixer with a structure in which two frame molds rotate and revolve; a single blade, such as a dissolver that is a high-speed high-shear mixer or a butterfly mixer for high viscosity, stirs and disperses in a tank Structured device; so-called kneader-type device having a structure in which a stirring blade such as a sigma type rotates along the side surface of a semi-cylindrical mixing tank; a trimix type device with three stirring blades; rotating in a container A so-called bead mill type apparatus having a disk and a dispersion medium is used.
 またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX-Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。 It also has a container with a paddle that is rotated by a shaft, and the inner wall surface of the container is formed substantially along the outermost line of rotation of the paddle, preferably in a long twin cylinder shape, and the paddle has side surfaces facing each other. A device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works) Furthermore, it has a container in which a single inner shaft and a plurality of pavement or sawtooth paddles fixed to the shaft are arranged in different phases, and the inner wall surface is the outermost line of rotation of the paddle (External heat type) apparatus having a structure preferably formed in a cylindrical shape (e.g., Redige mixer manufactured by Redige Co., Ltd., flow share mixer manufactured by Taiyo Kiko Co., Ltd., Tsukishima Machine Co., Ltd.) Of DT dryers, etc.) can also be used. In order to perform mixing in a continuous manner, a pipeline mixer, a continuous bead mill, or the like may be used.
 <その他の材料との混合>
 本発明の非水系二次電池負極用炭素材は、Si複合炭素粒子(A)及び複合黒鉛粒子(B)を任意の組成及び組み合わせで併用して、非水系二次電池の負極材として好適に使用することができるが、一種又は二種以上の、これらに該当しないその他の材料と混合し、これを非水系二次電池、好ましくは非水系二次電池の負極材料として用いてもよい。
<Mixing with other materials>
The carbon material for a non-aqueous secondary battery negative electrode of the present invention is suitably used as a negative electrode material for a non-aqueous secondary battery by using Si composite carbon particles (A) and composite graphite particles (B) in any composition and combination. Although it can be used, it may be used as a negative electrode material for a non-aqueous secondary battery, preferably a non-aqueous secondary battery, by mixing with one or two or more other materials not corresponding to these.
 その他の材料を混合する場合、非水系二次電池負極用炭素材の総量に対するその他の材料の混合量は、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、特に好ましくは70質量%以上である。また、通常90質量%以下、好ましくは80質量%以下の範囲である。 When mixing other materials, the mixing amount of the other materials with respect to the total amount of the carbon material for the nonaqueous secondary battery negative electrode is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, Preferably it is 60 mass% or more, Most preferably, it is 70 mass% or more. Moreover, it is 90 mass% or less normally, Preferably it is the range of 80 mass% or less.
 その他の材料の混合割合が、前記範囲を下回ると、添加した効果が現れ難い傾向がある。一方、前記範囲を上回ると、本発明の非水系二次電池負極用炭素材の特性が現れ難い傾向がある。 When the mixing ratio of other materials is less than the above range, the added effect tends to hardly appear. On the other hand, when the above range is exceeded, the characteristics of the carbon material for a non-aqueous secondary battery negative electrode of the present invention tend to hardly appear.
 その他の材料としては、例えば、天然黒鉛、人造黒鉛、非晶質炭素被覆黒鉛、非晶質炭素、金属粒子、金属化合物の中から選ばれる材料を用いることができる。これらの材料は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び組成で併用してもよい。 As other materials, for example, materials selected from natural graphite, artificial graphite, amorphous carbon-coated graphite, amorphous carbon, metal particles, and metal compounds can be used. Any of these materials may be used alone, or two or more of these materials may be used in any combination and composition.
 前記天然黒鉛としては、例えば、高純度化した鱗片状黒鉛粒子や鱗状黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通常8μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。天然黒鉛のBET比表面積は、通常3.5m/g以上、好ましくは4.5m/g以上、また、通常8m/g以下、好ましくは6m/g以下の範囲である。 As the natural graphite, for example, highly purified scaly graphite particles or scaly graphite can be used. The volume-based average particle diameter of natural graphite is usually 8 μm or more, preferably 12 μm or more, and usually 60 μm or less, preferably 40 μm or less. The natural graphite has a BET specific surface area of generally 3.5 m 2 / g or more, preferably 4.5 m 2 / g or more, and usually 8 m 2 / g or less, preferably 6 m 2 / g or less.
 前記人造黒鉛としては、炭素材料を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子などを用いることができる。 Examples of the artificial graphite include particles obtained by graphitizing a carbon material. For example, particles obtained by firing and graphitizing single graphite precursor particles while being powdered can be used.
 前記非晶質炭素被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質炭素前駆体を被覆、焼成した粒子や、天然黒鉛や人造黒鉛に非晶質炭素をCVDにより被覆した粒子を用いることができる。 As the amorphous carbon-coated graphite, for example, natural graphite or artificial graphite coated with an amorphous carbon precursor and fired particles, or natural graphite or artificial graphite coated with amorphous carbon by CVD are used. be able to.
 前記非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素化可能なピッチ等を不融化処理し、焼成した粒子を用いることができる。 As the amorphous carbon, for example, particles obtained by firing a bulk mesophase, or particles obtained by firing an infusible carbonizable pitch or the like can be used.
 非水系二次電池負極用炭素材の必須成分とその他の材料との混合に用いる装置としては、特に制限はないが、例えば、
回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、
固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。
As an apparatus used for mixing the essential component of the carbon material for a non-aqueous secondary battery negative electrode and other materials, there is no particular limitation, for example,
For rotary mixers: cylindrical mixers, twin cylindrical mixers, double cone mixers, regular cubic mixers, vertical mixers,
In the case of a fixed mixer: a spiral mixer, a ribbon mixer, a Muller mixer, a Helical Flyt mixer, a Pugmill mixer, a fluidized mixer, or the like can be used.
 前記金属粒子としては、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、As、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物が好ましい。また、2種以上の金属からなる合金を使用してもよく、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましい。 Examples of the metal particles include Fe, Co, Sb, Bi, Pb, Ni, Ag, Si, Sn, As, Al, Zr, Cr, P, S, V, Mn, Nb, Mo, Cu, Zn, A metal selected from the group consisting of Ge, In, Ti and the like or a compound thereof is preferable. Further, an alloy composed of two or more kinds of metals may be used, and the metal particles may be alloy particles formed of two or more kinds of metal elements. Among these, a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn, and W or a compound thereof is preferable.
 前記金属化合物としては、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用してもよい。 Examples of the metal compound include metal oxides, metal nitrides, and metal carbides. Moreover, you may use the alloy which consists of 2 or more types of metals.
 それらの中でも、Si化合物が好ましい。Si化合物としては、Si複合炭素粒子(A)中のSi化合物と同様のものを用いることができる。 Of these, Si compounds are preferred. As the Si compound, the same compound as the Si compound in the Si composite carbon particles (A) can be used.
 [非水系二次電池用負極]
 本発明はまた、本発明の非水系二次電池負極用炭素材を用いて形成される非水系二次電池用負極に関するものであり、その具体例として、リチウムイオン二次電池用負極が挙げられる。
[Negative electrode for non-aqueous secondary battery]
The present invention also relates to a negative electrode for a non-aqueous secondary battery formed using the carbon material for a non-aqueous secondary battery negative electrode of the present invention, and a specific example thereof includes a negative electrode for a lithium ion secondary battery. .
 非水系二次電池用負極の製造方法や非水系二次電池用負極を構成する本発明の非水系二次電池負極用炭素材以外の材料の選択については、特に限定されない。 There are no particular limitations on the method for producing the negative electrode for a non-aqueous secondary battery and the selection of materials other than the carbon material for a non-aqueous secondary battery negative electrode of the present invention constituting the negative electrode for a non-aqueous secondary battery.
 本発明の非水系二次電池用負極は、集電体と、集電体上に形成された活物質層とを備え、かつ前記活物質層が本発明の非水系二次電池負極用炭素材を含有するものである。前記活物質層は、好ましくは、さらにバインダを含有する。 The negative electrode for a non-aqueous secondary battery of the present invention includes a current collector and an active material layer formed on the current collector, and the active material layer is a carbon material for a non-aqueous secondary battery negative electrode of the present invention. It contains. The active material layer preferably further contains a binder.
 バインダは、特に限定されないが、分子内にオレフィン性不飽和結合を有するものが好ましい。具体例としては、スチレン-ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル-ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。 The binder is not particularly limited, but a binder having an olefinically unsaturated bond in the molecule is preferable. Specific examples include styrene-butadiene rubber, styrene / isoprene / styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene / propylene / diene copolymer.
 このような分子内にオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン-ブタジエンゴムが好ましい。 By using such a binder having an olefinically unsaturated bond in the molecule, the swellability of the active material layer with respect to the electrolytic solution can be reduced. Of these, styrene-butadiene rubber is preferred because of its availability.
 このような分子内にオレフィン性不飽和結合を有するバインダと、本発明の非水系二次電池負極用炭素材とを組み合わせて用いることにより、負極板の機械的強度を高くすることができる。負極板の機械的強度が高いと、非水系二次電池の充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。 The mechanical strength of the negative electrode plate can be increased by using a binder having an olefinically unsaturated bond in the molecule and the carbon material for a nonaqueous secondary battery negative electrode of the present invention in combination. When the mechanical strength of the negative electrode plate is high, deterioration of the negative electrode due to charging / discharging of the nonaqueous secondary battery is suppressed, and the cycle life can be extended.
 分子内にオレフィン性不飽和結合を有するバインダは、分子量が大きいもの及び/又は不飽和結合の割合が大きいものが好ましい。 The binder having an olefinically unsaturated bond in the molecule preferably has a large molecular weight and / or a large proportion of unsaturated bonds.
 バインダの分子量としては、重量平均分子量を通常1万以上とすることができ、また、通常100万以下とすることができる。この範囲であれば、機械的強度及び可撓性の両面を良好な範囲に制御できる。重量平均分子量は、好ましくは5万以上であり、また、好ましくは30万以下の範囲である。 As the molecular weight of the binder, the weight average molecular weight can usually be 10,000 or more, and can usually be 1,000,000 or less. If it is this range, both mechanical strength and flexibility can be controlled to a favorable range. The weight average molecular weight is preferably 50,000 or more, and preferably 300,000 or less.
 バインダの分子内のオレフィン性不飽和結合の割合としては、全バインダ1g当たりのオレフィン性不飽和結合のモル数を通常2.5×10-7モル以上とすることができ、また、通常5×10-6モル以下とすることができる。この範囲であれば、強度向上効果が十分に得られ、可撓性も良好である。モル数は、好ましくは8×10-7モル以上であり、また、好ましくは1×10-6モル以下である。 As the ratio of olefinically unsaturated bonds in the binder molecule, the number of moles of olefinically unsaturated bonds per gram of the total binder can be usually 2.5 × 10 −7 mol or more, and usually 5 × It can be 10 −6 mol or less. If it is this range, the intensity | strength improvement effect will be acquired sufficiently and flexibility will also be favorable. The number of moles is preferably 8 × 10 −7 moles or more, and preferably 1 × 10 −6 moles or less.
 また、分子内にオレフィン性不飽和結合を有するバインダについては、その不飽和度を、通常15%以上90%以下とすることができる。不飽和度は、好ましくは20%以上より好ましくは40%以上であり、また、好ましくは80%以下である。本願明細書において、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。 Further, for a binder having an olefinically unsaturated bond in the molecule, the degree of unsaturation can usually be 15% or more and 90% or less. The degree of unsaturation is preferably 20% or more, more preferably 40% or more, and preferably 80% or less. In the present specification, the degree of unsaturation represents the ratio (%) of the double bond to the repeating unit of the polymer.
 バインダとして、オレフィン性不飽和結合を有さないバインダも、使用することができる。分子内にオレフィン性不飽和結合を有するバインダと分子内にオレフィン性不飽和結合を有さないバインダとを併用することによって、塗布性の向上等が期待できる。 As the binder, a binder having no olefinically unsaturated bond can also be used. By using a binder having an olefinically unsaturated bond in the molecule and a binder having no olefinically unsaturated bond in the molecule, improvement in coating property can be expected.
 分子内にオレフィン性不飽和結合を有するバインダを100質量%とした場合、分子内にオレフィン性不飽和結合を有さないバインダの混合比率は、活物質層の強度が低下するのを抑制するため、通常150質量%以下とすることができ、好ましくは120質量%以下である。 When the binder having an olefinically unsaturated bond in the molecule is 100% by mass, the mixing ratio of the binder having no olefinically unsaturated bond in the molecule is to suppress the strength of the active material layer from being lowered. Usually, it can be 150 mass% or less, Preferably it is 120 mass% or less.
 分子内にオレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉、カラギーナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類;
ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;
ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;
ポリアクリル酸、ポリメタクリル酸等のポリ酸またはこれらの金属塩;
ポリフッ化ビニリデン等の含フッ素ポリマー;
ポリエチレン、ポリプロピレンなどのアルカン系ポリマーまたはこれらの共重合体などが挙げられる。
Examples of the binder having no olefinically unsaturated bond in the molecule include thickening polysaccharides such as methylcellulose, carboxymethylcellulose, starch, carrageenan, pullulan, guar gum, xanthan gum (xanthan gum);
Polyethers such as polyethylene oxide and polypropylene oxide;
Vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral;
Polyacids such as polyacrylic acid and polymethacrylic acid or metal salts thereof;
Fluorine-containing polymers such as polyvinylidene fluoride;
Examples thereof include alkane polymers such as polyethylene and polypropylene, and copolymers thereof.
 本発明の非水系二次電池用負極における活物質層には、負極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、その例として、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。 In the active material layer in the negative electrode for a non-aqueous secondary battery of the present invention, a conductive additive may be contained in order to improve the conductivity of the negative electrode. The conductive aid is not particularly limited, and examples thereof include carbon black such as acetylene black, ketjen black, and furnace black, fine powder made of Cu, Ni having an average particle size of 1 μm or less, or an alloy thereof.
 導電助剤の添加量は、本発明の非水系二次電池負極用炭素材100質量部に対して、10質量部以下であることが好ましい。 It is preferable that the addition amount of the conductive additive is 10 parts by mass or less with respect to 100 parts by mass of the carbon material for a nonaqueous secondary battery negative electrode of the present invention.
 本発明の非水系二次電池用負極は、本発明の非水系二次電池負極用炭素材と場合によりバインダ及び/又は導電助剤とを分散媒に分散させてスラリーとし、これを集電体に塗布、乾燥することにより形成することができる。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。 The negative electrode for a non-aqueous secondary battery of the present invention is a slurry obtained by dispersing the carbon material for a non-aqueous secondary battery negative electrode of the present invention and optionally a binder and / or a conductive additive in a dispersion medium. It can be formed by coating and drying. As the dispersion medium, an organic solvent such as alcohol or water can be used.
 スラリーを塗布する集電体としては、特に限定されず、公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜などが挙げられる。 The current collector to which the slurry is applied is not particularly limited, and a known current collector can be used. Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil.
 集電体の厚さは通常4μm以上とすることができ、また、通常30μm以下とすることができる。厚さは、好ましくは6μm以上であり、また、好ましくは20μm以下である。 The thickness of the current collector can be usually 4 μm or more, and can usually be 30 μm or less. The thickness is preferably 6 μm or more, and preferably 20 μm or less.
 スラリーを塗布、乾燥して得られる活物質層の厚さは、負極としての実用性及び高密度の電流値に対する十分なリチウムイオンの吸蔵・放出の機能の点から、通常5μm以上とすることができ、また、通常200μm以下とすることができる。好ましくは20μm以上、より好ましくは30μm以上であり、また、好ましくは100μm以下、より好ましくは75μm以下である。 The thickness of the active material layer obtained by applying and drying the slurry is usually 5 μm or more from the viewpoint of practicality as a negative electrode and sufficient lithium ion occlusion / release function for high-density current values. In addition, it can usually be 200 μm or less. Preferably it is 20 micrometers or more, More preferably, it is 30 micrometers or more, Preferably it is 100 micrometers or less, More preferably, it is 75 micrometers or less.
 活物質層の厚さは、スラリーの塗布、乾燥後にプレスすることにより、上記範囲の厚さになるように調整してもよい。 The thickness of the active material layer may be adjusted to a thickness in the above range by pressing after applying the slurry and drying.
 活物質層における非水系二次電池負極用炭素材の密度は、用途により異なるものの、例えば車載用途やパワーツール用途などの入出力特性を重視する用途においては、通常1.1g/cm以上1.65g/cm以下である。 The density of the carbon material for the non-aqueous secondary battery negative electrode in the active material layer varies depending on the application. However, in applications in which input / output characteristics such as in-vehicle applications and power tool applications are emphasized, the density is usually 1.1 g / cm 3 or more 1 .65 g / cm 3 or less.
 この範囲であれば、密度が低すぎることによる粒子同士の接触抵抗の増大を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。 Within this range, an increase in contact resistance between particles due to the density being too low can be avoided, while a decrease in rate characteristics due to the density being too high can also be suppressed.
 密度は、好ましくは1.2g/cm以上、さらに好ましくは1.25g/cm以上である。 The density is preferably 1.2 g / cm 3 or more, more preferably 1.25 g / cm 3 or more.
 携帯電話やパソコンといった携帯機器用途などの容量を重視する用途では、通常1.45g/cm以上とすることができ、また、通常1.9g/cm以下とすることができる。 In applications in which capacity is important, such as portable device applications such as mobile phones and personal computers, it is usually 1.45 g / cm 3 or more, and usually 1.9 g / cm 3 or less.
 この範囲であれば、密度が低すぎることによる単位体積あたりの電池の容量低下を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。 Within this range, it is possible to avoid a decrease in battery capacity per unit volume due to the density being too low, and it is also possible to suppress a decrease in rate characteristics due to the density being too high.
 密度は、好ましくは1.55g/cm以上、さらに好ましくは1.65g/cm以上、特に好ましくは1.7g/cm以上である。 Density is preferably 1.55 g / cm 3 or more, more preferably 1.65 g / cm 3 or more, and particularly preferably 1.7 g / cm 3 or more.
 [非水系二次電池]
 本発明に係る非水系二次電池の基本的構成は、例えば、公知のリチウムイオン二次電池と同様とすることができ、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備え、前記負極は上述した本発明に係る非水系二次電池用負極である。
[Non-aqueous secondary battery]
The basic configuration of the nonaqueous secondary battery according to the present invention can be the same as, for example, a known lithium ion secondary battery, and usually includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte. The negative electrode is a negative electrode for a non-aqueous secondary battery according to the present invention described above.
 <正極>
 正極は、集電体と、集電体上に形成された活物質層とを備えることができる。活物質層は、正極用活物質の他に、好ましくはバインダを含有する。
<Positive electrode>
The positive electrode can include a current collector and an active material layer formed on the current collector. The active material layer preferably contains a binder in addition to the positive electrode active material.
 正極用活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。中でもリチウムイオンを吸蔵・放出可能な金属カルコゲン化合物が好ましい。 Examples of the positive electrode active material include metal chalcogen compounds that can occlude and release alkali metal cations such as lithium ions during charge and discharge. Of these, metal chalcogen compounds capable of inserting and extracting lithium ions are preferred.
 金属カルコゲン化合物としては、バナジウム酸化物、モリブデン酸化物、マンガン酸化物、クロム酸化物、チタン酸化物、タングステン酸化物などの遷移金属酸化物;
バナジウム硫化物、モリブデン硫化物、チタン硫化物、CuSなどの遷移金属硫化物;
NiPS、FePS等の遷移金属のリン-硫黄化合物;
VSe、NbSeなどの遷移金属のセレン化合物;
Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物;
LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。
Examples of metal chalcogen compounds include transition metal oxides such as vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, and tungsten oxide;
Transition metal sulfides such as vanadium sulfide, molybdenum sulfide, titanium sulfide, CuS;
Phosphorus-sulfur compounds of transition metals such as NiPS 3 and FePS 3 ;
Selenium compounds of transition metals such as VSe 2 and NbSe 3 ;
Complex oxides of transition metals such as Fe 0.25 V 0.75 S 2 , Na 0.1 CrS 2 ;
Examples thereof include composite sulfides of transition metals such as LiCoS 2 and LiNiS 2 .
 中でも、リチウムイオンの吸蔵・放出の観点から、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、LiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物が特に好ましい。 Among them, from the viewpoint of occlusion / release of lithium ions, V 2 O 5 , V 5 O 13 , VO 2 , Cr 2 O 5 , MnO 2 , TiO 2 , MoV 2 O 8 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , TiS 2 , V 2 S 5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like are preferable, and LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and their transitions A lithium transition metal composite oxide in which a part of the metal is substituted with another metal is particularly preferable.
 これらの正極活物質は、単独で用いても複数を混合して用いてもよい。 These positive electrode active materials may be used alone or in combination.
 正極用のバインダは、特に限定されず、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。中でも好ましいのは、酸化反応時に分解しにくいため、不飽和結合を有さない樹脂である。 The binder for the positive electrode is not particularly limited, and a known binder can be arbitrarily selected and used. Examples include inorganic compounds such as silicate and water glass, and resins having no unsaturated bond such as Teflon (registered trademark) and polyvinylidene fluoride. Among them, a resin having no unsaturated bond is preferable because it is difficult to decompose during the oxidation reaction.
 バインダの重量平均分子量は、通常1万以上とすることができ、また、通常300万以下とすることができる。重量平均分子量は、好ましくは10万以上であり、また、好ましくは100万以下である。 The weight average molecular weight of the binder can usually be 10,000 or more, and can usually be 3 million or less. The weight average molecular weight is preferably 100,000 or more, and preferably 1,000,000 or less.
 正極活物質層中には、正極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、その例として、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。 In the positive electrode active material layer, a conductive additive may be contained in order to improve the conductivity of the positive electrode. The conductive auxiliary agent is not particularly limited, and examples thereof include carbon powders such as acetylene black, carbon black, and graphite, and various metal fibers, powders, and foils.
 本発明において正極は、上述したような負極の製造方法と同様にして、活物質と、場合によりバインダ及び/又は導電助剤を分散媒に分散させてスラリーとし、これを集電体表面に塗布することにより形成することができる。正極の集電体は、特に限定されず、その例として、アルミニウム、ニッケル、ステンレススチール(SUS)などが挙げられる。 In the present invention, in the same manner as the above-described negative electrode manufacturing method, the positive electrode is dispersed in a dispersion medium with an active material and, optionally, a binder and / or a conductive auxiliary agent, and this is applied to the surface of the current collector. Can be formed. The current collector of the positive electrode is not particularly limited, and examples thereof include aluminum, nickel, stainless steel (SUS), and the like.
 <電解質>
 電解質(「電解液」と称することもある。)は、特に限定されず、非水系溶媒に電解質としてリチウム塩を溶解させた非水系電解液や、該非水系電解液に有機高分子化合物等を添加することによりゲル状、ゴム状、または固体シート状にしたものなどが挙げられる。
<Electrolyte>
The electrolyte (sometimes referred to as “electrolyte”) is not particularly limited, and a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in a non-aqueous solvent, or an organic polymer compound or the like is added to the non-aqueous electrolyte. By doing so, a gel-like, rubber-like, or solid sheet-like shape can be mentioned.
 非水系電解液に使用される非水系溶媒は、特に限定されず、公知の非水系溶媒を用いることができる。 The non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, and a known non-aqueous solvent can be used.
 例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;
1,2-ジメトキシエタン等の鎖状エーテル類;
テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、1,3-ジオキソラン等の環状エーテル類;
ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;
γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類などが挙げられる。
For example, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate;
Cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate;
Chain ethers such as 1,2-dimethoxyethane;
Cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3-dioxolane;
Chain esters such as methyl formate, methyl acetate and methyl propionate;
and cyclic esters such as γ-butyrolactone and γ-valerolactone.
 非水系溶媒は、単独でも、2種以上を併用してもよい。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組み合わせが導電性と粘度のバランスから好ましく、環状カーボネートが、エチレンカーボネートであることが好ましい。 The non-aqueous solvent may be used alone or in combination of two or more. In the case of a mixed solvent, a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferable from the balance of conductivity and viscosity, and the cyclic carbonate is preferably ethylene carbonate.
 非水系電解液に使用されるリチウム塩も特に制限されず、公知のリチウム塩を用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;
LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;
LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩;
LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;
Liトリフルオロメタンスルフォニルイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが使用可能である。これらの中でもLiClO、LiPF、LiBFが好ましい。
The lithium salt used in the non-aqueous electrolyte is not particularly limited, and a known lithium salt can be used. For example, halides such as LiCl and LiBr;
Perhalogenates such as LiClO 4 , LiBrO 4 , LiClO 4 ;
Inorganic lithium salts such as inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 ;
Perfluoroalkanesulfonates such as LiCF 3 SO 3 , LiC 4 F 9 SO 3 ;
Fluorine-containing organic lithium salts such as perfluoroalkanesulfonic acid imide salts such as Li trifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi) can be used. Among these, LiClO 4 , LiPF 6 , and LiBF 4 are preferable.
 リチウム塩は、単独で用いても、2種以上を併用してもよい。非水系電解液中におけるリチウム塩の濃度は、0.5mol/L以上2.0mol/L以下の範囲とすることができる。 Lithium salts may be used alone or in combination of two or more. The concentration of the lithium salt in the nonaqueous electrolytic solution can be in the range of 0.5 mol / L to 2.0 mol / L.
 上述の非水系電解液に有機高分子化合物を含ませることで、ゲル状、ゴム状、或いは固体シート状にして使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;
ポリエーテル系高分子化合物の架橋体高分子;
ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;
ビニルアルコール系高分子化合物の不溶化物;
ポリエピクロルヒドリン;
ポリフォスファゼン;
ポリシロキサン;
ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;
ポリ(ω-メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω-メトキシオリゴオキシエチレンメタクリレート-co-メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン-フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
When the organic polymer compound is included in the non-aqueous electrolyte solution described above and used in the form of a gel, rubber, or solid sheet, specific examples of the organic polymer compound include polyethylene oxide, polypropylene oxide, and the like. Polyether polymer compounds;
A crosslinked polymer of a polyether polymer compound;
Vinyl alcohol polymer compounds such as polyvinyl alcohol and polyvinyl butyral;
Insolubilized vinyl alcohol polymer compound;
Polyepichlorohydrin;
Polyphosphazene;
Polysiloxane;
Vinyl polymer compounds such as polyvinylpyrrolidone, polyvinylidene carbonate, and polyacrylonitrile;
Examples thereof include polymer copolymers such as poly (ω-methoxyoligooxyethylene methacrylate), poly (ω-methoxyoligooxyethylene methacrylate-co-methyl methacrylate), and poly (hexafluoropropylene-vinylidene fluoride).
 上述の非水系電解液は、さらに被膜形成剤を含んでいてもよい。
 被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;
エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;
1,3-プロパンスルトン、1,4-ブタンスルトンなどのスルトン化合物;
マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。
The non-aqueous electrolyte solution described above may further contain a film forming agent.
Specific examples of the film forming agent include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate, and methyl phenyl carbonate;
Alkene sulfides such as ethylene sulfide and propylene sulfide;
Sultone compounds such as 1,3-propane sultone, 1,4-butane sultone;
Examples of the acid anhydride include maleic acid anhydride and succinic acid anhydride.
 非水系電解液にはさらに、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。 Further, an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added to the non-aqueous electrolyte.
 上記各種添加剤を用いる場合、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼさないようにするために、添加剤の総含有量は非水系電解液全体に対して通常10質量%以下とすることができ、中でも8質量%以下、さらには5質量%以下、特に2質量%以下の範囲が好ましい。 When using the above-mentioned various additives, the total content of the additives is the total amount of the non-aqueous electrolyte so as not to adversely affect other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics. In general, it can be 10% by mass or less, in particular, 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
 また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。 Further, as the electrolyte, a polymer solid electrolyte that is a conductor of an alkali metal cation such as lithium ion can also be used.
 高分子固体電解質としては、前述のポリエーテル系高分子化合物にLi塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。 Examples of the polymer solid electrolyte include those obtained by dissolving a Li salt in the above-described polyether polymer compound, and polymers in which the terminal hydroxyl group of the polyether is substituted with an alkoxide.
 <その他>
 正極と負極との間には、通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させることができ、非水系電解液は、多孔性のセパレータに含浸させて用いることが便利である。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
<Others>
In order to prevent a short circuit between the electrodes, a porous separator such as a porous membrane or a nonwoven fabric can usually be interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte is impregnated into the porous separator. It is convenient to use it. As a material for the separator, polyolefin such as polyethylene and polypropylene, polyethersulfone, and the like are used, and polyolefin is preferable.
 非水系二次電池の形態は特に限定されず、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ;
ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ;
ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
The form of the non-aqueous secondary battery is not particularly limited, for example, a cylinder type in which a sheet electrode and a separator are spiraled;
Inside-out cylinder type that combines pellet electrode and separator;
The coin type etc. which laminated | stacked the pellet electrode and the separator are mentioned.
 また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状及び大きさにして用いることができる。 In addition, by storing batteries of these forms in an optional outer case, the battery can be used in an arbitrary shape and size such as a coin shape, a cylindrical shape, and a square shape.
 非水系二次電池を組み立てる手順も特に限定されず、電池の構造に応じて適切な手順で組み立てることができる。例えば、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。 The procedure for assembling the non-aqueous secondary battery is not particularly limited, and can be assembled by an appropriate procedure according to the structure of the battery. For example, a negative electrode can be placed on an outer case, an electrolyte and a separator can be provided thereon, and a positive electrode can be placed so as to face the negative electrode, and can be caulked together with a gasket and a sealing plate to form a battery.
 次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。なお、各物性の測定方法等は、下記の通りである。 Next, specific embodiments of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In addition, the measuring method of each physical property is as follows.
 <平均粒径d50の測定方法>
 平均粒径d50の測定方法は、以下の通りである。界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、試料0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA-920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径を測定し、これを本発明における平均粒径d50と定義した。
<Measuring method of average particle diameter d50>
The measuring method of the average particle diameter d50 is as follows. A commercially available laser diffraction / scattering particle size is prepared by suspending 0.01 g of a sample in 10 mL of a 0.2 mass% aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant. The sample was introduced into the distribution measuring apparatus “LA-920 manufactured by HORIBA” and irradiated with ultrasonic waves of 28 kHz at an output of 60 W for 1 minute, and then the volume-based median diameter in the measuring apparatus was measured. Defined.
 <BET比表面積(SA)の測定方法>
 BET比表面積(SA)は、大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法によりBET1点法にて測定した。具体的には、試料0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測した。得られた結果から、通常のBET法により比表面積を算出した。
<Measurement method of BET specific surface area (SA)>
The BET specific surface area (SA) was measured by a BET 1-point method by a nitrogen gas adsorption flow method using a specific surface area measuring device “AMS8000” manufactured by Okura Riken. Specifically, 0.4 g of a sample is filled in a cell, heated to 350 ° C., pretreated, cooled to liquid nitrogen temperature, and saturated adsorption of 30% nitrogen and 70% He gas is performed. The amount of gas desorbed by heating to room temperature was measured. From the obtained results, the specific surface area was calculated by a normal BET method.
 <ラマンR値>
 測定対象試料を測定セル内へ自然落下させることで充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定した。ラマンスペクトルの測定条件を下記に示す。
Figure JPOXMLDOC01-appb-I000004
<Raman R value>
The sample to be measured was filled by naturally dropping into the measurement cell, and measurement was performed while rotating the measurement cell in a plane perpendicular to the laser beam while irradiating the measurement cell with an argon ion laser beam. The measurement conditions of the Raman spectrum are shown below.
Figure JPOXMLDOC01-appb-I000004
 得られたラマンスペクトルについて、1580cm-1付近のピークPの強度Iと、1360cm-1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出し、これをラマンR値とした。 The obtained Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R = I B / I A ) And calculated as the Raman R value.
 <タップ密度>
 タップ密度の測定方法は、以下の通りである。粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して試料を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の質量から求めた密度をタップ密度と定義した。
<Tap density>
The method for measuring the tap density is as follows. Using a powder density measuring device, a sample was dropped into a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 through a sieve having an opening of 300 μm, and the cell was fully filled. The density obtained from the volume and the mass of the sample was defined as the tap density.
 <DBP吸油量>
 DBP吸油量は、JIS K6217に準拠し、測定材料を40g投入し、滴下速度4ml/min、回転数125rpm、設定トルクは500N・mとしたときの測定値によって定義される。測定には、あさひ総研の吸収量測定器(S-500)を用いた。
<DBP oil absorption>
The DBP oil absorption amount is defined by measured values when 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the set torque is 500 N · m, in accordance with JIS K6217. For the measurement, an absorption meter (S-500) from Asahi Research Institute was used.
 <複合炭素粒子のSi含有量>
 複合炭素粒子のSi含有量は、以下のようにして求めた。複合炭素粒子をアルカリで完全に溶融した後、水で溶解、定容し、誘導結合プラズマ発光分析装置(堀場製作所 ULTIMA2C)にて測定を行い、検量線からSi量を算出した。その後、Si量を複合炭素粒子の重量で割ることで、複合炭素粒子のSi含有量を算出した。
<Si content of composite carbon particles>
The Si content of the composite carbon particles was determined as follows. The composite carbon particles were completely melted with an alkali, then dissolved and fixed in water, measured with an inductively coupled plasma emission spectrometer (HORIBA, Ltd. ULTIMA2C), and the amount of Si was calculated from a calibration curve. Thereafter, the Si content of the composite carbon particles was calculated by dividing the Si amount by the weight of the composite carbon particles.
 <複合炭素粒子の断面構造の観察>
 複合炭素粒子の断面構造は次のように測定した。後述する<電極シートの作製>で作製した極板を、クロスセクションポリッシャー(日本電子 IB-09020CP)で加工し極板断面を得た。得られた極板断面を、SEM(日立ハイテク SU-70)で観察しながらEDXを用いて黒鉛、Siのマッピングを行った。なお、SEM取得条件は加速電圧3kV、倍率2000倍であり、解像度256dpiにて1粒子が取得できる範囲の像を得た。
<Observation of cross-sectional structure of composite carbon particles>
The cross-sectional structure of the composite carbon particles was measured as follows. The electrode plate prepared in <Preparation of Electrode Sheet> described later was processed with a cross section polisher (JEOL IB-09020CP) to obtain an electrode plate cross section. While observing the obtained electrode plate cross section with SEM (Hitachi High-Tech SU-70), mapping of graphite and Si was performed using EDX. The SEM acquisition conditions were an acceleration voltage of 3 kV and a magnification of 2000 times, and an image in a range where one particle could be acquired at a resolution of 256 dpi was obtained.
 <初期放電容量、初期効率>
 後述の方法で作製した非水系二次電池(2016コイン型電池)を用いて、下記の測定方法で電池充放電時の容量を測定した。
<Initial discharge capacity, initial efficiency>
Using a non-aqueous secondary battery (2016 coin type battery) produced by the method described later, the capacity during battery charging / discharging was measured by the following measurement method.
 0.05C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)の電流密度でリチウム対極に対して5mVまで充電し、さらに5mVの一定電圧で電流密度が0.005Cになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行った。このときの放電容量(mAh/g)を試験した炭素材の放電容量(mAh/g)とし、充電容量(mAh/g)と放電容量(mAh/g)の差分を不可逆容量(mAh/g)とした。また、ここで得られた1サイクル目の放電容量(mAh/g)を充電容量(mAh/g)で割り返し、100倍した値を初期効率(%)とした。 Charge to 5 mV with respect to the lithium counter electrode at a current density of 0.05 C (the current value for discharging the rated capacity with a 1 hour rate discharge capacity in 1 hour is assumed to be 1 C), and the current at a constant voltage of 5 mV. The battery was charged until the density reached 0.005 C, lithium was doped into the negative electrode, and then discharged to 1.5 V with respect to the lithium counter electrode at a current density of 0.1 C. The discharge capacity (mAh / g) at this time is taken as the discharge capacity (mAh / g) of the tested carbon material, and the difference between the charge capacity (mAh / g) and the discharge capacity (mAh / g) is the irreversible capacity (mAh / g). It was. Moreover, the discharge capacity (mAh / g) of the first cycle obtained here was divided by the charge capacity (mAh / g), and the value obtained by multiplying by 100 was defined as the initial efficiency (%).
 <放電容量維持率>
 下記非水系二次電池の作製法により作製したラミネート型非水系二次電池を用いて、下記の測定方法でサイクル耐久性を測定した。
<Discharge capacity maintenance rate>
Cycle durability was measured by the following measuring method using a laminate type non-aqueous secondary battery manufactured by the following non-aqueous secondary battery manufacturing method.
 充放電サイクルを経ていない非水系二次電池に対して、25℃で電圧範囲4.1V~3.0V、電流値0.2Cにて3サイクル、電圧範囲4.2V~3.0V、電流値0.2Cにて(充電時には4.2Vにて定電圧充電をさらに2.5時間実施)2サイクル、初期充放電を行った。 For non-aqueous secondary batteries that have not undergone charge / discharge cycles, voltage range 4.1V to 3.0V at 25 ° C, current cycle 0.2C, 3 cycles, voltage range 4.2V to 3.0V, current value Initial charge / discharge was performed for 2 cycles at 0.2 C (constant voltage charging was further performed for 2.5 hours at 4.2 V during charging).
 さらに、60℃で電圧範囲4.2V~3.0V、電流値2.0Cにて100サイクル充放電を行った後、100サイクル目の放電容量を1サイクル目の放電容量で割った値を放電容量維持率として算出した。 Furthermore, after charging and discharging for 100 cycles at 60 ° C. in a voltage range of 4.2 V to 3.0 V and a current value of 2.0 C, a value obtained by dividing the discharge capacity at the 100th cycle by the discharge capacity at the first cycle is discharged. Calculated as the capacity maintenance rate.
 <電極シートの作製>
 実施例又は比較例の炭素材(負極材料)を用い、活物質層密度1.6±0.03g/cm3の活物質層を有する極板を作製した。具体的には、負極材料20.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.75±0.05g(固形分換算で0.3g)を加えて、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
<Production of electrode sheet>
Using the carbon material (negative electrode material) of the example or the comparative example, an electrode plate having an active material layer with an active material layer density of 1.6 ± 0.03 g / cm 3 was produced. Specifically, 20.00 ± 0.02 g of a negative electrode material, 20.00 ± 0.02 g of a 1% by mass aqueous solution of carboxymethylcellulose sodium salt (0.200 g in terms of solid content), and styrene having a weight average molecular weight of 270,000 -Aqueous dispersion of butadiene rubber 0.75 ± 0.05 g (0.3 g in terms of solid content) was added, stirred for 5 minutes with a hybrid mixer manufactured by Keyence, and defoamed for 30 seconds to obtain a slurry.
 このスラリーを、集電体である厚さ18μmの銅箔上に、負極材が12.0±0.3mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.60±0.03g/cmになるよう調整し電極シートを得た。 This slurry was applied to a width of 5 cm using a doctor blade so that the negative electrode material was 12.0 ± 0.3 mg / cm 2 on a 18 μm-thick copper foil as a current collector, and air-dried at room temperature. Went. Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to be 1.60 ± 0.03 g / cm 3 to obtain an electrode sheet.
 <非水系二次電池(2016コイン型電池)の作製>
 上記方法で作製した電極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPF6を1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池をそれぞれ作製した。
<Preparation of non-aqueous secondary battery (2016 coin type battery)>
The electrode sheet produced by the above method was punched into a disk shape with a diameter of 12.5 mm, and a lithium metal foil was punched into a disk shape with a diameter of 14 mm as a counter electrode. Between the two electrodes, a separator (porous polyethylene film) impregnated with an electrolytic solution in which LiPF 6 was dissolved at 1 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio = 3: 7). 2016 coin type batteries were prepared.
 <非水系二次電池(ラミネートセル)の作成>
 正極活物質としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3)を用い、これに導電剤と、バインダとしてのポリフッ化ビニリデン(PVdF)とを混合してスラリー化した。得られたスラリーを厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、正極活物質層のサイズとして幅30mm、長さ40mm及び集電用の未塗工部を有する形状に切り出して正極とした。正極活物質層の密度は2.6g/cmであった。
<Creation of non-aqueous secondary battery (laminate cell)>
Lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) is used as the positive electrode active material, and this is mixed with a conductive agent and polyvinylidene fluoride (PVdF) as a binder to form a slurry. did. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press, and the positive electrode active material layer had a width of 30 mm, a length of 40 mm, and an uncoated portion for current collection. A positive electrode was cut out into a shape. The density of the positive electrode active material layer was 2.6 g / cm 3 .
 負極としては、上記記載の方法で作製した電極シートを、負極活物質層のサイズとして幅32mm、長さ42mm及び集電部タブ溶接部として未塗工部を有する形状に切り出したものを用いた。この時の負極活物質層の密度は1.35g/cmであった。 As the negative electrode, an electrode sheet produced by the above-described method was cut out into a shape having a width of 32 mm as a size of the negative electrode active material layer, a length of 42 mm, and an uncoated portion as a current collector tab welded portion. . At this time, the density of the negative electrode active material layer was 1.35 g / cm 3 .
 正極と負極をそれぞれの活物質面が対向するように配置し、電極の間に多孔製ポリエチレンシートのセパレータが挟まれるようにした。この際、正極活物質面が負極活物質面内から外れないよう対面させた。 The positive electrode and the negative electrode were arranged so that the active material surfaces face each other, and a porous polyethylene sheet separator was sandwiched between the electrodes. At this time, the positive electrode active material surface was faced so as not to deviate from the negative electrode active material surface.
 この正極と負極それぞれの未塗工部に集電タブを溶接して電極体としたものを、ポリプロピレンフィルム、厚さ0.04mmのアルミニウム箔、及びナイロンフィルムをこの順に積層したラミネートシート(合計厚さ0.1mm)を用いて、内面側に前記ポリプロピレンフィルムがくるようにして挟み、電解液を注入するための一辺を除いて、電極のない領域をヒートシールした。 A laminate sheet (total thickness) obtained by laminating a polypropylene film, an aluminum foil having a thickness of 0.04 mm, and a nylon film in this order by welding current collecting tabs to uncoated portions of each of the positive electrode and the negative electrode. 0.1 mm) was used to sandwich the polypropylene film on the inner surface side, and the region without electrodes was heat sealed except for one side for injecting the electrolyte solution.
 その後、活物質層に非水系電解液(エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)=3/3/4(体積比)に1.2mol/Lの濃度でヘキサフルオロリン酸リチウム(LiPF)を溶解させたもの)を200μL注入して、電極に充分浸透させ、密閉して、ラミネートセルを作製した。この電池の定格容量は、20mAhである。 Then, the non-aqueous electrolyte solution (ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) = 3/3/4 (volume ratio)) was added to the active material layer at a concentration of 1.2 mol / L. 200 μL of lithium phosphate (LiPF 6 ) dissolved therein was injected, sufficiently infiltrated into the electrode, and sealed to prepare a laminate cell. The rated capacity of this battery is 20 mAh.
 25℃環境下で、下記のような条件にて初期コンディショニングを行った。
 1サイクル:0.2Cで1時間充電後、0.2Cで3Vまで放電
 2サイクル:0.2Cで4.1Vまで充電後、0.2Cで3Vまで放電
 3サイクル:0.5Cで4.2Vcccv充電(電流量0.05Cカット条件)後、0.2Cで3Vまで放電
 4サイクル:0.5Cで4.2Vcccv充電(電流量0.05Cカット条件)
(“cccv充電”とは定電流で一定量充電した後に、定電圧で終止条件になるまで充電することを表す。)
Initial conditioning was performed under the following conditions in a 25 ° C. environment.
1 cycle: Charged for 1 hour at 0.2C, then discharged to 3V at 0.2C. 2 cycles: Charged to 4.1V at 0.2C, then discharged to 3V at 0.2C. 3 cycles: 4.2V cccv at 0.5C. After charging (current amount 0.05C cut condition), discharge to 3V at 0.2C 4 cycles: 4.2Vcccv charge at 0.5C (current amount 0.05C cut condition)
(“Ccvv charge” represents charging after a certain amount of charge at a constant current until a termination condition is reached at a constant voltage.)
 (炭素材の準備)
 下記表1に、実施例及び比較例で用いた炭素材の物性を記載する。
 なお、Si複合炭素粒子(A)、複合黒鉛粒子(B-1)及び複合黒鉛粒子(B-2)は以下の様に作成した。
(Preparation of carbon material)
Table 1 below shows the physical properties of the carbon materials used in the examples and comparative examples.
Si composite carbon particles (A), composite graphite particles (B-1) and composite graphite particles (B-2) were prepared as follows.
 ・Si複合炭素粒子(A)
 d50が30μmの多結晶Si(Wako社製)を、NMP(N-メチル-2-ピロリドン)とともに、ビーズミル(アシザワファインテック)でd50:0.2μmまで粉砕してSiスラリー(I)を作製した。このSiスラリー(I)500g(固形分40%)を、ポリアクリロニトリル60gが均一に溶解したNMP750gに投入し、混合攪拌機で混合した。次いで、鱗片状天然黒鉛(d50:45μm)1000gを投入、混合し、ポリアクリロニトリル、Si、黒鉛が均一に分散したスラリー(II)を得た。
・ Si composite carbon particles (A)
Si slurry (I) was prepared by crushing polycrystalline Si (manufactured by Wako) having a d50 of 30 μm together with NMP (N-methyl-2-pyrrolidone) with a bead mill (Ashizawa Finetech) to d50: 0.2 μm. . 500 g (solid content 40%) of this Si slurry (I) was charged into 750 g of NMP in which 60 g of polyacrylonitrile was uniformly dissolved, and mixed with a mixing stirrer. Next, 1000 g of scaly natural graphite (d50: 45 μm) was added and mixed to obtain slurry (II) in which polyacrylonitrile, Si, and graphite were uniformly dispersed.
 このスラリー(II)からポリアクリロニトリルが変性しないよう、ポリアクリロニトリルの熱分解温度以下である150℃にて3時間減圧下で適度に乾燥を行った。なお、DSC分析よりポリアクリロニトリルの分解温度は270度であった。得られた塊状物を、ハンマーミル(IKA社製MF10)で回転数6000rpmにて解砕した後、ハイブリダイゼーションシステム(奈良機械製作所製)に投入し、ローター回転数7000rpmで180秒間、装置内を循環または滞留させて球形化処理して、鱗片状天然黒鉛中にSi粒子を内包し、窒素雰囲気下1000℃で1時間熱処理を行い、Si複合炭素粒子(E)を得た。 The slurry (II) was appropriately dried under reduced pressure for 3 hours at 150 ° C., which is lower than the thermal decomposition temperature of polyacrylonitrile, so that the polyacrylonitrile is not denatured. In addition, the decomposition temperature of polyacrylonitrile was 270 degree | times from DSC analysis. The obtained lump was crushed with a hammer mill (MF10 manufactured by IKA) at a rotation speed of 6000 rpm, and then charged into a hybridization system (manufactured by Nara Machinery Co., Ltd.). Circulation or retention was performed to spheroidize, Si particles were encapsulated in scaly natural graphite, and heat treatment was performed at 1000 ° C. for 1 hour in a nitrogen atmosphere to obtain Si composite carbon particles (E).
 Si複合炭素粒子(E)に、焼成後の被覆率が7.5%になるようにコールタールピッチを混合し、2軸混練機により混練・分散させた。 Coal tar pitch was mixed with Si composite carbon particles (E) so that the coverage after firing was 7.5%, and kneaded and dispersed by a biaxial kneader.
 得られた分散物を、焼成炉に導入し、窒素雰囲気下1000℃、1時間焼成した。焼成した塊状物は上記記載のミルを用いて回転数3000rpmの条件で解砕し、次いで目開き45μmの振動ふるいで分級し、非晶質炭素で被覆されたSi複合炭素粒子(A)を得た(Si含有量は8.2質量%)。 The obtained dispersion was introduced into a firing furnace and fired at 1000 ° C. for 1 hour in a nitrogen atmosphere. The fired lump is crushed using the mill described above under the condition of 3000 rpm, and then classified with a vibrating screen having an opening of 45 μm to obtain Si composite carbon particles (A) coated with amorphous carbon. (Si content is 8.2% by mass).
 また、上記測定法で断面構造を観察したところ、Si複合炭素粒子(A)は鱗片状黒鉛が折り畳まれた構造を有しており、該折り畳まれた構造内の間隙にSi化合物粒子が存在していた。また、Si化合物粒子と鱗片状黒鉛が接触している部分があることが観察された。 In addition, when the cross-sectional structure was observed by the above measurement method, the Si composite carbon particles (A) had a structure in which flaky graphite was folded, and Si compound particles were present in the gaps in the folded structure. It was. Moreover, it was observed that there is a portion where the Si compound particles and the scaly graphite are in contact.
 ・複合黒鉛粒子(B-1)
 d50が100μmの鱗片状天然黒鉛に対して、奈良機械製作所製ハイブリダイゼーションシステムNHS-1型にて、ローター周速度85m/秒で3分間の機械的作用による球形化処理を行った。このサンプルを分級により処理し、d50が15.7μmの球形化黒鉛粒子(C-1)を得た。得られた球形化黒鉛粒子(C-1)に、非水系電解液に難溶性のポリマーとして、ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩(第一工業製薬株式会社製ラベリン:重量平均分子量3200)の水溶液を添加し、加温により水を留去し、複合黒鉛粒子(B-1)を得た。重量変化から得られた複合黒鉛粒子(B-1)において、球形化黒鉛粒子と難溶性ポリマーとの質量比率(球形化黒鉛粒子:難溶性ポリマー)は1:0.005であることが確認された。
・ Composite graphite particles (B-1)
The scaly natural graphite having a d50 of 100 μm was spheroidized by a mechanical action for 3 minutes at a rotor peripheral speed of 85 m / sec using a hybridization system NHS-1 manufactured by Nara Machinery Co., Ltd. This sample was treated by classification to obtain spherical graphite particles (C-1) having a d50 of 15.7 μm. An aqueous solution of sodium salt of naphthalene sulfonic acid formalin condensate (Labelin manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: weight average molecular weight 3200) as a polymer hardly soluble in the non-aqueous electrolyte solution in the resulting spheroidized graphite particles (C-1). And water was distilled off by heating to obtain composite graphite particles (B-1). In the composite graphite particles (B-1) obtained from the weight change, it was confirmed that the mass ratio of the spheroidized graphite particles to the hardly soluble polymer (spherical graphite particles: poorly soluble polymer) was 1: 0.005. It was.
 ・複合黒鉛粒子(B-2)
 d50が100μmの鱗片状天然黒鉛に対して、奈良機械製作所製ハイブリダイゼーションシステムNHS-1型にて、ローター周速度85m/秒で3分間の機械的作用による球形化処理を行った。このサンプルを分級により処理し、d50が15.7μmの球形化黒鉛粒子(C-1)を得た。得られた球形化黒鉛粒子(C-1)と非晶質炭素前駆体としてコールタールピッチを混合し、不活性ガス中で1300℃の熱処理を施した後、焼成物を解砕・分級処理することにより、球形化黒鉛粒子と非晶質炭素とが複合化した複層構造炭素材(C-2)を得た。残炭率から、得られた複層構造炭素材において、球形化黒鉛粒子と非晶質炭素との質量比率(球形化黒鉛粒子:非晶質炭素)は1:0.03であることが確認された。この複層構造炭素材に、非水系電解液に難溶性のポリマーとして、ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩(第一工業製薬株式会社製ラベリン:重量平均分子量3200)の水溶液を添加し、加温により水を留去し、複合黒鉛粒子(B-2)を得た。重量変化から得られた複合黒鉛粒子(B-2)において、複層構造炭素材と難溶性ポリマーとの質量比率(複層構造炭素材:難溶性ポリマー)は1:0.0025であることが確認された。
・ Composite graphite particles (B-2)
The scaly natural graphite having a d50 of 100 μm was spheroidized by a mechanical action for 3 minutes at a rotor peripheral speed of 85 m / sec using a hybridization system NHS-1 manufactured by Nara Machinery Co., Ltd. This sample was treated by classification to obtain spherical graphite particles (C-1) having a d50 of 15.7 μm. The obtained spheroidized graphite particles (C-1) and coal tar pitch as an amorphous carbon precursor are mixed, subjected to heat treatment at 1300 ° C. in an inert gas, and then the fired product is crushed and classified. As a result, a multi-layer structure carbon material (C-2) in which spheroidized graphite particles and amorphous carbon were combined was obtained. From the residual carbon ratio, it was confirmed that the mass ratio of spheroidized graphite particles to amorphous carbon (spheroidized graphite particles: amorphous carbon) was 1: 0.03 in the obtained multilayer carbon material. It was done. An aqueous solution of naphthalene sulfonic acid formalin condensate sodium salt (Labelin manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: weight average molecular weight 3200) is added to this multi-layered carbon material as a polymer that is sparingly soluble in a non-aqueous electrolyte, and heated. Water was distilled off to obtain composite graphite particles (B-2). In the composite graphite particles (B-2) obtained from the change in weight, the mass ratio of the multilayer structure carbon material to the hardly soluble polymer (multilayer structure carbon material: sparingly soluble polymer) is 1: 0.0025. confirmed.
 ・MCMB
 メソカーボンマイクロビーズ(MCMB)として大阪ガス化学社製MCMB6-28を用いた。
・ MCMB
MCMB6-28 manufactured by Osaka Gas Chemical Co., Ltd. was used as mesocarbon microbeads (MCMB).
 以上の各種材料の各種特性を、下記表1にまとめる。 The various characteristics of the above various materials are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [実施例1]
 Si複合炭素粒子(A)と複合黒鉛粒子(B-1)を、Si複合炭素粒子(A)/複合黒鉛粒子(B-1)=70/30(質量比)で混合し、非水系二次電池負極用炭素材とした。
[Example 1]
Si composite carbon particles (A) and composite graphite particles (B-1) are mixed at Si composite carbon particles (A) / composite graphite particles (B-1) = 70/30 (mass ratio), and non-aqueous secondary It was set as the carbon material for battery negative electrodes.
 [比較例1]
 複合黒鉛粒子(B-1)をMCMBとした以外は、実施例1と同様に非水系二次電池負極用炭素材を得た。
[Comparative Example 1]
A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 1 except that the composite graphite particles (B-1) were changed to MCMB.
 [実施例2]
 Si複合炭素粒子(A)と複合黒鉛粒子(B-1)を、Si複合炭素粒子(A)/複合黒鉛粒子(B-1)=50/50(質量比)で混合し、非水系二次電池負極用炭素材とした。
[Example 2]
Si composite carbon particles (A) and composite graphite particles (B-1) are mixed at Si composite carbon particles (A) / composite graphite particles (B-1) = 50/50 (mass ratio), and non-aqueous secondary It was set as the carbon material for battery negative electrodes.
 [実施例3]
 複合黒鉛粒子(B-1)を複合黒鉛粒子(B-2)とした以外は、実施例2と同様に非水系二次電池負極用炭素材を得た。
[Example 3]
A carbon material for a nonaqueous secondary battery negative electrode was obtained in the same manner as in Example 2 except that the composite graphite particles (B-1) were changed to composite graphite particles (B-2).
 [比較例2]
 複合黒鉛粒子(B-1)をMCMBとした以外は、実施例2と同様に非水系二次電池負極用炭素材を得た。
[Comparative Example 2]
A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 2 except that the composite graphite particles (B-1) were changed to MCMB.
 [実施例4]
 Si複合炭素粒子(A)と複合黒鉛粒子(B-1)をSi複合炭素粒子(A)/複合黒鉛粒子(B-1)=30/70(質量比)で混合し、非水系二次電池負極用炭素材とした。
[Example 4]
Si composite carbon particles (A) and composite graphite particles (B-1) are mixed at Si composite carbon particles (A) / composite graphite particles (B-1) = 30/70 (mass ratio) to obtain a non-aqueous secondary battery. A carbon material for a negative electrode was obtained.
 [実施例5]
 複合黒鉛粒子(B-1)を複合黒鉛粒子(B-2)とした以外は、実施例4と同様に非水系二次電池負極用炭素材を得た。
[Example 5]
A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 4 except that the composite graphite particles (B-1) were changed to composite graphite particles (B-2).
 [比較例3]
 複合黒鉛粒子(B-1)をMCMBとした以外は、実施例4と同様に非水系二次電池負極用炭素材を得た。
[Comparative Example 3]
A carbon material for a non-aqueous secondary battery negative electrode was obtained in the same manner as in Example 4 except that the composite graphite particles (B-1) were changed to MCMB.
 [比較例4]
 複合黒鉛粒子(B-1)を非水系二次電池負極用炭素材とした。
[Comparative Example 4]
The composite graphite particles (B-1) were used as a carbon material for a nonaqueous secondary battery negative electrode.
 [比較例5]
 複合黒鉛粒子(B-2)を非水系二次電池負極用炭素材とした。
[Comparative Example 5]
The composite graphite particles (B-2) were used as a carbon material for a non-aqueous secondary battery negative electrode.
 [比較例6]
 MCMBを非水系二次電池負極用炭素材とした。
[Comparative Example 6]
MCMB was used as a carbon material for a non-aqueous secondary battery negative electrode.
 [比較例7]
 Si複合黒鉛粒子(A)を非水系二次電池負極用炭素材とした。
[Comparative Example 7]
Si composite graphite particles (A) were used as a carbon material for a non-aqueous secondary battery negative electrode.
 実施例1~5、及び比較例1~7の非水系二次電池負極用炭素材について、前記測定法で初期放電容量、初期効率、サイクル耐久性を測定した。結果を下記表2に示す。 The initial discharge capacity, initial efficiency, and cycle durability of the carbon materials for non-aqueous secondary battery negative electrodes of Examples 1 to 5 and Comparative Examples 1 to 7 were measured by the measurement methods described above. The results are shown in Table 2 below.
 なお、実施例1~5及び比較例4~5のサイクル耐久性の値は、下記のように計算した。 The cycle durability values of Examples 1 to 5 and Comparative Examples 4 to 5 were calculated as follows.
 ・実施例1のサイクル耐久性(%)=実施例1の100サイクル目の放電容量維持率/比較例1の100サイクル目の放電容量維持率×100
 ・実施例2のサイクル耐久性(%)=実施例2の100サイクル目の放電容量維持率/比較例2の100サイクル目の放電容量維持率×100
 ・実施例3のサイクル耐久性(%)=実施例3の100サイクル目の放電容量維持率/比較例2の100サイクル目の放電容量維持率×100
 ・実施例4のサイクル耐久性(%)=実施例4の100サイクル目の放電容量維持率/比較例3の100サイクル目の放電容量維持率×100
 ・実施例5のサイクル耐久性(%)=実施例5の100サイクル目の放電容量維持率/比較例3の100サイクル目の放電容量維持率×100
 ・比較例4のサイクル耐久性(%)=比較例4の100サイクル目の放電容量維持率/比較例6の100サイクル目の放電容量維持率×100
 ・比較例5のサイクル耐久性(%)=比較例5の100サイクル目の放電容量維持率/比較例6の100サイクル目の放電容量維持率×100
 ・比較例7のサイクル耐久性(%)=比較例7の100サイクル目の放電容量維持率/実施例1の100サイクル目の放電容量維持率×100
Cycle durability (%) of Example 1 = Discharge capacity maintenance rate at 100th cycle of Example 1 / Discharge capacity maintenance rate at 100th cycle of Comparative Example 1 × 100
Cycle durability (%) of Example 2 = Discharge capacity maintenance rate at 100th cycle of Example 2 / Discharge capacity maintenance rate at 100th cycle of Comparative Example 2 × 100
Cycle durability (%) of Example 3 = discharge capacity maintenance rate at 100th cycle of Example 3 / discharge capacity maintenance rate at 100th cycle of Comparative Example 2 × 100
Cycle durability (%) of Example 4 = discharge capacity maintenance rate at 100th cycle of Example 4 / discharge capacity maintenance rate at 100th cycle of Comparative Example 3 × 100
Cycle durability (%) of Example 5 = discharge capacity maintenance rate at 100th cycle of Example 5 / discharge capacity maintenance rate at 100th cycle of Comparative Example 3 × 100
Cycle durability (%) of Comparative Example 4 = Discharge capacity maintenance rate at 100th cycle of Comparative Example 4 / Discharge capacity maintenance rate at 100th cycle of Comparative Example 6 × 100
Cycle durability (%) of Comparative Example 5 = Discharge capacity maintenance rate at 100th cycle of Comparative Example 5 / Discharge capacity maintenance rate at 100th cycle of Comparative Example 6 × 100
Cycle durability (%) of Comparative Example 7 = Discharge capacity maintenance rate at 100th cycle of Comparative Example 7 / Discharge capacity maintenance rate at 100th cycle of Example 1 × 100
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から判るように、Si複合炭素粒子(A)と複合黒鉛粒子(B)を含有する非水系二次電池負極用炭素材(実施例1~5)は、単材からなる非水系二次電池負極用炭素材(比較例4~7)と比較して、初期放電容量、初期効率のバランスが優れている。 As can be seen from Table 2, the non-aqueous secondary battery negative electrode carbon materials (Examples 1 to 5) containing the Si composite carbon particles (A) and the composite graphite particles (B) are non-aqueous secondary materials made of a single material. Compared with the carbon material for battery negative electrodes (Comparative Examples 4 to 7), the balance between the initial discharge capacity and the initial efficiency is excellent.
 また、サイクル耐久性については、MCMB単材からなる非水系二次電池負極用炭素材(比較例6)と比較して、複合黒鉛粒子(B)単材からなる非水系二次電池負極用炭素材(比較例4、5)の方が低いにもかかわらず、Si複合炭素粒子(A)とMCMBを含有する非水系二次電池負極用炭素材(比較例1~3)と比較して、Si複合炭素粒子(A)と複合黒鉛粒子(B)を含有する非水系二次電池負極用炭素材(実施例1~5)の方が高いことが分かる。 Regarding cycle durability, the carbon for non-aqueous secondary battery negative electrode made of composite graphite particles (B) alone compared to the carbon material for non-aqueous secondary battery negative electrode made of MCMB single material (Comparative Example 6). Despite the lower material (Comparative Examples 4 and 5), compared with the carbon material for non-aqueous secondary battery negative electrode (Comparative Examples 1 to 3) containing Si composite carbon particles (A) and MCMB, It can be seen that the carbon materials for non-aqueous secondary battery negative electrodes (Examples 1 to 5) containing Si composite carbon particles (A) and composite graphite particles (B) are higher.
 これは複合黒鉛粒子(B)が有する非水系電解液に難溶性のポリマーが、黒鉛粒子と非水系電解液との副反応を抑制するためであると考えられる。 This is considered to be because a polymer that is hardly soluble in the non-aqueous electrolyte solution of the composite graphite particles (B) suppresses side reactions between the graphite particles and the non-aqueous electrolyte solution.
 これより、本発明の非水系二次電池負極用炭素材を用いることで、初期放電容量、初期効率、放電容量維持率が高いレベルでバランスが取れた非水系二次電池を提供することができる。 Thus, by using the non-aqueous secondary battery negative electrode carbon material of the present invention, it is possible to provide a non-aqueous secondary battery that is balanced at a high initial discharge capacity, initial efficiency, and discharge capacity retention rate. .

Claims (7)

  1.  (1)珪素元素を含む複合炭素粒子(A)、及び
     (2)非水系電解液に難溶性のポリマーと黒鉛粒子(C)とが複合化された複合黒鉛粒子(B)
    を含む非水系二次電池負極用炭素材。
    (1) Composite carbon particles containing silicon element (A), and (2) Composite graphite particles (B) in which a polymer that is hardly soluble in a non-aqueous electrolyte and graphite particles (C) are combined.
    A carbon material for a negative electrode of a non-aqueous secondary battery.
  2.  前記複合炭素粒子(A)は、鱗片状黒鉛が折り畳まれた構造を有し、該折り畳まれた構造内の間隙にSi化合物粒子が存在している、請求項1に記載の非水系二次電池負極用炭素材。 2. The non-aqueous secondary battery according to claim 1, wherein the composite carbon particles (A) have a structure in which scaly graphite is folded, and Si compound particles are present in a gap in the folded structure. Carbon material for negative electrode.
  3.  前記黒鉛粒子(C)が、球形化天然黒鉛である、請求項1又は2に記載の非水系二次電池負極用炭素材。 The carbon material for a non-aqueous secondary battery negative electrode according to claim 1 or 2, wherein the graphite particles (C) are spheroidized natural graphite.
  4.  前記非水系電解液に難溶性のポリマーについて、前記ポリマーをエチルカーボネートとエチルメチルカーボネートとを3:7の体積比で混合した溶媒に24時間浸漬した場合に、浸漬前後の乾燥重量減少率が10質量%以下である、請求項1乃至3のいずれか1項に記載の非水系二次電池負極用炭素材。 With respect to a polymer that is hardly soluble in the non-aqueous electrolyte, when the polymer is immersed in a solvent in which ethyl carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 for 24 hours, the dry weight loss rate before and after immersion is 10 The carbon material for a nonaqueous secondary battery negative electrode according to any one of claims 1 to 3, wherein the carbon material is not more than mass%.
  5.  前記複合炭素粒子(A)が、Si及びSiOx(0<x<2)からなる群より選ばれる少なくとも一種のSi化合物を含む、請求項1乃至4のいずれか一項に記載の非水系二次電池負極用炭素材。 The non-aqueous secondary according to any one of claims 1 to 4, wherein the composite carbon particles (A) contain at least one Si compound selected from the group consisting of Si and SiOx (0 <x <2). Carbon material for battery negative electrode.
  6.  集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1乃至5のいずれか一項に記載の非水系二次電池負極用炭素材を含有する、非水系二次電池用負極。 A non-aqueous secondary battery negative electrode comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is according to any one of claims 1 to 5. A negative electrode for a nonaqueous secondary battery, comprising a carbon material for a nonaqueous secondary battery negative electrode.
  7.  正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が請求項6に記載の非水系二次電池用負極である、非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode and a negative electrode, and an electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous secondary battery according to claim 6.
PCT/JP2014/081388 2013-11-27 2014-11-27 Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery and nonaqueous rechargeable battery using same WO2015080204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550991A JP6432520B2 (en) 2013-11-27 2014-11-27 Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013244750 2013-11-27
JP2013-244750 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080204A1 true WO2015080204A1 (en) 2015-06-04

Family

ID=53199141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081388 WO2015080204A1 (en) 2013-11-27 2014-11-27 Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery and nonaqueous rechargeable battery using same

Country Status (2)

Country Link
JP (1) JP6432520B2 (en)
WO (1) WO2015080204A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768666A (en) * 2017-11-14 2018-03-06 北京圣比和科技有限公司 The rotating mechanical force and chemical cladding process of hot gas prepares the device and method of nickel manganese cobalt acid lithium
EP4073854A4 (en) * 2019-12-13 2024-04-03 Sicona Battery Technologies Pty Ltd Anode for lithium-ion battery and method of fabricating same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226020A1 (en) * 2018-05-25 2019-11-28 주식회사 엘지화학 Composite particles for anode active material and anode for all-solid-state battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311237A (en) * 2003-04-08 2004-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2014186955A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311237A (en) * 2003-04-08 2004-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2014186955A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768666A (en) * 2017-11-14 2018-03-06 北京圣比和科技有限公司 The rotating mechanical force and chemical cladding process of hot gas prepares the device and method of nickel manganese cobalt acid lithium
CN107768666B (en) * 2017-11-14 2023-12-22 北京圣比和科技有限公司 Method for preparing lithium nickel manganese cobalt oxide by using thermal cyclone type mechanochemical cladding method
EP4073854A4 (en) * 2019-12-13 2024-04-03 Sicona Battery Technologies Pty Ltd Anode for lithium-ion battery and method of fabricating same

Also Published As

Publication number Publication date
JPWO2015080204A1 (en) 2017-03-16
JP6432520B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US20220407070A1 (en) Carbon material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6528826B2 (en) Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same
JP6251968B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
WO2014046144A1 (en) Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP6476814B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP6409377B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2012216545A (en) Graphite particle for nonaqueous secondary battery and method for producing the same, negative electrode and nonaqueous secondary battery
JP6318758B2 (en) Non-aqueous secondary battery carbon material and non-aqueous secondary battery
JP5994319B2 (en) Method for producing composite graphite particles for non-aqueous secondary battery, composite graphite particles obtained by the production method, negative electrode, and non-aqueous secondary battery
JP2015026579A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2015079621A (en) Composite graphite particle for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6098275B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP6252025B2 (en) Method for producing composite graphite particles for non-aqueous secondary battery negative electrode, and composite graphite particles for non-aqueous secondary battery negative electrode produced by the production method, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6432520B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP6379565B2 (en) Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery
JP2016186914A (en) Composite graphite particle for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP6422208B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP2016189319A (en) Carbonaceous material and nonaqueous secondary battery
JP6492407B2 (en) Carbon material for non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
US20240282921A1 (en) Particles and method for producing same, and secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865703

Country of ref document: EP

Kind code of ref document: A1